On Reverse Shortest Paths in Geometric Proximity
Graphs

Pankaj K. Agarwal =
Department of Computer Science, Duke University, Durham NC, USA

Matthew J. Katz =

Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva, Israel

Micha Sharir =

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

—— Abstract

Let S be a set of n geometric objects of constant complexity (e.g., points, line segments, disks,
ellipses) in R?, and let ¢ : S x S — Rx¢ be a distance function on S. For a parameter r > 0, we
define the proxzimity graph G(r) = (S, E) where E = {(e1,e2) € S x S | e1 # e2, o(e1,e2) < r}.
Given S, s,t € S, and an integer k > 1, the reverse-shortest-path (RSP) problem asks for computing
the smallest value r* > 0 such that G(r*) contains a path from s to t of length at most k.

In this paper we present a general randomized technique that solves the RSP problem efficiently
for a large family of geometric objects and distance functions. Using standard, and sometimes
more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the
decision problem, namely, given a value r > 0, determine whether G(r) contains a path from s to ¢
of length at most k. Next, we adapt our decision algorithm and combine it with a random-sampling
method to compute r*, by efficiently performing a binary search over an implicit set of O(n?)
candidate values that contains r*.

We illustrate the versatility of our general technique by applying it to a variety of geometric
proximity graphs. For example, we obtain (i) an O*(n*?) expected-time randomized algorithm
(where O*(+) hides polylog(n) factors) for the case where S is a set of pairwise-disjoint line segments
in R? and p(e1,e2) = mingee; yees ||z — y|| (where || - || is the Euclidean distance), and (ii) an
O*(n+ m*/ 3) expected-time randomized algorithm for the case where S is a set of m points lying
on an z-monotone polygonal chain T" with n vertices, and o(p, q), for p,q € S, is the smallest value
h such that the points p’ := p+ (0, k) and ¢’ := g + (0, h) are visible to each other, i.e., all points on
the segment p'q’ lie above or on the polygonal chain T'.

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Design and analysis of algorithms

Keywords and phrases Geometric optimization, proximity graphs, semi-algebraic range searching,
reverse shortest path

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.42

Funding Pankaj K. Agarwal: Partially supported by NSF grants 11S-1814493, CCF-2007556, and
CCF-2223870.

Matthew J. Katz: Partially supported by Grant 2019715/CCF-20-08551 from the US-Israel Binational
Science Foundation/US National Science Foundation.

Micha Sharir: Partially supported by Grant 260/18 from the Israel Science Foundation.

1 Introduction

Let S be a set of n geometric objects of constant complexity (e.g., points, line segments,
disks, ellipses) in R?, and let ¢ : S x S — R>q be a distance function on S. For a parameter
r > 0, we define the proximity graph G(r) = (S, E), where E = {(e1,e2) € S xS | e1 #
ea, o(er,ex) < r}. If S is a set of n points in R? and o(,-) is the Euclidean metric, then
© Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir;
37 licensed under Creative Commons License CC-BY 4.0
33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 42; pp. 42:1-42:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
https://orcid.org/0000-0002-9439-181X
mailto:matya@cs.bgu.ac.il
https://orcid.org/0000-0002-0672-729X
mailto:michas@tauex.tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.ISAAC.2022.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2

On Reverse Shortest Paths in Geometric Proximity Graphs

G(r) is the well-studied wunit-disk graph [15] (where the “unit” here is r/2). Here we study
proximity graphs in considerably more general settings. For example, let S = {e1,...,e,}
be a set of n pairwise-disjoint segments in R?. For a pair of segments, e, es € S, we define
o(e1,e2) = Mingee, yee, || — y||, where || - | denotes the Euclidean norm. Equivalently, we
can define g(e;, e;) as follows: For a value r > 0, let B(r) be the disk of radius r centered at
the origin, and let K;(r) == e; ®B(r) = {z+y | z € e;,y € B(r)} be the Minkowski sum of e;
and B(r). Then o(e1, e2) = min{r | K;(r/2) N K;(r/2) # 0}. See Figure 1 for an illustration.
The segment-prozimity graph G(r) (over S) has an edge between two segments if they are
within distance r of each other. See below for more examples of geometric proximity graphs,
and note that the above reformulation allows us to interpret proximity graphs as intersection
graphs (the unit-disk example is another instance). We note that we do not require o(+,) to
be symmetric. If g is not symmetric, then G(r) is a directed graph in which a directed edge
e1 — ez € E if g(eq, e3) < r. See Section 1.2 below for an example.

Figure 1 The proximity graph of segments. Left: A possible input consisting of 6 segments,
including segments s and ¢, and a value r > 0. The Minkowski sums of e; and e2 with a disk of
radius r/2 are highlighted. Right: The corresponding proximity graph G(r), where the red edges
are those that appear in the shortest path from s to t.

Given S, s,t € S, and an integer k > 1, the reverse-shortest-path (RSP) problem asks
for computing the smallest value 7* > 0 such that G(r*) contains a path from s to ¢ of
length at most k. There are O(n?) critical values of r at which G(r) changes, and our goal
is to find the smallest of these critical values for which the proximity graph has the desired
property. The RSP problem arises in many applications. For instance, we wish to determine
the minimum transmission range for the sensors in a sensor network, such that there is a
k-hop transmission path between two given sensors s and t. In this paper we present a
general randomized technique for the RSP problem in geometric proximity (and intersection)
graphs and apply it to a variety of such graphs.

1.1 Related work

There has been extensive work on understanding the combinatorial structure of geometric
proximity graphs (e.g., realizibility of proximity graphs), as well as on developing improved
algorithms for a wide range of problems (e.g., shortest paths, vertex covers, independent
sets, matchings) on such graphs. Because of numerous applications, to communication
networks and other topics, the most widely studied proximity graph is perhaps the unit-disk
graph, defined above; see [5, 8, 15, 17, 19] and references therein for a sample of known
results on unit-disk graphs. Although a unit-disk graph can have ©(n?) edges, near-linear
or subquadratic algorithms are known for many reachability or proximity problems in unit
disk graphs, by exploiting the underlying geometry. For example, an O(nlogn) algorithm
is known for performing BFS or DFS in unit-disk graphs [10, 12], an O(n log? n) algorithm

P. K. Agarwal, M. J. Katz, and M. Sharir

for computing shortest paths from a single source in a weighted unit-disk graph (where the
weight of an edge (p,q) is ||p — q|| if |l]p — ¢|| < 1 and co otherwise) [27] (see also [10, 26]),
a slightly subquadratic algorithm for computing the diameter of such graphs exactly [12],
O*(n) algorithms! for computing the diameter approximately [14] and for computing a
spanner [14, 20]. Subquadratic algorithms are known for reachability problems in some other
geometric proximity graphs as well, e.g., O*(n) and O*(n*/3) algorithms for determining
whether there exists a path of length at most & between two nodes in disk-intersection or
segment-intersection graphs, respectively [6, 13]. Fast algorithms have been developed for
computing all pair shortest paths in geometric intersection graphs [13].

In principle, algorithms for geometric proximity graphs could be plugged into the so-called
parametric search technique to obtain a subquadratic algorithm for the RSP problem in a
geometric proximity graph. However, the difficulty with this approach is that an efficient
implementation of the parametric-search technique requires a parallel algorithm for the
so-called decision procedure [25], which is not always known. For example, many of the above
algorithms use BFS on the resulting graph, but the known BFS algorithms are inherently
sequential. Cabello and Jejéi¢ [10] observed that an O*(n*/3) algorithm can be obtained
for the RSP problem in a unit-disk graph by using a distance-selection algorithm (given
a set S of points in R? and an integer k > 1, return the kth smallest pairwise distance
in S; see [3, 22]) to perform a binary search on the O(n?) pairwise-distances between the
input points, and use an efficient BFS algorithm [10] at each step. Wang and Zhao [28] (see
also [29]) improved the running time to O*(n®/*) by observing that some of the steps of the
BFS algorithm [12] in a unit-disk graph can be parallelized, and they combine parametric
search with the distance-selection algorithm. This bound was further improved by Katz and
Sharir [21] to O*(n%/) randomized expected time. We are not aware of any known results
on the RSP problem for more general geometric proximity graphs.

We conclude this discussion by noting that the RSP problem has been studied in more
general settings, where, given a weighted graph G = (V, E), a pair of nodes s,t € V, and a
real parameter W, the goal is to minimize the edge weights as much as possible (subject to
various constraints and penalties) so that there is a path in G from s to ¢ of weight at most
W. This problem is known to be NP-complete and approximation algorithms are known for
a few special cases; see [9, 16, 30] and references therein.

1.2 Our results

There are two main contributions of this paper: First, we describe a general technique for
solving the RSP problem in geometric proximity graphs in a fairly general setting. The
running time of the algorithm depends on the complexity of the input objects and on the
distance function, but it is always subquadratic, even though the proximity graph G(r)
may have quadratic size. In all cases described in the paper, this technique yields faster
algorithms than those that are based on parametric search because, as mentioned above,
the decision algorithms in these cases are hard to parallelize. Second, we consider a wide
range of proximity graphs, and develop efficient decision procedures for each case, which are
needed to apply our general technique to these instances, and which exploit the geometry of
the underlying setup, often in a rather nontrivial manner.

! As in the abstract, the O*(-) notation hides polylog(n) factors.

42:3

ISAAC 2022

42:4

On Reverse Shortest Paths in Geometric Proximity Graphs

An overview of our technique. Let S and ¢ be as above. For a pair e;,e; € S, we
define a predicate II(e;, e;;7) that is true if and only if o(e;,e;) < r. Assuming that
the objects in S are semi-algebraic sets of constant complexity and that ¢ is also a semi-
algebraic function of constant complexity, II(e;, e;;7) is a semi-algebraic predicate of constant
complexity.? Therefore, (e;,e;) is an edge in G(r) if and only if II(e;, e;;7) holds. Since
II(-) is a semi-algebraic predicate of constant complexity, we can efficiently compute a
compact representation of G(r), for any given r, as the union of edge-disjoint bipartite cliques
(bicliques), with a small overall size of their vertex sets, using either standard halfspace range
searching techniques (see [1]), in simpler situations, or (by now standard) semi-algebraic range-
searching techniques [2, 4] for more complex setups. With such a compact representation of
G(r) at our disposal, the existence of a path from s to ¢t in G(r) of length at most k can be
tested in time proportional to the total size of the vertex sets of these graphs by a careful
and efficient implementation of BF'S on the compact representation of G(r), as in [6]. In
other words, this technique yields an efficient decision procedure for the RSP problem, in
which r is specified and we want to determine whether G(r) has a path from s to ¢ of length
at most k. We describe, in Section 2, the range-searching machinery as well as the efficient
BFS implementation on the compact representation of G(r) as the union of bicliques, and
show that the expected running time is O*(n*/?).

Next, we obtain a fast optimization algorithm by combining a variant of the decision
algorithm with a randomization technique similar to that in [11, 18, 23]. In particular, the
technique for computing a compact representation of G(r) is also suitable for computing a
compact representation of the graph G(r,r’), for r < ', in which there is an edge between e;
and e; if and only if o(e;, e;) € (r,r']. By defining the predicate II(eq, e2;r,7’) to be true if
and only if g(e;,e;) € (r,r'], we can again use the semi-algebraic range-searching techniques
to count the number? of critical values that lie in the range (r,7’]. Furthermore, as in [23],
the counting procedure is adapted to obtain an efficient randomized procedure for choosing
an approximate median of the critical values in a given range (r, r']. The expected cost of this
procedure is the same (within a polylog(n) factor) as that of the decision procedure. Finally,
with this tool available, we solve the optimization problem by a binary search through the
critical values of r, using the selection procedure just mentioned to select values for the search,
and the decision procedure to guide the search. The overall expected running time for the
RSP problem in a segment-proximity graph is O*(n*/?). Unlike some previous application of
this randomization techniques, e.g., [23], this approach significantly improves the asymptotic
running time of the algorithm in our applications, over what one could have obtained using
parametric search.

We remark here that the application of range searching in many cases here is non-trivial
and requires new ideas, so that we can use multi-level data structures [1] in as low dimension
as possible and obtain better bounds than what we would obtain by a naive application. For
example, a naive application of semi-algebraic range searching in the running example of
segment-proximity graphs would result in a bound of O*(n8/%), as the number of parameters
needed to specify an input segment (i.e., its two endpoints) is four, and even simplex (batched)
range searching in R* results in the aforementioned bound. However, by constructing a

Roughly speaking, a semi-algebraic set in R is the set of points in R? satisfying a Boolean predicate
over a set of polynomial inequalities; the complexity of the predicate and of the set is defined in terms
of the number of polynomials involved and their maximum degree. A real-valued function is called
semi-algebraic if its graph is a semi-algebraic set. See [7] for details.

In many cases, we define the set of critical values to be a superset of {o(ei,e;) | ei,e; € S}, but this
does not affect the general approach.

P. K. Agarwal, M. J. Katz, and M. Sharir

multi-level structure carefully, in which the input objects at each level (features of the actual
input objects) can be specified by only two parameters, we succeed in obtaining the bound
of O*(n*/3); see Section 2.

Efficient solutions to various specific proximity graphs. We illustrate the versatility of
our technique by applying it to a wide range of geometric proximity graphs, as listed below.

Communication graphs of directional antennas. Let S = {p1,...,p,} be a set of n points
in R2, where each point p; has a direction u; € S' associated with it, and let § > 0 be
a range parameter. For a parameter o € [0, 27|, let A;(a) denote the directional antenna
of range 0 located at p; whose symmetry axis is u; and which has an opening angle «,
ie, Aj(a) = {z € R? | [z —pil|l <6 A (ui,z — pi) > cos(a/2)}. (The case where
each antenna has its own range will also be considered.) We consider both asymmetric
and symmetric distance functions: For a pair of points p;,p; € S with |p; — p;| < 6,
we define o(p;,p;) = min{a € [0,27] | p; € A;(a)} for the asymmetric version, and
o(pi,p;) = min{a € [0,27] | p; € Ai(o) A p; € Aj(o)} for the symmetric version. We
set o(pi,p;) = oo if ||p; — pj|| > 0 in both cases. See Figure 2 for an illustration. The
communication graph G(a) is a directed graph for the asymmetric version and undirected for
the symmetric version.

Figure 2 The directional antennas problem. Left: The asymmetric version with k = 5. Right:
The symmetric version with k = 3.

We present (in Section 3.1) a randomized algorithm, with O*(n*/3) expected running
time, for the RSP problem in the communication graph of directional antennas, for both
symmetric and asymmetric versions. We then modify the algorithm to accommodate the case
where each antenna has its own range. The expected running time of this latter algorithm is
O*(n"/%).

Polyline-proximity graphs. The polyline-proximity graph is a generalization of the segment-
proximity graph. The input consists of a set T of n pairwise-disjoint polygonal chains
(representing roads, say), each of size (i.e., number of vertices) at most some constant [.
For a pair T3, T € T, we define o(T3,T}) = minper, ge; ||p — ¢||. As for segment-proximity
graphs, an equivalent formulation is: For a value r» > 0, let K;(r) = T; & B(r). Then
o(T;,T;) = min{r > 0 | K;(r/2) N K;(r/2) # 0}. See Figure 3 for an illustration. We present
(in Section 3) a randomized algorithm, with O*(n*/3) expected time, for the RSP problem in
polyline-proximity graphs.

Graphs of growing segments. Let S = {p1,pa,...,pn} be a set of n points in R?, so that

each point p; is associated with a direction u; € St. For r > 0, let e;(r) := p; + ru; denote
the segment of length r that emanates from p; in direction u;. (We can also consider cases

42:5

ISAAC 2022

42:6

On Reverse Shortest Paths in Geometric Proximity Graphs

Figure 3 The proximity graph of polylines. In this example, [= 4, kK = 5, and r* is the distance
between s and 75 (the Minkowski sums of s and 75, respectively, with a disk of radius r/2 are
highlighted). The edges of the graph are drawn as either black or red thick segments, where the red
ones are those that appear in the path (of length 5) between s and t.

where each e;(r) grows at a different scale, namely e;(r) := p; + A;ru;, for suitable scalars A;.)
We now define o(p;,pj) = min, {r > 0| e;(r) Ne;(r) # 0}. See Figure 4 for an illustration
of the special case where all the points in P are on the z-axis. We present (in Section 3.2)
a randomized algorithm, with O*(n?/3) expected time, for the RSP problem in graphs of
growing segments.

P1 s=p2 P3 Pa D5 Pé Prt=pspPy DPio

D1 s=p2 P3 P4 D5 Pe Pprt=DpspPy DPio

Figure 4 The growing segments problem for an instance where the points are on a line. Top: A
possible input consisting of 10 points, including points s and ¢, and their associated directions, with
some common growth value r > 0. Bottom: The corresponding graph G(r). The edges in red are
those that appear in the shortest path from s to ¢, which is (s, p1, ps, ps, p7, Ps, P10, t). These edges
correspond to the intersection points, marked in red, between segments. In this example r* < 7;
more precisely, r* is the length of the segment with endpoints p; and ei(r) Nes(r).

Variants of growing-segment and segment-proximity graphs. Let S = {p1,...,p,} be a
set of n points in R2. We generalize the growing-segment graph by considering other shapes
(e.g., ellipses) that can be grown around each site p;. In the simplest version, which we will
follow, we assume that each shape has only one degree of freedom of growth. For example,
when growing ellipses, we may assume that the ellipse grown at a site p; is centered at p;,
has fixed directions 6; and 0; + 5 of its axes, and has a fixed ratio \; between the lengths

P. K. Agarwal, M. J. Katz, and M. Sharir

of its major and minor axes. We denote this ellipse as E;(r), where r, the single degree of
freedom of growth, is half the length of the major axis. For a pair of points p;,p; € S, we
now define o(p;, p;) = min{r > 0| E;(r) N E;(r) # 0}. See Figure 5(a) for an illustration.

Figure 5 (a) The growing ellipses problem. The ellipse F;(r) is centered at p;, the direction of
its major axis is 6; and its length is 2r; the direction of the minor axis is ; + 7 and its length is
2r/X;. Since E;(r) N E;(r) # 0, (pi,p;) is an edge of G(r). (b) The ellipse proximity problem. The
length of E;’s major and minor axes are a; and b;. Since the distance between E; and Ej is less
than or equal to r, (E;, E;) is an edge of G(r).

We present, in Section 3, a randomized algorithm, with O*(n®/%) expected time, for
the RSP problem in the growing-ellipse graph. It exploits the fact that each input ellipse
has four degrees of freedom (except for the growth parameter 7). Here the predicate that
determines whether E;(r) N E;(r) # () is a semi-algebraic predicate of constant complexity,

and the associated range-searching problem is with semi-algebraic ranges in four dimensions.

The running time here is worse than those in the preceding problems because the associated
range-searching problem is in higher dimensions. Currently, we do not see how to reduce the
dimension, as we could in the previous problems, and leave this as an open challenge.

Similarly, we can generalize the segment-proximity graph by replacing segments with
other shapes. For example, we can have a set S = {Ej,...,E,} of n pairwise-disjoint
ellipses in R?, and we now define o(E;, E;) = minycp, 4, |[p — ¢l|. See Figure 5(b) for an
illustration. As a general ellipse in the plane has five degrees of freedom, our technique
solves the RSP problem in the ellipse-proximity graph in O*(n5/ 3) expected time, by using
five-dimensional semi-algebraic range searching data structures. As before, it would be an
interesting challenge to improve this bound.

Figure 6 Visibility graph of towers over a terrain. The set @ consists of 8 points, including s and
t, and k = 4. The height h* is determined by the pair p,q. The segments between tips of towers
correspond to the edges of the visibility graph V' (h*), where the red ones correspond to those that
participate in the path, of length 4, between s and t¢.

42:7

ISAAC 2022

42:8

On Reverse Shortest Paths in Geometric Proximity Graphs

Visibility graph of towers over a terrain. Here we face a different setup. We have an
x-monotone polygonal line T' with n vertices, to which we refer as a 1.5-dimensional terrain,
and a set @ of m points on T (in general not at its vertices). For a point ¢; € @ and a value
h >0, let ¢;(h) :== g; + (0, h) denote the translate of ¢; in the vertical direction by distance h.
We can view g;(h) as the tip of a tower of height & erected on ¢;. For a pair ¢;,¢; € Q, we
now define o(g;, ¢;) to be the minimum value h for which the segment g;(h)g;(h) is visible,
i.e., all the points on the segment lie above or on T. We refer to G(h) as the wvisibility graph
of towers (of height h) over a terrain. See Figure 6 for an illustration.

We present (in Section 3.3) a randomized algorithm, with O* (n +m?/?) expected time,
for the RSP problem in visibility graphs of towers. As already remarked, this problem is
more general than the preceding problems, in that each critical value of h does not depend
solely on a pair of points p,q € S but also on the entire portion of T' between p and ¢g. This
makes the selection procedure more involved, but we can still make it efficient using a more
careful analysis, based on an adaptation of a technique of Agarwal-Varadarajan [6].

2 RSP in Segment-Proximity Graphs

In this section we describe the details of our technique by illustrating it for segment-proximity
graphs. Let S = {e1,ea,...,e,} be a set of n pairwise-disjoint segments in the plane, let s,t
be two segments in S, and let k£ > 1 be an integer.

The decision procedure. Consider first the decision problem, in which r is specified and
we want to determine whether 7* < r, i.e., whether G(r) contains a path from s to ¢ of
length at most k. We present an algorithm that solves the decision problem in O*(n4/ 3)
time. The solution begins by representing G(r) as the union of bipartite cliques (which are
not necessarily edge disjoint). We represent each e; € S by the pair of its endpoints, and
note that each e; has four degrees of freedom.

The condition that g(e;, e;) < r can be expressed as a semi-algebraic predicate of constant
complexity, as follows. The distance between two disjoint segments is attained either between
two endpoints, one of each segment, or between an endpoint of one segment and the relative
interior of the other. We can thus write the condition that a segment e = uw lies at distance at
most r from a segment e’ = pq as a semi-algebraic predicate II(e, e’;) which is a disjunction
of sub-predicates, each of which is a conjunction of several conditions. The efficiency of
the procedure stems from the fact that we can guarantee that each of these sub-conditions
involves at most two parameters from the four parameters representing each segment. For
example, if the distance between e and €’ is attained at their respective endpoints u and p
then (i) u and ¢’ lie on different sides of the line £ that is orthogonal to €’ at p, (ii) p and
e lie on different sides of the line £; that is orthogonal to e at u, and (iii) o(u,p) < r. As
another example, if the distance between e and ¢’ is attained at u and a point in the relative
interior of ¢’ then (i’) u and €’ lie on the same side for each of the lines £ and £} (the line
orthogonal to e’ at ¢), and (ii’) o(u, fer) < r, where £,/ is the line supporting e’. See Figure 7.
The first set of conditions (i)—(iii) are necessary and sufficient for p(e, e’) to be attained at p
and u (and be at most r), as is easily checked. However, the second set of conditions (i’)—(ii’)
are necessary but not sufficient conditions for g(e,e’) to be attained at u and an interior
point of ¢’; see Figure 7(iv). Similar conjunctions arise for all other possible cases. Moreover,
whenever one of these conjunctions holds we have g(e,e’) <.

P. K. Agarwal, M. J. Katz, and M. Sharir

(ii) (iv)

Figure 7 Illustrating conditions (i)—(iii) for the case where the distance between the segments
e = uv and e’ = pq is attained between their endpoints u and p. (iv) Illustrating conditions (i’)—(ii’)
and the fact that they are not sufficient for g(e,e’) to be attained at v and an interior point of ¢’

Representing G(r) by bipartite cliques. We turn the problem of constructing G(r) into a
batched range searching problem, in which the segments of S serve both as input objects and
as queries. The query with a segment e defines the range Q. = {¢/ € S| II(e, €’;7) holds}.

We prepare a separate data structure for each of the aforementioned sub-predicates whose
disjunction is II(e,e’;r). For example, consider the case where the distance is attained
between two endpoints u and p, using the above notation. For sub-condition (i), we prepare a
batched halfplane range searching structure, with the endpoints u as input and the halfplanes
bounded by the lines E;L and not containing the respective edges e’ as ranges. The next level
handles sub-condition (ii), in a completely analogous and symmetric manner, and the third
level enforces sub-condition (iii), in which the input are the points p and the ranges are disks
of radius r around the points u. Similar multi-level structures are constructed for the other
sub-predicates in the conjunction. For example, when testing for conditions (i’)—(ii’), the last

level tests whether the distance from endpoint u to the line ¢(e’) supporting e’ is at most r.

This amounts to testing whether u lies in the strip of width 2r centered at £(e’), and can be

implemented using two levels of halfspace range queries (or rather point enclosure queries).

Using standard results on multi-level range searching structures (see, e.g., [1]), the whole
procedure, with 7 input objects and n query ranges, takes O*(n*/3) time, and produces G(r)
as the union of a collection of (not necessarily edge-disjoint) bipartite cliques, so that the
sum of the sizes of their vertex sets is also O*(n*/3).

Finding the path by BFS. With this data available, the rest of the path searching algorithm
is relatively easy. We run a BFS through G(r), starting from s. A similar algorithm has been
given in [6], and we only briefly sketch the details. At each stage of the BFS we iterate over
the points in the current layer, and use the bicliques in which they participate to propagate
the path to the next layer. Say we reach a graph A x B, and that the current vertex (i.e.,
segment) v being processed belongs to A. We then add all the unvisited nodes of B to the
next layer of the BFS. When we later process a vertex of B, we repeat the above propagation
step, swapping A and B, and then discard the graph completely. In applications where the
graph G(r) is directed (see Section 3.1 for examples of such problems), the treatment is
somewhat different, with obvious modifications. We keep performing these BF'S propagation
steps until either ¢ is reached, within the first k£ layers of the BFS, or we have created k
layers without reaching ¢, or we run out of graphs to process. The overall cost of the BFS is
proportional to the overall size of the vertex sets of the graphs, which is O*(n*/3). See [6]
for further details.

42:9

ISAAC 2022

42:10

On Reverse Shortest Paths in Geometric Proximity Graphs

Solving the optimization problem. The optimization procedure is a variant, or rather an
extension, of the distance-selection mechanism of [3], with one notable difference that we
replace the parametric search technique used in [3] by a simpler, and as it turns out more
efficient, random sampling approach [23]. Our algorithm is based on a procedure, in which,
given a threshold value rg, we want to count the number of critical values that are smaller
than or equal to rg. A value r is critical if there exist a pair of segments e;, e; in S such
that one of the sub-predicates in the disjunction forming II(e;, e;;) holds and its associated
critical value is exactly r. Note that the set of critical values is a superset of the set of
actual distances between the pairs of segments in S (see, for instance, Figure 7(iv)). This
enlargement of the set of critical values is made for technical reasons, to address the fact
that the bipartite clique representation of G(r¢) is not edge disjoint; see below for details.
(Note that in degenerate configurations the same value r can arise for more than one pair
(e;, €;), which means that we regard the set of critical values as a multiset.)

Note that we do not count the number of edges of G(rg), but rather the sum of the weights
of these edges, where the weight of an edge (e;, e;) is the number of satisfied sub-predicates
in the disjunction forming Il(e;, e;; 7o), that is, the number of subgraphs it appears in. We
denote this sum of weights as u(G(ro)).

We use the quantity u(G(rg)) because it is straightforward to compute from the bipartite
clique decomposition of G(rg), in time proportional to the overall size of the vertex sets of
the bipartite graphs, that is, in O*(n*/3) time. The quantity u(G(r)) is (weakly) monotone
increasing in r, as easily follows from its definition. As we will see shortly, using p(G(ro))
simplifies the optimization procedure and does not affect its performance in any significant
manner.

Let 7 be some upper bound on the critical values, over all pairs (e;, e;) of segments in S.
It is easy to compute 7 in linear time by, e.g., computing the smallest enclosing axis-parallel
square of the segments in S. We begin by computing the bipartite clique representation of
the graph G(#). Next, by running a BFS in G(#), starting from s, as described above, we
determine whether G(7) contains a path between s and t of length < k. If it does not, then
we output that r* does not exist and stop. Assume therefore, that G(7) does contain an s-¢
path of the desired length.

At this point, we know that 7* is in the range (0, 7], and we narrow down the range using
binary search in the set of critical values, where comparisons of the form “r* < r?” are
resolved by a call to the decision procedure with r. To run the binary search, we define the
graph G(r1,12), 11 < 19, whose set of vertices is S and there is an edge between e; and e;
if one or more of the critical values corresponding to them is in the range (r1,73]. Notice
that G(#) = G(0,7). Given r; < 19, we can compute a bipartite clique representation of
G(ry,79) in O*(n*/3) time, where the overall size of the vertex sets in this representation is
also O*(n*/3), by the following modification of the procedure given above. For each of the
multi-level structures used by the preceding procedure, we change its bottom level, so that it
collects all pairs of segments e, e’ for which the corresponding distance (between two specific
endpoints or between an endpoint of one segment and the line supporting the other segment)
is in (r1,73]. For the case where the considered distance is between two endpoints, we apply
range searching with annuli, of the fixed radii m; and rs, instead of the disks used earlier.
For the case where the considered distance is between an endpoint and a line, we apply
range searching with pairs of strips of width ro — r1, obtained as the set differences of the
corresponding strips of widths 2ry and 2r;. This does not affect the asymptotic performance
bounds — it only adds levels to the structures.

P. K. Agarwal, M. J. Katz, and M. Sharir

We note the following properties: (i) A pair of segments (e, e’) in S that has already been
encountered while computing G(r1) may appear again, due to a different pair of features
on e and e’ being at distance in (ry,r3]. (ii) Nevertheless, the sum m = p(G(rq1,r2)) of the
number of edges in the biclique representation of G(r1,72) is exactly u(G(r2)) — u(G(r1)),
as is implied by the construction.

Assume that we already know that r* is in the range I = (r1,r2]. To perform the next
binary search step, we compute an approximate median r of the critical values in I, such that
the number of critical values in each of the intervals I = (ry,r] and I = (r, 9] is, say, at
most 2m/3. This can be done by taking a constant-size random sample of critical values in T
(see below for details), and returning the median value r of the sample. It is well-known and
easy to see that for a sufficiently large (but still constant) sample size, r is an approximate
median as desired with probability greater than 1/2; see, e.g., [11, 18, 23].

We thus check whether r is indeed an approximate median, and repeat the process with
a new random sample, for an expected constant number of times, if it is not.

Once we have found an approximate median r, we run the decision procedure at r to
determine whether r* < r. If the answer is “YES”, we continue with the range Iy, and if it
is “NO”, we continue with the range Io. When the number p(G(r1,72)) of the critical values
in the current range is, say, O(n), we compute these values explicitly, by modifying our data
structures so that they report critical values instead of counting them, and perform a binary
search among them to find r*.

It remains to describe how to compute a random sample of ¢ critical values in the
range I = (r1,73]. Consider the representation of G(ri,r2) by the union of bicliques,
enumerated as Ay X By,..., A, X B, where each of the sets A;, B; is also enumerated in
some arbitrary order. This latter enumeration induces a natural lexicographical order of
the edges of each A; x B;. Recall that m = p(G(rq,72)) is the sum Y7, |A;| - |B;|. To
pick a random critical value, we draw a random number ¢ in [1,m], and find the index j
for which 771 |A;| - |Bi| <t < 327 |A;| - |B;]. We then find the #-th edge of A; x B; in
lexicographical order, where ¢ := ¢ — 5;11 |A;| - |B;|, using a similar procedure, and return
the associated critical value. (Since we focus on a specific biclique, which corresponds to a
single sub-predicate in the disjunction forming II, the critical value is uniquely defined.)

All this leads to the following summary result.

» Theorem 1. The RSP problem in the proximity graph of n pairwise-disjoint segments in
the plane can be solved in O*(n*/3) time.

3 RSP in Other Proximity Graphs

The scheme presented in the previous section applies to many other optimization problems
of a similar nature. We discuss in this section and in Appendix A several such problems.

The general approach: A high-level overview of the decision procedure. Generally, the
decision procedure for determining whether G(r) has the desired property for a given r, has
to construct G(r) as a union of bicliques, which reduces to batched range searching with
constant-complexity semi-algebraic ranges in some suitable dimension.

Once G(r) is available, testing for the existence of a path of length at most & is done
using BFS, as in the preceding section. The same machinery can also be applied to count

the number of critical values that are smaller than or equal to r or that lie in a range (r,7’].

The performance of these steps depends on the ambient dimension ¢, or the dimensions &,
7, of the parametric spaces that represent the features of the input and query objects that
participate in any sub-predicate of the predicate II(e, €’;) that represents the property that

42:11

ISAAC 2022

42:12

On Reverse Shortest Paths in Geometric Proximity Graphs

the distance between objects e and €’ is < r. In the symmetric case, where both the primal
space (in which the objects e are stored as points) and the dual space (in which the objects
e’ are stored as points) have the same dimension ¢, the recently developed machinery for
range searching with semi-algebraic sets [2, 4, 24]* implies that this cost is O*(n?*/(t+1)),
where n is the total number of objects. In the asymmetric case, where the primal and dual
parametric spaces have different respective dimensions &, 1, and we have n objects in the
former and m in the latter, the more general bound, developed in Appendix B, applies, and
this cost is O* (m&n—D/(En=Dpn(E=1/En=1) 1y 4 p). Since we use a multi-level structure,
the parameters t, £, 7 may differ at different levels; the overall cost is dominated by the
cost of the most expensive level (up to the O*(-) notation). This machinery uses polynomial
partitions. It can be replaced by cuttings, when the parametric dimension ¢, £, or 7 is at
most four or when the predicate only contains linear inequalities.

We now proceed to list the other problems mentioned in the introduction, to which our
technique can be applied, and discuss the concrete solution of each of them. Due to lack of
space, we delegate some of these problems to Appendix A.

3.1 Reverse shortest paths in communication graphs of directional
antennas

Recall that here we are given a set P of n points, including two designated points s and ¢, a
range § > 0, and an integer k > 1. Moreover, each point p; is associated with a direction
u;. The problem is to find the smallest angle o* such that, if we place at each point p;
a directional antenna A;(a*) of range J, symmetry axis u; and opening angle o*, then
there is a path from s to ¢ of length at most k in the induced communication graph G(a*).
(Alternatively, one can fix the opening angle of the antennas and ask to minimize the range.
Our technique works for this case as well.) We can consider either the asymmetric version,
where G(a*) is a directed graph over P, whose edges are all the pairs (p;,p;) for which
p; € Ai(a*), or the symmetric version, where G(a*) is undirected and its edges are all the
pairs (p;,p;) for which both p; € A;(«*) and p; € A;(a*). See Figure 2 for an illustration.
We present an algorithm for (either version of) this problem that runs in O*(n%/3) time.

Consider, for concreteness, the asymmetric version of the problem (the symmetric version
is solved by essentially the same technique). The number of parameters needed to represent
an antenna is three, two for p; and one for u; (9 is treated as a constant, and « is the growth
parameter that we want to minimize). For a fixed pair p;, p;, we can write the condition
that p; € A;(a) as a semi-algebraic predicate II(p;, u;, pj; o) which is a disjunction of two
sub-predicates, each of which is a conjunction of several conditions, each involving only two
out of the three parameters representing A;(«). Namely, p; € A;(«) if and only if (i) p; lies
on the “right” side of both the lines supporting the rays u; and uiﬂ which are obtained from
u; by rotating it by an angle of a;/2 in clockwise and counterclockwise directions, respectively,
and (ii) o(pi,p;) < 9.

We thus construct two range searching structures, one for each of the sub-predicates
of II(p;, u;, p;;), where each structure consists of three levels, similar to the structures
constructed for the segment proximity problem. Finally, we perform n queries, one for each
point in P, in each of these structures, to obtain the bipartite clique representation of G(«).
As in the segment proximity problem, the overall running time is O*(n4/ 3), which also bounds

4 The primal-dual combination of the techniques of [2, 24], which is rather non-trivial, has not been
explicitly treated in any previous work, as far as we can tell.

P. K. Agarwal, M. J. Katz, and M. Sharir

the overall size of the vertex sets in the compact representation of G(«). This follows from
the property that at each level of the structure, the features of the antennas that participate
in that level have only two degrees of freedom.

Once this representation of G(«) is available, testing for the existence of a path of length
k between s and ¢ can be done, similar to Section 2, using a careful implementation of BFS

on that graph. We note that in the asymmetric version of the problem the graph is directed.

This means that when we process a vertex v that participates in some (now directed) bipartite
clique A x B, with v € A, we put in the next layer of the BFS only the still unvisited vertices
of B, and discard A x B from further processing, even though some of its A-vertices might
still not have been visited. When such a vertex is visited later, the graph is of no use, as all
its B-vertices have already been visited. Except for this difference, the BFS and the decision
procedure proceed as before. The bound O*(n*/?) also dominates the overall running time
of the entire procedure.

One can also consider the case where each antenna has its own range. Informally, this
simply means that we add one extra parameter, namely the range, to the tuple of parameters
that specify an input antenna, so each antenna is represented now by four parameters. The
case can be treated similarly except that the number of parameters that specify an antenna
(ignoring the growth parameter «/) is now four, instead of three. The only difference is that
now, when performing a query for p;, we use the disk of radius §; around p; at the bottom
level of the structure in which the query is performed. In other words, at the bottom level we
apply the algorithm for mixed-dimensional batched range searching with £ = 2 (for the input
objects p;) and n = 3 (for the query objects A;(«)), which, by Equation (1) of Appendix B,
takes a total of O*(n"/®) running time, which also dominates the overall running time of the
entire procedure. We thus obtain:

» Theorem 2. The RSP problem in the communication network of n directional antennas
in the plane can be solved in O*(n*/3) time when all the antennas have the same range, and
in O (n7/5) time when each antenna has a different range. This holds for both symmetric
and asymmetric versions of the problem.

3.2 Reverse shortest paths in intersection graphs of growing segments
in the plane

Let P ={p1,p2,...,pn} be a set of n points in the plane, so that each point p; is associated
with a direction u,;. For p; € P, we denote by e;(r) the segment of length r that emanates
from p; in direction u;. Let G(r) be the intersection graph of these segments. That is, G(r) is

the graph over P, whose set of edges consists of all the pairs (p;, p;) for which e;(r)Ne;(r) # 0.

Let s and ¢ be two designated points of P. In the growing segments problem, we wish to
find the smallest value 7* of r, such that there is a path in G(r*) from s to ¢ of length at
most some prescribed value k. See Figure 4 for an illustration of the special case where all
the points in P are on the x-axis.

We present an algorithm for this problem that runs in O* (n4/ 3) time.

As in the directed antennas problem, the number of parameters needed to represent an
input object is three, two for p; and one for u; (where r is the growth parameter that we
wish to minimize). For a fixed pair p;, pj, we can write the condition that e;(r) Ne;(r) # 0
as a semi-algebraic predicate II(p;, u;, pj, u;;r). Concretely, e;(r) Ne;(r) # 0 if and only if
the endpoints of e;(r) lie on different sides of the line supporting e;(r), and vice versa. By
trying all possible combinations of sides, we can write II(p;, u;, pj, u;;7) as a disjunction of
several sub-predicates, each of which is a conjunction of four conditions, each requiring some

42:13

ISAAC 2022

42:14

On Reverse Shortest Paths in Geometric Proximity Graphs

specific endpoint of one segment to lie on some specific side of the line supporting the other
segment. Note that each of these sidedness conditions involves only two out of the three
parameters representing each of the objects.

We thus construct several range searching structures of an identical nature, one for each
combination of sides. Each structure consists of four levels, each of which is a structure
for batched halfplane range searching. We perform n queries, one for each point in P, in
each of these structures, to obtain the bipartite clique representation of G(r). Omitting
the straightforward details, the overall running time is O*(n*/3), which also bounds the
overall size of the vertex sets in the compact biclique representation of G(«)). This bound
also dominates the overall running time of the entire algorithm, and we get:

» Theorem 3. The RSP problem for n growing segments in the plane can be solved in
O*(n*/3) time.

3.3 \Visibility graph of towers over a terrain

Recall that here we are given an x-monotone polygonal line T (i.e., a 1.5-dimensional terrain)
with n vertices, a set @ of m points on T' (not necessarily vertices), including two designated
points s and ¢, and an integer parameter 1 < k < m. The problem is to find the minimum
height h* such that if we place a tower of height h* at each point of @, then there exists
a path of length at most k& between the tips of the towers at s and ¢ in the wvisibility graph
G(h*) as defined earlier. See Figure 6 for an illustration. We present an algorithm for this
problem that runs in O*(n + m?*/3) time.

We note that this problem is just one of several problems whose corresponding decision
procedure constructs, as a preliminary stage, a compact representation of the visibility graph
G(h), as just defined. This task (i.e., computing the representation of G(h)) is different
than the analogous tasks in the other problems considered in this paper, since the decision
whether an edge (g, ¢’) belongs to G(h) does not depend only on ¢ and ¢’ (and on h) but also
on the entire portion of T between ¢ and ¢’. Nevertheless, adapting a technique proposed
by Agarwal and Varadarajan [6], we can compute the desired representation of G(h) in
O*(n 4+ m*3) time.

Constructing a compact representation of G(h)

We use a divide-and-conquer approach. Enumerate the vertices of T" as p1, . .., p, from left to
right. Partition 7" into two subpaths 77, = (p1,p2,- -+, Pmed) a0d TR = (Pmed; Pmed+15 - - - , Pn),
where med = |n/2]. Let Qp = QNTy and Qr = Q NTr, and put my, = |Qr|, mr = |Qr|-
We compute recursively a compact representation of G(h)r, = {q¢' | ¢¢’ € G(h),q,¢' € Qr}
and of G(h)r = {qq’ | ¢¢' € G(h),q,¢" € Qr}, and face the problem of computing (a compact
representation of) the portion of G(h) consisting of edges that connect a point in @ with a
point in Qg.

In the variant of the technique of Agarwal and Varadarajan that we use here, we take each
point ¢ € Qr, and find the upper rightward-directed tangent ray 7% (q) from g(h), the tip
of the tower of height h at ¢, to the subchain (pg, ..., Pmed) of Tr, where py is the leftmost
vertex of T, to the right of q. Symmetrically, for each point ¢’ € Qg, we find the upper
leftward-directed tangent ray 7~ (¢') from ¢’(h) to the subchain (pmed, - - -, pr) of Tr, where
pys is the rightmost vertex of Tx to the left of ¢’. Then ¢(h) and ¢’(h) are mutually visible if
and only if ¢/(h) lies above 77 (q) and q(h) lies above 77 (¢’); see Figure 8.

To find the tangents 7% (q), for ¢ € Qr, we construct a balanced binary tree over the
vertices of T7,, and construct, at each node v of the tree, the upper convex hull of the vertices
of Ty, that are stored at the subtree rooted at v. With some care, the overall cost of these

P. K. Agarwal, M. J. Katz, and M. Sharir

T

Tr

Figure 8 The criterion for visibility between a tower tip from @ and a tower tip from Qr. In
this example, ¢;,q; € Q1 and ¢x € Qr. Moreover, since gx(h) is above the ray 71 (g;) and ¢;(h) is
above the ray 7~ (qx), ¢; and g are mutually visible, i.e., ¢;qx € G(h). On the other hand, since
h(g;) is not above 77 (qx), qjqr & G(h).

constructions is O(nlogn). Then, for each ¢ € @, we express the portion of Ty, to the right
of ¢ as the disjoint union of O(logn) subtrees. We compute the upper tangents from ¢(h) to
each of these hulls, and output the tangent with the largest slope. Again, with some care
(including fractional cascading), this takes O(logn) time for each point of @, for a total cost
of O(my logn). A fully symmetric procedure, whose cost is O(nlogn + mglogn), computes
all the tangents 77 (¢), for ¢’ € Qr.

To find the mutually visible pairs in Q1 x Qr, we use a two-level batched halfplane range
searching algorithm, where in the first (resp., second) level the points are those of Qg (resp.,
Q1) and the halfplanes are those that lie above the lines supporting the tangents 77 (q), for
q € Qr, (resp., 7 (¢'), for ¢ € Qr). Using standard techniques, this can be done in time
O*(m*'3). This yields a bipartite clique decomposition of the visible edges in Q1 x Qr,
and the overall collection of these graphs, over all levels of the recursion, is the desired
representation of G(h). As is easily checked, the overall size of the vertex sets of these graphs
is O*(m*/3), and the overall construction takes O*(n + m?*/3) time.

The rest of the algorithm proceeds as in Section 2. We apply BFS to G(h) to determine
whether s and ¢ are connected by a path of length at most k, and, depending on the answer,
we generate the next value for the binary search. We thus conclude:

» Theorem 4. The RSP problem among m towers over a 1.5-dimensional terrain with n
vertices can be solved in O*(n +m?*/3) time.

—— References

1 P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete
Mathematics: A Tribute to Jiri Matousek, pages 1-30. Springer Verlag, Berlin-Heidelberg,
2017.

2 P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized
polynomial partitioning and its applications. SIAM J. Comput., 50:760-787, 2021.

3 P.K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica,
9:495-514, 1993.

4 P. K. Agarwal, J. Matousek, and M. Sharir. On range searching with semialgebraic sets II.

SIAM J. Comput., 42:2039-2062, 2013.
5 P. K. Agarwal, M. H. Overmars, and M. Sharir. Computing maximally separated sets in the
plane. SIAM J. Comput., 36(3):815-834, 2006.

6 P. K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains.

Discrete Comput. Geom., 23(2):273-291, 2000.

42:15

ISAAC 2022

42:16

On Reverse Shortest Paths in Geometric Proximity Graphs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and
Computation in Mathematics 10. Springer-Verlag, Berlin, 2nd edition, 2006.

H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom.,
9(1-2):3-24, 1998.

D. Burton and P. L. Toint. On an instance of the inverse shortest paths problem. Math.
Program., 53:45-61, 1992.

S. Cabello and M. Jejcic. Shortest paths in intersection graphs of unit disks. Comput. Geom.
Theory Appls., 48:360-367, 2015.

T. M. Chan. On enumerating and selecting distances. Int. J. Comput. Geom. Appl., 11(3):291—
304, 2001.

T. M. Chan and D. Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly
subquadratic time. In 27th Internat. Sympos. on Algorithms and Computation, pages 24:1—
24:13, 2016.

T. M. Chan and D. Skrepetos. All-pairs shortest paths in geometric intersection graphs. J.
Comput. Geom., 10(1):27-41, 2019.

T. M. Chan and D. Skrepetos. Approximate shortest paths and distance oracles in weighted
unit-disk graphs. J. Comput. Geom., 10(2):3-20, 2019.

B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86(1-
3):165-177, 1990.

T. Cui and D. S. Hochbaum. Complexity of some inverse shortest path lengths problems.
Networks, 56(1):20-29, 2010.

G. D. da Fonseca, V. G. P. de S4, and C. M. H. de Figueiredo. Shifting coresets: Obtaining
linear-time approximations for unit disk graphs and other geometric intersection graphs. Int.
J. Comput. Geom. Appl., 27(4):255-276, 2017.

M. B. Dillencourt, D. M. Mount, and N. S. Netanyahu. A randomized algorithm for slope
selection. Int. J. Comput. Geom. Appl., 2(1):1-27, 1992.

A. V. Fishkin. Disk graphs: A short survey. In First Internat. Workshop on Approximation
and Online Algorithms, volume 2909 of Lecture Notes in Computer Science, pages 260—264,
2003.

J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151-169, 2005.

M. J. Katz and M. Sharir. Efficient algorithms for optimization problems involving distances
in a point set. In arXiv:2111.02052.

M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J.
Comput., 26:1384-1408, 1997.

J. Matousek. Randomized optimal algorithm for slope selection. Inf. Process. Lett., 39(4):183—
187, 1991.

J. Matousek and Z. Patakova. Multilevel polynomial partitions and simplified range searching.
Discrete Comput. Geom., 54:22-41, 2015.

N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J.
ACM, 30(4):852-865, 1983.

L. Roditty and M. Segal. On bounded leg shortest paths problems. Algorithmica, 59(4):583-600,
2011.

H. Wang and J. Xue. Near-optimal algorithms for shortest paths in weighted unit-disk graphs.
Discrete Comput. Geom., 64(4):1141-1166, 2020.

H. Wang and Y. Zhao. Reverse shortest path problem for unit-disk graphs. In 17th Internat.
Sympos. on Algorithms and Data Structures, pages 655-668, 2021.

H. Wang and Y. Zhao. Reverse shortest path problem in weighted unit-disk graphs. In 16th
Internat. Conf. on Algorithms and Computation, pages 135-146, 2022.

J. Zhang and Y. Lin. Computation of the reverse shortest-path problem. J. Glob. Optim.,
25(3):243-261, 2003.

P. K. Agarwal, M. J. Katz, and M. Sharir

A Additional applications

A.1 Reverse shortest paths in proximity graphs of polylines in the plane

This is a generalization of the segment proximity problem. The input consists of a set T
of n pairwise disjoint polylines, each of size (number of vertices) at most some constant I,
two designated polylines s and ¢ in 7, and an integer parameter k < n. The problem is to
find the smallest 7* such that there exists a path between s and ¢ of length at most k in the
graph G(r*) over T, in which there is an edge between polylines T' and T” if and only if the
distance between T and T” is at most 7*, where the distance between two polylines T" and T’
is the length of the shortest segment that connects them. See Figure 3 for an illustration.
The problem can be solved in much the same way as in the case of segments, observing
that the distance between two polylines is always attained either between two vertices, one
of each polyline, or between a vertex of one of them and the relative interior of an edge of
the other. We can therefore write the condition that the distance between two polylines is at
most 7 as the disjoint disjunction of several predicates, each of which has the same structure
as in the case of segments. The only difference is that the number of these predicates grows
quadratically in [, which does not affect the asymptotic complexity since [is a constant.
Adapting the preceding analysis, we get:

» Theorem 5. The RSP problem in the proximity graph of n pairwise-disjoint polylines
in R2, where each polyline is of size at most I, can be solved in O* (n4/3) time, where the
constant of proportionality depends (quadratically) on l.

A.2 Variations of the growing segments and the segment proximity
problems

We can generalize the growing segments problem (studied in Section 3.2), and the segment
proximity problem (studied in Section 2), by considering various other shapes that can be
placed, or grown around each site p;, such as ellipses. Consider first the growing problem. In
the simplest version, we assume that each growing shape has only one degree of freedom of
growth. For example, when growing ellipses, we assume, for instance, that the ellipse grown
at a site p; is centered at p;, has fixed directions ¢; and 6; + 7 of its axes, and has a fixed
ratio A; between the lengths of its major and minor axes. We denote this ellipse as E;(r),
where r, the single degree of freedom of growth, is half the length of the major axis. See
Figure 5(a) for an illustration.

The problem is to find the smallest value r* of r for which the graph G(r*) has a path
between two designated points, where the edges of G(r*) are those pairs (p;,p;) for which
E;(r*)NE;(r*) # 0.

Here we need t = 4 real parameters to specify an ellipse, namely the coordinates of p;, A;,
and ;. Our machinery yields an algorithm that runs in O*(n?"/(+1)) = O*(n®/°) time.

We can also generalize the proximity problem of Section 2, whose input is a set of
segments, by considering other shapes, such as ellipses. That is, each ellipse F; is given by
its center p;, the lengths of its axes a; > b;, and the direction of the major axis 6;, and we
assume that these ellipses are pairwise disjoint. Given two designated ellipses s and t in
the input set and a parameter k, the goal is to find the smallest value r* of r, such that
there exists a path between s and ¢ of length at most & in the proximity graph G(r) over the
ellipses E;, whose edges are all the pairs (E;, E;) of ellipses, such that the distance between
E,; and Ej; is at most r (this latter property can be expressed as a semi-algebraic predicate
of constant complexity, as is easily verified). See Figure 5(b) for an illustration.

42:17

ISAAC 2022

42:18

On Reverse Shortest Paths in Geometric Proximity Graphs

Since we need here five real parameters to specify an ellipse, we get that the RSP problem
in a proximity graph of n pairwise disjoint ellipses in the plane can be solved in O*(n5/ 3)
time.

In summary, we have:

» Theorem 6.
(a) The growing ellipses problem can be solved in O*(n®/°) time.

(b) The proximity problem for n pairwise disjoint ellipses in the plane can be solved in
O*(n®/3) time.

Note that this is one application where we have to apply full-blown semi-algebraic range
searching machinery. We were mostly able to bypass this using multi-level data structures,
each of which had to deal only with halfspace range searching. Nevertheless, other, more
involved, applications of our technique will have to use this more general machinery. For
example, handling other shapes, for both problems, can be handled in much the same
way, using semi-algebraic range searching, whose performance depends on the number of
parameters needed to specify an object. Other setups include extensions of some of the
problems considered in this work to three (or higher) dimensions. For example, the predicate
needed for the segment-proximity problem in R? will lead to semi-algebraic ranges (namely,
cylinders).

B Mixed-dimensional batched range searching

For the sake of completeness we sketch an algorithm for handling mixed-dimensional batched
range searching (in a single level of a multi-level range searching structure).

In general, we have two sets A, B of n and m objects, respectively, where the objects in
A have £ degrees of freedom and those in B have 7 degrees of freedom, for suitable constant
parameters £ and n. Each pair a € A and b € B defines a constant-degree semi-algebraic
predicate II(a,b). The goal is either to determine whether there exists a pair (a,b) € A x B
such that II(a, b) is true, or to count the number of such pairs, or to represent all of them in
some compact form, or to report all of them.

Consider the first, simplest task; the other tasks are solved similarly (in the reporting
version we also incur an additive cost which is linear, or nearly linear, in the output
size). The solution uses a primal-dual approach. The primal space is R¢, each object
of A is stored as a point, and each object b € B is stored as the semi-algebraic range
Qp = {a € A|II(a,b) is true}. The dual space is R", each object of B is stored as a point,
and each object a € A is stored as the semi-algebraic range QF = {b € B | II(a, b) is true}.
Although the problem is symmetric, we view for concreteness the objects of A as data
and those of B as queries. In the primal we use a modified version of the techniques of
Agarwal, Matousek and Sharir [4] and of Matousek and Patédkova [24]. These techniques
essentially construct a hierarchical polynomial partition in R¢ until one reaches nodes with
input size x (that we will shortly determine). The overall number of nodes is O(n/x), the
preprocessing time to construct the structure is O*(n), and a query with a range @y reaches
O*((n/z)*~1/¢) leaf nodes. At each leaf node we pass to the dual 7-dimensional space, and
apply the point-enclosure technique of Agarwal et al. [2], which processes the x dual ranges
Q! into a data structure of size O*(z"), in time O*(z"), so that a point enclosure query
(with a dual point b € B) takes O(log x) time.

P. K. Agarwal, M. J. Katz, and M. Sharir

The overall storage used by the structure, and the time to construct it, are both O*((n/x)-
") = O*(nz" '), and a query takes O*((n/x)'"/¢logz) = O*((n/x)'~1/¢) time. We
put nz""! = o, for a suitable storage parameter o that we will shortly determine, so
x = (o/n) 1=V The query time then becomes

O*((n/z) 18y = O* ((n/ (=) jg 1/ (=1))1=1/¢),
The overall cost of answering m queries, plus the preprocessing cost, is thus

O*(mnn(ﬁfl)/(5(77*1))/0(5*1)/(5(77*1)) + o).

We now balance the two terms by choosing o = m&m=1D/(En=1pn(€=1/€1=1) "and conclude
that the overall running time of the algorithm is

O* (mé(nfl)/(ﬁnfl)nn(ﬁfl)/(5n71)> . (1)

42:19

ISAAC 2022

	1 Introduction
	1.1 Related work
	1.2 Our results

	2 RSP in Segment-Proximity Graphs
	3 RSP in Other Proximity Graphs
	3.1 Reverse shortest paths in communication graphs of directional antennas
	3.2 Reverse shortest paths in intersection graphs of growing segments in the plane
	3.3 Visibility graph of towers over a terrain

	A Additional applications
	A.1 Reverse shortest paths in proximity graphs of polylines in the plane
	A.2 Variations of the growing segments and the segment proximity problems

	B Mixed-dimensional batched range searching

