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Abstract
A regular graph G = (V, E) is an (ε, γ) small-set expander if for any set of vertices of fractional size
at most ε, at least γ of the edges that are adjacent to it go outside. In this paper, we give a unified
approach to several known complexity-theoretic results on small-set expanders. In particular, we
show:
1. Max-Cut: we show that if a regular graph G = (V, E) is an (ε, γ) small-set expander that

contains a cut of fractional size at least 1 − δ, then one can find in G a cut of fractional size at
least 1 − O

(
δ

εγ6

)
in polynomial time.

2. Improved spectral partitioning, Cheeger’s inequality and the parallel repetition theorem over
small-set expanders. The general form of each one of these results involves square-root loss that
comes from certain rounding procedure, and we show how this can be avoided over small set
expanders.

Our main idea is to project a high dimensional vector solution into a low-dimensional space while
roughly maintaining ℓ2

2 distances, and then perform a pre-processing step using low-dimensional
geometry and the properties of ℓ2

2 distances over it. This pre-processing leverages the small-set
expansion property of the graph to transform a vector valued solution to a different vector valued
solution with additional structural properties, which give rise to more efficient integral-solution
rounding schemes.
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1 Introduction

Expander graphs are important combinatorial objects with myriad of applications throughout
theoretical computer science (see [11]). One of the reasons for that are the numerous
equivalent definitions of expander graphs, that offer different views on this basic object.
Combinatorially, a d-regular graph G = (V, E) is said to be a combinatorial expander if the
edge expansion of any S ⊆ V of size at most n/2 is at least an absolute constant.

▶ Definition 1. Let G = (V ∪ U, E) be an undirected regular graph. The edge expansion
of S ⊆ V is defined as Φ(S) = |{ (v,u) |v∈S,u ̸∈S}|

|{ (v,u) |v∈S}| . In words, Φ(S) is the fraction of edges
adjacent to S going outside it.

Spectrally, a graph is said to be an expander if, letting AG be the normalized transition
matrix of G, the second eigenvalue of AG is at most 1 − Ω(1). A basic result in spectral
graph theory, called Cheeger’s inequality, asserts that qualitatively, spectral expanders and
combinatorial expanders are equivalent.
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26:2 Rounding via Low Dimensional Embeddings

The main object studied in this paper is small set expanders, which is a relaxation of
expander graphs defined as follows.

▶ Definition 2. A graph G = (V ∪ U, E) is said to be (ε, γ) small-set expanding if for any
S ⊆ V of size at most ε |V | we have that Φ(S) ⩾ γ.

Upon first sight, small-set expanders may seem like a slight variation over the combinatorial
definition of expander graphs. However this seemingly small change makes a big of difference,
and indeed small-set expanders are more difficult to study. For instance, there is no general
known equivalence between the spectrum of the adjacency matrix of a graph and the small-set
expansion of the graph. This is partly the reason that small-set expanders are typically much
harder to work with.

The main goal of this paper is to present the idea of “low-dimension embeddings” and
show how to use it to give alternative, more direct proofs to several results concerning
computational problems over small set expanders. In particular, we (1) recover the results
of [23, 16] about strong parallel repetition for Unique-Games over small set expanders, (2)
we show an improved Cheeger’s inequality as well as approximation algorithm for Max-Cut
over small set expanders, recovering results of [14, 15].

Conceptually, we show that for several cases (such as the computational problems men-
tioned above), it is beneficial to consider an intermediate “low-dimensional” projection step
which incurs less quantitative loss when compared to the usual integral rounding procedures.
In a low dimension, one has additional tools in their disposal to manipulate a vector valued
solution so that it is possible to perform a final integral rounding procedure with better
performance. We believe that such ideas may be helpful towards getting improved analysis
of other semi-definite programming relaxations of combinatorial optimization problems, and
hope that the current work encourages research along this direction.

1.1 Our Results
In this section, we formally state the main results of this paper.

1.1.1 Solving Max-Cut on Small Set Expanders
Our first result addresses the Max Cut problem. We show that on small set expanders, one
can get an algorithm achieving a better approximation ratio compared to the Geomans-
Williamson algorithm [9].

▶ Theorem 3. There exists an absolute constant C > 0, such that the following holds for all
ε, δ, γ > 0. There is an efficient algorithm for the following task:
Input: a regular, (ε, γ) small-set expander G = (V ∪ U, E) containing a cut of fractional size

1 − δ.
Output: a bipartition V = V1 ∪ V2 of the vertices that cuts at least 1 − C δ

εγ6 fraction of the
edges.

1.1.2 Spectral Partitioning
Our second result is an improved quantitative for Cheeger’s inequality when the underlying
graph is a small set expander. Recall that one side of Cheeger’s inequality states that if
G = (V, E) is a regular graph such that λ2(G) ⩽ 1 − δ, then one can find in polynomial
time a set S ⊆ V of size at most |V | /2 such that Φ(S) ⩽

√
2δ. The other side of Cheeger’s

inequality asserts that if λ2(G) = 1 − δ, then min|S|⩽|V |/2 Φ(S) ⩾ δ/2, hence the upper
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bound is tight up to the square root (and constant factors). We show that for small set
expanders, one can considerably improve on the upper bound, and get a result which is much
closer to the lower bound in Cheeger’s inequality:

▶ Theorem 4. There exists an absolute constant C > 0, such that if G is a (ε, γ) small
set expander and λ2(G) ⩾ 1 − δ, then G contains a set of size at most n/2 such that
Φ(S) ⩽ C · δ

γ3ε3 . Furthermore, such set S can be found efficiently.

1.1.3 Parallel Repetition
Our third result is about parallel repetition when applied on Unique-Games over small-set
expanders. We begin by formally defining the Unique-Games problem.

▶ Definition 5. A Unique-Games instance is composed of a graph G = (V, E), a finite
alphabet Σ and a collection of constraints {ϕe}e∈E, one for each edge. The constraint on an
edge e is a 1-to-1 relation ϕe ⊆ Σ × Σ, specifying for each edge the tuples of labels that are
considers satisfactory.

Given a Unique-Games instance Ψ = (G, Σ, Φ = {ϕe}e∈E), the value of Ψ, denoted by val(Ψ),
is the maximum fraction of constraints that may be satisfied by any assignment A : V → Σ. A
central conjecture in complexity theory, called the Unique-Games Conjecture [12], asserts for
any ε, δ > 0, there is k ∈ N such that given a Unique-Games instance Ψ with alphabet size k,
it is NP-hard to distinguish between the case that val(Ψ) ⩾ 1−ε and the case that val(Ψ) ⩽ δ.
A well known approach to the Unique-Games Conjecture proceeds by first establishing a weak
form of the conjecture, wherein δ is also close to 1, and then amplifying the gap via parallel
repetition. Here, given a Unique-Games instance Ψ and a parameter t ∈ N, the t-fold repeated
game corresponds to the tensor product of the game is Ψ⊗t = (G′ = (V t, E′), Σt, Φ′), where

E′ = { ((u1, . . . , ut), (v1, . . . , vt)) | (ui, vi) ∈ E ∀i ∈ [t]} ,

and Φ′ = {ϕe′}e′∈E′ where the constraint on edge e′ corresponds to the AND of the t

constraints on the t edges of the original graph G.
The parallel repetition theorem of Raz [20] and subsequent improvements [10, 4, 19] turn

out not to be good enough; such results are only able to show that for a unique game Ψ, if
val(Ψ) ⩽ 1 − ε, then the value of the t-fold repeated game is at most (1 − ε2)Ω(t). This square
root often times does not matter in application, however in the context of Unique-Games it is
crucial. Indeed, the weak forms of the Unique-Games conjecture that seem plausible may go
to soundness which is as small as δ = 1 − Θ(

√
ε) (though current technology does not even

close to this), thereby offering a quadratic difference at best. This makes the quadratic loss
in parallel repetition unaffordable for the purposes of proving the Unique-Games Conjecture.

This raises the question: on which classes of graphs can one prove an improved parallel
repetition theorem, surpassing the square barrier? Much effort had been devoted to study
this question, starting with the tightness of the parallel repetition theorem [20, 13, 1, 8] and
subsequently studying parallel repetition over special classes of graphs [3, 2, 21, 6, 23, 16, 17],
most popularly on expanders and small-set expanders. It is worth noting that while it is
known that the Unique-Games fails on such graph [2, 18], it is still possible that there is a
regime of parameters for which a weak form of the Unique Games Conjecture holds, and for
which a strong version of the parallel repetition theorem holds.

Using our technique, we are able to recover the result of [23, 16], and show that strong
parallel repetition holds for unique games over small set expanders:

ITCS 2023



26:4 Rounding via Low Dimensional Embeddings

▶ Theorem 6. There exists an absolute constant c > 0, such that the following holds for all
0 < ε, γ, δ < 1. If Ψ = (G, Σ, Φ) is a Unique-Games instance such that G is (ε, γ) small-set
expanding, regular graph whose value is at most 1 − δ, then val(Ψ⊗t) ⩽ (1 − δ)cε3γ3t.

We remark that our proof applies to the more general class of projection games, but we state
it only for Unique-Games for the purpose of this introduction.

1.2 Our Technique
The proofs of Theorems 3 and 4 follow a similar theme. In both cases, there are well
known classical results that are very much similar to it except that they incur an additional
square-root loss: Cheeger’s inequality and the Goemans Williamnson algorithm [9]. The
source for this quadratic loss comes from a rounding phase in their proofs, which transforms a
vector-valued solution with an ℓ2

2 distances guarantee to an integral valued solution with an ℓ1
distances guarantee via rounding. Our proofs of Theorems 3 and 4 avoid this quadratic loss
by incorporating a preprocessing phase and a “soft” rounding phase, which incur constant
factors loses depending on the small set expansion parameters of the graphs, but ensures
that the subsequent integral rounding phase would be almost lossless.

Low-dimensional embeddings

Our arguments also utilize the idea of low-dimensional embeddings. Here, one is given a
collection of vectors (typically an SDP solution to some problem, such as Max-Cut or Unique-
Games) which a-priori may lie in a high dimensional Euclidean space. Common wisdom,
which manifests itself in standard rounding algorithms (such as Geomans-Williamson [9]),
utilize such vectors to generate 1-dimensional Gaussians vectors with certain correlations.
Our idea is to use higher (but constant) dimensional projections as a way to reduce the
dimension of the vector while roughly preserving the quality of the solution. This allows us
to apply ideas from low-dimensional geometry and construct a rounding scheme, which for
small-set expanders, outperforms the standard rounding schemes for these problems.

Similar, yet different ideas of low-dimensional projections have already made some
appearances in the literature, in the context of higher order Cheeger inequalities [15] and in
establishing improved bounds on the Grothendieck constant [5]. Below, we explain in more
detail our proof strategy for our results.

1.2.1 Proof of Theorem 3
Our proof of Theorem 3 makes use of the Goemans-Williamson semi-definite program
relaxation of Max-Cut [9]. Our algorithm proceeds by the following steps:
1. Solving the SDP program: We find unit vectors in Rm that achieve value at least

1 − δ, where m ⩽ n. In the next two steps we pre-process these vectors to get a (different)
collection of vectors that can be used in a rounding scheme with improved guarantees.

2. Dimension reduction: We show, via appropriate random projections, that we can
reduce m to 3 as long as we are willing to take a multiplicative cost in the error. More
precisely, we show we can find a solution consisting of unit vectors in R3 that achieve
value at least 1 − Cδ, for some absolute value C > 0. Denote them by (xv)v∈V .
We remark that it is also possible to reduce the dimension down to 2, and moreover that
it simplifies subsequent steps. However, doing so may reduce the value of the resulting
solution to 1 − Cδ log(1/δ), and we would like to avoid this logarithmic factor.
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3. Soft rounding: The main issue in the standard hyperplane rounding procedure in the
Goemans-Williamson algorithm is the case that the vectors xv are uniformly distributed
on the sphere, satisfying that ∥xu − xv∥2 = Θ(

√
δ) for a typical edge (u, v) in the graph.

In this step, we show that in the case of small set expanders, this cannot be the case. To
be more precise, we show that such case can be avoided if we are willing to pay constant
factors depending on the expansion parameters of the graph.
Towards this end, we show that given a low-dimension solution (xv)v∈V from the previous
step, one may produce a solution (yv)v∈V with similar value, such that the set of vertices
V may be divided into two sets, Z1, Z2, where vectors corresponding to vertices in Z2
occur in the union of at most 1/ε balls with small ℓ2 radius, and for any edge (u, v)
that has at least one of its endpoints in Z1 must either have 0 or long ℓ2 distance, i.e.
∥yv − yu∥2 = 0 or ∥yv − yu∥2 ⩾ ε. Thus, in a sense the “bad structure” that may occur
for the hyperplane rounding procedure in the Goemans-Williamson algorithm can only
occur inside Z2.

4. Rounding: Finally, we show an improved analysis of the standard hyperplane rounding
when performed on a collection of vectors with the structure from the previous step.
Intuitively, as Z2 is small, we can show via a union bound that with constant probability,
a random hyperplane doesn’t cut any of the small balls in which vectors from Z2 occur.
Then, we sample a hyperplane conditioned on this event happening and show that a
square loss does not occur for the rest of the edges (as the distance over these edges
already has a “Boolean-type” behaviour of either being 0, or far from 0).

1.2.2 Proof of Theorem 4
To prove Theorem 4, we view the second eigenvector of G, call it x as an embedding of the
graph into R. Recall that the square-root loss in the standard proof of Cheeger’s inequality
comes from an application of Cauchy-Schwarz, which bounds

∑
(u,v)∈E

|xv| |xu − xv| by the

square root of spectral gap of G. We wish to circumvent this loss, and for that we observe
that if the ratios of entries in x were either 1 or bounded away from 1, i.e. outside the
interval [1 − ε, 1 + ε], then one may indeed proceed as

∑
(u,v)∈E

|xv| |xu − xv| =
∑

(u,v)∈E

|xv|2 |xu/xv − 1| ⩽
∑

(u,v)∈E

|xv|2 |xu/xv − 1|2

ε

= 1
ε

∑
(u,v)∈E

|xu − xv|2.

Thus, our goal is to preprocess x so that we obtain this property, while at the same time
not increasing

∑
(u,v)∈E

|xu − xv|2 by too much. Indeed, we show that a soft rounding strategy

inspired by the above algorithms can be used in this case. We partition R “dyadically” into
intervals of the form [(1 + ε)i, (1 + ε)i+1). We show that inside each one of these intervals,
there is a way to round each entry of x to one of the endpoints without incurring too much
of a loss in

∑
(u,v)∈E

|xu − xv|2.

1.2.3 Proof of Theorem 6
The proof of Theorem 6 follows the information theoretic approach to parallel repetition [20,
19, 10, 4]. Our proof follows the outline of [4], except that in the rounding phase in that
result – which uses Pinkser’s inequality to transform a KL-divergence closeness between

ITCS 2023



26:6 Rounding via Low Dimensional Embeddings

distributions to a statistical distance closeness guarantee between the same distributions – we
perform a preprocessing step. Indeed, we show that one may appeal to our improved version
of Cheeger’s inequality to change the distributions so that the KL-divergence between them
does not change too much and yet the square root loss in Pinsker’s inequality does not occur.
From there, the rest of our proof follows the outline of [4].

2 Solving Max-Cut on SSE’s: Proof of Theorem 3

In this section, we prove Theorem 3 following the outline given in the introduction.

2.1 The Goemans-Williamson Semi-definite Program Relaxation
Below is the standard semi-definite program relaxation of Max-Cut. Instead of think-
ing of the graph G, it will be more convenient for us to work with the graph G′ =
(V ′, E′), wherein each vertex has two copies, V ′ = V × {−1, 1}, and the edges are E′ =
{ ((v, b), (u, b′)) | (v, u) ∈ E, b ̸= b′}. We have the following claim.

▷ Claim 7. The following two assertions hold:
1. If G has a cut of fractional size 1 − δ, then G′ has a cut of fractional size at least 1 − δ.
2. If G is an (ε, γ) small set expander, then G′ is a (ε/2, γ/2) small set expander.

Proof. The first item is obvious. For the second item, suppose S′ ⊆ V ′ is a set of fractional
size at most ε/2, and let S = {v | ∃b ∈ {−1, 1}, (v, b) ∈ S′}. Then S has fractional size at
most ε, and we may write

Φ(S′) ⩾ Pr
(v,b)∈S′,(u,b′) neighbour

[(u, b′) ̸∈ S′] ⩾ Pr
(v,b)∈S′,(u,b′) neighbour

[u ̸∈ S].

Note that sampling (v, b) ∈ S′, the distribution of v may not be uniform over S, but the
probability of each v ∈ S is either 1/ |S′| or 2/ |S′|, hence

Pr
(v,b)∈S′,(u,b′) neighbour

[u ̸∈ S] ⩾ 1
2 Pr

v∈S,u neighbour
[u ̸∈ S] = 1

2Φ(S) ⩾ γ

2 . ◀

We thus write the program below, which is the standard semi-definite program relaxation
for Max-Cut for the graph G′:

min 1
|E′|

∑
((u,b),(v,b′))∈E′

∥xu,b − xv,b′∥2
2

subject to ∥xv,b∥2 = 1 ∀(v, b) ∈ V ′,

x(v,b) ∈ R2n ∀(v, b) ∈ V ′,

x(v,−b) = −x(v,b) ∀(v, b) ∈ V ′.

It is clear that if G′ contains a cut of fractional size at least 1 − δ, then there a solution for
the above program with value at most δ. Using the ellipsoid algorithm, we may efficiently
find a collection of vectors (xv)v∈V achieving value at most δ + ξ = δ′ where ξ decays with
the runtime of the algorithm; we take ξ = δ and fix such solution henceforth.

2.2 Reducing the Dimension of the Semi-Definite Program Solution
The goal of this section is to prove the following lemma.
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▶ Lemma 8. There exists an absolute constant C > 0 such that the following holds. There is
an efficient, randomized procedure that given a solution (xv)v∈V ′ to SDP program to Max-Cut
with value at most δ′ consisting of vectors from Rn, outputs a solution (zv)v∈V ′ consisting of
vectors from R3, whose value is at most Cδ′.

Proof. Let g1, g2, g3 ∼ N(0, In) be independent multi-dimensional Gaussians. For each v ∈ V ,
define

yv = (⟨xv, g1⟩, ⟨xv, g2⟩, ⟨xv, g3⟩) , zv = yv

∥yv∥2
.

Clearly, (zv)v∈V ′ is a solution to the SDP program, and we next analyze the object-
ive value that it gets. Fix u, v ∈ V ′, and let δu,v = ∥xu − xv∥2

2. We will show that,
Eg1,g2,g3

[
∥zv − zu∥2

2
]

= O(δu,v) from which the claim follows by linearity of expectation over
all the edges of the graph.

Denote z = yv

∥yu∥2
, then

E
g1,g2,g3

[
∥zv − zu∥2

2
]

⩽ 2 E
g1,g2,g3

[
∥zv − zu∥2

21∥yv∥2⩽∥yu∥2

]
⩽ 4 E

g1,g2,g3

[
∥zv − z∥2

21∥yv∥2⩽∥yu∥2

]
︸ ︷︷ ︸

(I)

+4 E
g1,g2,g3

[
∥zu − z∥2

21∥yv∥2⩽∥yu∥2

]
︸ ︷︷ ︸

(II)

,

and we upper bound each expectation separately, each by O(δu,v), thereby finishing the
proof.

▷ Claim 9. (II) ⩽ O(δu,v).

Proof. We write

E
g1,g2,g3

[
∥zu − z∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥21∥yu∥2<δu,v

]
+ E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥21∥yu∥2⩾δu,v

]
.

For the first expectation, as ∥yv∥2 ⩽ ∥yu∥2 we have ∥yu−yv∥2
2

∥yu∥2
2

⩽ 4, so the first expectation is
bounded by

4 E
g1,g2,g3

[
1∥yv∥2⩽∥yu∥21∥yu∥2<δu,v

]
⩽ 4 E

g1,g2,g3

[
1∥yu∥2<δu,v

]
⩽ 4 Pr

G∼N(0,1)
[|G| ⩽ δu,v],

which is O(δu,v). For the second expectation, we upper bound it by
∞∑

k=0
E

g1,g2,g3

[
∥yu − yv∥2

2
22kδ2

u,v

12kδu,v⩽∥yu∥2<2k+1δu,v

]
.

We bound the tail, that is the sum over k ⩾ log(1/δu,v), by
∞∑

k=⌈log(1/δu,v)⌉
E

g1,g2,g3

[
∥yu − yv∥2

212kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽ E

g1,g2,g3

[
∥yu − yv∥2

2
]

= O(∥xu − xv∥2
2)

= O(δu,v).
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As for the sum on k = 0, . . . , ⌈log(1/δu,v)⌉ − 1, take p ∈ N sufficiently large (p = 4 will
do), and let p′ be the Hölder conjugate of p. Then

E
g1,g2,g3

[
∥yu − yv∥2

2
22kδ2

u,v

12kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽

1
22kδ2

u,v

(
E

g1,g2,g3

[
∥yu − yv∥2p

2

])1/p(
E

g1,g2,g3

[
12kδu,v⩽∥yu∥2<2k+1δu,v

])1/p′

. (1)

First, we have

E
g1,g2,g3

[
∥yu − yv∥2p

2

]
= E

g1,g2,g3

[(
G2

1 + G2
2 + G2

3
)p
]
⩽ 3p−1 E

g1,g2,g3

[
G2p

1 + G2p
2 + G2p

3

]
= 3p E

g1,g2,g3

[
G2p

1

]
,

where G1 = ⟨g1, xu − xv⟩, G2 = ⟨g2, xu − xv⟩, G3 = ⟨g3, xu − xv⟩. As G1 is a Gaussian
random variable with mean 0 and variance δu,v, we know that

E
g1,g2,g3

[
G2p

1

]
= Op(δp

u,v).

Second,

E
g1,g2,g3

[
12kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽ Pr

g1,g2,g3

[
|⟨g1, xu⟩| , |⟨g2, xu⟩| , |⟨g3, xu⟩| ⩽ 2k+1δu,v

]
,

and as g1, g2, g3 are independent, the last probability is at most 23(k+1)δ3
u,v.

Plugging everything into (1) we get that the sum on k = 0, . . . , ⌈log(1/δu,v)⌉ − 1 is at
most

⌈log(1/δu,v)⌉−1∑
k=0

1
22kδ2

u,v

Op(δu,v)
(

23(k+1)δ3
u,v

)1/p′

= δ3/p′−1Op(1)
⌈log(1/δu,v)⌉−1∑

k=0
2(3/p′−2)k.

For sufficiently large p, 3/p′ − 2 > 0, and we may bound the last sum by

O(2(3/p′−2)⌈log(1/δu,v)⌉) = δ2−3/p′

u,v ,

and plugging that in yields the bound Op(δu,v). ◁

▷ Claim 10. (I) ⩽ O(δu,v).

Proof. We write

E
g1,g2,g3

[
∥zv − z∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yv

(
1

∥yv∥2
− 1

∥yu∥2

)
∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[(
1 − ∥yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]

= E
g1,g2,g3

[(
∥yu∥2 − ∥yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]

⩽ E
g1,g2,g3

[(
∥yu − yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]
= (I),

hence the claim follows from the prior claim. We used the fact that |∥a∥ − ∥b∥| ⩽ ∥a − b∥.
◁

◀
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2.3 The Soft Rounding: the Cubicular Rounding
In this section, we pick off where the last section ended with a solution vector collection
(zv)v∈V ′ consisting of vectors from R3 that has value δ′′ where δ′′ ⩽ O(δ′) = O(δ). Our goal
is to construct a new vector solution {z′′

v }v∈V ′ whose value is at most δ′′′ for δ′′′ = O(δ′′/γ)
that satisfies the following property. The set of vectors {z′′

v }v∈V ′ can be partitioned into two
collections, Z1 and Z2, such that |Z2| ⩽ 1/ε, and for any edge (u, v) such that z′′

u ≠ z′′
v and

z′′
u ∈ Z1 it holds that ∥z′′

u − z′′
v ∥2 ⩾ Ω(ε). In Section 2.4 we show how to use this property to

perform a more efficient analysis of the standard hyperplane rounding.

2.3.1 Partitioning the 3-dimensional sphere into cubes
Consider the 3 dimensional sphere S2 =

{
z ∈ R3

∣∣ ∥z∥2 = 1
}

. We will use a simple construc-
tion of triangulation of the sphere (geodesic polyhedron), that we describe next. Starting
with a standard cube in R2, denoted it by T6 (that has 6 faces and 8 vertices), we may
partition each face of it (which is a square) into 4 squares in the natural way (i.e. by adding
the lines that connect the midpoints of opposing sides). We then project the 4 new points
that were generated by each face into S2, and get a more refined regular polygon with square
faces, with 4 times as many faces; denote it by T24. We will perform this operation several
times to reach a sufficiently refined shape; we need the perimeter of each face to be small
compared to ε, say at most ε

K for sufficiently large absolute constant K. We note that at
each iteration, the perimeter of the faces shrinks by factor 2, hence we may pick a power
of 4, t ⩾ K′

ε2 for K ′ depending only on K, and have that each phase of Tt has perimeter at
most ε

K . We summarize this discussion with the following standard fact.

▶ Fact 11. For all K > 0 there is K ′ = K ′(K), such that for all ε > 0, taking t the smallest
number of the form 6 · 4m that is larger than K ′/ε2, there is a regular polygon Tt ⊆ R3 that
can be constructed in Oε(1) time such that:
1. Each face of Tt is a square.
2. Central symmetry: P is a face of Tt if and only if −P is a face of Tt.
3. Tt has t faces and 4

3 t vertices.
4. The perimeter of each face is at most ε/K.

2.3.2 Division of the sphere
Using the triangulation Tt from Fact 11, we may define a division of S2 by projecting each
face of Tt into the sphere. This way, we get a partition P1 ∪ . . . ∪ Pt of S2. We also note
that the perimeter of each of Pi is the same, and is at most order of the perimeter of a face
from Tt, i.e. at most O(ε/K).

For each i define the neighbourhood of Pi by:

P ↑
i =

{
u ∈ S2 ∣∣∃p ∈ Pi, ∥u − p∥2 ⩽ ε

}
.

For each subset of A ⊆ S2, we define the mass of A as mass(A) = |{v ∈ V | zv ∈ A}|.

▷ Claim 12.
t∑

i=1
mass(P ↑

i ) = O(n).

Proof. Consider the bipartite graph G̃ = ([t]× [t], Ẽ) wherein we connect i to j if P ↑
i ∩Pj ̸= ∅.

We note that the degree of each vertex in G̃ is O(1), and P ↑
i ⊆ ∪j:(i,j)∈ẼPj . Thus,

t∑
i=1

mass(P ↑
i ) ⩽

t∑
i=1

∑
j:(i,j)∈Ẽ

mass(Pj) =
t∑

j=1

deg(j)mass(Pj) = O

(
t∑

j=1

mass(Pj)

)
= O(n). ◀
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26:10 Rounding via Low Dimensional Embeddings

It follows that for all but at most 2/ε of the i’s we have that mass(Pi ↑) ⩽ εn/2. We refer to
such i’s as light parts of the partition. In the following section we show that one may change
a vector zv such that v is in Pi for a light i, to be a vector in the boundary of Pi, and only
incur a constant factor loss in the objective value, effectively reducing these vectors to be
2-dimensional.

2.3.3 Rounding to the Boundary
We now modify the solution (zu)u∈V to (z′

u)u∈V as follows. For u, consider the i such that
zu ∈ Pi. If Pi is heavy we set z′

u = zu, and otherwise we modify it as follows. Let pi be the
center of Pi, and consider the segment from pi to zu, and in particular its two intersection
points with the boundary of Pi. We let z′

u be the intersection point closer to zu among
these 2.

▶ Lemma 13. The collection of vectors z′
u defined about is a solution to the Max-Cut program,

and
1

|E′|
∑

(u,v)∈E′

∥z′
u − z′

v∥2
2 ⩽ δ′′′

for δ′′′ = O(δ′′/γ3).

Proof. First, it is clear that all of the zu’s are norm 1 vectors, and also that they respect
the conditions zu,−b = −zu,b as the part of a vector z and its negation have the same mass
(as if Pi is the part of z, then −Pi is the part of z).

Fix a light Pi and denote costi =
∑

u:zu∈P ↑
i

(u,v)∈E′

∥zu − zv∥2
2. We argue that costi grows multiplic-

atively by at most factor O(1/γ3) due to the change of the procedure on the vectors inside
Pi. This finishes the proof, as the only other effect of the procedure we need to make note of
is that for each edge e = (u, v) ∈ E′ such that u ∈ Pi, v ∈ Pj , ∥z′

u − z′
v∥2 = O(∥zu − zv∥2),

so each edge in costj increases by a constant factor at most once by the procedure on other
Pi’s.

We now argue that costi grows multiplicatively by at most factor O(1/γ3), and assume
towards contradiction this is not the case. For simplicity of notation, we drop the subscript
i as we will only be concerned with Pi from now on. Let B0 = {u | zu ∈ P}, and let
W > 0 be a large absolute constant to be determined. As a result of our soft rounding, the
contribution of edges whose endpoints are both outside B0 grows by at most factor O(1),
and the contribution of edges that have at least one of their endpoints in B0 grows additively
by at most 2d |B0| ε2. Hence, if cost ⩾ γ3ε2

50W 2 d |B0| we would have be done, so we assume
from now on that cost < γ3ε2

50W 2 d |B0|
Consider ℓ1 = γ

W ε and let B1 = {u | ∃p ∈ B0, ∥zu − p∥2 ⩽ ℓ1}. Also, define ℓ2 = 2ℓ1
and set B2 = {u | ∃p ∈ B0, ∥zu − p∥2 ⩽ ℓ2}. As B1 ⊆ P ↑, mass(B1) ⩽ εn so by small set
expansion at least γd |B1| of the edges touching B1 escape it. If |B2 \ B1| ⩽ γ

2 |B1|, we would
get that at least γ

2 d |B1| of the edges touching B1 go outside B2, hence

cost ⩾ γ

2 d |B1| (ℓ2 − ℓ1)2 = γℓ2
1

2 d |B1| >
γ3ε2

50W 2 d |B0|

and contradiction. Hence |B2| ⩾ (1 + γ/2) |B1|. Next, define ℓ3 = ℓ2 +
√

|B0|
|B2| ℓ1 as well

as B3 = {u | ∃p ∈ B0, ∥zu − p∥ ⩽ ℓ3}. Then given ℓ2 ⩽ ε, we have that mass(B2) ⩽ ε and
similar argument to before gives that |B3| ⩾ (1 + γ/2) |B2|. Indeed, otherwise we get that at
least γ

2 d |B2| of the edges touching B2 go outside B3, and then
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cost ⩾ γ

2 d |B2| (ℓ3 − ℓ2)2 = γℓ2
1

2 d |B0| ,

and contradiction. This way, we continue iteratively, and once ℓk and Bk have been defined
we take

ℓk+1 = ℓk +

√
|B0|
|Bk|

ℓ1, Bk+1 = {u | ∃p ∈ B0, ∥zu − p∥ ⩽ ℓk+1}

and provided that ℓk ⩽ ε we conclude that |Bk+1| ⩾ (1 + γ/2) |Bk|. Note that provided we
have gotten to the k + 1 step, we have

ℓk ⩽
∞∑

r=0
(1 + γ/2)−r/2ℓ1 ⩽ O(ℓ1/γ) = O(ε/W ) ⩽ ε

for sufficiently large absolute constant W , so we can ensure that the argument goes through
indefinitely. This is a contradiction, as at some point the size of Bk would exceed εn. ◀

2.3.4 Rounding to the Corners
Next, we modify the vector-valued solution (z′

u)u∈V to a different vector-valued solution
(z′′

u)u∈V wherein (roughly speaking) vectors belonging to vertices on light Pi’s can only be in
the corners of Tt.

Towards this end, consider the boundary of the partition P and a particular arc in it.
This arc has 2 neighbouring cells, say Pi and Pj . If Pi and Pj are light, we look at that arc,
mark its middle point pi,j . We then round the each vector z′

u on that arc to the closer of the
two endpoints of the arc to it (namely, according to the side of z′

u with respect to pi,j).

▶ Lemma 14. The collection of vectors z′′
u defined about is a solution to the Max-Cut program,

and

1
|E′|

∑
(u,v)∈E′

∥z′′
u − z′′

v ∥2
2 ⩽ δ′′′

for δ′′′′ = O(δ′′′/γ3).

Proof. Consider a single arc on which we perform the operation, denote it by L, and let

costL =
∑

(u,v)∈E:z′
u∈L

∥z′
u − z′

v∥2
2.

We argue that as a result of the above operation, costL increases by factor at most O(1/γ3).
This quickly finishes the proof since the only other effect of the operation we need to take
note of, is the effect of other arcs on costL. For that, it suffices to observe that for each edge
(u, v) ∈ E such that u ∈ L and v ∈ L′, the quantity ∥z′

u − z′
v∥2

2 increases by factor at most
O(1) due to the operation on L′.

Let L be the length of the arc L (noting it is of the order of ε), p be its midpoint and let
W > 0 be a large absolute constant. Let ℓ0 = γL

W , and consider

B0 = {u | z′
u ∈ L, ∥z′

u − p∥ ⩽ ℓ0} .
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26:12 Rounding via Low Dimensional Embeddings

As a result of our operation, costL changes as follows: the contribution of edges that have
both endpoints outside B0 grows by factor O(1) at most, whereas the contribution of
edges that have an endpoint inside B0 increases additively by at most L2d |B0|. Hence, if
costL ⩾ γ3L2

50W 2 d |B0| we are done, so assume otherwise.
Let ℓ1 = 2ℓ0, and note that m(B0) ⩽ m(L) ⩽ εn, so by small set expansion at least

γd |B0| of the edges touching B0 go outside it. At most d |B1 \ B0| of these edges go to B1,
hence if |B1 \ B0| ⩽ γ/2 |B0| we get that

costL ⩾
1
2γd |B0| (ℓ1 − ℓ0)2 >

γ3L2

50W 2 d |B0| ,

and contradiction. Thus, |B1 \ B0| > γ/2 |B0|, and so |B1| ⩾ (1 + γ/2) |B0|. Continuing this
way, iteratively define

ℓj+1 = ℓj +

√
|B0|
|Bj |

ℓ1, Bj+1 = {u | z′
u ∈ L, ∥z′

u − p∥ ⩽ ℓj+1} .

If ℓj+1 ⩽ L we can apply the small set expansion argument again to argue that |Bj+1| ⩾
(1 + γ/2) |Bj |.Thus, provided that ℓj ⩽ L we may continue with the argument indefinitely
and keep on increasing Bj , which is clearly impossible, giving us the desired contradiction.
We note that if W is large enough, then indeed we always have ℓj ⩽ L, as we may bound

ℓj ⩽
j∑

r=0

√
|B0|
|Br|

ℓ1 ⩽
j∑

r=0
(1 + γ/2)−rℓ1 = O(ℓ1/γ) = O(L/W ) < L

for large enough W . ◀

2.4 The Integral Rounding Procedure
We next describe the integral rounding procedure using the vector solution z′′

u from Lemma 14.
Let Heavy be the collection of all parts Pi that are not light, denote by Heavy′ be the collection
of all Pj ’s adjacent to a face in Heavy, and let H be the union of boundaries of faces in
Heavy ∪ Heavy′.

Consider choice of a hyperplane H ⊆ R3 uniformly at random.

▷ Claim 15. There exists K > 0, such that in the above set-up,

Pr
H

[∃L ∈ H such that H ∩ L ≠ ∅] ⩽ 1/2.

Proof. By Claim 12, the number of heavy Pi’s is O(1/ε), and as each one of them has O(1)
many arcs in its boundary, we deduce that

∣∣Heavy ∪ Heavy′∣∣ = O(1/ε). As each face has
O(1) arcs in the boundary, we conclude that |H| = O(1/ε). The length of each L ∈ H
is at most ε/K, so we get that the probability that H intersects a given arc is at most
O(ε/K). Thus, by the Union bound the probability that H intersects some arc in H is at
most O(1/K) ⩽ 1/2, provided that K is large enough. ◁

We now sample H conditioned on it not intersecting any face or arc from Heavy. We
claim that, for any edge (u, v) such that H intersects the line between z′′

u and z′′
v , it must be

the case that ∥z′′
u − z′′

v ∥2 ⩾ Ω(ε). There are a few cases to consider:
1. Either z′′

u or z′′
v is not a corner of P, say z′′

u . In this case, zu is in a face Pj that is either
heavy or adjacent to a heavy Pi. In either case, to cross the line between z′′

u and z′′
v the

hyperplane H must cross the boundary of Pj , but this does occur due to the conditioning
on H.
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2. Else, z′′
u and z′′

v are two corners of P , so either they are the same corner, or at least Ω(ε)
apart in ℓ2-distance.

We consider the cut S =
{

v ∈ V | ⟨z′′
v,1, xH⟩ ⩾ 0

}
, and prove in the following lemma that

the expected size of the cut is at least
(

1 − O
(

δ′′′′

ε

))
|E|. Given such guarantee, standard

techniques show that such cut may be found in polynomial time by a randomized algorithm,
thereby finishing the proof of Theorem 3.

▶ Lemma 16. EH [Cut(S) | H does not hit H] ⩾
(

1 − O
(

δ′′′′

ε

))
|E|.

Proof. The expected size of the cut is∑
v,u

EH

[
1H separates z′′

u,1 and z′′
v,1

∣∣∣H does not hit H
]
,

so the deficit in the cut size (i.e. |E| minus its size) has expectation∑
v,u

EH

[
1H separates z′′

u,1 and z′′
v,−1

∣∣∣H does not hit H
]
.

For H to separate z′′
u,1 and z′′

v,−1, by the discussion proceeding the lemma, we must have
∥z′′

u,1 − z′′
v,−1∥2 ⩾ Ω(ε), so we get that the last sum is at most

2
∑
v,u

E
H

[
1H separates z′′

u,1 and z′′
v,−1

]
1∥z′′

u,1−z′′
v,−1∥2⩾Ω(ε).

Here, we used the fact that the probability that H does not hit H is at least 1/2. Letting
θ(zu,1, zv,−1) be the angle between the two vectors, we have

E
H

[
1H separates z′′

u,1 and z′′
v,−1

]
= 1

π
θ(z′′

u,1, z′′
v,−1) = O(∥z′′

u,1 − z′′
v,−1∥2),

hence the expected deficit in the size of the cut defined by S is at most

O

(∑
v,u

∥z′′
u,1 − z′′

v,−1∥21∥zu,1−zv,−1∥2⩾Ω(ε)

)
= 1

ε
O

(∑
v,u

∥z′′
u,1 − z′′

v,−1∥2
2

)
= O

(
δ′′′′

ε
|E|
)

.◀

3 Spectral Partitioning

In this section, we use our techniques to establish stronger algorithmic spectral partitioning
results for the second largest eigenvalue of a graph G, proving Theorem 4. We also state
an analogous result for the smallest eigenvalue of a small set expander G (but omit the
mostly-identical proof).

3.1 Cheeger’s Inequality on SSE’s
As explained in the introduction, to avoid the square root loss in Cheeger’s inequality, we
must make sure that we perform the rounding phase of it on vectors in which the ratio
between any two coordinates is either 1, or is bounded away from 1. Below, we formalize
this notion via a notion we refer to as ε-quantization.

▶ Definition 17. Let ε > 0. We say a vector x ∈ Rn is ε-quantized if for each i, j ∈ [n]:
1. x(i) = 0 or x(j) = 0;
2. otherwise, |x(i)| = |x(j)|, |x(i)| ⩾ (1 + ε) |x(j)|, or |x(i)| ⩽ (1 − ε) |x(j)|.
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26:14 Rounding via Low Dimensional Embeddings

Next, we prove that for an SSE graph G and a vector x such that E(u,v)∼E

[
(x(u) − x(v))2]

is small, one can transform x to a vector y that is quantized while not increasing the square
distances by much.

▶ Lemma 18. Suppose that G = (V, E) is a d-regular, (ε, γ) small set expander. If x ∈ Rn is
a vector such that E(u,v)∼E

[
(x(u) − x(v))2] ⩽ δ, then there is an ε-quantized vector y ∈ Rn

such that:
1. E(u,v)∼E

[
(y(u) − y(v))2] ⩽ O

(
δ

γ3ε2

)
.

2. For each v ∈ V , y(v) = 0 if and only if x(v) = 0.
3. For each v ∈ V , (1 − ε)x(v) ⩽ y(v) ⩽ (1 + ε) ⩽ x(v) if x(v) ⩾ 0, and (1 + ε)x(v) ⩽

y(v) ⩽ (1 − ε)x(v) otherwise.

Proof. Let V+ = {v | x(v) > 0}, V− = {v | x(v) < 0}, and denote M = ⌈maxu |x(u)|⌉. We
partition V+ and V− as

V+ =
∞⋃

j=0
V+,j , V− =

∞⋃
j=0

V−,j ,

where

V+,j =
{

v ∈ V+ | M(1 + ε)−j−1 ⩽ x(v) < M(1 + ε)−j
}

,

V−,j =
{

v ∈ V− | − M(1 + ε)−j ⩽ x(v) < −M(1 + ε)−j−1} .

The construction of the vector y. To construct the vector y, for each vertex V ∈ V we
find the part V+,j (if x(v) is positive) or V−,j (if x(v) is negative) that v belongs to, and set
the value of y(v) to be one of the endpoints of the interval defining that part. Towards this
end, for each j we will choose points pj,+ and pj,− (in a way that we describe shortly) in the
intervals [M(1+ε)−j−1, M(1+ε)−j ] and [−M(1+ε)−j , −M(1+ε)−j−1] respectively, and use
them to define the vector y that satisfies the assertion of the lemma. More specifically: we set
y(u) = 0 if x(u) = 0; otherwise – without loss of generality say that x(u) > 0 – we take j such
that u ∈ V+,j , and define y(u) = M(1 + ε)−j if x(u) > pj,+ and else y(u) = M(1 + ε)−j−1.

Choosing the cut-off points pj,+ and pj,−. Next, we describe the choice of the points
pj,+ and pj,−. As the argument is analogous in both cases, we focus on pj,+. We define the
mass of V+,j as the cardinality of it. We say V+,j is heavy if its mass is at least εn, and
otherwise we say it is light. The choice of p+,j is done differently in light intervals and in
heavy intervals, and below we elaborate on these two cases. To do so, we consider the cost
associated with interval j,

costj = 1
n

∑
u∈V+,j ,v neighbour

(x(u) − x(v))2,

and show that the cost of V+,j only increases by factor O(1/γ3) as a result of the operation
on V+,j .

Light intervals. In this case, we take pj,+ to be the midpoint of its respective interval,
that is

pj,+ = 1
2
(
M(1 + ε)−j−1 + M(1 + ε)−j

)
.
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We denote by Lj the length of the interval, that is

Lj = M(1 + ε)−j − M(1 + ε)−j−1 = Mε(1 + ε)−j−1.

Let costj be the contribution of points from V+,j to the average square distances i.e.

costj = 1
n

∑
u∈V+,j ,v neighbour

(x(u) − x(v))2.

We show that doing the rounding at pj,+ as described above only increases costj by factor
O
(

1
γ3

)
.

Let ℓ1 = γ
K , where K is an absolute constant to be determined later. Consider the

interval B1 = [pj,+ − ℓ1Lj , pj,+ + ℓ1Lj ]. We will show that costj >
γℓ2

1L2
j

100 d |B1|, and then
noting that rounding at pj,+ increases costj additively by at most d |B1| L2

j it follows that
the cost of V+,j increases by at most factor O(1/γ3) as a result of the rounding.

We now prove that costj >
γℓ2

1L2
j

100 d |B1|, and to do so we assume towards contradiction
the contrary inequality holds. Let ℓ2 = 2ℓ1, and set B2 = [pj,+ − ℓ2Lj , pj,+ + ℓ2Lj ]. We claim
that |B2| ⩾

(
1 + γ

2
)

|B1|. Indeed, otherwise we consider outgoing edges from B1, and note
that as |B1| ⩽ |Vj,+| ⩽ εn, the small set expansion property implies that at least dγ |B1| of
them escape outside B1, where d is the degree of G′. As |B2| ⩽

(
1 + γ

2
)

|B1|, at most dγ
2 |B1|

of them can go to B2 \ B1, and hence at least dγ
2 |B1| of them go outside B2 \ B1. Hence, we

conclude that

costj ⩾
dγ

2 |B1| (ℓ2 − ℓ1)2L2
j = γℓ2

1
2 L2

jd |B1| ,

and contradiction. We thus have that |B2| ⩾
(
1 + γ

2
)

|B1|.
Next, we set ℓ3 = ℓ2 +

√
|B1|
|B2| ℓ1 and consider B3 = [pj,+ − ℓ3Lj , pj,+ − ℓ3Lj ]. Similarly

to before, if |B3| ⩽
(
1 + γ

2
)

|B2| we get a contradiction to the upper bound on costj .
Continuing this argument, we define iteratively ℓr+1 = ℓr +

√
B1

|Br| ℓ1 and then Br+1 =
[pj,+ − ℓr+1Lj , pj,+ + ℓr+1Lj ], and prove that |Br+1| ⩾

(
1 + γ

2
)

|Br| if ℓr+1 ⩽ 1/10. Note
that

ℓj+1 ⩽ ℓ1

∞∑
k=0

(
1 + γ

2

)−k/2
= O(ℓ1/γ) = O(1/K) ⩽ 1/10

provided K is sufficiently large, so we way we keep on increasing |Br| which is clearly
impossible.

This contradiction implies that costj ⩾ γℓ2
1L2

100 d |B1|, hence the cost of V+,j increases by
at most factor 1/(γℓ2

1) = O(1/γ3). In total, we get that throughout the process the cost of
each light interval increases by factor at most O(1/γ3).

Additionally, the cost of each edge (between intervals) may increase by a factor of 4.
Therefore, after rounding all light intervals, the cost of each light interval increases by factor
at most O(1/γ3), and of any other interval by factor O(1).

Heavy intervals. If V+,j is heavy, say it contains between rεn and (r +1)εn points for r ∈ N,
we partition J = [M(1 + ε)−j−1, M(1 + ε)−j) into 3 equal thirds, consider the middle third,
and take equally spaced points v1, . . . , vr+2 in it such that v1 and vr+2 are the endpoints of
the middle third. In a formula,
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vi = M(1 + ε)−j−1 + Lj
r + 1 + i

3r + 5 ,

where again Lj is the length of J , Lj = Mε(1 + ε)−j−1.
We could repeat the previous argument with each one of the points vi, but this time since

Vj,+ is heavy, the argument could terminate because small-set expansion no longer holds,
in which case we have enlarged the interval around vi to contain at least εn vertices. We
change the definition of ℓ1 to be γ

rK , so that if the argument fails for vi it means we have
found an interval around vi of length at most Lj/(100r) that contains at least εn vertices.
Note that these intervals must be disjoint (as the distance between two vi’s is greater than
Lj/(50r)), and thus in total these interval cover no more than |V+,j | ⩽ (r + 1)εn vertices,
meaning the argument could fail on at most (r + 1) many of the vi’s. Thus, there is a vi

in which the argument succeeds, so we choose it to be pj,+, so that running the previous
argument using pj,+ gives that costj increases by at most factor O

(
1/(γℓ2

1)
)

= O(γ−3ε−2).
Besides that, the cost of edges that have one endpoint in V+,j and one outside V+,j may

increase by factor O(1). Thus, in total the effect of rounding the heavy intervals is that it
may increase the cost of each heavy interval by at most O(γ−3ε−2), and each light interval
by factor at most O(1). ◀

With Lemma 18 in hand we can prove Theorem 4, restated below.

▶ Theorem 19. There exists an absolute constant C > 0, such that the following holds for
all ε, γ, δ > 0. Suppose that G is a d-regular graph whose second normalized eigenvalue is
at least 1 − δ, and suppose G is an (ε, γ) small set expander. Then there exists a set S of
vertices of fractional size at most n/2, such that

Φ(S) ⩽ C · δ

γ3ε3 .

Furthermore, such S can be found efficiently.

Proof. Let x be an eigenvector of G with eigenvalue λ2 ⩾ 1−δ and suppose that E
[
x(v)2] = 1;

hence E(u,v)∈E

[
(x(u) − x(v))2] ⩽ 2δ. We assume without loss of generality that x1 ⩽ x2 ⩽

. . . ⩽ xn.
Let z = x + c⃗1 an appropriate constant c so that zn/2 = 0. We note that this constant

is at most 3 in absolute value, otherwise the absolute value of xn/2 is greater than 3, say
xn/2 > 3, and then

E
v

[
x(v)2] ⩾ 1

232 > 1.

We also note that Ev

[
z(v)2] = Ev

[
x(v)2]+ c2 (we used the fact that x is perpendicular to

1⃗), which is at constant between 1 and 10, so we may divide z by an appropriate constant
and get its 2-norm back to 1. We note that performing all of these operations changes δ by
at most a constant factor.

Using Lemma 18 on z we find an ε-quantized y satisfying the properties of the lemma.
We divide the entries of y by a suitable factor A so that y2

1 + y2
n = 1, and note that the

operation of Lemma 18 preserves orders and 0-entries so that y1 ⩽ . . . ⩽ yn and yn/2 = 0.
We now perform the standard Cheeger’s inequality rounding scheme. Namely, choose t in

[y1, yn] according to the density function 2 |t|. We note that
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1. If a, b have the same signs, the probability that t ∈ [a, b] is
∣∣b2 − a2

∣∣;
2. If a, b have different signs, the probability that t ∈ [a, b] is a2 + b2.
3. Therefore, in either case the probability that t ∈ [a, b] is at most |a − b| (|a| + |b|).
Let S = {v | y(v) ⩽ t}. We compute the expectation of the number of edges that escape S,
as well as the expectation of min(|S| , |V \ S|).

By the above observation, the probability that a given edge (u, v) crosses the cut of S is
at most |y(u) − y(v)| (|y(u)| + |y(v)|). If y(u) = y(v) then this is 0 and in particular equal to
|y(u) − y(v)|2; if y(u), y(v) are negated in signs this is same as |y(u) − y(v)|2; finally, if either
y(v) = 0 or y(u) = 0 this is again the same as |y(u) − y(v)|2. Otherwise, as y is ε-quantized
we have that either |y(u)| ⩾ (1 + ε) |y(v)| or |y(u)| ⩽ (1 − ε) |y(v)|, and then

|y(u) − y(v)| |y(v)| =
∣∣∣∣y(u)
y(v) − 1

∣∣∣∣ |y(v)|2 ⩽ ε−1
∣∣∣∣y(u)
y(v) − 1

∣∣∣∣2 |y(v)|2 = ε−1 |y(u) − y(v)|2 .

Similarly, flipping the roles of u and v we have that either |y(v)| ⩾ (1 + ε) |y(u)| or |y(v)| ⩽
(1 − ε) |y(u)|, and then

|y(u) − y(v)| |y(u)| =
∣∣∣∣y(v)
y(u) − 1

∣∣∣∣ |y(u)|2 ⩽ ε−1
∣∣∣∣y(v)
y(u) − 1

∣∣∣∣2 |y(u)|2 = ε−1 |y(u) − y(v)|2 .

Combining everything, we get that the probability that a given edge (u, v) crosses the cut
of S is at most 2ε−1 |y(u) − y(v)|2, so the expected number of edges between S and V \ S is
at most∑

(u,v)∈E

2ε−1 |y(u) − y(v)|2 ⩽ O

(
δ

γ3ε3
1

A2 |E|
)

.

As for E [min(|S| , |V \ S|)], if t ⩽ 0 the set S is smaller and otherwise V \ S is smaller.
We show that for each v, the probability that v is in the smaller among S and V \ S is at
least y(v)2, from which it follows that

E [min(|S| , |V \ S|)] ⩾
∑
v∈V

y(v)2 ⩾
1

A2 (1 − ε)n.

This would imply Theorem 4, as then we get that

E [|Edges(S, V \ S)|]
dE [min(|S| , |V \ S|)] = O

(
δ

γ3ε3

)
,

hence there is a choice of t for which

|Edges(S, V \ S)|
d min(|S| , |V \ S|) = O

(
δ

γ3ε3

)
.

Furthermore, standard techniques show that such t can be found in polynomial time, giving
us a set S as desired.

To finish the proof, we argue that for any vertex v, the probability that v is in the smaller
among S and V \ S is at least y(v)2. We consider the case that y(v) ⩽ 0 and the case that
y(v) > 0 separately. In the first case, we have

Pr [v in smaller among S, V \ S] = Pr [t ⩽ 0]Pr [v ∈ S | t ⩽ 0]

= Pr [t ⩽ 0]Pr [y(v) ⩽ t | t ⩽ 0],
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which is equal to Pr [t ∈ [y(v), 0]] = y(v)2. If y(v) > 0,

Pr [v in smaller among S, V \ S] = Pr [t > 0]Pr [v ∈ V \ S | t > 0]

= Pr [t > 0]Pr [y(v) > t | t ⩽ 0],

which is equal to Pr [t ∈ [0, y(v)]] = y(v)2. ◀

3.2 Dense cuts on SSE’s
Using the same proof strategy as above, one may establish the following improved spectral
partitioning result based on the smallest eigenvalue of G when the graph is a small-set
expander [22].

▶ Theorem 20. There exists an absolute constant C > 0, such that the following holds for
all ε, γ, δ > 0. Suppose that G is a d-regular graph with λn(G) ⩽ −1 + δ, and suppose G is
an (ε, γ) small set expander. Then there is y ∈ {−1, 0, 1}n such that∑

(u,v)∈E

|y(u) + y(v)|

d
∑

u∈V

|y(u)| ⩽ C · δ

γ3ε3 .

Furthermore, such S can be found efficiently.

As the proof is very close in spirit, we omit the details. We remark that Trevisan [22] proves
a version of Theorem 20 for general graphs and uses it to get a spectral approximation
algorithm for Max-cut with better approximation ratio than 1/2. In that context, a solution
as in Theorem 20 is to be interpreted as a partial cut, and after finding y Trevisan considers
the set of vertices which receive value 0 in y and applies the algorithm on them recursively.
One may expect such approach to also work in our case to get an algorithm for Max-cut,
however the recursive nature of Trevisan’s approach may not preserve the small-set expansion
of the induced graph. We were therefore led to seeking a more direct approach for applying
the soft-rounding idea to the Max-cut problem, and indeed our proof of Theorem 3 was
found in this way.

4 Strong Parallel Repetition for Unique-Games on SSE’s

In this section, we prove a more general version of Theorem 6 for the class of projection games.
Our proof goes through the information theoretic approach to parallel repetition [20, 10, 19, 4],
and we will closely follow the argument in [4]. Our argument differs only towards the end of
the argument, but we sketch for completeness. We will prove that for sufficiently large absolute
constant K > 0, setting T = ⌈ K

ε3γ3δ ⌉, for t ⩾ T it holds that val(Ψt) ⩽
(
1 − Ω(δε3γ3)

)t. The
result for any other t then follows automatically: for any t ⩽ T , letting ℓ = ⌊T/t⌋ we have
that T ⩾ ℓt so

1 − Ω(1) ⩾ val(ΨT ) ⩾ val(Ψℓt) ⩾ val(Ψt)ℓ,

so

val(Ψt) ⩽ (1 − Ω(1))1/ℓ = e−Ω(t/T ) = (e−Ω(1/T ))t = (1 − Ω(1/T ))t,

as desired. From now on, we assume that t ⩾ T .
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Notations

We will denote random variables by boldface capital letters, and instantiations of them by
small letters. We use standard information theoretic tools presented in the appendix for
completeness (see also [7]). The KL-divergence from Q to P is denoted by DKL (P ∥ Q),
however for space considerations, we will sometimes denote it by

DKL

P

Q

 .

4.1 Parallel Repetition: the Information Theoretic Set-up
We will refer to the players in the game as Alice and Bob. The challenges of Alice are in
the t-fold repeated game Ψ⊗n are denoted by X1, . . . , Xt and her answers are denoted by
(A1, . . . , At) = f(X1, . . . , Xt). Similarly, the challenges of Bob are denoted by Y1, . . . , Yt,
and his answers are denoted by (B1, . . . , Bt) = g(Y1, . . . , Yt). Finally, we denote by W the
event that Alice and Bob win on all of the t challenges. We will prove the counter positive
statement, namely that if Pr [W ] > (1 − cδε3γ3)t for sufficiently small absolute constant c,
then val(Ψ) > 1 − δ (we recall that t ⩾ T ).

4.1.1 The information theoretic approach
Let sg, sh be uniformly chosen integers in {3/4t + 1, . . . , t}, and let σ ∈ St be a uniformly
chosen permutation. Denote

H = σ([sh]) = {σ(i) | i ∈ [sh]} , G = σ({t−sg+1, . . . , t}) = {σ(i) | i ∈ {t − sg + 1, . . . , t}} .

Let I ∈ G∩H be chosen uniformly, and let ℓ ∈ [t/4] be chosen uniformly. Let S ⊆ (G∩H)\{I}
be chosen uniformly of size ℓ. Denote

LS,G,H,I = (XG\{I}, YH\{I}, BS).

Below we state Lemmas 5.2, 5.3, 5.4 and 5.5 from [4]. We omit the proofs as they are
identical to the proofs therein.

▷ Claim 21. ES,G,H,I [I(AI; YI|XI, LS,G,H,I, W )] ⩽ 4
t log(1/Pr [W ]).

▷ Claim 22. ES,G,H,I [I(LS,G,H,I; YI|XI, W )] ⩽ 8
t log(1/Pr [W ]).

▷ Claim 23. ES,G,H,I [I(LS,G,H,I; XI|YI, W )] ⩽ 8
t log(1/Pr [W ]).

▷ Claim 24. ES,G,H,I [I(BI; 1W |XI, YI, LS,G,H,I, AI)] ⩽ 4
t H(1W ).

The next claim is Lemma 4.6 from [4].

▷ Claim 25. EI [DKL (XI, YI | W ∥ XI, YI)] ⩽ 1
t log

(
1

Pr[W ]

)
.

The next claim is Lemma 4.9 from [4].

▷ Claim 26. Suppose G, H, Sa, Sb ⊆ [t] and i ∈ [t] such that G ∪ H = [t] \ {i}. Then for any
x̄, ȳ, ā, b̄, x, y in the support of XG, YH , ASa

, BSb
, Xi and Yi, for all a, b it holds that

Pr
[
Ai = a, Bi = b | (XG, YH , ASa

, BSb
, Xi, Yi) = (x̄, ȳ, ā, b̄, x, y)

]
= Pr [Ai = a | (XG, YH , ASa , Xi) = (x̄, ȳ, ā, x)]

· Pr
[
Bi = b | (XG, YH , BSb

, Yi) = (x̄, ȳ, b̄, x)
]
.
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Next, we state and prove an analog to Lemma 5.6 from [4]. The Lemma therein applies
to the case that the probability of W is small, and below we make a small adjustment to it
(using the fact that the number of repetitions is assumed to be large in our case) to remove
that assumption.

▶ Lemma 27. Suppose ζ = δε3γ3 and that Pr [W ] ⩾ 2−ζt/K . There exist fixings G = G,
H = H, S = S and I = I such that the following properties hold:
1.

E
(x,y)∼(XI ,YI )|W

[DKL (LS,G,H,I | XI = x, YI = y, W ∥ LS,G,H,I | XI = x, W )] ⩽ O

(
ζ

K

)
.

2.

E
(x,y)∼(XI ,YI )|W

[DKL (LS,G,H,I | XI = x, YI = y, W ∥ LS,G,H,I | YI = y, W )] ⩽ O

(
ζ

K

)
.

3.

DKL (XI , YI | W ∥ XI , YI) ⩽ O

(
ζ

K

)
.

4. Sampling (x, y) ∼ (XI , YI)|W and L ∼ LS,G,H,I |XI = x, YI = y, W , we have

E
[
DKL (AI |XI = x, YI = y, LS,G,H,I = L, W ∥ AI |XI = x, LS,G,H,I = L, W )

]
⩽ O

(
ζ

K

)
.

5. Sampling (x, y) ∼ (XI , YI)|W and L ∼ LS,G,H,I |XI = x, YI = y, W , we have

E

DKL

 AI , BI |XI = x, YI = y, LS,G,H,I = L, W

AI |XI = x, LS,G,H,I = L, W ⊗ BI |YI = y, LS,G,H,I = L, W


⩽ O

(
ζ

K

)
.

Proof. We calculate the expected value of each one of these over the choice of S, G, H, I,
show that each one of these expectations is at most O

(
1
t log

(
1

Pr[W ]

))
, and then the result

follows from Markov’s inequality together with the union bound.
The expectation of the first item is, by Fact 36, equal to the mutual information in

Claim 22, so the bound follows from there. The expectation of the second item is, by
Fact 36, equal to the mutual information in Claim 23, so the bound follows from there. The
expectation of the third item is computed in Claim 25. The expectation of the fourth item is
equal to the mutual information in Claim 21, and the bound follows from there.

For the fifth expectation, using the chain rule we can write it as

E
G,H,S,I

(x,y)∼(XI,YI)|W
L∼LS,G,H,I|x,y,W

[
DKL (AI|x, y, LS,G,H,I = L, W ∥ AI|x, LS,G,H,I = L, W )︸ ︷︷ ︸

(I)

+ E
a∼AI

∣∣∣ XI=x,YI=y
LS,G,H,I=L,W

DKL (BI|x, y, LS,G,H,I = L, AI = a, W ∥ BI|y, LS,G,H,I = L)

︸ ︷︷ ︸
(II)

]
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The expectation of (I) is the expectation of the fourth item in the lemma, hence at most
O
(

1
t log

(
1

Pr[W ]

))
. For (II), first looking at Claim 26, summing over a and setting Sa = {I},

Sb = S we get that the distributions BI|YI = y, LS,G,H,I = L and BI|XI = x, YI =
y, LS,G,H,I = L, AI = a are identical, so our goal is to upper bound the expectation of

DKL (BI|x, y, LS,G,H,I = L, W, AI = a, W ∥ BI|x, y, LS,G,H,I = L, AI = a) .

Letting w ∼ 1W and sampling the rest of the random variables conditioned on it, we see that
the expectation of the above expression is at most 1

Pr[W ] times the expectation of

DKL

BI|XI = x, YI = y, LS,G,H,I = L, 1W = w, AI = a

BI|XI = x, YI = y, LS,G,H,I = L, AI = a


since the probability that w = 1 is Pr [W ]. By Fact 36, the expectation of the last KL-
divergence is the mutual information in Claim 24, hence at most 4

t H[1W ].
All in all, we get that the expectation of (II) is upper bounded by

4H[1W ]
tPr [W ] .

Denote q = Pr [W ]. If q ⩽ 1/2, then we may bound H[1W ] ⩽ O(q log(1/q)), and then we get
the bound O

(
log(1/Pr[W ])

t

)
⩽ O

(
ζ
K

)
on (II). Otherwise, q > 1/2 and we have the bound

H[1W ] ⩽ 1, and we get the bound O(1/t). By the assumption in the beginning of this section,
t ⩾ T ⩾ Ω(K/ζ), so O(1/t) ⩽ O

(
ζ
K

)
. ◀

4.1.2 Departing from [4]
In the next part of the proof, we insert an additional ingredient on top of [4], and before
that we quickly explain how the proof there proceeds using Lemma 27.

First, a protocol is designed so that if the players received challenges from the distribution
XI , YI |W , then the players succeed with probability close to 1; given that, the third item
in Lemma 27 shows that the players succeed with probability close to 1 given challenges
distributed as XI , YI .

The correctness of the protocol is argued by appealing to Pinsker’s inequality on the
third item of Lemma 27, to get that Alice and Bob can jointly sample from distributions that
are O(

√
ζ/K) close to LS,G,H,I | XI = x, YI = y, W , i.e. with probability 1 − O(

√
ζ/K)

they get a joint sample from that distribution. Assuming the joint sampling was successful,
the players can sample the answer AI , BI conditioned on the information they have so far.
Note that in the distribution AI , BI |Xi = x, YI = y, LS,G,H,I = L, W the players win the
coordinate I with probability 1 (since W was conditioned on), and by the fifth item in
Lemma 27 the KL-divergence between that distribution and the joint distribution of the
answers of the players in the designed protocol is at most O(ζ/K), and one conclude that
the winning probability of the players in the protocol (conditioned on the joint sampling
being successful) is at least 2−O(ζ/K) ⩾ 1 − O(ζ/K). Overall, the designed protocol wins
with probability 1 − O(

√
ζ/K).

The source of the square loss above is thus due to the application of Pinsker’s inequality,
and we will circumvent that by appealing to the small set expansion property. More precisely,
we will use the first and second item in Lemma 27 in order to come up with distributions
L̃S,G,H,I | XI = x, W , L̃S,G,H,I | XI = y, W that are very close to the original distribution
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(the probability of each atom changes by at most factor (1 ± ε), but from which the players
can jointly sample without losing the square root in Pinsker’s inequality (and instead loses
some factors depending on the small set expansion parameters of the graph). From that
point, the rest of the proof proceeds in the same way.

4.2 Qunatizing the Random Variables
Throughout this section, we have a graph G = (V, E), and we associate a distribution Dv

with each vertex v. We will also need to consider pseudo-distributions, which we define next.

▶ Definition 28. A pseudo-distribution D over a finite domain Ω is a map D : Ω → [0, ∞).

Sometimes we will want to sample from a pseudo-distribution; by that, we mean that we
first normalize D so that the sum of its values is 1, and then sample from it. One may define
Hellinger distance as well as statistical distance for pseudo-distributions as well (though one
has to be careful with using properties of them that only hold for distributions).

▶ Definition 29. A collection of pseudo-distributions Dv∈V over a finite domain Ω is
called ε-quantized if for any w ∈ Ω and u, v ∈ V we either have that Dv(w) = Du(w), or
Dv(w) ⩽ (1 − ε)Du(w), or Dv(w) ⩾ (1 + ε)Du(w).

The following lemma explains the benefit of quantized pseudo-distributions: it allows us
to move from Hellinger distance to statistical distance without square root loss.

▶ Lemma 30. If P, Q are pseudo-distributions such that the collection {P, Q} is ε-quantized.
Then SD(P, Q) = O

( 1
ε Hellinger(P, Q)2).

Proof. By definitions, the inequality we wish to show is that for large enough absolute
constant C > 0 it holds that∑

w∈Ω
|P (w) − Q(w)| ⩽ C

ε

∑
w∈Ω

∣∣∣√P (w) −
√

Q(w)
∣∣∣2 .

We show that the inequality in fact holds term by term. Without loss of generality, P (w) ⩾
Q(w). If Q(w) = 0 it is clear. Otherwise, letting t = P (w)/Q(w), the inequality we wish to
show is that t − 1 ⩽ C

ε (
√

t − 1)2. If t = 1 the inequality is clear, and otherwise it is equivalent
to

√
t + 1 ⩽ C

ε (
√

t − 1). Solving for t, we get that

√
t ⩾

C/ε + 1
C/ε − 1 = 1 + 2

C/ε − 1 = 1 + 2ε

C − ε

By the fact that {P, Q} is ε-quantized and t ̸= 1, it follows that t ⩾ 1 + ε and hence√
t ⩾ 1 + ε/4, and for large enough C (C = 10 will do) we get that this is indeed more than

1 + 2ε
C−ε . ◀

The next lemma shows that one may modify distributions associated with vertices of
small set expanders by small multiplicative modifications to make them quantized, and only
incur a constant multiplicative increase in Hellinger distance.

▶ Lemma 31. There exists an absolute constant C > 0, such that the following holds. Suppose
that G = (V, E) is a regular graph as well as a (ε, γ) small set expander, and (Dv)v∈V is a
collection of distributions over domain Ω such that

E
(u,v)∈E

[
Hellinger(Du, Dv)2] ⩽ η.
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Then there exists a collection of pseudo-distributions (D̃v)v∈V over Ω satisfying the following
properties:
1. E(u,v)∈E

[
Hellinger(D̃u, D̃v)2] ⩽ C η

γ3ε2 .
2. For all w ∈ Ω and v ∈ V it holds that (1 − ε)Dv(w) ⩽ D̃v(w) ⩽ (1 + ε)Dv(w).
3. The collection (D̃v)v∈V is ε/2-quantized.

Proof. For each w ∈ Ω, define the contribution of w to the Hellinger distance squared as

cw = E
(u,v)∈E

[(√
Du(w) −

√
Dv(w)

)2
]
,

and define the vector xw ∈ [0, 1]V by xw(v) =
√

Dv(w). Then by Lemma 18 we may find a
vector yw that is ε-quantized and

c′
w

def= E
(u,v)∈E

[
(yw(u) − yw(v))2] ⩽ C

cw

γ3ε2 .

For each v, define the pseudo-distribution D̃v(w) = yw(v)2. Then as yw is ε-quantized, it
is easy to see that this collection of distributions is ε/2 quantized. Also, the second item
follows immediately from the corresponding properties of yw. Finally,

E
(u,v)∈E

[
Hellinger(D̃u, D̃v)2] =

∑
w

E
(u,v)∈E

[
(yw(u) − yw(v))2] ⩽∑

w

C
cw

γ3ε2 = C

γ3ε2

∑
w

cw,

which is at most C η
γ3ε2 as the sum of cw is exactly E(u,v)∈E

[
Hellinger(D̃u, D̃v)2]. ◀

4.3 Using the Random Variables to Derive a Strategy
We now have all of the ingredients to prove Theorem 6. We will show that assuming that
Pr [W ] ⩾ 2−ζt/K for ζ = δε3γ3, we can design a protocol for the players to win the game
with probability 1 − O(δ/K), so taking K large enough yields a contradiction.

Apply Lemma 27 to find a fixing of S, H, G, I. In the protocol we design, the input of
the players will be a pair of challenges distribution (x, y) ∼ (XI , YI). We will analyze the
protocol under a different distribution of challenges, namely under (x, y) ∼ (XI , YI) | W , and
prove that the players succeed with probability at least 1 − O(δ/K). From this, Lemma 42
together with the third item in Lemma 27 gives that the players win under the original
distribution of challenges with probability at least 1 − O(δ/K), as ζ ⩽ δ.

We set up some notations. Given a challenge x to Alice and y to Bob (which are vertices
in Ψ), they define the random variable

Dx = LS,G,H,I | XI = x, W Dy = LS,G,H,I | YI = y, W

respectively. We also define Dx,y = LS,G,H,I | XI = x, XI = y, W for convenience (though
we stress no player has access to it). Then the first and second items in Lemma 27,

E
(x,y)∼(XI ,YI ) | W

[DKL (Dx,y ∥ Dx) + DKL (Dx,y ∥ Dy)] ⩽ O(ζ/K),

and applying Lemma 41 we get that

E
(x,y)∼(XI ,YI ) | W

[
Hellinger(Dx, Dy)2] ⩽ O(ζ/K).
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Thus, by Lemma 44

E
(x,y)∼(XI ,YI )

[
Hellinger(Dx, Dy)2] ⩽ O(ζ/K),

and from Lemma 31 there are pseudo-distributions (D̃x) as in the lemma such that

E
(x,y)∼(XI ,YI )

[
Hellinger(D̃x, D̃y)2

]
⩽ O

(
ζ

Kε2γ3

)
= O

(
δε

K

)
.

We note that Hellinger(D̃x, D̃y)2 ⩽ 2 for all x, y (it can be more than 1 as these are pseudo-
distributions, but by the second item in Lemma 31 their sum of values is at most (1 + ε)).
Thus we may apply Lemma 44 in the other direction to conclude that

E
(x,y)∼(XI ,YI ) | W

[
Hellinger(D̃x, D̃y)2

]
⩽ O

(
δε

K

)
.

Thus, from Lemma 30 we have that

E
(x,y)∼(XI ,YI ) | W

[
SD(D̃x, D̃y)

]
⩽ O

(
δ

K

)
From Lemma 45, it thus follows that the players can jointly sample dx ∼ D̃x, dy ∼ D̃y such
that

Pr
(x,y)∼(XI ,YI ) | W

dx,dy

[dx ̸= dy] = O(δ/K).

We can now state the protocol for the players.
Input: Alice is given x, Bob is given y such that (x, y) ∼ (XI , YI) | W .
Protocol:

1. Alice and Bob use correlated sampling to jointly sample dx ∼ D̃x, dy ∼ D̃y.
2. Alice samples a ∼ AI |XI = x, Dx = dx, W and sends it to the referee.
3. Bob samples b ∼ BI |YI = x, Dy = dy, W and sends it to the referee.

The following claim finishes the proof.

▷ Claim 32. The above protocol is a strategy for the players that succeeds with probability
at least 1 − O(δ/K).

Proof. Consider the alternative protocol, where instead of the first step, Alice samples dx

and then comminutes it to Bob. Clearly, as the probability that dx ̸= dy is at most O(ζ/K),
this change increases the success probability of the players by at most O(ζ/K), so it suffices
to show that this modified protocol has success probability at least 1 − O(δ/K).

We first analyze the protocol where we modify the distribution of dx, and then argue the
implication to the protocol with the correct distribution over dx. Suppose Alice sampled dx ∼
Dx; we show that in this case, the success probability is at least 1 − O(ζ/K). To show that,
by the first item of Lemma 27 and Lemma 42, it suffices to sow that the success probability of
the protocol is at least 1 − O(ζ/K) if we sample dx ∼ Dx,y. In that case, the answers of the
players are distributed according to (AI |XI = x, Dx,y = dx, W ) ⊗ (BI |YI = x, Dy = dy, W ).
Thus, by the fifth item in Lemma 27 and Lemma 42 it suffices to show that the success
probability of the players with (a, b) ∼ (AI , BI |XI = x, YI = y, Dx,y = dx, W ) is at least
1 − O(ζ/K), which is clear since we have conditioned on the event W so all coordinates are
won.
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Thus, letting Z(d) be a random variable denoting the failure probability of the modified
protocol with dx = d, we have that Ex,y [E,d∼Dx

[Z(d)]] ⩽ O(ζ/K), hence

E
x,y

[
E

d∼D̃x

[Z(d)]
]

= E
x,y

[∑
d

Pr
[
D̃x = d

]
Z(d)

]
⩽ E

x,y

[
(1 + ε)

∑
d

Pr [Dx = d]Z(d)
]

,

which is O
(

ζ
K

)
. Therefore the success probability of the protocol when dx ∼ D̃x is at least

1 − O
(

ζ
K

)
, finishing the proof. ◁
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A Information Theory

In this section, we present a few basic notions from information theory. First, we define the
notions of Shannon entropies and conditional Shannon entropies.

▶ Definition 33. Let X, Y be random variables with a finite support.
1. The Shannon entropy of X is H[X] =

∑
x

Pr [X = x] log
(

1
Pr[X=x]

)
.

2. The Shannon entropy of X conditioned on Y is H[X | Y ] = Ey∼Y [H[X | Y = y]], where
H[X | Y = y] =

∑
x

Pr [X = x | Y = y] log
(

1
Pr[ X=x |Y =y]

)
.

Second, we define mutual information between random variables as well as conditional
mutual information.

▶ Definition 34. Let X, Y, Z be random variables with a finite support.
1. The mutual information between X and Y is I[X; Y ] = H[X] − H[X|Y ].
2. The mutual information between X, Y conditioned on Z is I[X; Y | Z] = H[X | Z] −

H[X | Y, Z].

Third, we define the KL-divergence between random variables.

▶ Definition 35. Let X, Y be random variables with a finite support. The KL-divergence
from Y to X is DKL (X ∥ Y ) =

∑
x,y

Pr [X = x] log
(

Pr[X=x]
Pr[Y =y]

)
.

We will need the following standard facts from information theory (for proofs, see [7] for
example).

http://arxiv.org/abs/2103.08743
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1137/080734042
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/090773714
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▶ Fact 36. Let X, Y, Z be random variables. Then

I[X, Y ; Z] = E
(x,y)∼(X,Y )

[DKL (Z|X=x,Y =y ∥ Z)].

▶ Fact 37. Let X, Y1, . . . , Yn be random variables. Then

I[X; Y1, . . . , Yn] =
n∑

i=1
I[X; Yi | Y<i].

▶ Fact 38. Let X, Y, Z be random variables. Then I[X; Y | Z] ⩽ I[X; Y, Z].

B Probability Theory

We will use several standard distance measures between probability measures as well as
relations between them that we give in this section.

▶ Definition 39. Let X, Y be random variables supported over a finite set Ω. The statistical
distance between X and Y is defined as

SD(X, Y ) = 1
2
∑
w∈Ω

∣∣∣Pr [X = w] − Pr [Y = w]
∣∣∣

▶ Definition 40. Let X, Y be random variables supported over a finite set Ω. The Hellinger
distance between X and Y is defined as

Hellinger(X, Y ) =

√√√√1
2
∑
w∈Ω

∣∣∣∣√Pr [X = w] −
√

Pr [Y = w]
∣∣∣∣2

B.1 A Relation Between KL-divergence and Hellinger Distance
The KL divergence metric does not obey a triangle inequality, and the following lemma
replaces it in our inteded application. It asserts that if the KL divergence between X and
Z is small, and the KL divergence between Y and Z is small, then the Hellinger distance
between X and Y is small.

▶ Lemma 41. Let X, Y and Z be random variables supported on a finite set Ω. Then

2Hellinger(X, Y )2 ⩽ DKL (Z ∥ X) + DKL (Z ∥ Y ) .

Proof. Let us think of X and Y as fixed random variables, and attempt to minimize
DKL (Z ∥ X) + DKL (Z ∥ Y ) over all random variables Z. In other words, we wish find
non-negative numbers (pZ(w))w∈Ω summing up to 1 minimizing the form

∑
w∈Ω

pZ(w) log
(

pZ(w)
pX(w)

)
+ pZ(w) log

(
pZ(w)
pY (w)

)
=
∑
w∈Ω

pZ(w) log
(

pZ(w)2

pX(w)pY (w)

)
Using Lagrange multipliers, we get that there exists λ ∈ R such that the optimum satisfies
the equations

log
(

pZ(w)2

pX(w)pY (w)

)
− 1

ln 2 − λ = 0 ∀w ∈ Ω.
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In other words, pZ(W ) = c
√

pX(w)pY (w) for some c > 0, and we next compute the constant
c. By the constraint that the sum is 1, we get

1 = c

2
∑
w∈Ω

2
√

pX(w)pY (w) = c

2(2−
∑
w∈Ω

(
√

pX(w)−
√

pY (w))2) = c(1−Hellinger(X, Y )2),

so c = 1
1−Hellinger(X,Y )2 . Plugging that into pZ(w), we get that the minimum of DKL (Z ∥ X)+

DKL (Z ∥ Y ) is at least

∑
w∈Ω

pZ(w) log
(

pZ(w)2

pX(w)pY (w)

)
=
∑
w∈Ω

c
√

pX(w)pY (w) log
(

c2pX(w)pY (w)
pX(w)pY (w)

)
.

Simplifying, we get that this is equal to

c log c2
∑
w∈Ω

√
pX(w)pY (w) = 2 log c = −2 log

(
1 − Hellinger(X, Y )2) ⩾ 2Hellinger(X, Y )2,

where the last inequality uses log(s) ⩽ s − 1 for all s > 0. ◀

B.2 Small KL-divergence and high probability events
The next few lemmas are concerned with a pair of distributions that have a small KL-
divergence. They show that an event has probability close to 1 with respect to one distribution
if and only if it has probability close to 1 with respect to the other distributions; we then
generalize this facts to bounded functions.

▶ Lemma 42. Suppose P and Q are distributions such that DKL (P ∥ Q) ⩽ η ⩽ 1/100, and
suppose that E is an event.
1. If P [E] ⩾ 1 − η, then Q(E) ⩾ 1 − 10η.
2. If Q(E) ⩾ 1 − η, then P (E) ⩾ 1 − 10η.

Proof. By the data processing inequality, η ⩾ DKL (P ∥ Q) ⩾ DKL (Ber(P (E)) ∥ Ber(Q(E))).
For the first item, if we assume Q(E) ⩽ 1 − 10η then we get that

η ⩾ DKL (Ber(1 − η) ∥ Ber(1 − 10η)) = (1 − η) log
(

1 − η

1 − 10η

)
+ η log

(
η

10η

)
= (1 − η) log

(
1 + 9η

1 − 10η

)
− η log (10)

⩾ (1 − η) log(1 + 9η) − η log(10).

Using the fact that log(1 + s) ⩾ s/2 for s ⩽ 1, we get that the last expression is at least
4.5η(1 − η) − η log(10), and as log(10) ⩽ 3.4 we get that it is at least 1.1η − 4.5η2 ⩾
1.1η − 0.045η > η, and contradiction.

For the second item, if we assume that P (E) ⩽ 1 − 10η, then we get that

η ⩾ DKL (Ber(1 − 10η) ∥ Ber(1 − η)) = (1 − 10η) log
(

1 − 10η

1 − η

)
+ 10η log

(
10η

η

)
= (1 − 10η) log

(
1 − 9η

1 − η

)
+ 10 log (10) η

⩾ −(1 − 10η) 18η

1 − η
+ 10 log(10)η,
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where we used log(1 − s) ⩾ −2s for s ⩽ 0.1. As 1/(1 − η) ⩽ 1 + 2η, we get that the last
expression is at least

(10 log(10) − 18)η − 216η2 ⩾ 10η − 216
100η2 > η,

and contradiction. ◀

▶ Lemma 43. Suppose X, Y are random variables in [0, 1], and DKL (X ∥ Y ) ⩽ η, for
η ⩽ 1/100. Then
1. If E [X] ⩾ 1 − η, then E [Y ] ⩾ 1 − 10η.
2. If E [Y ] ⩾ 1 − η, then E [X] ⩾ 1 − 10η.

Proof. We prove the first item, and the second item follows similarly.
Consider the following randomized process T : given a number x ∈ [0, 1] sample a Bernoulli

random variable b such that Pr [b = 1] = x. Then by the data processing inequality we have
that

η ⩾ DKL (X ∥ Y ) ⩾ DKL (X ∥ Y) .

Let E be the event that the output of the process is 1. Then

Pr [X ∈ E] = E [X] ⩾ 1 − η,

so we get by Lemma 42 that

E [Y ] = Pr [Y ∈ E] ⩾ 1 − 10η. ◀

▶ Lemma 44. Suppose f : Ω → [0, 2], η ⩽ 1/100 and P, Q are distributions such that
DKL (P ∥ Q) ⩽ η. Then
1. If Ez∼P [f(z)] ⩽ η, then Ez∼Q [f(z)] ⩽ 20η.
2. If Ez∼Q [f(z)] ⩽ η, then Ez∼P [f(z)] ⩽ 20η.

Proof. We prove the first item, and the second item follows similarly.
Consider the random variables X = 1 − 1

2 f(z) where z ∼ P , and Y = 1 − 1
2 f(z)

where z ∼ Q. By the Data processing inequality DKL (X ∥ Y ) ⩽ DKL (P ∥ Q) ⩽ η, and by
assumption E [X] ⩾ 1−η, so by Lemma 43 we get that 0.5Ez∼Q [f(z)] = 1−E [Y ] ⩽ 10η. ◀

B.3 Correlated sampling
Correlated sampling is an important motive in parallel repetition theorems that has been
introduced in [10]. Below, we state a version of it for pseudo-distributions, and include a
proof for completeness.

▶ Lemma 45. There exists a randomized procedure R.
Let η ⩽ 1/100 and 0 < ε < 1/2. Suppose P and Q are distributions, and P̃ , Q̃ are

pseudo-distributions all over Ω such that
1. SD(P̃ , Q̃) ⩽ η

2. for all w ∈ Ω, (1 − ε)P (w) ⩽ P̃ (w) ⩽ (1 + ε)P (w), (1 − ε)Q(w) ⩽ Q̃(w) ⩽ (1 + ε)Q(w).
Then, Alice generates a sample p ∼ P̃ , Bob generates a sample q ∼ Q̃ such that

Pr [p ̸= q] ⩽ O(ξ).
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Proof. Alice and Bob consider, as public randomness, an infinite string of uniform tuples
from Ω × [0, 1 + ε], say (w1, r1), (w2, r2) and so on. Alice picks the first i such that

ri ⩽ P̃ (wi),

and outputs wi. Similarly Bob picks the first j such that

rj ⩽ Q̃(wj),

and outputs wj . It is clear that wi ∼ P̃ and wj ∼ Q̃, and we next bound the probability
that i ̸= j. This happens if for the smallest k such that rk ⩽ max(P̃ (wk), Q̃(wk)), it holds
that rk > min(P̃ (wk), Q̃(wk)). The probability for that is

Pr
(r,w)

[
r > min(P̃ (w), Q̃(w))

∣∣ r ⩽ max(P̃ (w), Q̃(w))
]

=

∑
w

Prr

[
min(P̃ (w), Q̃(w)) < r < max(P̃ (w), Q̃(w))

]
∑
w

Prr

[
r ⩽ max(P̃ (w), Q̃(w))

] .

We finish the proof by upper bounding the numerator by η, and lower bounding the
denominator by 1/4. The numerator may be bounded as∑

w

∣∣max(P̃ (w), Q̃(w)) − min(P̃ (w), Q̃(w))
∣∣ =

∑
w

∣∣P̃ (w) − Q̃(w)
∣∣ ⩽ η.

As for the denominator, it may be lower bounded by

∑
w

Pr
r

[
r ⩽ P̃ (w)

]
=
∑

w

P̃ (w)
1 + ε

⩾
∑

w

(1 − ε)P (w)
1 + ε

= 1 − ε

1 + ε
⩾

1
4 . ◀
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