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Abstract
Quantitative parity automata (QPAs) generalise non-deterministic parity automata (NPAs) by
adding weights from a certain semiring to transitions. QPAs run on infinite word/tree-like structures,
modelled as coalgebras of a polynomial functor F. They can also arise as certain products between
a quantitative model (with branching modelled via the same semiring of quantities, and linear
behaviour described by the functor F) and an NPA (modelling a qualitative property of F-coalgebras).
We build on recent work on semiring-valued measures to define a way to measure the set of paths
through a quantitative branching model which satisfy a qualitative property (captured by an
unambiguous NPA running on F-coalgebras). Our main result shows that the notion of extent of a
QPA (which generalises non-emptiness of an NPA, and is defined as the solution of a nested system
of equations) provides an equivalent characterisation of the measure of the accepting paths through
the QPA. This result makes recently-developed methods for computing nested fixpoints available for
model checking qualitative, linear-time properties against quantitative branching models.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases parity automaton, coalgebra, measure theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.14

Funding Research carried out as part of the Leverhulme Trust Research Project Grant RPG-2020-232.

1 Introduction

When model checking linear-time properties over non-deterministic or probabilistic models,
the standard approach is to formalise the property in question as an automaton running
over infinite words, and to consider the product of this automaton with the model, in order
to answer the questions: Does there exist a path through the model which conforms to a
property automaton? and What is the probability of exhibiting a path which conforms to an
automaton? (see e.g. [1][Sections 4.6 and 28.6], [2]). Generalising this approach, we consider
state-based system models whose transitions carry weights from a partial semiring. Instances
of such systems include non-deterministic systems (with weights from the boolean semiring),
probabilistic systems (with weights from the probabilistic semiring), and resource-aware
systems (with weights from the tropical semiring). Thus, our work can also answer the
following question, using similar automata-based techniques: What is the minimal amount
of resources needed to exhibit a path which conforms to a property automaton?

In addition to a more general notion of branching, our models also allow a more general
notion of path: whereas in existing approaches paths are sequences (of states and transition
labels), with each transition resulting in a single successor state, here individual transitions
can have finitely-many successor states, and thus paths can be tree-shaped. This allows us
to model systems with dynamic structure, as illustrated by the following example:
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The model above (left), with initial state s, has standard transitions (labels b, c) which result
in a single successor state, but also transitions resulting in two successors states (label r), or
zero successor states (label a). One can view this as modelling a probabilistic server which
accepts requests (r transition) or carries out other work (c transition), both with probability
1
2 . Following a request, a new process is created to deal with the request (state t), and the
server itself continues in state s. To model this behaviour, the r transition has two successor
states; these are ordered, as indicated by the labels on the arrows leading to them. Then, an
a-transition models successfully answering a request, while a b-transition models doing other
work instead. A possible execution of this system, where the server repeatedly accepts new
requests and the newly created processes immediately answer them, is pictured above (right).

We use automata over infinite words (similarly to existing work [1, 2]) but also over
infinite trees (given that paths can be tree-shaped), to formalise correctness properties
of system executions. Such properties have a qualitative interpretation over paths, but
also a quantitative interpretation over states in our models. For instance, in the previous
example, one might want to formalise (and verify!) the property that every server request
is eventually answered. While existing approaches typically use Büchi/Rabin automata to
describe ω-regular properties of infinite words [1, 2], here we choose the related formalism of
parity automata for several reasons: (i) it is as expressive as Büchi/Rabin automata over
infinite words, (ii) unlike Büchi automata, they have the full expressive power needed to
capture all regular languages of infinite trees [10, 7], and (iii) their acceptance conditions can
be described using the solutions of nested systems of equations.

In order to uniformly treat a variety of branching types (with transition weights taken
from a semiring) and transition types (linear- or tree-shaped, or a combination), we model
systems as coalgebras; their type incorporates branching behaviour (described by a monad)
and linear behaviour (described by a polynomial endofunctor). We model system executions
also as coalgebras (with no branching), and as a result our automata operate on coalgebras.

The question we are concerned with is: Given a quantitative branching model and a
qualitative property of paths, with the latter formalised as a parity automaton, what is the
degree (e.g. probability/cost) with which the property holds in the quantitative model? We
answer this question in two ways: one which is measure-theoretic and naturally captures the
intuition that we are measuring, in some generalised sense, the accepting runs of a quantitative
automaton (building on results in [4] on semiring-valued measures); and another which is
more amenable to computation (using the notion of extent from [6]). After defining these
two ways of measuring the set of accepting runs of a QPA, our main result establishes their
equivalence. The implications of this result are two-fold. On the one hand, the result formally
confirms that the notion of extent defined in [6] achieves its intended purpose in key example
semirings: it measures the existence of an accepting path in the non-deterministic case; the
probability of exhibiting an accepting path in the probabilistic case (and thus instantiates to
known results in this case); and the minimal cost required to exhibit an accepting path, in
the resource-aware case. On the other hand, since the latter characterisation is in terms of
the solution of a nested system of equations, methods for computing such solutions (including
those recently developed in [11, 3, 12]) become available for model checking qualitative,
linear-time properties against quantitative branching models. In the last part of the paper,
we show how the standard automata-based approach to model checking linear-time properties
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over non-deterministic and probabilistic models [1, 2] generalises to quantitative branching
models. We defer computational aspects to future work, as this requires adapting techniques
in [3] to our more general notion of system of equations.

At the heart of our main result is a characterisation, due to [15], of the accepting paths
of a parity automaton as the solution of a nested system of equations. This allows us to
relate, via a semiring-valued measure, the set of accepting paths of a QPA and its extent
(also defined as the solution of a system of equations). The proof of this result is non-trivial,
partly because semiring-valued measures are not well-behaved w.r.t. intersections.

The paper is structured as follows: Section 2 introduces relevant concepts, including
systems of equations and their solutions, qualitative and quantitative parity automata, and
semiring-valued measures. Section 3 shows the equivalence of two approaches to measuring
accepting runs: via semiring-valued measures and via extents. Next, Section 4 shows how
this result can be used to model-check qualitative, linear-time properties against quantitative
branching models. Section 5 summarises our contributions and outlines future work.

Related Work. [4] considers quantitative, linear-time fixpoint logics interpreted over the
same type of quantitative branching models. Semiring-valued measures are introduced in
op. cit., and used to provide a measure-theoretic semantics for these logics. This is then
proved equivalent to the original semantics for the logics. However, these logics suffer from
limited expressiveness on tree-shaped linear behaviours (they cannot express conjunctions and
arbitrary disjunctions). Here we address this limitation, while also taking a more fundamental
approach to formalising linear-time properties, namely as automata. Beyond the increased
generality, a key difference compared to [4] is that our proofs now exploit a characterisation
of the accepting paths of a QPA as the solution of a nested system of equations. Thus,
by working at the level of automata, the link between the extent-based semantics and the
measure-theoretic semantics becomes conceptually clearer. As added benefit, the move to
automata connects our work to existing algorithmic approaches for solving nested systems of
equations, thereby paving the way for applications in model checking.

Quantitative verification of weighted systems has been considered in a number of other
works, including [8, 9, 14]. Our approach differs from these in that we restrict to qualitative
properties of paths through a quantitative branching model, and we measure to what degree
these hold in such models. One immediate drawback of the increased generality in [8, 9] is
that the meaning of quantitative formulas is conceptually less clear, and is defined separately
for each model type (namely quantitative transition systems and quantitative Markov chains).
The same holds for the model checking algorithms, which are tailored to the underlying
semantic model and not generic. In contrast, our quantitative notion of acceptance has an
intuitive measure-theoretic description, and our model checking approach (computation of
nested extents) is parameterised by the semiring used to model weighted branching.

2 Background

2.1 Nested Systems of Equations
▶ Definition 1. Let L0, . . . , Ln be complete lattices. A nested system of equations E has the
form

x0 =ν f0(x0, . . . , xn)
x1 =µ f1(x0, . . . , xn)
...
xn =η fn(x0, . . . , xn)

 (1)

CSL 2023
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where η is either µ, if n is odd, or ν, if n is even, and where for i ∈ {0, . . . , n}, fi :
L0 × . . .×Ln → Li is a monotone function and the variable xi takes values in the lattice Li.

For ui ∈ Li, we write E[xi := ui] for the system of n− 1 equations obtained by removing the
ith equation and substituting xi by ui in the remaining equations. We write ηi for either ν
or µ, depending on whether i is even or odd. The solution of a system of equations is defined
similarly to [11, 3].

▶ Definition 2. The solution sol(E) of the nested system of equations E in (1) is defined by
induction on the number of equations:

sol() = ()
sol(E) = (sol(E[xn := vn]), vn), where vn = ηn(λx.fn(sol(E[xn := x]), x))

In other words, to solve a nested system of equations with variables x0, . . . , xn, the system
of equations E[xn := x] is solved by viewing x as a parameter, its solution is substituted in the
nth equation, and this equation is then solved to obtain the nth component vn of the solution
of E. The value vn is finally substituted in the parameterised solutions for E[xn := x] to obtain
solutions for the remaining variables. When solving the ith equation, the greatest, respectively
least solution is taken, depending on whether i is even or odd. Given the system of equations
in (1), i ∈ {0, . . . , n} and values vk ∈ Lk for k ∈ {i+ 1, . . . , n}, we write fvi+1,...,vn

i : Li → Li
for the map x 7→ fi(sol(E[xi := x, xi+1 := vi+1, . . . , xn := vn]), x, vi+1, . . . , vn).

Sufficient conditions for the existence and uniqueness of the individual fixpoints required
in the definition of sol(E) are provided by Kleene’s fixpoint theorem.

▶ Theorem 3 (Kleene). Let Op : (L,⊑) → (L,⊑) be a monotone function on a complete
lattice. The (transfinite) ascending chain Opβ(⊥), with β ranging over ordinals, is defined
by: Op0(⊥) = ⊥, Opα+1(⊥) = Op(Opα(⊥)) for any ordinal α, and Opα(⊥) = ⊔β<αOpβ(⊥)
for any limit ordinal α. Then, the least fixpoint of Op is Opγ(⊥) for some ordinal γ. The
greatest fixpoint of Op is characterised dually, via the (transfinite) descending chain Opβ(⊤).

▶ Remark 4. Thm. 3 implies that ηi(fvi+1,...,vn

i ) ⊑ ηi(f
v′

i+1,...,v
′
n

i ) if vi+1 ⊑ v′
i+1, . . . , vn ⊑ v′

n.

2.2 Monads Weighted in Partial Semirings
▶ Definition 5. A partial commutative monoid (p.c.m.) (S,+, 0) is given by a set S together
with a partial operation + : S × S → S and an element 0 ∈ S, such that:

s+ 0 is defined for all s ∈ S and moreover, s+ 0 = s,
(s+t)+u is defined if and only if s+(t+u) is defined, and in that case (s+t)+u = s+(t+u),
whenever s+ t is defined, so is t+ s and moreover, s+ t = t+ s.

A partial commutative semiring is a tuple S := (S,+, 0, •, 1) with (S,+, 0) a p.c.m. and
(S, •, 1) a commutative monoid, with • distributing over sums; that is, for all s, t, u ∈ S,
s•0 = 0, and whenever t+u is defined, then so is s•t+s•u and moreover, s•t+s•u = s•(t+u).

The addition operation of any partial commutative semiring induces a pre-order ⊑ on S:

x ⊑ y if and only if there exists z ∈ S such that x+ z = y (2)

for x, y ∈ S. It then follows from the axioms of a partial commutative semiring that 0 ⊑ s

for all s ∈ S, and that ⊑ is preserved by + and • in each argument (see [5] for details).
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▶ Assumption 6. Similarly to [4], we make the following assumptions:
(S,⊑) is a complete lattice and has the unit 1 of • as top element;
+ preserves joins of increasing countable chains and meets of decreasing countable chains,
in each argument;
• preserves both suprema and infima in each argument; moreover, the following holds for
all Ai ⊆ S with i ∈ ω, whenever

∑
i∈ω

inf Ai is defined:

∑
i∈ω

inf Ai = inf
{ ∑
i∈ω

ai | ai ∈ Ai for i ∈ ω,
∑
i∈ω

ai is defined
}

(3)

The countable (partial) addition operation used in the last condition is defined by
∑
i∈ω

si :=

sup
n∈ω

(s0 + . . . + sn). If S is partial, this countable sum is defined iff all sums s0 + . . . + sn

with n ∈ ω are defined. This definition exploits the fact that s ⊑ s+ t for any s, t ∈ S for
which s+ t is defined, together with the existence of joins of increasing countable chains.

▶ Example 7. As concrete semirings we consider the boolean semiring ({0, 1},∨, 0,∧, 1), the
partial probabilistic semiring ([0, 1],+, 0, ∗, 1), the tropical semiring N∞ = (N∞,min,∞,+, 0)
(with N∞ = N ∪ {∞}) and its bounded variants SB = ([0, B] ∪ {∞},min,∞,+B , 0) with
B ∈ N, where for m,n ∈ [0, B] ∪ {∞} we have

m+B n =
{
m+ n, if m+ n ≤ B

∞, otherwise
.

The associated orders are ≤ on {0, 1} and [0, 1], and ≥ on N∞ and [0, B] ∪ {∞}. As shown
in [4], all these orders satisfy Assumption 6. Note that we allow the semiring (S,+, 0, •, 1) to
be partial in order to also cover probabilistic branching.

▶ Remark 8. When the semiring (S,+, 0, •, 1) is partial, we will also consider the total
semiring (S′,⊕, 0, •, 1), where S′ = S and ⊕ is given by

s⊕ t =
{
s+ t, if s+ t is defined
1, otherwise

.

It is easy to check that this semiring satisfies Assumption 6 whenever (S,+, 0, •, 1) does. In
particular, the induced order is not changed when moving from S to S′.

▶ Example 9. The total semiring ([0, 1],⊕, 0, ∗, 1) associated to the probabilistic semiring
has ⊕ : [0, 1] × [0, 1] → [0, 1] given by addition truncated above at 1.

We use monads weighted in partial semirings to model systems with weighted branching.
For a partial semiring satisfying Assumption 6, the monad (TS , η,⊔) is given by

TS(X) = {φ : X → S | supp(φ) is finite ,
∑

x∈supp(φ)
φ(x) is defined } ,

ηX : X → TSX, ηX(x)(y) =
{

1 if y = x

0 otherwise
,

⊔X : TS(TSX) → TSX, ⊔X(Φ)(x) =
∑

φ∈supp(Φ)
Φ(φ) • φ(x) for Φ ∈ TS(TSX) ⊆ S(SX )

where supp(φ) = {x ∈ X | φ(x) ̸= 0} is the support of φ. For a function f : X → Y we put

TS(f)(
∑
i∈I

cixi) =
∑
i∈I

cif(xi)

CSL 2023
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where we use the formal sum notation
∑
i∈I cixi, with I finite, to denote the element of

TS(X) mapping x ∈ X to (
∑
j∈Jx

cj) ∈ S with Jx = {i | xi = x}, and all x ̸∈ {xi | i ∈ I} to
0 ∈ S. Our choice of notation for the monad multiplication avoids unnecessary overloading
of the symbol µ, which we use to denote both a least fixpoint and a measure.

2.3 Coalgebras with Branching and their Linear Behaviour
Recall that a coalgebra for a functor G (cf. [13]) is a pair (C, γ) with C a set of states and
γ : C → GC a transition map. A pointed coalgebra is a tuple (C, γ, c) with (C, γ) a coalgebra
and c ∈ C a designated state.

We use polynomial functors F : Set → Set of the form FX =
∐
i∈I X

ji , with ji ∈ ω for
i ∈ I, to describe the structure of individual transitions in a system with branching. We view
I as a set of transition labels, with ji the arity of transitions labelled by i. Our chosen shape
for F allows transitions with finitely-many successors. For i ∈ I, we write ιi : Idji ⇒ F (with
Id : Set → Set the identity functor) for the canonical injection.

We model quantitative branching systems as pointed (TS ◦F )-coalgebras, with (S,+, 0, •, 1)

as before and F as above. Such coalgebras have weighted transitions c
w,i
// (c1, . . . , cji

) with
w ∈ S the transition weight, i ∈ I the transition label, and c1, . . . , cji the successor states.
In spite of this potential branching within individual transitions, we view the functor F as
defining a general notion of linear behaviour. (The word linear here refers to time!) The
elements of the final F -coalgebra thus provide a natural notion of maximal (potentially
infinite) trace for our models. The branching in our systems is modelled via the monad
TS . Our models thus distinguish between deadlock (captured by states with no outgoing
transitions) and successful termination (captured by transitions labelled by i ∈ I with ji = 0).

▶ Example 10. Our model in Section 1 can be viewed as a (TS ◦ F )-coalgebra, with S the
probabilistic semiring and F : Set → Set given by FX = ({r}×X×X)+({b, c}×X)+{a} ≃
(X ×X) +X +X + 1. Thus, r-transitions have two successors, b/c-transitions have a single
successor, and a-transitions are terminating. In tis case, maximal traces (elements of the
final F -coalgebra) can be presented as infinite trees whose nodes are labelled by transitions
and have 2, 1 or 0 children, depending on whether they are labelled by r, b/c or a.

Notions of path and path fragment through a coalgebra with branching are defined below.
Informally, a path from a state selects a single transition out of the transitions from that state
which have non-zero weight, and continues making similar choices from all successor states
of the chosen transition. Thus, a path will typically contain an infinite number of transitions
(unless it is terminating). Since paths record the states visited and the transitions taken,
they formally correspond to elements of the final coalgebra for the functor C × F . Path
fragments are similar, except that they contain a finite number of transitions. Technically
this means that path fragments correspond to elements of an initial algebra. In order to
streamline our presentation we will work with concrete representations of paths and path
fragments using trees. We will not formally define trees, but fix some useful notation.

▶ Notation 11. We write ξ = c(i(ξ1, . . . , ξji
)) for the C × I-labelled ranked tree whose root

is labelled with (c, i) ∈ C × I and whose immediate subtrees are the trees ξ1, . . . , ξji where
ji is the arity of the transition label i. Furthermore we write ξ ⇝ ξ′ if ξ′ = ξj for some
j ∈ {1, . . . , ji}, i.e., ⇝ denotes the immediate subtree relation.

▶ Definition 12. Given a set C, a (C-)path is a C × I-labelled ranked tree. The collection
of all C-paths will be denoted by ZC . Let (C, γ) be a (TS ◦ F )-coalgebra. A path ξ ∈ ZC is a
path from c ∈ C in (C, γ) if ξ has the form ξ = c(i(ξ1, . . . , ξji

)) where for k ∈ {1, . . . , ji} we
have that ξk is a path from some ck ∈ C in (C, γ) and where γ(c)(ιi(c1, . . . , cji)) ̸= 0.
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To also define path fragments (to be thought of as partial paths, necessarily of finite
depth) as labelled trees, we use an additional label ∗ ̸∈ I, which we formally treat as a
new transition label with arity 0, although its purpose is to indicate the “ends” of a path
fragment.

▶ Definition 13. Let (C, γ) be a (TS ◦F )-coalgebra. A path fragment from c ∈ C in (C, γ) is
a C× (I ∪ {∗})-labelled tree τ = c(i(τ1, . . . , τji

)), such that only the leaves of τ can be labelled
by ∗, and where for all k ∈ {1, . . . , ji} we have that τk is a path fragment from ck ∈ C in
(C, γ) with γ(c)(ιi(c1, . . . , cji)) ̸= 0. Given a path fragment q, we will refer to the leaves of τ
the form c(∗) as holes.

Equivalently, c(∗) is a path fragment from c, and if τk is a path fragment from ck ∈ C for all
k ∈ {1, . . . , ji} and γ(c)(ιi(c1, . . . , cji

)) ̸= 0, then c(i(τ1, . . . , τji
)) is a path fragment from c.

▶ Definition 14. A path fragment τ is a prefix of a path ξ if ξ is obtained by replacing each
leaf of τ of the form c(∗) by a path from c. We write pref(ξ) for the set of prefixes of ξ.

The set of all paths from c ∈ C in (C, γ) is denoted Pathsγc (or simply Pathsc when γ is
clear from the context). For a path fragment τ with holes c1(∗), . . . , cn(∗), and sets of paths
Ai ⊆ Pathsci

for i ∈ {1, . . . , n}, the set of paths τ [A1/c1, . . . , An/cn] consists of all paths
from c obtained by continuing τ with a path in Ai from each hole ci(∗), for i ∈ {1, . . . , n}.
▶ Remark 15. Our definitions of paths and a path fragments are equivalent to those in [4],
where paths (respectively path fragments) are defined as elements of the final C×F -coalgebra
(ZC , ζC) (the initial C × ({∗} + F )-algebra (ΦC , αC)). In this representation we have

ζc(ξ) = (c, ιi(ξ1, . . . , ξji)) if ξ = c(i(ξ1, . . . , ξji)).

In what follows, we will use the two definitions interchangeably.

▶ Example 16. Below are two paths from s in the (TS ◦ F )-coalgebra from Example 10,
depicted as labelled trees:

s
c // s

c // . . . s
r 1st //

2nd
��

s
r 1st //

2nd
��

s
r
. . .

t
a // t

a //

The second path models an execution where requests arrive at each step and are successfully
answered in the next step. The path ξ is of the form ξ = s(r(ξ, ξ′)) with ξ′ = t(a()).

A key notion for the semantics of parity automata is that of an accepting path. In our
setting, where paths are tree-shaped, a path is accepting if all infinite traces through the
path satisfy the parity condition. This is formalised in the next definition.

▶ Definition 17. Let C be a set and let Ω : C → ω be a parity function with finite range.
Given a path ξ ∈ ZC we call an infinite sequence ξ1ξ2ξ3 · · · ∈ (ZC)ω a trace through ξ if
ξ = ξ1 and for all i ∈ N we have ξi ⇝ ξi+1. We call a trace ξ1ξ2ξ3 · · · ∈ (ZC)ω good if the
maximal parity that occurs infinitely often in Ω(π1(ξ1)) Ω(π1(ξ2)) Ω(π1(ξ3)) . . . is even. A
path ξ ∈ ZC is said to be accepting if all traces through ξ are good.

▶ Example 18. Consider again the coalgebra of Example 10, and let Ω(s) = 0 and Ω(t) = 1.
Then, both paths in Example 16 are accepting. On the other hand, the path ξ1 ∈ ZC given
by ξ1 = s(r(ξ2, ξ

′
1)) with ξ2 = s(r(ξ1, ξ

′
2)), ξ′

1 = t(b(ξ′
1)) and ξ′

2 = t(a()) is not accepting,
since e.g. the trace ξ1ξ

′
1ξ

′
1 . . . is not good. Its corresponding labelled tree is given below:

s
r 1st //

2nd
��

s
r 1st //

2nd
��

s
r
. . .

t
b // t

b // . . . t
a //

CSL 2023
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2.4 Qualitative Parity Automata
We use non-deterministic parity F -automata to describe qualitative properties of paths.

▶ Definition 19. A non-deterministic parity F -automaton (NPA) (A,α, aI ,Ω) is given by a
pointed Pf ◦ F -coalgebra (A,α, aI) (with Pf : Set → Set the finite powerset functor) together
with a function Ω : A → ω with finite range, called a parity map.

▶ Example 20. Let F : Set → Set be as in Example 10. The following NPA, with initial state
0 and state parities identical to the state names, captures the property that each request
initiates a simple process (second successor of the r-transition) which eventually answers the
request. Here, a simple process is one whose behaviour does not involve any r-transitions.
This constraint is captured by not allowing r-transitions from state 1 of the automaton.

0b,c ::

a
��

r

1st

YY
2nd // 1

a
��

b,cdd

The choice of parities ensures that no infinite sequence of b and c transitions is allowed from
the second successor of any r-transition, on any accepting run (see below) of this automaton.

A run of an NPA on a pointed F -coalgebra records the coalgebra states which the
automaton reads, the automaton states visited and the transitions taken.

▶ Definition 21. A run of an NPA (A,α, aI ,Ω) on a pointed F -coalgebra (B, β, bI) is
a path ξ ∈ ZB×A of the form ξ = (bI , aI)(i(ξ1, . . . , ξji

)) such that for each ξ′ ∈ ZB×A
reachable from ξ, with ξ′ = (b, a)(k((b1, a1)(i1(ξ1

1 , . . . , ξ
1
li1

)), . . . , (bj , aj)(ij(ξj1, . . . , ξ
j
lij

)))) we
have β(b) = ιk(b1, . . . , bj) and α(a) ∋ ιk(a1, . . . , aj) where j = jk is the arity of k.

A run is accepting if it is accepting in the sense of Def. 17, w.r.t. the parity function
Ω′ : B ×A → ω given by Ω′(b, a) := Ω(a). The automaton (A,α, aI ,Ω) accepts the pointed
F -coalgebra (B, β, bI) if there exists an accepting run of (A,α, aI ,Ω) on (B, β, bI).

▶ Example 22. The following are accepting runs of the automaton in Example 20 on the
paths in Example 16 (viewed as F -coalgebras):

(s, 0) c // (s, 0) c // . . . (s, 0) r 1st //

2nd
��

(s, 0) r 1st //

2nd
��

(s, 0) r
. . .

(t, 1) a // (t, 1) a //

On the other hand, the following run is not accepting:

(s, 0) r 1st //

2nd
��

(s, 0) r 1st //

2nd
��

(s, 0) r
. . .

(t, 1) b // (t, 1) b // . . . (t, 1) a //

Unambiguous automata will play an important role in what follows.

▶ Definition 23 (Unambiguous parity F -automaton). A non-deterministic parity F -automaton
(A,α, aI ,Ω) is called unambiguous if for each pointed F -coalgebra (B, β, bI), there exists at
most one accepting run of (A,α, aI ,Ω) on (B, β, bI).

Since paths in a (TS ◦ F )-coalgebra (C, γ) carry F -coalgebra structure (see Remark 15),
one can consider (accepting) runs of a non-deterministic parity F -automaton on them. The
next two sub-sections describe two different ways of measuring the set of paths of a pointed
(TS ◦ F )-coalgebra which are accepted by a given NPA. Before that, we show how non-
deterministic and probabilistic transition systems can be recovered in our framework, and
how the associated notion of NPA relates to the standard notion of Büchi automaton.
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▶ Remark 24. Let At denote a finite set of atomic propositions. Take F : Set → Set be given
by F = P(At) × Id ≃

∐
A⊆At

Id. Then, non-deterministic (probabilistic) transition systems can

be viewed as (TS ◦ F )-coalgebras, with S the boolean (resp. probabilistic) semiring: such
transition systems are in one-to-one correspondence with P(At) × TS-coalgebras, which can
be turned into TS ◦ (P(At) × Id)-coalgebras by post-composing the coalgebra maps with
the strength map of TS . Moreover, Büchi automata over the alphabet P(At) coincide with
non-deterministic parity F -automata with ran(Ω) = {1, 2}.

2.5 Quantitative Parity Automata and their Extents
The notion of ν-extent, defined next, generalises non-emptiness in non-deterministic coalgebras
(existence of a maximal path) to coalgebras with quantitative branching. It assigns, to each
coalgebra state, a value in S which “measures” the maximal (completed) paths from it.

▶ Definition 25 (ν-extent, [6]). The ν-extent of a (TS ◦ F )-coalgebra (C, γ) is the greatest
fixpoint of the operator on S-valued predicates on C, which takes p : C → S to the composition

C
γ
// TSFC

TSFp // TSFS
TS(•F )

// TSS = TSTS1 ⊔1 // TS1 = S

where •F : FS → S is given by •F (ιi(s1, . . . , sji
)) = s1 • . . . • sji

for i ∈ I. We write
extνγ : C → S for the ν-extent of (C, γ).

The operator in Definition 25 expresses that the ν-extent of a state is the weighted sum of
the ν-extents of its (structured) successors, where in the case of a structured successor (tuple
of states resulting from an individual transition), the ν-extents of the states in question are
multiplied. We will later use the ν-extent to measure certain sets of paths from a given state
of a (TS ◦ F )-coalgebra (C, γ). In particular, the set of all paths from c ∈ C in (C, γ) will
have measure extνγ(c). This is further motivated by the next example.

▶ Example 26. When S = ({0, 1},∨, 0,∧, 1), the ν-extent of a state c in a (TS ◦F )-coalgebra
(C, γ) is 1 iff there exists a maximal path from c in (C, γ). When S = ([0, 1],+, 0, ∗, 1),
the ν-extent of a state measures the probability of not deadlocking; in particular, the ν-
extent is always 1 provided that all states of (C, γ) have branching governed by a probability
distribution. Finally, when S = (N∞,min,∞,+, 0), the ν-extent of a state c gives the minimal
cost of a maximal path from c in (C, γ).

▶ Example 27. Consider the (TS ◦ F )-coalgebra (C, γ) from Example 10, with C = {s, t}.
Its ν-extent extνγ : C → [0, 1] is the greatest solution of the following system of equations
(one variable for each state, with x being used for state s and y being used for state t):[

x = 1
2 ∗ x+ 1

2 ∗ x ∗ y
y = 1

4 ∗ y + 3
4

]
This gives extνγ(s) = extνγ(t) = 1. Replacing the probabilistic semiring with the tropical one
and assigning weight 0 (the top element of (S,⊑)) to r and a transitions, and weight 1 to b
and c transitions, results in a ν-extent of 0 for both s and t.

Quantitative parity automata generalise NPAs by allowing weighted branching.

▶ Definition 28 (Quantitative parity automaton, [6]). A parity (TS , F )-automaton, or simply
quantitative parity automaton (QPA), (D, δ, dI ,Ω) is given by a pointed TS ◦ F -coalgebra
(D, δ, dI) together with a parity map Ω : D → ω.
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We will obtain QPAs as products between an unambiguous NPA, representing a qualitative
property of pointed F -coalgebras, and a quantitative model. We will then show that such
products can be used to measure the degree with which the given property is satisfied in the
model (thereby generalising the automata-based approach to model checking non-deterministic
and probabilistic systems). This will amount to determining the nested extent of the product
automaton, to be defined shortly. This generalises the ν-extent of a (TS ◦ F )-coalgebra by
also taking into account the state parities. We first define the product automaton.

▶ Definition 29 (Product automaton). Let (S,+, 0, •, 1) be a total semiring satisfying As-
sumption 6. Also, let (A,α, aI ,Ω) be a NPA and let (C, γ, cI) be a pointed (TS ◦F )-coalgebra.
The product of (C, γ, cI) and (A,α, aI ,Ω) is the QPA with carrier C ×A, parity map given
by Ω(c, a) = Ω(a) for (c, a) ∈ C ×A, and transition map prodγ,α given by:

C ×A
γ×α
// TSFC × PfFA

dF C,F A
// TS(FC × FA)

⟨Fπ1,Fπ2⟩∗
// TSF (C ×A)

where for X,Y ∈ Set, the map dX,Y : TSX × PfY → TS(X × Y ) is given by:

TSX × PfY
idTS X ×eY

// TSX × TSY
dstX,Y

// TS(X × Y ) (4)

with
e : Pf ⇒ TS the embedding of Pf into TS, given by

eY (X)(y) =
{

1, if y ∈ X

0, otherwise
, for X ∈ PfY,

dstX,Y : TSX × TSY ⇒ TS(X × Y ) the double strength of TS, given by

dstX,Y (φ,ψ) =
∑

x∈supp(φ),y∈supp(ψ)

(φ(x) • ψ(y))(x, y), for φ ∈ TSX and ψ ∈ TSY,

and where ⟨Fπ1, Fπ2⟩∗ is pre-composition with ⟨Fπ1, Fπ2⟩ : F (C ×A) → FC × FA.

We immediately note that the shape of the functor F makes ⟨Fπ1, Fπ2⟩ injective, and as a
result the transition map of the product automaton has finite support.

Transitions in the product automaton thus arise from matching transitions in the (TS ◦F )-
coalgebra and the NPA, with weights inherited from the coalgebra and parities inherited from
the NPA; in particular, a coalgebra transition may match more than one NPA transition. The
assumption in Definition 29 that (S,+, 0, •, 1) is total ensures that the natural transformation
e is well defined. We will explain in Section 4 why this assumption is harmless.

▶ Example 30. The product of the coalgebra in Example 10 with the NPA in Example 20 is:

(s, 0)
1
2 ,r

1
2 ,c

��
1st
{{

2nd // (t, 1)

1
4 ,b

��

3
4 ,a

//

The next lemma characterises paths in a (TS ◦ F )-coalgebra accepted by an unambiguous
NPA using the product automaton. It is proved by simply spelling out the relevant definitions.



C. Cîrstea and C. Kupke 14:11

▶ Lemma 31. Assume (S,+, 0, •, 1) is a total semiring. Let (A,α, aI ,Ω) be an unambiguous
parity automaton and (C, γ, cI) be a pointed (TS ◦ F )-coalgebra. There is a one-to-one
correspondence between accepting paths from (cI , aI) in the product of (A,α, aI ,Ω) and
(C, γ, cI), and paths from cI in (C, γ) accepted by (A,α, aI ,Ω).

As announced, the notion of nested extent of a QPA generalises the ν-extent of a (TS ◦F )-
coalgebra by taking into account the different parities associated to automaton states.

▶ Definition 32 (Nested extent, [6]). Let (D, δ, dI ,Ω) be a quantitative parity automaton
with ran(Ω) = {0, . . . , n}, let Dk = {d ∈ D | Ω(d) = k}, and let δk = δ ◦ ιk : Dk → TSFD
denote the restriction of δ to Dk (k ∈ ran(Ω)). The extent extδ = [extδ,0, . . . , extδ,n] : D → S

of (D, δ,Ω) is the solution of the following nested system of equations:
x0 =ν ⊔1 ◦ TS(•F ) ◦ TSF [x0, . . . , xn] ◦ δ0
x1 =µ ⊔1 ◦ TS(•F ) ◦ TSF [x0, . . . , xn] ◦ δ1

...
xn =η ⊔1 ◦ TS(•F ) ◦ TSF [x0, . . . , xn] ◦ δn

 (5)

with η = µ (= ν) if n is odd (resp. even), variables xk (k ∈ ran(Ω)) taking values in the poset
(SDk ,⊑) (and therefore [x0, . . . , xn] ∈ SD), and the rhs of the equation for xk pictured below:

Dk
δk // TSFD

TSF [x0,...,xn]
// TSFS

TS(•F )
// TSS = TSTS1 ⊔1 // TS1 = S

We write Opδ,i : SD0 × . . .× SDn → SDi for the operator used in the rhs of the ith equation.

The existence and uniqueness of a solution for (5) is guaranteed by Kleene’s theorem (Thm. 3).

▶ Example 33. The nested extent of the product automaton in Example 30 is the solution
of the following nested system of equations (where variables x and y are used for the nested
extents of states (s, 0), respectively (t, 1)):[

x =ν
1
2 ∗ x+ 1

2 ∗ x ∗ y
y =µ

1
4 ∗ y + 3

4

]
This still gives a nested extent of 1 in each state, essentially because the probability of
infinitely-many b-transitions from state (t, 1) is 0.

2.6 Semiring-Valued Measures
We will use semiring-valued measures [4] to measure certain sets of paths from a state of a
(TS ◦ F )-coalgebra. In particular, we will be able to measure the set of paths accepted by an
NPA. Key definitions and results regarding semiring-valued measures are summarised below.

▶ Definition 34 ([4]). An S-valued measure on a σ-algebra A is a function µ : A → S s.t.
(i) µ(∅) = 0, and (ii) if Ai ∈ A for i ∈ ω are pairwise disjoint, then

∑
i∈ω

µ(Ai) is defined and

moreover, µ(
⋃
i∈ω

Ai) =
∑
i∈ω

µ(Ai).

▶ Proposition 35 ([4]). Let µ : R → S be a measure on a field of sets. Then, µ extends to a
measure on the σ-algebra generated by R.

The proof of the above result defines the resulting measure as

µ∗(A) = inf{
∑
n∈ω

µ(En) | (En ∈ R)n∈ω pairwise disjoint, A ⊆
⋃
n∈ω

En}

As in [4], we take R to be the field generated by the so-called cylinder sets.
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▶ Definition 36 ([4]). Let (C, γ) be a (TS ◦ F )-coalgebra, and let τ ∈ ΦC be a path fragment
from c in (C, γ). Its associated cylinder set is given by Cyl(τ) = {ξ ∈ Pathsc | τ ∈ pref(ξ)}.
A cylinder set Cyl(τ) is said to cover a path ξ ∈ ZC when τ is a prefix of ξ. For c ∈ C, we
let Σc := { Cyl(τ) | τ is a path fragment from c in (C, γ) }.

Now given a (TS ◦ F )-coalgebra (C, γ) and c ∈ C, it is shown in [4] that finite unions of
pairwise-disjoint elements of Σc form a field. Then, an S-valued measure on the generated σ-
algebra, denoted by Mc, can be defined from an S-valued measure on Σc, using Proposition 35.
The natural S-valued measure to consider on cylinder sets is µγ : Σc → S given by:
1. µγ(∅) = 0,
2. For τ a path fragment from c ∈ C, µγ(Cyl(τ)) is defined by structural induction on τ :

a. If τ = c(∗), then µγ(Cyl(τ)) = extνγ(c),
b. If τ = c(i(τ1, . . . , τji

)) for some i ∈ I and for path fragments τk from ck ∈ C for
k ∈ {1, . . . , ji}, then µγ(Cyl(τ)) = γ(c)(ιi(c1, . . . , cji

)) • µγ(Cyl(τ1)) • . . . • µγ(Cyl(τji
)).

Note that the measure of the set Pathsc of all paths from c is not 1 (the top element in S)
as one might expect, but extνγ(c). This is because we consider maximal (completed) paths
only, and assigning measure 1 to Pathsc could result in assigning measure 1 to an empty set
of paths (when there are no completed paths from c, e.g. because c is a deadlock state).

The above µγ : Σc → S induces an S-valued measure on the ring generated by Σc, given
by µγ(

⋃
i∈{1,...,n}

Ci) =
∑

i∈{1,...,n}
µγ(Ci) for each pairwise-disjoint family (Ci)i∈{1,...,n} with

Ci ∈ Σc. The measure µγ : Mc → S arising from Proposition 35 is then given by

µγ(A) = inf{
∑
n∈ω

µγ(Cn) | (Cn ∈ Σc)n∈ω pairwise disjoint, A ⊆
⋃
n∈ω

Cn} (6)

▶ Example 37. When S = ({0, 1},∨, 0,∧, 1), µγ(A) = 0 iff A = ∅. When S =
([0, 1],+, 0, ∗, 1), and if only probability distributions are used in γ, µγ(A) gives the likelihood
of exhibiting a path in A. When S = (N∞,min,∞,+, 0), µγ(A) gives the minimal cost of a
path in A.

3 Coincidence of Extents with the Measure-Theoretic Semantics

Throughout this section we fix a quantitative parity automaton (C, γ, cI ,Ω). We will use
the measures µγ : Mc → S with c ∈ C to link a characterisation of the accepting paths of
(C, γ,Ω) (Proposition 39 below) with the definition of extent (Definition 32), thereby proving
the equivalence of two different ways of measuring the set of accepting paths of a QPA.

The next result shows that extents are preserved by parity-preserving (TS ◦ F )-coalgebra
homomorphisms.

▶ Proposition 38. Let (C, γ,Ω) and (D, δ,Ω) be two quantitative parity automata and let
f : (C, γ,Ω) → (D, δ,Ω) be a (TS ◦ F )-coalgebra homomorphism which preserves parities;
that is, Ω(f(c)) = Ω(c) for c ∈ C. Then, extγ(c) = extδ(f(c)) for all c ∈ C.

To relate the extent of (C, γ,Ω) with the set of accepting paths of (C, γ,Ω), we characterise
the accepting paths of a QPA as the solution of a nested system of equations. For i ∈ ran(Ω),
we let Pathsi = {ξ ∈ ZC | ∃c ∈ C. ξ ∈ Pathsc and Ω(c) = i}; that is, Pathsi contains all
paths in (C, γ) whose initial state has parity i. The next result is a reformulation of [15,
Lemma 4.4]; its proof mirrors that in loc. cit. It is irrelevant that transitions carry weights.
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▶ Proposition 39. The accepting paths of a QPA (C, γ,Ω) are the solution of the following
nested system of equations, with variables Yi taking values in the lattice P(Pathsi):

Y0 =ν Op0(Y0, . . . , Yn)
Y1 =µ Op1(Y0, . . . , Yn)

...
Yn =η Opn(Y0, . . . , Yn)

 (7)

where for k ∈ ran(Ω), Opk : P(Paths0) × . . .× P(Pathsn) → P(Pathsk) is given by

Opk((Yi)i∈ran(Ω)) = { ξ ∈ Pathsc | ξ = c(i(ξ1, . . . , ξji)) for some c ∈ Ck,

i ∈ I and ξl ∈ YΩ(π1(ζC (ξl))) for l ∈ {1, . . . , ji} }

The idea is that the kth component of the solution collects all accepting paths from states
with parity k. Now while the domain of the operators Opk : P(Paths0) × . . .× P(Pathsn) →
P(Pathsk) with i ∈ ran(Ω) also includes tuples (P0, . . . , Pn) with Pk ∩ Pathsc not measurable
for some k ∈ ran(Ω) and c ∈ Ck, we will show that only tuples (P0, . . . , Pn) with Pk ∩ Pathsc
measurable for k ∈ ran(Ω) and c ∈ Ck are involved in the construction of the solution of this
system of equations, and the solution itself is measurable in the sense of Definition 40 below.

▶ Definition 40. For k ∈ ran(Ω), we call a set of paths P ⊆ Pathsk measurable if P∩Pathsc ∈
Mc for all c ∈ Ck. We write Mk := {P ⊆ Pathsk | P is measurable }, for k ∈ ran(Ω).

The next result shows that the operators in Proposition 39 restrict to measurable sets
and moreover, the solution of the equation system (7) itself consists of measurable sets.

▶ Proposition 41. Let E′ be the equation system (7). Then, the following hold:
1. For i ∈ ran(Ω) and Pk ∈ Mk for k ∈ {i+ 1, . . . , n}, the operator OpPi+1,...,Pn

i : Pathsi →
Pathsi restricts to an operator on Mi.

2. E′ restricts to an equation system with variables taking values in Mi, whose solution
coincides with the solution of E′.

Proof. For i ∈ ran(Ω), P(Pathsi) is a complete lattice. Also, Mi ⊆ P(Pathsi) is a σ-algebra,
with countable directed unions / co-directed intersections computed component-wise – recall
that each P ∈ Mi is a disjoint union of sets Pc ∈ Mc with c ∈ Ci. Then, an easy induction
on i shows that, if Pk ∈ Mk for k ∈ {i+ 1, . . . , n}, then OpPi+1,...,Pn

i restricts to an operator
on Mi – this is because the least/greatest fixpoints required in the definition of OpPi+1,...,Pn

i

are constructed by successively taking limits of ω-chains/ωop-chains of elements of Mi

(see Theorem 3), and the Mis are closed under countable directed unions / co-directed
intersections. As a result, E′ restricts to an equation system with variables taking values
in Mi, with i ∈ ran(Ω). Moreover, the construction of the solution is the same whether
performed in Mi or in P(Pathsi), with i ∈ ran(Ω). This concludes the proof. ◀

We are now ready to state our main result.

▶ Theorem 42. For a quantitative parity automaton (C, γ,Ω) and c ∈ C, we have

extγ(c) = µγ({ ξ ∈ Pathsc | ξ accepting }).

Proof. By Assumption 6, proving the above equality can be reduced to proving two inequal-
ities. These follow from Lemmas 43 and 46, respectively. ◀
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▶ Lemma 43. For a quantitative parity automaton (C, γ,Ω) and c ∈ C, we have

µγ({ ξ ∈ Pathsc | ξ accepting }) ⊑ extγ(c).

Proof. Consider the equation system E in (5), and the restriction of the equation system
E′ in (7) to measurable sets of paths (see Proposition 41). The operators OpPi+1,...,Pn

i and
Opei+1,...,en

γ,i used to define sol(E) and sol(E′) are given by:

OpPi+1,...,Pn

i (Y ) = Opi(sol(E[Yi := Y, Yi+1 := Pi+1, . . . , Yn := Pn]), Y, Pi+1, . . . , Pn)
Opei+1,...,en

γ,i (x) = Opγ,i(sol(E′[xi := x, xi+1 := ei+1, . . . , xn := en]), x, ei+1, . . . , en)

We prove the following combined statement by induction on i ∈ ran(Ω):
1. Given Pj ∈ Mj and ej : Cj → S such that µγ(Pj ∩ Pathsc) ⊑ ej(c) for c ∈ Cj , for

j ∈ {i+ 1, . . . , n}, we have

Mi

⊒µγ
��

OpPi+1,...,Pn

i //Mi

µγ
��

SCi

Opei+1,...,en

γ,i

// SCi

(8)

Here, by slightly abusing notation, we write µγ : Mi → SCi for the function taking Pi to
the S-valued predicate ei : Ci → S given by ei(c) = µγ(Pi ∩ Pathsc) for c ∈ Ci.

2. µγ(ηi(OpPi+1,...,Pn

i )) ⊑ ηi(Opei+1,...,en

γ,i ), whenever Pj ∈ Mj and ej : Cj → S are as above,
for j ∈ {i+ 1, . . . , n}.

Since for i ∈ ran(Ω), any Pi ∈ Mi is of the form Pi =
⋃
c∈Ci

Pi,c, with Pi,c = Pi ∩ Pathsc for

c ∈ Ci, it suffices to show that (8) holds when restricted to each Mc with c ∈ Ci.
For i = 0, the inequality (8) follows from

µγ(OpP1,...,Pn

0 (P0,c)) = Opµγ (P1),...,µγ (Pn)
γ,0 (µγ(P0,c)) ⊑ Ope1,...,en

γ,0 (µγ(P0,c))

for P0 ∈ M0 and c ∈ C0. In the above, the equality follows from [4, Proposition 5.12],
after noting that OpP1,...,Pn

0 (P0,c) can be written as a finite union of sets of the form

{ ξ ∈ Pathsc | ζC(ξ) = (c, ιi(ξ1, . . . , ξji)) with ξi ∈ PΩ(π1(ζC(ξi)) for i ∈ {1, . . . , ji} }

with i ∈ I. On the other hand, the inequality above follows by Remark 4.
Now let Pj ∈ Mj and ej : Cj → S be s.t. µγ(Pj ∩ Pathsc) ⊑ ej(c) for c ∈ Cj and
j ∈ {1, . . . , n}. Also, let P0 = ν0(OpP1,...,Pn

0 ) and e0 = ν0(Ope1,...,en

γ,0 ). We show that
µγ(P0) ⊑ e0. We have

Ope1,...,en

γ,0 (µγ(P0))
( by (8) )

⊒ µγ(OpP1,...,Pn

0 (P0))
(P0 is a fixpoint of OpP1,...,Pn

0 )
= µγ(P0)

and therefore µγ(P0) is a post-fixpoint of Ope1,...,en

γ,0 . Now since e0 is the greatest post-
fixpoint of Ope1,...,en

γ,0 , we immediately obtain µγ(P0) ⊑ e0.
Now assume that the combined statement holds for all j < i, with 0 < i ≤ n. To show
that it holds for i, we proceed as in the base case. The inequality (8) follows again using [4,
Proposition 5.12], Remark 4, and the induction hypothesis (namely µγ(ηj(OpPj+1,...,Pn

j )) ⊑
ηj(Opej+1,...,en

γ,j ) for 0 ≤ j < i). To show that µγ(ηi(OpPi+1,...,Pn

i )) ⊑ ηi(Opei+1,...,en

γ,i )
whenever Pj ∈ Mj and ej : Cj → S are such that µγ(Pj ∩ Pathsc) ⊑ ej(c) for c ∈ Cj and
j ∈ {i+ 1, . . . , n}, we distinguish two sub-cases.
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i is even. In this case the proof is similar to the base case.
i is odd. We consider the ordinal-indexed sequence used to obtain the least fixpoint Pi
of OpPi+1,...,Pn

i . Induction on ordinals together with (8) and the fact that µγ(
⋃
i∈ω

Ai) =

supi∈ω µγ(Ai) for any increasing chain A0 ⊆ A1 ⊆ . . . can be used to show that
µγ((OpPi+1,...,Pn

i )α(∅)) ⊑ (Opµγ (Pi+1),...,µγ (Pn)
γ,i )α(0):

∗ For α = 0, µγ(∅) = 0 ⊑ 0.
∗ For α = β + 1, assuming µγ((OpPi+1,...,Pn

i )β(∅)) ⊑ (Opµγ (Pi+1),...,µγ (Pn)
γ,i )β(0), we

have
µγ((OpPi+1,...,Pn

i )β+1(∅))
( by (8) )

⊑ (Opµγ (Pi+1),...,µγ (Pn)
γ,i )(µγ((OpPi+1,...,Pn

i )β(∅))
(I.H.)

⊑ (Opµγ (Pi+1),...,µγ (Pn)
γ,i )β+1(0)

∗ For α a limit ordinal, we have
µγ((OpPi+1,...,Pn

i )α(∅)) = sup
β<α

µγ((OpPi+1,...,Pn

i )β(∅))

(I.H.)

⊑ sup
β<α

(Opµγ (Pi+1),...,µγ (Pn)
γ,i )β(∅))

(Remark 4)

⊑ sup
β<α

(Opei+1,...,en

γ,i )β(∅))

The equality above uses that (OpPi+1,...,Pn

i )α(∅) is the union of an increasing count-
able chain.

This concludes the proof of µγ({ ξ ∈ Pathsc | ξ accepting }) ⊑ extγ(c) for c ∈ C. ◀

We note in passing that, although the inequality (8) can be turned into an equality (by
strengthening the relationship between the Pjs and the ejs), this equality can not be used to
prove the inequality extγ(c) ⊑ µγ({ ξ ∈ Pathsc | ξ accepting }) in a similar way (by following
the construction of the solutions of the two operators involved), since µγ does not behave
well w.r.t. countable intersections (see [4, Example 5.10]).

We now turn to proving the second inequality. For this, we will use the so-called unfolding
of a pointed (TS ◦ F )-coalgebra.

▶ Definition 44. The unfolding of a pointed (TS ◦ F )-coalgebra (C, γ, cI) is the pointed
(TS ◦ F )-coalgebra (B, β, bI), where B contains a copy bI of the initial state cI , and for each

copy b ∈ B of some c ∈ C and each transition c
w,i
// (c1, . . . , cji

) in (C, γ), (B, β) contains

(new) copies b1, . . . , bji
of c1, . . . , cji

and a transition b
w,i
// (b1, . . . , bji

) . If (C, γ, cI) is a
QPA, the states of (B, β, bI) inherit parities from the corresponding states of C.

▶ Example 45. Let S = (N∞,min,∞,+, 0) and F = {a, b} × Id ≃ Id + Id. The unfolding of
the pointed (TS ◦ F )-coalgebra on the left is the infinite tree on the right:

c

0,b

��

1,a
��

d

0,a

DD

c1

0,b
��

1,a
// d1

0,a
// d1,1

0,a
// . . .

c2
0,b
��

1,a
// d2

0,a
// d2,1

0,a
// . . .

c3

Now to motivate the proof of the next lemma, consider the automaton obtained by putting
Ω(c) = 1 and Ω(d) = 0 in the above coalgebra. Then, the states of the unfolding inherit parit-
ies from c and d, and one can show that the extent of the unfolding coincides with the extent of
the original (pointed) coalgebra; that is, extγ(c) = extβ(c1). Now recall that µγ({ξ ∈ Pathsc |
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ξ accepting }) is given by inf
{
µγ [C] | C is a pairwise-disjoint cylinder set cover for {ξ ∈

Pathsc | ξ accepting }
}

. So to prove that extγ(c) ⊑ µγ({ ξ ∈ Pathsc | ξ accepting }), it would
suffice to show that extγ(c) ⊑ µγ [C] for every such cover C. Let us consider, in the above
example, one particular cover for { ξ ∈ Pathsc | ξ accepting }, given by: C1 = Cyl(c(a(d(∗)))),
C2 = Cyl(c(b(c(a(d(∗)))))), . . .. We can use this cover to separate the unfolding of our
automaton into a countable number of automata: one automaton (Bk, βk, bkI ,Ωk) for each
cylinder set Ck of C, whose paths are precisely the paths in the unfolding covered by Ck (up
to a renaming of the states in the unfolding to the original states in C), and one automaton
(B0, β0, b

0
I ,Ω0) whose paths are those (non-accepting) paths not covered by any Ck ∈ C:

c1
1

1,a
// d1

0,a
//

c2
1

0,b
// c1

2
1,a
// d2

0,a
//

c3
1

0,b
// c2

2
0,b
// c1

3
1,a
// d3

0,a
//

. . .

c0
1

0,b
// c0

2
0,b
// c0

3
0,b
//

Then, to prove extβ(c1) ⊑ µγ [C] (which would then give extβ(c) ⊑ µγ [C]), it would suffice to
prove the following:

extβ(c1) ⊑ extβ0(c0
1) +

∑
k∈{1,2,...}

µβk
(C ′

k),

extβ0(c0
1) = 0, and

µβk
(C ′

k) = µγ(Ck), where for k ∈ {1, 2, . . .}, the cylinder set C ′
k is obtained from the

cylinder set Ck by suitably renaming the states which label paths in Ck to states of Bk.
It turns out that all these statements can be proved in general, for any cover C, as shown by
(the proof of) the next lemma.

▶ Lemma 46. For a quantitative parity automaton (C, γ, cI ,Ω), we have

extγ(cI) ⊑ µγ({ ξ ∈ PathscI
| ξ accepting }).

Proof (Sketch). We will use the fact that µγ({ξ ∈ PathscI
| ξ accepting }) = inf

{
µγ [C] |

C is a pairwise-disjoint cylinder set cover for {ξ ∈ PathscI
| ξ accepting }

}
. We fix a

pairwise-disjoint cylinder set cover C = {C1, C2, . . .} for {ξ ∈ PathscI
| ξ accepting }, and

prove extγ(cI) ⊑ µγ [C]. To this end, we write (B, β, bI ,Ω) for the unfolding of (C, γ, cI ,Ω).
Also, for k ∈ {1, 2, . . .}, we let (Bk, βk, bkI ,Ωk) denote the part of the automaton (B, β, bI ,Ω)
covered by Ck (defined similarly to Example 45). Finally, we let (B0, β0, b

0
I ,Ω0) denote the

part of the automaton (B, β, bI ,Ω) not covered by any Ck, with k ∈ {1, 2, . . .}. (The fact that
(B, β, bI ,Ω) is a tree unfolding is needed here.) The required inequality is now a consequence
of the following three statements:
1. extγ(cI) = extβ(bI).
2. If an automaton has no accepting paths, then it has extent 0.
3. extβ(bI) ⊑ extβ0(b0

I) +
∑

k∈{1,2,...}
extνβk

(bkI ).

The first statement follows immediately from applying Proposition 38 to the map sending each
copy of a state in C to the original state in C. The proof of the second statement, omitted
here due to space limitations, uses the computation of extent (see Thm. 3) to construct an
accepting path from an automaton state with extent ̸= 0. The proof of the third statement
is by induction on i ∈ ran(Ω) (see below). Then, using all these statements, we have:
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extγ(cI) = extβ(bI) ⊑ extβ0(b0
I) +

∑
k∈{1,2,...}

extνβk
(bkI ) =

∑
k∈{1,2,...}

µγ(Ck) = µγ [C]

The second equality above uses the fact that the automaton (B0, β0, b
0
I ,Ω0) has no accepting

paths (and therefore its extent is 0), together with the fact that, for k ∈ {1, 2, . . .}, the
automaton (Bk, βk, bkI ,Ωk) contains (copies of) exactly those paths of (C, γ,Ω) which are
covered by the cylinder set Ck (and therefore extνβk

(bkI ) = µγ(Ck)). This concludes the proof
of the fact that extγ(cI) ⊑ µγ [C]. Since this holds for every cover C for µγ({ ξ ∈ PathscI

|
ξ accepting }), we now obtain extγ(cI) ⊑ µγ({ ξ ∈ PathscI

| ξ accepting }) as required.

It remains to prove the third statement above. Now when the semiring S is partial,
although the sum on the rhs of this statement is defined (it is equal to µγ [C]), some of the
sums appearing later in the proof may not be defined. For this reason, we will interpret these
sums in the total semiring (S,⊕, 0, •, 1) (see Remark 8).

We will prove the following more general statement, in (S,⊕, 0, •, 1):

extβ(b) ⊑ extβ0(b0) +
∑

k∈{1,2,...}

extνβk
(bk) (9)

for each b ∈ B, where for k ∈ {0, 1, . . .}, bk is the copy of b which belongs to (Bk, βk,Ωk).
For this, we prove by induction on i ∈ ran(Ω) that:

(ηi(Opei+1,...,en

β,i ))(b) ⊑ (ηi(Ope
0
i+1,...,e

0
n

β0,i
))(b0) +

∑
k∈{1,2,...}

extνβk
(bk) (10)

for each b ∈ Bi, whenever ej : Bj → S, e0
j : B0

j → S are such that ej ⊑ e0
j+

∑
k∈{1,2,...}

(extνβk
◦ιj)

for j ∈ {i+ 1, . . . , n}. In the above, ιj denotes the inclusion of the set of states with parity j
into the entire set of states. We immediately note that (10) holds trivially for those b ∈ Bi
for which the whole of Pathsb is covered by C – this follows from the definitions of extent
and ν-extent, together with the pairwise-disjointness of the cylinder sets in C. Therefore
it suffices to show that (10) holds on states some of whose outgoing transitions belong to
(B0, β0, b

0
I ,Ω).

Consider, first, the case when i = 0. Then, induction on ordinals can be used to show that
(Opei+1,...,en

β,i )α(⊤)(b) ⊑ (Ope
0
i+1,...,e

0
n

β0,i
)α(⊤)(b0) +

∑
k∈{1,2,...}

extνβk
(bk) holds for all b ∈ B0

and all ordinals α:

For α = 0, the statement is trivial (both sides equal 1 ∈ S).

For α = γ + 1, assume that (Ope1,...,en

β,0 )γ(⊤)(b) ⊑ (Ope
0
1,...,e

0
n

β0,0 )γ(⊤)(b0) +∑
k∈{1,2,...}

extνβk
(bk) holds for all b ∈ B0. We then have, for b ∈ B0:
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(Ope1,...,en

β,0 )γ+1(⊤)(b) =

(definition of Ope1,...,en

β,0 )∑
b
i,w
// b′ ∈ B0

w • (Ope1,...,en

β,0 )γ(⊤)(b′) +
∑

b
i,w
// b′ ∈ Bj , j ̸= 0

w • ej(b′) ⊑

(I.H., assumption on ej , e
0
j )∑

b
i,w
// b′ ∈ B0

w •

(Ope
0
1,...,e

0
n

β0,0 )γ(⊤)(b′) +
∑

k∈{1,2,...}

extνβk
(b′k)

 +

∑
b
i,w
// b′ ∈ Bj , j ̸= 0

w •

e0
j (b′) +

∑
k∈{1,2,...}

extνβk
(b′k)

 =

(distributivity of • over finite sums, definition of Ope
0
1,...,e

0
n

β0,0 and extνβk
(bk))

(Ope
0
1,...,e

0
n

β0,0 )γ+1(⊤)(b) +
∑

k∈{1,2,...}

extνβk
(bk)

For α a limit ordinal, the statement follows from (Opei+1,...,en

β,0 )α(⊤) and

(Ope
0
i+1,...,e

0
n

β0,0 )α(⊤) being obtained as infima of decreasing chains.
This then yields the required statement for i = 0.
The induction step is proved similarly, additionally making use of the induction hypothesis.

We have thus proves the inequality (9) in the total semiring (S,⊕, 0, •, 1). This now gives
extβ(bI) ⊑ extβ0(b0

I) +
∑

k∈{1,2,...}
extνβk

(bkI ) in (S,⊕, 0, •, 1). However, since the sum in the rhs

is defined in (S,+, 0, •, 1) (it coincides with µγ [C])), it follows that the same inequality also
holds in (S,+, 0, •, 1). This concludes the proof. ◀

Theorem 42 yields characterisations of the notion of extent in all our example semirings.

▶ Example 47. When (S,+, 0, •, 1) is the boolean semiring, a state in a QPA has extent 0
iff it admits no accepting paths. When (S,+, 0, •, 1) is the probabilistic semiring, the extent
of a state measures the likelihood of an accepting path. When (S,+, 0, •, 1) is the tropical
semiring, the extent of a state gives the minimal cost of an accepting path from that state.

4 Model Checking Qualitative Properties in Quantitative Models

We now show how to use Theorem 42 to model check qualitative properties captured by
F -automata against (TS ◦ F )-coalgebras. When the F -automaton is non-deterministic, its
product with a (TS ◦F )-coalgebra is only defined when the semiring is total. However, even if
the product is defined, accepting paths through the product are not, in general, in one-to-one
correspondence with paths through the coalgebra which conform to the automaton. For
this, unambiguity of the automaton is required. This is why in what follows we restrict to
qualitative properties captured by unambiguous F -automata. We first consider the case
when the semiring is total, and then show how to extend our result to a partial semiring.

We instantiate Theorem 42 to the product of an unambiguous NPA (Definition 23) with
a (TS ◦ F )-coalgebra in order to prove the following result:
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▶ Theorem 48. Assume (S,+, 0, •, 1) is total. Let (A,α, aI ,Ω) with ran(Ω) ⊆ {0, . . . , n}
be an unambiguous automaton, let (C, γ, cI) be a pointed (TS ◦ F )-coalgebra, and let
(D, δ, (cI , aI),Ω) be the product of (C, γ, cI) and (A,α, aI ,Ω) (Definition 29). Then, the extent
extδ : D → S of (D, δ, (cI , aI),Ω) satisfies µγ({ξ ∈ PathsγcI

| ξ accepted by (A,α, aI ,Ω)}) =
extδ(cI , aI).

Proof. We have:

extδ(cI , aI) = µδ({ ξ ∈ Pathsδ
(cI ,aI ) | ξ acc. }) = µγ({ξ ∈ Pathsγ

cI
| ξ accepted by (A, α, aI , Ω)})

The first equality follows by Theorem 42, whereas the second equality follows by Lemma 31
and because measuring the sets of paths in question in δ, respectively γ, yields the same
result (since weights of δ-transitions are inherited from γ). ◀

Theorem 48 thus states that, assuming that the automaton (A,α, aI ,Ω) is unambiguous,
the extent of its product with a model (C, γ, cI) can be used to compute the measure of the
set of paths from cI which conform to the automaton.

When the semiring S is partial, the product of (C, γ, cI) and (A,α, a,Ω) is not always
a TS ◦ F -automaton. To deal with this, we view (C, γ, cI) as a TS′ ◦ F -coalgebra (where
S′ = (S,⊕, 0, •, 1) is as in Remark 8), to which Theorem 42 applies. However, in order to
generalise Theorem 48 to partial semirings, we must additionally show that the S-valued
measure of the set of paths from c in (C, γ) which are accepted by (A,α, a,Ω) coincides with
the S′-valued measure of the same set of paths. The next lemma establishes this.

▶ Lemma 49. Let (C, γ, cI) be a pointed (TS ◦ F )-coalgebra. Then, µSγ (P ) = µS
′

γ (P ) for any
measurable set P of paths from c in (C, γ) (where the superscripts of the resulting measures
indicate the semiring these measures are valued into).

Proof. We have:

µSγ (P )
(def. of µS

γ )
= inf{

∑
C∈C

µSγ (C) | C is a countable, pairwise-disjoint cover for P }

(*)= inf{
∑
C∈C

µS
′

γ (C) | C is a countable, pairwise-disjoint cover for P }

(def. of µS′
γ )

= µS
′

γ (P )

The equality (∗) above follows from the fact that all sums in the lhs are defined. ◀

Our second main result is now a direct consequence of Theorem 48 and Lemma 49.

▶ Theorem 50. Let (S,+, 0, •, 1) be a partial semiring and let (S′ = S,⊕, 0, •, 1) be as in
Remark 8. Let (A,α, a,Ω) be an unambiguous F -automaton, and let (C, γ, cI) be a pointed
(TS ◦ F )-coalgebra. Finally, let (D, δ, d,Ω) be the product of (C, ι ◦ γ, cI) and (A,α, a,Ω).
Then, the following holds: µSγ ({ ξ ∈ Pathsγc | ξ accepted by (A,α, a,Ω) } = extS′

δ (c, a).

In other words, to measure the set of paths in a model (C, γ, cI) which conform to a
qualitative property captured by an unambiguous parity automaton (A,α, a,Ω), one can
simply compute the extent of the product automaton, in the extended semiring (S,⊕, 0, •, 1).

5 Conclusions

We provided a characterisation of the measure of the set of accepting paths of a QPA, as the
solution of a nested system of equations. We also showed how to use this characterisation to
model check qualitative linear-time properties against quantitative models. Future work will
investigate computational results and the expressive power of unambiguous automata, and
will use techniques from [3] to approximate nested extents.
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