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Abstract
We revisit a natural variant of the geometric set cover problem, called minimum-membership
geometric set cover (MMGSC). In this problem, the input consists of a set S of points and a
set R of geometric objects, and the goal is to find a subset R∗ ⊆ R to cover all points in S

such that the membership of S with respect to R∗, denoted by memb(S, R∗), is minimized, where
memb(S, R∗) = maxp∈S |{R ∈ R∗ : p ∈ R}|. We give the first polynomial-time approximation
algorithms for MMGSC in R2. Specifically, we achieve the following two main results.

We give the first polynomial-time constant-approximation algorithm for MMGSC with unit
squares. This answers a question left open since the work of Erlebach and Leeuwen [SODA’08],
who gave a constant-approximation algorithm with running time nO(opt) where opt is the optimum
of the problem (i.e., the minimum membership).

We give the first polynomial-time approximation scheme (PTAS) for MMGSC with halfplanes.
Prior to this work, it was even unknown whether the problem can be approximated with a factor
of o(log n) in polynomial time, while it is well-known that the minimum-size set cover problem
with halfplanes can be solved in polynomial time.

We also consider a problem closely related to MMGSC, called minimum-ply geometric set cover
(MPGSC), in which the goal is to find R∗ ⊆ R to cover S such that the ply of R∗ is minimized,
where the ply is defined as the maximum number of objects in R∗ which have a nonempty common
intersection. Very recently, Durocher et al. gave the first constant-approximation algorithm for
MPGSC with unit squares which runs in O(n12) time. We give a significantly simpler constant-
approximation algorithm with near-linear running time.
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11:2 Minimum-Membership Geometric Set Cover

1 Introduction

Geometric set cover is one of the most fundamental problems in computational geometry. In
the problem, we are given a set S of points and a set R of geometric objects, and our goal is
to cover all the points in S using fewest objects in R. Motivated by applications, several
variants of the geometric set cover problem have been studied in literature. In this paper,
we study a natural variant of the geometric set cover problem, called minimum-membership
geometric set cover (MMGSC).

In the MMGSC problem, the input also consists of a set S of points and a set R of
geometric objects. Similar to the geometric set cover problem our goal is still to cover all
the points in S using the objects in R. However, we do not care about how many geometric
objects we use. Instead, we want to guarantee that any point in S is not “over covered”.
More precisely, the goal is to find a subset R∗ ⊆ R to cover all points in S such that
the membership of S with respect to R∗, denoted by memb(S, R∗), is minimized, where
memb(S, R∗) = maxp∈S |{R ∈ R∗ : p ∈ R}|.

Kuhn et al. [7], motivated by applications in cellular networks, had introduced the non-
geometric version of the MMGSC problem, say minimum-membership set cover (MMSC).
That is, S is an arbitrary universe with n elements and R is a collection of subsets of S. They
showed that the MMSC problem admits an O(log n)-approximation algorithm, where n = |S|.
Furthermore, they complimented the upper bound result by showing, that unless P=NP, the
problem cannot be approximated, in polynomial time, by a ratio less than ln n. Erlebach
and van Leeuwen [6], in their seminal work on geometric coverage problem, considered the
geometric version of MMSC, namely MMGSC, from the view of approximation algorithms.
They showed NP-hardness for approximating the problem with ratio less than 2 on unit
disks and unit squares, and gave a 5-approximation algorithm for unit squares provided that
the optimal objective value is bounded by a constant. More precisely, their algorithm runs
in time nO(opt) where opt is the optimum of the problem (i.e., the minimum membership). It
has remained open that whether MMGSC with unit squares admits a (truly) polynomial-time
constant-approximation algorithm.

As our first result, we settle this open question by giving a polynomial-time algorithm
for MMGSC with unit squares which achieves a constant approximation ratio. In fact, our
algorithm works for a generalized version of the problem, in which the point set to be covered
can be different from the point set whose membership is considered.

▶ Definition 1 (generalized MMGSC). In the generalized minimum-membership geometric set
cover (MMGSC) problem, the input consists of two sets S, S′ of points in Rd and a set R of
geometric objects in Rd, and the goal is to find a subset R∗ ⊆ R to cover all points in S such
that memb(S′, R∗) is minimized. We denote by opt(S, S′, R) the optimum of the problem
instance (S, S′, R), i.e., opt(S, S′, R) = memb(S′, R∗) where R∗ ⊆ R is an optimal solution.

▶ Theorem 2. The generalized MMGSC problem with unit squares admits a polynomial-time
constant-approximation algorithm.

As our second result, we gave the first polynomial-time approximation scheme (PTAS)
for MMGSC with halfplanes. Prior to this work, it was even unknown whether the problem
can be approximated in polynomial time with a factor of o(log n), while the minimum-size
set cover problem with halfplanes can be solved in polynomial time. Again, our PTAS works
for the generalized version.

▶ Theorem 3. The generalized MMGSC problem with halfplanes admits a PTAS.
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The generalized version of MMGSC is interesting because it also generalizes another
closely related problem studied in the literature, called minimum-ply geometric set cover
(MPGSC). The MPGSC problems was introduced by Biedl, Biniaz and Lubiw [3] as a variant
of MMGSC. They observed that in some applications, e.g. interference reduction in cellular
networks, it is desirable to minimize the membership of every point in the plane, not only
points of S. Therefore, in MPGSC, the goal is to find R∗ ⊆ R to covers S such that the
ply of R∗ is minimized, where the ply is defined as the maximum number of objects in R∗

which have a nonempty common intersection. Observe that MPGSC is a special case of the
generalized MMGSC (by letting S′ include a point in every face of the arrangement induced
by R). As such, Theorems 2 and 3 both apply to MPGSC.

Prior to our work, Biedl, Biniaz and Lubiw [3] showed that solving the MPGSC with a
set of axis-parallel unit squares is NP-hard, and gave a polynomial-time 2-approximation
algorithm for instances in which the optimum (i.e., the minimum ply) is a constant. Very
recently, Durocher, Keil and Mondal [5] gave the first constant-approximation algorithm for
MPGSC with unit squares, which runs in O(n12) time. This algorithm does not extend to
other related settings, such as similarly sized squares or unit disks. Our algorithm derived
from Theorem 2 is already much more efficient than the one of [5] (while also not extend
to similarly sized squares or unit disks). However, we observe that for (only) MPGSC with
unit squares, there exists a very simple constant-approximation algorithm which runs in
Õ(n) time; here Õ hides logarithmic factors. This simple algorithm directly extends to any
similarly sized fat objects for which a constant-approximation solution for minimum-size set
cover can be computed in polynomial time. Therefore, we obtain the following result.

▶ Theorem 4. The MPGSC problem with unit (or similarly sized) squares/disks admits
constant-approximation algorithms with running time Õ(n).

A common ingredient appearing in all of our results is to establish connections between
MMGSC (or MPGSC) and the standard minimum-size geometric set cover. We show that in
certain situations, a minimum-size set cover (satisfying certain conditions) can be a good
approximation in terms of MMGSC. This reveals the underlying relations between different
variants of geometric set cover problems, and might be of independent interest.

Other related work

Very recently, Mitchell and Pandit [8] proved that MMGSC with rectangles intersecting a
horizontal line or anchored on two horizontal lines is NP-hard (among other algorithmic and
hardness results).

Organization

The rest of the paper is organized as follows. In Section 2, we present our result for MMGSC
with unit squares. In Section 3, we present our result for MMGSC with halfplanes. The
result for MPGSC is given in Section 4. Due to the limited space, some (less important)
proofs are omitted and can be found in the full version of the paper.

2 Constant approximation for unit squares

Let S, S′ be two sets of points in R2 and Q be a set of (axis-parallel) unit squares. We want
to solve the generalized MMGSC instance (S, S′, Q).

SoCG 2023
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2.1 Restricting S to a grid cell
First of all, we construct a grid Γ consisting of square cells of side-length 1. For each grid
cell □, we write S□ = S ∩ □ and Q□ = {Q ∈ Q : Q ∩ □ ̸= ∅}.

▶ Lemma 5. Suppose that, for every □ ∈ Γ , Q∗
□ ⊆ Q□ is a c-approximation solution of

the generalized MMGSC instance (S□, S′, Q□). Then
⋃

□∈Γ Q∗
□ is an O(c)-approximation

solution of the instance (S, S′, Q).

Proof. First notice that
⋃

□∈Γ Q∗
□ is a set cover of S, because any point p ∈ S is contained

in a grid cell □ and thus Q∗
□ covers p. Then we show that for any point p′ ∈ S′, the number

of unit squares in
⋃

□∈Γ Q∗
□ containing p′ is at most 9c · opt(S, S′, Q). Suppose the grid cell

containing p′ is □′. Note that a unit square Q ∈
⋃

□∈Γ Q∗
□ contains p′ only if Q ∈ Q∗

□ for a
grid cell □ that is either □′ or one of the eight grid cells around □′. For each such cell □,
the number of unit squares in Q∗

□ containing p′ is at most c · opt(S□, S′, Q□), since Q∗
□ is

a c-approximation solution of (S□, S′, Q□). It is clear that opt(S□, S′, Q□) ≤ opt(S, S′, Q).
Therefore, there can be at most 9c · opt(S, S′, Q) unit squares in

⋃
□∈Γ Q∗

□ containing p′,
which implies that

⋃
□∈Γ Q∗

□ is a 9c-approximation solution of (S, S′, Q). ◀

2.2 Partition the instance using LP
Based on the previous discussion, we will now assume that S is contained in a grid cell
□ and all unit squares in Q intersect □. Note that the points in S′ can be everywhere
in the plane. We shall formulate an LP relaxation of the generalized MMGSC instance
(S, S′, Q). To this end, we first introduce the notion of fractional set cover. A fractional set
cover of a set A of points is a set {xB}B∈B of numbers in [0, 1] indexed by a collection B of
geometric ranges such that

∑
B∈B,a∈B xB ≥ 1 for all a ∈ A. For another set A′ of points,

we can define the membership of A′ with respect to this fractional set cover {xB}B∈B as
memb(A′, {xB}B∈B) = maxa′∈A′

∑
B∈B,a′∈B xB . The LP relaxation of the instance (S, S′, Q)

simply asks for a fractional set cover of S using the unit squares in Q that minimizes the
membership of S′ with respect to it. Specifically, for each unit square Q ∈ Q, we create a
variable xQ. In addition, we create another variable y, which indicates the upper bound for
the membership of S with respect to {xQ}Q∈Q. We consider the following linear program.

min y

s.t. 0 ≤ xQ ≤ 1 for all Q ∈ Q,∑
Q∈Q,p∈Q xQ ≥ 1 for all p ∈ S,∑
Q∈Q,p′∈Q xQ ≤ y for all p′ ∈ S′.

We compute an optimal solution ({x∗
Q}Q∈Q, y∗) of the above linear program using a

polynomial-time LP solver. We have the following observation about the solution.

▶ Fact 6. y∗ ≤ opt(S, S′, Q).

Proof. Let Q∗ ⊆ Q be an optimal solution. We have S ⊆
⋃

Q∈Q∗ and memb(S′, Q∗) =
opt(S, S′, Q). Set xQ = 1 for Q ∈ Q∗, XQ = 0 for Q /∈ Q∗, and y = memb(S′, Q∗). These
values satisfy the LP constraints. Therefore, y∗ ≤ y = opt(S, S′, R). ◀

Next, we shall partition the instance (S, S′, Q) into four sub-instances according to the
LP solution ({x∗

Q}Q∈Q, y∗). Recall that all points in S are inside the grid cell □ and all unit
squares in Q intersect □. Let c1, c2, c3, c4 be the four corners of □. We can partition Q into
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Q1, Q2, Q3, Q4, where Qi consists of the unit squares containing ci for i ∈ {1, 2, 3, 4}. Also,
we partition S into S1, S2, S3, S4 in the following way. For a point p ∈ R2 and i ∈ {1, 2, 3, 4},
define δp,i as the sum of x∗

Q for all Q ∈ Qi satisfying p ∈ Q. Then we assign each point p ∈ S

to Si, where i ∈ {1, 2, 3, 4} is the index that maximizes δp,i. Observe the following fact.

▶ Fact 7. For each i ∈ {1, 2, 3, 4}, we have
∑

Q∈Qi,p∈Q x∗
Q ≥ 1

4 for all p ∈ Si.

Proof. We have
∑

Q∈Qi,p∈Q x∗
Q = δp,i and

∑4
i=1 δp,i =

∑
Q∈Q,p∈Q x∗

Q ≥ 1, because of the
LP constraints. Furthermore, δp,i ≥ δp,j for all j ∈ {1, 2, 3, 4}, as p ∈ Si. Thus, δp,i ≥ 1

4 . ◀

We now partition the original instance into (S1, S′, Q1), . . . , (S4, S′, Q4). Consider an
index i ∈ {1, 2, 3, 4}. If we define x̃∗

Q = 4x∗
Q for all Q ∈ Qi, then the above fact implies∑

Q∈Qi,p∈Q x̃∗
Q ≥ 1 for all p ∈ Si. In other words, {x̃∗

Q}Q∈Qi
is a fractional set cover of Si.

Note that memb(S′, {x̃∗
Q}Q∈Qi) ≤ 4y∗, because

4y∗ ≥
∑

Q∈Q,p′∈Q

4x∗
Q ≥

∑
Q∈Qi,p′∈Q

x̃∗
Q

for all p′ ∈ S, due to the constraints of the LP. With this observation, it now suffices to
compute a solution for each instance (Si, S′, Qi) that is a constant-factor approximation
even with respect to the fractional solutions. The union of these solutions is a set cover
of S =

⋃4
i=1 Si, the membership of S′ with respect to it is O(y∗). A nice property of the

instances (Si, S′, Qi) is that all unit squares in Qi contain the same corner ci of □. In the
next section, we show how to compute the desired approximation solution for such instances.

2.3 The one-corner case
Now consider an instance (S, S′, Q), where all points in S lie in a grid cell □ and all unit
squares contain the same corner (say the bottom-left corner) of □. For a point p ∈ R2, denote
by x(p) and y(p) the x-coordinate and y-coordinate of p, respectively. Also, for a unit square
Q ∈ Q, denote by x(Q) and y(Q) the x-coordinate and y-coordinate of the top-right corner
of Q, respectively. We make two simple observations. The first one shows that the integral
gap of the minimum-size set cover problem in this setting is equal to 1 (the proof is omitted
and can be found in the full paper). The second one gives a useful geometric property for
unit squares containing the same corner of □.

▶ Fact 8. Let S0 ⊆ S be a subset and Q0 ⊆ Q be a minimum-size set cover of S0. For any
fractional set cover {x̂Q}Q∈Q of S0, we have

∑
Q∈Q x̂Q ≥ |Q0|.

▶ Fact 9. Let Q−, Q, Q+ be three unit squares all containing the bottom-left corner of □
which satisfy x(Q−) ≤ x(Q) ≤ x(Q+) and y(Q−) ≥ y(Q) ≥ y(Q+). Then Q− ∩ Q+ ⊆ Q.

Proof. Let p ∈ Q− ∩ Q+. The fact p ∈ Q− implies x(p) ≤ x(Q−) and y(Q−) − 1 ≤ y(p).
So we have x(p) ≤ x(Q) and y(Q) − 1 ≤ y(p). On the other hand, the fact p ∈ Q+ implies
x(Q+)−1 ≤ x(p) and y(p) ≤ y(Q+). So we have x(Q)−1 ≤ x(p) and y(p) ≤ y(Q). Therefore,
x(Q) − 1 ≤ x(p) ≤ x(Q) and y(Q) − 1 ≤ y(p) ≤ y(Q), which implies that p ∈ Q. ◀

We say a unit square Q ∈ Q is dominated by another unit square Q′ ∈ Q if Q∩□ ⊆ Q′ ∩□.
A unit square in Q is maximal if it is not dominated by any other unit squares in Q. We
denote by Qmax ⊆ Q the set of maximal unit squares in Q. The following lemma shows
that any minimum-size set cover of S that only uses the unit squares in Qmax is also a good
approximation for the minimum-membership set cover.

SoCG 2023



11:6 Minimum-Membership Geometric Set Cover

Qi+

Qi−

p′

R

Grid Cell

Figure 1 Illustrating the rectangle R.

▶ Lemma 10. Let Q∗ ⊆ Q be a minimum-size set cover of S such that Q∗ ⊆ Qmax, and
{xQ}Q∈Q be a fractional set cover of S. Then memb(S′, Q∗) ≤ memb(S′, {xQ}Q∈Q) + 2.

Proof. Suppose Q∗ = {Q1, . . . , Qr} where x(Q1) ≤ · · · ≤ x(Qr). As Q∗ ⊆ Qmax, we must
have x(Q1) < · · · < x(Qr) and y(Q1) > · · · > y(Qr). Consider a point p′ ∈ S′. Let
i− ∈ [r] (resp., i+ ∈ [r]) be the smallest (resp., largest) index such that p′ ∈ Qi− (resp.,
p′ ∈ Qi+). By Fact 9, we have p′ ∈ Qi− ∩ Qi+ ⊆ Qi for all i ∈ {i−, . . . , i+} and thus
|{Q ∈ Q∗ : p′ ∈ Q}| = i+ − i− + 1. It suffices to show that

∑
Q∈Q,p′∈Q xQ ≥ i+ − i− − 1.

Consider the rectangle R = (x(Qi−), x(Qi+)] × (y(Qi+), y(Qi−)]; see Figure 1. Set
S0 = S ∩ R and Q0 = {Qi−+1, . . . , Qi+−1}. Observe that Q0 covers S0, since no unit square
in Q∗\Q0 contains any point in S0. We claim that Q0 ⊆ Q is a minimum-size set cover of S0.
Indeed, since x(Qi−) < · · · < x(Qi+) and y(Qi−) > · · · > y(Qi+), the points in S\S0 are all
covered by the unit squares Q1, . . . , Qi− and Qi+ , . . . , Qr. If there exists a set cover Q′

0 ⊆ Q
of S0 such that |Q′

0| < |Q0|, then Q′
0 together with Q1, . . . , Qi− , Qi+ , . . . , Qr form a set cover

of S whose size is smaller than Q∗, contradicting with the fact that Q∗ is a minimum-size
set cover of S. Therefore, Q0 ⊆ Q is a minimum-size set cover of S0. Now for each Q ∈ Q,
define x̂Q = xQ if Q ∩ R ̸= ∅ and x̂Q = 0 if Q ∩ R = ∅. As {xQ}Q∈Q is a fractional set cover
of S, for each p ∈ S0, we have

∑
Q∈Q,p∈Q xQ ≥ 1, which implies

∑
Q∈Q,p∈Q x̂Q ≥ 1 because

p ∈ R and thus x̂Q = xQ for all Q ∈ Q such that p ∈ Q. So {x̂Q}Q∈Q is a fractional set
cover of S0. By Fact 8, we then have∑

Q∈Q
x̂Q ≥ |Q0| = i+ − i− − 1. (1)

Next, we observe that x(Qi−) ≤ x(Q) ≤ x(Qi+) and y(Qi−) ≥ y(Q) ≥ y(Qi+) for any
unit square Q ∈ Q such that Q ∩ R ̸= ∅. Let Q ∈ Q and assume Q ∩ R ̸= ∅. The inequalities
x(Qi−) ≤ x(Q) and y(Q) ≥ y(Qi+) follow directly from the fact Q∩R ̸= ∅. If x(Q) > x(Qi+),
then Q dominates Qi+ , contradicting the fact Qi+ ∈ Qmax. Similarly, if y(Qi−) < y(Q),
then Q dominates Qi− , contradicting the fact Qi− ∈ Qmax. Thus, x(Qi−) ≤ x(Q) and
y(Qi−) ≥ y(Q). By Fact 9, we have p′ ∈ Qi− ∩ Qi+ ⊆ Q for all Q ∈ Q such that Q ∩ R ̸= ∅.
Thus, x̂Q = 0 for all Q ∈ Q such that p′ /∈ Q, which implies∑

Q∈Q,p′∈Q

xQ ≥
∑

Q∈Q,p′∈Q

x̂Q =
∑
Q∈Q

x̂Q. (2)

Combining Equations 1 and 2, we have
∑

Q∈Q,p′∈Q xQ ≥ i+ − i− − 1. ◀

Using the above lemma, now it suffices to compute a minimum-size set cover of S

using the unit squares in Qmax. It is well-known that in this setting, the minimum-size set
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cover problem can be solved in polynomial time (or even near-linear time) using a greedy
algorithm, because the unit squares in Q are in fact equivalent to southwest quadrants; see
for example [1]. Thus, we can compute in polynomial time a set cover Q∗ ⊆ Q of S such
that memb(S′, Q∗) ≤ memb(S′, {xQ}Q∈Q) + 2 for any fractional set cover {xQ}Q∈Q of S.

2.4 Putting everything together
Recall that at the end of Section 2.2, we have four generalized MMGSC instances (S1, S′, Q1),
. . . , (S4, S′, Q4). Also, for each i ∈ {1, . . . , 4}, we have a fractional set cover {x̃∗

Q}Q∈Qi
of Si

such that memb(S′, {x̃∗
Q}Q∈Qi

) ≤ 4y∗ ≤ 4 ·opt(S, S′, Q). By the discussion in Section 2.3, for
each i ∈ {1, . . . , 4}, we can compute in polynomial time a set cover Q∗

i ⊆ Qi of Si satisfying
that memb(S′, Q∗

i ) ≤ memb(S′, {x̃∗
Q}Q∈Qi

) + 2. Set Q∗ =
⋃4

i=1 Q∗
i . As S =

⋃4
i=1 Si, Q∗ is

a set cover of S. Furthermore, we have

memb(S′, Q∗) ≤
∑4

i=1 memb(S′, Q∗
i )

≤
∑4

i=1 memb(S′, {x̃∗
Q}Q∈Qi

) + 8

≤ 16y∗ + 8

≤ 16 · opt(S, S′, Q) + 8.

If opt(S, S′, Q) > 0, then Q∗ is a constant-approximation solution. The case opt(S, S′, Q) = 0
can be easily solved by picking all unit squares in Q that do not contain any points in S′.
Therefore, we obtain a constant-approximation algorithm for the case where S is contained
in a grid cell. Further combining this with Lemma 5, we conclude the following.

▶ Theorem 2. The generalized MMGSC problem with unit squares admits a polynomial-time
constant-approximation algorithm.

3 Polynomial-time approximation scheme for halfplanes

Let S, S′ be two sets of points in R2 and H be a set of halfplanes. We want to solve the
generalized MMGSC instance (S, S′, H). Set n = |S| + |S′| + |H|.

In order to describe our algorithm, we first need to introduce some basic notions about
halfplanes. The normal vector (or normal for short) of a halfplane H is the unit vector
perpendicular to the bounding line of H whose direction is to the interior of H, that is,
if the equation of H is ax + by + c ≥ 0 where a2 + b2 = 1, then its normal is v⃗ = (a, b).
For two nonzero vectors u⃗ and v⃗ in the plane, we denote by ang(u⃗, v⃗) the clockwise ordered
angle from u⃗ to v⃗, i.e., the angle between u⃗ and v⃗ that is to the clockwise of u⃗ and to the
counter-clockwise of v⃗. For two halfplanes H and J , we write ang(H, J) = ang(u⃗, v⃗) where u⃗

(resp., v⃗) is the normal of H (resp., J). For a set R of halfplanes, we use
⋂

R and
⋃

R to
denote the intersection and the union of all halfplanes in R, respectively. We say a halfplane
H ∈ R is redundant in R if

⋂
R =

⋂
(R\{H}). We say R is irreducible if every halfplane in

R is not redundant. The complement region of R refers to the closure of R2\
⋃

R, which is
always a convex polygon (possibly unbounded). The following simple facts about halfplanes
will be used throughout the section, and their proofs can be found in the full paper.

▶ Fact 11. Let R be an irreducible set of halfplanes such that
⋃

R ≠ R2. Then the following
two properties hold.

(i) For any halfplane H ∈ R and another halfplane H ′ different from H, we have that⋃
R ≠

⋃
R′, where R′ = (R\{H}) ∪ {H ′}.

SoCG 2023
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(ii) If the halfplanes in R has a nonempty intersection, i.e.,
⋂

R ̸= ∅, then we can write
R = {H1, . . . , Ht} such that 0 < ang(H1, H2) < ang(H1, H3) < · · · < ang(H1, Ht) < π.

▶ Fact 12. Let H1, . . . , Ht be halfplanes such that 0 < ang(H1, H2) < ang(H1, H3) < · · · <

ang(H1, Ht) ≤ π. Then the following two properties hold.
(i) If H1 ∪ Ht ̸= R2, then neither H1 nor Ht is redundant in {H1, . . . , Ht}.
(ii) If {H1, . . . , Ht} is irreducible, then

⋂t
i=1 Hi = H1 ∩ Ht.

3.1 An nO(opt)-time exact algorithm
In this section, we show how to compute an (exact) optimal solution of the instance (S, S′, H)
in nO(opt) time. It suffices to solve a decision problem: given an integer k ≥ 0, find a subset
Z ⊆ H which covers S and satisfies memb(S′, Z) ≤ k or decide that such a subset does not
exist. As long as this problem can be solved in nO(k) time, by trying k = 1, . . . , |H|, we can
finally compute an optimal solution of (S, S′, H) in nO(opt) time. In what follows, a valid
solution of (S, S′, H) refers to a subset Z ⊆ H which covers S and satisfies memb(S′, Z) ≤ k.

Let ∆ be a sufficiently large number such that S ∪ S′ ⊆ [−∆, ∆]2. For convenience, we
add to H four dummy halfplanes with equations y ≤ −∆, y ≥ ∆, x ≤ −∆, and x ≥ ∆. As
these dummy halfplanes does not contain any points in S ∪ S′, including them in H does
not change the problem. We say a set of halfplanes is regular if it is irreducible and its
complement region is nonempty and bounded. We have the following simple observation,
whose proof can be found in the full paper.

▶ Fact 13. If (S, S′, H) has a valid solution, then either it has a regular valid solution or it
has a valid solution that covers the entire plane R2.

If (S, S′, H) has a valid solution that covers R2, then it also has an irreducible valid
solution that covers R2, which is of size at most 3 by Helly’s theorem. Therefore, in this
case, we can solve the problem in nO(1) time by simply enumerating all subsets of H of size
at most 3. Otherwise, by the above fact, it suffices to check whether there exists a regular
valid solution of (S, S′, H). In what follows, we assume (S, S′, H) has a regular valid solution
and show how to find such a solution in nO(k) time. If our algorithm does not find a regular
valid solution at the end, we can conclude its non-existence. Let Z ⊆ H be a (unknown)
regular valid solution of (S, S′, H). By definition, the complement region of Z is nonempty,
and is a (bounded) convex polygon. Consider the arrangement A of the boundary lines of
the halfplanes in H. This arrangement has O(n2) faces, among which at least one face is
contained in the complement region of Z. We simply guess such a face. By making O(n2)
guesses, we can assume that we know a face F in the complement region of Z. Then we take
a point p in the interior of F , which is also in the interior of the complement region of Z.

Now the problem becomes finding a regular valid solution of (S, S′, H) whose complement
region contains p. Therefore, we can remove from H all halfplanes that contain p. Now the
complement region of any subset of H contains p. We say a convex polygon Γ is H-compatible
if each edge e of Γ is a portion of the boundary line of some halfplane H ∈ H such that
Γ ∩ H = e (or equivalently H does not contain Γ ). Note that the complement region of a
regular valid solution is an H-compatible convex polygon Γ which satisfies (i) no point in
S lies in the interior of Γ and (ii) for any k + 1 edges e1, . . . , ek+1 of Γ , the intersection⋂k+1

i=1 H(ei) does not contain any point in S′; here H(e) ∈ H denotes the halfplane whose
boundary line containing e and Γ ∩ H = e. On the other hand, every H-compatible convex
polygon satisfying conditions (i) and (ii) is the complement region of a regular valid solution
of (S, S′, H), which is just the set of halfplanes corresponding to the edges of Γ . With
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this observation, it suffices to find an H-compatible convex polygon Γ satisfying the two
conditions. We notice the follow fact which can be used to simplify condition (ii).

▶ Fact 14. If there exist t edges e1, . . . , et of an H-compatible convex polygon Γ such
that (

⋂t
i=1 H(ei)) ∩ S′ ̸= ∅, then there exist t consecutive edges f1, . . . , ft of Γ such that

(
⋂t

i=1 H(fi)) ∩ S′ ̸= ∅.

Proof. Set R = {H(e1), . . . , H(et)} and assume (
⋂

R) ∩ S′ ̸= ∅, which implies
⋂

R ≠ ∅.
Note that the set of halfplanes corresponding to the edges of Γ are irreducible, because
Γ is H-compatible and thus the interior of each edge e of Γ can only be covered by the
halfplane H(e). In particular, R is irreducible. Also,

⋃
R ≠ R2 by our assumption

⋃
H ̸= R2.

Therefore, by (ii) of Fact 11, there exist e−, e+ ∈ {e1, . . . , et} such that ang(H(e−), H(ei)) ≤
ang(H(e−), H(e+)) < π for all i ∈ [t]. Now we go clockwise along the boundary of Γ from e−

to e+, and let E be the set of edges of Γ we visit (including e− and e+). Clearly, ei ∈ E for
all i ∈ [t] and thus |E| ≥ t. Furthermore, 0 < ang(H(e−), H(e)) < ang(H(e−), H(e+)) < π

for all e ∈ E\{e−, e+}. Define R′ = {H(e) : e ∈ E}. Since R and R′ are both irreducible,
we can apply (ii) of Fact 12 to deduce

⋂
R = H(e−) ∩ H(e+) =

⋂
R′, which implies

(
⋂

R′) ∩ S′ ̸= ∅. Finally, because E consists of consecutive edges of Γ and |E| ≥ t, there
exist f1, . . . , ft ∈ E which are t consecutive edges of Γ . We have

⋂
R′ ⊆

⋂t
i=1 H(fi) and

thus (
⋂t

i=1 H(fi)) ∩ S′ ̸= ∅. ◀

By the above fact, we only need to find an H-compatible convex polygon Γ which satisfies
(i) no point in S lies in the interior of Γ and (ii) (

⋂k+1
i=1 H(ei)) ∩ S′ ̸= ∅ for any k + 1

consecutive edges e1, . . . , ek+1 of Γ . For convenience, we say Γ is well-behaved if it satisfies
conditions (i) and (ii). Next, we reduce this problem to a shortest-cycle problem in a
(weighted) directed graph G as follows. Let L denote the set of boundary lines of halfplanes
in H. We consider every segment s in the plane which is on some line ℓ ∈ L and satisfies
that each endpoint of s is the intersection point of ℓ and another line in L. We use Φ to
denote the set of these segments. Note that |Φ| = O(n3), as Φ contains O(n2) segments on
each line ℓ ∈ L. Clearly, the edges of an H-compatible convex polygon are all segments in Φ.
Consider a segment ϕ ∈ Φ. Recall that the point p is the interior of F , which is a face of the
arrangement A. Thus, no line in L goes through p. It follows that for every segment ϕ ∈ Φ,
the two endpoints of ϕ and p form a triangle ∆ϕ. If p → a → b is the clockwise ordering of
the three vertices of ∆ϕ from p, then we call a the left endpoint of ϕ and call b the right
endpoint of ϕ. Clearly, ang(−→pa,

−→
pb) < π. The vertices of the graph G to be constructed

are one-to-one corresponding to the (k + 1)-tuples (ϕ0, ϕ1, . . . , ϕk) ∈ Φk+1 which satisfy the
following three conditions.

1. The left endpoint of ϕi is the right endpoint of ϕi−1 for all i ∈ [k]. Below we use ai to
denote the left endpoint of ϕi (i.e., the right endpoint of ϕi−1). This condition guarantees
that the segments ϕ0, ϕ1, . . . , ϕk form a polygonal chain of k + 1 pieces.

2. ang(−−−−→ai−1ai,
−−−−→aiai+1) ≤ π for all i ∈ [k]. This condition guarantees that the chain formed

by ϕ0, ϕ1, . . . , ϕk is clockwise convex, in the sense that when we go along the chain from
a0 to ak+1, we always turn right at the vertices of the chain. Figure 2 shows a chain
satisfying this condition (and also condition 1).

3. S ∩ (
⋃k

i=0 ∆ϕi
) ⊆

⋃k
i=0 ϕi and (

⋂k
i=0 H(ϕi)) ∩ S′ = ∅.

Intuitively, the (k + 1)-tuple corresponding to each vertex of G represents a possible
choice of k + 1 consecutive edges of the H-compatible convex polygon we are looking for.
For two vertices v = (ϕ0, ϕ1, . . . , ϕk) and v′ = (ϕ′

0, ϕ′
1, . . . , ϕ′

k) such that (ϕ1, . . . , ϕk) =
(ϕ′

0, ϕ′
1, . . . , ϕ′

k−1), we add a directed edge from v to v′ with weight ang(−→pa,
−→
pb), where a is

SoCG 2023
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p
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φ4 a0

a1
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∆φ1∆φ2

∆φ3

∆φ4

Figure 2 Illustrating the conditions for a vertex of G.

the left endpoint of ϕ0 and b is the left endpoint of ϕ′
0 = ϕ1 (which is also the right endpoint

of ϕ0 by condition 1 above). Note that the weight of every edge of G is positive, since the
two endpoints of every ϕ ∈ Φ and p form a triangle ∆ϕ. The key observation is the following
lemma, whose proof (which is simple but tedious) can be found in the full paper.

▶ Lemma 15. There exists a well-behaved H-compatible convex polygon containing p iff the
(weighted) length of a shortest cycle in G is exactly 2π.

Based on the above lemma, it suffices to compute a shortest cycle in G, which can be
done by standard algorithms (e.g., Dijkstra) in polynomial time in the size of G. Note that G

has nO(k) vertices. Therefore, we obtain an nO(k)-time algorithm for computing a set cover
Z ⊆ H of S satisfying memb(S′, Z) ≤ k, if such a set cover exists. By iteratively trying
k = 1, . . . , |H|, we can solve the MMGSC problem with halfplanes in nO(opt) time.

3.2 An algorithm with constant additive error
In this section, we show how to compute in polynomial time an approximation solution
Z ⊆ H of the instance (S, S′, H) with constant additive error, that is, memb(S′, Z) =
opt(S, S′, H) + O(1). If

⋃
H = R2, then by Helly’s theorem, there exist H1, H2, H3 ∈ H such

that H1 ∪H2 ∪H3 = R2. In this case, we can take {H1, H2, H3} as our solution, which clearly
has constant additive error. So assume

⋃
H ≠ R2. Our algorithm is in the spirit of local

search. However, different from most local-search algorithms which improve the “quality” of
the solution in each step (via local modifications), our algorithm does not care about the
quality (i.e., membership), and instead focuses on shrinking the complement region of the
solution. Formally, for two sets Z and Z ′, we write Z ≺ Z ′ if

⋃
Z ⊊

⋃
Z ′, and Z ⪯ Z ′ if⋃

Z ⊆
⋃

Z ′. We define the following notion of “locally (non-)improvable” solutions.

▶ Definition 16. A subset Z ⊆ H is k-expandable if there exists Z ′ ⊆ H such that
|Z\Z ′| = |Z ′\Z| ≤ k and Z ≺ Z ′. A subset of H is k-stable if it is not k-expandable.

In other words, Z ⊆ H is k-expandable (resp., k-stable) if we can (resp., cannot) replace
k halfplanes in Z with other k halfplanes in H to shrink the complement region of Z. We are
interested in subsets Z ⊆ H that are minimum-size set covers of S and are k-stable. Such a
set can be constructed via the standard local-search procedure.

▶ Lemma 17. A minimum-size set cover Z ⊆ H of S that is k-stable can be computed in
nO(k) time.
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Proof. The standard set cover problem for halfplanes is polynomial-time solvable. So we
can compute a minimum-size set cover Z ⊆ H of S in nO(1) time. To further obtain a
k-stable one, we keep doing the following procedure. Whenever there exists Z ′ ⊆ H such that
|Z\Z ′| = |Z ′\Z| ≤ k and Z ≺ Z ′, we update Z to Z ′. During this procedure, the size of Z
does not change and the complement region of Z shrinks. So Z is always a minimum-size set
cover of S. Furthermore, as the complement region of Z shrinks in every step, the procedure
will finally terminate. At the end, Z is not k-expandable and is thus k-stable. This proves
the correctness of our algorithm. To see it takes nO(k) time, we show that (i) we terminate
in O(n) steps and (ii) each step can be implemented in nO(k) time.

For (i), the key observation is that every halfplane H ∈ H can be removed from Z at
most once. Formally, we denote by Zi the set Z after the i-th step of the procedure, and
thus the original Z is Z0. Let Pi be the complement region of Zi. Suppose H ∈ Zi−1 and
H /∈ Zi. We claim that H /∈ Zj for all j > i. Assume H ∈ Zj for some j > i. Since Zj

is a minimum-size set cover of S, H is not redundant in Zj and thus one edge e of Pj is
defined by H, i.e., e is a segment on the boundary line of H. Note that e is also a portion of
the boundary of Pi−1, because H ∈ Zi−1 and Pj ⊆ Pi−1. It follows that e is a portion of
the boundary of Pi, since Pj ⊆ Pi ⊆ Pi−1. But this cannot be the case, as H /∈ Zi. Thus,
H /∈ Zj for all j > i. Now for every index i ≥ 1, there exists at least one halfplane H ∈ H
such that H ∈ Zi−1 and H /∈ Zi, simply because |Zi−1| = |Zi| and Zi−1 ̸= Zi. We then
charge the i-th step to this halfplane H. By the above observation, each halfplane is charged
at most once. Therefore, the procedure terminates in at most n steps. To see (ii), observe
that in each step, the number of Z ′ ⊆ H satisfying |Z\Z ′| = |Z ′\Z| ≤ k is bounded by
nO(k), and these sets can be enumerated in nO(k) time. So each step can be implemented in
nO(k) time. As a result, the entire algorithm terminates in nO(k) time. ◀

Our key observation is that any minimum-size set cover of S that is k-stable has additive
error at most 2 in terms of MMGSC, even for k = 1.

▶ Lemma 18. If Z ⊆ H is a minimum-size set cover of S that is 1-stable, then we have
|Z| ≤ opt(S, S′, H) + 2.

Proof. Consider a point p ∈ S′. We show that memb(p, Z ′) ≥ memb(p, Z) − 2 for any set
cover Z ′ ⊆ H of S. Let Z(p) ⊆ Z consist of all halfplanes in Z that contain p. As

⋂
Z(p) ̸= ∅,

by (ii) of Fact 11 and the assumption
⋃

H ≠ R2, we have Z(p) = {H1, . . . , Hr} such that
0 < ang(H1, H2) < ang(H1, H3) < · · · < ang(H1, Hr) < π. Let S0 ⊆ S consist of points
contained in

⋃r−1
i=2 Hi but not contained in any other halfplanes in Z, and Z ′

0 ⊆ Z ′ consist
of halfplanes that contain at least one point in S0. Note that |Z ′

0| ≥ r − 2, for otherwise
(Z\{H2, . . . , Hr−1}) ∪ Z ′

0 is a set cover of S of size strictly smaller than Z, which contradicts
the fact that Z is a minimum-size set cover of S. We shall show that every halfplane in Z ′

0
contains p and thus

memb(p, Z ′) ≥ memb(p, Z ′
0) = |Z ′

0| ≥ r − 2 = memb(p, Z) − 2.

Consider a halfplane H ′ ∈ Z ′
0. We want to show p ∈ H ′. By the construction of Z ′

0, H ′

contains a point q ∈ S0. Furthermore, by the construction of S0, q is contained in
⋃r−1

i=2 Hi

but not contained in any halfplane in Z\{H2, . . . , Hr−1}. In particular, q /∈ H1 and q /∈ Hr,
which implies H ′ ≠ H1 and H ′ ̸= Hr. We observe that {H1, Hr, H ′} is irreducible. Clearly,
H ′ is not redundant in {H1, Hr, H ′}, as it contains q while H1 and Hr do not contain q. If
H1 is redundant in {H1, Hr, H ′}, then Z ⪯ (Z\{H1}) ∪ {H ′}. Since Z is irreducible and
H ′ ̸= H1, by (i) of Fact 11, this implies Z ≺ (Z\{H1}) ∪ {H ′}, which contradicts the fact
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that Z is 1-stable. So H1 is not redundant in {H1, Hr, H ′}. For the same reason, Hr is also
not redundant in {H1, Hr, H ′}. Thus, {H1, Hr, H ′} is irreducible.

In what follows, we complete the proof by showing that either p ∈ H ′ or Z is 1-expandable.
As the latter is false (for Z is 1-stable), this implies p ∈ H ′. If ang(H1, H ′) < ang(H1, Hr), by
the irreducibility of {H1, Hr, H ′} and (ii) of Fact 12, we have H1 ∩H ′ ∩Hr = H1 ∩Hr, which
implies H1 ∩Hr ⊆ H ′ and thus p ∈ H1 ∩Hr ⊆ H ′. If ang(H1, H ′) = ang(H1, Hr), then either
H ′ ⊆ Hr or Hr ⊆ H ′. Note that the former is not true as q ∈ H ′ but q /∈ Hr. Thus, we have
p ∈ Hr ⊆ H ′. It suffices to consider the case ang(H1, H ′) > ang(H1, Hr). In this case, we show
that Z is 1-expandable. Since q ∈

⋃r−1
i=2 Hi, there exists H ∈ {H2, . . . , Hr−1} which contains

q. Now ang(H1, H) < ang(H1, Hr) < ang(H1, H ′), which implies ang(H, Hr) < ang(H, H ′)
and ang(H ′, H1) < ang(H ′, H). We further distinguish two cases, ang(H, H ′) ≤ π and
ang(H, H ′) ≥ π (which are in fact symmetric). Assume ang(H, H ′) ≤ π. Figure 3 shows
the situation of the points p, q and the halfplanes H, H ′, H1, Hr this case. As ang(H, Hr) <

ang(H, H ′), by (ii) of Fact 12, if {H, Hr, H ′} is irreducible, then H ∩ Hr ∩ H ′ = H ∩ H ′.
But H ∩ Hr ∩ H ′ ̸= H ∩ H ′, because q ∈ H ∩ H ′ and q /∈ Hr. Thus, {H, Hr, H ′} is
reducible. Note that H ∪ H ′ ̸= R2, since

⋃
H ≠ R2 by our assumption. So by (i) of

Fact 12, neither H nor H ′ is redundant in {H, Hr, H ′}. It follows that Hr is redundant
in {H, Hr, H ′}, because {H, Hr, H ′} is reducible. Therefore, Z ⪯ (Z\{Hr}) ∪ {H ′}. Since
Z is irreducible and H ′ ̸= Hr, by (i) of Fact 11, we have Z ≺ (Z\{Hr}) ∪ {H ′}, i.e., Z
is 1-expandable. The other case ang(H, H ′) ≥ π is similar. In this case, ang(H ′, H) ≤ π.
Using the fact ang(H ′, H1) < ang(H ′, H) and the same argument as above, we can show
that Z ≺ (Z\{H1}) ∪ {H ′}, i.e., Z is 1-expandable. ◀

H1Hr

H

p

q

H ′

Figure 3 Illustration of the proof of Lemma 18.

Using Lemma 17, we can compute a 1-stable minimum-size set cover Z ⊆ H of S in
nO(1) time. Then by Lemma 18, Z is an approximation solution for the MMGSC instance
(S, S′, H) with additive error 2. This gives us a polynomial-time approximation algorithm
for MMGSC with halfplanes with O(1) additive error.

3.3 Putting everything together
Our PTAS can be obtained by directly combining the algorithms in Sections 3.1 and 3.2. Let
c = O(1) be the additive error of the algorithm in Section 3.2. We first run the algorithm in
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Section 3.2 to obtain a solution Z ⊆ H. If |Z| ≥ 1+ε
ε · c, then

|Z|
opt(S, S′, H) ≤ |Z|

|Z| − c
≤ 1 + ε.

In this case, Z is already a (1 + ε)-approximation solution. Otherwise, |Z| < 1+ε
ε · c and thus

opt(S, S′, H) < 1+ε
ε · c. We can then run the algorithm in Section 3.1 to compute an optimal

solution in nO(1/ε) time. So we conclude the following.

▶ Theorem 3. The generalized MMGSC problem with halfplanes admits a PTAS.

4 Minimum-ply geometric set cover

In this section, we give a very simple constant-approximation algorithm for minimum-ply
geometric set cover with unit squares. The technique can be applied to the problem with
any similarly-sized geometric objects in R2.

Let (S, Q) be an MPGSC instance. As in Section 2, we first apply the grid techinique.
We construct a grid Γ consisting of square cells of side-length 1. For each grid cell □, write
S□ = S ∩ □ and Q□ = {Q ∈ Q : Q ∩ □ ̸= ∅}. The key observation is the following.

▶ Lemma 19. Suppose that, for every □ ∈ Γ , Q∗
□ ⊆ Q□ is a c-approximation solution

of the minimum-size geometric set cover instance (S□, Q□). Then
⋃

□∈Γ Q∗
□ is an O(c)-

approximation solution of the MPGSC instance (S, Q).

Proof. Let γ = ply(
⋃

□∈Γ Q∗
□) and p ∈ R2 be a point contained in γ unit squares in

⋃
□∈Γ Q∗

□.
Consider the grid cell □p containing p and define C as the set of 3 × 3 grid cells centered at
□p. Note that all unit squares containing p belong to

⋃
□∈C Q∗

□. So we have |
⋃

□∈C Q∗
□| ≥ γ

and | max□∈C Q∗
□| ≥ γ/9. Therefore, there exists □ ∈ Γ such that |Q∗

□| ≥ γ/9. As Q∗
□ is a

c-approximation solution of the minimum-size set cover instance (S□, Q□), we know that
any subset of Q□ that covers S□ has size at least γ/(9c). It follows that any subset of Q
that covers S must include at least γ/(9c) unit squares in Q□. Note that each of these unit
squares contains a corner of □. Thus, at least one corner of □ is contained in γ/(36c) such
unit squares, which implies that the ply of any solution is at least γ/(36c). As a result,⋃

□∈Γ Q∗
□ is an O(c)-approximation solution of the MPGSC instance (S, Q). ◀

Note that the argument in the above proof can be extended to any similarly-size fat
objects in any fixed dimension. Here a set of geometric objects are similarly-size fat objects
if there exist constants α, β > 0 such that every object in the set contains a ball of radius α

and is contained in a ball of radius β.

▶ Theorem 20. For any class C of similarly sized fat objects in Rd, if the minimum-size
geometric set cover problem with C admits a constant-approximation algorithm with running
time T (n) for a function T satisfying T (a + b) ≥ T (a) + T (b), then the MPGSC problem with
C also admits a constant-approximation algorithm with running time T (n).

Proof. Let (S, R) be an MPGSC instance where R ⊆ C. We use the above grid technique
to decompose the input instance (S, R) into a set {(S□, R□)} of instances. Then apply
the algorithm for minimum-size geometric set cover problem with C to compute constant-
approximation (with respect to size) solutions R∗

□ ⊆ R□. By Lemma 19,
⋃

□∈Γ R∗
□ is

a constant-approximation solution of the MPGSC instance (S, R). If the algorithm for
minimum-size set cover runs in T (n) time, then our algorithm also takes T (n) time, as long
as the function T satisfies T (a + b) ≥ T (a) + T (b). ◀
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▶ Theorem 4. The MPGSC problem with unit (or similarly sized) squares/disks admits
constant-approximation algorithms with running time Õ(n).

Proof. The Õ(n)-time constant-approximation algorithms for minimum-size set cover with
similarly sized squares/disks are well-known. For similarly sized squares, see for example [1].
For similarly sized disks, see for example [2, 4]. Applying Theorem 20 directly yields Õ(n)-time
constant-approximation algorithms for MPGSC with unit squares and unit disks. ◀
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