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Abstract
Finding a maximum cardinality common independent set in two matroids (also known as Matroid
Intersection) is a classical combinatorial optimization problem, which generalizes several well-
known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and
an arborescence in directed graphs. Enumerating all maximal common independent sets in two
(or more) matroids is a classical enumeration problem. In this paper, we address an “intersection”
of these problems: Given two matroids and a threshold τ , the goal is to enumerate all maximal
common independent sets in the matroids with cardinality at least τ . We show that this problem
can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all
maximal common independent sets of two matroids in non-increasing order of their cardinalities.
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1 Introduction

The bipartite matching problem is arguably one of the most famous combinatorial optimization
problems, which asks to find a maximum cardinality matching in a bipartite graph. By
polynomial-time algorithms for the maximum flow problems, this problem can be solved in
polynomial time. This problem is naturally generalized for non-bipartite graphs, which is
also solvable in polynomial time [9].

Another natural generalization of the bipartite matching problem is Matroid Inter-
section. In this problem, we are given two matroids M1 = (S, I1) and M2 = (S, I2), where
I1 ⊆ 2S and I2 ⊆ 2S are the set of independent sets of M1 and M2, respectively, and asked
to find a maximum cardinality common independent set of M1 and M2, that is, a maximum
cardinality set in I1 ∩ I2. When both M1 and M2 are partition matroids, this problem is
equivalent to the bipartite b-matching problem, which is a generalization of the bipartite
matching problem. A famous matroid intersection theorem [10] shows a min-max formula
and also gives a polynomial-time algorithm for Matroid Intersection [23].
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These classical results give efficient algorithms to find a single best (bipartite) matching
in a graph or common independent set in two matroids. This type of objective serves as
the gold standard in many algorithmic and computational studies. However, such a single
best solution may not be appropriate for real-world problems due to the complex nature of
them [11].

One possible remedy to this issue is to enumerate multiple solutions instead of a single
best one. From the point of view of enumeration, the problems of enumeration maximal and
maximum (bipartite) matchings and its generalization are studied in the literature [6, 29–31].
Enumerating maximal independent sets in a graph is one of the best-studied problems in
this area and is solvable in polynomial delay and polynomial space [6, 29]. Due to the
correspondence between matchings in a graph and independent sets in its line graph, we
can enumerate all maximal matchings in polynomial delay and polynomial space as well.
Moreover, several algorithms that are specialized to (bipartite) matchings are known [30,31].

Enumeration algorithms for matroids are also frequently studied in the literature [3, 12,
16,17,22]. Lawler et al. [22] showed that all maximal common independent sets in k matroids
can be enumerated in polynomial delay when k is constant. For general k, this problem is
highly related to Dualization (or equivalently, minimal transversal enumeration, minimal
hitting set enumeration), which can be solved in output quasi-polynomial time1 [3]. Apart
from common independent sets, enumeration problems related to matroids are studied [15,17],
such as minimal multiway cuts [17] and minimal Steiner forests in graphs [15].

In this paper, we consider an “intersection” of the above two worlds, optimization and
enumeration, for Matroid Intersection. More specifically, given two matroids M1 and M2
and an integer τ , we consider the problem of enumerating all maximal common independent
sets of M1 and M2 with cardinality at least τ . We refer to this problem as Large Maximal
Common Independent Set Enumeration. By setting τ = 0, we can enumerate all
maximal common independent sets of M1 and M2, and by setting τ = opt, we can enumerate
all maximum common independent sets of M1 and M2, where opt is the optimal value of
Matroid Intersection. We would like to mention that simultaneously handling two
constraints, maximality and cardinality, would make enumeration problems more difficult
(see [18–20], for other enumeration problems). We show that Large Maximal Common
Independent Set Enumeration can be solved in polynomial delay and space. This extends
the results of enumerating maximum common independent sets due to [12] and enumerating
maximal common independent sets due to [22]. Our enumeration algorithm allows us to
enumerate several combinatorial objects with maximality and cardinality constraints, such
as bipartite b-matchings, colorful forests, and degree-constraint subdigraphs.

To prove this, we devise a reverse search algorithm [1] to enumerate all maximal common
independent sets of M1 and M2. This algorithm enumerates the solutions in a depth
first manner. To completely enumerate all the solutions without duplicates, we carefully
design its search strategy. We exploit a famous augmenting path theorem for Matroid
Intersection [23]. This enables us to design a “monotone” search strategy, yielding a
polynomial-delay and polynomial-space enumeration algorithm. A similar idea is used in [19]
for enumerating maximal matchings with cardinality at least τ but we need several nontrivial
lemmas to obtain our result.

Although our algorithm enumerates all maximal common independent sets of two matroids
with cardinality at least τ , solutions may not be generated in a sorted order, which is of great
importance in database community [8, 26]. A ranked enumeration algorithm is an algorithm

1 An enumeration algorithm runs in output quasi-polynomial time if it runs in time N (log N)c

, where c is
a constant and N is the combined size of the input and output.
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enumerates all the solutions in a non-increasing order of their cardinality (or more generally
objective value). We discuss how to convert our enumeration algorithm to the one that
enumerates in a ranked manner with a small overhead in the running time.

2 Preliminaries

Let S be a finite set. We denote the cardinality of S as n. For two sets X and Y , the
symmetric difference of X and Y is defined as X△Y := (X \Y )∪ (Y \X). A pair M = (S, I)
is called a matroid if M satisfies the following conditions:
∅ ∈ I,
if I ∈ I and J ⊆ I, then J ∈ I, and
if I, J ∈ I and |I| < |J |, then I ∪ {e} ∈ I for some e ∈ J \ I.

A subset S′ of S is called an independent set of M (or independent in M) if S′ is contained
in I and S′ is called a dependent set of M (or dependent in M) otherwise. An inclusion-wise
maximal independent set of M is called a base of M , and an inclusion-wise minimal dependent
set of M is called a circuit of M . For two distinct circuits C1 and C2 of M with C1 ∩C2 ̸= ∅
and e ∈ C1 ∩C2, there always exists a circuit C3 of M such that C3 ⊆ (C1 ∪C2) \ {e}. This
property is called the (weak) circuit elimination axiom [25]. For a matroid M = (S, I) and a
subset X ⊆ S, the pair (X,J ) is the restriction of M to X, where J = {Y ⊆ X : Y ∈ I}.
We denote it as M |X. Similarly, the pair (S \X,J ′) is the deletion of X from M , where
J ′ = {Y \X : Y ∈ I}. We denote it as M\X. Moreover, the pair (S\X,J ′′) is the contraction
of X from M , where J ′′ = {Y ⊆ S \ X : M | X has a base B such that Y ∪ B ∈ I}. We
denote it as M/X. Similarly, It is known that for a matroid M = (S, I) and X ⊆ S, M/X,
M |X, and M \X are all matroids [25]. For two matroids M1 = (S, I1) and M2 = (S, I2)
defined on the same set S, a subset T ⊆ S is a common independent set of M1 and M2 if
T ∈ I1 and T ∈ I2.

Let I1 and I2 be distinct independent sets of M . In our algorithm, we frequently consider
a matroid obtained from M by restricting to I1 ∪ I2 and then contracting I1 ∩ I2. This
matroid is defined on I1 △ I2 and has some properties shown below.

▶ Proposition 1. Let I1 and I2 be independent sets of M and let M ′ = (M |(I1∪I2))/(I1∩I2).
I ⊆ I1 △ I2 is independent in M ′ if and only if I ∪ (I1 ∩ I2) is independent in M .

Proof. Suppose that I is independent in M ′. As M ′ is a contraction of I1∩I2 from M |(I1∪I2),
I ∪ (I1 ∩ I2) is independent in M | (I1 ∪ I2) and hence in M . The converse direction is
analogous. ◀

▶ Proposition 2. Let I1 and I2 be maximal common independent sets of M1 = (S, I1) and
M2 = (S, I2). Then, both I1 \ I2 and I2 \ I1 are maximal common independent sets of two
matroids M ′

1 = (M1 | (I1 ∪ I2)) / (I1 ∩ I2) and M ′
2 = (M2 | (I1 ∪ I2)) / (I1 ∩ I2).

Proof. By symmetry, it suffices to show that I1 \ I2 is a maximal common independent set
of M ′

1 and M ′
2. By Proposition 1, (I1 \ I2) ∪ (I1 ∩ I2) = I1 is independent in M1 if and only

if I1 \ I2 is independent in M ′
1. Similarly, I1 is independent in M2 if and only if I1 \ I2 is

independent in M ′
2. Thus, I1 \ I2 is a common independent set of M ′

1 and M ′
2. To see the

maximality, suppose that there is e ∈ I2 \I1 such that (I1 \I2)∪{e} is a common independent
set of M ′

1 and M ′
2. By Proposition 1, I1 ∪ {e} is a common independent set of M1 and M2,

contradicting the maximality of I1. ◀

We next define some notations for directed graphs. In this paper, we assume that directed
graphs have no self-loops. For a directed graph D = (V, A), we say that a vertex v is
an out-neighbor of u (u is an in-neighbor of v) in D if D has an arc (u, v). The set of
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out-neighbors of v is denoted by N+(v), and the set of in-neighbors of v is denoted by N−(v).
A sequence (v1, . . . , vk) of distinct vertices is a directed path if there is an arc (vi, vi+1) for
1 ≤ i < k. A directed path (v1, . . . , vk) in D is called a directed path without shortcuts if D

has no arc from vi to vj for any 1 ≤ i < j ≤ k with i + 1 < j.
We measure the time complexity of enumeration algorithms with delay complexity [13].

The delay of an enumeration algorithm is the maximum time elapsed between two consecutive
outputs, including preprocessing and post-processing time. An enumeration algorithm is called
a polynomial-delay enumeration algorithm if its delay is upper bounded by a polynomial
of the size of an input. An enumeration algorithm is called an linear incremental-time
enumeration algorithm if, for any i ≤ N , an algorithm outputs at least i solutions in time
O(i · poly(n)), where N is the number of solutions [4].

Now, we formally define our problems. Throughout the paper, we assume that matroids
are given as independence oracles, that is, for a matroid M = (S, I), we can test whether
a subset X ⊆ S belongs to I by accessing an oracle for M . Moreover, we assume that
independence oracles can be evaluated in Q time and in Q̂ space. We say that an enumeration
algorithm runs in polynomial delay (resp. polynomial space) if the delay (resp, space) is
upper bounded by a polynomial in n + Q (resp. n + Q̂).
▶ Definition 3. Given two matroids M1 = (S, I1) and M2 = (S, I2) represented by independ-
ence oracles and an integer τ , Large Maximal Common Independent Set Enumeration
asks to enumerate all maximal common independent sets of M1 and M2 with cardinality at
least τ .
▶ Definition 4. Given two matroids M1 = (S, I1) and M2 = (S, I2) represented by inde-
pendence oracles, Ranked Maximal Common Independent Set Enumeration asks to
enumerate all maximal common independent sets of M1 and M2 in a non-increasing order
with respect to cardinality.

2.1 Overview of an algorithm for finding a maximum common
independent set

Our proposed algorithm for Large Maximal Common Independent Set Enumeration
leverages a well-known property used in an algorithm for finding a maximum common
independent set in two matroids. In this paper, we refer to a particular algorithm given by
Lawler [23].

Let M1 = (S, I1) and M2 = (S, I2) be matroids. In Lawler’s algorithm [23], we start with
an arbitrary common independent set I of M1 and M2 (e.g., I := ∅), update I to a larger
common independent set I ′ in some “greedy way”. This update procedure is based on the
following auxiliary directed graph DM1,M2(I) = (S ∪ {s, t}, A).

Let I ⊆ S be a common independent set of M1 and M2. The set A = A1 ∪A2 ∪A3 ∪A4
of arcs in DM1,M2(I) consists of the following four types of arcs. The first type of arcs is
defined as

A1 = {(e, f) : e ∈ I, f ∈ S \ I, I ∪ {f} /∈ I1, (I ∪ {f}) \ {e} ∈ I1},

that is, an arc (e, f) ∈ A1 indicates that I △ {e, f} is independent in M1. Symmetrically,
the second type of arcs is defined as

A2 = {(f, e) : e ∈ I, f ∈ S \ I, I ∪ {f} /∈ I2, (I ∪ {f}) \ {e} ∈ I2},

that is, an arc (f, e) indicates that I △ {e, f} is independent in M2. The third and fourth
types of arcs are defined as

A3 = {(s, f) : f ∈ S \ I, I ∪ {f} ∈ I1}
A4 = {(f, t) : f ∈ S \ I, I ∪ {f} ∈ I2},
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S \ I

I

s t

1 2 3

4 5 6 7

Figure 1 This figure depicts an example of the auxiliary graph DM1,M2 ({1, 2, 3}). Let M1

and M2 be matroids with the same ground set {1, . . . , 7} that defined by five bases {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 3, 5, 6}, {1, 2, 5, 6}, {1, 2, 5, 7} and six bases {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 5, 6},
{1, 3, 5, 6}, {1, 2, 5, 7}, {2, 3, 4, 6}, respectively. In this example, DM1,M2 ({1, 2, 3}) has a direc-
ted s-t path P = (s, 5, 2, 6, t) without shortcuts and {1, 3, 5, 6} is a common independent set of M1

and M2.

respectively. Arcs (s, f) and (f, t) indicate that I ∪ {f} is independent in M1 and in M2,
respectively. We illustrate a concrete example of DM1,M2(I) in Figure 1. In the following,
we simply write D(I) to denote DM1,M2(I).

Let P be a directed path from s to t in D(I) without shortcuts. By the definition of
D(I), |V (P )∩ I| is one less than |V (P ) \ I|. Moreover, we can prove that I △ (V (P ) \ {s, t})
is a common independent set of M1 and M2 [23], meaning that the common independent set
I △ (V (P ) \ {s, t}) of M1 and M2 is strictly larger than I. It is easy to see that D(I) has a
directed path from s to t without shortcuts if and only if D(I) has a directed path from s to
t. The following lemma summarizes the above discussion and also proves that the converse
direction also holds.

▶ Lemma 5 (Corollary 3.2 in [23]). Let I be a common independent set in two matroids
M1 and M2 and D(I) be the auxiliary directed graph. Then, I is a maximum common
independent set in M1 and M2 if and only if D(I) has no directed s-t path.

Such a path P in D(I) is called an augmenting path. Lemma 5 is helpful to design an
algorithm for enumerating all large maximal common independent sets in two matroids.

3 Enumeration of maximum common independent sets

We first consider the problem of enumerating all maximum common independent sets of
two matroids, which is indeed a special case of Large Maximal Common Independent
Set Enumeration, where τ = opt.2 It is known that this problem can be solved in
amortized polynomial time using the algorithm in [12]. However, an analysis of the delay
of this algorithm is not explicitly given in their paper. In order to show an explicit delay
bound, we give a polynomial-delay algorithm for Maximum Common Independent Set
Enumeration, using a simple flashlight search technique (also known as binary partition
and backtracking) [2, 27].

In this technique, an algorithm enumerates solutions by recursively picking one element
e in S and partitioning the set of solutions into two subsets; One set consists of solutions
including e, and the other set consists of solutions excluding e. After partitioning according
to e, the algorithm repeats this partitioning process until all the elements in S are picked. It
is easy to see that each solution set obtained in this process contains at most one solution.
If a solution set contains a solution, then we just output it. To upper bound the running
time of this recursive algorithm, we need to check whether a current solution set is empty

2 By opt, we mean the maximum cardinality of a common independent set of M1 and M2.
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58:6 Enumerating Large Maximal Common Independent Sets in Two Matroids

in the recursive partition process. We call such a subproblem an extension problem. To
enumerate maximum common independent sets of matroids, we define Maximum Common
Independent Set Extension as follows.

▶ Definition 6. Given two matroids M1 = (S, I1) and M2 = (S, I2), and two disjoint subsets
In, Ex ⊆ S. Maximum Common Independent Set Extension asks to find a maximum
common independent set I of M1 and M2 that satisfies In ⊆ I and Ex ∩ I = ∅.

In what follows, we call conditions In ⊆ I and Ex ∩ I = ∅ the inclusion condition and
exclusion condition, respectively. Note that for any matroid M , M \ Ex and M / In are
matroids. The following proposition is straightforward but essential for solving the extension
problem.

▶ Proposition 7. Let M1 = (S, I1) and M2 = (S, I2) be two matroids, and In and Ex
be disjoint subsets of S. Suppose that In is a common independent set of M1 and M2.
Let M ′

1 = (M1 / In) \ Ex and M ′
2 = (M2 / In) \ Ex. Then, there is a maximum common

independent set I of M1 and M2 that satisfies In ⊆ I and Ex ∩ I = ∅ if and only if there is
a common independent set I ′ of M ′

1 and M ′
2 with the cardinality |I| − |In|.

By the above proposition, we can solve Maximum Common Independent Set Ex-
tension in polynomial time by using a polynomial-time algorithm for finding a maximum
common independent set of two matroids [28]. Note that by using oracles for M1 and M2,
we can check whether a subset of S is independent in M ′

1 and in M ′
2 in time O(n + Q) and

space O(n + Q̂).
Now, we design a simple flashlight search algorithm, which is sketched as follows. Let

S(In, Ex) be the set of maximum common independent sets of M1 and M2 that satisfy
both the inclusion and exclusion conditions. Clearly, the set of all maximum common
independent sets of M1 and M2 corresponds to S(∅, ∅). By solving the extension problem,
we can determine whether S(In, Ex) is empty or not in polynomial time. Moreover, for
an element e ∈ S \ (In ∪ Ex), {S(In ∪ {e}, Ex),S(In, Ex ∪ {e})} is a partition of S(In, Ex).
Thus, we can enumerate all maximum common independent sets in S(In, Ex) by recursively
enumerating S(In ∪ {e}, Ex) and S(In, Ex ∪ {e}). We give a pseudo-code of our algorithm
in Algorithm 1. Finally, we consider the delay of this algorithm. Let T be a recursion tree
defined by the execution of Algorithm 1. As we output a maximum common independent
set of M1 and M2 at each leaf node in T , the delay of the algorithm is upper bounded by
the “distance” of two leaf nodes times the running time required to processing each node in
T . The distance between the root and a leaf node of T is at most n and thus, the distance
between two leaf nodes in T is upper bounded by linear in n. The time complexity of each
node in T is bounded by O(poly(n)). Hence, the delay of Algorithm 1 is polynomial in n. By
using an O(opt3/2nQ)-time and O(n2 + Q̂)-space algorithm for finding a maximum common
independent set of two matroids [7], the following theorem follows.

▶ Theorem 8. We can enumerate all maximum common independent sets of M1 and M2 in
O(opt3/2n2Q) delay and O(n2 + Q̂) space.

4 Enumeration of large maximal common independent sets

We propose a polynomial-delay and polynomial-space algorithm for enumerating maximal
common independent sets of two matroids M1 and M2 with the cardinality at least τ , namely
Large Maximal Common Independent Set Enumeration. From Theorem 8, if τ = opt,
we can enumerate all maximum common independent sets of M1 and M2 in polynomial delay
and polynomial space. Thus, in this section, we assume that τ < opt.
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Algorithm 1 A polynomial-delay and polynomial-space algorithm for enumerating all
maximum common independent sets in two matroids.

1 Procedure Maximum(M1 = (S, I1), M2 = (S, I2))
2 RecMaximum(M1, M2, ∅, ∅)
3 Procedure RecMaximum(M1, M2, In, Ex)
4 if In ∪ Ex = S then Output In, return
5 Choose an arbitrary e ∈ S \ (In ∪ Ex)
6 if there is a maximum common independent set I ′ of M1 and M2 that satisfies

both (In ∪ {e}) ⊆ I ′ and Ex ∩ I ′ = ∅ then
7 RecMaximum(M1, M2, In ∪ {e}, Ex)
8 if there is a maximum common independent set I ′ of M1 and M2 that satisfies

both In ⊆ I ′ and (Ex ∪ {e}) ∩ I ′ = ∅ then
9 RecMaximum(M1, M2, In, Ex ∪ {e})

Our proposed algorithm is based on reverse search [1], which is one of the frequently used
techniques to design efficient enumeration algorithms [14, 19, 21, 24, 29]. One may expect
that a flashlight search algorithm similar to that described in the previous section could
be designed for Large Maximal Common Independent Set Enumeration, because
finding a maximal solution is usually easier than finding a maximum solution. However,
this intuitive phenomenon does not hold for extension problems. In particular, the problem
of finding a maximal matching in a bipartite graph that satisfies an exclusion condition is
NP-complete [5, 19]. As the set of all matchings in a bipartite graph can be described as the
set of common independent sets of matroids, the extension problem for Large Maximal
Common Independent Set Enumeration is NP-complete.

Before delving into our algorithm, we briefly sketch an overview of the reverse search
technique. Let S be the set of solutions. In the reverse search technique, we define a set of
“special solutions” R ⊆ S and a rooted forest (i.e., a set of rooted trees) on S whose roots
belong to R. Suppose that we can enumerate R efficiently. Then, we can enumerate all
solutions in S by solely traversing the rooted forest from each root solution in R. To this end,
for a non-root solution X in S \ R, it suffices to define its parent par(X) in an appropriate
manner. More specifically, to define a rooted forest on S, this parent-child relation must
have no cycles. Moreover, to traverse this rooted forest, we need to efficiently enumerate the
children of each internal node in the rooted forest.

Now, we turn back to our problem. In the following, we may simply refer to maximal
common independent sets of M1 and M2 with cardinality at least τ as solutions. We
define the set of maximum common independent sets of M1 and M2 as the root solutions
R. We can efficiently enumerate R by Theorem 8. To define the parent of a solution
not in R, fix an arbitrary maximum common independent set R of M1 and M2. Let I

be a maximal common independent set of M1 and M2 with |I| < |R|. We consider two
matroids M1(R, I) := (M1 | (R ∪ I)) / (R ∩ I) and M2(R, I) := (M2 | (R ∪ I)) / (R ∩ I) as
well as the auxiliary directed graph D(R, I) := DM1(R,I),M2(R,I)(I \ R). Let us note that
the vertex set of D(R, I) is (R△ I) ∪ {s, t}. Since R and I are independent in both M1
and M2, by Proposition 1, R \ I and I \ R are independent in M1(R, I) and M2(R, I) as
well. Moreover, as |R| > |I|, we have |R \ I| > |I \ R|. Thus, by Lemma 5, D(R, I) has a
directed s-t path. Let P be a directed s-t path (v1 = s, v2, . . . , v2k+1 = t) in D(R, I) without
shortcuts. We first show that I △ {v2, v3} is a common independent set of M1 and M2.

MFCS 2023



58:8 Enumerating Large Maximal Common Independent Sets in Two Matroids

▶ Lemma 9. Let P = (v1 = s, . . . , v2k+1 = t) be a directed s-t path without shortcuts in
D(R, I). Then P has at least four vertices and I △ {v2, v3} is also a common independent
set of M1 and M2.

Proof. We first show that P has at least four vertices. As s is not adjacent to t in D(R, I),
P has at least three vertices. If P = (v1 = s, v2, v3 = t), then (I \ R) ∪ {v2} is a common
independent set of M1(R, I) and M2(R, I). However, by Proposition 2, I \R is a maximal
common independent set of M1(R, I) and M2(R, I), a contradiction.

We next show that I △ {v2, v3} is also a common independent set of M1 and M2. By
the definition of D(R, I), v2 ∈ R \ I and v3 ∈ I \ R. This implies that v2 /∈ I and v3 ∈ I.
Moreover, since D(R, I) has arcs (s, v2) and (v2, v3), (I \R)∪{v2} is independent in M1(R, I)
and (I \R)△{v2, v3} is independent in M2(R, I). By Proposition 1, I ∪{v2} and I△{v2, v3}
are independent in M1 and in M2, respectively. As I△{v2, v3} = (I \{v3})∪{v2} is a subset
of I ∪ {v2}, I △ {v2, v3} is a common independent set of M1 and M2. ◀

We define the parent par(I) of I as follows. To ensure the consistency of defining its
parent, we choose a path P from s to t without shortcuts in D(R, I) in a certain way, and
hence the path P is determined solely by the pair R and I. We define the parent of I (under
R) as µ(I △ {v2, v3}), where µ(X) is an arbitrary maximal common independent set of M1
and M2 containing X for a common independent set X of M1 and M2. Similarly, we choose
a maximal common independent set µ(X) in a certain way, and hence µ(X) is determined
solely by X. Therefore, by Lemmas 5 and 9, for a maximal common independent set I of M1
and M2 with |I| < |R|, the parent of I (under R) is uniquely determined and we denote it as
par(I). In the following, we claim that this parent-child relation defines a rooted forest on the
solutions whose roots belong to R. A key to this is a certain “monotonicity”, which will be
proven in Lemma 11: For any solution I with |I| < |R|, it holds that |R△ I| > |R△ par(I)|.
Given these, from any solution I with |I| < |R|, we can “reach” a maximum common
independent set of M1 and M2 (not necessarily to be R) by iteratively taking its parent at
most n times as |R△ I| ≤ n. To show this monotonicity, we give the following technical
lemma, whose proof is deferred to the end of this section.

▶ Lemma 10. Let I be a maximal common independent set of M1 and M2 with |I| < |R|
and e ∈ I and f ∈ S \ I. If D(I) has two arcs (s, f) and (f, e), then I △{e, f} is a common
independent set of M1 and M2. Moreover, |µ(I △ {e, f})| ≤ |I|+ 1.

Now, we prove the aforementioned “monotonicity”.

▶ Lemma 11. Let I be a maximal common independent set of M1 and M2 with |I| < |R|.
Then, the following three properties on par(I) are satisfied.
|I| ≤ |par(I)|,
|R△ I| > |R△ par(I)|, and
|I △ par(I)| ≤ 3.

Proof. As |R \ I| > |I \R|, by Lemma 5, there is a directed path P = (v1, . . . , v2k+1) from
s = v1 to t = v2k+1 without shortcuts in D(R, I). By Lemma 9, I ′ = I △ {v2, v3} is a
common independent set of M1 and M2. The first property |I| ≤ |par(I)| follows from

|par(I)| = |µ(I △ {v2, v3})| ≥ |I △ {v2, v3}| = |I|,

as v2 /∈ I and v3 ∈ I. Since v2 ∈ R \ I and v3 ∈ I \ R, we have |R△ I ′| = |R△ I| − 2. If
D(I) has arcs (s, v2) and (v2, v3), by Lemma 10, |µ(I ′)| ≤ |I|+ 1, which yields that

|R△ par(I)| = |R△ µ(I ′)| ≤ |R△ I ′|+ 1 = |R△ I| − 1,
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where the inequality |R △ µ(I ′)| ≤ |R △ I ′| + 1 follows from |µ(I ′)| ≤ |I| + 1 = |I ′| + 1,
meaning that µ(I ′) \ I ′ contains at most one element. This also shows that

|I △ par(I)| = |I △ µ(I ′)| ≤ |I △ I ′|+ 1 ≤ |I △ (I △ {v2, v3})|+ 1 = 3.

Thus, it suffices to show that D(I) has these arcs (v2, v3) and (s, v2). Let M1(R, I) =
(M1 | (R ∪ I)) / (R ∩ I) and M2(R, I) = (M2 | (R ∪ I)) / (R ∩ I). As D(R, I) has the arc
(v2, v3), (I \R)∪{v2} and ((I \R)∪{v2})\{v3} are dependent and independent in M2(R, I),
respectively. By Proposition 1,

((I \R) ∪ {v2}) ∪ (R ∩ I) = I ∪ {v2} and
(((I \R) ∪ {v2}) \ {v3}) ∪ (R ∩ I) = (I ∪ {v2}) \ {v3}

are dependent and independent in M2, respectively. This implies that D(I) has an arc (v2, v3).
A similar argument for (s, v2) and M1(R, I) proves that D(I) has arc (s, v2), completing the
proof of this lemma. ◀

Now, we are ready to describe our algorithm, which is also shown in Algorithm 2. We
assume that the size of a maximum common independent set of M1 and M2 is at least τ as
otherwise we do nothing. We first enumerate the set R all maximum common independent
sets of M1 and M2. This can be done in polynomial delay and polynomial space using the
algorithm in Theorem 8. We choose an arbitrary R ∈ R and for each I ∈ R, we enumerate
all solutions that belong to the component containing I in the rooted forest defined by the
parent-child relation. This is done by calling RecMaximal(M1, M2, I, R, τ). The procedure
RecMaximal(M1, M2, I, R, τ) recursively generates solutions I ′ with I = par(I ′). We would
like to emphasize that the algorithm only generates solutions I ′ with |I ′| ≥ τ .

We first claim that all the solutions are generated by this algorithm. To see this, consider
an arbitrary solution I. Define a value v(I) as

v(I) =
{

0 if |I| = |R|
|I △R| otherwise.

We prove the claim by induction on v(I). Suppose that v(I) = 0. In this case, I is a
maximum common independent set of M1 and M2, as |I△R| = 0 if and only if I = R. Then,
I is obviously generated as we call RecMaximal(M1, M2, I, R, τ) for all I ∈ R. Suppose that
v(I) > 0. Then, I is a maximal common independent set of M1 and M2 with |I| < |R|.
We assume that all the solutions I ′ with v(I ′) = |R △ I ′| < |R △ I| is generated by the
algorithm. By Lemma 11, we have |par(I)| ≥ |I| ≥ τ and |R△ par(I)| < |R△ I|, which
implies that par(I) is generated by the algorithm. By the definition of parent, we have
par(I) = µ(I △ {u, v}) and |par(I)△ I| ≥ 2 for some u, v ∈ S. Moreover, by Lemma 11,
|I △ par(I)| ≤ 3, the child I of par(I) is computed at line 7. Thus, I is generated by the
algorithm as well.

We next claim that all the solutions are generated without duplication. Since we only call
RecMaximal(M1, M2, I ′, R, τ) for I = par(I ′), it holds that v(I) < v(I ′). As v(I) ≤ n for
every solution I, by the uniqueness of the parent of non-maximum solutions, the algorithm
generates each solution exactly once. This concludes that the algorithm correctly enumerates
all maximal common independent sets of M1 and M2 of cardinality at least τ .

Finally, we discuss the running time of the algorithm. We first enumerate all maximum
common independent sets of M1 and M2. This can be done in time O(n7/2Q) delay. For
each solution I, we compute par(I) as follows. We construct the graph D(R, I) that has
n + 2 nodes and O(n2) arcs. This can be done by using O(n2Q) queries to the oracles for
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Algorithm 2 A polynomial-delay and polynomial-space algorithm for enumerating all
maximal common independent sets of M1 and M2 with the cardinality at least τ .

1 Procedure Maximal(M1 = (S, I1), M2 = (S, I2), τ)
2 Choose arbitrary R ∈ R
3 foreach I ∈ R do RecMaximal(M1, M2, I, R, τ) // Use Algorithm 1.
4 Procedure RecMaximal(M1, M2, I, R, τ)
5 Output I

6 foreach X ∈
(

S
3
)
∪

(
S
2
)

do
7 I ′ ← I △X

8 if I ′ is a maximal common independent set of M1 and M2 such that
τ ≤ |I ′| < |R| and I = par(I ′) then

9 RecMaximal(M1, M2, I ′, R, τ)

M1 and M2. To find the path P from s to t without shortcuts, we just compute a shortest
path from s to t, which can be done in O(n2) time. Thus, we can compute I △ {v2, v3} in
O(n2Q) time as well. From I △ {v2, v3}, µ(I △ {v2, v3}) can be computed in O(nQ) time.
Thus, we can compute par(I) from I in time O(n2Q).

For each call RecMaximal(M1, M2, I, R, τ), we output exactly one solution. Moreover,
the running time of computing all children of I is O(n5Q). This can be seen as there are
O(n3) candidates I ′ of children and we can check in O(n2Q) time whether a candidate I ′ is
in fact a child of I. Thus the delay of the algorithm is upper bounded by the time elapsed
between two consecutive calls. As the depth of the rooted forest defined by recursive calls is
at most n, this can be upper bounded by O(n6Q). As for the space complexity, by Theorem 8,
we can enumerate all maximum common independent sets of M1 and M2 in O(n2 + Q̂) space.
In RecMaximal, we need to store local variables I and X in each recursive call, which can be
done in space O(n). As the depth of the rooted forest is at most n, the space usage for local
variables is O(n2) in total. For each candidate I ′, we can check in O(n2 + Q̂) whether I ′ is a
maximal common independent set of M1 and M2 and whether I = par(I ′). Overall, we have
the following theorem.

▶ Theorem 12. There is an O(n6Q)-delay and O(n2 + Q̂)-space algorithm for enumerating
maximal common independent sets in two matroids with the cardinality at least τ .

4.1 Proof of Lemma 10
To complete our proof of Theorem 12, we need to show the correctness of Lemma 10. To
this end, we focus on D(I). Since I is a maximal common independent set of M1 and M2
with |I| < |R|, D(I) has a directed s-t path P = (v1 = s, v2 = f, v3 = e, . . . , v2k+1 = t). By
the definition of D(I), I△{e, f} is a common independent set of M1 and M2. We first show
that I △ {e, f} becomes dependent in M1 when we add an element f ′ in N+

D(I)(e).

▶ Lemma 13. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f1 and f2 be distinct two elements in N+

D(I)(e). Then, I ′ := (I \ {e}) ∪ {f1, f2} is
dependent in M1.

Proof. Since D(I) has arcs (e, f1) and (e, f2), both (I \ {e}) ∪ {f1} and (I \ {e}) ∪ {f2} are
independent in M1, and I ∪ {f1} and I ∪ {f2} are dependent in M1. Thus, M1 has two
circuits C1 and C2 that contain {e, f1} and {e, f2}, respectively. By the circuit elimination
axiom, there is a circuit C3 ⊆ (C1 ∪ C2) \ {e}. Since I ′ contains (C1 ∪ C2) \ {e}, it also
contains C3 and hence is dependent in M1. ◀
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▶ Lemma 14. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f1 and f2 be distinct two elements in N−

D(I)(e). Then, I ′ := (I \ {e}) ∪ {f1, f2} is
dependent in M2

Proof. Since D(I) has arcs (f1, e) and (f2, e), both I△{e, f1} and I△{e, f2} are independent
in M2 and I ∪ {f1} and I ∪ {f2} are dependent in M2. Thus, M2 has two circuits C1 and
C2 that contain {e, f1} and {e, f2}, respectively. By the circuit elimination axiom, there is a
circuit C3 ⊆ (C1 ∪C2) \ {e}. Since I ′ contains (C1 ∪C2) \ {e}, it also contains C3 and hence
is dependent in M2. ◀

We show that µ(I△{e, f}) does not contain any element in S \ (I ∪N+
D(I)(e)∪N−

D(I)(e)).

▶ Lemma 15. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f be an element in S \ (I ∪N+

D(I)(e)∪N−
D(I)(e)). Then, I △{e, f} is dependent in

at least one of M1 or in M2.

Proof. From the maximality of I, I ∪{f} is dependent in at least one of M1 or M2. Suppose
that I∪{f} is dependent on M2. Then, I∪{f} contains at least one circuit C of M2 containing
f . We show that I ∪ {f} contains only one circuit of M2. If I ∪ {f} contains another circuit
C ′ with f ∈ C ′, by the circuit elimination axiom, (C ∪ C ′) \ {f} contains a circuit, which
contradicts the fact that I is independent in M2. Thus, M2 has the unique circuit C, which is
contained in I∪{f}. Observe that N+

D(I)(f)∩I = C \{f}, since (I∪{f})\{e′} is independent
in M2 for e′ ∈ C due to the minimality of C. As f ∈ S \ (I ∪ N+

D(I)(e) ∪ N−
D(I)(e)), we

have e /∈ C. Hence, (I \ {e}) ∪ {f} contains C, that is, (I \ {e}) ∪ {f} is dependent in M2.
When I ∪ {f} is dependent in M1, (I \ {e}) ∪ {f} is also dependent in M1 from a similar
discussion. ◀

Now we are ready to prove Lemma 10.

▶ Lemma 10. Let I be a maximal common independent set of M1 and M2 with |I| < |R|
and e ∈ I and f ∈ S \ I. If D(I) has two arcs (s, f) and (f, e), then I △{e, f} is a common
independent set of M1 and M2. Moreover, |µ(I △ {e, f})| ≤ |I|+ 1.

Proof. By the definition of D(I), I△{e, f} is a common independent set since D(I) has two
arcs (s, f) and (f, e). Thus, µ(I △ {e, f}) is a maximal common independent set of M1 and
M2. We show that |µ(I △ {e, f})| ≤ |I|+ 1. Since f is contained in N−

D(I)(e), µ(I △ {e, f})
does not contain elements in N−

D(I)(e) except for f by Lemma 14. Moreover, by Lemma 13,
µ(I△{e, f}) contains at most one element in N+

D(I)(e). Finally, µ(I△{e, f}) does not contain
any element in S\(I∪N+

D(I)(e)∪N−
D(I)(e)) by Lemma 15. Therefore, µ(I△{e, f})\(I△{e, f})

contains at most one element. Since |I △ {e, f}| = |I|, |µ(I △ {e, f})| ≤ |I|+ 1. ◀

5 Ranked enumeration
In this section, we give a ranked enumeration algorithm for enumerating maximal common
independent sets of two matroids M1 = (S, I1) and M2 = (S, I2). Recall that an enumeration
algorithm is called a ranked enumeration algorithm if the algorithm enumerates solutions in
a non-increasing order of their cardinality. We do this in a slightly general manner.

In what follows, we consider the following abstract problem. Let S be a finite set and F
be a subset of 2S . Let A(τ) be an algorithm that outputs all sets in F with the cardinality
at least τ . We denote the maximum delay complexity and the space complexity from A(τ)
to A(1) as t(n) and s(n), respectively. Moreover, we denote the number of outputs of A(τ)
as #A(τ). Under this problem setting, we construct a ranked enumeration algorithm that
outputs the i-th solution in O(i · n · t(n)) time with O(s(n)) space as follows.
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Our idea is simply to execute A from A(n) to A(1). When A(k) outputs a solution with
cardinality more than k, we just ignore it. In other words, when we execute A(i), all solutions
in F with cardinality exactly i are output. Clearly, we can enumerate all solutions in F
in a non-increasing order of their cardinality. We consider the time and space complexity
of this method. It is easy to see that the space complexity of this algorithm is O(s(n))
as we just execute A in order. Thus, we estimate the running time required to output
the first i solutions for i ≤ |F|. Let j ≥ 1 be the maximum integer such that #A(j) is
less than i. Since the delay of A is bounded by t(n) and #A(j − 1) is at least i, A(j − 1)
outputs the i-th solution in O(i · t(n)) time. Since the total running time is bounded by
O((n− j + 1) ·#A(j) · t(n) + i · t(n)) = O(i · n · t(n)) time, this algorithm outputs the first i

solutions in O(i · n · t(n)) time.

▶ Theorem 16. Let S be a finite set and F be a subset of 2S. For any 1 ≤ k ≤ τ , suppose
that we have an algorithm A(k) that enumerates all sets in F with the cardinality at least k

for any 1 ≤ k ≤ τ in t(n) delay and s(n) space. Then, there is an algorithm enumerating all
subsets in I in non-increasing order of their cardinality that outputs the first i solutions in
O(i · n · t(n)) time using O(s(n)) space for i ≤ |F|.

We obtain a linear incremental-time and polynomial-space ranked enumeration algorithm
for maximal common independent sets of two matroids by combining Theorems 12 and 16.

▶ Theorem 17. There is a linear incremental-time and polynomial-space algorithm for
enumerating all maximal common independent sets in two matroids in non-increasing order.
This algorithm outputs the first i solutions in O(i · n7Q) time.

6 Applications of our algorithms

Due to an expressive power of Matroid Intersection, Theorems 12 and 17 give enumera-
tion algorithms for various combinatorial objects in a unified way. An example of such objects
is to enumerate maximal b-matchings in bipartite graphs. It is known that an intersection of
two matroids can represent all objects in the following theorem. See the appendix for details
on representing these objects by an intersection of two matroids.

▶ Theorem 18. There are polynomial delay and space enumeration algorithms for
maximal bipartite b-matchings with cardinality at least τ ,
maximal colorful forests with cardinality at least τ , and
maximal degree constrained subgraphs in digraphs with cardinality at least τ ,

Moreover, there are linear incremental-time and polynomial-space ranked enumeration al-
gorithms for the above problems.
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