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Abstract
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider
the proximity graph of a set of n disks in the plane of arbitrary radii: In this graph two disks
are connected if the distance between them is at most some threshold parameter r. The case of
intersection graphs is a special case with r = 0. We give an algorithm that, given a target length k,
computes the smallest value of r for which there is a path of length at most k between some given
pair of disks in the proximity graph. Our algorithm runs in O∗(n5/4) randomized expected time,
which improves to O∗(n6/5) for unit disk graphs, where all the disks have the same radius.1 Our
technique is robust and can be applied to many variants of the problem. One significant variant is
the case of weighted proximity graphs, where edges are assigned real weights equal to the distance
between the disks or between their centers, and k is replaced by a target weight w. In other variants,
we want to optimize a parameter different from r, such as a scale factor of the radii of the disks.

The main technique for the decision version of the problem (determining whether the graph
with a given r has the desired property) is based on efficient implementations of BFS (for the
unweighted case) and of Dijkstra’s algorithm (for the weighted case), using efficient data structures
for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The
optimization problem is then solved by combining the resulting decision procedure with enhanced
variants of the interval shrinking and bifurcation technique of [4].
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1 Introduction

In this paper we study the reverse shortest path problem (RSP for short) on graphs defined
by disks in the plane.

1 In this paper the O∗(·) notation hides subpolynomial factors.
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In the simplest variant of this problem, we are given a set P of n points in the plane,
two designated points s, t ∈ P , a real parameter r > 0 and an integer k < n. Define Gr to
be the graph (P, Er), where the edges of Er are all the pairs (p, q) such that ∥p − q∥ ≤ 2r.
This is also the intersection graph of the disks of radius r centered at the points of P . In the
decision version of the RSP problem we want to determine whether Gr contains a path from
s to t with at most k edges. In the optimization version, which is the reverse shortest path
problem itself, we wish to find the smallest value r∗ for which Gr∗ has this property. Both
versions (decision and optimization) of this problem have received considerable attention
during the past decade [5, 7, 14].

Our contributions. We give an algorithm for this problem that runs in O∗(n6/5) randomized
expected time (where the O∗(·) notation hides subpolynomial factors). This improves the
recent O∗(n5/4)-time solution of Wang and Zhao [14]. In fact we study the RSP problem in
a much more general context that involves a variety of intersection or proximity graphs on a
finite set of arbitrary disks in the plane, for which nontrivial bounds were not known prior
to this work.

We first consider unweighted disk graphs in Section 3. In this setup, we have a set D of
n disks in the plane of arbitrary radii. Each disk D ∈ D is specified by its center cD and
radius ρD. For a given parameter r ≥ 0 we define the proximity graph Gr by adding an edge
between disks D and D′ if the distance between them, dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ ,
is at most r. The case r = 0 is of special interest and gives the intersection graph of the
disks.2

For the decision version of this RSP problem we obtain an algorithm that runs in
O(n log4 n) time, and for the optimization version an algorithm that runs in O∗(n5/4)
randomized expected time. Our technique generalizes to other versions of the optimization
problem. For example, we can consider the intersection graph of the disks (r = 0) and ask
for the smallest scaling factor of the radii of all disks, either by a common additive term or
by a common multiplicative factor, that would make the graph contain a path of at most k

edges between a designated pair of source and target disks Ds and Dt.
In Section 4 we generalize our results further to weighted versions of the proximity graph

Gr. We consider two natural weight functions for the edges. The first sets the weight of
an edge (D, D′) to be the distance ∥cD − cD′∥ between the centers of the disks, and the
second sets the weight to be the distance dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ between
the disks. We solve the decision problem on such weighted disk graphs, in which we want
to determine whether the shortest path in Gr from Ds to Dt is of length at most w, for
some specified real threshold w, by a careful implementation of Dijkstra’s algorithm (using a
dynamic bichromatic closest pair structure, see below) in O(n log4 n) or O(n log6 n) time,
depending on the type of edge weights. The optimization RSP problem is then solved in
O∗(n5/4) randomized expected time. For weighted unit disk graphs we still get the better
bound of O∗(n6/5) time for the optimization problem.

Our decision algorithms rely on rather complex dynamic data structures (see below),
which should be avoided, if possible, from a practical point of view. Indeed, for unit disk
graphs, there exist simpler and slightly more efficient implementations of BFS and Dijkstra’s
algorithm, in the unweighted and weighted cases, respectively [5,7,13]. However, as explained
in the remarks following Theorems 2 and 7, we cannot use them in conjunction with our
optimization technique, for certain technical reasons. We thus present in the full version of
this paper alternative implementations, based on the known grid-based techniques, which
satisfy our requirements and are arguably somewhat simpler.

2 One technical difference is that when considering proximity graphs, it is customary, although not
obligatory, to assume that the disks are pairwise disjoint, which is certainly not an assumption that one
would make for intersection graphs.
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Our techniques. We achieve our results by carefully combining three main technical
ingredients. The first is an efficient “serial” implementation of parametric search, using
what we call interval shrinking and bifurcation procedures. This technique was first used by
Ben Avraham et al. [4] for solving problems involving the discrete and semi-discrete Fréchet
distance with shortcuts. Here we apply a somewhat modified variant of it in the rather
different context of our RSP problem, exposing its potential to be useful for a wide range of
other problems as well.

We remark, that using this technique requires that the decision procedure access the
parameter r to be optimized via comparisons only, whose outcome depends on the relation
between the optimal r∗ and certain critical values (which in our case turn out to be additively
weighted inter-point distances between the centers of the disks), on which we can apply the
interval shrinking procedure in an efficient manner. We review this technique in Section 2.

The second ingredient is a dynamic nearest neighbor and a dynamic bichromatic closest
pair data structures for additively weighted Euclidean distances. Such structures with
polylogarithmic time per update and access were recently developed by Kaplan et al. [8] and
Liu [11].

The third ingredient that we use for the weighted versions of the problem is a technique that
combines nearest neighbor data structures for two different distance functions. Specifically,
given a (dynamic) nearest neighbor data structure for a distance function d1, and a (dynamic)
nearest neighbor data structure for a distance function d2, we show how we can get a
(dynamic) data structure that can answer constrained nearest neighbor queries of the form:
find the closest point to a query q according to the distance function d1 among all points
whose distance to q according to d2 is at most some threshold r (which is part of the query).

Previous work. The decision problem in the unweighted variants can be solved by running
a BFS from s (or from Ds) in the underlying graph. Similarly, the decision problem in
the weighted variants can be solved by running Dijkstra’s shortest-path algorithm in the
graph. However, the challenge is to do it efficiently, since the graph might have up to
a quadratic number of edges. For unit-disk graphs, Cabello and Jejčič [5] presented an
O(n log n) implementation of BFS, and subsequently Chan and Skrepetos [7] presented an
alternative O(n) implementation (after pre-sorting the points by their x- and y-coordinates).
Moreover, Cabello and Jejčič [5] also described an O(n1+ε) implementation of Dijkstra’s
algorithm for weighted unit-disk graphs, which was followed by a more efficient O(n log2 n)
implementation described by Wang and Xue [13]; see also [8].

The RSP problem in the context of unweighted unit-disk graphs was posed by Cabello and
Jejčič [5], who observed that it can be solved conceptually easily in O∗(n4/3) time, by running
a binary search through the O(n2) inter-point distances (using an efficient distance selection
algorithm). Recently, Wang and Zhao [14] managed to improve this bound, obtaining an
algorithm that solves the problem in O∗(n5/4) time. In the context of weighted unit-disk
graphs, the situation is similar. The RSP problem can be solved easily in O∗(n4/3) time, but
Wang and Zhao [15] were able to obtain an improved O∗(n5/4)-time solution for that version
too. 3

As far as we know, both the decision and optimization problems have not been studied
in the context of general disk graphs.

3 The O∗(n6/5) bound for the RSP problem in both unweighted and weighted unit disk graphs was
already claimed in an unpublished manuscript [9], which appeared shortly after the first RSP paper of
Wang and Zhao. However, this manuscript overlooks an issue that may arise when using an off-the-shelf
decision problem, see the full version of this paper.

ESA 2023



67:4 The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs

2 Preliminaries

In this section we provide necessary background on the serial parametric search technique of
Ben Avraham et al. [4].

In its basic form, the technique is applicable when the threshold parameter r∗ is the
distance between a pair of input points. There are O(n2) such distances, and the most naïve
algorithm simply finds r∗ by running a binary search through them, guided by the decision
procedure at each comparison. A basic improvement is to implement the binary search using
an efficient procedure for distance selection, such as the one in [2] or [10], which runs in
O∗(n4/3) time. Up to an additional logarithmic factor, this dominates the cost of the whole
procedure (assuming that the decision procedure is more efficient; as we show, this is indeed
the case in all the RSP problems studied in this paper).

The technique of [4] is a combination of two subprocedures, referred to as the interval
shrinking and the bifurcation procedures. The interval shrinking procedure receives an integer
parameter L ≪

(
n
2
)
, and computes an interval I ⊂ R that contains r∗ and at most L critical

values, namely inter-point distances. As shown in [4], this can be done in O∗(n4/3/L1/3)
expected time.

We then run the bifurcation procedure, which simulates the execution of the decision
procedure at the (unknown) threshold r∗, as in the standard parametric search technique [12].
When the simulation reaches a comparison of r∗ with some concrete value r, we know the
answer to the comparison when r lies outside I. However, when r ∈ I we bifurcate, following
both possibilities r∗ > r and r∗ < r (the case r∗ = r will be handled too; see below). This
produces a bifurcation tree T , which we expand until we either collect sufficiently many
bifurcations, or until we reach a sufficiently large uniform depth of T . In either case we stop
this simulation phase, resolve all collected comparisons by a binary search through them,
using the (unsimulated) decision procedure to guide the search, and start a new bifurcation
phase from the unique leaf of T whose associated (shrunk) interval of critical values contains
r∗. The binary search will also identify r∗ when it is one of the critical values through which
it searches, and then terminate the entire procedure right away. In the worst case this will
happen by the time when the entire decision procedure has been simulated.

We comment that this method is viable when the decision procedure is not known to
have a parallel version of small depth, which is required in the standard parametric search
technique. If such a parallel version were available, we could apply standard parametric
search, and obtain a significantly faster algorithm. The RSP problem seems to be inherently
sequential, as it seeks a path in a graph, and is indeed amenable to the technique of [4].

As shown in [4], the bifurcation procedure can be implemented to run in O∗(L1/2D(n))
time, where D(n) is the cost of the decision procedure. A suitable choice of L yields an
overall (randomized expected) running time O∗(n6/5), for (suitable) decision procedures
that run in nearly linear time, as do the decision procedures for all the variants of the RSP
problem considered in this paper.

3 Reverse shortest paths for unweighted disk graphs

Here we are given a set D of n disks in the plane, of arbitrary radii, each parameterized by
its center cD and radius ρD. We consider the intersection graph G× = (D, E), where the
edges of G× are the intersecting pairs of disks. Formally, E consists of all pairs (D, D′) for
which ∥cD − cD′∥ ≤ ρD + ρD′ .

In the decision problem, we are given two designated disks Ds and Dt, and an integer
parameter k, and the goal is to determine whether G× contains a path of at most k edges
from Ds to Dt.
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In the optimization problem we scale the radii of the disks (without changing their
centers), either by an additive term or by a multiplicative factor, and seek the smallest
scaling parameter that makes G× have the desired s-t path.

Towards the end of the section, we consider the special and important case of unit disk
graphs, for which we obtain a better bound.

3.1 The decision procedure
We run BFS on G× from Ds. Suppose that we have already discovered all disks at some
level i of the BFS. We expand the BFS to level i + 1 as follows. We consider each disk D

at level i in turn, and look for its nearest neighbor among the disks that have not yet been
discovered. To do so, we maintain a dynamic additively-weighted Voronoi diagram Vor(U) of
the set U of all the disks that the BFS has not yet reached, where the additive weight of a
disk D is −ρD. Initially, we are at level 0 of the BFS, which includes only Ds, and we set
U = D \ {Ds}.

We search for the nearest neighbor D′ of D in Vor(U). If the weighted distance between D

and D′ is at most ρD, that is, if ∥cD−cD′∥−ρD′ ≤ ρD, we conclude that ∥cD−cD′∥ ≤ ρD+ρD′ ,
so we add D′ to level i + 1, delete it from U , and query the updated Voronoi diagram for the
new nearest neighbor of D again. We continue querying the updated Vor(U) with D until
the distance between D and its nearest neighbor is larger than ρD. When this happens we
replace D by the next disk at level i and repeat this process. When we finish processing in
this manner all disks of level i, we have discovered all disks at level i + 1, and we move on to
level i + 1.

Consider a sequence of queries to the Voronoi diagram with a disk D at some level of
the BFS. We can charge each of these queries but the last, to a new disk that we add,
following this query, to the BFS tree. Therefore the running time of this decision procedure
is dominated by the cost of O(n) queries and n deletions from Vor(U). The most efficient
implementation of such a structure, with running time O(n log4 n), is due to Liu [11]; see
also the earlier study [8], with a worse polylogarithmic factor.

In summary, we have shown:

▶ Theorem 1. Given D, Ds, Dt, and k as above, we can determine whether there exists a
path of at most k edges from Ds to Dt in the intersection graph G× associated with D, in
O(n log4 n) time.

3.2 The optimization procedure
Each disk D ∈ D is assigned the radius ρD + α, for some common additive parameter α, and
we want to find the minimum value α∗ of α for which the intersection graph of the modified
disks, now denoted by G×

α , has the desired s-t path. In principle α could also be negative, as
long as no radius becomes negative, but for simplicity we only consider the case α > 0.

We simulate the decision procedure at the unknown optimal value α∗ by using a bifurcation
procedure. Before starting the simulation, though, we perform an interval-shrinking step, as
described in the introduction.

Interval shrinking. Recall that this step, as introduced in [4], receives an integer threshold
parameter L and produces an interval I0 ⊂ R that contains α∗ and at most L other critical
values, where a value α is critical if the outcome of a comparison changes as we go past α.
In the original formulation, the critical values were inter-point distances in the plane, and
the resulting algorithm ran in O∗(n4/3/L1/3) randomized expected time.

ESA 2023



67:6 The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs

Here the setup is different. The comparisons that the decision procedure performs are
tests whether expressions of the form ∥cD − cD′∥ − ρD − ρD′ − 2α are positive or negative.
The critical values of the parameter α are thus of the form 1

2 (∥cD − cD′∥ − ρD − ρD′) . The
original mechanism of [4] is based on distance selection. We need a variant in which the basic
step is to bound the number of these new critical values in a given interval (α1, α2). We
turn this problem into a range searching problem, where the disks of D serve as both data
and query objects. Specifically, each disk D is mapped to the point (cD, ρD) in R3, and also
to the range σD = {D′ | 2α1 ≤ ∥cD − cD′∥ − ρD − ρD′ ≤ 2α2}, which is a conical shell in
3-space (see Figure 1(a)). Note that the ranges have three degrees of freedom, and that the
problem is symmetric, so that ranges can be represented as points in R3 and points as ranges.
In other words, we have a symmetric batched range searching problem in R3, involving n

points and n semi-algebraic ranges. Using standard, cutting-based decomposition techniques
in R3, such as in [1, 3], we can implement the range searching step to run in randomized
expected time O∗(n3/2). Combining this with parametric search, as in the standard distance
selection procedure [2], we can implement the distance selection procedure to also run in
randomized expected time O∗(n3/2).

(cD, 0)

(a) (b)

(cD, 0)

(cD,−ρD)

Figure 1 The range σD (in grey) when scaling by an additive term (a) and by a multiplicative
factor (b). The inner and outer radii of the annulus centered at (cD, 0) are ρD + 2α1 and ρD + 2α2,
respectively, in (a) and ρDλ1 and ρDλ2, respectively, in (b).

Extending the machinery in [4], we can convert this distance selection technique to
an interval-shrinking procedure that receives a parameter L ≪

(
n
2
)

and yields an interval
I = (α1, α2) that contains the optimum value α∗ and at most L critical values. A suitable
modification of the analysis in [4] shows that the algorithm runs in O∗(n3/2/L1/2) randomized
expected time.

Bifurcation. We now present the basic bifurcation procedure. This procedure, sometimes
with a few enhancements and modifications, is used in all our algorithms for the various
variants of the RSP problem. We refer the reader to [4] where a similar procedure has been
used.

Our simulation proceeds in phases, where in each phase we construct a bifurcation tree T

that represents some portion of the execution of the BFS, simultaneously for all values of α

in some interval I. Initially I = I0, but it will keep on shrinking as the simulation proceeds.
Each node b of T is associated with an interval Ib = (α1, α2) ⊆ I, such that, up to the state
of simulation represented by b, the BFS proceeds in an identical manner for all values α ∈ Ib.
We continue to simulate the BFS at b. At each comparison of (the unknown) α∗ with some
concrete value α, we either resolve the comparison in a unique manner when α /∈ Ib, or
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else bifurcate, meaning that we create two children u and v of b, assign Iu := (α1, α) and
Iv := (α, α2), and continue to expand T at u and at v, at each of which we know the outcome
of the above procedure (the possibility that α∗ = α will be tested later).

For each node b, let yb denote the amount of work performed at b so far by the simulation
(including comparisons that were fully resolved), and let y−

b denote the sum of the quantities
ya over all proper ancestors a of b, excluding the root. We refer to the cost at the root as the
initialization cost of the tree, and denote it as C0(T ).

We stop the expansion of T at a node b when y−
b + yb = Y , where Y is a threshold

parameter that will be determined later. That is, we stop the simulation at node b as soon
as y−

b plus the work done so far at b becomes Y . We refer to such nodes b as incomplete
leaves of T . We then continue the expansion of T at other nodes.

A subtle issue, that we will address later in more detail, is that when we back up from an
incomplete node b to explore other branches of T , we need to restore the state of execution
at the suitable ancestors of b. See below for details.

We stop the entire construction of T as soon as one of the following two conditions occurs:
(i) We collect X bifurcations, for another threshold parameter X that will be determined

later.
(ii) All the leaves of T are incomplete.

When this happens, we take all the (at most X) critical values of the bifurcations at the
inner nodes of T , and run a binary search through them, using the unsimulated decision
procedure to guide the search. This takes O(D(n) log n) time, and yields the leaf w whose
range Iw contains r∗. It is also possible that the binary search will detect that one of the
critical values it searches through is r∗ itself. In this case the entire procedure is terminated,
and r∗ is output. Otherwise, this ends a phase of the simulation. We start a new phase (if
the simulation has not already ended) with w as the root of the tree, and with Iw as the
critical interval. Note that this will cause the work already done at w to be repeated, and
it is possible that the cost of this work is much larger than Y . However, by charging the
incomplete work at w to the initialization cost C0(T ′) of the next tree T ′, we at most double
this cost, so this will not affect the overall asymptotic bound on the performance of the
procedure; see below for details.

Restoring the execution state. The issue of restoring the state at nodes we back up to,
as mentioned earlier, is more acute in our specific application, because part of this state
includes the Voronoi diagram that our procedure maintains dynamically. Although there
are persistence-based techniques that can efficiently maintain all versions of the diagram,
they are fairly involved, and we opt not to use them. Instead, we use the following simple
approach, which also takes care of all aspects of restoring the state.

Specifically, we expand the bifurcation tree in a depth-first manner, so that at each node
we first recursively construct the subtree of its left child and only then the subtree of its
right child. We thus first expand the leftmost path of T , and slowly proceed to the right,
backing from a node to its parent, and then proceed to the right child, or further up to
the grandparent. When we back up from a node w to its parent v, we simply undo the
operations performed at w, including the updates that were done to the diagram, in reverse
order, replacing each deletion of a disk by the corresponding reinsertion. This requires us to
maintain a log of the updates performed at each node, as well as a log of the other operations,
but is otherwise a reasonably simple procedure, which does not affect the asymptotic running
time and storage bounds.

ESA 2023
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3.3 Analysis
By construction, a single phase produces a tree T that has at most X binary nodes, and the
cost of producing each path of T is at most Y , ignoring the initialization cost C0(T ). This is
easily seen to imply that the cost of generating T is O(XY + C0(T )). Indeed, the cost at
each node of T , other than the root, is certainly at most Y , and there are O(X) such nodes
The cost of the subsequent binary search through the critical values is O(D(n) log n). Hence
the overall cost of a single phase is O(XY + C0(T ) + D(n) log n). The number of phases is
estimated as follows. If the phase terminates because of Condition (i), it has discovered X

critical values among those in the current critical interval, which are outside the new critical
interval Iw. Hence the number of such phases is at most L/X.4

A phase that terminates because of Condition (ii) consumes Y of the total cost of the
decision procedure: when we pass to the next phase we follow a single path of the current
T , but all paths use at least Y of the cost, excluding the work done at the root. Note that,
by construction, the part of the simulation performed along a path of the tree in one phase,
excluding the work performed at the root, is disjoint from the part performed along a path
of the tree in a different phase. This is easily seen to imply that the number of phases of
type (ii) is at most D(n)/Y .

The sum
∑

T C0(T ) of the initialization costs of all the trees is at most D(n), because
these initializations perform pairwise disjoint portions of the decision procedure. (Observe
that execution at a root is always completed, no matter how expensive it is.)

We set our parameters so that L
X = D(n)

Y and XY = D(n) log n. That is, we choose
X = L1/2 log1/2 n and Y = D(n) log1/2 n/L1/2, and obtain that the overall cost of the
simulation is O(L1/2D(n) log1/2 n) (this clearly also subsumes the cost

∑
T C0(T )).

In total, the cost of the optimization procedure is

O∗
(

n3/2

L1/2 + L1/2D(n)
)

= O∗
(

n3/2

L1/2 + L1/2n

)
.

We balance these two terms by choosing L = n1/2, and obtain a total cost of O∗(n5/4).
This result is part of the summary in Theorem 2 (which also includes other variants of the
problem), given below.

3.4 Other variants and unit disks
Scaling by a multiplicative factor. Consider first the case of intersection graphs where
the radii are scaled by a common multiplicative factor λ > 0. In this case the critical value
induced by a pair of disks D, D′ satisfies ∥cD − cD′∥ − λρD − λρD′ = 0, or λ = ∥cD − cD′∥

ρD + ρD′
.

As above, the algorithm requires a procedure that computes the number of critical values in
an interval (λ1, λ2). So we convert this task to batched range searching in three dimensions,
where the ranges are now

σD = {D′ | λ1(ρD + ρD′) ≤ ∥cD − cD′∥ ≤ λ2(ρD + ρD′)}.

4 This is a rather weak aspect of the analysis. For the bound L/X to materialize, the X critical values of
each phase must form a prefix or a suffix of the sequence of critical values in the current interval I. In
general, when these critical values are more uniformly spread within I, the number of such phases should
be much smaller. It is a challenging open problem to turn this intuition into an improved procedure, if
possible.
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These too are conical shells, but here the bounding cones have a common apex and different
opening angles (see Figure 1(b)). Other than this new type of ranges, the preceding machinery
proceeds verbatim. The interval shrinking runs in O∗(n3/2/L1/2) expected time and the
bifurcation procedure runs in O∗(L1/2n). With a proper choice of L, the overall cost is
O∗(n5/4) expected time.

Proximity graphs. Next, consider the case of proximity graphs. In this case, we assume
that the disks of D are pairwise disjoint, and we are given an additional parameter r > 0.
(For r = 0 we get the intersection graph G×.) The set of edges of the proximity graph Gr

consists of all pairs of disks (D, D′) for which dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ ≤ r. In
the RSP problem for proximity graphs, we seek the smallest value of r for which Gr has
the desired s-t path. It is easy to see that this problem can be reduced to the (additive
version of the) corresponding problem for intersection graphs, by simply adding r/2 to the
radius of each of the disks. In the optimization procedure, the critical values are of the form
∥cD − cD′∥ − ρD − ρD′ . Thus, except for the factor 1

2 used earlier, the procedure is essentially
identical to the earlier one.

Unit disks. Finally, consider the special case of unit disks, i.e., where all the radii are
equal, and consider the intersection graph of the disks. In this case, we get a better bound,
since the critical values are merely (one half of the) inter-point distances, and hence the
interval shrinking step can be performed in O∗(n4/3/L1/3) randomized expected time, as
in [4]. Modifying the expression for the overall running time accordingly, we get

O∗
(

n4/3

L1/3 + L1/2n

)
randomized expected time. We now balance these two terms by choosing

L = n2/5, and obtain a total cost of O∗(n6/5). In summary, we have shown:

▶ Theorem 2. The reverse shortest path problem for unweighted intersection or proximity
graphs of arbitrary disks in the plane can be solved in O∗(n5/4) randomized expected time.
This bound applies to all the variants of the problem listed above. In the case of unit disks,
where all radii are equal, the problem can be solved in O∗(n6/5) randomized expected time.

Remark. In the case of unit disks, the decision procedure itself can be implemented to run
faster than O(n log4 n). Chan and Skrepetos [7] even present an algorithm that runs in linear
time (after a preliminary sorting step); see also [5]. However, the critical values produced
by their procedure are not all inter-point distances, which affects the running time of the
optimization procedure. To avoid the use of complex dynamic data structures, we modify
the algorithm of Chan and Skrepetos, so that it can be combined with the optimization
procedure, see the full version of this paper.

4 Reverse shortest paths for weighted disk graphs

Recall that, for a set D of n disks in the plane and an additional parameter r ≥ 0, the
proximity graph Gr of D has an edge between every pair of disks such that

dist(D, D′) := ∥cD − cD′∥ − ρD − ρD′ ≤ r. (1)

The intersection graph G× of D is the proximity graph of D for r = 0, except that in
proximity graphs we usually assume that the disks are pairwise disjoint.
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We next assign weights to the edges. There are two natural choices for these weights. One
is to define the weight of an edge (D, D′) as the distance ∥cD −cD′∥ between the centers. The
other is to define the weight of (D, D′) to be dist(D, D′) if dist(D, D′) ≥ 0 and 0 otherwise
(that is 0 if the disks intersect). Note that for intersection graphs only the first choice gives a
reasonable weight function.

The case of weighted unit disk graphs is a special case of the problem for intersection
graphs G× with weights equal to the distances between the centers. In this case we have
∥cD − cD′∥ = dist(D, D′) + 2.

4.1 The decision procedure
We are given two disks Ds, Dt of D, and the proximity graph Gr of D for some r ≥ 0,
weighted by one of the weight functions above. We want to compute the (length of the)
shortest path π(Ds, Dt) in G from Ds to Dt. We solve this by a clever implementation of
Dijkstra’s algorithm. The required sophistication of the implementation depends on the type
of the weight function we use. We start with the simpler case in which the weight of (D, D′)
is dist(D, D′) (or 0 if the disks intersect). Specifically, the same function that defines the
graph via the threshold r (Equation (1)) is also used to define the weights.

The high-level approach is similar to that proposed by Cabello and Jejčič [5], although
their original algorithm was given only for intersection graphs of unit disks. We briefly recall
this technique, adapted to our context.

We maintain a decomposition of D into three disjoint subsets R, K and U , where R ∪ K
is the set of disks D for which we already have the correct distance label δ(D) (the length of
the shortest path from Ds), and U is the remainder of D, consisting of disks whose distance
labels have not yet been determined. R (resp., K) is the set of active (resp., dead) disks of
R ∪ K, meaning that the disks of R still have outgoing edges in Gr to disks of U , while disks
of K have no such edges. Initially, R = {Ds}, K = ∅, and U = D \ {Ds}.

A single step of our implementation of Dijkstra’s algorithm, a so-called Dijkstra step,
picks the closest pair (D, D′) in R × U , where the modified distance between D and D′ is
defined as

d(D, D′) = δ(D) + dist(D, D′). (2)

Then we need to verify that (D, D′) is indeed an edge of Gr. If this is not the case, i.e.,
dist(D, D′) > r, we move D from R to K, and never process D again. This action is justified
by the following variant of [5, Lemma 6]:

▶ Lemma 3. Let D and D′ be as above, and assume that dist(D, D′) > r. Then dist(D, D′′) >

r for every disk D′′ ∈ U .

Proof. By assumption, and since (D, D′) is the closest pair in R × U , we have, for each
D′′ ∈ U , δ(D) + r < δ(D) + dist(D, D′) ≤ δ(D) + dist(D, D′′), so dist(D, D′′) > r, as
asserted. ◀

Note that Lemma 3 also applies to weighted unit disk graphs (with weight ∥cD − cD′∥
for edge (D, D′).)

Assume then that dist(D, D′) ≤ r. We move D′ from U to R, assign to it the distance
label δ(D′) = δ(D) + dist(D, D′), and set prev(D′) = D, namely D is the disk preceding D′

along the shortest path to D′. We then repeat the entire step with the new sets R and U , and
continue until R empties out. Upon termination, U is the set of disks that are unreachable
from Ds in Gr, and K is the set of reachable disks, each with its correct distance label and
its predecessor.
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The correctness of this procedure is argued exactly as in [5], even though the distance
function is different. An efficient implementation is obtained by applying the efficient dynamic
bichromatic closest-pair data structure of Kaplan et al. [8] and of Liu [11] to R×U , under the
distance function given in (2) and under deletions from U and insertions into and deletions
from R. The technique requires the following two properties.

(i) The Voronoi diagram Vor1(U) of U , under the distance function d1(q, D′) = ∥q − cD′∥−
ρD′ , for D′ ∈ U , where cD′ and ρD′ are the respective center and radius of D′, has
linear complexity.

(ii) The Voronoi diagram Vor2(R) of R, under the distance function d2(q, D) = δ(D) +
∥q − cD∥ − ρD, for D ∈ R, also has linear complexity.

Both properties indeed hold, as each diagram is an additively-weighted Voronoi diagram of
the set of centers of the disks of U or of R. Both diagrams need to be maintained dynamically,
and the techniques of [8, 11] do that, with a polylogarithmic cost for each update and query
operation. In the more efficient implementation of [11], the amortized cost of an update is
O(log4 n).

In summary, we have shown:

▶ Theorem 4. The shortest-path tree from some starting disk in the proximity graph of
n disks (of arbitrary radii) in the plane, under the weights of inter-disk distances, can be
constructed in O(n log4 n) time.

Next we address the more challenging weighted case when the edge weights are the
distances between the centers.

The edge weights are the distances between the centers. In this case we need to maintain
a dynamic bichromatic closest pair structure under the distance λ(D, D′) = δ(D)+∥cD −cD′∥,

for D ∈ R and D′ ∈ U . But then Lemma 3 does not hold anymore, because it is then possible
that the closest pair (D, D′) ∈ R × U satisfies dist(D, D′) > r but there could be other pairs
(D, D′′) with dist(D, D′′) ≤ r, so D cannot be removed from R yet.

To overcome this difficulty we obtain a bichromatic closest pair (BCP for short) data
structure by applying a black-box reduction of Chan [6] to two novel nearest-neighbor data
structures that we now describe.

Our new data structures find for D ∈ R a nearest neighbor D′ ∈ U according to the
distance function λ but only among disks D′ such that dist(D, D′) ≤ r, and similarly for
D ∈ U .

We then run the Dijkstra steps, using the BCP data structure, as long as there are still
neighbors in R × U . Upon termination, U is the set of disks that are unreachable from
Ds in Gr, and R is the set of reachable disks, each with its correct distance label and its
predecessor.

Our nearest-neighbor data structure consists of two balanced search trees TU and TR.
The tree TU (TR is handled in a similar manner; see below) stores the disks D′ ∈ U at its
leaves, sorted in increasing order of the values ρD′ . For each node v of TU , we maintain an
additively-weighted Voronoi diagram Vor1(Uv) on the set Uv of the disks of U stored at the
leaves of the subtree rooted at v, where the weight of a disk D′ is −ρD′ . We also maintain a
second standard (unweighted) Voronoi diagram Vor2(Uv) for Uv.

Querying TU with a disk D ∈ R is performed as follows. We find the leftmost leaf w0 of
TU whose disk D′

0 satisfies dist(D, D′
0) = ∥cD − cD′

0
∥ − ρD − ρD′

0
≤ r. To find w0, we search

in TU starting at the root. At each node u that we reach, with a left child v and a right child
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w, we search with D in Vor1(Uv), and obtain its nearest neighbor D′ in the corresponding
subset of disks. If ∥cD − cD′∥ − ρD′ ≤ ρD + r, or, equivalently, dist(D, D′) ≤ r, then we
continue the search at the left child v. Otherwise we continue the search with the right
child w. At the root we first search in Vor1(Uroot = U). If the nearest neighbor D′ satisfies
∥cD − cD′∥ − ρD′ > ρD + r, that is, dist(D, D′) > r, we conclude that D has no neighbor
in U .

Let w0 be the leaf that the search reaches. Note that if a disk D′ is stored at a leaf to
the left of w0 then, by construction, dist(D, D′) > r. That is, only disks stored to the right
of w0, including w0, need to be considered.

The search for w0 provides us with a representation of the set U+
w0

of the disks to the
right of w0 as the union of O(log n) pairwise disjoint canonical sets, each being the set of
disks stored at the root of some subtree of TU . We query with D in each of the O(log n)
diagrams Vor2(Uv) that correspond to these subtrees, and return the disk that is nearest to
D, i.e., with the minimum distance between their centers, among all the resulting nearest
neighbors. The correctness of this procedure is a consequence of the following lemma.

▶ Lemma 5. In the above procedure, the output disk D′ satisfies dist(D, D′) ≤ r.

Proof. Let D′
0 be the disk at the leaf w0. By construction, we have

ρD′
0

≤ ρD′ . (3)

By construction, D′ is the disk in U+
w0

nearest to D in the inter-center distance. That is,

∥cD − cD′∥ ≤ ∥cD − cD′
0
∥. (4)

Assume by contradiction that dist(D, D′) > r. Then, by construction,

∥cD − cD′
0
∥ − ρD′

0
− ρD = dist(D, D′

0) ≤ r < dist(D, D′) = ∥cD − cD′∥ − ρD′ − ρD.

That is,

∥cD − cD′
0
∥ − ρD′

0
< ∥cD − cD′∥ − ρD′ . (5)

Adding (3) and (5), we get a contradiction to (4). This establishes the lemma. ◀

The tree TR is defined in an analogous manner for the disks of R, except that (a) the
leaves are sorted in increasing order of δ(D) + ρD, and (b) the Voronoi diagram Vor2(Rv) at
a node v of TR, where Rv is the set of disks stored at the root of the subtree rooted at v, is
the additively-weighted diagram on Rv, where the additive weight of a disk D is δ(D).

The first kind of Voronoi diagrams Vor1(Rv) are defined exactly as in the case of TU ,
with the additive weight being −ρD.

Here too, when we query TR with a disk D′ of U , we search in the tree to find the leftmost
leaf w0 of TR whose disk D0 satisfies dist(D0, D′) = ∥cD0 − cD′∥ − ρD0 − ρD′ ≤ r. This is
performed as follows. We first search for the leftmost leaf w0 whose associated disk D0
satisfies dist(D0, D′) ≤ r, using the same technique as in the previous search in TU , in which
we query various Voronoi diagrams Vor1(Rv) along the search path to w0. We then obtain
the set R+

w0
of all disks stored at the leaves to the right of w0, including w0, as the disjoint

union of O(log n) subtrees. We query each of the diagrams Vor2(Rv) associated with these
subtrees, and return the disk D that is the nearest neighbor to D′ over all these diagrams.

The correctness of this procedure is a consequence of the following “sister” lemma to
Lemma 5.
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▶ Lemma 6. In the above procedure, the output disk D satisfies dist(D, D′) ≤ r.

Proof. Let D0 be the disk at the leaf w0. By construction, we have

δ(D0) + ρD0 ≤ δ(D) + ρD. (6)

By construction, D is the disk in U+
w0

nearest to D′ in the inter-center distance with the
additive weight δ. That is,

δ(D) + ∥cD − cD′∥ ≤ δ(D0) + ∥cD0 − cD′∥. (7)

Assume by contradiction that dist(D, D′) > r. Then, by construction,

∥cD0 − cD′∥ − ρD0 − ρD′ = dist(D0, D′) ≤ r < dist(D, D′) = ∥cD − cD′∥ − ρD − ρD′ .

That is,

∥cD0 − cD′∥ − ρD0 < ∥cD − cD′∥ − ρD. (8)

Adding (6) and (8), we get

δ(D0) + ∥cD0 − cD′∥ < δ(D) + ∥cD − cD′∥,

which is a contradiction to (7). This establishes the lemma. ◀

We make these nearest-neighbor data structures dynamic by maintaining the various
Voronoi diagrams Vor1(Uv), Vor2(Uv), Vor1(Rv), Vor2(Rv), dynamically, using the technique
of [8, 11], in which the update time of each diagram is O(log4 n). An update of either of the
trees TU , TR requires updating O(log n) data structures along the path to the leaf containing
the inserted or deleted element, and therefore takes O(log5 n) time. The transformation
of Chan [6] from the two nearest-neighbor structures to a BCP data structure incurs an
additional logarithmic overhead. Overall we get

▶ Theorem 7. The shortest-path tree from some starting disk in the proximity graph of n

disks (of arbitrary radii) in the plane, under the weights of inter-center distances, can be
constructed in O(n log6 n) time.

Remark. As in the unweighted version, in the case of unit disks, the decision procedure
itself can be implemented to run faster than O(n log6 n). For example, Wang and Xue [13]
present an algorithm that runs in O(n log2 n) time, but this algorithm is not suitable for our
optimization procedure, since its comparisons generate critical values that are determined by
more than two disks. We thus replace its “problematic” components by new ones, to obtain
a (somewhat simpler) algorithm that is suitable for the optimization procedure, see the full
version of this paper.

4.2 The optimization procedure
The most natural reverse shortest path question is to find the smallest value of r such that the
length of the shortest path in Gr from Ds to Dt is smaller than some given real parameter w.

This optimization procedure is implemented as in the unweighted case, using the same
combination of the interval shrinking and bifurcation procedures. The critical values are the
same as in the case for the unweighted proximity graph.

In summary, we have shown:
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▶ Theorem 8. The reverse shortest path problem for weighted intersection or proximity
graphs of arbitrary disks in the plane can be solved in O∗(n5/4) randomized expected time.
This bound applies to all the variants of the problem listed above. In the case of unit disks,
where all radii are equal, the problem can be solved in O∗(n6/5) randomized expected time.

Remark. The machinery developed in this section seems to be more broadly applicable to
other optimization questions that involve shortest paths in weighted proximity or intersection
graphs, of disks or of more general geometric objects. Simple extensions could involve
different definitions of proximity or the use of other weight functions. Other extensions could
involve different problems, such as computing all-pairs shortest paths, computing shortest
paths with negative edge weights, computing the diameter of the graph, etc.
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