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Abstract
Fair division of resources among competing agents is a fundamental problem in computational social
choice and economic game theory. It has been intensively studied on various kinds of items (divisible
and indivisible) and under various notions of fairness. We focus on Connected Fair Division
(CFD), the variant of fair division on graphs, where the resources are modeled as an item graph.
Here, each agent has to be assigned a connected subgraph of the item graph, and each item has to
be assigned to some agent.

We introduce a generalization of CFD, termed Incomplete CFD (ICFD), where exactly p vertices
of the item graph should be assigned to the agents. This might be useful, in particular when the
allocations are intended to be “economical” as well as fair. We consider four well-known notions
of fairness: PROP, EF, EF1, EFX. First, we prove that EF-ICFD, EF1-ICFD, and EFX-ICFD are
W[1]-hard parameterized by p plus the number of agents, even for graphs having constant vertex cover
number (vcn). In contrast, we present a randomized FPT algorithm for PROP-ICFD parameterized
only by p. Additionally, we prove both positive and negative results concerning the kernelization
complexity of ICFD under all four fairness notions, parameterized by p, vcn, and the total number of
different valuations in the item graph (val).
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1 Introduction

Allocating indivisible goods among competing agents in a “fair” manner is a fundamental
research problem in computational social choice [10]. Classically, this resource allocation
problem is referred to as Fair Division, and it has been intensively studied in the literature
under various notions of fairness and efficiency [3, 4, 7, 11, 14, 16, 17, 29].

It might be desirable, sometimes, that the allocations respect some connectivity measure.
For example, while allocating offices to various research teams in a university campus, it
might be desirable to provide adjoining offices to the members of the same team. Similarly,
while dividing farmlands among heirs, it might be desirable to provide a connected piece
to each individual. Another example can be when the items are people and the graph is a
social network, and we want each team to consist of members that know each other (not
necessarily directly). Thus, Bouveret et al. [9] introduced Connected Fair Division (CFD),
an adaptation of Fair Division to graphs. In this problem, we are given (1) a set of items
represented as vertices of an input graph G, (2) a set of agents A, and (3) a set U of utility
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14:2 Parameterized Complexity of Incomplete Connected Fair Division

Table 1 Summary of our results.

Fairness
p + vcn + |A| p + vcn + |A| + val

Parameterization Exponential Kernel No-Poly Kernel

EF W[1]-hard [Theorem 1] [Theorem 3] [Theorem 4]

EF1 W[1]-hard [Theorem 2] [Theorem 3] [Theorem 4]

EFX W[1]-hard [Theorem 2] [Theorem 3] [Theorem 4]

PROP FPT by p [Theorem 5] [Theorem 3] [Theorem 4]

functions specifying the utility of each item (vertex) for each agent. The goal is to decide
whether there exists an allocation of vertices to the agents which is (i) fair under some
notion of fairness, and (ii) connected (i.e., for each agent, the subgraph induced by the set of
vertices assigned to the agent is connected). Fixing a fairness notion φ, CFD is referred to as
φ-CFD. Note that Fair Division is the special case of CFD restricted on complete graphs.
Since its introduction, CFD has received a significant amount of interest [3, 6, 20, 28].

We introduce an “economic” generalization of CFD, termed Incomplete CFD (ICFD),
where we have to allocate exactly p vertices of G to the agents (i.e., |V (G)|−p vertices remain
unassigned), and where each agent must be assigned at least one vertex. Note that CFD
is the special case of ICFD when p = |V (G)|. Leaving some items unassigned has recently
gained significant attention in context of classical Fair Division [5, 8, 15, 18]. Here, the
motivation is to attain fairness by donating some items to charity. We note that the variation
of ICFD that asks to allocate at most (rather than exactly) k vertices can be modeled using
ICFD (by repeating for p = 1 to k).

Our Contribution. In this paper, we study the parameterized complexity of ICFD considering
four well-known notions of fairness: PROP, EF, EF1, and EFX (defined in Section 2). An
overview of our results is given in Table 1. We remark that parameterized analysis of fair
allocations is an extensively studied research subject [7, 8, 20, 24, 21]. We first prove that
EF-ICFD remains W[1]-hard when parameterized by vcn + p + |A|, where vcn is the vertex
cover number of the item graph and |A| is the total number of agents. To this end, we
provide a simple parameterized reduction from the (k, M)-SUM problem (parameterized by
k) to EF-ICFD on a star graph parameterized by p + |A|. Moreover, we have |A| = 2, and
both agents have identical valuation in the reduced instance.

▶ Theorem 1. EF-ICFD is W [1]-hard parameterized by p + |A| even for star graphs.

Next, we extend this result to the fairness notions EF1 and EFX. Specifically, we show
that EF1-ICFD and EFX-ICFD are W[1]-hard when parameterized by vcn + p + |A|, even on
graphs having vcn = 2. To this end, we provide a non-trivial parameterized reduction from
(k, M)-SUM problem (parameterized by k) to EF1-ICFD (resp., EFX-ICFD) parameterized
by p + |A| on a graph having vcn = 2 (and |A| = 3).

▶ Theorem 2. EF1-ICFD and EFX-ICFD are W [1]-hard parameterized by p + |A| + vcn even
for graphs having vcn = 2.

Observe that φ-ICFD, for φ ∈ {EF, EF1, EFX}, is trivially in the class XP when paramet-
erized by p alone. Since φ-ICFD, for φ ∈ {EF, EF1, EFX}, is W[1]-hard when parameterized
by p + vcn + |A|, we include another parameter in quest of tractability. Let val be the total
number of distinct valuations that agents assign to items (val is the range of the function
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U). We note that val is used to achieve tractability of CFD by Deligkas et al. [20]. We
establish that φ-ICFD, for φ ∈ {PROP, EF, EF1, EFX}, is FPT parameterized by vcn + val + p

by designing exponential kernels.

▶ Theorem 3. For φ ∈ {EF, EF1, EFX}, φ-ICFD admits a kernel with at most p2vcnvalval +vcn
vertices. Moreover, PROP-ICFD admits a kernel with at most p2vcnvalval + vcn + p vertices.

Next, we complement our exponential kernels by showing that it is unlikely for φ-ICFD,
for φ ∈ {PROP, EF, EF1, EFX}, parameterized by vcn + val + |A| + p to admit a polynomial
compression. To this end, we provide polynomial parameter transformations from Red-Blue
Dominating Set.

▶ Theorem 4. For φ ∈ {PROP, EF, EF1, EFX}, φ-ICFD parameterized by vcn + val + |A| + p

does not admit polynomial compression, unless NP ⊆ coNP/poly.

Finally, we establish that PROP-ICFD is FPT when parameterized by p alone. To this end,
we provide a color-coding based randomized algorithm with constant success probability1.

▶ Theorem 5. There exists a randomized algorithm that solves PROP-ICFD, in time
eppO(p log p)mO(1) with success probability at least 1 − 1

e .

The choice of vcn as a structural parameter is quite natural for our results. Arguably,
vcn is the best structural parameter for providing negative results – indeed, our negative
results on parameterized complexity and kernelization complexity of ICFD parameterized
by vcn (plus other relevant parameters) imply the same for other smaller parameters such
as treewidth, cliquewidth, treedepth, and feedback vertex set (plus other relevant paramet-
ers) [19]. Furthermore, vcn is one of the most efficiently computable parameters from both
approximation [34] and parameterized [19] points of view, making it fit from an applicative
perspective even when a vertex cover is not given along with the input.

Brief Survey. The need for fairly dividing resources among competing agents is one of the
oldest problems in human civilization. The famous cut-and-choose method to remove envy
between two agents dates back to the Book of Genesis. Fairly dividing a divisible item among
agents is a very old and classical problem, also referred to as cake-cutting, and is studied
extensively in the literature [13, 33]. When the items are indivisible, the problem is well
studied under the name Fair Division [3, 4, 7, 11, 12, 14, 16, 17, 29]. The study of CFD was
initiated by Bouveret et al. [9]. Later, their work was extended to include the notion of chores
as well by Aziz et al. [3]. Various notions of fairness like maximin share allocation (Greco and
Scarcello [27]) and Pareto-optimal allocations (Igarashi and Peters [28]) are also studied. Bilò
et al. [6] studied the conditions that guarantee various notions of fair allocations. Recently,
Deligkas et al. [20] provided a comprehensive picture of the parameterized complexity of
CFD.

Motivation. A wide range of considerations motivates our definition of ICFD. First, it
is often the case that the allocator wants to save some resources for later. For instance,
consider the example of a university campus where the professors and research groups are first
allocated offices while saving some rooms for various administrative purposes and classrooms,
or for future professors in case the university is expanding. In these settings, the requirement
of connectivity might be desirable.

1 Clearly, repetition allows to boost the success probability to any constant.
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14:4 Parameterized Complexity of Incomplete Connected Fair Division

Second, partial allocations are specifically useful when the allocator wants to save some
resources for the future. For instance, it is practical for a university department to not
allocate all of its resources (like computer equipment and travel funding) in one round of
allocations and save some for future use. The notion of connectivity can be introduced
based on the graph of devices that work well with each other. A similar setting arises while
allocating ground to companies/people to build buildings while saving some ground for the
future. Here, the connectivity requirement comes naturally.

Third, it saves resources from the viewpoint of the allocators: using this framework,
they can assign the least amount of resources that makes the agents “happy”. This is
best exemplified when the allocator actually needs to buy the items. For example, when a
company actually needs to rent offices in an office space or has to buy some equipment for
its employees.

For another example, consider a park where different groups want to organize picnics
on a specific day, and the park committee has to allocate these picnic spots. Allocating
a connected spot to each group makes good sense here. Further, each day, the committee
receives multiple applications with the preferences of each group. Now, it may be impractical
to delay the allocation process till the very last day. So, it may be a good idea to allocate
these spots in phases such that in each phase, the applicants are provided the spots “fairly”
while saving a sufficient amount of spots for further phases.

Due to the connectivity requirement, it might so happen that there are some “problematic”
vertices, which, when assigned to one of the agents, may deem the allocation “unfair” in
CFD. For example, consider a vertex v such that ℓ degree-one vertices are attached to it.
Moreover, let n be the number of agents, and ℓ is much larger than n. In this case, since
each vertex is to be assigned to some agent in CFD, at least ℓ − n of these degree-one vertices
must be assigned to the same agent that is assigned the vertex v, possibly making other
agents “envious” of this agent. In these scenarios, it is a practical (and desirable) question to
seek a fair allocation by leaving some vertices unassigned.

2 Preliminaries

For ℓ ∈ N, let [ℓ] = {1, . . . , ℓ} and [0, ℓ] = {0} ∪ [ℓ]. Let N0 = N ∪ {0}. Due to space
constraints, the proofs of the statements marked with (∗), or for which we only give a proof
sketch, can be found in the full version [26].

Graph Theory. We consider finite, simple, and connected graphs. For a graph G, let V (G)
and E(G) denote the vertex set and the edge set of G, respectively. For a vertex v ∈ V (G),
let N(v) denote the open neighborhood of v, that is, N(v) = {u | uv ∈ E(G)}. For a subset
X ⊆ V (G), let NX(v) = N(v) ∩ X. Moreover, let G[X] denote the subgraph of G induced
by vertices in X, and let G − X = G[V (G) \ X] of G. A set U ⊆ V (G) is a vertex cover of
G if for every edge in G, at least one of its endpoints is in U . The minimum cardinality of a
vertex cover of G is its vertex cover number (vcn). Given a graph G, let dG(v) = |N(v)|. For
standard graph theoretic terminology not defined explicitly in this paper, we refer to the
book by Diestel [22].

Incomplete Connected Fair Division. An instance of Incomplete Connected Fair
Division (ICFD) consists of (G, A, U , p) where G is the utility graph on m vertices, A = [n]
is the set of n agents, U is the set of utility functions {ui : V (G) → N0}i∈[n], and p ∈ [m].
When clear from context, we denote |V (G)| by m and |A| by n. Every vertex v ∈ V (G)
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corresponds to an item. It is a standard assumption in the literature, and we assume it too,
that the agents have additive valuations, i.e., for every X ⊆ V (G) and for every i ∈ A, we
have ui(X) =

∑
v∈X ui(v). An allocation of items is a tuple Π = (π1, . . . , πn) such that:

1. For i ∈ A: πi ⊆ V (G), |πi| ≥ 1, and G[πi] is connected.
2. For i, j ∈ A such that i ̸= j: πi ∩ πj = ∅.
3. |

⋃
i∈A πi| = p.

We say that the bundle πi is assigned to agent i in Π. For a bundle πi, let τi = {v ∈
πi | G[πi \ {v}] is connected}. Next, we have the following notions of fairness (that we
consider in this paper). An allocation Π = (π1, . . . , πn) is:

proportional (PROP) if for every i ∈ A, ui(πi) ≥ ui(V (G))
n ;

envy-free (EF) if for every i, j ∈ A, ui(πi) ≥ ui(πj);
envy-free up to one item (EF1) if for every i, j ∈ A, ui(πi) ≥ ui(πj) − maxv∈τj ui(v);
envy-free up to any item (EFX) if for every i, j ∈ A, ui(πi) ≥ ui(πj) − minv∈τj

ui(v).

For a fairness criterion φ ∈ {PROP, EF, EF1, EFX}, φ−ICFD asks whether there exists
an allocation Π for (G, A, U , p) satisfying φ. An allocation Π that satisfies φ is termed as
φ-allocation. Agents i and j have same type if for every v ∈ V (G), ui(v) = uj(v). Let A
denote the set of all agent types, i.e., A is the partition of A such that agents i and j are in
the same part a ∈ A if and only if i and j have the same type. The type of an agent i is the
type a ∈ A such that i ∈ a; let ai denote the type of agent i. Since the agents of each type
have the same valuation function, we let ua denote the valuation function ui where i ∈ a.
When |A| = 1, we say that the agents have identical valuations and for each vertex v and
agent i, we also denote ui(v) by u(v) for brevity. We say that an instance (G, A, U , p) admits
unary valuation (resp., binary valuation) if the valuations (in the valuation function U) are
encoded in unary (resp., binary), i.e., there is some polynomial (resp., exponential) function
f such that maxi∈A,v∈V (G) ui(v) ≤ f(|V (G)|).

Parameterized Complexity. In parameterized complexity, each instance of a problem Π is
associated with a non-negative integer parameter k. A parametrized problem Πp is fixed-
parameter tractable (FPT) if there is an algorithm that, given an instance (I, k) of Πp, solves
it in time f(k) · |I|O(1), for some computable function f . Central to parameterized complexity
is the following hierarchy of complexity classes: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. We note
that FPT ̸= W[1] under ETH.

Two instances I and I ′ (possibly of different problems) are equivalent when I is a Yes-
instance if and only if I ′ is a Yes-instance. A compression of a parameterized problem
Π1 into a (possibly non-parameterized) problem Π2 is a polynomial-time algorithm that
maps each instance (I, k) of Π1 to an equivalent instance I ′ of Π2 such that size of I ′ is
bounded by g(k), for a computable function g(·). If g(·) is polynomial, then the problem
is said to admit a polynomial compression. When Π1 = Π2, compression is also termed as
kernelization. A polynomial parameter transformation from Π1 to Π2 is a polynomial time
algorithm that given an instance (I, k) of Π1 generates an equivalent instance (I ′, k′) of Π2
such that k′ ≤ p(k), for some polynomial p(·). Here, if Π1 does not admit a polynomial
compression, then Π2 does not admit a polynomial compression [19]. We refer to the books
by Cygan et al. [19] and Fomin et al. [25] for more details on parameterized complexity.

Preliminary Results and Observations. Consider an instance (G, A, U , p) of ICFD. For each
i ∈ A, we assume that ui(V (G)) > 0. Moreover, since each agent must be assigned at least
one vertex, we assume that |A| > p. We have the following basic observations and lemmas.

FSTTCS 2023



14:6 Parameterized Complexity of Incomplete Connected Fair Division

▶ Observation 6 (∗). Let Π be an allocation for an instance (G, A, U , p) of EF-ICFD with
identical valuations (i.e., |A| = 1). Then, Π admits EF if and only if for every i, j ∈ A,
u(πi) = u(πj).

▶ Lemma 7 (∗). Consider an instance (G, A, U , p) of φ-ICFD where φ ∈ {EF, EF1, EFX}. Let
H be an induced subgraph of G. If (H, A, U , p) is a Yes-instance of φ-ICFD, then (G, A, U , p)
is a Yes-instance of φ-ICFD.

We remark that for an induced subgraph H of G, it might happen that (H, A, U , p) is
a Yes-instance of PROP-ICFD but (G, A, U , p) is a No-instance of PROP-ICFD. To see this,
consider a Yes-instance (H, A, U , p) of PROP-ICFD such that H = G − {v} and |A| > 1.
Now, for each agent i ∈ A, let ui(v) = (n + 1)

∑
x∈V (H) ui(x). Now, consider the instance

(G, A, U , p). Since |A| > 1, there is at least one agent, say, j, such that the vertex v is not
assigned to the agent j. Observe that even if πj = V (G) \ {v}, uj(πj) <

uj(V (G))
n (assuming

uj(V (H)) > 0). Hence, (G, A, U , p) is a No-instance. Next, we have the following observation
concerning PROP-ICFD.

▶ Observation 8 (∗). Let p < p′ ≤ |V (G)|. Moreover, let (G, A, U , p) be a Yes-instance of
PROP-ICFD. Then, (G, A, U , p′) is a Yes-instance of PROP-ICFD as well.

The following observation follows directly from the definition of EF1-ICFD and EFX-ICFD.

▶ Observation 9. Consider an allocation Π = (π1, . . . , πn) for an instance (G, A, U , p). If
there are two agents i and j such that for each vertex v ∈ τj , ui(πi) < ui(πj) − ui(v), then Π
is neither an EF1 allocation nor an EFX allocation.

3 W[1]-hardness Results

In this section, we show that φ-ICFD where φ ∈ {EF, EF1, EFX} is W[1]-hard when para-
meterized by p + vcn + |A|. For this purpose, we first define the following problem. The
(k, M)-SUM problem is to determine, given N integers a1, . . . , aN ∈ [0, M ] and a target
integer t ∈ [0, M ], whether there exists S ⊆ N such that |S| = k and

∑
i∈S ai = t. We also

assume that 2 ≤ k ≤ N − 2 (as otherwise, we can solve the problem in polynomial time).
Abboud et al. [1] proved the following:

▶ Proposition 10 ([1]). (k, N2k)-SUM parameterized by k is W [1]-complete.

3.1 EF-ICFD
First, we provide a parameterized reduction from (k, M)-SUM to EF-ICFD on a star graph
such that p = k + 2 and |A| = 2. We begin by explaining our construction.

Construction. Let (a1, . . . , aN , t) be an instance of (k, M)-SUM. We create an instance
(G, A, U , p) of EF-ICFD in the following manner. Let G be a star on N + 2 vertices such that
V (G) = {v1, . . . , vN } ∪ {d1, d2} and E(G) = {d1d2} ∪ {d1vi | i ∈ [N ]} (i.e., G is a star with
N + 1 leaves and d1 as the center vertex). Let A = {1, 2}. Moreover, for j ∈ A and i ∈ [N ],
let uj(vi) = ai, uj(d1) = 1 +

∑
ai, and uj(d2) = uj(d1) + t (here, |A| = 1). Finally, we set

p = k + 2.
Now, we have the following lemma.

▶ Lemma 11. (a1, . . . , aN , t) is a Yes-instance of (k, M)-SUM if and only if (G, A, U , p) is
a Yes-instance of EF-ICFD.
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x1 x2 x3 x4

x5

x6

v1

vN

Figure 1 Illustration for the construction of graph G used in the proof of Theorem 2.

Proof Sketch. In one direction, let S ⊆ [N ] is a set such that |S| = k and
∑

i∈S ai = t.
Then, observe that the allocation Π = (π1, π2) as π1 = {d1} ∪ {vi | i ∈ S} and π2 = d2
satisfies EF.

In the other direction, suppose (G, A, U , p) is a Yes-instance of EF-ICFD and Π = (π1, π2)
is an allocation for (G, A, U , p) satisfying EF. Since G is a star graph and p ≥ 4 (as p = k + 2
and k ≥ 2), at least one of the agents, wlog let π1, is assigned at least two vertices, one of which
is vertex d1. Now, u(π1) ≥ 1 +

∑
i∈[N ] u(vi). Observe that the vertex d2 ∈ π2, as otherwise

u(π2) ≤
∑

i∈[N ] u(vi) < u(π1), contradicting that Π satisfies EF (due to Observation 6).
Since d1 ∈ π1, no other vertex can be assigned to π2 while keeping G[π2] connected. Hence,
π2 = {d2} and u(π2) = u(d1) + t. Since |π2| = 1, note that |π1| = p − 1 = k + 1. Hence,
exactly k vertices are assigned to πi other than d1. Moreover, since Π satisfies EF, due to
Observation 6, we have u(π1) = u(π2). Therefore, there is a set S ⊆ [N ] such that |S| = k

and
∑

i∈S u(vi) = u(π2)−u(d1) = t. This implies that
∑

i∈S ai = t (since ai = u(vi)). Hence
(a1, . . . , aN , t) is a Yes-instance. ◀

We have the following theorem due to the above construction, Proposition 10 and
Lemma 11.

▶ Theorem 1. EF-ICFD is W [1]-hard parameterized by p + |A| even for star graphs.

3.2 EF1-ICFD and EFX-ICFD
Next, we prove that EF1-ICFD and EFX-ICFD are W[1]-hard when parameterized by p +
vcn + |A|. To this end, we provide a parameterized reduction from (k, M)-SUM to EF1-ICFD
(resp.,EFX-ICFD) on a graph with vcn = 2, while |A| = 3, and p = k + 6. First, we explain
our construction.

Construction. Let (a1, . . . , aN , t) be an instance of (k, M)-SUM. First, we will define how
to construct the graph G as it is the same for both EF1-ICFD and EFX-ICFD. Consider a path
on five vertices x1, . . . , x5 and attach a vertex x6 to x4. Now, we add N vertices v1, . . . , vN

and attach them to x2 by an edge. More formally, let V (G) = {x1, . . . , x6, v1, . . . , vN } and
E(G) = {x2vi | i ∈ [N ]} ∪ {x4x6} ∪ {xixi+1 | 1 ≤ i ≤ 4}. See Figure 1 for a reference.
Next, we have A = [3] and p = k + 6. Finally, we define the valuation functions U and
U ′ for EF1-ICFD and EFX-ICFD, respectively. These functions will be identical except for
the valuation u3(x1) and u′

3(x1). Moreover, let C =
∑

i∈[N ] ai. The valuation functions are
defined as follows:

ui(vj) = C + ai for i ∈ [3] and j ∈ [N ],
ui(x2) = 2NC for i ∈ [3],
u1(x3) = u2(x3) = 0 and u3(x3) = 2NC + kC + t,
u1(x4) = u2(x4) = 3NC + kC + t and u3(x4) = 0,

FSTTCS 2023



14:8 Parameterized Complexity of Incomplete Connected Fair Division

ui(x5) = 0 for i ∈ [3],
ui(x6) = 0 for i ∈ [3],
ui(x1) = NC for i ∈ [3]. Finally, u′

3(x1) = 0.

First, we have the following straightforward lemma that proves one side of our reduction.

▶ Lemma 12. If (a1, . . . , aN , t) is a Yes-instance of (k, M)-SUM, then (G, A, U , p) and
(G, A, U ′, p) are Yes-instances of EF1-ICFD and EFX-ICFD, respectively.

Proof Sketch. Let S ⊆ {a1, . . . aN } be a set such that
∑

a∈S a = t and |S| = k. Then,
consider the allocation Π = (π1, π2, π3) such that π1 = S ∪ {x1, x2}, π2 = {x4, x5, x6}, and
π3 = {x3}. It is easy to see that |π1| + |π2| + |π3| = |S| + 6 = k + 6 = p, and to verify that Π
is an EF1-ICFD and EFX-ICFD for (G, A, U , p) and (G, A, U ′, p), respectively. ◀

Some Useful Observations. Next, we prove some observations that will be useful for proving
the other direction of our reduction. For the observations where we do not use any of u3(x1)
and u′

3(x1), we will use only the valuation functions U to ease the presentation. Moreover,
we remark that these observations are valid for both EF1-ICFD (assuming valuations U)
and EFX-ICFD (assuming valuations U ′). First, observe that agents 1 and 2 have identical
valuations, {x2, x4} is a vertex cover of G and hence G[V (G) \ {x2, x4}] is an independent
set.. Moreover, since k ≥ 2, note that p ≥ 8.

For the rest of this section, let Π = (π1, π2, π3) be an allocation that is an EF1-ICFD for
(G, A, U , p) (resp., EFX-ICFD for (G, A, U ′, p)). First, we have the following easy observation.

▶ Observation 13 (∗). If x2 ∈ πi, for i ∈ [3], then x2 /∈ τi.

Next, we have the following observation.

▶ Observation 14 (∗). x2 ∈ π1 ∪ π2.

Next, we have the following crucial observation.

▶ Observation 15 (∗). π3 = {x3} and π2 = {x4, x5, x6}.

Finally, we have our main lemma, which implies the other side of the reduction.

▶ Lemma 16 (∗). If (G, A, U , p) (resp., (G, A, U ′, p)) is a Yes-instance of EF1-ICFD (resp.,
EFX-ICFD), then (a1, . . . , aN , t) is a Yes-instance of (k, M)-SUM.

The following theorem is a consequence of our construction, Proposition 10, and Lem-
mas 12 and 16.

▶ Theorem 2. EF1-ICFD and EFX-ICFD are W [1]-hard parameterized by p + |A| + vcn even
for graphs having vcn = 2.

Theorems 1 and 2 establish that, for φ ∈ {EF, EF1, EFX}, φ-ICFD is W[1]-hard paramet-
erized by p + |A| + t when the valuations are encoded in binary. We remark that these
results cannot be directly generalized to unary valuations as (k, M)-SUM is in P when M is
encoded in unary.



H. Gahlawat and M. Zehavi 14:9

4 Kernelization by vcn + p + val

Let (G, A, U , p) be an instance of ICFD. We consider the parameterization of ICFD para-
meterized by vcn + p + val. Recall that vcn is the vertex cover of the input graph G,
A is the set of all agent types, and val = |{ui(v) | i ∈ [n], v ∈ V (G)}|. Moreover, let
VAL = {ui(v) | i ∈ [n], v ∈ V (G)}.

Let U be a vertex cover of size t. If no such vertex cover is given, then we can compute a
vertex cover U of size t ≤ 2vcn using a polynomial-time approximation algorithm [34]. Let I

be the independent set V (G) \ U . Our kernelization algorithm uses techniques similar to
the ones used by Deligkas et al. [20] to provide an FPT algorithm for CFD parameterized by
vcn + |A| + val. We partition the vertices of I into equivalence classes such that for any two
vertices u and v of the same equivalence class, NU (u) = NU (v) and ui(v) = ui(u) for each
i ∈ A. Since vertices of each equivalence class are “indistinguishable” for the agents, we keep
only at most p vertices from each equivalence class. We then establish that we can have at
most 2tval|A| many equivalence classes, thus giving us a kernel with at most 2tval|A|p + t

vertices. Below, we discuss these ideas formally.

Kernel for EF-ICFD, EF1-ICFD, and EFX-ICFD. We have the following reduction rule.

▶ Reduction Rule 1 (RR1). Let (G, A, U , p) be an instance of φ-ICFD where φ ∈ {EF, EF1,

EFX}. Let S ⊆ I be a set of vertices such that |S| > p and for any two vertices u, v ∈ S,
NU (u) = NU (v) and for each agent i ∈ A, ui(u) = ui(v). Moreover, let v1, . . . v|S| be an
ordering of vertices in S. Then, let H ⇐ G −

{
vp+1, . . . , v|S|

}
.

We have the following lemmas to prove RR1 is safe and to bound the size of our kernel.

▶ Lemma 17 (∗). RR1 is safe.

▶ Lemma 18 (∗). Let (G, A, U , p) be an instance of φ-ICFD such that RR1 cannot be applied
to (G, A, U , p). Then, |V (G)| ≤ 2t · val|A| · p + t.

Since |A| ≤ val, RR1, along with Lemma 17 and Lemma 18, imply that for φ ∈
{EF, EF1, EFX}, φ-ICFD admits a kernel with at most p2vcnvalval + vcn vertices. This gives
us the desired kernel for φ-ICFD, for φ ∈ {EF, EF1, EFX}, from Theorem 3.

Kernel for PROP-ICFD. Next, we design a kernel for PROP-ICFD. First, we give an
overview of the ideas leading to this kernel. As remarked in Section 2, since it might so
happen that PROP-ICFD exists for a subgraph H of G but not for G, we cannot simply
delete vertices as before (which might decrease the overall valuation of the graph for some
agents) to get our kernel. So, we have to keep track of the “valuation that is lost” for each
agent while deleting the vertices. In this quest, we augment the graph with some dummy
vertices and assign them the valuation for each deleted vertex. Hence, even if we start with
a unary (resp., binary) valuation instance, we might end up with an instance that does
not admit unary (resp., binary) valuations. We tackle this problem by establishing that if
the valuation for a dummy vertex gets “too large”, then we are dealing with a No-instance.
This ensures that we have a kernel that respects the unary (resp., binary) valuation if the
original instance respects unary (resp., binary) valuation. Now, we discuss the details of our
kernelization algorithm.

Let (G, A, U , p) be an instance of PROP-ICFD. First, we use the following preprocessing
step to generate an augmented instance (G′, A′, U ′, p′) in the following manner.
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Preprocessing Step: We get (G′, A′, U ′, p′) by adding n dummy agents, n dummy vertices,
and setting p′ = p + n. More formally:
1. Let V (G′) = V (G) ∪ {d1, . . . , dn}. Fix a vertex w ∈ U . Now, let E(G) = E(G) ∪

{didj | i, j ∈ A} ∪ {d1w}. Moreover, let A′ = A ∪ {n + 1, . . . , 2n} and p′ = p + n.
2. For i ∈ [n] and v ∈ V (G), let u′

i(v) = 2ui(v). Moreover, for i ∈ [n] and v ∈ {d1, . . . , dn},
let u′

i(v) = 0 and u′
n+i(di) = 1. Furthermore, for n < i ≤ 2n and v /∈ {d1, . . . , dn}, let

u′
i(v) = 0.

Now, we have the following lemma.

▶ Lemma 19 (∗). (G, A, U , p) is a Yes-instance of PROP-ICFD if and only if (G′, A′, U ′, p′)
is a Yes-instance of PROP-ICFD.

Let D = {d1, . . . , dn} be the set of dummy vertices added in the Preprocessing Step.
Now, we have the following reduction rule.

▶ Reduction Rule 2 (RR2). Let (G′, A′, U ′, p′) be an instance of PROP-ICFD (obtained from
an initial instance (G, A, U , p) after applying Preprocessing Step and possibly RR2). Let
S ⊆ I be a set of vertices such that |S| > p and for any two vertices u, v ∈ S, NU (u) = NU (v)
and for each agent i ∈ A, u′

i(u) = u′
i(v). Moreover, let v1, . . . v|S| be an ordering of vertices

in S. Then, let G′′ ⇐ G′ −
{

vp+1, . . . , v|S|
}

. Moreover, we modify U ′ to get U ′′ in the
following manner. For i ∈ A′ and v ∈ V (G′′), u′′

i (v) ⇐ u′
i(v) and, finally, for i ∈ A (i ∈ [n]),

u′′
i (di) ⇐ u′′

i (di) +
∑

p+1≤j≤|S| u′
i(vj).

We have the following lemma to prove that RR2 is safe.

▶ Lemma 20 (∗). RR2 is safe.

Next, we have the following rule that we apply after we have applied RR2 exhaustively.
This rule ensures that the valuation on any vertex does not get “much larger” than the size
of the kernel.

▶ Reduction Rule 3 (RR 3). Let (G′, A′, U ′, p′) be an instance we get after applying
Preprocessing Step and then an exhaustive application of RR2. If for some i ∈ [n], ui(di) >

ui(V (G′) \ D), then report a No-instance.

▶ Lemma 21 (∗). RR3 is safe.

Next, we establish a bound on the size of the reduced instance. We have the following
lemma.

▶ Lemma 22 (∗). Let (G, A, U , p) be an instance of PROP-ICFD such that G has a vertex
cover U of size t. Let (G′, A′, U ′, p′) be the instance we get after applying the Preprocessing
Step and an exhaustive application of RR2. Then, |V (G′)| ≤ 2tval|A|p+ t+n and p′ ≤ p+n.

Since |A| = n ≤ p and |A| ≤ val, RR2, along with Lemmas 19, 20, and 22, imply that
PROP-ICFD admits a 2tvalvalp + t + p vertex kernel. Moreover, due to RR3 and Lemma 21,
if the initial instance respects unary (resp., binary) valuation, then the kernel also respects
unary (resp., binary) valuation. Finally, the kernelization algorithms presented in this section
imply the following theorem.

▶ Theorem 3. For φ ∈ {EF, EF1, EFX}, φ-ICFD admits a kernel with at most p2vcnvalval +vcn
vertices. Moreover, PROP-ICFD admits a kernel with at most p2vcnvalval + vcn + p vertices.
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5 Incompressibility

In this section, we complement our exponential kernels by showing that it is unlikely
that φ-ICFD admits a polynomial kernel parameterized by vcn + val + p + |A|, where φ ∈
{PROP, EF, EF1, EFX}. We first define the following problem. In Red-Blue Dominating
Set, we are given a bipartite graph G with a vertex bipartition V (G) = T ∪ N and a
non-negative integer k. A set of vertices N ′ ⊆ N is said to be an RBDS if each vertex in T

has a neighbour in N ′. The aim of Red-Blue Dominating Set is to decide whether there
exists an RBDS of size at most k in G. We assume that k < |N | as otherwise, the problem
becomes trivial. Dom et al. [23] proved the following:

▶ Proposition 23 ([23]). Red-Blue Dominating Set parameterized by |T | + k does not
admit a polynomial compression, unless NP ⊆ coNP/poly.

5.1 Incompressibility for PROP and EF
In this section, we provide a polynomial parameter transformation from Red-Blue Dom-
inating Set parameterized by |T | + k to PROP-ICFD and EF-ICFD parameterized by
vcn + val + p + |A|.

Polynomial Parameter Transformation. Suppose ((G, k), |T | + k) is an instance of Red-
Blue Dominating Set parameterized by |T | + k such that V (G) = T ∪ N . For brevity,
let P denote the value of the parameter vcn + val + p + |A|. First we construct a graph
G′ with V (G′) = T ′ ∪ N ′ from G by adding two dummy vertices d1 and d2 such that
T ′ = T ∪ {d1, d2}, N ′ = N , and E(G′) = E(G) ∪ {d1x, d2x | x ∈ N ′}. Now, we construct
the instance ((G′, A, U , p), P ) of ICFD such that ((G, k), |T | + k) is a Yes-instance if and only
if ((G′, A, U , p), P ) is a Yes-instance and |P | ≤ h(|T | + k) where h is a polynomial function.
Let p = |T | + k + 2 and A = {1, 2}. We will define the valuation function U based on the
fairness criterion.

Incompressiblity of PROP-ICFD. For each vertex v ∈ N ′, let u1(v) = u2(v) = 0. For each
vertex v ∈ T ′ \ {d1}, let u1(v) = u2(v) = 1 and u1(d1) = u2(d1) = |T | + 1. Note that val = 3
and |A| = 1 (i.e., identical valuation). Observe that our reduction is a polynomial parameter
transformation since P = vcn + val + p + |A| ≤ |T ′| + 3 + |T | + k + 2 + 2 = 2|T | + k + 9
(as T ′ is a vertex cover of G′ and |T ′| = |T | + 2). Hence, the following lemma implies the
incompressibility of PROP-ICFD.

▶ Lemma 24. ((G′, A, U , p), P ) is a Yes-instance of PROP-ICFD if and only if ((G, k), t + k)
is a Yes-instance of Red-Blue Dominating Set.

Proof Sketch. In one direction, let G has an RBDS S of size k. Then, observe that
Π = (π1, π2) such that π1 = {d1} and π2 = (T ′ \ {d1}) ∪ S is a PROP allocation for
((G′, A, U , p), P ).

In the reverse direction, let ((G′, A, U , p), P ) be a Yes-instance of PROP-ICFD. Then,
since u1(V (G′)) = u2(V (G′)) = 2|T | + 2 and both agents have identical valuation, for
PROP-ICFD, ui(π1) = ui(π2) = |T | + 1. The only way to achieve this is to assign the vertex
d1 (possibly along with some vertices from N ′) to one of the agents and the vertices in
T ′ \{d1} (along with some vertices from N ′) to the other agent. WLOG, assume that d1 ∈ π1
and T ′ \ {d1} ⊆ π2. Observe that |π1| ≥ 1. Therefore, |π2| ≤ p − 1 = |T | + k + 1. Since
T ′ \ {d1} ⊆ π2, |π2 ∩ N ′| ≤ k. Moreover, since G′[π2] is connected, observe that each vertex
in T ′ \ {d1} shares an edge with at least one vertex in π2 ∩ N ′. Hence, π2 ∩ N ′ is an RBDS
of G containing at most k vertices. ◀
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Incompressibility of EF-ICFD. Here, we distinguish two cases depending on whether
|T | + k + 2 is odd or even. The two cases have similar proofs and hence we consider only the
case when |T | + k + 2 is odd, and the case when |T | + k + 2 is even is considered in the full
version [26].

Case 1: |T | + k + 2 is odd. In this case, for each vertex v ∈ N ′, let u1(v) = u2(v) = 5|T |.
For each vertex v ∈ T ′ \ {d1}, let u1(v) = u2(v) = 1 and u1(d1) = u2(d1) = 5k|T | + |T | + 1.
Note that val = 3 and |A| = 1 (i.e., identical valuation). Moreover, similarly to the above
case for PROP-ICFD, here also P ≤ 2|T | + k + 9. Now, we have the following lemma.

▶ Lemma 25. ((G′, A, U , p), P ) is a Yes-instance of EF-ICFD if and only if ((G, k), |T | + k)
is a Yes-instance of Red-Blue Dominating Set.

Proof. In one direction, let S be an RBDS in G with k vertices. Then,observe that Π =
(π1, π2) such that π1 = {d1} and π2 = (T ′ \ {d1}) ∪ S is an EF allocation for ((G′, A, U , p), P ).

In the reverse direction, let Π = (π1, π2) be an EF allocation for ((G′, A, U , p), P ). First,
we show that d1 ∈ π1 ∪ π2. Targeting contradiction, assume that d1 /∈ π1 ∪ π2. Since
|π1| + |π2| = |T | + k + 2 is an odd number, |π1| ≠ |π2|. As the valuations are identical,
we have u(π1) = u(π2) (Observation 6). Let |π1 ∩ N ′| = α and |π2 ∩ N ′| = β. Then,
u(π1) = u(π1 ∩ N ′) + u(π1 ∩ T ′) = 5α|T | + (|π1| − α) ≤ 5α|T | + |T | + 1. Similarly,
u(π2) ≤ 5β|T | + |T | + 1. We have the following two cases:
1. α ̸= β : Without loss of generality assume that α > β. Then, u(π1) − u(π2) ≥ 5α|T | −

5β|T | − |T | − 1 ≥ 5|T | − |T | − 1 ≥ 4|T | − 1 > 0 (for |T | > 0). Hence u(π1) ̸= u(π2), which
contradicts the fact that Π is an EF allocation (due to Observation 6).

2. α = β : Since |π1| ≠ |π2| and α = β, observe that |π1| − α ̸= |π2| − β. Hence, u(π1) −
u(π2) = 5α|T | + (|π1| − α) − 5β|T | − (|π2| − β) = (|π1| − α) − (|π2| − β) ̸= 0. Hence
u(π1) ̸= u(π2), which contradicts the fact that Π is an EF allocation (due to Observation 6).

Hence, d1 ∈ π1 ∪ π2. WLOG, assume d1 ∈ π1. Thus, u(π1) ≥ 5k|T | + |T | + 1. Moreover,
let π1 be assigned α vertices from N ′ and β vertices from T ′ \ {d1}. ( We will argue that
α = β = 0.) Then, u(π1) = 5k|T |+ |T |+1+5α|T |+β = 5(k +α)|T |+ |T |+β +1. Now, let π2
is assigned α′ vertices from N ′ and β′ vertices from T ′ \ {d1}. Therefore, u(π2) = 5α′|T | + β′

where β′ ≤ |T | + 1. We again have the following two cases depending on whether α′ equals
k + α or not.
1. α′ = k + α. In this case, note that u(π1) = u(π2) if and only if |T | + β + 1 = β′. It is

only possible if β = 0 and β′ = |T | + 1 (since β′ ≤ |T | + 1).
2. α′ ̸= k + α. We will show that, in this case, u(π1) ̸= u(π2). Note that u(π1) − u(π2) =

5(k+α)|T |+ |T |+β +1−5α′|T |−β′ = 5(k+α−α′)|T |+ |T |+1+β −β′. Since α′ ̸= k+α,
k+α−α′ ̸= 0, and hence, −1 ≥ k+α−α′ ≥ 1. Therefore, −5|T |+|T |+1+β−β′ ≥ u(π1)−
u(π2) ≥ 5|T |+ |T |+1+β −β′, i.e., −4|T |+1+β −β′ ≥ u(π1)−u(π2) ≥ 6|T |+1+β −β′.
Since 0 ≤ β ≤ |T | + 1 and 0 ≤ β′ ≤ |T | + 1, we have that −|T | ≤ 1 + β − β′ ≤ |T | + 2.
Therefore, u(π1) ̸= u(π2).

Hence, if u(π1) = u(π2), then α′ = α + k, β = 0, and β′ = |T | + 1. Moreover,
1 + α + β + α′ + β′ = p = |T | + k + 1. Therefore, 1 + α + 0 + α′ + |T | + 1 = |T | + k + 1,
i.e, α + α′ = k. Solving α′ = α + k and α + α′ = k gives us α′ = k and α = 0. Therefore,
π1 = {d1} and π2 = (T ′ \ {d1}) ∪ S such that S ⊆ N ′ and |S| = k. Since G′[π2] is connected,
each element in T ′ \ {d1} has a neighbour in S. Since T ⊆ T ′ \ {d1}, S is an RBDS of G

and |S| = k. ◀
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Figure 2 Illustration for the construction of G′.

5.2 Incompressibility for EFX and EF1
In this section, we provide a polynomial parameter transformation from Red-Blue Dominat-
ing Set parameterized by |T |+k to EF1 (resp., EFX) parameterized by P = vcn+val+|A|+p.
First, we provide our construction. Let t = |T |. Moreover, we assume that k > 1 and t > 1.

Construction. Suppose ((G, k), t + k) is an instance of Red-Blue Dominating Set
parameterized by t + k such that V (G) = T ∪ N . See Figure 2 for a reference. First,
we construct a graph G′ with V (G′) = T ′ ∪ N ′ from G by adding some dummy vertices.
First, we add two dummy vertices d1 and d2 such that T ′ = T ∪ {d1}, N ′ = N ∪ {d2},
and E(G′) = E(G) ∪ {d1x | x ∈ N ′} (d1d2 is also an edge). Next, we add two sets of
vertices X = {x1, . . . , xt+3} and Y = {y1, . . . , yt+1} of size t + 3 and t + 1, respectively,
to T ′ and attach each xi and yj to d2, i.e., T ′ = T ′ ∪ {x1, . . . , xt+3} ∪ {y1, . . . , yt+1} and
E(G′) = E(G′) ∪ {xid2, yjd2 | i ∈ [t + 3], j ∈ [t + 1]}. Next, for each yj , j ∈ [t + 1], we add
32kt (here, we want a large enough number) vertices Zj = {zj

1, . . . , zj
32kt} to N ′ and for

each zj
ℓ , ℓ ∈ [32kt], we add the edge yjzj

ℓ to E(G′). Finally, let {v1, . . . , v|N |} be an ordering
of vertices of N . For each vi, i ∈ [|N |], we add a vertex wi and an edge viwi to G′. Let
W denote the set of vertices

{
w1, . . . , w|N

}
. This completes our construction. Note that

|V (G′)| = |V (G)| + |N | + 2 + t + 3 + t + 1 + (t + 1)32kt. Next, we set A = [2t + 6] and
p = 4k(2t + 6) = 8kt + 24k. We define the valuation function U below. Moreover, for ease of
presentation, let us denote the set T ∪ N ∪ W ∪ {d1} by B′ and the set V (G′) \ (B′ ∪ {d2})
by B.

Valuation Function. We have two types of agents: Type-I and Type-II, each with cardinality
t + 3, such that agents of the same type have identical valuations. Recall that |A| =
2t + 6. Hence, without loss of generality, assume that {1, . . . , t + 3} are Type-I agents and
{t + 4, . . . , 2t + 6} are Type-II agents. For ease of presentation, we will use uI and uII to
represent the valuation function for all Type-I and Type-II agents, respectively. The valuation
function U is defined as follows:
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for v ∈ T , uI(v) = uII(v) = 1,
uI(d1) = uII(d1) = 1,
for v ∈ N , uI(v) = 0 and uII(v) = 5kt,
for v ∈ W , uI(v) = 5kt and uII(v) = 0,
uI(d2) = uII(d2) = 10kt,
for i ∈ [t + 3], uI(xi) = 0 and uII(xi) = 5kt + t + 1,
for i ∈ [t + 1], uI(yi) = 5kt + t + 1 and uII(yi) = 0, and
for i ∈ [t + 1], j ∈ [32kt], uI(zi

j) = uII(zi
j) = 0.

First, we have the following straightforward observation concerning our construction
and U .

▶ Observation 26. For each connected component C in G[B], uI(C) ≤ 5kt + t + 1 and
uII(C) ≤ 5kt + t + 1.

Now, we will show that ((G′, A, U , p), P ) is Yes-instance of EF1-ICFD (resp., EFX-ICFD)
if and only if ((G, k), t + k) is a Yes-instance of Red-Blue Dominating Set. First, we
prove one side of this argument in the following lemma.

▶ Lemma 27 (∗). If ((G, k), t + k) is a Yes-instance of Red-Blue Dominating Set, then
((G′, A, U , p), P ) is Yes-instance of EF1-ICFD as well as of EFX-ICFD.

Next, we will prove the other side of our argument. For the rest of this section, let
((G′, A, U , p), P ) be Yes-instance of EF1-ICFD (resp., EFX-ICFD) and Π = (π1, . . . , π2t+6) be
an allocation for ((G′, A, U , p), P ) that satisfies EF1 (resp., EFX). We will need the following
observations about the properties of Π. These observations will be valid for both EF1 as well
as EFX.

Important Observations. First, we have the following easy observation.

▶ Observation 28 (∗). Let there be an i such that for any vertex v ∈ τi, uI(πi)−uI(v) ≥ 5t+1
(resp., uII(πi) − uII(v) ≥ 5t + 1), then at most t + 1 agents of Type-I (resp., Type-II) can be
assigned vertices only from B′ = T ∪ N ∪ W ∪ {d1}.

Next, we have the following crucial observation concerning Π.

▶ Observation 29 (∗). If d2 ∈ πi for some i ∈ A, then d2 ∈ τi.

The following observation establishes a necessary condition for Π to satisfy EF1 (resp.,
EFX).

▶ Observation 30 (∗). If for every vertex v ∈ τi, πi \ {v} contains at least k + 1 vertices
from N , then Π is not an EF1 (resp. EFX) allocation.

The following observation establishes that “too many” vertices from B′ cannot be allocated
to agents in Π.

▶ Observation 31 (∗). For i ∈ A, πi can be assigned at most k vertices from W and at most
k + 1 vertices from N .

Our next observation establishes that at least one agent of Type-I is assigned a vertex
from {y1, . . . , yt+1}, say yi, along with some vertices (at least two) of the form zi

j .
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▶ Observation 32 (∗). There is at least one Type-I agent, say i, such that πi contains at
least one vertex from Y , say yj, such that yj /∈ τi. Equivalently, uI(πi) − minv∈τi

uI(v) ≥
uI(πi) − maxv∈τi

uI(v) ≥ 5kt + t + 1.

Finally, we have the following lemma that proves the other side of the reduction.

▶ Lemma 33 (∗). If ((G′, A, U , p), P ) is Yes-instance of EF1-ICFD (resp., EFX-ICFD), then
((G, k), t + k) is a Yes-instance of Red-Blue Dominating Set.

Finally, we have the following theorem as a consequence of Proposition 23, and Lemma 24,
Lemma 25, Lemma 27, Lemma 33, and the fact in all our constructions in Section 5, the
value of vcn + val + |A| + p is bounded by a function polynomial in k + |T |.

▶ Theorem 4. For φ ∈ {PROP, EF, EF1, EFX}, φ-ICFD parameterized by vcn + val + |A| + p

does not admit polynomial compression, unless NP ⊆ coNP/poly.

6 Color Coding For PROP-ICFD

Here, we present a color-coding [2] based FPT algorithm for PROP-ICFD parameterized by
p. An (n, k)-perfect hash family F is a family of functions from [n] to [k] such that for every
set S ⊆ [n] of size k, there exists a function f ∈ F that is injective on S. We shall use the
following result.

▶ Proposition 34 ([31]). For any n, k ≥ 1, we can construct an (n, k)-perfect hash family of
size ekkO(log k) log n and in ekkO(log k) n log n time.

▶ Definition 35 (Coloring). For a graph G, a coloring of G using k colors is a function
col : V (G) → [k]. A connected subgraph H of G is colorful if col is injective on V (H).

In the following lemma, we solve a sub-problem that we will use for our algorithm for
PROP-ICFD using dynamic programming and color-coding.

▶ Lemma 36 (∗). Let G be a vertex-weighted graph with weight function w : V (G) → N0.
Then, given numbers t, k ∈ N, we can decide in FPT time whether there exists a connected
subgraph H of G such that |V (H)| = k and

∑
v∈V (H) w(v) ≥ t.

Let ((G, A, U , p), p) be an instance of PROP-ICFD. Let the vertices of G be colored using
|A| colors (n = |A|). A coloring is suitable if there exists a PROP allocation Π = (π1, . . . , πn)
such that each vertex in πi is colored with the color i. Now, we have the following lemma.

▶ Lemma 37 (∗). Given a coloring col : V (G) → A for an instance (G, A, U , p) of PROP-
ICFD, we can decide whether this is a suitable coloring for (G, A, U , p) in eppO(p log p)mO(1)

time.

Next, we establish the probability of getting a suitable coloring of G, using |A| colors
uniformly at random, given that (G, A, U , p) is a Yes-instance of PROP-ICFD, in the following
lemma.

▶ Lemma 38 (∗). If (G, A, U , p) is a Yes-instance of PROP-ICFD, then coloring the vertices
of G uniformly at random using |A| colors returns a suitable coloring with probability at least
( 1

|A| )
p.

Finally, we have the following theorem.
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▶ Theorem 5. There exists a randomized algorithm that solves PROP-ICFD, in time
eppO(p log p)mO(1) with success probability at least 1 − 1

e .

Proof Sketch. Using Lemma 37 and 38, we have an algorithm that given a Yes-instance,
returns a solution with probability at least 1

np . Clearly, by repeating this algorithm np times,
the success probability of our algorithm is least 1 − 1

e . Since one execution of Lemma 37
requires eppO(p log p)mO(1) time and we repeat it np ≤ pp times (since n ≤ p), we get the
desired running time. ◀

7 Conclusion

In this paper, we defined ICFD, a generalization of CFD, and conducted a comprehensive para-
meterized analysis of the problem. On the one hand, we proved that for φ ∈ {EF, EF1, EFX},
φ-ICFD remains W[1]-hard parameterized by p + vcn + |A|, even when vcn + |A| is a small
constant. On the other hand, we proved that PROP-ICFD admits a randomized FPT al-
gorithm parameterized by p alone. We also presented positive as well as negative results on
the kernelization complexity of ICFD (for all fairness notions considered) parameterized by
vcn + val + p.

There are several other generalizations of ICFD (or CFD) that can be practically well-
motivated as well as theoretically interesting. For instance, the requirement of connectivity
can be “relaxed” (for example, by requiring that each agent receives at most c connected
components where c ≥ 1) as well as “restricted” (for example, by requiring that each agent
should receive a connected component that is 2-connected, or, more generally, c-connected
where c ≥ 1). Moreover, it might be desirable sometimes that the diameter of each connected
component (or the sum of diameters of all connected components) assigned to an agent is
bounded by a parameter d. For the examples we have already described in the Introduction,
it is easy to see that such variants make sense.

Furthermore, several other notions of fairness, welfare, and chores were studied with
respect to classical Fair Division. Hence, it might be interesting to consider ICFD in light of
these notions. Moreover, it might be interesting to study ICFD by considering the parameter
|V (G) − p| along with other parameters. This might be specifically applicable when the
allocator wants to allocate as much resources as possible.

In the classical fair division (ICFD on a clique with p = |V (G)|), it is known that
EF1 always exists and can be computed in polynomial time using the famous envy-cycles
procedure [30]. On the other hand, the guarantee of the existence of EFX exists for very
restricted settings (for example, 4 agents with additive valuations [5] and 2 agents with
arbitrary valuations [32]). It will be interesting to study if this difference in the “difficulty”
of the two notions extends to the setting of ICFD and/or to the setting of CFD.

Finally, we discuss a natural variant of PROP-ICFD, namely PRP-ICFD, where every agent
measures its happiness not in the context of its valuation of the whole graph G, but the
subgraph G′ of G that is assigned to the agents. More formally, an allocation Π = (π1, . . . , πn)
respects PRP-ICFD if for every i ∈ A, ui(πi) ≥ ui(V (G′))

n , where G′ = G[π1 ∪· · ·∪πn]. Observe
that, for PRP-ICFD, RR 1 is safe, and is sufficient to get an exponential kernel parameterized
vcn + val + p, unlike PROP-ICFD, which requires more careful reduction rules. Moreover, the
color-coding based FPT algorithm for PROP-ICFD is unlikely to work for PRP-ICFD since
the key ingredient of this algorithm is that we know beforehand the exact valuation that
will make an agent “happy”, which is not the case for PRP-ICFD. In this regard, PRP-ICFD
behaves more like EF, EF1, and EFX ICFD. Hence, it will be interesting to figure out whether
PRP-ICFD is FPT or W[1]-hard when parameterized by p + vcn.
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