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Abstract
Given an undirected graph G and a multiset of k terminal pairs X , the Vertex-Disjoint Paths
(VDP) and Edge-Disjoint Paths (EDP) problems ask whether G has k pairwise internally vertex-
disjoint paths and k pairwise edge-disjoint paths, respectively, connecting every terminal pair in X .
In this paper, we study the kernelization complexity of VDP and EDP on subclasses of chordal
graphs. For VDP, we design a 4k vertex kernel on split graphs and an O(k2) vertex kernel on
well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable
on threshold graphs. For EDP, we first prove that the problem is NP-complete on complete graphs.
Then, we design an O(k2.75) vertex kernel for EDP on split graphs, and improve it to a 7k + 1 vertex
kernel on threshold graphs. Lastly, we provide an O(k2) vertex kernel for EDP on block graphs
and a 2k + 1 vertex kernel for clique paths. Our contributions improve upon several results in the
literature, as well as resolve an open question by Heggernes et al. [Theory Comput. Syst., 2015].
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1 Introduction

The Vertex-Disjoint Paths (VDP) and Edge-Disjoint Paths (EDP) problems are
fundamental routing problems, having applications in VLSI design and virtual circuit routing
[20, 39, 44, 45]. Notably, they have been a cornerstone of the groundbreaking Graph
Minors project of Robertson and Seymour [42], and several important techniques, including
the irrelevant vertex technique, originated in the process of solving disjoint paths [42]. In
VDP (respectively, EDP), the input is an undirected graph G and a multiset of terminal
pairs X = {(s1, t1), . . . , (sk, tk)}, and the goal is to find k pairwise internally vertex-disjoint
(respectively, edge-disjoint) paths P1, . . . , Pk such that Pi is a path with endpoints si and ti.

Both VDP and EDP are studied extensively, and have been at the center of numerous
results in algorithmic graph theory [6, 15, 18, 22, 31, 34, 36, 48]. Karp [30] proved that
VDP is NP-complete (attributing the result to Knuth), and a year later, Even, Itai, and
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10:2 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Table 1 Summary of the kernelization results of VDP and EDP parameterized by the number
of occurrences of terminal pairs (k) on the subclasses of chordal graphs studied in this paper.

Graph Class VDP EDP
Well-partitioned Chordal O(k2) vertex kernel [Theorem 7] OPEN
Split 4k vertex kernel [Theorem 6] O(k2.75) vertex kernel [Theorem 2]
Threshold P [Theorem 9] 7k + 1 vertex kernel [Theorem 3]
Block P [Observation 8] 4k2 − 2k vertex kernel [Theorem 4]
Clique Path P [Observation 8] 2k + 1 vertex kernel [Theorem 5]

Shamir [16] proved the same for EDP. When k is fixed (i.e., treated as a constant), Robertson
and Seymour [37, 42] gave an O(|V (G)|3) time algorithm as a part of their famous Graph
Minors project. This algorithm is a fixed-parameter tractable (FPT) algorithm parameterized
by k. Later, the power 3 was reduced to 2 by Kawarabayashi, Kobayashi, and Reed [32].

In Parameterized Complexity, each problem instance is associated with an integer para-
meter k. We study both VDP and EDP through the lens of kernelization under the
parameterization by k. A kernelization algorithm is a polynomial-time algorithm that takes
as input an instance (I, k) of a problem and outputs an equivalent instance (I ′, k′) of the same
problem such that the size of (I ′, k′) is bounded by some computable function f(k). The
problem is said to admit an f(k) sized kernel, and if f(k) is polynomial, then the problem is
said to admit a polynomial kernel. It is known that a problem is FPT if and only if it admits
a kernel. Due to its profound impact, kernelization has been termed “the lost continent of
polynomial time” [17]. For more details on kernelization, we refer to books [12, 19].

Bodlaender et al. [4] proved that, unless NP ⊆ coNP/poly, VDP does not admit a
polynomial kernel (on general graphs). On the positive side, Heggernes et al. [27] extended
this study to show that VDP and EDP admit polynomial kernels on split graphs with O(k2)
and O(k3) vertices, respectively. Yang et al. [47] further showed that a restricted version
of VDP, where each vertex can appear in at most one terminal pair, admits a 4k vertex
kernel. Recently, Ahn et al. [2] introduced so-called well-partitioned chordal graphs (being
a generalization of split graphs), and showed that VDP on these graphs admits an O(k3)
vertex kernel. In this paper, we extend the study of kernelization of EDP and VDP on these
(and other) subclasses of chordal graphs. We provide an extended survey in the Appendix.

1.1 Our Contribution
Proofs of the results marked with (∗) are deferred to the full version [5] to respect the space
constraints. An overview of our results is given in Table 1. We begin by discussing the results
about EDP. First, we observe that the problem remains NP-hard even on inputs with a
trivial graph structure given by a clique, unlike VDP. This extends the known hardness
results for split graphs [27] and graphs of cliquewidth at most 6 [25]. We prove this theorem
in the Appendix.

▶ Theorem 1. EDP is NP-hard on complete graphs.

Every graph class treated in this paper includes cliques, so EDP is NP-hard on each of
them. This motivates the study of kernelization algorithms. From now on, we always use k

to denote the number of occurrences of terminal pairs in an instance.
We present an O(k2.75) vertex kernel for EDP on split graphs, improving upon the O(k3)

vertex kernel given by Heggernes et al. [27]. Our main technical contribution is a lemma
stating that the length of each path in a minimum-size solution is bounded by O(

√
k). This

allows us to obtain the following.



J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:3

▶ Theorem 2. EDP on split graphs admits a kernel with at most O(k2.75) vertices.

In the quest to achieve better bounds, we consider a subclass of split graphs. Specifically,
we prove that EDP on threshold graphs admits a kernel with at most 7k + 1 vertices. Here,
we exploit the known vertex ordering of threshold graphs that exhibits an inclusion relation
concerning the neighborhoods of the vertices.

▶ Theorem 3 (∗). EDP on threshold graphs admits a kernel with at most 7k + 1 vertices.

Another important subclass of chordal graphs is the class of block graphs. For this case,
we present a kernel with at most 4k2 − 2k vertices. Our kernelization algorithm constructs
an equivalent instance where the number of blocks can be at most 4k − 2, and each block
contains at most k vertices. Thus, we have the following theorem.

▶ Theorem 4. EDP on block graphs admits a kernel with at most 4k2 − 2k vertices.

Whenever a block has more than two cut vertices, decreasing the size of that block below
O(k) becomes trickier. However, if we restrict our block graph to have at most two cut
vertices per block – i.e., if we deal with clique paths – then this can be done. The key point in
designing our linear kernel in clique paths is that, in the reduced instance, for each block B,
the number of vertices in B is dictated by a linear function of the number of terminal pairs
having at least one terminal vertex in B. So, we obtain a 2k + 1 vertex kernel for this class.

▶ Theorem 5. EDP on clique paths admits a kernel with at most 2k + 1 vertices.

Now, we switch our attention to kernelization algorithms for VDP. First, we give a 4k

vertex kernel for VDP on split graphs. This resolves an open question by Heggernes et
al. [27], who asked whether this problem admits a linear vertex kernel. For this purpose, we
use the result by Yang et al. [47], who gave a 4k vertex kernel for a restricted variant of VDP,
called VDP-Unique by us, where each vertex can participate in at most one terminal pair.

In order to obtain a linear vertex kernel for VDP, we give a parameter-preserving
reduction to VDP-Unique. Our reduction relies on a non-trivial matching-based argument.

In this way, we improve upon the 4k2 vertex kernel given by Heggernes et al. [27] as well
as generalize the result given by Yang et al. [47]. Specifically, we have the following theorem.

▶ Theorem 6. VDP on split graphs admits a kernel with at most 4k vertices.

Next, we give an O(k2) vertex kernel for VDP on well-partitioned chordal graphs (see
Definition 64). Ahn et al. [2] showed that VDP admits an O(k3) vertex kernel on this
class. We improve their bound by giving a marking procedure that marks a set of at most
O(k2) vertices in G, which “covers” some solution (if it exists). As a result, we arrive at the
following theorem.

▶ Theorem 7 (∗). VDP on well-partitioned chordal graphs admits a kernel with O(k2)
vertices.

Unlike EDP, the VDP problem turns out easier on the remaining graph classes. In block
graphs, for every terminal pair with terminals in different blocks, there is a unique induced
path connecting these terminals (all internal vertices of this path are the cut vertices). After
adding these paths to the solution, we end up with a union of clique instances, where VDP
is solvable in polynomial time. This leads to the following observation about block graphs
and its subclass, clique paths.

IPEC 2023



10:4 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Observation 8. VDP on block graphs (and, in particular, on clique paths) is solvable in
polynomial time.

Finally, we identify a less restricted graph class on which VDP is polynomial-time solvable,
namely the class of threshold graphs. This yields a sharp separation between split graphs
and its subclass – threshold graphs – in terms of VDP.

▶ Theorem 9 (∗). VDP on thresholds graphs is solvable in polynomial time.

1.2 Organization of the paper
We begin with formal preliminaries, where we gather information about the studied graph
classes and the basic algorithmic tools. In Section 3, we prove the kernelization theorems
for EDP, which are followed by the NP-hardness proof for EDP on cliques in Appendix C.
Next, we cover the kernelization results for VDP in Section 4. We conclude in Section 5.

2 Preliminaries

For a positive integer ℓ, let [ℓ] denote the set {1, . . . , ℓ}. We provide the preliminaries
concerning parameterized complexity and graph classes considered in the Appendix.

Graph Notations. All graphs considered in this paper are simple, undirected, and connected
unless stated otherwise. Standard graph-theoretic terms not explicitly defined here can be
found in [13]. For a graph G, let V (G) denote its vertex set, and E(G) denote its edge
set. For a graph G, the subgraph of G induced by S ⊆ V (G) is denoted by G[S], where
G[S] = (S, ES) and ES = {xy ∈ E(G) | x, y ∈ S}. For two sets X, Y ⊆ V (G), we denote by
G[X, Y ] the subgraph of G with vertex set X ∪ Y and edge set {xy ∈ E(G) : x ∈ X, y ∈ Y }.
The open neighborhood of a vertex v in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree
of a vertex v is |NG(v)|, and it is denoted by dG(v). When there is no ambiguity, we do
not use the subscript G in NG(v) and dG(v). A vertex v with d(v) = 1 is a pendant vertex.
The distance between two vertices in a graph G is the number of edges in the shortest path
between them. We use the notation d(u, v) to represent the distance between two vertices u

and v in a graph G (when G is clear from the context). For a graph G and a set X ⊆ V (G),
we use G − X to denote G[V (G) \ X], that is, the graph obtained from G by deleting X. In
a graph G, two vertices u and v are twins if NG[u] = NG[v].

An independent set of a graph G is a subset of V (G) such that no two vertices in the
subset have an edge between them in G. A clique is a subset of V (G) such that every two
distinct vertices in the subset are adjacent in G. Given a graph G, a matching M is a subset
of edges of G that do not share an endpoint. The edges in M are called matched edges, and
the remaining edges are called unmatched edges. Given a matching M , a vertex v ∈ V (G) is
saturated by M if v is incident on an edge of M , that is, v is an end vertex of some edge of
M . Given a graph G, Max Matching is to find a matching of maximum cardinality in G.

▶ Proposition 10 ([28]). For a bipartite graph G, Max Matching can be solved in
O(

√
|V (G)| · |E(G)|) time.

A path P = (v1, . . . , vn) is an M-alternating path if the edges in P are matched and
unmatched alternatively with respect to M . If both the end vertices of an alternating path
are unsaturated, then it is an M -augmenting path.

▶ Proposition 11 ([3]). A matching M is maximum if and only if there is no M -augmenting
path in G.
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A path P = (v1, v2, . . . , vn) on n vertices is a (v1, vn)-path and {v2, . . . , vn−1} are the
internal vertices of P . Moreover, for a path P = (v1, v2, . . . , vn), we say that P visits the
vertices {v1, v2, . . . , vn}. Throughout this paper, let Puv denote the path containing only
the edge uv. Let P1 be an (s1, t1)-path and P2 be an (s2, t2)-path. Then, P1 and P2 are
vertex-disjoint if V (P1) ∩ V (P2) = ∅. Moreover, P1 and P2 are internally vertex-disjoint if
(V (P1) \ {s1, t1}) ∩ V (P2) = ∅ and (V (P2) \ {s2, t2}) ∩ V (P1) = ∅, that is, no internal vertex
of one path is used as a vertex on the other path, and vice versa. Two paths are said to be
edge-disjoint if they do not have any edge in common. Note that two internally vertex-disjoint
paths are edge-disjoint, but the converse may not be true. A path P is induced if G[V (P )]
is the same as P . For a path P = (v1, . . . , vn) on n vertices and vertices vi, vj ∈ V (P ), let
(vi, vj)-subpath of P denote the subpath of P with endpoints vi and vj .

Problem Statements. Given a graph G and a set (or, more generally, an ordered multiset)
X of pairs of distinct vertices in G, we refer to the pairs in X as terminal pairs. A ver-
tex in G is a terminal vertex if it appears in at least one terminal pair in X (when X is
clear from context); else, it is a non-terminal vertex. For example, if G is a graph with
V (G) = {v1, v2, . . . , v6}, and X = {(v1, v3), (v2, v3), (v3, v6), (v1, v6)} is a set of terminal
pairs, then {v1, v2, v3, v6} are terminal vertices in G and {v4, v5} are non-terminal vertices
in G. Formally, the definitions of VDP and EDP are given below.

Vertex-Disjoint Paths (VDP):
Input: A graph G and an ordered multiset X = {(s1, t1), . . . , (sk, tk)} of k terminal pairs.
Question: Does G contain k distinct and pairwise internally vertex-disjoint paths
P1, . . . , Pk such that for all i ∈ [k], Pi is an (si, ti)-path?

Edge-Disjoint Paths (EDP):
Input: A graph G and an ordered multiset X = {(s1, t1), . . . , (sk, tk)} of k terminal pairs.
Question: Does G contain k pairwise edge-disjoint paths P1, . . . , Pk such that for all
i ∈ [k], Pi is an (si, ti)-path?

▶ Remark 12. Note that in both problems (VDP and EDP), we allow different terminal
pairs to intersect, that is, it may happen that for i ̸= j, {si, ti} ∩ {sj , tj} ≠ ∅.

If there are two identical pairs {si, ti} = {sj , tj} = {x, y} in X and the edge xy is
present in G then only one of the paths Pi, Pj can use the edge xy if we require them to
be edge-disjoint. However, setting Pi = Pj = (x, y) does not violate the condition of being
internally vertex-disjoint. It is natural though and also consistent with the existing literature
to impose the additional condition that all paths in a solution have to be pairwise distinct.
▶ Remark 13. Throughout this paper, we assume that the degree of every terminal vertex is
at least the number of terminal pairs in which it appears. Else, it is trivially a No-instance.

Following the notation introduced in [2] and [27], we have the following definitions.

▶ Definition 14. An edge xy ∈ E(G) is heavy if for some w ≥ 2, there exist pairwise distinct
indices i1, . . . , iw such that for each j ∈ [w], {x, y} = {sij , tij }. We call a terminal pair
(si, ti) heavy if siti is a heavy edge; else, we call it light. Note that calling a terminal pair
heavy or light only makes sense when the terminals in the pair have an edge between them.

▶ Definition 15 (Minimum Solution). Let (G, X , k) be a Yes-instance of VDP or EDP.
A solution P = {P1, . . . , Pk} for the instance (G, X , k) is minimum if there is no solution
Q = {Q1, . . . , Qk} for (G, X , k) such that

∑k
i=1 |E(Qi)| <

∑k
i=1 |E(Pi)|.

IPEC 2023



10:6 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Since we deal with subclasses of chordal graphs, the following proposition is crucial for us.

▶ Proposition 16 ([27]). Let (G, X , k) be a Yes-instance of VDP such that G is a chordal
graph, and let P = {P1, . . . , Pk} be a minimum solution of (G, X , k). Then, for every path
Pi ∈ P, either Pi is an induced path or Pi is a path of length 2, and there exists a path
Pj ∈ P of length 1 whose endpoints are the same as the endpoints of Pi.

The next observation follows from Proposition 16.

▶ Observation 17. Let (G, X , k) be a Yes-instance of VDP. If there is a terminal pair
(s, t) ∈ X such that st ∈ E(G), then Pst belongs to every minimum solution of (G, X , k).

3 Kernelization Results on EDP

We begin with the analysis of the simplest scenario where the input graph is a clique. In
this setting, EDP is still NP-hard (see Appendix C), but we show below that whenever the
size of the clique is larger than the parameter k, then we always obtain a Yes-instance. This
improves the bound in [27, Lemma 7] by a factor of 2, which will play a role in optimizing
the constants in our kernels (particularly, the linear ones).

▶ Lemma 18 (∗). Let (G, X , k) be an instance of EDP such that G is a clique. If |V (G)| > k,
then (G, X , k) is a Yes-instance.

The bound above is tight as one can construct a No-instance (G, X , k) where G is a clique
and |V (G)| = k. Consider X comprising just k copies of some pair {u, v}. Since the degree
of u is k − 1, there cannot be k edge-disjoint paths having u as their common endpoint.

If G is a split graph with more than k vertices in the clique and the degree of each terminal
vertex is at least the number of terminals on it, then we can reduce such an instance to the
setting of Lemma 18 by replacing each terminal v in the independent set with an arbitrary
neighbor of v. As a consequence, we obtain the following corollary, being a quantitative
improvement over [27, Lemma 8].

▶ Corollary 19. Let (G, X , k) be an instance of EDP such that G is a split graph with split
partition (C, I). If |C| > k and the degree of each terminal vertex is at least the number of
terminals on it, then (G, X , k) is a Yes-instance.

3.1 A Subcubic Vertex Kernel for Split Graphs
In this section, we show that EDP on split graphs admits a kernel with O(k2.75) vertices.
Let (G, X , k) be an instance of EDP where G is a split graph. Note that given a split graph
G, we can compute (in linear time) a partition (C, I) of V (G) such that C is a clique and I is
an independent set [26]. We partition the set I into two sets, say, IT and IN , where IT and
IN denote the set of terminal vertices and the set of non-terminal vertices in I, respectively.

To ease the presentation of mathematical calculations, for this section (Section 3.1), we
assume that k

1
4 is a natural number. If this is not the case, then we can easily get a new

equivalent instance that satisfies this condition in the following manner. Let d = (⌈k
1
4 ⌉)4 − k

and v ∈ C. Now, we add d terminal pairs {(si1 , ti1), . . . , (sid
, tid

)} and attach each of these
terminals to v. Observe that this does not affect the size of our kernel (O(k2.75) vertices)
since (⌈k

1
4 ⌉)4 = O(k). Moreover, we assume that k > 8, as otherwise, we can use the

FPT algorithm for EDP [42] to solve it in polynomial time.
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Overview. Heggernes et al. [27] gave an O(k3) vertex kernel for EDP on split graphs. In
our kernelization algorithm (in this section), we use their algorithm as a preprocessing step.
After the prepossessing step, the size of C and IT gets bounded by 2k each, and the size
of IN gets bounded by O(k3). Therefore, we know that the real challenge in designing an
improved kernel for EDP on split graphs lies in giving a better upper bound on |IN |.

Our kernelization algorithm makes a non-trivial use of a lemma (Lemma 25), which
establishes that the length of each path in any minimum solution (of EDP on a split graph
G) is bounded by O(

√
k). This, in turn, implies that a minimum solution of EDP for split

graphs contains O(k1.5) edges. Note that during the preprocessing step (i.e., the kernelization
algorithm by Heggernes et al. [27]), for every pair of vertices in C, at most 4k + 1 vertices are
reserved in IN , giving a cubic vertex kernel. In our algorithm, we characterized those vertices
(called rich by us) in C for which we need to reserve only O(k1.5) vertices in IN . Informally
speaking, a vertex v ∈ C is rich if there are Ω(k0.75) vertices in C that are “reachable” from
v, even if we delete all the edges used by a “small” solution (containing O(k1.5) edges). Then,
we show that if two vertices are rich, then even if they do not have any common neighbors
in IN , there exist “many” (Ω(k1.5)) edge-disjoint paths between them even after removing
any O(k1.5) edges of G. Hence, for every rich vertex, we keep only those vertices in IN that
are necessary to make the vertex rich, that is, we keep O(k1.5) vertices in IN for every rich
vertex. Thus, all rich vertices in C contribute a total of O(k2.5) vertices in IN . The vertices
in C that are not rich are termed as poor. Finally, we establish that a poor vertex cannot
have too many neighbors in IN . More specifically, a poor vertex can have only O(k1.75)
neighbors in IN . So, even if we keep all their neighbors in IN , we store a total of O(k2.75)
vertices in IN for the poor vertices. This leads us to the desired kernel.

3.1.1 A Bound on the Length of the Paths in a Minimum Solution
In this section, we prove that for a minimum solution P of an instance (G, X , k) of EDP where
G is a split graph, each path P ∈ P has length at most 4

√
k + 3. We prove this bound by

establishing that if there is a path of length 4
√

k + 4 in P, then P contains at least k + 1
paths, a contradiction. To this end, we need the concept of intersecting edges (see Definition
21) and non-compatible edges (see Definition 22). Now, consider the following remark.
▶ Remark 20. For ease of exposition, throughout this section (Section 3.1.1), we assume
(without mentioning explicitly it every time) that (G, X , k) is a Yes-instance of EDP, where
G is a split graph. Moreover, P denotes a (arbitrary but fixed) minimum solution of (G, X , k),
and P ∈ P is a path such that P contains ℓ vertices, say, v1, . . . , vℓ, from clique C. Moreover,
without loss of generality, let v1, . . . , vℓ be the order in which these vertices appear in the
path P from some terminal to the other. Note that if a path, say, P ′, in a split graph has
length p (i.e. |E(P ′)| = p), then it contains at least ⌈ p

2 ⌉ vertices from C. Therefore, to bound
the length of P by O(

√
k), it suffices to bound the number of vertices of C in P by O(

√
k).

Assuming the ordering v1, . . . , vℓ of the vertices in V (P ) ∩ C along the path P , we have
the following definitions.

▶ Definition 21 (Intersecting Edges). Consider two edges ei = vivi′ and ej = vjvj′ such that
i, i′, j, j′ ∈ [ℓ], and without loss of generality, assume that i < i′, j < j′, and i ≤ j. Then, ei

and ej are non-intersecting if j ≥ i′; otherwise, they are intersecting.

▶ Definition 22 (Non-compatible Edges). Two edges e1, e2 ∈ E(G) are non-compatible if
there does not exist a path P ′ ∈ P \{P} (given P ∈ P) such that {e1, e2} ⊆ E(P ′). Moreover,
a set of edges S = {e1, . . . , ep} ⊆ E(G) is non-compatible if every distinct ei, ej ∈ S are
non-compatible.

IPEC 2023



10:8 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Next, we show that, since P is a path in a minimum solution P, most of the edges with
both endpoints in {v1, . . . , vℓ} are used by paths in P (otherwise, we get a contradiction to
the fact that P is a minimum solution). In particular, we have the following lemma.

▶ Lemma 23 (∗). Each edge of the form vivj , where i, j ∈ [ℓ] and j ≥ i + 2, is used by some
path in P \ {P}.

Now, we show that if two edges are intersecting edges, then they are non-compatible.

▶ Lemma 24 (∗). Let ei = vivi′ and ej = vjvj′ be two (distinct) intersecting edges. Then,
ei and ej are non-compatible.

Now, we present the main lemma of this section.

▶ Lemma 25 (∗). Let (G, X , k) be a Yes-instance of EDP where G is a split graph. Moreover,
let P be a minimum solution of (G, X , k). Then, for every path P ∈ P, |E(P )| < 4

√
k + 4.

We have the following corollary as a consequence of Lemma 25 (since k ≥ 9).

▶ Corollary 26. Let P be a minimum solution of an instance (G, X , k) of EDP where G is
a split graph. Then,

∑
P ∈P |E(P )| ≤ 5k1.5.

3.1.2 An O(k2.75) Vertex Kernel for Split Graphs
In this section, we use Corollary 26 stating that there can be at most 5k1.5 edges in any
minimum solution to design a subcubic (O(k2.75)) vertex kernel for EDP on split graphs. We
start with the following preprocessing step, which we apply only once to our input instance.

Preprocessing Step. First, we use the kernelization for EDP on split graphs provided by
Heggernes et al. [27] as a preprocessing step. In their kernel, if |C| ≥ 2k, then they report a
Yes-instance (due to [27, Lemma 8]), and hence, assume that |C| < 2k. Due to Corollary 19,
if |C| > k, then we have a Yes-instance, and hence we assume that |C| ≤ k. Moreover, in
their kernel, for any two vertices u, w ∈ C, |N(u) ∩ N(w) ∩ IN | ≤ 4k + 1 (i.e., u and w have
at most 4k + 1 common neighbors in IN ). Furthermore, there are no pendant vertices in IN .

Next, we define a Marking Procedure, where we label the vertices in C as rich or
poor. Furthermore, we partition the vertices in IN into two sets, denoted U (read unmarked)
and M (read marked), in the following manner.

Marking Procedure. Let (G, X , k) be an instance of EDP where G is a split graph.
1. M ⇐ ∅ and U ⇐ IN . (Initially, all vertices in IN is unmarked.) Moreover, fix an ordering

v1, . . . , v|C| of the vertices of C.
2. For 1 ≤ i ≤ |C|:

2.1. Avi
⇐ ∅, Mvi

⇐ ∅ (read marked for vi), and UT = U (read unmarked temporary).
2.2. For 1 ≤ j ≤ |C| such that i ̸= j and |Avi

| < 100k0.75:
2.2.1. If |N(vi) ∩ N(vj) ∩ UT | ≥ k0.75, then Avi

⇐ Avi
∪ {vj}. Moreover, select some

(arbitrary) subset Mvi,vj
⊆ N(vi) ∩ N(vj) ∩ UT such that |Mvi,vj

| = k0.75.
Then, Mvi

⇐ Mvi
∪ Mvi,vj

and UT ⇐ UT \ Mvi,vj
.

2.3. If |Avi
| = 100k0.75, then label vi as rich. Moreover, M ⇐ M ∪ Mvi

and U ⇐ UT .
2.4. If |Avi

| < 100k0.75, then label vi as poor.
This completes our Marking Procedure.
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▶ Remark 27. Note that the definition of rich and poor depends on the order in which
our Marking Procedure picks and marks the vertices (i.e., being rich or poor is not an
intrinsic property of the vertex itself). A different execution of the above procedure can label
different vertices as rich and poor. Moreover, note that if Mv,x exists (i.e., v is rich and
x ∈ Av) and Mx,v exists (i.e., x is rich and v ∈ Ax), then Mx,v ∩ Mv,x = ∅.

We have the following observation regarding the vertices marked rich by an execution of
Marking Procedure on an instance (G, X , k) of EDP where G is a split graph.

▶ Observation 28 (∗). Consider an execution of Marking Procedure on an instance
(G, X , k) of EDP where G is a split graph. Then for a rich vertex v, |Mv| = 100k1.5 (i.e.,
the number of vertices marked in IN for v are 100k1.5).

▶ Definition 29 (Reachable Vertices). Consider an execution of Marking Procedure on
an instance (G, X , k) of EDP where G is a split graph. Moreover, let P be a solution of
(G, X , k). Then, for a rich vertex v ∈ C, let Rv ⊆ Av (read reachable from v) denote the set
of vertices such that for each vertex x ∈ Rv, there is a vertex u ∈ Mv,x such that u is not
used by any path in P.

Notice that, in Definition 29, a path of the form (v, u, x) is edge-disjoint from every
path in P. Furthermore, we briefly remark that Rv is defined with respect to the execution
of Marking Procedure and a solution P of (G, X , k), which we will always fix before
we use Rv. Let P be a solution to an instance (G, X , k) of EDP. Informally speaking, in
the following lemma, we show that if P uses at most 6k1.5 edges, then for a rich vertex v,
Rv = Ω(k0.75) (i.e., there are “many reachable” vertices in Av from v using paths that are
edge-disjoint from every path in P). In particular, we have the following lemma.

▶ Lemma 30 (∗). Consider an execution of Marking Procedure on an instance (G, X , k)
of EDP where G is a split graph. Moreover, let P be a solution of (G, X , k) (not necessarily
minimum) such that the total number of edges used in P is at most 6k1.5. Then, for any
rich vertex v ∈ C, |Rv| ≥ 94k0.75.

Next, we provide the following reduction rule.

▶ Reduction Rule 1 (RR1). Let (G, X , k) be an instance of EDP where G is a split graph.
Let U be the set of unmarked vertices we get after an execution of Marking Procedure on
(G, X , k). Moreover, let U ′ ⊆ U be the set of vertices in U that do not have a poor neighbor.
If U ′ ̸= ∅, then G′ ⇐ G − U ′ and X ′ ⇐ X .

The following two lemmas (Lemmas 31 and 32) are essential to prove the safeness of RR1.

▶ Lemma 31 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. Consider an
execution of Marking Procedure on (G, X , k). Moreover, let P be a solution of (G, X , k)
(not necessarily minimum) such that the total number of edges used in P is ℓ, where ℓ ≤ 6k1.5.
Furthermore, let u ∈ U be an unmarked vertex such that u does not have any poor neighbor. If
there is a path P ∈ P such that u ∈ V (P ), then there exists a solution P ′ = (P \ {P}) ∪ {P ′}
of (G, X , k) such that u /∈ V (P ′), and the total number of edges in P ′ is at most ℓ + 3.

▶ Lemma 32 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. Let U be
the set of unmarked vertices we get after an execution of Marking Procedure on (G, X , k),
and let u ∈ U be a vertex such that u does not have any poor neighbor. Let G′ = G − {u}.
Then, (G, X , k) is a Yes-instance if and only if (G′, X , k) is a Yes-instance.

Since G′ is a split graph (due to Remark 67), Lemma 32 implies the following.
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▶ Lemma 33. RR1 is safe.

Next, we show that an exhaustive application of RR1 provides a subcubic vertex kernel.

▶ Lemma 34 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. If we
cannot apply RR1 on (G, X , k), then |V (G)| = O(k2.75).

Finally, due to Preprocessing Step, RR1, Lemmas 33 and 34, and the observation that
RR1, Marking Procedure, and Preprocessing Step can be executed in polynomial
time (and do not increase our parameter k) we have the following theorem.

▶ Theorem 2. EDP on split graphs admits a kernel with at most O(k2.75) vertices.

3.2 A Quadratic Vertex Kernel for Block Graphs
In this section, we show that EDP on block graphs admits a kernel with at most 4k2 − 2k

vertices. Let us first discuss the overall idea leading us to this result.

Overview. Let (G, X , k) be an instance of EDP where G is a block graph. First, we aim to
construct a reduced instance where the number of blocks can be at most 4k − 2. We begin by
showing that if there is an end block that does not contain any terminal, then we can delete
this block from the graph (in RR2), while preserving all solutions. Next, we argue that if
there is a block, say, B, with at most two cut vertices that do not contain any terminal, then
we can either contract (defined in Definition 37) B to a single vertex, or answer negatively
(in RR4). Thus, each block with at most two cut vertices in the (reduced) graph contains at
least one terminal. This bounds the number of blocks with at most two cut vertices to be at
most 2k (as k terminal pairs yield at most 2k terminals). First, we observe the following.

▶ Observation 35 (∗). Let ℓ be the number of end blocks in a block graph G. Then, the
number of blocks with at least three cut vertices is at most ℓ − 2.

Observation 35, along with the fact that the number of end blocks is at most 2k, establishes
that the number of blocks with at least three cut vertices in the (reduced) graph is at most
2k − 2. Therefore, we have at most 4k − 2 blocks in the (reduced) graph. Finally, due to
Lemma 18 and the properties of block graphs, we show that if a block, say, B, is big enough
(i.e., |V (B)| > k), then we can contract B to a single vertex while preserving the solutions (in
RR3). Hence, each block contains at most k vertices, and thus, the total number of vertices
in the (reduced) graph is at most 4k2 − 2k.

Our kernelization algorithm is based on the application of three reduction rules (RR2-
RR4), discussed below, to an instance (G, X , k) of EDP where G is a block graph.

▶ Reduction Rule 2 (RR2). If B is an end block of G with cut vertex v such that B does
not contain any terminal, then G′ ⇐ G[V (G) \ (V (B) \ {v})] and X ′ ⇐ X .

We have the following lemma to establish that RR2 is safe.

▶ Lemma 36 (∗). RR2 is safe.

The following definitions (Definitions 37 and 38) are crucial to proceed further in this
section. Informally speaking, we contract a block B by replacing it with a (new) vertex v

such that “edge relations” are preserved. We have the following formal definition.
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▶ Definition 37 (Contraction of a Block). Let (G, X , k) be an instance of EDP where G is
a block graph, and let B be a block of G. The contraction of B in (G, X , k) yields another
instance (G′, X ′, k′) of EDP as follows. First, V (G′) = (V (G) \ V (B)) ∪ {v} (i.e., delete
V (B) and add a new vertex v). Moreover, define f : V (G) → V (G′) such that f(x) = x

if x ∈ V (G) \ V (B), and f(x) = v if x ∈ V (B). Second, E(G′) = {f(x)f(y) : xy ∈
E(G), f(x) ̸= f(y)}. Similarly, X ′ = {(f(s), f(t)) : (s, t) ∈ X , f(s) ̸= f(t)}. Finally,
let k′ = |X ′|. Note that k′ might be smaller than k (in case B contains a terminal pair).
Moreover,

⋃
u∈V (B)(NG(u) \ B) ⊆ NG′(v).

We will exploit the properties of block graphs to show that if a block B has at least
k + 1 vertices, then we can contract B to a single vertex “safely”. To this end, we define the
instance (G, X , k) of EDP restricted to a block B of the block graph G as follows.

▶ Definition 38 (Restriction of an Instance (G, X , k) to a Block). Consider a block B whose
set of cut vertices is U . For each cut vertex u ∈ U , let CB,u denote the (connected) component
of G[V (G) \ (V (B) \ {u})] containing u. Now, define h : V (G) → V (B) such that h(x) = x

if x ∈ V (B), and h(x) = u if x ∈ V (CB,u). Then, the restriction of (G, X , k) to B, denoted
by (B, XB , |XB |), is defined as follows: XB = {(h(s), h(t)) : (s, t) ∈ X , h(s) ̸= h(t)}.

We have the following trivial observation that we will use for our proofs.

▶ Observation 39. Let P be a set of edge-disjoint paths. Consider a set of paths P∗

constructed in the following manner. For each path P ∈ P, add a path P ∗ to P∗ such that
E(P ∗) ⊆ E(P ). Then, P∗ is also a set of edge-disjoint paths.

We have the following lemma.

▶ Lemma 40 (∗). Let (G, X , k) be an instance of EDP on a block graph G, and let B be a
block of G. If (G, X , k) is a Yes-instance, then (B, XB , |XB |) is a Yes-instance.

Next, we will show that if for a block B, (B, XB , |XB |) is a Yes-instance, then we can
contract B “safely”. In particular, we have the following lemma.

▶ Lemma 41 (∗). Let (G, X , k) be an instance of EDP on a block graph G, and let B be
a block of G whose set of cut vertices is U . Moreover, let the contraction of B in (G, X , k)
yield (G′, X ′, k′). Given that (B, XB , |XB |) is a Yes-instance, (G, X , k) is a Yes-instance if
and only if (G′, X ′, k′) is a Yes-instance.

Next, we have the following reduction rule.

▶ Reduction Rule 3 (RR3). If G has a block B such that |V (B)| > k, then contract B in
(G, X , k) to get (G′, X ′, k′).

The safeness of RR3 is implied by Lemma 41 and Lemma 18.

▶ Corollary 42. RR3 is safe.

Finally, we have the following reduction rule.

▶ Reduction Rule 4 (RR4). Let B be a block of G that has exactly two cut vertices, say, u

and w, and there is no terminal vertex in V (B) \ {u, w}. Consider the instance (B, XB , |XB |)
restricted to the block B. If |V (B)| > |XB |, then contract B in (G, X , k) to get the instance
(G′, X ′, k′). Else, answer negatively.

We have the following lemma to establish that RR4 is safe.
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▶ Lemma 43 (∗). RR4 is safe.

Next, we establish that once we cannot apply RR2-RR4 anymore, the size of the reduced
graph is bounded by a quadratic function of k. In particular, we have the following lemma.

▶ Lemma 44 (∗). Let (G, X , k) be an instance of EDP where we cannot apply reduction
rules RR2-RR4 anymore. Then, G contains at most 4k − 2 blocks and 4k2 − 2k vertices.

Observe that RR2-RR4 can be implemented in polynomial time and do not increase our
initial parameter k. Hence, Lemmas 36, 43, 44, and Corollary 42 imply the following.

▶ Theorem 4. EDP on block graphs admits a kernel with at most 4k2 − 2k vertices.

3.3 A Linear Vertex Kernel for Clique Paths
A clique path is a block graph where each block has at most two cut vertices. (In an informal
manner, we can think that the blocks are arranged in the form of a path.) In this section,
we present a linear vertex kernel for EDP on clique paths. First, we present an overview of
the overall idea leading to this result.

Overview. Let (G, X , k) be an instance of EDP where G is a clique path. Our kernelization
algorithm is based on the application of RR2-RR4 (defined in Section 3.2) along with three
new reduction rules (RR5-RR7). In our kernel for block graph in Section 3.2, we established
that for a block B, if |V (B)| ≥ k + 1, then we can contract B (see RR3). Moreover, we
showed that the total number of blocks in a reduced instance can be at most 4k − 2, thus
giving us an O(k2) vertex kernel.

Here, we use the property of clique paths that each block can have at most two cut
vertices to improve the kernel size. Since there is no block with more than two cut vertices,
each block must contain a terminal after an exhaustive application of RR2-RR4. Let B

be a block of G with cut vertices u and w. Consider the instance (B, XB , |XB |), that is,
the instance (G, X , k) restricted to the block B (see Definition 38). Any terminal pair
(s, t) ∈ XB is of one of the following types: (i) Type-A: s, t ∈ {u, w}, (ii) Type-B: s = u and
t ∈ V (B) \ {u, w}, or vice versa, (iii) Type-C: s = w and t ∈ V (B) \ {u, w}, or vice versa,
and (iv) Type-D: s, t ∈ V (B) \ {u, w}. Let a, b, c, and d denote the cardinality of Type-A,
Type-B, Type-C, and Type-D occurrences of terminal pairs in XB, respectively. We show
that if |V (B)| > d + 2 + max{b + c − 1, 0}, then we can either contract B to a single vertex
“safely” (when |V (B)| > max{a + b, a + c}) or report a No-instance. Summing these numbers
over all blocks yields an upper bound on the total size of the reduced instance. The Type-A
pairs are irrelevant now, each pair of Type-B or Type-C contributes to two blocks, while each
Type-D pair appears in only a single block. By grouping the summands in an appropriate
way, we are able to attain a bound of 2k + 1. We have the following reduction rules.

▶ Reduction Rule 5 (RR5). Let (G, X , k) be an instance of EDP where G is a clique path.
Moreover, let B be a block of G such that B has two cut vertices, say, u and w. Consider
the instance (B, XB , |XB |). If |V (B)| ≤ max{a + b, a + c}, then report a No-instance.

We have the following lemma to prove that RR5 is safe.

▶ Lemma 45 (∗). RR5 is safe.

Next, we have the following reduction rule.
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▶ Reduction Rule 6 (RR6). Let (G, X , k) be an instance of EDP where G is a clique path.
Moreover, let B be a block of G that has two cut vertices, say, u and w. Consider the instance
(B, XB , |XB |). If |V (B)| > d + 2 + max{b + c − 1, 0}, then contract B in (G, X , k) to obtain
the instance (G′, X ′, k′).

We have the following lemma to establish that RR6 is safe.

▶ Lemma 46 (∗). RR6 is safe.

In RR6, we showed that in a reduced instance, the size of each block with two cut vertices
is bounded by a linear function of the number of times its vertices appear in some occurrences
of terminal pairs. In the next reduction rule (RR7), we consider the end blocks (i.e., blocks
with exactly one cut vertex). So, consider an end block B of G with cut vertex u, and let
(B, XB , |XB |) be the restriction of (G, X , k) to B. Any terminal pair (s, t) ∈ XB is one of
the following types: (i) Type-B′: s = u and t ∈ V (B) \ {u}, or vice versa, and (ii) Type-D′:
s, t ∈ V (B) \ {u}. Let b′ and d′ denote the number of occurrences of Type-B′ and Type-D′

terminal pairs in XB , respectively. We have the following reduction rule.

▶ Reduction Rule 7 (RR7). Let (G, X , k) be an instance of EDP where G is a clique path.
Let B be an end block of G with cut vertex u. Consider the instance (B, XB , |XB |). If
|V (B)| > b′ + d′, then contract B in (G, X , k) to obtain (G′, X ′, k′).

We have the following lemma to prove that RR7 is safe.

▶ Lemma 47 (∗). RR7 is safe.

Next, we establish that once we cannot apply RR2-RR7, the number of vertices of the
reduced graph is bounded by a linear function of k in the following lemma.

▶ Lemma 48 (∗). Let (G, X , k) be an instance of EDP where G is a clique path. If we
cannot apply RR2-RR7 on this instance, then G contains at most 2k + 1 vertices.

Now, we have the following observation.

▶ Observation 49. RR5-RR7 can be applied in polynomial time. Moreover, during the
application of RR5-RR7, we never increase the initial k.

Finally, due to RR2-RR7, along with Lemmas 36, 43, 46, 47, and 48, Corollary 42, and
Observation 49, we have the following theorem.

▶ Theorem 5. EDP on clique paths admits a kernel with at most 2k + 1 vertices.

4 Kernelization Results on VDP on Split Graphs

Let (G, X , k) be an instance of VDP where G is a split graph. Note that given a split graph
G, we can compute (in linear time) a partition (C, I) of V (G) such that C is a clique and I

is an independent set [26]. We partition the set I into two sets, say, IT and IN , where IT

denotes the set of terminal vertices in I and IN denotes the set of non-terminal vertices in I.
Observe that a terminal pair in a split graph can only be of one of the following types: (i)
Type-I: One of the terminal vertices belongs to C, and the other belongs to I, (ii) Type-II:
Both terminal vertices belong to C, and Type-III: Both terminal vertices belong to I.

Our kernelization algorithm is based on a preprocessing step and the application of three
reduction rules (RR8-RR10). We begin by defining the Clean-Up operation, which is a
preprocessing step of our kernelization algorithm. Therefore, given an instance (G, X , k) of
VDP where G is a split graph, we apply this operation before applying RR8-RR10.
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Figure 1 Let (G, X , k) be an instance of VDP where G is a split graph with a partition (C, I)
and X = {(a, b), (a, b), (a, b), (d, e), (d, e), (c, d), (b, d)}. The vertices in C form a clique; to keep the
picture clean, we do not show edges in C. Observe that the terminal pairs (a, b) and (d, e) are heavy.

Clean-Up. First, consider the following construction (Construction A), which is crucial to
define the Clean-Up operation. This construction was also used by Heggernes et al. [27]
who used it to remove a subset of IN (safely). However, in the Clean-Up operation, we will
remove the entire set IN (safely). In order to do so, we need a few more technical arguments
than the ones present in [27].

Construction A. Given an instance (G, X , k) of VDP where G is a split graph, we construct
a bipartite graph, say, H, with bipartition (A, B) as follows: For every terminal pair (s, t)
of Type-II such that st is a heavy edge with weight w ≥ 2, we introduce w − 1 vertices,
say, v1

st, . . . , vw−1
st , to A. The set B consists of all the vertices from set IN . For each v ∈ IN ,

introduce an edge from v to vertices v1
st, . . . , vw−1

st if and only if v is adjacent to both s and t

in G. See Figure 1 for an illustration of the construction of H from (G, X , k).
Due to Proposition 10, we compute a maximum matching, say, M , in H in polynomial

time. Let X̂ ⊆ X be the multiset of all terminal pairs whose corresponding vertices in H are
saturated by M . For example, in Figure 1, if M = {v1

abf, v2
abg, v1

deh} is a maximum matching
in H, then X̂ = {(a, b), (a, b), (d, e)}. This ends Construction A.

▶ Definition 50 (Clean-Up). Given an instance (G, X , k) of VDP where G is a split graph,
construct the bipartite graph H and find a maximum matching M in H, as described in
Construction A. If IN ̸= ∅ or X̂ ̸= ∅, then G′ ⇐ G − IN , X ′ ⇐ X \ X̂ , k′ ⇐ k − |X̂ |.

Note that due to Remark 67, G′ is a split graph. Now, with the help of Definition 52,
Observation 53, we will establish that (G, X , k) and (G′, X ′, k′), as described in Definition 50,
are equivalent (see Lemma 54).

Before that, consider the next observation which follows trivially from Proposition 16.

▶ Observation 51. Let (G, X , k) be a Yes-instance of VDP where G is a split graph.
Moreover, let P be a minimum solution of (G, X , k). If there exists a path P ∈ P that visits
a vertex x ∈ IN , then P must be of the form (u′, x, v′), where u′, v′ ∈ C are terminal vertices
such that Pu′v′ ∈ P.

▶ Definition 52. Let (G, X , k) be a Yes-instance of VDP where G is a split graph. Moreover,
let M and H be as described in Construction A. Let P be a minimum solution of (G, X , k).
Then, M ′ ⊆ E(H) is said to be induced by P in H if it is constructed as follows:
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1. Initialize M ′ ⇐ ∅.
2. For every path P ∈ P that visits a vertex x ∈ IN : By Observation 51, P must be of the

form (u′, x, v′), where u′, v′ ∈ C are terminal vertices such that Pu′v′ ∈ P. This further
implies that u′v′ is a heavy edge. Let w ≥ 2 be the weight of u′v′, and consider the vertices
v1

u′v′ , . . . , vw−1
u′v′ in graph H. By Construction A, x is adjacent to every vertex in the set

{v1
u′v′ , . . . , vw−1

u′v′ }. So, we can arbitrarily choose an edge xvj
u′v′ of H, for some j ∈ [w − 1]

such that xvj
u′,v′ does not appear in M ′1, and add it to M ′.

▶ Observation 53 (∗). Let (G, X , k) be a Yes-instance of VDP where G is a split graph.
Moreover, let M , A, B, and H be as described in Construction A. Let P be a minimum
solution of (G, X , k). Let M ′ be induced by P in H as described in Definition 52. Then, M ′

is a matching.

For an illustrative example, consider G, H, and X given in Figure 1. Let P =
{(a, f, b), (a, ℓ, b), Pab, (d, g, e), Pde , Pcd, Pbd} be a solution of (G, X , 7). Then, {v1

abf, v1
deg}

and {v2
abf, v1

deg} are two possible choices for M ′.

▶ Lemma 54 (∗). Let (G, X , k) be an instance of VDP where G is a split graph. Moreover,
let X̂ be as described in Construction A. Furthermore, let (G′, X ′, k′) be the output of
Clean-Up on (G, X , k). Then, if (G′, X ′, k′) is a Yes-instance of VDP, then (G, X , k) is
also a Yes-instance of VDP.

Now, consider the following lemma.

▶ Lemma 55 (∗). Let (G, X , k) be an instance of VDP obtained by applying Clean-Up.
Let (s, t) ∈ X be a heavy terminal pair of Type-II in G of weight w ≥ 2. Then, any
minimum solution of (G, X , k) must contain the following internally vertex-disjoint paths:
{Pst} ∪ {(s, u1, t), . . . , (s, uw−1, t)}, where {u1, . . . , uw−1} is a set of non-terminals in C.

Reduction Rules. Let us start by defining our first reduction rule (RR8).

▶ Reduction Rule 8 (RR8). If there is a terminal pair (s, t) ∈ X of Type-I such that
st ∈ E(G), then V (G′) ⇐ V (G), E(G′) ⇐ E(G) \ {st}, X ′ ⇐ X \ {(s, t)}, k′ ⇐ k − 1.
Furthermore, for every x ∈ {s, t} that does not appear as a terminal in any terminal pair in
X ′, update V (G′) ⇐ V (G′) \ {x}.

We have the following lemma to establish that RR8 is safe.

▶ Lemma 56 (∗). RR8 is safe.

▶ Observation 57. After applying RR8 exhaustively on G, no Type-I terminal pair in G has
an edge between its terminals. Moreover, RR8 can be applied in polynomial time.

Let {(s, t) × (w)} denote w copies of (s, t).

▶ Reduction Rule 9 (RR9). If there is a heavy terminal pair (s, t) ∈ X of Type-II of weight
w ≥ 2, then V (G′) ⇐ V (G) ∪ {s1, . . . , sw−1, t1, . . . , tw−1}, E(G′) ⇐ E(G) ∪ {siv, tiv : v ∈
C, i ∈ [w−1]}, X ′ ⇐ (X \X )∪{(s1, t1), . . . , (sw−1, tw−1)}, where X = {(s, t)×(w−1)} ⊆ X .

We have the following lemma to establish that RR9 is safe.

1 The existence of such a j follows from the choice of w, and since Pu′v′ ∈ P
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▶ Lemma 58 (∗). After Clean-Up and the exhaustive application of RR8, RR9 is safe.

▶ Observation 59. After applying RR9 exhaustively, there do not exist any heavy Type-II
terminal pairs. Moreover, RR9 can be applied in polynomial time.

The next reduction rule is applied for every terminal participating in more than one
terminal pair.

▶ Reduction Rule 10 (RR10). If v ∈ V (G) belongs to x ≥ 2 terminal pairs (v, a1), . . . , (v, ax),
then V (G′) ⇐ (V (G) \ {v}) ∪ {v1, . . . , vx}, E(G′) ⇐ E(G) ∪ {viu : u ∈ N(v), i ∈ [x]},
X ′ ⇐ (X \ {(v, a1), . . . , (v, ax)}) ∪ {(v1, a1), . . . , (vx, ax)}. Moreover, if v ∈ C, then E(G′) =
E(G′) ∪ {vivj : i ̸= j ∈ [x]}.

We have the following lemma to establish that RR10 is safe.

▶ Lemma 60 (∗). After Clean-Up and an exhaustive application of RR8 and RR9, RR10
is safe.

By Lemma 55 and Observations 57 and 59, we have the following lemma.

▶ Observation 61. After applying reduction rules RR8-RR10 exhaustively, no terminal
participates in more than one terminal pair.

Before concluding this section, we need the following result by Yang et al. [47].

▶ Proposition 62 ([47]). VDP-Unique on split graphs admits a kernel with at most 4k

vertices, where k is the number of occurrences of terminal pairs.

By Observations 61, we note that every instance (G, X , k) of VDP where G is a split
graph, can be converted to an instance (G′, X ′, k′) of VDP-Unique in polynomial time.
Due to Observations 57 and 59 and Lemmas 54, 56, 58, and 60, (G, X , k) and (G′, X ′, k) are
equivalent. Furthermore, our initial parameter k does not increase during the application of
the Clean-Up operation and rules RR8-RR10. Therefore, using Proposition 62, we have
the following theorem.

▶ Theorem 6. VDP on split graphs admits a kernel with at most 4k vertices.

5 Conclusion

In this paper, we studied VDP and EDP, two disjoint paths problems in the realm of
Parameterized Complexity. We analyzed these problems with respect to the natural parameter
“the number of (occurrences of) terminal pairs”. We gave several improved kernelization
results as well as new kernelization results for these problems on subclasses of chordal graphs.

For VDP, we provided a 4k vertex kernel on split graphs and an O(k2) vertex kernel on
well-partitioned chordal graphs. We also show that VDP becomes polynomial-time solvable
on threshold graphs. For EDP, we first proved NP-hardness on complete graphs. Second,
we provided an O(k2.75) vertex kernel on split graphs, a 7k + 1 vertex kernel on threshold
graphs, an O(k2) vertex kernel for EDP on block graphs, and a 2k + 1 vertex kernel on
clique paths.

Apart from the obvious open questions to improve the sizes of the kernels we designed, it
is interesting to determine if VDP or/and EDP admit polynomial kernels for chordal graphs.
It is worth noting here that Golovach et al. [24] proved that it is unlikely for Set-Restricted
Disjoint Paths, a generalization of VDP where each terminal pair has to find its path from
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a predefined set of vertices, to admit a polynomial kernel even on interval graphs. However,
as noted by them, their reduction is heavily dependent on the sets designed for terminal
pairs and thus cannot be directly generalized to VDP. Moreover, recently Włodarczyk
and Zehavi [46] established that both VDP and EDP are unlikely to admit polynomial
compression even when restricted to planar graphs. They also suggested to investigate the
existence of polynomial kernels for chordal graphs for VDP and EDP.

Another interesting open problem is to study the kernelization complexity of EDP on
well-partitioned chordal graphs. Note that EDP on well-partitioned chordal graphs is more
subtle than VDP on the same. The reason is that, in VDP, a path between a non-adjacent
terminal pair must be induced due to Proposition 16. This paves the way to define valid
paths in the partition tree of the given well-partitioned chordal graph. However, the concept
of valid paths (and, thus, the used techniques) fails for EDP, as a path in the solution can
visit the bags of the partition tree in any weird manner. Furthermore, the approach for
EDP on block graphs does not generalize to well-partitioned chordal graphs because the
intersection of adjacent bags can be large (in well-partitioned chordal graphs), whereas, for a
block graph G, there always exists a partition tree such that for any two consecutive bags,
the corresponding boundary of one of the bags has size one.
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A Brief Survey of Related Works

Both VDP and EDP are known to be NP-complete for planar graphs [35], line graphs [27],
and split graphs [27]. Moreover, VDP is known to be NP-complete on interval graphs [38]
and grids [35] as well. Both VDP and EDP were studied from the viewpoint of structural
parameterization. While VDP is FPT parameterized by treewidth [41], EDP remains NP-
complete even on graphs with treewidth at most 2 [39]. Gurski and Wange [25] showed
that VDP is solvable in linear time on co-graphs but becomes NP-complete for graphs with
clique-width at most 6. As noted by Heggernes et al. [27], there is a reduction from VDP on
general graphs to EDP on line graphs, and from EDP on general graphs to VDP on line
graphs. Since a graph with treewidth ℓ has clique-width at most 2ℓ + 2 [25], EDP can also
be shown to be NP-complete on graphs with clique-width at most 6 [27].

The Graph Minors theory of Robertson and Seymour provides some of the most important
algorithmic results of the modern graph theory. Unfortunately, these algorithms, along with
the O(n3) and O(n2) algorithms for VDP and EDP(when k is fixed), respectively [42, 32],
hide such big constants that they have earned a name for themselves: “galactic algorithms”.
Since then, finding efficient FPT algorithms for VDP and EDP has been a tantalizing
question for researchers. Several improvements have been made for the class of planar
graphs [1, 36, 40, 43], chordal graphs [29], and bounded-genus graphs [40, 14, 33].
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Concerning kernelization (in addition to the works surveyed in the introduction), we note
that Ganian and Ordyniak [21] proved that EDP admits a linear kernel parameterized by
the feedback edge set number. Recently, Golovach et al. [23] proved that Set-Restricted
Disjoint Paths, a variant of VDP where each terminal pair has to find its path from a
predefined set of vertices, does not admit a polynomial compression on interval graphs unless
NP ⊆ coNP/poly.

The optimization variants of VDP and EDP– MaxVDP and MaxEDP – are well-
studied in the realm of approximation algorithms [6, 15, 18, 22, 34]. Chekuri et al. [6] gave
an O(

√
n)-approximation algorithm for MaxEDP on general graphs, matching the Ω(

√
n)

lower bound provided by Garg et al. [22]. Recently, MaxVDP has gained much attention
on planar graphs [7, 8, 10, 11, 9]. Highlights of this line of works (MaxVDP on planar
graphs) include an approximation algorithm with approximation ratio O(n 9

19 logO(1) n) [8],
and hardness of approximating within a factor of nΩ(1/(log log n)2) [10].

B Preliminaries

B.1 Parameterized Complexity
Standard notions in Parameterized Complexity not explicitly defined here can be found
in [12]. Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each
instance of Π is associated with a parameter k. We say that Π is fixed-parameter tractable
(FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is some computable
function of k. Two instances (I, k) and (I ′, k′) (possibly of different problems) are equivalent
if: (I, k) is a Yes-instance if and only if (I ′, k′) is a Yes-instance.

A parameterized (decision) problem Π admits a kernel of size f(k) for some computable
function f that depends only on k if the following is true: There exists an algorithm (called
a kernelization algorithm) that runs in (|I| + k)O(1) time and translates any input instance
(I, k) of Π into an equivalent instance (I ′, k′) of Π such that the size of (I ′, k′) is bounded by
f(k). If the function f is polynomial (resp., linear) in k, then the problem is said to admit
a polynomial kernel (resp., linear kernel). It is well known that a decidable parameterized
problem is FPT if and only if it admits a kernel [12].

To design kernelization algorithms, we rely on the notion of reduction rule, defined below.

▶ Definition 63 (Reduction Rule). A reduction rule is a polynomial-time procedure that
consists of a condition and an operation, and its input is an instance (I, k) of a parameterized
problem Π. If the condition is true, then the rule outputs a new instance (I ′, k′) of Π such
that k′ ≤ k.

A reduction rule is safe, when the condition is true, (I, k) and (I ′, k′) are equivalent.
Throughout this paper, the reduction rules will be numbered, and the reduction rules will
be applied exhaustively in the increasing order of their indices. So, if reduction rules i

and j, where i < j, are defined for a problem, then i will be applied exhaustively before j.
Notice that after the application of rule j, the condition of rule i might become true. In this
situation, we will apply rule i again (exhaustively). In other words, when we apply rule j,
we always assume that the condition of rule i is false.

B.2 Graph Classes
A graph G is a chordal graph if every cycle in G of length at least four has a chord, that
is, an edge joining two non-consecutive vertices of the cycle. In what follows, we define
several subclasses of the class of chordal graphs, namely, complete graphs, block graphs, split
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Chordal Graphs

Well-partitioned Chordal graphs

Split Graphs

Threshold Graphs

Block Graphs

Clique Paths

Figure 2 The inclusive relationship among the subclasses of chordal graphs studied in this paper.

graphs, threshold graphs, and well-partitioned chordal graphs. A graph whose vertex set is a
clique is a complete graph. A vertex is a cut vertex in a graph G if removing it increases the
total number of connected components in G. A block of a graph G is a maximal connected
subgraph of G that does not contain any cut vertex. A graph G is a block graph if the vertex
set of every block in G is a clique. A block of a block graph G is an end block if it contains
exactly one cut vertex. Note that a block graph that is not a complete graph has at least two
end blocks. A graph G is a split graph if there is a partition (C, I) of V (G) such that C is a
clique and I is an independent set. A split graph G is a threshold graph if there exists a linear
ordering of the vertices in I, say, (v1, v2, . . . , v|I|), such that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v|I|).

An undirected graph in which any two vertices are connected by exactly one path is a tree.
A tree with at most two vertices or exactly one non-pendant vertex is a star. The vertices of
degree one in a tree are called leaves. Note that a split graph admits a partition of its vertex
set into cliques that can be arranged in a star structure, where the leaves are cliques of size
one. Motivated by this definition of split graphs, Ahn et al. [2] introduced well-partitioned
chordal graphs, which are defined by relaxing the definition of split graphs in the following
two ways: (i) by allowing the parts of the partition to be arranged in a tree structure instead
of a star structure, and (ii) by allowing the cliques in each part to have arbitrary size instead
of one. A more formal definition of a well-partitioned chordal graph is given below.

▶ Definition 64 (Well-Partitioned Chordal Graph). A connected graph G is a well-partitioned
chordal graph if there exists a partition B of V (G) and a tree T having B as its vertex set
such that the following hold.

(i) Each part X ∈ B is a clique in G.
(ii) For each edge XY ∈ E(T ), there are subsets X ′ ⊆ X and Y ′ ⊆ Y such that

E(G[X, Y ]) = X ′ × Y ′.
(iii) For each pair of distinct X, Y ∈ B with XY /∈ E(T ), E(G[X, Y ]) = ∅.

The tree T in Definition 64 is called a partition tree of G, and the elements of B are called
its bags. Notice that a well-partitioned chordal graph can have multiple partition trees.

▶ Proposition 65 ([2]). Given a well-partitioned chordal graph G, a partition tree of G can
be found in polynomial time.

▶ Definition 66 (Boundary of a Well-Partitioned Chordal Graph). Let T be a partition tree
of a well-partitioned chordal graph G and let XY ∈ E(T ). The boundary of X with respect
to Y , denoted by bd(X, Y ), is the set of vertices of X that have a neighbor in Y , i.e.,
bd(X, Y ) = {x ∈ X : NG(x) ∩ Y ̸= ∅}.
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▶ Remark 67. Note that all the graph classes considered in this paper are closed under vertex
deletion. Therefore, throughout this paper, if G belongs to class Z and G′ is obtained from
G after deleting some vertices, then we assume that G′ also belongs to Z without mentioning
it explicitly.

The inclusion relationship among various subclasses of chordal graphs discussed in this
paper is shown in Figure 2.

C NP-hardness for Complete Graphs

In this section, we prove that EDP is NP-hard on complete graphs by giving a polynomial-time
reduction from EDP on general graphs, which is known to be NP-hard [35]. Our reduction
is based on the standard technique of adding missing edges and placing a terminal pair on
the endpoints of the added edge. This technique was also used to prove the NP-hardness of
EDP for split graphs [27].

▶ Theorem 1. EDP is NP-hard on complete graphs.

Proof. Let (G, X , k) be an instance of EDP, where X = {(s1, t1), . . . , (sk, tk)}. Define
the graph G′ as follows: Let V (G′) = V (G) and E(G′) = E(G) ∪ {uv : uv /∈ E(G)}.
Furthermore, let T = {(suv, tuv) : uv ∈ E(G′) \ E(G), suv = u, tuv = v}. Note that for ease
of notation, we denote the terminal pairs in T by (suv, tuv) rather than (u, v). Also, for
an edge uv ∈ E(G′) \ E(G), we introduce either (suv, tuv) or (svu, tvu) in T , not both. Let
X ′ = X ∪ T . Now, we claim that (G, X , k) and (G′, X ′, k′) are equivalent instances of EDP,
where k′ = k + |T |. Let PT = {Puv : (suv, tuv) ∈ T }.

In one direction, let P = {P1, . . . , Pk} be a solution of (G, X , k). Since for every
(suv, tuv) ∈ T , the edge uv does not belong to any path in P , P ∪ PT is a set of edge-disjoint
paths in G′. As X ′ = X ∪ T , P ∪ PT is a solution of (G′, X ′, k′).

In the other direction, let P ′ be a solution of (G′, X ′, k′) that contains as many paths
from PT as possible. Next, we claim that PT ⊆ P ′. Targeting a contradiction, suppose
that there exists a terminal pair, say, (suv, tuv) ∈ T , such that Puv /∈ P ′. Let Q denote the
path in P ′ connecting suv and tuv. If none of the paths in P ′ uses the edge uv, then the
set (P ′ \ Q) ∪ {Puv} is a solution of (G′, X ′, k′) containing more paths from PT than P ′,
contradicting the choice of P ′. Hence, there must be a unique path P ∗ ∈ P ′ that uses the
edge uv. Let s∗ and t∗ be the two terminals that are connected by the path P ∗. Let W denote
the walk between s∗ and t∗ obtained from P ∗ by replacing the edge uv with the path Q

(there may be some vertices that are repeated in W ). Since E(W ) = (E(P ∗) ∪ E(Q)) \ {uv},
W is edge-disjoint from every path in P ′ \ {P ∗, Q} (as P ′ is a set of edge-disjoint paths). Let
Q∗ be a path between s∗ and t∗ that uses a subset of edges of W , which again is edge-disjoint
from every path in P ′ \ {P ∗, Q}. Hence, P = (P ′ \ {P ∗, Q}) ∪ {Puv, Q∗} is a solution of
(G′, X ′, k′) that contains one more path from PT than P ′. This contradicts the choice of
P ′, and thus implies that PT ⊆ P ′. Since X ′ = X ∪ T and PT contains the edge-disjoint
paths between the terminal pairs present in T , P ′ \ PT must contain the edge-disjoint paths
between the terminal pairs present in X . Thus, P ′ \ PT is a solution of (G, X , k). ◀
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