
Extending the WMSO+U Logic with
Quantification over Tuples
Anita Badyl
Institute of Informatics, University of Warsaw, Poland

Paweł Parys #

Institute of Informatics, University of Warsaw, Poland

Abstract
We study a new extension of the weak MSO logic, talking about boundedness. Instead of a
previously considered quantifier U, expressing the fact that there exist arbitrarily large finite sets
satisfying a given property, we consider a generalized quantifier U, expressing the fact that there
exist tuples of arbitrarily large finite sets satisfying a given property. First, we prove that the new
logic WMSO+Utup is strictly more expressive than WMSO+U. In particular, WMSO+Utup is able
to express the so-called simultaneous unboundedness property, for which we prove that it is not
expressible in WMSO+U. Second, we prove that it is decidable whether the tree generated by a
given higher-order recursion scheme satisfies a given sentence of WMSO+Utup.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking; Theory of computation → Rewrite systems

Keywords and phrases Boundedness, logic, decidability, expressivity, recursion schemes

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.12

Related Version Extended Version: http://arxiv.org/abs/2311.16607

Funding Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

1 Introduction

In the field of logic in computer science, one of the goals is to find logics that, on the one
hand, have decidable properties and, on the other hand, are as expressive as possible. An
important example of such a logic is the monadic second-order logic, MSO, which defines
exactly all regular properties of finite and infinite words [11, 18, 35] and trees [31], and is
decidable over these structures.

A natural question that arises is whether MSO can be extended in a decidable way.
Particular hopes were connected with expressing boundedness properties. Bojańczyk [3]
introduced a logic called MSO+U, which extends MSO with a new quantifier U, with UX.φ
saying that the subformula φ holds for arbitrarily large finite sets X. Originally, it was only
shown that satisfiability over infinite trees is decidable for formulae where the U quantifier is
only used once and not under the scope of set quantification. A significantly more powerful
fragment of the logic, albeit for infinite words, was shown decidable by Bojańczyk and
Colcombet [6] using automata with counters. These automata were further developed into
the theory of cost functions initiated by Colcombet [15].

The difficulty of MSO+U comes from the interaction between the U quantifier and
quantification over possibly infinite sets. This motivated the study of WMSO+U, which is a
variant of MSO+U where set quantification is restricted to finite sets (the “W” in the name
stands for weak). On infinite words, satisfiability of WMSO+U is decidable, and the logic
has an automaton model [4]. Similar results hold for infinite trees [7], and have been used
to decide properties of ctl* [12]. Currently, the strongest decidability result in this line is
about WMSO+U over infinite trees extended with quantification over infinite paths [5]. The

© Anita Badyl and Paweł Parys;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parys@mimuw.edu.pl
https://orcid.org/0000-0001-7247-1408
https://doi.org/10.4230/LIPIcs.CSL.2024.12
http://arxiv.org/abs/2311.16607
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Extending the WMSO+U Logic with Quantification over Tuples

latter result entails decidability of problems such as the realisability problem for prompt
ltl [26], deciding the winner in cost parity games [20], or deciding certain properties of
energy games [8].

The results mentioned so far concern mostly the satisfiability problem (is there a model
in which a given formula is true?), but arguably the problem more relevant in practice is the
model-checking problem: is a given formula satisfied in a given model? In a typical setting,
the model represents (possible computations of) some computer system, and the formula
expresses some desired property of the system, to be verified. The model is thus usually
infinite, although described in a finite way. In this paper, as the class of considered models
we choose trees generated by higher-order recursion schemes, which is a very natural and
highly expressive choice.

Higher-order recursion schemes (recursion schemes in short) are used to faithfully repres-
ent the control flow of programs in languages with higher-order functions [17, 23, 27, 24].
This formalism is equivalent via direct translations to simply-typed λY -calculus [34]. Col-
lapsible pushdown systems [22] and ordered tree-pushdown systems [13] are other equivalent
formalisms. Recursion schemes easily cover finite and pushdown systems, but also some
other models such as indexed grammars [1] and ordered multi-pushdown automata [9].

A classic result, with several proofs and extensions, says that model-checking trees
generated by recursion schemes against MSO formulae is decidable: given a recursion
scheme G and a formula φ ∈ MSO, one can say whether φ holds in the tree generated by
G [27, 22, 25, 32, 10, 33]. When it comes to boundedness properties, one has to first mention
decidability of the simultaneous unboundedness property (a.k.a. diagonal property) [21, 14, 30].
In this problem one asks whether, in the tree generated by a given recursion scheme G, there
exist branches containing arbitrarily many occurrences of each of the labels a1, . . . , ak (i.e.,
whether for every n ∈ N there exists a branch on which every label from {a1, . . . , ak} occurs
at least n times). This result turns out to be interesting, because it entails other decidability
results for recursion schemes, concerning in particular computability of the downward
closure of recognized languages [36], and the problem of separability by piecewise testable
languages [16]. Then, we also have decidability for logics talking about boundedness. Namely,
it was shown recently that model-checking for recursion schemes is decidable against formulae
from WMSO+U [28] (and even from a mixture of MSO and WMSO+U, where quantification
over infinite sets is allowed but cannot be arbitrarily nested with the U quantifier [29]).
Another paper [2] shows decidability of model-checking for a subclass of recursion schemes
against alternating B-automata and against weak cost monadic second-order logic (WCMSO);
these are other formalisms allowing to describe boundedness properties, but in a different
style than the U quantifier.

Interestingly, the decidability of model-checking for WMSO+U is obtained by a reduction
to (a variant of) the simultaneous unboundedness problem. On the other hand, it seems that
the simultaneous unboundedness property cannot be expressed in WMSO+U (except for the
case of a single distinguished letter a1), which is very intriguing.

Our contribution. As a first contribution, we prove the fact that was previously only a
hypothesis: WMSO+U is indeed unable to express the simultaneous unboundedness property.
Then, we define a new logic, WMSO+Utup; it is an extension of WMSO+U, where the U
quantifier can be used with a tuple of set variables, instead of just one variable. A construct
with the extended quantifier, U(X1, . . . , Xk).φ, says that the subformula φ holds for tuples of
sets in which each of X1, . . . , Xk is arbitrarily large. This logic is capable of easily expressing
properties in which multiple quantities are simultaneously required to be unbounded. In
particular, it can express the simultaneous unboundedness property, and thus it is strictly
more expressive than the standard WMSO+U logic:

A. Badyl and P. Parys 12:3

▶ Theorem 1.1. The WMSO+Utup logic can express some properties of trees that are not
expressible in WMSO+U; in particular, this is the case for the simultaneous unboundedness
property.

In fact, to separate the two logics it is enough to consider WMSO+Utup only with U
quantifiers for pairs of variables (i.e., with k = 2). Actually, we are convinced that the proof
of Theorem 1.1 contained in this paper can be modified for showing that, for every k ≥ 2,
WMSO+Utup without U quantifiers for tuples of length at least k is less expressive than
WMSO+Utup with such quantifiers (cf.Remark 5.6).

Our main theorem says that the model-checking procedure for WMSO+U can be extended
to the new logic:

▶ Theorem 1.2. Given an WMSO+Utup sentence φ and a recursion scheme G one can
decide whether φ is true in the tree generated by G.

2 Preliminaries

The powerset of a set X is denoted P(X). For i, j ∈ N we define [i, j] = {k ∈ N | i ≤ k ≤ j}.
The domain of a function f is denoted dom(f). When f is a function, by f [x 7→ y] we mean
the function that maps x to y and every other z ∈ dom(f) to f(z).

Trees. We consider rooted, potentially infinite trees, where children are ordered. For
simplicity of the presentation, we consider only binary trees, where every node has at most
two children. This is not really a restriction. Indeed, it is easy to believe that our proofs
can be generalized to trees of arbitrary bounded finite arity without any problem (except
for notational complications). Alternatively, a tree of arbitrary bounded finite arity can
be converted into a binary tree using the first child / next sibling encoding, and a logical
formula can be translated as well to a formula talking about the encoding; this means that
the WMSO+Utup model-checking problem over trees of arbitrary bounded finite arity can be
reduced to such a problem over binary trees.

Formally, a tree domain (a set of tree nodes) is a set D ⊆ {L,R}∗ that is closed under
taking prefixes (i.e., if uv ∈ D then also u ∈ D). A tree over an alphabet A is a function
T : D → A, for some tree domain D. The set of trees over A is denoted T (A). The subtree
of T starting in a node v is denoted T ↾v and is defined by (T ↾v)(u) = T (vu) (with domain
{u ∈ {L,R}∗ | vu ∈ dom(T)}). For nodes we employ the usual notions of child, parent,
ancestor, descendant, etc. (where we assume that a node is also an ancestor and a descendant
of itself).

For trees T1, T2, and for a ∈ A we write a⟨T1, T2⟩ for the tree T such that T ↾L = T1,
T ↾R = T2, and T (ε) = a. We also write ⊥ for the tree with empty domain.

Recursion schemes. Recursion schemes are grammars used to describe some infinite trees
in a finitary way. We introduce recursion schemes only by giving an example, rather than by
defining them formally. This is enough, because this paper does not work with recursion
schemes directly; it only uses some facts concerning them.

A recursion scheme is given by a set of rules, like this:

S → F G , D g x → g (g x) ,
F g → a⟨g ⊥,F (D g)⟩ , G x → b⟨x,⊥⟩ .

CSL 2024

12:4 Extending the WMSO+U Logic with Quantification over Tuples

b

a
b a

a
a
. . .

. . .

b
b b

b
b

b
b

b
b

b b
. . .

b
b

b
b

b

a

2i

i

Figure 1 The tree generated by the example recursion scheme.

Here S,D,F,G are nonterminals, with S being the starting nonterminal, x, g are variables, and
a, b are letters from A. To generate a tree, we start with S, which reduces to F G using the
first rule. We now use the rule for F, where the parameter g is instantiated to be G; we obtain
a⟨G ⊥,F (D G)⟩. This already defines the root of the tree, which should be a-labeled; its two
subtrees should be generated from G ⊥ and F (D G), respectively. We see that G ⊥ reduces to
b⟨⊥,⊥⟩, which is a tree with a single b-labeled node. On the other hand, F (D G) reduces
to a⟨D G ⊥,F (D (D G))⟩, which means that the right child of the root is a-labeled, and its
left subtree generated from D G ⊥ (which reduces to G (G ⊥), then to b⟨G⊥,⊥⟩, and then to
b⟨b⟨⊥,⊥⟩,⊥⟩) is a path consisting of two b-labeled nodes. Continuing like this, when going
right we always obtain a next a-labeled node (we thus have an infinite a-labeled branch), and
to the left of the i-th such node we have a tree generated from D (D (. . . (D︸ ︷︷ ︸

i−1

G) . . .)) ⊥, which

is a finite branch consisting of 2i−1 b-labeled nodes (note that every D applies its argument
twice, and hence doubles the number of produced b-labeled nodes). The resulting tree is
depicted on Figure 1.

For a formal definition of recursion schemes consult prior work (e.g., [23, 24, 32, 28]).
Some of these papers use a lambda-calculus notation, where our rule for D would be rather
written as D → λg.λx.g (g x). Sometimes it is also allowed to have λ inside a rule, like
S → F (λ x.b⟨x,⊥⟩); this does not make the definition more general, because subterms
starting with λ can be always extracted to separate nonterminals.

3 The WMSO+Utup logic

In this section we introduce the logic under consideration: the WMSO+Utup logic.

Definition. For technical convenience, we use a syntax in which there are no first-order
variables. It is easy to translate a formula from a more standard syntax to ours: first-order
variables may be simulated by set variables for which we check that they contain exactly one
node (i.e., that they are nonempty and that every subset thereof is either empty or equal to
the whole set).

We assume an infinite set V of variables, which can be used to quantify over finite sets of
tree nodes. In order to distinguish variables from sets to which these variables are valuated,
we denote variables using Sans Serif font (e.g., X,Y,Z). In the syntax of WMSO+Utup we
have the following constructions:

φ ::= a(X) | X 'd Y | X ⊆ Y | φ1 ∧ φ2 | ¬φ′ | ∃finX.φ′ | U(X1, . . . ,Xk).φ′ ,

where a ∈ A, d ∈ {L,R}, k ∈ N, and X,Y,X1, . . . ,Xk ∈ V. Free variables of a formula
are defined as usual; in particular U(X1, . . . ,Xk) is a quantifier that bounds the variables
X1, . . . ,Xk.

A. Badyl and P. Parys 12:5

We evaluate formulae of WMSO+Utup in A-labeled trees. In order to evaluate a formula
φ in a tree T , we also need a valuation, that is, a function ν from V to finite sets of nodes
of T (its values are meaningful only for free variables of φ). The semantics of formulae is
defined as follows:

a(X) holds when every node in ν(X) is labeled with a,
X 'd Y holds when both ν(X) and ν(Y) are singletons, and the unique node in ν(Y) is
the left (if d = L) / right (if d = R) child of the unique node in ν(X),
X ⊆ Y holds when ν(X) ⊆ ν(Y),
φ1 ∧ φ2 holds when both φ1 and φ2 hold,
¬φ′ holds when φ′ does not hold,
∃finX.φ′ holds if there exists a finite set X of nodes of T for which φ′ holds under the
valuation ν[X 7→ X], and
U(X1, . . . ,Xk).φ′ holds if for every n ∈ N there exist finite sets X1, . . . , Xk of nodes of T ,
each of cardinality at least n, such that φ′ holds under the valuation ν[X1 7→ X1, . . . ,Xk 7→
Xk].

We write T, ν |= φ to denote that φ holds in T under the valuation ν.

Logical types. In proofs of both our results, Theorem 1.1 and Theorem 1.2, we use logical
types, which we now define.

Let φ be a formula of WMSO+Utup, let T be a tree, and let ν be a valuation. We define
the φ-type of T under valuation ν, denoted JT Kνφ, by induction on the size of φ as follows:

if φ is of the form a(X) (for some letter a ∈ A) or X ⊆ Y then JT Kνφ is the logical value of
φ in T, ν, that is, tt if T, ν |= φ and ff otherwise,
if φ is of the form X 'd Y, then JT Kνφ equals:

tt if T, ν |= φ,
empty if ν(X) = ν(Y) = ∅,
root if ν(X) = ∅ and ν(Y) = {ε}, and
ff otherwise,

if φ = (ψ1 ∧ ψ2), then JT Kνφ = (JT Kνψ1
, JT Kνψ2

),
if φ = (¬ψ), then JT Kνφ = JT Kνψ,
if φ = ∃finX.ψ, then

JT Kνφ = {σ | ∃X. JT Kν[X 7→X]
ψ = σ} ,

where X ranges over finite sets of nodes of T , and
if φ = U(X1, . . . ,Xk).ψ, then

JT Kνφ =
(
{σ | ∀n ∈ N.∃X1. · · · .∃Xk. JT Kν[X1 7→X1,...,Xk 7→Xk]

ψ = σ

∧ ∀i ∈ I. |Xi| ≥ n}
)
I⊆[1,k] ,

where X1, . . . , Xk range over finite sets of nodes of T (the above φ-type is a tuple of 2k
sets, indexed by subsets I of [1, k]).

For each φ, let Typφ denote the set of all potential φ-types. Namely, Typφ = {tt,ff} if
φ = a(X) or φ = (X ⊆ Y), Typφ = {tt, empty, root,ff} if φ = X 'd Y, Typφ = Typψ1 × Typψ2

if φ = (ψ1 ∧ ψ2), Typφ = Typψ if φ = (¬ψ); Typφ = P(Typψ) if φ = ∃finX.ψ, and
Typφ = (P(Typψ))2k if φ = U(X1, . . . ,Xk).ψ.

The following two facts can be shown by a straightforward induction on the structure of
a considered formula:

CSL 2024

12:6 Extending the WMSO+U Logic with Quantification over Tuples

▶ Fact 3.1. For every WMSO+Utup formula φ the set Typφ is finite.

The second fact says that whether or not φ holds in T, ν is determined by JT Kνφ:

▶ Fact 3.2. For every WMSO+Utup formula φ there is a computable function tvφ : Typφ →
{tt,ff} such that for every tree T ∈ T (A) and every valuation ν in T , it holds that tvφ(JT Kνφ) =
tt if, and only if, T, ν |= φ.

Next, we observe that types behave in a compositional way, as formalized below. Here,
for a node w we write X↾w and ν↾w to denote the restriction of a set X and of a valuation
ν to the subtree starting at w; formally, X↾w = {u | wu ∈ X} and ν↾w maps every variable
X ∈ V to ν(X)↾w.

▶ Proposition 3.3. For every letter a ∈ A and every formula φ, one can compute a function
Compa,φ : P(V) × Typφ × Typφ → Typφ such that for every tree T whose root has label a
and for every valuation ν,

JT Kνφ = Compa,φ({X | ε ∈ ν(X)}, JT ↾LKν↾L
φ , JT ↾RKν↾R

φ) . (1)

We remark that a priori the first argument of Compa,φ is an arbitrary subset of V, but
in fact we only need to know which free variables of φ it contains; in consequence, Compa,φ
can be seen as a finite object.

Proof of Proposition 3.3. We proceed by induction on the size of φ.
When φ is of the form b(X) or X ⊆ Y, then we see that φ holds in T, ν if, and only if,

it holds in the subtrees T ↾L, ν↾L and T ↾R, ν↾R, and in the root of T . Thus for φ = b(X) as
Compa,φ(S, τL, τR) we take tt when τL = τR = tt and either a = b or X ̸∈ S. For φ = (X ⊆ Y)
the last part of the condition is replaced by “if X ∈ S then Y ∈ S”.

Next, suppose that φ = (X 'd Y). Then as Compa,φ(S, τL, τR) we take
tt if X ̸∈ S, Y ̸∈ S, and either τL = tt and τR = empty or τL = empty and τR = tt,
tt also if X ∈ S, Y ̸∈ S, τd = root, and τi = empty for the direction i other than d,
empty if X ̸∈ S, Y ̸∈ S, and τL = τS = empty,
root if X ̸∈ S, Y ∈ S, and τL = τS = empty, and
ff otherwise.

By comparing this definition with the definition of the type we immediately see that Equal-
ity (1) is satisfied.

When φ = (¬ψ), we simply take Compa,φ = Compa,ψ, and when φ = (ψ1 ∧ ψ2), as
Compa,φ(S, (τ1

L , τ
2
L), (τ1

R, τ
2
R)) we take the pair of Compa,ψi(S, τ

i
L, τ

i
R) for i ∈ {1, 2}.

Suppose now that φ = ∃finX.ψ. We define Compa,φ(S, τL, τR) to be

{Compa,ψ(S′, σL, σR) | S \ {X} ⊆ S′ ⊆ S ∪ {X}, σL ∈ τL, σR ∈ τR} .

Let us check Equality (1) in details. Denote S = {Y | ε ∈ ν(Y)}. In order to show the
left-to-right inclusion recall that, by definition, JT Kνφ is a set of ψ-types, whose every element
is of the form JT Kν[X 7→X]

ψ for some finite set of nodes X. For every such X by the induction
hypothesis we have JT Kν[X 7→X]

ψ = Compa,ψ(S′, JT ↾LKν[X 7→X]↾L
φ , JT ↾RKν[X 7→X]↾R

φ), where S′ =
S ∪ {X} if ε ∈ X and S′ = S \ {X} if ε ̸∈ X; moreover JT ↾LKν[X 7→X]↾L

ψ ∈ JT ↾LKν↾L
φ and

JT ↾RKν[X 7→X]↾R
ψ ∈ JT ↾LKν↾R

φ , which implies that JT Kν[X 7→X]
ψ ∈ Compa,φ(S, JT ↾LKν↾L

φ , JT ↾RKν↾R
φ),

as required. For the opposite inclusion take some σ ∈ Compa,φ(S, JT ↾LKν↾L
φ , JT ↾RKν↾R

φ); it
is of the form Compa,ψ(S′, σL, σR) for some σL ∈ JT ↾LKν↾L

φ and σR ∈ JT ↾RKν↾R
φ , where S′ is

either S ∪ {X} or S \ {X}. Then, by definition, σL and σR are of the form JT ↾LK(ν↾L)[X 7→XL]
ψ

A. Badyl and P. Parys 12:7

and JT ↾RK(ν↾R)[X 7→XR]
ψ , respectively, for some finite sets of nodes XL and XR. We now take

X such that X↾L = XL and X↾R = XR, and ε ∈ X if, and only if, S′ = S ∪ {X}; we
have (ν↾L)[X 7→ XL] = ν[X 7→ X]↾L and (ν↾R)[X 7→ XR] = ν[X 7→ X]↾R. By the induction
hypothesis we then have σ = JT Kν[X 7→X]

ψ , which by definition is an element of JT Kνφ, as
required.

Finally, suppose that φ = U(X1, . . . ,Xk).ψ. For τL = (ρL,I)I⊆[1,k] and τR = (ρR,I)I⊆[1,k]
we define Compa,φ(S, τL, τR) to be (ρI)I⊆[1,k], where

ρI = {Compa,ψ(S′, σL, σR) | S \ {X1, . . . ,Xk} ⊆ S′ ⊆ S ∪ {X1, . . . ,Xk},
σL ∈ ρL,IL , σR ∈ ρR,IR , IL ∪ IR = I} .

In order to check Equality (1), denote JT Kνφ = (ρ′
I)I⊆[1,k], JT ↾LKν↾L

φ = (ρL,I)I⊆[1,k], JT ↾RKν↾R
φ =

(ρR,I)I⊆[1,k], and S = {Y | ε ∈ ν(Y)}; we then have to prove that ρ′
I = ρI for all I ⊆ [1, k]

(where ρI is as defined above).
For the left-to-right inclusion, take some σ ∈ ρ′

I . By definition, it is a ψ-type such that
for every n ∈ N there exist finite sets Xn,1, . . . , Xn,k for which JT Kν[X1 7→Xn,1,...,Xk 7→Xn,k]

ψ = σ,
where the cardinality of the sets Xn,i with i ∈ I is at least n. To every n let us assign the
following information, called characteristic, and consisting of 2k bits and 2 ψ-types:

for every i ∈ [1, k], does the root ε belong to Xn,i?
for every i ∈ [1, k], is Xn,i↾L larger than Xn,i↾R?
the ψ-types JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L

ψ and JT ↾RKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾R
ψ .

Because there are only finitely many possible characteristics, by the pigeonhole principle we
may find an infinite set G ⊆ N of indices n such that the same characteristic is assigned to
every n ∈ G. We then take

S′ = S \ {X1, . . . ,Xk} ∪ {Xi | ε ∈ Xn,i for n ∈ G} ,
IL = {i ∈ I | |Xn,i↾L| > |Xn,i↾R| for n ∈ G} , IR = I \ IL ,

σL = JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L
ψ , σR = JT ↾RKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾R

ψ for n ∈ G.

The induction hypothesis (used with the valuation ν[X1 7→ Xn,1, . . . ,Xk 7→ Xn,k] for any
n ∈ G) gives us σ = Compa,ψ(S′, σL, σR). For every m ∈ N we can find n ∈ G such that
n ≥ 2m + 1; then JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L

ψ = σL and |Xn,i↾L| ≥ m for all i ∈ IL (Xn,i

has at least 2m+ 1 elements because i ∈ I, one of them may be the root, and at least half
of the other elements is in the left subtree by definition of IL). This implies that σL ∈ ρL,I ,
by definition of the φ-type. Likewise σR ∈ ρR,I . By definition of ρI this gives us σ ∈ ρI as
required.

The right-to-left inclusion is completely straightforward. Indeed, take some σ ∈ ρI .
The definition of ρI gives us a set S′ such that S \ {X1, . . . ,Xk} ⊆ S′ ⊆ S ∪ {X1, . . . ,Xk},
sets IL, IR ⊆ [1, k] such that IL ∪ IR = I, and types σL ∈ ρL,IL and σR ∈ ρR,IR such that
σ = Compa,ψ(S′, σL, σR). By definition of the two ψ-types, σL and σR, for every n there
are sets XL,1, . . . , XL,k and XR,1, . . . , XR,k such that JT ↾LK(ν↾L)[X1 7→XL,1,...,Xk 7→XL,k]

ψ = σL, and
JT ↾RK(ν↾R)[X1 7→XR,1,...,Xk 7→XR,k]

ψ = σR, and |XL,i| ≥ n for all i ∈ IL, and |XR,i| ≥ n for all
i ∈ IR. We now take X1, . . . , Xk such that Xi↾L = XL,i, and Xi↾R = XR,i, and ε ∈ Xi

if, and only if, Xi ∈ S′, for all i ∈ [1, k]. By the induction hypothesis we then have
JT Kν[X1 7→X1,...,Xk 7→Xk]

ψ = Compa,ψ(S′, σL, σR) = σ. Because additionally |Xi| ≥ n for all
i ∈ I = IL ∪ IR, we obtain that σ ∈ ρ′

I , as required. ◀

CSL 2024

12:8 Extending the WMSO+U Logic with Quantification over Tuples

a
b

a
a

a
b

(a,ff)
(b, tt)

(a,ff)
(a, tt)

(a,ff)
(b,ff)

Figure 2 An example tree T (left), and the corresponding tree reflφ(T) (right) obtained for an
MSO sentence φ saying “the right child of the root has label a”.

The next fact says that one can find a type of the empty tree. In the empty tree, a
valuation has to map every variable to the empty set; we denote such a valuation by ∅. This
fact is trivial: we simply follow the definition of J⊥K∅φ .

▶ Fact 3.4. For ever formula φ, one can compute J⊥K∅φ .

4 Decidability of model-checking

In this section we show how to evaluate WMSO+Utup formulae over trees generated by
recursion schemes, that is, we prove Theorem 1.2. To this end, we first introduce three kinds
of operations on recursion schemes, known to be computable. Then, we show how a sequence
of these operations can be used to evaluate our formulae.

MSO reflection. The property of logical reflection for recursion schemes comes from
Broadbent, Carayol, Ong, and Serre [10]. They state it for sentences of µ-calculus, but
µ-calculus and MSO are equivalent over infinite trees [19].

Consider a tree T , and an MSO sentence φ (we skip a formal definition of MSO, assuming
that it is standard). We define reflφ(T) to be the tree having the same domain as T , and
such that every node u thereof is labeled by the pair (au, bu), where au is the label of u in T ,
and bu is tt if φ is satisfied in T ↾u and ff otherwise. In other words, reflφ(T) adds, in every
node of T , a mark saying whether φ holds in the subtree starting in that node. Consult
Figure 2 for an example.

▶ Theorem 4.1 (MSO reflection [10, Theorem 7.3(2)]). Given a recursion scheme G generating
a tree T , and an MSO sentence φ, one can construct a recursion scheme Gφ generating the
tree reflφ(T).

SUP reflection. The SUP reflection is the heart of our proof (where “SUP” stands for
simultaneous unboundedness property). In order to talk about this property, we need a few
more definitions. By #a(V) we denote the number of a-labeled nodes in a (finite) tree V . For
a set of (finite) trees L and a set of letters A, we define a predicate SUPA(L), which holds if
for every n ∈ N there is some Vn ∈ L such that for all a ∈ A it holds that #a(Vn) ≥ n.

Originally, in the simultaneous unboundedness property we consider devices recognizing a
set of finite trees, unlike recursion schemes, which generate a single infinite tree. We use here
an equivalent formulation, in which the set of finite trees is encoded in a single infinite tree.
To this end, we use two special letters: nd, denoting a nondeterministic choice (disjunction
between two children), and nd⊥, denoting that there is no choice (empty disjunction). We
write T →nd V if V is obtained from T by choosing some nd-labeled node u and some its
child v, and attaching T ↾v in place of T ↾u. In other words, →nd is the smallest relation
such that nd⟨TL, TR⟩ →nd Td for d ∈ {L,R}, and a⟨TL, TR⟩ →nd a⟨T ′

L, TR⟩ if TL →nd T
′
L, and

a⟨TL, TR⟩ →nd a⟨TL, T
′
R⟩ if TR →nd T

′
R. For a tree T , L(T) is the set of all finite trees V such

A. Badyl and P. Parys 12:9

a
nd

nd⊥

dc

nd

b
nd

hg
nd

e f

a
cb

e g

a
cb

f g

a
cb

e h

a
cb

f h

Figure 3 An example tree T , and four trees in L(T) (right). Additionally, L(T) contains ⊥, the
tree with empty domain, obtained by choosing the right child in the topmost nd-labeled node. Note
that no tree in L(T) contains d, because d in T is followed by nd⊥, which is forbidden in trees in
L(T).

a
nd

nd
ab cb c

b c

nd
nd

. . .

. . .

b c

b c
b c a

b c

nd
ndb c

b c
. . .

. . .
2i

3i nodes

Figure 4 A tree T illustrating SUP reflection.

that #nd(V) = #nd⊥(V) = 0 and T →∗
nd V . See Figure 3 for an example. We then say

that T satisfies the simultaneous unboundedness property with respect to a set of letters A
if SUPA(L(T)) holds, that is, if for every n ∈ N there are trees in L(T) having at least n
occurrences of every letter from A.

Let T be a tree over an alphabet A. We define reflSUP(T) to be the tree having the same
domain as T , and such that every node u thereof, having in T label au, is labeled by

the pair (au, {A ⊆ A | SUPA(L(T ↾u))}), if au ̸∈ {nd, nd⊥}, and
the original letter au, if au ∈ {nd, nd⊥}.

In other words, reflSUP(T) adds, in every node u of T (except for nd- and nd⊥-labeled
nodes) and for every set A of letters, a mark saying whether T ↾u has the simultaneous
unboundedness property with respect to A.

Consider, for example, the tree T from Figure 4. The tree reflSUP(T) has the same
shape as T . Every node u having label a in T gets label (a, {∅, {a}, {b}, {c}, {a, b}, {a, c}}).
Note that the set does not contain {b, c} nor {a, b, c}: in L(T ↾u) there are no trees having
simultaneously many occurrences of b and many occurrences of c. Nodes u having in T label
b or c are simply relabeled to (b, {∅}) or (c, {∅}), respectively, because L(T ↾u) contains only
a single tree, with a fixed number of nodes.

▶ Theorem 4.2 (SUP reflection [30, Theorem 10.1]). Given a recursion scheme G generating
a tree T , one can construct a recursion scheme GSUP generating the tree reflSUP(T).

▶ Remark 4.3. In the introduction we have described an easier variant of the simultaneous
unboundedness property, called a word variant. In this variant, every node with label other
than nd has at most one child; then choosing a tree in L(T) corresponds to choosing a
branch of T (and trees in L(T) consist of single branches, hence they can be seen as words).
Although the word variant of SUP is more commonly known than the tree variant described
in this section, Theorem 4.2 holds also for the more general tree variant, as presented above.

CSL 2024

12:10 Extending the WMSO+U Logic with Quantification over Tuples

Transducers. A (deterministic, top-down) finite tree transducer is a tuple F = (A,B, Q,
q0, δ), where A is a finite input alphabet, B is a finite output alphabet, Q is a finite set of
states, q0 ∈ Q is an initial state, and δ is a transition function mapping Q× (A ∪ {⊥}) to
finite trees over the alphabet B ∪ (Q× {L,R}). Letters from Q× {L,R} are allowed to occur
only in leaves of trees δ(q, a) with a ∈ A (internal nodes of these trees, and all nodes of
trees δ(q,⊥) are labeled by letters from B). Moreover, it is assumed that that there is no
sequence (q1, a1, d1), (q2, a2, d2), . . . , (qn, an, dn) such that δ(qi, ai) = (q(i mod n)+1, di)⟨⊥,⊥⟩
for all i ∈ [1, n].

For an input tree T over A and a state q ∈ Q, we define an output tree Fq(T) over B.
Namely Fq(a⟨TL, TR⟩) is the tree obtained from δ(q, a) by substituting Fr(Td) for every leaf
labeled with (r, d) ∈ Q× {L,R}; additionally, Fq(⊥) simply equals δ(q,⊥) (recall that this
tree has no labels from Q× {L,R}). In other words, while being in state q over an a-labeled
node of the input tree, the transducer produces a tree prefix specified by δ(q, a), where
instead of outputting an (r, L)-labeled (or (r,R)-labeled) leaf, it rather continues by going to
the left (respectively, right) child in the input tree, in state r; when F leaves the domain of
the input tree, it still has a chance to output something, namely δ(q,⊥), and then it stops.
In the root we start from the initial state, that is, we define F(T) = Fq0(T). To make the
above definition formal, we can define Fq(T)(v), the label of Fq(T) in a node v ∈ {L,R}k, by
induction on the depth k, simultaneously for all input trees T and states q ∈ Q. Transitions
δ(q, a) with (r, d) immediately in the root are a bit problematic, because we go down along
the input tree without producing anything in the output tree; we have assumed, however,
that such transitions do not form a cycle, so after a few (at most |Q|) steps we necessarily
advance in the output tree.

Note that transducers need not be linear. For example, we may have δ(q, a) = a⟨a⟨(q, L),
(q, L)⟩, a⟨(q,R), (q,R)⟩⟩, which creates two copies of the tree produced out of the left subtree,
and two copies of the tree produced out of the right subtree.

We have the following theorem:

▶ Theorem 4.4. Given a finite tree transducer F = (A,B, Q, q0, δ) and a recursion scheme G
generating a tree T over the alphabet A, one can construct a recursion scheme GF generating
the tree F(T).

This theorem follows from the equivalence between recursion schemes and collapsible
pushdown systems [22], as it is straightforward to compose a collapsible pushdown system
with F . A formal proof can be found for instance in Parys [30, Appendix A].

Sequences of operations. We consider sequences of operations of the form O1, O2, . . . , On,
where every Oi is either an MSO sentence φ, or the string “SUP”, or a finite tree transducer
F . Having a tree T , we can apply such a sequence of operations to it. Namely, we take
T0 = T , and for every i ∈ [1, n], as Ti we take

reflφ(Ti−1) if Oi = φ is an MSO sentence,
reflSUP(Ti−1) if Oi = SUP, and
F(Ti−1) if Oi = F is a finite tree transducer.

As the result we take Tn. We implicitly assume that whenever we apply a finite tree transducer
to some tree, then the tree is over the input alphabet of the transducer; likewise, we assume
that while computing reflφ(Ti−1), the formula uses letters from the alphabet of Ti−1.

Using the aforementioned closure properties (Theorems 4.1, 4.2, and 4.4) we can apply
the operations on the level of recursion schemes generating our tree:

A. Badyl and P. Parys 12:11

▶ Proposition 4.5. Given a recursion scheme G generating a tree T , and a sequence of
operations O1, O2, . . . , On as above, one can construct a recursion scheme G′ generating the
result of applying O1, O2, . . . , On to T .

Main theorem. Let A be the alphabet used by WMSO+Utup formulae under consideration.
We prove the following theorem:

▶ Theorem 4.6. Given a WMSO+Utup sentence φ, one can compute a sequence of operations
O1, O2, . . . , On, such that for every tree T over A, by applying O1, O2, . . . , On to T we obtain
tt⟨⊥,⊥⟩ if φ is true in T , and ff⟨⊥,⊥⟩ otherwise.

Having a recursion scheme generating either tt⟨⊥,⊥⟩ or ff⟨⊥,⊥⟩, we can easily check
what is generated: we just repeatedly apply rules of the recursion scheme. Thus Theorem 1.2
is an immediate consequence of Theorem 4.6 and Proposition 4.5.

▶ Remark 4.7. Note that in Theorem 4.6 we do not assume that T is generated by a recursion
scheme; the theorem holds for any tree T . Thus our decidability result, Theorem 1.2, can be
immediately generalized from the class of trees generated by recursion schemes to any class
of trees that is effectively closed under the considered three types of operations (i.e., any
class for which Theorems 4.1, 4.2, and 4.4 remain true).

We now formulate a variant of Theorem 4.6 suitable for induction. On the input side,
we have to deal with formulae with free variables (subformulae of our original sentence).
On the output side, it is not enough to produce the truth value; we rather need to produce
trees decorated by logical types. While logical types in general depend on the valuation of
free variables, we consider here only a very special valuation mapping all variables to the
empty set; recall that we denote such a valuation by ∅. Additionally, in the input tree we
have to allow presence of some additional labels (used to store types with respect to other
subformulae): we suppose that we have a tree T over an alphabet A × B, where A is our
fixed alphabet used by WMSO+Utup formulae, and B is some other auxiliary alphabet. Then
by πA(T) we denote the tree over A having the same domain as T , with every node thereof
relabeled from (a, b) ∈ A × B to a.

▶ Lemma 4.8. Given a WMSO+Utup formula φ and an auxiliary alphabet B, one can
compute a sequence of operations O1, O2, . . . , On, such that for every tree T over A × B, by
applying O1, O2, . . . , On to T we obtain a tree having the same domain as T , such that every
node u thereof is labeled by the pair (ℓu, JπA(T)↾uK∅φ), where ℓu ∈ A×B is the label of u in T .

Theorem 4.6 is an immediate consequence of Lemma 4.8. Indeed, let us use Lemma 4.8
with a singleton alphabet B; for such an alphabet we identify A with A × B. By applying
operations O1, . . . , On obtained from Lemma 4.8 we obtain a tree with the root labeled by
(a, τ) for τ = JT K∅φ . Recall that, by Fact 3.2, we have a function tvφ such that tvφ(JT K∅φ) = tt
if, and only if, T,∅ |= φ. Thus, after all the operations O1, . . . , On, we can simply apply a
transducer F that reads the root’s label (a, τ) and returns the tree tt⟨⊥,⊥⟩ if tvφ(τ) = tt,
and the tree ff⟨⊥,⊥⟩ otherwise. There is a small exception if the original tree T has empty
domain: then there is no root at all, in particular no root from which we can read the φ-type
τ . Thus, if the transducer F sees an empty tree, it should rather use τ = J⊥K∅φ , which is
known by Fact 3.4.

Proof of Lemma 4.8. The proof is by induction on the structure of φ. We have several
cases depending on the shape of φ.

CSL 2024

12:12 Extending the WMSO+U Logic with Quantification over Tuples

Recall that in this lemma we only consider the valuation ∅ mapping all variables to the
empty set. Because of that, if φ is of the form a(X) or X ⊆ Y , then the φ-type JπA(T)↾uK∅φ
is tt for every tree T and node u thereof. It is thus enough to return (as the only operation
O1) a transducer that appends tt to the label of every node of T . Similarly, if φ = (X 'd Y),
then the φ-type JπA(T)↾uK∅φ is always empty. For φ = (¬ψ) the situation is also trivial: we
can directly use the induction hypothesis since JπA(T)↾uK∅φ = JπA(T)↾uK∅ψ .

Suppose that φ = (ψ1 ∧ ψ2). The induction hypothesis for ψ1 gives us a sequence of
operations O1, O2, . . . , On that appends JπA(T)↾uK∅ψ1

to the label of every node u of T . The
resulting tree T ′ is over the alphabet A × B × Typψ1 , which can be seen as A × B′ for
B′ = B × Typψ1 ; we have πA(T ′) = πA(T). We can thus apply the induction hypothesis for
ψ2 to the resulting tree T ′; it gives us a sequence of operations On+1, On+2, . . . , On+m that
appends JπA(T)↾uK∅ψ2

to the label of every node u of T ′. The tree obtained after applying
all the n + m operations is as needed: in every node thereof we have appended the pair
containing the ψ1-type and the ψ2-type, and such a pair is precisely the φ-type.

The case of φ = ∃finX.ψ is handled by a reduction to the case of φ′ = UX.ψ. Indeed,
recall that the type for U(X1, . . . ,Xk) is a tuple of 2k coordinates indexed by sets I ⊆ [1, k];
in the case of a single variable X1 = X, there are only two coordinates, one for I = ∅, and the
other for I = {1}. The coordinate for I = ∅ in JT ′K∅UX.ψ is simply {σ | ∃X.JT ′Kν[X 7→X]

ψ = σ},
that is, the φ-type JT ′Kν∃finX.ψ. Thus, we can take the sequence of operations O1, O2, . . . , On
from the forthcoming case of φ′ = UX.ψ, which appends the φ′-type, and then add a simple
transducer that removes the second coordinate of this type.

Finally, suppose that φ = U(X1, . . . ,Xk).ψ. By the induction hypothesis we have a
sequence of operations O1, O2, . . . , On that appends the ψ-type JπA(T)↾uK∅ψ to the label of
every node u of T . Let T 1 be the tree obtained from T by applying these operations.

As a first step, to T 1 we apply a transducer F defined as follows. Its input alphabet is
A′ = A×B×Typψ, the alphabet of T 1, its output alphabet is A′ ∪{?,#, nd, nd⊥,X1, . . . ,Xk},
and its set of states is {q0} ∪ Typψ. Having a letter ℓ = (a, b, τ) ∈ A′, let πA(ℓ) = a

and πTypψ(ℓ) = τ . Coming to transitions, first for every triple (S, τL, τR), where S =
{Xi1 , . . . ,Xim} ⊆ {X1, . . . ,Xk} and τL, τR ∈ Typψ we define

sub(S, τL, τR) = Xi1⟨⊥,Xi2⟨⊥, . . .Xim⟨⊥,#⟨(τL, L), (τR,R)⟩⟩ . . . ⟩⟩ .

Moreover, for every ℓ ∈ A′ and τ ∈ Typψ, let here(ℓ, τ) = ⊥ if τ = πTypψ (ℓ) and here(ℓ, τ) =
nd⊥⟨⊥,⊥⟩ otherwise. In order to define δ(τ, ℓ), we consider all triples (S1, τL,1, τR,1), . . . ,
(Ss, τL,s, τR,s) for which CompπA(ℓ),ψ(Si, τL,i, τR,i) = τ (assuming some fixed order in which
these triples are listed). Then, we take

δ(τ, ℓ) = ?⟨⊥, nd⟨sub(S1, τL,1, τR,1), nd⟨sub(S2, τL,2, τR,2), . . .
nd⟨sub(Ss, τL,s, τR,s), here(ℓ, τ)⟩ . . . ⟩⟩⟩ .

Additionally, we consider the list τ1, . . . , τr of all ψ-types from Typψ (listed in some fixed
order), and we define

δ(q0, ℓ) = ℓ⟨(q0, L),#⟨(q0,R),#⟨δ(τ1, ℓ),#⟨δ(τ2, ℓ), . . .#⟨δ(τr, ℓ),⊥⟩ . . . ⟩⟩⟩⟩ .

For the empty tree we define

δ(q0,⊥) = ⊥, δ(J⊥K∅ψ ,⊥) = ⊥, and δ(τ,⊥) = nd⊥ for τ ̸= J⊥K∅ψ .

The “main part” of the result F(T 1), produced using the state q0 is an almost unchanged
copy of T 1; there is only a technical change, that a new #-labeled node is inserted between
every node and its right child, so that the right child is moved to the left child of this new

A. Badyl and P. Parys 12:13

ℓFq0 (T 1↾u) =
Fq0 (T 1↾uL)

Fq0 (T 1↾uR)
#

#
#

. . .

#

Fτ1 (T 1↾u)
Fτ2 (T 1↾u)

Fτr (T 1↾u)

Figure 5 An illustration of Fq0 (T 1↾u). Here, ℓ is the label of u in T 1, and τ1, . . . , τr are all
possible ψ-types.

nd
X1

?Fτ (T 1↾u) =

FτL,1 (T 1↾uL)
FτR,1 (T 1↾uR)

nd
nd

X2

X3

FτL,2 (T 1↾uL)
FτR,2 (T 1↾uR)

#
FτR,3 (T 1↾uR)

FτL,3 (T 1↾uL)

#

if τ = πTypψ (ℓ)
nd

X1

?Fτ (T 1↾u) =

FτL,1 (T 1↾uL)
FτR,1 (T 1↾uR)

nd
nd

nd⊥
X2

X3

FτL,2 (T 1↾uL)
FτR,2 (T 1↾uR)

#
FτR,3 (T 1↾uR)

FτL,3 (T 1↾uL)

#

if τ ̸= πTypψ (ℓ)

Figure 6 An illustration of Fτ (T 1↾u). We assume that there are exactly three triples (S, τL, τR)
such that CompπA(ℓ),ψ(S, τL, τR) = τ , namely ({X1}, τL,1, τR,1), ({X2,X3}, τL,2, τR,2), and (∅, τL,3, τR,3),
for ℓ being the label of u in T 1. We have two cases depending on whether the ψ-type written in ℓ is
τ or not.

right child. But additionally, below the new #-labeled right child of every node u of T 1, there
are |Typψ| modified copies of T 1↾u, attached below a branch of #-labeled nodes (cf. Figure 5).
For each ψ-type τ we have such a copy, namely Fτ (T 1↾u), responsible for checking whether
the type of πA(T)↾u can be τ . The tree Fτ (T 1↾u) is a disjunction (formed by nd-labeled
nodes) of all possible triples (S, τL, τR) such that types τL and τR in children of u, together
with S being the set of those variables among X1, . . . ,Xk that contain u, result in type τ in
u (cf. Figure 6). We output the variables from S in the resulting tree, so that they can be
counted, and then we have subtrees FτL(T 1↾uL) and FτR(T 1↾uR), responsible for checking
whether the type in the children of u can be τL and τR. Additionally, the here subtree allows
to finish immediately if τ is the ψ-type of T 1↾u under the empty valuation. Formally, we
have the following claim:

▷ Claim 4.9. For every ψ-type τ , numbers n1, . . . , nk ∈ N, and node u, the following two
statements are equivalent:

there exist sets X1, . . . , Xk of nodes of T ↾u such that JπA(T)↾uK∅[X1 7→X1,...,Xk 7→Xk]
ψ = τ

and |Xi| = ni for i ∈ [1, k], and
there exists a tree V ∈ L(Fτ (T 1↾u)) such that #Xi(V) = ni for i ∈ [1, k].

Proof. Let us concentrate on the left-to-right implication. The proof is by induction on the
maximal depth of nodes in the Xi sets. We have three cases. First, it is possible that u
is not a node of T . Then, all the sets Xi have to be empty, so we have τ = J⊥K∅ψ , and
hence Fτ (T 1↾u) = δ(τ,⊥) = ⊥ (recall that T and T 1 have the same domain). The set L(⊥)
contains the tree ⊥ which indeed has no Xi labeled nodes, as needed.

Second, it is possible that u is a node of T , but all the sets Xi are empty. Let ℓ be
the label of u in T 1. By construction of T 1, we have πTypψ(ℓ) = JπA(T)↾uK∅ψ = τ . On the
rightmost branch of Fτ (T 1↾u), after a ?-labeled node and a few nd-labeled nodes, we have
the subtree here(ℓ, τ), which is ⊥ by the above equality. We can return the tree ?⟨⊥,⊥⟩,
which belongs to L(Fτ (T 1↾u)).

CSL 2024

12:14 Extending the WMSO+U Logic with Quantification over Tuples

Finally, suppose that our sets are not all empty. Then necessarily u is inside T (and T 1);
let ℓ be the label of u in T 1 (by construction of T 1, the label of u in T consists of the first
two coordinates of ℓ). Consider S = {Xi | ε ∈ Xi} and τd = JπA(T)↾udK∅[X1 7→X1,...,Xk 7→Xk]↾d

ψ

for d ∈ {L,R}. By the induction hypothesis, there are trees Vd ∈ L(Fτd(T 1↾ud)) such that
#Xi(Vd) = |Xi↾d| for i ∈ [1, k]. Due to Equality (1) we have τ = CompπA(ℓ),ψ(S, τL, τR). This
means that δ(τ, ℓ), below a ?-labeled node and a few nd-labeled, produces a subtree using
sub(S, τL, τR). We define V by choosing this subtree. Then, there are some Xi-labeled nodes,
for all Xi ∈ S (that is, for those sets Xi that contain the root of T ↾u). Below them, we have
the tree #⟨FτL(T 1↾uL),FτR(T 1↾uR)⟩; in its left subtree we choose VL, and in its right subtree
we choose VR. This way, we obtain a tree V ∈ L(Fτ (T 1↾u)), where the number of Xi-labeled
nodes is indeed |Xi| = ni, for all i ∈ [1, k].

We skip the proof of the right-to-left implication, as it is analogous (this time, the
induction is on the height of the tree V). ◁

Let T 2 = F(T 1). As the next operation after F , we use SUP. Let T 3 = reflSUP(T 2). The
SUP operation attaches a label to every node of T 3 (except for nd-labeled nodes), but we
are interested in these labels only in nodes originally (i.e., in T2) labeled by “?”. Every such
node is the root of a subtree reflSUP(Fτ (T 1↾u)) for some node u of T 1; it becomes labeled
by (?,U), where U = {A ⊆ A′ | SUPA(L(Fτ (T 1↾u)))}. Recall that φ = U(X1, . . . ,Xk).ψ and
that the φ-type is a tuple of 2k coordinates, indexed by sets I ⊆ [1, k]. Consider such a set I,
and take AI = {Xi | i ∈ I}. By definition of SUPAI , the label U contains AI if, and only if,
for every n ∈ N the language L(Fτ (T 1↾u)) contains trees with at least n occurrences of every
element of AI . By Claim 4.9 this is the case if, and only if, for every n ∈ N there exist sets
X1, . . . , Xk of nodes of T ↾u such that JπA(T)↾uK∅[X1 7→X1,...,Xk 7→Xk]

ψ = τ and |Xi| ≥ n for all
i ∈ I. This, in turn, holds if, and only if, the I-coordinate of the φ-type JπA(T)↾uK∅φ contains
τ . (The case of I = ∅ is a bit delicate, but one can see that the proof works without any
change also in this case.)

The above means that all the φ-types we wished to compute are already present in T 3,
we only have to move them to correct places. To this end, for every ψ-type τi, and for every
set I ⊆ [1, k] we append to our sequence of operations a formula θi,I saying that the node
Ri+1L has label of the form (?,U , . . .) with AI ∈ U (note that this node in Fq0(T 1↾u) is the
?-labeled root of Fτi(T 1↾u); the operation SUP appends a set U to this label, and operations
θi′,I′ applied so far append some additional coordinates that we ignore).

After that, we already have all φ-types in correct nodes, but in a wrong format; we also
have additional nodes not present in the original tree T . To deal with this, at the end we
apply a transduction F ′, which

removes all nodes labeled by (#, . . .) and their right subtrees, hence leaving only nodes
present in the original tree T ;
the remaining nodes have labels of the form (a, b, τ,U , vi1,I1 , . . . , vis,Is); we relabel them
to (a, b, ({τi | vi,I = tt})I⊆[1,k]).

This last transduction produces a tree exactly as needed. ◀

5 Expressivity

In this section we prove our second main result, Theorem 1.1, saying that the simultaneous
unboundedness property can be expressed in WMSO+Utup, but not in WMSO+U. The
positive part of this statement is easy:

▶ Proposition 5.1. For every set of letters A there exists a WMSO+Utup sentence φ which
holds in a tree T if, and only if, SUPA(L(T)) holds.

A. Badyl and P. Parys 12:15

(...)

a
b

b

b

N !−1 copies of S1,1

N !−1 copies of S1,1

S1,1

S2,1

S1,2

S3,1

S1,3

a
a

a
a

b

b

on each interval

on each interval
(...)

(...
)

(...
)

S1,1

S2,2

S3,3

S4,4

S5,5

a
nd

nd

nd

nd

nd

nd

nd

nd

nd

nd

a

a

b

b

b

Figure 7 T1 (left) and T2 (right).

Proof. Let A = {a1, . . . , ak}. We take

φ = U(X1, . . . ,Xk).∃finY.(a1(X1) ∧ · · · ∧ ak(Xk) ∧ X1 ⊆ Y ∧ · · · ∧ Xk ⊆ Y ∧ ψ(Y)),

where ψ(Y) expresses the fact that Y contains nodes of a single tree from L(T), together
with their nd-labeled ancestors, that is, that for every node v of Y,

the parent of v, if exists, belongs to Y;
if v has label nd, then exactly one child of v belongs to Y (strictly speaking: there is a
direction d ∈ {L,R} such that a child in this direction, if exists, belongs to Y, and the
child in the opposite direction, if exists, does not belong to Y);
v does not have label nd⊥; and
if v has label other than nd, then all children of v belong to Y.

It is easy to write the above properties in WMSO+Utup. Then φ expresses that for every
n ∈ N there exist sets X1, . . . , Xk of nodes of some V ∈ L(T) such that |Xi| ≥ n and nodes of
Xi have label ai, for all i ∈ [1, k]; this is precisely the simultaneous unboundedness property
with respect to the set A = {a1, . . . , ak}. ◀

In the remaining part of this section we prove that SUP with respect to {a, b} cannot
be expressed in WMSO+U (i.e., without using the U quantifier for tuples of variables). We
prove this already for the word variant of SUP (cf. Remark 4.3), which is potentially easier
to be expressed than SUP in its full generality.

Our proof is by contradiction. Assume thus that there is a sentence φSUP of WMSO+U
that holds exactly in those trees T for which SUP{a,b}(T) is true. Having φSUP fixed, we
take a number N such that |Typφ| ≤ N and |Typ∃finX.φ| ≤ N for all subformulae φ of φSUP
(recall that Typφ is a set containing all possible φ-types).

Based on N , we now define two trees, T1 and T2, such that SUP{a,b}(T2) but not
SUP{a,b}(T1), and we show that they are indistinguishable by φSUP . We achieve that by
demonstrating their type equality as stated in Lemma 5.5, which by Fact 3.2 gives their
indistinguishability by the WMSO+U sentence φSUP .

▶ Definition 5.2 (T1 and T2). We define T1 as a tree with an infinite rightmost path (that
we call its trunk), containing nd-labeled nodes. For each integer k ≥ 0, there is a leftward
path called vault attached to the (kN ! + 1)-th node of the trunk. If k is even, we denote the

CSL 2024

12:16 Extending the WMSO+U Logic with Quantification over Tuples

vault as S1, k2 +1, and otherwise as S k+1
2 +1,1. Each vault Sm,n consists of two parts: the upper

sub-path of length mN !, where every node has label a, and the lower sub-path of length nN !,
where every node has label b (cf. Figure 7).

To each node of the trunk that does not have a vault attached we attach a copy of S1,1.
Note that we do not call these copies vaults; only the original S1,1 starting at the root of T1
is a vault.

The definition of T2 is similar to that of T1, except that this time the vault associated
with each k is Sk,k, still starting at depth kN ! + 1 and having kN ! nodes with label a followed
by kN ! nodes with label b.

The technical core of our proof lies in the following two lemmata:

▶ Lemma 5.3. Let ψ be such that |Typ∃finX.ψ| ≤ N . If for all k′, ℓ′ ∈ N we have JT1↾Rk
′N !K∅ψ =

JT2↾Rℓ
′N !K∅ψ , then for all k, ℓ ∈ N and τ ∈ Typψ there exists a function f : N → N such that

limn→∞ f(n) = ∞ and for all n ∈ N,

∃X1 ⊆ dom(T1↾RkN !). |X1| = n ∧ JT1↾RkN !K∅[X 7→X1]
ψ = τ

=⇒ ∃X2 ⊆ dom(T2↾RℓN !). f(n) ≤ |X2| < ∞ ∧ JT2↾RℓN !K∅[X 7→X2]
ψ = τ.

▶ Lemma 5.4. Let ψ be such that |Typ∃finX.ψ| ≤ N . If for all k′, ℓ′ ∈ N we have JT1↾Rk
′N !K∅ψ =

JT2↾Rℓ
′N !K∅ψ , then for all k, ℓ ∈ N and τ ∈ Typψ there exists a function f : N → N such that

limn→∞ f(n) = ∞ and for all n ∈ N,

∃X1 ⊆ dom(T1↾RkN !). f(n) ≤ |X1| < ∞ ∧ JT1↾RkN !K∅[X 7→X1]
ψ = τ

⇐= ∃X2 ⊆ dom(T2↾RℓN !). |X2| = n ∧ JT2↾RℓN !K∅[X 7→X2]
ψ = τ.

Note that the function f in Lemmata 5.3 and 5.4 may depend on k and ℓ. We only
sketch here the proof of the above lemmata; a full proof can be found in Appendix A of the
extended version.

Lemma 5.3 is slightly easier. Indeed, suppose first that k = ℓ = 0. By assumption, in T1
we have a finite set of nodes X1 resulting in a ψ-type τ ; based on X1, we have to produce
a finite set of nodes X2 in T2, producing the same ψ-type τ . The non-vault nodes of X1
are transferred to X2 without any change; note that the trees T1, T2 are identical outside
of vaults. When in T1 we have some vault S1,i (or Si,1, handled in the same way), then in
the analogous place of T2 we have a vault Sj,j with j ≥ i. We use a form of pumping to
convert S1,i with some nodes marked as elements of X1 into Sj,j with marked nodes, which
we take to X2; this is done so that the ψ-type does not change. Namely, we concentrate
on ψ-types of subtrees of S1,i starting on different levels. Already in the bottom, b-labeled
part of S1,i we can find two levels in distance at most N , where the ψ-type repeats (by
the pigeonhole principle; recall that the number of possible ψ-types is at most N). We
then repeat the fragment of S1,i between these two places (together with the set elements
marked in it), so that (j − i)N ! new nodes are created, and we obtain S1,j . Note that the
repeated length, being at most N , necessarily divides N !. Because of Proposition 3.3, such a
pumping does not change the ψ-type. In a similar way, we can pump the upper, a-labeled
part of S1,j , and obtain Sj,j . In this way, we convert a finite top part of T1 (with a set
X1) into T2 (with a set X2) without changing the ψ-type; the infinite parts located below
(where the sets X1, X2 do not contain any elements) have the same ψ-type by the assumption
JT1↾Rk

′N !K∅ψ = JT2↾Rℓ
′N !K∅ψ . All nodes originally in X1 remained in X2 (possibly shifted), so

we have |X2| ≥ |X1|; the lemma holds with f(n) = n in this case.

A. Badyl and P. Parys 12:17

When k, ℓ are arbitrary (and we want to change T1↾RkN ! into T2↾RℓN !), we proceed in a
similar way, but there is a potential problem that a vault S1,i (or Si,1) should be mapped to
Sj,j with j < i; then we should not stretch the vault, but rather contract it. But contracting
is also possible: this time we look on ∃finX.ψ-types (instead of ψ-types) on the shorter target
vault S1,j ; we can pump the vault as previously, so S1,i and S1,j have the same ∃finX.ψ-type.
Because ∃finX.ψ-type is a set of all possible ψ-types, we can choose elements of S1,j (and
later of Sj,j) to X2, so that the ψ-type is the same as originally in S1,i, although without any
guarantees on the size of the new set. Anyway, the length of vaults in T2 grows two times
faster than in T1, so the above problem concerns only the first max(0, k − 2ℓ) vaults, where
the number of elements of X1 is bounded by a constant ck,ℓ (depending on k and ℓ). All
further elements of X1 contribute to the size of X2; the lemma holds with f(n) = n− ck,ℓ.

Consider now Lemma 5.4, where we have to create a set X1 in T1 based on a set X2 in
T2. There are two cases. Suppose first that at least half of elements of X2 lie outside of the
vaults. In this case we proceed as previously, appropriately stretching and/or contracting
the vaults. While there is no size guarantee for vault elements, already by counting elements
outside of the vaults we obtain |X2| ≥ |X1|

2 .
In the opposite case, we check which label is more frequent among the (at least |X2|

2)
vault elements of X2. Suppose this is a (the case of b is analogous), and that k = ℓ = 0.
We then map every vault Si,i into Si,1, contracting only the b-labeled part; all the a-labeled
vault elements of X2 remain in X1. Because the distance between Si,i and Si+1,i+1 in T2
is N !, while the distance between Si,1 and Si+1,1 in T1 is 2N !, we also need to stretch the
trunk, which is possible using a similar pumping argument (and we stretch some S1,1 into
the vault S1,i that should be in the middle between Si,1 and Si+1,1).

This is almost the end, except that we need to handle arbitrary k, ℓ. To this end, we
either stretch the initial fragment of the trunk of length N ! into multiple such fragments, or
we contract the initial fragment of appropriate length into a fragment of length N !, so that
the vault lengths become synchronized.

Having Lemmata 5.3 and 5.4 we can conclude that the trees T1 and T2 (cf. Definition 5.2)
have the same types:

▶ Lemma 5.5. Let φ be a subformula of φSUP . Then for all k, ℓ ∈ N we have JT1↾RkN !K∅φ =
JT2↾RℓN !K∅φ .

Proof. We proceed by induction on φ, considering all possible forms of the formula. First,
note that we only consider the valuation ∅, mapping all variables to the empty set, so for
atomic formulae of the form a(X) or X ⊆ Y the φ-type is always tt, and for X 'd Y the
φ-type is always empty. For φ = ψ1 ∧ ψ2 the φ-type is just the pair containing the ψ1-type
and the ψ2-type; for them we have the equality JT1↾RkN !K∅ψi = JT2↾RℓN !K∅ψi by the induction
hypothesis. Likewise, for φ = ¬ψ the φ-type equals the ψ-type, and we immediately conclude
by the induction hypothesis JT1↾RkN !K∅ψ = JT2↾RℓN !K∅ψ .

Suppose now that φ = ∃finX.ψ. Then the φ-type of T1↾RkN ! is the set of ψ-types
JT1↾RkN !K∅[X 7→X1]

ψ over all possible finite sets X1 ⊆ dom(T1↾RkN !), and likewise for T2. By
Lemma 5.3, for every ψ-type of T1↾RkN ! there exists a set X2 giving the same ψ-type for
T2↾RℓN !, and conversely by Lemma 5.4, so the two φ-types are equal (recall that N was chosen
such that |Typ∃finX.ψ| ≤ N whenever ψ is a subformula of φSUP , hence the two lemmata can
indeed be applied).

Finally, suppose that φ = UX.ψ. Then the φ-type consists of two coordinates. On the
first coordinate we simply have the ∃finX.ψ-type – these types are equal for T1↾RkN ! and
T2↾RℓN ! by the previous case. On the second coordinate we have the set of ψ-types τ such

CSL 2024

12:18 Extending the WMSO+U Logic with Quantification over Tuples

that JT1↾RkN !K∅[X 7→X1]
ψ = τ for arbitrarily large finite sets X1, and likewise for X2. But

JT1↾RkN !K∅[X 7→X1]
ψ = τ for arbitrarily large finite sets X1 if and only if JT2↾RℓN !K∅[X 7→X2]

ψ = τ

for arbitrarily large finite sets X2, by Lemmata 5.3 and 5.4. This gives us equality of the
two φ-types.

Recall that by assumption φSUP is a formula of WMSO+U, without quantification over
tuples, so the above exhausts all possible cases. ◀

Lemma 5.5 implies in particular that JT1K∅φSUP
= JT2K∅φSUP

, which by Fact 3.2 means that
φSUP is satisfied in T1 if and only if it is satisfied in T2. This way we reach a contradiction
with the fact that φSUP should be true in T1, but not in T2. Thus, the simultaneous
unboundedness property for two letters cannot be expressed by a formula φSUP not involving
the U quantifiers for tuples of variables; we obtain Theorem 1.1.

▶ Remark 5.6. We have shown that SUP with respect to a two-element set {a, b} cannot be
expressed without quantification over pairs of variables. It is easy to believe that using a very
similar proof one can show that SUP with respect to a k-element set cannot be expressed
without quantification over k-tuples of variables, for every k ≥ 2.

References
1 Alfred V. Aho. Indexed grammars – an extension of context-free grammars. J. ACM,

15(4):647–671, 1968. doi:10.1145/321479.321488.
2 David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys. Cost automata,

safe schemes, and downward closures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 109:1–109:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.109.

3 Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture
Notes in Computer Science, pages 41–55. Springer, 2004. doi:10.1007/978-3-540-30124-0_7.

4 Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554–576, 2011. doi:10.1007/s00224-010-9279-2.

5 Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages
38–49. Springer, 2014. doi:10.1007/978-3-662-43951-7_4.

6 Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings,
pages 285–296. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.17.

7 Mikołaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees. In Christoph
Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th – March 3rd, 2012, Paris, France, volume 14
of LIPIcs, pages 648–660. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.648.

8 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, and Petr Novotný. Efficient controller
synthesis for consumption games with multiple resource types. In P. Madhusudan and Sanjit A.
Seshia, editors, Computer Aided Verification – 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer
Science, pages 23–38. Springer, 2012. doi:10.1007/978-3-642-31424-7_8.

https://doi.org/10.1145/321479.321488
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.1007/s00224-010-9279-2
https://doi.org/10.1007/978-3-662-43951-7_4
https://doi.org/10.1109/LICS.2006.17
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.1007/978-3-642-31424-7_8

A. Badyl and P. Parys 12:19

9 Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-
push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi:
10.1142/S0129054196000191.

10 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Higher-order
recursion schemes and collapsible pushdown automata: Logical properties. ACM Trans.
Comput. Log., 22(2):12:1–12:37, 2021. doi:10.1145/3452917.

11 Julius Richard Büchi. On a decision method in restricted second order arithmetic. In
Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

12 Claudia Carapelle, Alexander Kartzow, and Markus Lohrey. Satisfiability of CTL* with
constraints. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 –
Concurrency Theory – 24th International Conference, CONCUR 2013, Buenos Aires, Argentina,
August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science, pages
455–469. Springer, 2013. doi:10.1007/978-3-642-40184-8_32.

13 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. Ordered tree-pushdown
systems. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 163–177. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.163.

14 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96–105. ACM, 2016. doi:
10.1145/2933575.2934527.

15 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume
5556 of Lecture Notes in Computer Science, pages 139–150. Springer, 2009. doi:10.1007/
978-3-642-02930-1_12.

16 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A characterization for decidable separability by piecewise testable languages. Discret. Math.
Theor. Comput. Sci., 19(4), 2017. doi:10.23638/DMTCS-19-4-1.

17 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi:
10.1016/0304-3975(82)90009-3.

18 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98(1):21–51, 1961. doi:10.2307/1993511.

19 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

20 Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-Streett games. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012,
December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 124–135. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.124.

21 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 – 22, 2016,
pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

CSL 2024

https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1145/3452917
https://doi.org/10.1007/978-3-642-40184-8_32
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.163
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.23638/DMTCS-19-4-1
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.2307/1993511
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.124
https://doi.org/10.1145/2837614.2837627

12:20 Extending the WMSO+U Logic with Quantification over Tuples

22 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. ACM Trans. Comput. Log., 18(3):25:1–25:42,
2017. doi:10.1145/3091122.

23 Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

24 Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62, 2013.
doi:10.1145/2487241.2487246.

25 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, pages 179–188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.

26 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/s10703-009-0067-z.

27 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

28 Paweł Parys. Recursion schemes and the WMSO+U logic. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.53.

29 Paweł Parys. Recursion schemes, the MSO logic, and the U quantifier. Log. Methods Comput.
Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:20)2020.

30 Paweł Parys. A type system describing unboundedness. Discret. Math. Theor. Comput. Sci.,
22(4), 2020. doi:10.23638/DMTCS-22-4-2.

31 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.
Amer. Math. Soc., 141:1–35, 1969. doi:10.2307/1995086.

32 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf.
Comput., 239:340–355, 2014. doi:10.1016/j.ic.2014.07.012.

33 Sylvain Salvati and Igor Walukiewicz. A model for behavioural properties of higher-order
programs. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 229–243.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.
229.

34 Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible
pushdown automata. Math. Struct. Comput. Sci., 26(7):1304–1350, 2016. doi:10.1017/
S0960129514000590.

35 Boris Trakhtenbrot. Finite automata and the logic of monadic predicates. Doklady Akademii
Nauk SSSR, 140:326–329, 1961.

36 Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440–451.
Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

https://doi.org/10.1145/3091122
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.4230/LIPIcs.STACS.2018.53
https://doi.org/10.23638/LMCS-16(1:20)2020
https://doi.org/10.23638/DMTCS-22-4-2
https://doi.org/10.2307/1995086
https://doi.org/10.1016/j.ic.2014.07.012
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1007/978-3-662-47666-6_35

	1 Introduction
	2 Preliminaries
	3 The WMSOU+tup logic
	4 Decidability of model-checking
	5 Expressivity

