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—— Abstract
We introduce FIK, a natural intuitionistic modal logic specified by Kripke models satisfying the
condition of forward confluence. We give a complete Hilbert-style axiomatization of this logic
and propose a bi-nested calculus for it. The calculus provides a decision procedure as well as a
countermodel extraction: from any failed derivation of a given formula, we obtain by the calculus a
finite countermodel of it directly.
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1 Introduction

Intuitionistic modal logic (IML) has a long history, starting from the pioneering work
by Fitch [5] in the late 40’s and Prawitz [12] in the 60’s. Along the time, two traditions
emerged that led to the study of two different families of systems. The first tradition, called
intuitionistic modal logics, has been introduced by Fischer Servi [13, 14, 15], Plotkin and
Stirling [11] and then systematized by Simpson [16]. Its main goal is to define an analogous of
classical modalities justified from an intuitionistic meta-theory. The basic modal logic in this
tradition, IK, is intended to be the intuitionistic counterpart of the minimal normal modal
logic K. The second tradition leads to so-called constructive modal logics that are mainly
motivated by their applications in computer science such as type-theoretic interpretations,
verification and knowledge representation (contextual reasoning). This second tradition has
been developed independently, first by Wijesekera [17] who proposed the system CCDL
(Constructive Concurrent Dynamic logic), and then by Bellin, De Paiva, and Ritter [2], among
others who proposed the logic CK (Constructive K) as the basic system for a constructive
account of modality.
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But putting aside the historical perspective, we can consider naively the following question:
how can we build “from scratch” an IML? Since both modal logic and intuitionistic logic
enjoy Kripke semantics, we can think of combining them together in order to define an
intuitionistic modal logic. The simplest proposal is to consider Kripke models equipped
with two relations, < for intuitionistic implication and R for modalities. Propositional
intuitionistic connectives (in particular implication) have their usual interpretations. We
request that every valid formula or rule scheme of propositional intuitionistic logic IPL is
also valid in IML. To reach this goal, we must ensure the hereditary property, which means
for any formula A, if A is forced by a world, it will also be forced also by all its uppers worlds,
namely:

if x - A and x <y then also y IF A.

Thus the question becomes how to define modalities in order to ensure this property. The
simplest solution is to build the hereditary property in the forcing conditions for O and ¢:

(1) z IF OA iff for all 2’ with 2’ > z, for all y with Rz'y it holds y |- A and
(1) z I- QA iff for all 2’ with «’ > z, there exists y with Rz'y s.t. y IF A.

Observe that the definition of JA is reminiscent of the definition of V in intuitionistic
first-order logic. This logic is nothing else than the propositional part of Wijeskera’s CCDL
mentioned above and is non-normal as it does not contain all formulas of the form

(DP) O(AV B) D 0AV OB.

Moreover, the logic does not satisfy the maximality criteria, one of the criteria stated by
Simpson [16, Chapter 3] for a “good” IML since by adding any classical principle to it, we
cannot get the classical normal modal logic K. In addition, CCDL has also been criticized
for being too strong, as it still satisfies the nullary ¢ distribution: ¢_L O 1. By removing
this last axiom, the constructive modal logic CK is obtained.

However, the opposite direction is also possible: we can make local the definition of ¢
(pursuing the analogy with 3 in intuitionistic first-order logic FOIL) exactly as in classical
K, that is:

(2) z IF QA iff there exists y with Rxy s.t. y IF A.

In this way we recover O(AV B) D QA V OB, making the logic normal. But there is a price
to pay: nothing ensures that the hereditary property holds for ¢-formulas. In order to solve
this problem, we need to postulate some frame conditions. The most natural (and maybe
the weakest) condition is simply that if 2’ > z and = has an R-accessible y then also 2’
must have an R-accessible 3’ which refines y, which means y’ > y. This condition is called
Forward Confluence in [1]. It is not new as it is also called (F1) by Simpson [16, Chapter 3]
and together with another frame conditions (F2) characterizes the very well-known system
IK by Fischer-Servi and Simpson. Although from a meta-theoretical point of view IK can
be justified by its standard translation in first-order intuitionistic logic, it does not seem to
be the minimal system allowing the definition of modalities as in (1) and (2) above.

This paper attempts to fill the gap by studying a weaker logic for which the forcing
conditions for modalities are just (1) and (2) above and we assume only Forward Confluence
for the frames. We call this logic FIK for forward confluenced IK. As far as we know, this
logic has never been studied before. And we think it is well worth being studied since it
seems to be the minimal logic defined by bi-relational models with forcing conditions (1) and
(2) which preserves intuitionistic validity.
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In the following sections, we first give a sound and complete Hilbert axiomatization
of FIK. We show that FIK finds its place in the IML/constructive family: it is strictly
stronger than CCDL (whence than CK) and strictly weaker than IK. At the same time
FIK seems acceptable to be regarded as an IML since it satisfies all criteria proposed by
Simpson, including the one about maximality, which means by adding any classical principle
to FIK, we can get the classical normal modal logic K. All in all FIK seems to be a
respectable intuitionistic modal logic and is a kind of “third way” between intuitionistic IK
and constructive CCDL/CK.

We then investigate FIK from a proof-theoretic viewpoint. We propose a nested sequent
calculus Cprk which makes use of two kinds of nestings, one for representing >-upper worlds
and the other for R-related worlds. A nested sequent calculus for (first-order) intuitionistic
logic that exploits the first type of nesting has been proposed in [6], so our calculus can
be seen as an extension of the propositional part of it. More recently in [4], the authors
present a sequent calculus with the same kind of nesting to capture the IML logic given by
CCDL + (DP) *.

As mentioned, our calculus contains a double type of nesting. The use of this double
nesting is somewhat analogous to the labelled calculus proposed in [10] which introduces two
kinds of relations on labels in the syntax. However, the essential ingredient of our calculus
Crik is the interactive rule between the two kinds of nested sequents that captures the
specific Forward Confluence condition.

We also prove that the calculus Cgrk provides a decision procedure for the logic FIK. In
addition, since the rules of Cgrk are invertible, we show that from a failed derivation under
a suitable strategy, it is possible to extract a finite countermodel of the formula or sequent at
the root of the derivation. This result allows us to obtain a constructive proof of the finite
model property, which means if a formula is not valid then it has a finite countermodel.

2 A natural intuitionistic modal logic

Firstly, we present the syntax and semantics of forward confluenced intuitionistic modal logic

FIK. Secondly, we present an axiom system and we prove its soundness and completeness.

Thirdly, we discuss whether FIK satisfies the properties that are expected from intuitionistic
modal logics.

» Definition 1 (Formulas). The set L of all formulas (denoted as A, B, etc.) is generated
by the following grammar: A= p| L | T | (ANA) | (AVA)|(ADA)|TA| OA where

p ranges over a countable set of atomic propositions At. We omit parentheses for readability.

For all formulas A, we write ~A instead of A D L. For all formulas A, B, we write A = B
instead of (A D B) A (B D A). The size of a formula A is denoted |A|.

» Definition 2 (Bi-relational model). A bi-relational model is a quadruple M = (W, <,R,V)
where W is a nonempty set of worlds, < is a pre-order on W, R is a binary relation on W
and V : W — p(At) is a valuation on W satisfying the following hereditary condition:

Ve,ye W, (z<y = V(z) CV(y)).

The triple (W, <, R) is called a frame. For all x,y € W, we write x > y instead of y < x.

Moreover, we say “y is a successor of x” when Rxy.

1 A calculus for IK with the same kind of nesting was also preliminarily considered in 9]
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It is worth mentioning that an upper world of a successor of a world is not necessarily
a successor of an upper world of that world. However, from now on in this paper, we
only consider models M = (W, <, R, V) that satisfy the following condition called Forward
Confluence as in [1]:

(FC) Va,y e W, 3z €W, (x> 2z & Rzy) = FHeW, (Rat &t >y)).

» Definition 3 (Forcing relation). Let M = (W,<,R,V) be a bi-relational model and
w € W. The forcing conditions are the usual ones for atomic propositions and for formulas
constructed by means of the connectives L, T, A and V. For formulas constructed by means
of the connectives O, O and ¢, the forcing conditions are as follows:

M,wlk B> C iff forallw € W withw < w' and M,w' - B, M,w' I+ C;

M,w OB 4ff for allw',v' € W with w < w' and Rw'v', v' I+ B;

M,w - OB iff there exists v € W with Rwv and M,v I+ B.
We also abbreviate M,w I+ A as w |F A if the model is clear from the context.

» Proposition 4. Let (W, <, R, V) be a bi-relational model. For all formulas A in L and for
all x,y € W with x <y, x|k A implies y IF A.

Proposition 4 is proved by induction on the size of A using (FC) for the case of A = {B.

» Definition 5 (Validity). A formula A in L is valid, denoted |- A, if for any bi-relational
model M and any world w in it, M,w - A. Let FIK be the set of all valid formulas.

Obviously, FIK contains all standard axioms of IPL. Moreover, FIK is closed with respect
to the following inference rules:

roap (MP) (NEC)

b
q Up

Finally, FIK contains the following formulas:

(Ko) B(p 2 q) 2 (Up > Og),

(Ko) O(p 2 q) 2 (Op 2 09),

(N) =0L,

(DP) O(pV q) D OpV Og,

(wCD) O(p Vv ¢) > ((Op D Oq) D Og).

We only show the validity of (wCD). Suppose Iff O(p V q) D ((Op 2 Og) D Ug). Hence,
there exists a model (W, <,R,V) and w € W such that w IF O(p V q), w I Op D Og and
w | Og. Thus, let u,v € W be such that w < u, Ruv and v | ¢. Since w IF O(p V q),
v Ik pVgq. Since v Iff q, v IF p. Since Ruv, u IF Op. Since w I+ Op D g and w < wu,
u IF Op D Og. Since u IF Op, u IF Og. Since Ruwv, v IF ¢: a contradiction.

» Definition 6 (Axiom system). Let Dpix be the Hilbert-style axiom system consisting of
all standard azioms of IPL, the inference rules (MP) and (NEC) and the formulas (Kg),
(Ko), (N), (DP) and (WCD) considered as axioms. Derivations are defined as usual. For
all formulas A, we write - A when A is Dprg-derivable. The set of all Dpix-derivable
formulas will also be denoted Dpyx.

The formulas (Kg), (K¢), (DP) and (N) are not new, seeing that they have already been
used by many authors as axioms in multifarious variants of IML. As for the formula (wCD),
as far as we are aware, it is used here for the first time as an axiom of an IML variant.
Indeed, (wCD) is derivable in IK. Moreover, it is a weak form of the Constant Domain
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axiom (CD): O(pV q) D OpV Oq used in [1]. In other respect, (wCD) is derivable in IK,
whereas it is not derivable in CCDL/CK. As for the IK axiom (Op D Ug) D O(p D q),
it is not in FIK as it will be also constructively shown by using the calculus presented in
next section. Therefore, we get CKCCCDLCFIKCIK. We can consider also the logic
CCDL + (DP) (= CK + (N) + (DP)) recently studied in [4], according to the results in
that paper, we get that CCDL + (DP) C FIK.

» Theorem 7 (Soundness). Dpix C FIK, i.e. for all formulas A, if - A then I+ A.

Theorem 7 can be proved by induction on the length of the derivation of A. Later, we will
prove the converse inclusion (Completeness) saying that FIK C Dgrk. At the heart of our
proof of completeness, will be the concept of theory.

» Definition 8 (Theories). A theory is a set of formulas containing Dk and closed with
respect to MIP. A theory I is proper if L &€ T'. A proper theory I' is prime if for all formulas
A, B, if AV B €T then either A€ T, or B€T. For all theories T and for all formulas A,
letT’+A={BeLl: ADBeT}andI'={Ae L: OAEeT}.

Obviously, Dprk is the least theory and L is the greatest theory. Moreover, for all theories
T', T is proper if and only if I" # £ if and only if 0 L € T.

» Lemma 9. For all theories ' and for all formulas A, (i) I'+ A is the least theory containing
T and A; (it) T + A is proper if and only if ~A ¢ T'; (iii) O is a theory.

Lemma 9 can be proved by using standard axioms of IPL, inference rules (MP) and (NEC)
and axiom Kq.

» Lemma 10 (Lindenbaum’s Lemma). Let A be a formula. If A ¢ Dpig then there exists a
prime theory T' such that A ¢ T.

» Definition 11 (Canonical model). Let < be the binary relation between sets of formulas
such that for all sets A, A of formulas, A <t A iff for all formulas B, the following conditions
hold: (i) if OB € A then B € A and (ii) if B € A then OB € A.

Let (W., <., R.) be the frame such that W, is the set of all prime theories, <. is the
inclusion relation on W, and R, is the restriction of < to W.. For all T', A € W, we write
‘T >. A7 instead of “A <.T'7 Let V.: W, — p(At) be the valuation on W, such that for
allT in W, Vo(T') =TnN At

By Theorem 7, | ¢ Dgik. Hence, by Lemma 10, W, is nonempty.
» Lemma 12. (W,, <., R.,V.) satisfies the frame condition (FC).
The proof of the completeness will be based on the following lemmas.

» Lemma 13 (Existence Lemma). Let ' be a prime theory and B,C be formulas.

1. If B> C ¢T then there exists a prime theory A such thatT' CA, B€ A and C € A,
2. if OB ¢ T then there exists prime theories A, A such that ' C A, A<t A and B & A,
3. if OB €T then there exists a prime theory A such that I'><xx A and B € A.

» Lemma 14 (Truth Lemma). For all formulas A and for allT € W, A € T if and only if
I A.

CSL 2024
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The proof of Lemma 14 can be done by induction on the size of A. The case when A is an
atomic proposition is by definition of V.. The cases when A is of the form 1, T, BA C and
BV C are as usual. The cases when A is of the form B D C, OB and {B use the Existence
Lemma.

As for the proof of Theorem 15, it can be done by contraposition. Indeed, if t/ A then
by Lemma 10, there exists a prime theory I' such that A € I'. Thus, by Lemma 14, T | A.
Consequently, I A.

» Theorem 15 (Completeness). FIK C Dpik, i.e. for all formulas A, if I+ A then b A.

As mentioned above, there exists many variants of IML. Therefore, one may ask how
natural is the variant we consider here. Simpson [16, Chapter 3] discusses the formal features
that might be expected of an IML L:

(C1) L is conservative over IPL,

(C2) L contains all substitution instances of IPL and is closed under (MP),
(C3) for all formulas A, B, if AV B is in L then either A is in L, or B is in L,
(C4) the addition of the law of excluded middle to L yields modal logic K,
(Cs) O and ¢ are independent in L.

The fact that Dgik satisfies features (C7) and (Cs) is an immediate consequence of
Theorems 7 and 15. The fact that Dprk satisfies feature (C3) will be proved in Section 3.
Concerning feature (Cy), let Dk ™ be the Hilbert-style axiom system consisting of Dprk plus
the law p V —p of excluded middle. The set of all Dgk "-derivable formulas will also be
denoted Dy . Obviously, Drrk ™+ contains all substitution instances of CPL and is closed
under (MP). Moreover, it contains all substitution instances of (Kpg) and is closed under
(NEC). Therefore, in order to prove that Dprk satisfies feature (Cy), it suffices to prove

» Lemma 16. Op = -0O-p is in Deg™.
The fact that Dyrk satisfies feature (Cy) is a consequence of

» Lemma 17. Let p be an atomic proposition. There exists no O-free A such that Op = A
is in Dprx and there exists no Q-free A such that Op = A is in Dprk.

Consequently, Dgyk can be considered as a natural intuitionistic modal logic. 2

3 A bi-nested sequent calculus

In this section, we present a bi-nested calculus for FIK. The calculus is two-sided and it
makes use of two kinds of nestings, also called blocks (-) and []. The former is called an
implication block and the latter a modal block. The intuition is that implication blocks
correspond to upper worlds while modal blocks correspond to R-successors in a bi-relational
model. The calculus we present is a conservative extension (with some notational difference)
of the nested sequent calculus for IPL presented in [6].

2 Simpson considers a further requirement (C6), in our opinion more controversial: “there is an intuition-
istically comprehensible explanation of the meaning of the modalities, relative to which IML is sound
and complete”. He interprets this as the requirement of soundness and completeness with respect to the
obvious (the same as in the classical case) translation of the modalities into first-order intuitionistic
logic. The logic IK is sound and complete with respect to such a translation, whereas evidently no
weaker logic, whence neither CK, CCDL, nor FIK is. However, this does not mean that any other
translation is impossible. A wider discussion will be deferred to further work.
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» Definition 18 (Bi-nested sequent). A bi-nested sequent S is defined as follows:
= 1is a bi-nested sequent (the empty sequent);

I'= By,..., Bk, [S1],- -, [Sm), (Th), . . ., (T) is a bi-nested sequent if S1,...,Sm, T1,...,
T, are bi-nested sequents where m,n > 0, and T is a finite (possibly empty) multi-set of
formulas and By, ..., By are formulas.

We use S, T to denote bi-nested sequents and to simplify wording we will call bi-nested
sequents simply by sequents in the rest of this paper. We denote by |S| the size of a sequent
S intended as the length of S as a string of symbols.

As usual with nested calculi, we need the notion of context in order to specify the rules,
as they can be applied to sequents occurring inside other sequents. A context is of the form
G{}, in which G is a part of a sequent, {-} is regarded as a placeholder that needs to be
filled by another sequent in order to complete G. G{S} is the sequent obtained by replacing
the occurrence of the symbol {} in G{} by the sequent S.

» Definition 19 (Context). A context G{} is inductively defined as follows:
{} is a context (the empty context).
if T = A is a sequent and G'{} is a context then T' = A, (G'{}) is a context.
if T = A is a sequent and G'{} is a context then I = A,[G'{}] is a context.

For example, given a context G{} = AA B,00C = (A = [= B]),[{}] and a sequent
S=A= A[C= B],wehave G{S} = AANB,0C = (UA = [= B]),[A= A,[C = B]|.

The two types of blocks interact by the (inter) rule. In order to define this rule, we need
the following:

» Definition 20 (x-operator). Let A = © be a sequent, we define ©* as follows:
O* =0 if © is []-free;
O* =[01 = ¥7],...,[®r = U;] if © = O, [P1 = V1],...,[Pr = V] and Og is [-]-free.

By definition, given a sequent A = ©, ©* is a multi-set of modal blocks. Denote the
sequent G{S} in the previous example for context by A = ©, then by definition, we can see
A=0"=AAB,0OC=[A=[C=].

Now we can give a bi-nested sequent calculus for FIK as follows.

» Definition 21. The calculus Crrx is given in Figure 1.

Here is a brief explanation of these rules. As usual, the (id) axiom can be generalized from
atoms to formulas. The logical rules, except (Dg), are just the standard rules of intuitionistic
logic in their nested version. From a backward direction and a semantic point of view, the
rule (Dg) introduces an implication block, which corresponds to an upper world (in the
pre-order). The modal rules create new modal blocks or propagate modal formulas into
existing ones, which correspond to R-accessible worlds. The (trans) rule transfers formulas
(forced by) lower worlds to upper worlds following the pre-order. This rule is called (Lift)
in [6]. Finally, the (inter) rule encodes the (FC) frame condition. It partially transfers
“accessible” modal blocks from lower worlds to upper ones and creates new accessible worlds
from upper worlds fulfilling the (FC) condition.

We define the modal degree of a sequent, which will be useful when discussing termination.

» Definition 22 (Modal degree). Modal degree for a formula F, denoted as md(F), is defined
as usual:

md(p) = md(L) =md(T) =0;

md(A o B) = maz(md(A),md(B)), foro € {A,V,D};

md(0A) = md(0A) = md(A) + 1.

13:7
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Axioms:
G{I', L = A} (Lz) G{I' = T,A} (T=) G{I',p= A,p} i
Logical rules:
G{A,B,T = A} G{I' = A A}  G{I'=A B}
GlAnBT = Ay ) GIT = A, AN B} ()
G{I'A = A} G{I',B = A} G{I'= A,A,B}
GIT,AVB = A} (ve) Gir=a,avey VA
G{I'; ADB=AA} G{I',B = A} G{I'=A,(A= B)}
G{T,A>B= A} (5z) Grsa,Aop OF
G{I''OA = A[X,A=TI]} G{I'= A, (== A)}
G{I,OA= A, [ = 1]} Cz) G{I' = A, DA} (Cr)
G{l'= A [A=]} G{l'= A, 0A,[L =11, A} o
G{T,0A = A} (0r) G{T = A, 0A,[2 = 1]} (O)
Transferring and interactive rules:
G{I\T" = A, I, = 1)} G{Il'= A (EX=1[A= 0%]),[A= 0]} .
(trans) (inter)

G{I,I"= A (X =1I)} G{I'=A(Z=1),[A= 0]}

Figure 1 Crik.
Further, let T' be a finite set of formulas, define md(I") = md(AT). As for a nested sequent
S of the following form
S=T=A,[S1].-,[Sml, {T1), .-, {Th),
we set md(S) = max{md(T"), md(A), md(S1) + 1,...,md(Sy) + 1, md(Ty),...,md(T,)}.
» Example 23. Axiom (wCD) in Dgyk is provable in Crik.

Proof. To prove this, it suffices to prove S = Op D Uq,0(pV ¢q) = Og. Let T' = Op D
Og,0(p V ¢) and then a derivation for S, i.e. I' = Ogq is given as below.

(id) (id)
I'= (Hq,0(pVaq) = [g,p=4q])

I'= (T'= 0p,[p=q,p])

O
I = (I'= Op,[p=q]) (0r) I'= (0g,0(pVaq) = [p=d) ((3 L)) (id)
T = (T = [p=ad) - T= (T=[g=ad)
(Vi)
I'=(I'=[pVqg=dq])
(Or)
= (= [=4q])
—————————— (trans)
ToGl=d o
I = g "
Then we are done. |

» Example 24. The formula (=01 > L) D 0L is provable in Cpk.>.

3 Note that this ¢-free formula is unprovable in CK (whence the O-free fragments of these two logics are
different, see [4]).
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Proof. To prove this, it suffices to prove S =-01 D01l =01. Let ' = =01 > OL and
then a derivation for S, i.e. I' = [JL is given as below.

I= (= (0L= L [L=]),[=1]) %L)
T= T = (0L=1,[=])[= 1) (i(nt:r)) (L)
' T= L= 1)[=1)]) (o) 's{{OL=[L=1]) (O)
= ([ =-0L,[= 1] = (0L=[=1]) (51)
FF:> <I; :>[ [::j; ) (trans)
= (==
roor o)
Then we are done. |

We now show that the calculus Cgrk enjoys the disjunctive property, which means if
AV B is provable, then either A or B is provable. This fact is an immediate consequence
of the following lemma. Its general form is due to the fact that backwards expansion of a
sequent with empty antecedent will (only) treat/introduce formulas and implication blocks
in the consequent.

» Lemma 25. Suppose that a sequent S = = Ay,..., Ap,{(G1),...,{Gy) is provable in
Crik, where the A;’s are formulas. Then either for some A;, sequent = A; is provable or
for some G;, sequent = (G;) is provable.

Since = A V B is provable if and only if = A, B from the lemma we immediately obtain:

» Proposition 26. For any formulas A, B, if = AV B is provable in Cpg, then either = A
or = B is provable.

By the soundness and completeness of Cgprx with respect to FIK proved in the following,
we will conclude that the logic FIK enjoys the disjunctive property.

Next, we prove the soundness of the calculus Crikx. To achieve this aim, we need to
define the semantic interpretation of sequents, whence their validity. We first extend the
forcing relation IF to sequents and blocks therein.

» Definition 27. Let M = (W, <, R, V) be a bi-relational model and x € W. The relation I+
1s extended to sequents as follows:

M,z I (

M, x|+ [T] if for every y with Rxy, M,y - T

M,z IF(T) if for every ' with x </, M,z v T

M,z IFT = A if either M,z I} A for some A €T or M,z - O for some O € A

We say S is valid in M iff Vw € W, we have M,w I+ S. S is valid iff it is valid in every
bi-relational model.

Whenever the model M is clear, we omit it and write simply z IF O, where O is either
formula, or a sequent, or a block. Moreover, given a sequent S =T' = A, we write z I A if
there is an O € A s.t. z I O and write z I A if the previous condition does not hold.

The following lemma gives a semantic meaning to the x-operation used in (inter).

» Lemma 28. Let M = (W, <, R, V) be a bi-relational model and x, 2’ € W with x < .
Let S =T = A be any sequent, if x |V A then x’ If A*.

In order to prove soundness we first show that the all rules are forcing-preserving.
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» Lemma 29. Given a model M = (W,<,R,V) and x € W, for any rule (r) of the form

G{Slé{s(};{sr"} or %{{%}}, if x |- G{S;}, then z IF G{S}.

Proof of this lemma proceeds by induction on the structure of the context G{}. The the
base of the induction (that is G = )) is the important one, we check rule by rule and in the
case of (inter) we make use of Lemma 28.

By Lemma 29, the soundness of Cgrk is proved as usual by a straightforward induction
on the length of derivations.

» Theorem 30 (Soundness). If a sequent S is provable in Crx, then it is valid.

4 Termination and completeness for Cgk

In this section, we provide a terminating proof-search procedure based on Cgrx, whence
a decision procedure for FIK; it will then be used to prove that Cgik is complete with
respect to FIK bi-relational semantics. Here is a roadmap. First we introduce a set-based
variant of the calculus where all rules are cumulative (or kleen’ed), in the sense that principal
formulas are kept in the premises. With this variant, we formulate saturation conditions on
a sequent associated to each rule. Saturation conditions are needed for both termination
and completeness in order to prevent “redundant” application of the rules as the source of
non-termination. In the meantime saturation conditions also ensure that a saturated sequent
satisfies the truth conditions specified by the semantics (which will be presented in the truth
lemma), so it can be seen as a countermodel.

The reformulation of the calculus by means of set-based sequents is motivated as usual
by the following consideration: while multisets are the natural data-structure for any proof-
system (at least with commutative A, V), set-based sequents are needed to bound the size
of sequents occurring in a derivation in terms of subsets of subformulas of the formula or
sequent at the root of the derivation (see for instance [3]).

With this in mind, we first present the following CCygik, a variant of Cgrx where
sequents are set-based rather than multi-set based and the rules are cumulative.

» Definition 31. CCgik acts on set-based sequents, where a set-based sequent S =T = A
is defined as in definition 18, but T is a set of formulas and A is a set of formulas and/or
blocks (containing set-based sequents). The rules are as follows:

It keeps the rules (L), (Tgr), (id), (Or), (Or), (trans) and (inter) of Crixk.

(DRr) is replaced by the two rules dealing with cases of A € T and A ¢ T respectively,

G{I' = A,AD B,B}
G{I' = A, A> B}

G{T' = A,AD B,(A= B)}
G{I' = A, A> B}

(331) (:)Rz)

Other rules (A1), (Ar), (VL), (Vr), (Dr), (dg) and (Or) in Crix are modified by
keeping the principal formula in the premise(s). For example, the cumulative version of
(Dp) is

G{T,A>B= AA} G{I''A>B,B= A}
G{T,A> B= A}

(Or)

and the cumulative versions of (Ar) and (Ogr) are

G{A,B,ANB,T = A}
G{ANB,T = A}

G{I'= A0A, (= [= A}

(e) G{T = A, 04}

(Or)
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The following proposition is a consequence of the admissibility of weakening and contrac-
tion of Cgrk which can be done by a standard proof.

» Proposition 32. A sequent S is provable in Cprx if and only if S is provable in CCrik.

From now on we only consider CCpik. We introduce the notion of structural inclusion
between sequents. It is used in the definition of saturation conditions as well as the model
construction presented at the end of the section.

» Definition 33 (Structural inclusion CS). Let 'y = Ay, Ty = Ay be two sequents. Ty = Ay
is said to be structurally included in Ty = Ao, denoted as T'1 = Ay CS Ty = Ao, if:

I't CTI'y and

for each [Ay = ©1] € Ay, there exists [Ay = O3] € Ay such that A} = 0, C5 Ay = Os.

It is easy to see that CS is reflexive and transitive; moreover if I'; = A; CS 'y = Ao,
then Fl g Fg.
We define now the saturation conditions associated to each rule of CCgrk.

» Definition 34 (Saturation conditions). Let I' = A be a sequent where T’ is a set of formulas

and A is a set of formulas and blocks. Saturation conditions associated to a rule in the

calculus are given as below.

(Ly) LgT.

(Tr) T&A.

(id) Atn(I'NA) is empty.

(ANr) If ANB € A, then A€ A or B € A.

(N) IfANBEeT, then AcT and B€T.

(Vr) If AVB €A, then A€ A and B € A.

(Vp) IfAvVBeT, then AT or BeT.

(Dr) If A D B € A, then either A € T" and B € A, or there is (X = II) € A with A € ¥ and
B eIl

(Or) f ADBET, then Ac A or BET.

(Or) IfOA € A, then either there is [A = ©] € A with A € ©, or there is (X = [A = O], II) € A
with A € ©.

(Or) IfOA €T and [E =1I] € A, then A € 3.

(Or) If VA€ A and [¥ = 1I] € A, then A € 11.

(Or) If OA €T, then there is [X = II] € A with A € .

(trans) If A is of form A’, (X = 1II), then T C .

(inter) If A is of form A, (X = TI), [A = O], then there is [® = W] € Tl with A = 0 C° & = V.

Concerning the (inter)-saturation, observe that in the (inter) rule we have A = © CS
A = ©*, thus the saturation condition actually generalizes the situation.

» Proposition 35. Let ' = A be a sequent saturated with respect to both (trans) and (inter).
If(X=M) €A, thenT = ACSY =TI

In order to define a terminating proof-search procedure based on CCpik (like for any
calculus with cumulative rules), as usual we say that the backward application of a rule (R)
to a sequent S is redundant if S satisfies the corresponding saturation condition for that
application of (R) and we impose the following constraints:

(i) No rule is applied to an aziom and
(ii) No rule is applied redundantly.

However, the restrictions above are not sufficient to ensure the termination of the
procedure.
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» Example 36. Let us consider the sequent S = Ca D L,[0b O | = p, where we abbreviate
by T" the antecedent of S. Consider the following derivation, we only show the leftmost
branch (the others succeed), we collapse some steps:

(3) T' = p,0a,0b, (T’ = Ua,0Ob, [= a], (T’ = Oa, 0b, [= b)), (T' = Oa, b, [= b))

(2) T' = p,0a,0b, (T" = Oa, Ob, [§ al, (= [=b])), (T = Oa,0b, [= b))

(DT> p. 00,00 T~ 0a,0h = al) 7 = Do, 00 8)_ | o
I' = p,0a,0b, (' = [= a]), (I' = [= b)) (trans) x 2 ’
I = p,0a,00, (= [= a]), (= [= b)) (Og) x 2
TopOe
I'=pyp

Observe that in the first implication block of sequent (1) (dg) can only be applied to
b, creating the nested block (= [= b]) in (2), as it satisfies the saturation condition for
Oa. This block will be further expanded to (I' = Oa,0b, [= b]) in (3) that satisfies the
saturation condition for [Jb, but not for Oa, whence it will be further expanded, and so on.
Thus the branch does not terminate.

In order to deal with this case of non-termination, intuitively we need to block the
expansion of a sequent that occurs nested in another sequent whenever the former has already
been expanded and the latter is “equivalent” in some sense to the former. To realize this
purpose we first introduce a few notions.

» Definition 37 (c{, €ll et relation). Let Ty = A}, Ty = Ay be two sequents. We denote
' = A Eé‘> Iy = Ag if (1 = Ay € Ay and let €0 be the transitive closure of Eé».
Relations € and €l for modal blocks are defined similarly. Besides, let €= ebr el

and finally let € be the reflexive-transitive closure of € .

Observe that when we say S’ €T S, it is equivalent to say that for some context G, S = G{S’}.
We introduce the operator f for the succedent of a sequent, it is used to remove implication
blocks but retain all the other formulas and modal blocks.

» Definition 38 (f-operator). Let A = © be a sequent. We define ©F as follows:
(i) ©% = O if © is block-free;

(i) ©F = ©F,[® = U] if © = O, [® = V];

(iii) ©f = ©f if 0 = O, (® = V).

We can compare this f-operator with * in Definition 20. For example, let A = b, [c =
d,[e = fl,{g = )], {t = [p = q]),[m = n], then A* = b,[c = d,[e = f]],[m = n], while
A* =[c=[e=]],[m =]

Intuitively speaking, if a sequent S = A = O describes a model rooted in S and specifies
formulas forced and not forced in S, then A = ©F, describes the chains of R-related worlds
to S by specifying all formulas forced and not forced in each one of them, but ignores upper
worlds in the pre-order, the latter being represented by implication blocks.

We use the f-operator to define an equivalence relation between sequents. The equivalence
relation will be used to detect loops in a derivation as in the example above.

» Definition 39 (#-equivalence). Let S1,.S2 be two sequents where S; =T1 = Ay, S, =Ty =
Ao, We say St is -equivalent to Ss, denoted as S1 ~ Ss, if 'y =Ty and Al = Ag.
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In order to define a proof-search procedure, we divide rules of CCgyk into three groups
and define correspondingly three levels of saturation.
(R1) basic rules: all propositional and modal rules except (Dg) and (Og);
(R2) rules that transfer formulas and blocks into implication blocks: (trans) and (inter);
(R3) rules that create implication blocks: (Og) and (Dg).

» Definition 40 (Saturation). Let S =T = A be a sequent and not an axiom. S is called:
Rl-saturated if I' = AF satisfies all the saturation conditions of R1 rules;
R2-saturated if S is R1-saturated and S satisfies saturation conditions of R2 rules for
blocks S1 eé’> S and Sy Eg] S.

R3-saturated if S is R2-saturated and S satisfies saturation conditions of R3 rules for
formulas OA, B D C € A.

We can finally define when a sequent is blocked, the intention is that it will not be
expanded anymore by the proof-search procedure.

» Definition 41 (Blocked sequent). Given a sequent S and S1,Ss €t S, with S; =T =
A1, Sy =Ty = Ay. We say S is blocked by Sy in S, if Sy is R3-saturated, So € S; and
S1 =~ So. We say that a sequent S" is blocked in S if there exists S1 €™ S such that S’ is
blocked by S1 in S.

Observe that if S is finite, then for any S’ €t S checking whether S’ is blocked in S can be
effectively decided. We will say just that S’ is blocked when S is clear.

» Example 42. We reconsider the example 36. The sequent (3) will be further expanded to

(4) T = p,0a, O,
(T' = Oa,0b, [= al, (T = Oa,0b, [= b], (T = Oa, 0b, [= a]) )@,
(T' = Oa, 0b, [= b])

We have marked by (i) and (ii) the relevant blocks. Observe that the sequent So =T =
Oa,0b, [= a] in the block marked (ii) is blocked by the sequent S; = I' = Oa, b, [=
al, (T' = Oa,0b, [= b], (T = Oa,0b, [= a])) marked (i), since S; is R3-saturated, S, €() S
and Sy ~ Sy, as in particular (Ca, b, [= a], (T' = Oa,0b, [= b], (T' = Oa,0b, [= a])))f =
(T = Oa,0Ob, [= a])*.

We finally define three global saturation conditions.

» Definition 43 (Global saturation). Let S be a sequent and not an axiom. S is called :
global-R1-saturated if for each T €t S, T is either R1-saturated or blocked;
global-R2-saturated if for each T €t S, T is either R2-saturated or blocked;
global-saturated if for each T € S, T is either R3-saturated or blocked.

In order to specify the proof-search procedure, we make use of three sub-procedures
that extend a given derivation D by expanding a leaf S, each procedure applies rules non-
redundantly to some T :=T = A €' S, that we recall it means that S = G{T'}, for some
context G . We define :

1. EXP1(D,S,T) = D’ where D’ is the extension of D obtained by applying R1 rules to
every formula in I' = A¥,
2. EXP2(D,S,T) = D' where D’ is the extension of D obtained by applying R2-rules to

blocks (T3), [T;] € A.

3. EXP3(D,S,T) = D’ where D’ is the extension of D obtained by applying R3-rules to

formulas (A, A D B € A.
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The three procedures are used as macro-steps in the proof search procedure defined next.
We are going to prove that the three sub-procedures terminate, this is stated in Proposition
46 below. The claim is obvious for EXP2(D, S, T), EXP3(D, S,T) as only finitely many
blocks or formulas in T are processed. For EXP1(D, S, T), the claim is not so trivial, since
the rules are applied also deeply within I' = A¥. But notice that EXP1 only applies the
rules (both left and right) for A, V, ¢ and D, 0r while ignores implication blocks, we can see
EXP1(D, S, T) produces exactly the same expansion of D that we would obtain by applying
the same rules of a nested sequent calculus for classical modal logic K and we know that
that procedure terminates (see [3], Lemma 7).

In order to give a proof of the claim for EXP1(D,S,T) precisely we introduce the
following definition.

» Definition 44. Given a sequent S, the tree Tg is defined as follows: (i) the root of Tg is
S; (ii) if Sy €i) Sy, then Sy is a child of S,.

We denote the height of Tg as h(Tg). It is easy to verify that h(Ts) < md(S). Moreover
we denote by Sub(A) the set of subformulas of a formula A and for a sequent S =T =
A we use the corresponding notations Sub(I"), Sub(A), Sub(S). Finally, we recall that
Card(Sub(S)) = O(]S)).

By estimating the size of the tree associated to a sequent, we can get the following rough
bound of the size of any sequent occurring in a derivation by R1-rules.

» Proposition 45. Let Do be a derivation with root a non-axiomatic sequent T =T = A
obtained by applying Ri-rules to T = A¥, then any T' occurring in Do has size O(|T|IT1+1).

We can now prove the following proposition.

» Proposition 46. Given a finite derivation D, a finite leaf S of D and T €+ S, then each
EXP1(D,S,T), EXP2(D,S,T),EXP3(D,S,T) terminates by producing a finite expansion

of D where all sequents in it are finite.

We present below the proof-search procedure PROCEDURE(A), that given an input
formula A it returns either a proof of A or a finite derivation tree in which all non-axiomatic
leaves are global-saturated.

Note that the proof-search algorithm we give is breadth-first, as we can see in line 8,
we expand all such non-axiomatic leaves in parallel. As a result, in line 5, the output is
a fully-saturated derivation, which means each non-axiomatic leaf in it is global-saturated.
Actually it is also possible to redesign the algorithm in a depth-first way by working with one
leaf exhaustively at each time and then the procedure for a unprovable formulas terminates
once the first global-saturated leaf is constructed.

An important property of the proof-search procedure is that saturation and blocking are
preserved through sequent expansion, in other words, they are invariant of the repeated loop
of the procedure.

» Lemma 47 (Invariant). Let S be a leaf of a derivation D with root = A:

1. LetT €t S, where T =T = A, for every rule (R) if T satisfies the R-saturation condition
on some formulas A; and/or blocks (T}), [Ty] before the execution of (the body of) the
repeat loop (lines 3-14), then T satisfies the R-condition on the involved A;, (T}), [Tk]
after the execution of it.

2. Let T €T S, if T is blocked in S before the execution of (the body of) the repeat loop,
then it is still so after it.
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Algorithm 1 PROCEDURE(A).
Input: Dy == A
1 initialization D = Dy;

2 repeat

3 if all the leaves of D are axiomatic then

4 | return “PROVABLE” and D

5 else if all the non-aziomatic leaves of D are global-saturated then

6 | | return “UNPROVABLE” and D

7 else

8 for all non-axiomatic leaves S of D that are not global-saturated

9 if S is global-R2-saturated then

10 for all T €t S such that 7 is a €{)-minimal and not R3-saturated, check

whether T is blocked in S, if not, let D = EXP3(D, S, T)

11 else if S is global-R1-saturated then

12 ‘ for all T €' S such that T is not R2-saturated, let D = EXP2(D, S,T)
13 else

14 ‘ for all T €t S such that T is not Rl-saturated, let D = EXP1(D, S, T)

15 until FALSE;,

The last ingredient in order to prove termination is that in a derivation of a formula,
there can only be finitely many non-blocked sequents.

» Lemma 48. Given a formula A, let Seq(A) be the set of sequents that may occur in any
possible derivation with root = A. Let Seq(A)/~ be the quotient of Seq(A) with respect to
f-equivalence ~ as defined in Definition 39. Then Seq(A)/~ is finite.

Intuitively, the termination of the procedure is based on the fact that the procedure
cannot run forever by building an infinite derivation. The reason is that the built derivation
cannot contain any infinite branch, because (i) once that a sequent satisfies a saturation
condition for a rule (R), further expansions of it will still satisfy that condition (whence will
not be reconsidered for the application of (R)); (ii) if a sequent is blocked, further application
or rules cannot “unblock” it; (iii) the number of non-equivalent, whence unblocked sequents
is finite.

» Theorem 49 (Termination). Let A be a formula. Proof-search for the sequent = A
terminates with a finite derivation in which any leaf is either an axiom or global-saturated.

Next, we prove the completeness of CCrik. Given a finite global-saturated leaf S of the
derivation D produced by PROCEDURE(A), we can define a model Mg as follows, which
will be shown as a countermodel for A.

» Definition 50. The model Mg = (Wg,<g,Rgs,Vs) determined by S is defined as follows:
Wg = {:&pixp | O =Tt S}
xs, <s xs, if S1 C5 S,.
Rsx31x32 Zf Sy Eg] S1.
for each xo—y € Wg, let Vs(zomw) ={p | p € ®}.
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We give some brief remarks on the model construction. Obviously Mg is finite, and each
world in Wg corresponds to either a R3-saturated or a blocked sequent, that is nonetheless
saturated with respect to (inter) and (trans). Moreover, by Proposition 35, we can see if
Troars=1m € Ws then zsoy1 € Wy, and wro A/ (s—1m) <s Ts=n. Lastly, by the property
of structural inclusion C3, we have that <g is a pre-order.

» Proposition 51. Mg satisfies the hereditary property (HP) and forward confluence (FC).

» Lemma 52 (Truth Lemma). Let S be a global-saturated sequent and Mg be defined as
above. (a). If A € O, then Mg, ze=vw |- A; (b). If A€ VU, then Mg, xp=g ¥ A.

From the truth lemma we immediately obtain the completeness of CCgrxk .
» Theorem 53. For any formula A € L, if Ik A, then = A is provable in CCpixk -

» Example 54. We show how to build a countermodel of the formula (Op D Og) > O(p D q)
by CCrik (due to space limit, we do not present the full derivation here). By backward
application of the rules, one branch of the derivation ends up with the the saturated
sequent Sp:

So= Op>0Og= Op,0(p D q),(0p>Ug= Op,[=pDq,(p=q),p]) and let

S1=0p20g=90p,[=pDq¢p=q,p, So==>pDq,{p=>q),p, Ss3=p=¢q

We then get the model Mg, = (W, <, R, V) where

W = {xSoaxSmsz?xS;;}a
TSy S XSy, Gy S TSy, TSy < TSy,

RZ'SlCUSQ,
V(rs,) = V(zs,) = V(zs,) =0 and V(zs,) = {p}.

It is easy to see that zg, I (Op D Og) D O(p D q).

» Example 55. Consider another example ——O-p D O-p which shows that the {-free
fragment of FIK is weaker than the same fragment of IK. The formula is presented in [4] and is
provable in IK. By building a derivation with the root = ((O(p > L) D 1) > 1) > O(p D L),
we generate a saturated sequent

So = F; = D(p D J_),FQ, <Sl>, <56>,
where F1 = (0O(p> 1) D> 1) DL, Fo=0p>L)>DL,and

Si=F == {p=1),(5), Si=F,0p>Ll)= L1 F,p>Ll=ryp],
SGZFlaD(pDJ—)éJ—,FQa
52::><p:>l>, S3:p:>L’ S5=p3l=>p

We then get the model Mg, = (W, <, R, V) where
W = {xso, cee ,.’L‘SG},
TSy ST, TSy S TS, TS, < Ty, TSg S TSy, TSy < Tgyy TSy S TSy, TSy < Ty,
R.I?Slxsz, R$S4$SS,
V(zs,) =0if i # 3 and V(zs,) = {p}.

It is easy to see that zg, ¥ (O(p D> L)D>L)D>L)>0O(p>DL).
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5 Conclusion and future work

We have proposed FIK, a natural variant of Intuitionistic modal logic characterized by
forward confluent bi-relational models. FIK is intermediate between constructive modal
logic CK and intuitionistic modal logic IK and it satisfies all the expected criteria for
IML. We have presented a sound and complete axiomatization of it and a bi-nested calculus
Cgix which provides a decision procedure together with a finite countermodel extraction.

There are many topics for further research. First we may study extensions of FIK with
the standard axioms from the modal cube. To obtain decidability and terminating proof
systems for transitive logics (e.g. the 4-extension) might be difficult and it may be worthwhile
to study an embedding of our nested sequent calculus into a labelled calculus and then
adapt the techniques and results in [7]. More generally, we can also explore extensions of
FIK whose accessibility relation is defined by Horn properties and the nested sequent calculi
might be obtained by means of the refinement technique proposed in [8]. Lastly we can
consider other bi-relational frame conditions relating to the pre-order and the accessible
(including the one for IK) and see how they can be captured uniformly in bi-nested calculi
with suitable “interactive rules”.
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A  Appendix
The appendix includes the proofs of some of our results.

Proof of Lemma 12. Let I') A, A € W, be such that I' >, A and AR.A. Hence, I' O A and
A i A. Let Ay, Ao, ... be an enumeration of (JI' and Bj, Bs, ... be an enumeration of A.
Obviously, for all n e N, O(A; A...AA,) €T and By A... A B, € A. Since A < A, for all
neN, O(BiA...AB,)€A. Forallne N let ©, =Dpixk + A1 A...NA, AB1 A...\B,.
Obviously, (0, )nen is a chain of theories such that [J{©, : n € N} D A.

We claim that for all formulas C, if OC € I then C € | J{©,, : n € N}. If not, there exists
a formula C such that OC € T" and C & |J{©,, : n € N}. Thus, C € OI'. Consequently, let
n € N be such that A,, = C. Hence, Ay A...NA, AB1A...\ B, — Cisin Dgik. Thus,
C € 6,,. Consequently, C' € [ J{O,, : n € N}: a contradiction. Hence, for all formulas C, if
OC €T then C € |J{©, : n e N}

We claim that for all formulas C, if C € J{©, : n € N} then 0C € I'. If not,
there exists n € N and there exists a formula C' such that C' € ©, and ¢C ¢ I'. Thus,
AN NALABIA...AB,, = Cis in Dpik. Consequently, By A...AB,, = (A1A...ANA, —
C) is in Dgrx. Hence, <>(B1 VANAN Bn) D) <>(A1 A...NA, D C) is in Dpik. Since
OB1AN...ABp) €A, Q(A4N...NA, DC) e A. SinceT' DA, (A1 AN...NA, DC) eT.
Thus, O(A4; A...AA,) DOC €T. Since O(A; A...AA,) €T, OC € I': a contradiction.
Consequently, for all formulas C, if C € (J{©,, : n € N} then 0C €T.

Let S = {©® : O is a theory such that (1) T' x © and (2) © 2 A}. Obviously,
U{®, : n €N} eS. Hence, S is nonempty. Moreover, for all nonempty chains (I1;);e; of
elements of S, |J{II; : i € I} is an element of S. Thus, by Zorn’s Lemma, S possesses a
maximal element ©. Consequently, © is a theory such that I' <t © and © O A. Hence, it
only remains to be proved that © is proper and prime.

We claim that © is proper. If not, L € ©. Since ' < ©, §_L € I': a contradiction. Thus,
© is proper.

We claim that © is prime. If not, there exists formulas C, D such that Cv D € 0, C ¢ ©
and D ¢ ©. Consequently, by the maximality of ® in S, 0 +C ¢ S and © + D ¢ S. Hence,
there exists a formula F such that £ € © + C and OF ¢ I" and there exists a formula F
such that ' € ©®© + D and OF ¢ I'. Thus, C D F € © and D D F € ©. Consequently,
CVDDEVFe®O. SinceCVvDe®, EVF e€0©. Since' <0, O(EV F) € T'. Hence,
either OF € I', or OF € I': a contradiction. Thus, © is prime. <
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Proof of Lemma 13. We only show the case of O here. Suppose OB ¢T. Let S = {A: A
is a theory such that (1) T' C A and (2) OB ¢ A}.

Since OB ¢ T, T' € S. Hence, S is nonempty. Moreover, for all nonempty chains (4;);er
of elements of S, |J{A; : i € I'} is an element of S. Thus, by Zorn’s Lemma, S possesses a
maximal element A. Consequently, A is a theory such that I' C A and OB ¢ A.

We claim that A is proper. If not, then A = £. Hence, OB € A: a contradiction. Thus,
A is proper.

We claim that A is prime. If not, there exists formulas C, D such that CV D € A, C ¢ A
and D ¢ A. Consequently, by the maximality of A in S, A+ C € S and A+ D ¢ S. Hence,
OBe A+ Cand OB € A+ D. Thus, C D OB € A and D D OB € A. Consequently,
CVvDD>OBeA. Since CVDe A, OB e A: a contradiction. Hence, A is prime.

We claim that for all formulas C, if C vV B € OA then O0C € A. If not, there exists
a formula C such that CV B € OA and ¢C' ¢ A. Thus, by the maximality of A in S,
A+ QC ¢ S. Consequently, 0B € A 4+ OC. Hence, OC D OB € A. Since C'V B € LA,
O(C Vv B) € A. Since OC D OB € A, OB € A: a contradiction. Thus, for all formulas C, if
C Vv B € A then OC € A.

Let 7 = {A: A is a theory such that (1) OA C A, (2) for all formulas C, if CV B € A
then OC € A and (3) B ¢ A}. Since OB ¢ A, B ¢ A. Consequently, OA € T. Hence, T
is nonempty. Moreover, for all nonempty chains (A;);c; of elements of T, |J{A;: i € I} is
an element of 7. Thus, by Zorn’s Lemma, T possesses a maximal element A. Consequently,
A is a theory such that A C A, for all formulas C, if CV B € A then ¢C € A and B € A.
Hence, it only remains to be proved that A is proper and prime and A i A.

We claim that A is proper. If not, A = £. Thus, B € A: a contradiction. Consequently,
A is proper.

We claim that A is prime. If not, there exists formulas C, D such that CV D € A, C € A
and D € A. Hence, by the maximality of Ain 7, A+ C ¢ 7T and A+ D ¢ T. Thus, either
there exists a formula E such that FV B e A+ C and OF ¢ A, or B € A+ C and either
there exists a formula F' such that FVE € A+ D and OF ¢ A, or B € A+ D. Consequently,
we have to consider the following four cases.

(1) Case “there exists a formula E such that EV B € A+ C and OF ¢ A and there exists
a formula F such that FV B € A+ D and OF ¢ A”: Hence, C D EV B € A and
D>FVvBeA Thus, CVDDOEVFVBeA. SinceCvDeA EVFVBEeEA.
Consequently, O(E V F) € A. Hence, either OF € A, or OF € A: a contradiction.

(2) Case “there exists a formula F such that EV F € A+ C and OF ¢ Aand B€ A+ D”:
Thus, C D EVB € Aand D D B € A. Consequently, CV D D> EV B € A. Since
CvDeAl, EVBeA. Hence, OF € A: a contradiction.

(3) Case “B € A+ C and there exists a formula F' such that 'V B € A+ D and OF ¢ A”:
Thus, C D Be€ Aand D D FV B € A. Consequently, CV D D FV B € A. Since
CvDeA, FVBeA. Hence, OF € A: a contradiction.

(4) Case “Be A+ Cand Be A+ D”: Thus, C D Be€ A and D D B € A. Consequently,
CVDDBeA. Since CvDeA, BeA: acontradiction.

Hence, A is prime.

Lastly, we claim that A b A. If not, there exists a formula C' such that C' € A and OC ¢ A.

Thus, C'V B € A. Consequently OC € A: a contradiction. Hence, A > A. <

Proof of Lemma 28. By induction on the structure of A*. If A* = {) it follows by definition.

Otherwise A* = [®, = U3],..., [Py = U}] where A = Ay, [P = ¥4],..., [Py = ¥i] and
Ay is [-]-free. By hypothesis z If A, thus z | [®; = ¥,] for i = 1,..., k. Therefore there
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are yi,...,yr with Ray; for i = 1,...,k such that y; ¥ ®; = ¥;. This means that (a)
y; IF C for every C' € ®; and (b) y; I ¥,;. By (FC) property there are yi, ...,y such that
Rz'yl and y, > y; for i = 1,...,k. By (a) it follows that (c) y} I C for every C € ®y;
moreover by induction hypothesis it follows that (d) y; I UF. Thus from (c) and (d) we have
yi I ®; = ¥, whence 2’ Iff [®;, = U] for for i = 1,..., k, which means that 2’ [f A*. <«

Proof of Theorem 49. (Sketch) We prove that PROCEDURE(A) terminates producing a
finite derivation, in this case all leaves are axioms or global-saturated. A non-axiomatic
leaf S is necessarily global-saturated, otherwise S would be further expanded in Step 8 of
PROCEDURE(A) and it would not be a leaf. Thus it suffices to prove that the procedure
produces a finite derivation. Let D built by PROCEDURE(A). First we claim that all
branches of D are finite. Suppose for the sake of a contradiction that D contains an infinite
branch B = Sy,...,S;,..., with Sy == A. The branch is generated by applying repeatedly
EXP1(-),EXP2(-) and EXP3(-) to each S; (or more precisely to some T; € S;) . Since
each one of these sub-procedures terminates, the three of them must infinitely alternate on
the branch. By (invariant) Lemma, if T; €T S, satisfies a saturation condition for a rule (R)
or is blocked in (.S;) it will remain so in all S; with j > 4. That is to say, further steps in
the branch cannot “undo” a fulfilled saturation condition or “unblock” a blocked sequent.
We can conclude that the branch must contain infinitely many phases of EXP3(-) each
time applied to an unblocked sequent in some S;. This entails that B contains infinitely
many sequents that are not ~-equivalent, but this contradicts previous lemma 48. Thus
each branch of the derivation D built by PROCEDURE(A) is finite. To conclude the proof,
just observe that D is a tree whose branches have a finite length and is finitely branching
(namely each node/sequent has at most 2 successors, as the rules of CCprk are at most
binary), therefore D is finite. <

Proof of Proposition 46. We only prove the claim for EXP1(D, S, T), the other cases being
obvious. To this purpose we show that any derivation Do, with root I' = Af and generated
by Rl-rules, is finite. Then the claim follows since EXP1(D, S, T) is obtained simply by
“appending” Do to D, where we replace every sequent 7" in Do by G{T"}, as S = G{T}. In
order to prove that Do is finite, notice that (i) all R1-rules are at most binary, (ii) the length
of a branch of Do is bounded by the size of the maximal sequent that can occur in it because
of non-redundancy restriction. But by proposition 45, every sequent T” in Do has a bounded
size (namely O(|T|!'T1+1)), whence we get a bound on the length of any branch of Do. In
conclusion Do is a finitely-branching tree, whose branches have a finite length, whence it is
finite. |

In the following proofs, we abbreviate Rg, <g as R and < respectively for readability.

Proof of Proposition 51. For (HP), take arbitrary zg,,zs, € Wg with g, < xg,. Suppose
S1, Sy are of form I'; = A; and I'y = A, respectively, then T'y = A; CS5 'y = Ay, By
definition, it follows I'y C T'y. As Vg(zs,) ={p | p € T'1} and Vs(zg,) = {p | p € 'z}, we
have Vs(l'sl) g V5($52).

For (FC), take arbitrary ar—a,Zso1,ame € Ws where aroa < xnop as well as
Rrr_azpa—o, our goal is to find some zy € Wg s.t. both zp—¢ < ¢ and Rzry_yzg hold.
Since Rxr—aZa—o, by the definition of R, we see that [A = ©] € A and hence I' = A can
be written explicitly as I' = A’, [A = ©]. Meanwhile, since 2r—a < xn-11, by the definition
of <, we have ' = A’ [A = ©] C5 ¥ = II. By the definition of structural inclusion, there
isablock [ = V] ellst. A=0OC5®= V. Since®=Ver L =1Ie Sand " is
transitive, we see that x¢e—y € Wy as well. Take xg_y to be xg, by the construction of
Mg, it follows directly xp—~o < z¢ and Rrs_rzg. <
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Proof of Lemma 52. We prove the lemma by induction on the complexity of A. For con-

venience, we abbreviate r¢— ¢ as x.

We only show the case when A is of the form OB. For (a), let OB € ®. & = U satisfies
the saturation condition associated with (Og) for OB regardless of whether the sequent
itself is blocked or not. Assume for the sake of a contradiction that z ¥ [JB. Then there
exists y—11,Ta—e denoted as x1,x2 s.t. © < x1, Rrixe and xo ¥ B. By IH, we see that
B ¢ A. Meanwhile, according to the model construction, we see that ® = ¥ CS ¥ = II and
[A = O] € II. Moreover we have ® C ¥, thus OB € ¥ as well. Also, since 3 = II is of form
Y = II', [A = 6], by the saturation condition associated with (), we have B € A, which
leads to a contradiction.

For (b), let OB € ¥. We distinguish whether ® = ¥ is blocked or not. Assume that
® = W is not blocked, then it satisfies the one of the two saturation conditions associated
with (Og) for OB:

(1) there is a block [A = ©] € ¥ with B € ©. By IH, we have x50 ¥ B. By reflexivity
x < z and model construction Rxxpa—g, so that x ¥ (IB.

(2) there is a block (2 = [A = 6],E) € ¥ with B € ©. Denote the sequent Q2 = [A = 6], =
by Sp. Since ® = ¥ is saturated with (trans) and (inter), by Proposition 35, we have
® = ¥ C5 S). According to the model construction, we see that z < s, and Rrg,zr=o.
Since B € ©, by IH we have xp_.¢ ¥ B and we can conclude z ¥ OB.

Assume that ® = U is blocked and does not satisfy condition (1) for OB, otherwise the

proof proceeds as in case (1) above. Then there is an unblocked sequent ¥ = IT €t S such

that ® = ¥ is blocked by it. Then ¥ = II ~ ® = ¥, which implies I = ¥ so OB € II as
well. Moreover, by definition, we have ® = ¥ CS ¥ = II, whence by model construction (**)

x < xy—1. Given that ¥ = II is R3-saturated, it satisfies the saturation condition associated

with (Og) for OB, but since ¥ = II ~ & = ¥, we have that ¥ = II does not satisfy condition

(1), thus it must satisfy condition (2). Therefore there is a block (2 = [A = ©],2) € II,

such that B € ©. Letting Sp = Q = [A = 0], E, we have zx_1 < zg, and Rxg,2pa—0. By

(**) we have also © < xg, and we conclude as in case (2) above. <
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