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Abstract
We study two-player games on finite graphs. Turn-based games have many nice properties, but
concurrent games are harder to tame: e.g. turn-based stochastic parity games have positional optimal
strategies, whereas even basic concurrent reachability games may fail to have optimal strategies.
We study concurrent stochastic parity games, and identify a local structural condition that, when
satisfied at each state, guarantees existence of positional optimal strategies for both players.
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1 Introduction

Two-player games played on finite graphs have been a helpful model in areas of computer
science. In such games, states/vertices of the graph are colored; the actions of the players
induce an infinite path in the graph, thus inducing an infinite sequence of colors. Who wins
depends on the color sequence. These games can be turn-based, i.e. at each state a unique
player chooses an outgoing edge leading to a probability distribution over successor states,
or concurrent, i.e. at each state, the combination of one action per player determines the
probability distribution over successor states. In such stochastic settings, Player A wants to
maximize her probability to win, and Player B to minimize the very same probability.

We study the above games in the case of parity objective: colors are natural numbers,
and a sequence is winning for Player A iff the maximal color seen infinitely often is even.
This objective has been well-studied in connection with model-checking. The turn-based
version of these games has nice properties involving deterministic positional strategies, where
“ positional” means that the played action depends only on the current state: with only
deterministic probability distributions over successor states, either of the players has a
winning such strategy [15]; with arbitrary probability distributions over successor states,
both players have optimal such strategies [16, 7]. Note that in concurrent parity games,
positional optimal strategies for distinct starting states yield one positional strategy optimal
for all states uniformly. So we omit the word “ uniform” in this paper.

The above properties and others break in basic concurrent games except in safety games,
as recorded in Table 1, where safety and reachability are special cases of (co-)Büchi, and
parity subsumes (co-)Büchi. Büchi games may not have optimal strategies but when they
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18:2 From Local to Global Optimality

Table 1 Memory status of (almost-)optimal strategies in concurrent games. The second column
says for each objective whether optimal strategies always exist or not; the third column gives the
nature (positional or infinite memory) of optimal strategies when such optimal strategies exist;
the fourth column gives the nature of ε-optimal strategies; the last column gives the nature of
subgame-optimal strategies, a refinement of optimal strategies. This shows the diversity of memory
requirements for the various objectives listed on the left.

Objectives ∃ opt strat? opt ε-opt SubG-opt
Safety always [9] pos. [9] pos. [9] pos. [9]
Reach. not always [11] pos. [2] pos. [10] pos. [2]
Büchi not always pos. [3] ∞ [8] pos. [3]
Co-B. not always ∞ [3] pos. [6] pos. [5]
Parity not always ∞ [8] ∞ [8] ∞ [8]

do, they have positional ones; co-Büchi games may not have optimal strategies, and they
may have only infinite-memory ones; and the other way around for ε-optimal strategies,
hence incomparable difficulty between Büchi and co-Büchi. This shows that concurrent
parity is strictly harder than (co-)Büchi, since parity games may have only infinite-memory
(ε-)optimal strategies. (See also the column on subgame optimal strategies.)

Nevertheless, concurrent games’ poor behavior in general should not deter us from
studying them, as many complex systems are inherently concurrent. See [12] for further
arguments. Continuing a recent line of research [1, 2, 3] we seek local structural good
behaviors that scale up to the whole game.

The following key property still holds in parity concurrent games, by determinacy of
Blackwell games [13]: each state has a value u ∈ [0, 1], i.e. for all ε > 0, Player A has an
ε-optimal strategy for plays starting in the state, i.e. guaranteeing winning probability at
least u − ε to win, regardless of Player B’s strategy; and likewise Player B can guarantee
that Player A wins with probability at most u + ε. Here we are interested in strategies that
are optimal, i.e. that realize exactly the value u, and that are positional. They do not exist
in general (see [2, Figure 2]), but our main result is a transfer property from local to global
positional optimality, a weak version being the next theorem; the terminology that it uses is
explained afterwards.

▶ Theorem 1. If at every state the induced game form is positionally optimizable, both
players have positional optimal strategies in the game.

A game form is a map from pairs of actions to probability distributions of successor states,
see Fig. 1 to the left, or [1, p. 5] for more examples. So each state induces a game form.
Given a game form F , an F-game has a unique non-trivial state which induces F and the
other player states are of two kinds: first kind, they loop back to the non-trivial state; second
kind, they are not colored, but they have an explicit value in [0, 1], and the game stops there.
Moreover Player A prefers higher explicit values. See Fig. 1 or Fig. 5. Finally, F is called
positionally optimizable if both players have positional optimal strategies in all F-games,
which we show to be decidable.

The proof of Theorem 1 involves an extraction of an environment function, which gives
for each state a summary of some local information sufficient to globally play optimally
in the game; the summary of some state q is a (small) F-game, where F is the original
game form of state q. The extraction of this environment function is made by analyzing
in an appropriate order the immediate neighbors of the states, and propagating gathered
information further away.
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As a corollary of Thm. 1, we among other things recover the known result that positional
strategies are sufficient to play optimally in turn-based stochastic games [16, 7], since turn-
based game forms are positionally optimizable. Let us rephrase and strengthen Thm. 1: if
the induced game forms of a game behave well in all (small) F-games, they behave well in
all larger games; conversely, by definition an arena inducing a poorly-behaved game form
yields at least one poorly-behaved small game. Let us highlight two benefits of Thm. 1: First,
designing a game using only well-behaved components, i.e. game forms, ensures the existence
of positional optimal strategies, which was our main purpose. Second, it provides a local,
structural criterion for games to have positional optimal strategies.

An extended version of this paper with all the technical details can be found in [4].

2 Preliminaries and game forms

If Q is a non-empty set, we denote by Q∗ (resp. Q+, Qω) the set of finite (resp. non-
empty finite, infinite) sequences of Q. A (discrete probability) distribution over a set Q is
a function µ : Q → [0, 1] with a finite support Sp(µ) := {x ∈ Q | µ(x) > 0}, such that∑

x∈Sp(µ) µ(x) = 1. The distribution µ is deterministic if its support is a singleton. For all
S ⊆ Q, we let µ[S] :=

∑
x∈S µ(x). The set of distributions over the set Q is denoted D(Q).

For all i ≤ j ∈ N, we write Ji, jK for the set {k ∈ N | i ≤ k ≤ j}. This set is typed in
the sense that these are seen as integers and not reals numbers, so that we will be able to
consider the disjoint union of [0, 1] with such a set of integers which may include 0 or 1. For
all finite sets S ⊆ N, we let Even(S) (resp. Odd(S)) be the smallest even (resp. odd) integer
that is greater than or equal to all elements in S.

We recall the definition of game forms and of games in normal forms.

▶ Definition 2 (Game form and game in normal form). Let O be a non-empty set of outcomes.
A game form (GF for short) on D is a tuple F = ⟨ActA, ActB, O, ϱ⟩ where ActA (resp. ActB) is
the non-empty finite set of actions available to Player A (resp. B) and ϱ : ActA×ActB → D(O)
maps each pair of actions to a distribution over the outcomes. We denote by Form(O) the
set of game forms on O. A Player-A (resp. Player-B) game form F is such that |ActB| = 1
(resp. |ActA| = 1). A game form is trivial if |ActB| = 1 and |ActA| = 1.

When O = [0, 1], we say that F is a game in normal form. For a valuation v : D→ [0, 1],
⟨F , v⟩ denotes the game in normal form ⟨ActA, ActB, [0, 1], v ◦ ϱ⟩ induced from F by v.

An example of a game form is depicted on the left of Fig. 1 (page 7) where the actions
available to Player A are the rows and the actions available to Player B are the columns.
Strategies available to Player-A (resp. B) are then the probability distributions over their
respective sets of actions. In a game in normal form, Player A tries to maximize the outcome,
whereas Player B tries to minimize it.

▶ Definition 3 (Outcome and value of a game in normal form). Let F = ⟨ActA, ActB, [0, 1], ϱ⟩
be a game in normal form. For C ∈ {A, B}, the set of strategies of Player C is D(ActC) and is
thereafter denoted ΣC(F). For a pair of strategies (σA, σB) ∈ ΣA(F)× ΣB(F), their outcome
in F is outF (σA, σB) :=

∑
a∈ActA

∑
b∈ActB

σA(a) · σB(b) · ϱ(a, b) ∈ [0, 1].
Let σA ∈ ΣA(F) be a Player-A strategy. Its value is valF (σA) := infσB∈ΣB(F) outF (σA, σB);

and dually for Player B. When supσA∈ΣA(F) valF (σA) = infσB∈ΣB(F) valF (σB), it defines the
value of the game F , denoted valF . If valF (σA) = valF , the strategy σA is said to be optimal
for Player A. This is defined analogously for Player B.

Since the sets of actions are finite, Von Neumann’s minimax theorem [14] ensures the existence
of a value and of optimal strategies for both players in any game in normal form.
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18:4 From Local to Global Optimality

In the following, strategies in game forms will be called GF-strategies in order not to
confuse them with strategies in concurrent games (on graphs).

3 Concurrent games

3.1 Concurrent arenas and games
▶ Definition 4 (Finite stochastic concurrent arena). A finite concurrent arena C is a tuple
⟨Q, F⟩ where Q is a non-empty finite set of states and F : Q→ Form(D) maps each state to
its induced game form, which describes the interaction of the players at this state.

In the following, the arena C will refer to a tuple ⟨Q, F⟩, unless otherwise stated. In this
paper, we focus on (max) parity objectives: given a coloring function, the goal of Player A is
that the maximum of the colors visited infinitely often is even.

▶ Definition 5 (Parity game). Let col : Q → N be a coloring function. It induces the
parity objective W (col) ⊆ Qω defined by W (col) := {ρ ∈ Qω | max(col(ρ)∞) is even} where
col(ρ)∞ := {k ∈ N | ∀i ∈ N, ∃j ≥ i, col(ρ)j = k} ̸= ∅ denotes the set of colors seen infinitely
often along ρ. A parity game G = ⟨C, col⟩ is a pair formed of a concurrent arena C and a
coloring function col : Q→ N.

We fix a parity game G = ⟨C, col⟩ for the rest of this section. In such a game, strategies
map the history of the game (i.e. the finite sequence of states visited so far) to a GF-strategy
in the game form corresponding to the current state of the game.

▶ Definition 6 (Strategies). A strategy for Player A is a function sA :
⋃

q∈Q(Q∗ · q →
ΣA(F(q))). It is positional if for all q ∈ Q, there is a GF-strategy σq

A ∈ ΣA(F(q)) such that,
for all π = ρ · q ∈ Q+: sA(π) = σq

A. In that case, the strategy sA is said to be defined
by (σq

A)q∈Q. We denote by SA
C and PSA

C the set of all strategies and positional strategies
respectively in arena C for Player A. A strategy sA is deterministic if for all ρ ∈ Q+, sA(ρ) is
deterministic. The definitions are analogous for Player B.

Unlike deterministic games with deterministic strategies, the outcome of a game, given
two strategies (one for each Player), is not a single play but rather a distribution over plays.
To formalize this, we first define the probability to go from a state q to a state q′ given two
GF-strategies in a game form F(q).

▶ Definition 7 (Probability transition). Given states q, q′ ∈ Q and two strategies (σA, σB) ∈
ΣA(F(q))× ΣB(F(q)) the probability to go from q to q′ if the players play, in q, σA and σB,
is: PσA,σB(q, q′) := out⟨F(q),1q′ ⟩(σA, σB), where 1q′ : Q→ [0, 1] is the indicator function such
that, for all q′′ ∈ Q, we have 1q′(q′′) = 1 if and only if q′′ = q′.

We now define the probability of occurrence of finite paths, and consequently of any Borel
set, given a strategy per player.

▶ Definition 8 (Probability distribution given two strategies). Let (sA, sB) ∈ SA
C × SB

C be two
arbitrary strategies. We denote by PsA,sB : Q+ → D(Q) the function giving the probability
distribution over the next state of the arena given the sequence of states already seen. That is,
for all finite path π = π0 . . . πn ∈ Q+ and q ∈ Q, we have: PsA,sB(π)[q] := PsA(π),sB(π)(πn, q).
The probability of a finite path π = π0 · · ·πn ∈ Q+ from a state q0 ∈ Q with the pair of
strategies (sA, sB) is then equal to PC,q0

sA,sB
(π) := Πn−1

i=0 PsA,sB(π≤i)[πi+1] if π0 = q0 and 0 otherwise.
The probability of a cylinder set Cyl(π) := {π · ρ | ρ ∈ Qω} is PC,q0

sA,sB
[Cyl(π)] := PsA,sB(π) for

any finite path π ∈ Q∗. This induces the probability measure over Borel sets in the usual way.
We denote by PC,q0

sA,sB
this probability measure, mapping each Borel set to a value in [0, 1].
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The values of strategies and of the game follow.

▶ Definition 9 (Value of strategies and of the game). Let sA ∈ SA
C be a Player-A strategy. The

vector χG [sA] : Q→ [0, 1] giving the value of the strategy sA is such that, for all q0 ∈ Q, we
have χG [sA](q0) := infsB∈SB

C
PC,q0

sA,sB
[W (col)]. The vector χG [A] : Q→ [0, 1] giving the value for

Player A is such that, for all q0 ∈ Q, we have χG [A](q0) := supsA∈SA
C

χG [sA](q0). The vector
χG [B] : Q→ [0, 1] giving the value of the game for Player B is defined symmetrically.

By Martin’s result on the determinacy of Blackwell games [13]: χG [A] = χG [B], which
defines the value of the game: χG := χG [A] = χG [B]. A Player-A strategy sA such that
χG := χG [sA] is optimal (and similarly for Player B).

Note that optimal strategies may not exist in general; when they exist they can be arbitrarily
complex; see the table page 2.

Finally, for convenience, we extend our formalism by considering stopping states with
output values, i.e. states that, when visited, immediately stop the game and induce a specific
value in [0, 1]. The fact that the value of a stopping state q is set to be u is denoted val(q)← u.
Stopping states can be encoded by simple gadgets in our formalism, they will be depicted as
dashed states.

3.2 Markov chains and sufficient condition for optimality
In this subsection, we give a condition on positional strategies to be optimal in a parity game.
First, we introduce the notions of Markov chain and bottom strongly connected component.

▶ Definition 10 (Markov chain, BSCC). A Markov chain M is a pair M = ⟨Q,P⟩ where Q is
a finite set of states and P : Q→ D(Q). A bottom strongly connected component (BSCC for
short) H ⊆ Q is a subset of states such that the underlying graph of H is strongly connected
(w.r.t. edges given by positive probability transitions from states to states) and H cannot be
exited: for all q ∈ H and q′ ∈ Q, P(q)(q′) > 0 implies q′ ∈ H.

Two positional strategies (one per player) in a concurrent arena not only induce a probability
measure on infinite sequences of states, but also a Markov chain, whose graph is a subgraph
of the arena. If we only fix a positional strategy for one of the players, we will consider the
set of BSCCs that are compatible with that strategy in the following sense.

▶ Definition 11 (Induced Markov chains and BSCCs compatible with a strategy). Let s be a
positional strategy for one of the players. For every positional and deterministic strategy s′

for the other player, we denote by Ms,s′ = ⟨Q,Ps,s′⟩ the Markov chain induced by s and s′,
and by Hs the set of BSCCs compatible with s, i.e. the BSCCs of some Markov chain Ms,s′ .
A BSCC H ∈ Hs is even-colored if max col[H] is even. Otherwise, it is odd-colored.

We define three properties relating positional strategies and valuations of the states. A
Player-A strategy dominates a valuation v if, regardless of what the other player plays, the
value of every state is at most the expected value of its successors. Further, a Player-A
strategy parity dominates the valuation v if in addition all the BSCCs compatible with it are
even-colored. Finally, a Player-A strategy guarantees the valuation v if, from every state, the
value of the strategy is at least the value of the states w.r.t. v. In particular, if a strategy
guarantees the valuation χG : Q→ [0, 1], then it is optimal (by definition).

▶ Definition 12 ((Parity) Domination, Guarantees). Let v : Q→ [0, 1] be a valuation of the
states. Let sA ∈ PSA

C be a positional Player-A strategy. This strategy sA:
dominates v if for all q ∈ Q, v(q) ≤ val⟨F(q),v⟩(sA(q));

CSL 2024



18:6 From Local to Global Optimality

parity dominates v if it dominates v and all BSCCs H compatible with sAs.t. min v[H] > 0;
guarantees v if for all q ∈ Q, v(q) ≤ χG [sA](q).

The definitions are symmetrical for a Player-B positional strategy sB ∈ PSB
C .

As stated in Proposition 13 below, if a strategy parity dominates a valuation, then it also
guarantees it.

▶ Proposition 13. Let sA ∈ PSA
C be a positional Player-A strategy and v : Q → [0, 1] be a

valuation. If sA dominates v, then for all BSCC H ∈ HsA , there is some vH ∈ [0, 1] such that
v[H] = {vH}. If in addition sA parity dominates v, it also guarantees v.

In the remainder of this paper, we will be interested in showing that a strategy is optimal.
We will do so by establishing that it parity dominates the valuation χG : Q → [0, 1]. The
benefit of parity domination is that, compared to optimality, it specifies more explicitly how
the strategy behaves in a game. It is for instance used in Proposition 28 where optimal
Player-A strategies are obtained by gluing together pieces of strategies that parity dominates
some valuations.

4 Local environment and local game

The goal of this section is to define small parity games with a single non-trivial local
interaction, which will enlighten game forms that should be used in parity games if we require
positional optimal strategies. We first consider what (parity) environments on a given set
of outcomes are. Informally, these environments tell a game form how it should view its
outcomes: either as stopping states, or as colored states. The formal definition is given below.

▶ Definition 14 (Parity environment and its induced parity game). Let O be a non-empty finite
set of outcomes. An environment E on O is a tuple E := ⟨c, e, p⟩ where c, e ∈ N with c ≤ e

and p : O→ {qinit}⊎ J0, eK⊎ [0, 1] maps each outcome to what will be states in small F-games.
The size of E w.r.t. Player A (resp. B) is SzA(E) := Even(e) − c (resp. SzB(E) :=

Odd(e)− c). We denote by Env(O) the set of all environments on D.

We can then consider the games induced by such an environment (along with a game form).
Informally, given a game form F ∈ Form(O) and a parity environment E = ⟨c, e, p⟩ ∈ Env(O),
we consider the small parity arena CY induced by Y := (O,F , E) defined as follows: there
is a single central state qinit whose local interaction is given by F . The outcomes of F lead
in CY to states in {qinit} ⊎ {ki | i ∈ J0, eK} ⊎ [0, 1], as prescribed by p. All states in [0, 1] are
stopping states and all states in {ki | i ∈ J0, eK} are trivial and loop back to qinit. The small
parity game GY that we consider is then obtained from the arena CY by considering a coloring
function col that maps qinit to c and every state ki to i. These small games correspond to
the F-games in the introduction. This is formally defined below.

▶ Definition 15 (Parity game induced by an environment). Consider a non-empty finite set
of outcomes O, a game form F ∈ Form(O) and an environment E = ⟨c, e, p⟩ ∈ Env(O). Let
Y := (O,F , E). The local arena CY = ⟨Q, F⟩ induced by Y is such that:

Q := {qinit} ∪Ke ∪ p[0,1], where Ke := {ki | i ∈ J0, eK} and p[0,1] = p[O] ∩ [0, 1];
for all x ∈ p[0,1], we set the value of the stopping state x to be x itself: val(u)← u;
F(qinit) := F (up to identifying integers in J0, eK and states in {ki | i ∈ J0, eK}), and for
all i ∈ J0, eK, we set F(ki) to be a trivial game form with qinit as only possible outcome.
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F :=
[
y x

x y

]
E := ⟨2, 4, p⟩;
p(x) := 1/2 ∈ [0, 1];
p(y) := 3 ∈ J0, 4K. 2

qinit,

[
k3 1/2

1/2 k3

]

0

k0

1

k1

2

k2

3

k3

4

k4

1/2

Figure 1 On the left, a game form with set of outcomes O := {x, y}. In the middle, the description
of an environment on O. On the right, the parity game G({x,y},F,E). Recall that the dashed state is
a stopping state with value 1/2.

For all u ∈ [0, 1], we denote by vu
Y : Q→ [0, 1] the valuation such that: vu

Y (qinit) = vu
Y (ki) := u

for all i ∈ J0, eK and vu
Y (x) := x for all x ∈ p[0,1].

Furthermore, for all Player-A GF-strategies σA ∈ ΣA(F), we denote by sY
A (σA) the Player-

A positional strategy defined by σA in the arena CY .
The game GY is then equal to GY := ⟨CY , col⟩ where col(qinit) := c and for all i ∈ J0, eK,

we have col(ki) := i.

▶ Example 16. This definition is illustrated in Fig. 1 to the right. The colors of the non-
stopping states are depicted in red next to the states. Furthermore, the edges from all ki, for
i ̸= 3, leading back to qinit are not represented. ⌟

What we are interested in is the existence of positional optimal strategies for both players.
In such games, these strategies are entirely defined by a GF-strategy in a game form F .

▶ Definition 17 (Optimal GF-strategies). Given E = ⟨c, e, p⟩ ∈ Env(O), and Y := (O,F , E),
a Player-A GF-strategy σA ∈ ΣA(F) is said to be optimal w.r.t. Y if the Player-A positional
strategy sY

A (σA) is optimal in GY . The definition is analogous for Player B.

Given a finite set of outcomes O, we can now define the game forms on O ensuring the
existence of optimal strategies w.r.t. all environments.

▶ Definition 18 (Optimizable game forms). Given F ∈ Form(O), n ∈ N, and a player
C ∈ {A, B}, the game form F is said to be positionally maximizable up to n w.r.t. Player
C if, for each environment E ∈ Env(O) with SzC(E) ≤ n, there is an optimal GF-strategy
for Player C w.r.t. (O,F , E). When this holds for both players, F is said to be positionally
optimizable up to n. If this holds for all n ∈ N, F is simply said to be positionally optimizable.

▶ Remark 19. Note first that there are some game forms that are not positionally maximizable
w.r.t. any player up to 1. This is e.g. the case of the game form appearing in [2, Fig. 2].

Moreover, by definition, from a game form F ∈ Form(D) that is not positionally optimiz-
able up to some n ∈ N, there exists an environment E ∈ Env(D) such that one player has
no positional optimal strategy in the parity game G(D,F,E), where the difference between
col(qinit) and the maximum of the colors appearing in G(D,F,E) is at most n.

▶ Example 20. In the game G(O,F,E) on the right of Fig. 1, Player A has positional optimal
strategies: it suffices to play both rows with positive probability. (This is similar for Player B.)
As a side remark, the game form on the left of Fig. 1 is positionally optimizable. ⌟

In Lemma 21 below, we formulate more explicitly (using the notion of parity domination
from Definition 12) what optimal GF-strategies are.

CSL 2024



18:8 From Local to Global Optimality

▶ Lemma 21. Let E = ⟨c, e, p⟩ ∈ Env(O) and Y = (O,F , E). A Player-A GF-strategy
σA ∈ ΣA(F) is optimal w.r.t. Y if and only if, letting u := χGY

(qinit), either (i) u = 0, or
(ii) the positional Player-A strategy sY

A (σA) parity dominates the valuation vu
Y .

Furthermore (ii) is equivalent to:
(1) the Player-A positional strategy sY

A (σA) dominates the valuation vu
Y ; and

(2) for all b ∈ ActB, if the probability under (σA, b) to reach a stopping state is null,
then max(Color(F , p, σA, b) ∪ {c}) is even, where Color(F , p, σA, b) := {i ∈ J0, eK |
ϱ(σA, b)[p−1[{i}]] > 0} is the set of colors that can be seen with positive probability
under (σA, b).

This is symmetrical for Player B.

▶ Remark 22. This proposition states that for a Player-A GF-strategy σA to be optimal in
a local game GY with positive value, it must be the case that for every Player-B action b:
either there is a positive probability (w.r.t. (σA, b)) to exit qinit and the expected value of the
stopping states visited is at least u; or the game loops on qinit with probability 1, and the
maximum of the colors that can be seen with positive probability (w.r.t. (σA, b)) is even. In
particular, if c ≤ max Color(F , p, σA, b) or if c is odd, then max Color(F , p, σA, b) is even.

5 Local environment and global strategy

The goal of this section is to state and prove Theorem 25 below: the main theorem of this
paper. This theorem states that it is possible to extract, for every state of a game and for
each player, a local environment which summarizes the context of the state to the player,
and tells her how to positionally play optimally.

For the remainder of this section, we fix a parity game G = ⟨C, col⟩. In particular, the set
of states Q is fixed. Before going any further, we give useful notations below.

▶ Definition 23 (Value slice). For all subsets of states S ⊆ Q, we denote by VS := {u ∈
[0, 1] | ∃q ∈ S, χG(q) = u} the finite set of values of states in S. Furthermore, for all u ∈ VQ,
we let Qu := {q ∈ Q | χG(q) = u} be the set of states whose value is u: it is the u-slice of G.
Finally, for all u ∈ VQ, we let eu := Even(col[Qu]) and ou := Odd(col[Qu]).

We also introduce the notion of positional strategies generated by an environment function
before stating Theorem 25: these are the positional strategies that play GF-strategies that
are optimal in the (local) parity games induced by the environment function.

▶ Definition 24 (Strategy generated by environment functions). For all environment functions
Ev : Q→ Env(Q), a Player-A positional strategy sA is generated by Ev if for all q ∈ Q, the
GF-strategy sA(q) ∈ ΣA(F(q)) is optimal w.r.t. (O, F(q), Ev(q)) (and similarly for Player B).

▶ Theorem 25. Let G = ⟨C, col⟩ be a parity game. Assume that for all states q ∈ Q, the
game form F(q) is:

positionally maximizable up to eχG(q) − col(q) w.r.t. Player A; and
positionally maximizable up to oχG(q) − col(q) w.r.t. Player B

Then, there is a function EvA : Q→ Env(Q) (resp. EvB : Q→ Env(Q)) such that all Player-A
(resp. Player-B) positional strategies sA (resp. sB) generated by EvA (resp. EvB) are optimal
in G; and such Player-A (resp. B) positional strategies exist.

▶ Remark 26. Given some u ∈ VQ, one can realize that the requirement at states q, q′ ∈ Qu

changes depending on the color of q and q′. More specifically, if col(q) < col(q′), then the
requirement at state q is at least as strong as the requirement at state q′ since the game form
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F(q) should behave well for environments of larger size than the game form F(q′). As we
shall see, by Proposition 50, the requirement at state q is actually strictly stronger than the
requirement at state q′.

The remainder of this section is devoted to an explanation of the construction of the
environment function EvA (the construction being similar for Player B). We first argue that
we can restrict ourselves to a specific u-slice Qu for some u ∈ VQ.

▶ Definition 27 (Game restricted to a u-slice). For all u ∈ VQ, let Gu be the concurrent game
obtained from G by making all states outside of Qu stopping: for every q ∈ Q \Qu, we set
val(q)← χG(q). The states, game forms and coloring function on Qu are left unchanged.

Interestingly, a Player-A positional strategy optimal in G can be obtained by merging
appropriate positional strategies su

A in the games Gu for all u ∈ VQ \ {0}.

▶ Proposition 28. For all u ∈ VQ \ {0}, let su
A be a Player-A strategy that parity dominates

the valuation χG in Gu. Then, the Player-A positional strategy sA s.t. sA(q) := su
A(q) for all

u ∈ VQ \ {0} and q ∈ Qu guarantees the valuation χG in G (i.e. it is optimal).

This justifies that, for the remainder of this section, we focus on a given u-slice Qu for
some positive u ∈ (0, 1]. We also let e := eu and o := ou for the remainder of this section.

5.1 Overview of the proof

In order to give an idea of the steps that we take to prove Theorem 25, let us first consider the
very simple case of finite turn-based deterministic (i.e. where all probability distribution over
successors states are deterministic) reachability games. In this setting, computing the area
LA from which Player A has a winning strategy can be done inductively. That is, initially we
set LA := T where T denotes the target that Player A wants to reach. Then, the inductive
step is handled with a (deterministic) attractor: we add to LA any Player-A state with a
successor in LA and any Player-B state with all successors in LA. After finitely many steps,
there is no more state to add in LA: this exactly corresponds to the states from which Player
A has a winning strategy.

Computing a single attractor is not merely enough to take into account the intricate
behavior of parity objectives and the complexity of concurrent (and stochastic )interactions,
which is what Theorem 25 deals with. Therefore, we are going to iteratively compute several
layers of (virtual) colors, with a local update to change the (virtual) color (and therefore
the layer it belongs to) of a state. This local update can be seen as an attractor except in a
concurrent stochastic setting. Hence, when we update the (virtual) color of a state, we take
into account the concurrent interaction of the players at each state along with the probability
to see stopping states or states with different (virtual) colors. We define this local update in
Subsection 5.3. Let us describe below the steps that we take to capture the behavior of the
parity objective.

We compute layers of successive probabilistic attractors with leaks towards the stopping
states. Although we compute a strategy, e.g., for Player A, we alternate players to build
layers, then move the last non-empty layer into the closest layer with same parity, then
backtrack the attractor computation from this layer downwards, and start over again the full
attractor computation on the new layer structure. In a more concrete way, let us assume
below that the highest color in the u-slice is 6. We proceed as follows:
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1. Add the states colored with 4 to layer L4.
2. Recursively add to L4 (and give them virtual color 4) the states where Player A can

guarantee that with positive probability (pp) either a leak towards stopping states occurs
now with expected explicit value at least u (Leak≥u), or with pp the next state is in L4.

3. Add the remaining states colored with 3 to layer L3.
4. Recursively add to L3 (and give them virtual color 3) the states where Player B can

guarantee that either Leak<u occurs now with pp, or the next state is surely not in L4

and with pp in L3.
5. Add the remaining states colored with 2 to layer L2.
6. Recursively add to L2 (and give them virtual color 2) the states where Player A can

guarantee that either Leak≥u will occur with pp, or the maximal layer index of the next
states seen with pp is 2 or 4.

7. And so on, for colors 1 and 0. The layers so far only give information about what can
happen at finite horizon. For instance, from L2, Player A can guarantee that either
Leak≥u will occur with pp, or the maximal color that will be seen with pp is in {2, 4}.

8. Now, if e.g. L0 ̸= ∅ , we merge L0 into L2 and we reset the states that are in layer L1.
Similarly, if e.g. L0 = ∅ and L1 ̸= ∅, we merge L1 into L3 and we reset the states that
are in layer L2. This is, arguably, the most surprising step, we justify it in Ex. 42.

9. We then repeat the above attractor alternation from step 1. all over again, until all the
states are eventually in L4, which is bound to happen as we shall prove.

The key property (namely faithfulness, defined below in Def. 38) that is growing throughout
the above computation and will hold in the final layer L4 involves layer games: the Ln-game
is derived from the u-slice by abstracting each Li with i ≠ n via one state kn

i from which the
player who dislikes the parity of n chooses any next state in Ln, making it harder for the
other to win. If i > n then kn

i is i-colored, else (n− 1)-colored, also making it harder for the
other to win. And states in Ln bear their true colors. See for instance Fig. 4. The Ln-game
is only seemingly harder to win: it is actually equivalently hard, but its useful properties are
easier to prove.

The key growing property is as follows: between two merges, the attractor computation
from the top layer down to Ln ensures that Player A has a positional strategy of value at
least u in each Li-game for even i ≥ n, and Player B less than u for odd i ≥ n. In the very
end, there is only one even layer with all states bearing their true colors, and no abstract
states: the layer game equals the u-slice game. We have thus computed a positional optimal
strategy.

Let us hint at how to show positional optimality in the Ln-games when it holds: we break
Ln each into one simple parity game built on F(q) per state q in Ln, abstracting the other
states in Ln into one. Our theorem assumption yields an optimal GF-strategy for Player A
or B in the simple parity game. Gluing them does the job.

5.2 Extracting an environment function from a parity game
For the remainder of the section, we illustrate the definitions and lemmas on the game
depicted in Fig. 2 and 3. We give the notations that we use to describe these examples below.

▶ Example 29. We explain the notations used to depict this game (it is in fact the same
arena in both Fig. 2 and 3, with different coloring functions – real or virtual). On the
sides in green are the slices Q0, Q1/4, Q3/4 and Q1 from left to right. We focus on the
central slice Q1/2. In Q1/2, there are seven states, five of which (the square-shaped ones) are
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1/4

1/2

3/4

1

0:
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4:
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q6 q1 1
q5 q1 q6

]
q1 q2

q3

q4 · q5,
[
q6

1
2

1
2 q6

]

q6

Figure 2 The depiction of a game restricted
to the 1/2-slice Q1/2 with the initial coloring
function col.

0

1/4

1/2

3/4

1

0:

1:

2:

3:

4:

q0,
[
q6 q1 1
q5 q1 q6

] 0
q1

0

q2
0

q3
1

q4
·2

q5,
[
q6

1
2

1
2 q6

]2

q6

3

Figure 3 The same game restricted to Q1/2
with a different coloring function vcol.

turn-based for Player B, that is, Player A has only one available action. On the other hand,
the two circled-shaped states q0 and q5 are ‘truly” concurrent in the sense that both players
have several actions available. Furthermore, note that there is only one non-deterministic
distribution function: from q4, Player B may either loop on q4 or go to with equal probability
to q0 and q6. The other arrows lead to a single state and the outcomes of the game forms
in q0 or q5 is a single state or a value: 1 or 1/2. These formally refer to a (distribution
over) stopping states outside of the 1/2-slice Q1/2. The horizontal layers depict the colors
of the states. In Fig. 2, the coloring function considered is the initial one col whereas in
Fig. 3 we have depicted a virtual coloring function vcol. For instance, col(q6) = 3 whereas
col(q5) = 2. Similarly, vcol(q6) = 3 whereas state vcol(q5) = 4. Note that, in Fig. 3, the real
colors (given by col) are reminded next to some states with circled numbers. Finally, note
that e := e1/2 = 4. ⌟

Given a virtual coloring function (defining layers), we need to extract local environments
from the parity game G, which summarize how the Players see their neighboring states via
the virtual coloring function. This is (partly) done in Def. 30 bia a successor function p.

▶ Definition 30 (Successor function extracted from an arena and a virtual coloring function).
Given S ⊆ Qu and a virtual coloring function vcol : Qu → J0, eK. The function pS,vcol : S →
S ⊎ J0, eK ⊎ VQ\Qu

is such that, for all d ∈ D:
for all q ∈ S, pS,vcol(q) := q ∈ Q;
for all q ∈ Q \Qu, pS,vcol(q) := χG(q) ∈ [0, 1];
for all q ∈ Su \ S, pS,vcol(q) := vcol(q).

Given a virtual coloring function vcol : Qu → J0, eK and a color n ∈ J0, eK, we can now
extract a small parity game (the layer-games from Subsection 5.1) from G where the states
with truly concurrent interactions are all in vcol−1[n] (the interactions at these states is the
same as in G), the states in Q \Qu are stopping states and the arena loops back to vcol−1[n]
when a state in Qu \ vcol−1[n] is seen. This is done in the next definition.

▶ Definition 31 (Parity game extracted from the u-slice). Consider a virtual coloring function
vcol : Qu → J0, eK and a color n ∈ J0, eK. Let C ∈ {A, B} be a Player: A if n is odd and B
if n is even. The arena Cn

vcol = ⟨Q′, F′⟩ along with the coloring function vcoln : Q′ → N are
such that, denoting Qn := vcol−1[n]:
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2
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Figure 4 The game L3
vcol. Exiting arrows

from k3
0, k3

1, k3
2, k3

3 and k3
4 are not depicted:

they would all loop back to both q4 and q6.

0

qinit,

[
k3 k0 1
k4 k0 k3

]
0

k0

1

k1

2

k2

3

k3
4

k4

1

Figure 5 The game G0
q0,vcol with vcol the

coloring function depicted in Fig. 3.

Q′ := Qn ∪Kn ∪ VQ\Qu
where all x ∈ VQ\Qu

are stopping states with val(x)← x;
for all q ∈ Qn, F′(q) := ⟨Actq

A, Actq
B, Q′, ϱpn,vcol⟩ where, for all σA ∈ Actq

A, σB ∈ Actq
B, and

q ∈ Q, we have ϱpn,vcol(σA, σB)(q) := ϱ(σA, σB)[p−1
n,vcol[q]];

for all k ∈ Kn, we set F′(k) as a Player-C state whose outcomes are all the states in Qn;
for all q ∈ Qn, we let vcoln(q) := col(q) and for all i ∈ J0, eK, we have vcoln(kn

i ) :=
max(i, n− 1).

For t ∈ [0, 1], we define the valuation vt
n,vcol : Q′ → [0, 1]: vt

n,vcol[Qn ∪Kn] := {t} and for all
x ∈ VQ\Qu

, vt
n,vcol(x) := x.

The game Ln
vcol is then equal to Ln

vcol = ⟨Cn
vcol, vcoln⟩.

The notation Ln
vcol comes from the fact that the game is extracted for the n-colored layer

w.r.t. the coloring function vcol. The idea behind Def. 31 is the following: the states of
interest are those of Qn, that is, those for which the virtual color given by vcol is n. Note
however that the colors of these states in Ln

vcol are given by the real coloring function col. On
the other hand, for all i ∈ J0, eK, the state kn

i in Ln
vcol correspond to the states in Gu colored

with i w.r.t. vcol. In the case where n is even, as formally defined later in Def. 37, we will
require that any Player-A positional strategy generated by a given environment has value
at least u, in the game Ln

vcol, from all states in Qn. However, all states kn
i for i ∈ J0, eK are

Player-B’s, who can then choose to loop back to any state in Qn. Therefore, given a Player-A
positional strategy sA, if the game cannot exit to any stopping state, for the strategy sA not
to have value 0, the game may loop on some kn

i only at the condition that the highest color
seen with positive probability is even. In addition, note that the color of the state kn

i for
i ∈ J0, n− 1K is n− 1 (which is odd). Hence, all other things being equal, the game is harder
for Player A when n = 4 than when n = 2 or 0.

▶ Example 32. The game L3
vcol is partly depicted on the left of Fig. 4 (the virtual coloring

function vcol being the one depicted in Fig. 3). The colors of the states in L3
vcol are depicted

in red (for the central states q4 and q6, it is their real color in the original game). Although
the arrows are not depicted, from all states k3

0, k3
1, k3

2, k3
3 and k3

4, Player A can decide to
which state among {q4, q6} to loop back (since n = 3 is odd). In an even-colored layer, it
would have been Player B to decide. The color of states k3

i is i if i ≥ 3 or 2 if i ≤ 2. ⌟

Given a virtual coloring function, we also associate a local environment to each state. This
is crucial since this will allow us to properly define (in Definition 35 below) the probabilistic
attractor with leaks towards the stopping states mentioned in Subsection 5.1.
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▶ Definition 33 (Induced local environment). Given q ∈ Qu, a virtual coloring function
vcol : Qu → J0, eK and n ∈ J0, eK, the environment associated to state q w.r.t. vcol and n is
En

q,vcol := ⟨max(cn, vcol(q)), e, p{q},vcol⟩ where cn = n + 1 if n is odd and cn := n− 1 if n is
even. The corresponding (local) game G(O,F(q),En

q,vcol) is denoted Gn
q,vcol, and for all x ∈ [0, 1],

we set vx
q,vcol := vx

(O,F(q),E0
q,vcol)

(see Def. 14).

▶ Example 34. The game Gn
q5,col is depicted in Fig. 1 (right) for n = 0, 1, 2. However, if

n = 3, the color of qinit would be 4, and if n = 4, it would be 3. The game Gn
q0,vcol is depicted

in Fig. 5 for n = 0. However, if n = 1, the color of qinit would be 2, if n = 2, the color of
would be 1, if n = 3, the color would be 4 and if n = 4 the color would be 3. ⌟

5.3 Local operator
We want to define a way to update a virtual coloring function vcol. This amounts to
computing the probabilistic attractor with leaks towards the stopping states mentioned in
Subsection 5.1. This is done via a local operator mapping a given state q to the best color k

for which Player A can achieve the value u in the local parity game Gk
q,vcol. Note that “best”

is to be understood considering an ordering compatible with the parity objective. Specifically,
taking the point-of-view of Player A, any even number is better than any odd number, and
when they increase, odd numbers get worse whereas even numbers get better. This induces a
new total strict order relation ≺par on N such that, for all m, n ∈ N, we have m ≺par n if: m

is odd and n is even; or m > n and m and n are odd; or m < n and m and n are even.

▶ Definition 35 (Local operator). Let q ∈ Qu, and vcol : Qu → J0, eK a (possibly virtual)
coloring function. The color NewCol(q, vcol) ∈ N induced by vcol at q is defined by:

NewCol(q, vcol) := max
≺par

{
n ∈ J0, eK | χGn

q,vcol
(qinit) ≥ u

}
The meaning of a new virtual color n assigned to a state q via NewCol is the following: in the
game ⟨C, vcol⟩, from state q and in at most one step, the highest color w.r.t. vcol seen with
positive probability when both players play optimally is n (and no stopping state is seen).

Let us explain the choice of cn in Def. 33. In a local environment parameterized by
n, the integer n induces a shifted parity objective for Player A: her objective is that the
maximal color seen infinitely often is at least n w.r.t. ≺par; in particular n = 0 induces the
standard parity objective. The value cn encodes that winning condition. For instance, if
n = 2, assuming vcol(q) = 0 for simplicity, then cn = 1, which implies that seeing 0 infinitely
often is not enough, but seeing 2 infinitely often is enough to win.

▶ Example 36. We first consider Fig. 1 and we compute NewCol(q5, col) on the game on the
right. We realize that, regardless of the color of state qinit, Player A can (positionally) play
both rows with positive probability and ensure reaching (almost-surely) the stopping state
1/2: for all n ∈ J0, 4K, χGn

q5,col
(qinit) = 1/2. Hence, NewCol(q5, col) = 4.

We consider Fig. 5 and we compute NewCol(q0, vcol). As mentioned in Ex. 34, the game
G4

q0,vcol corresponds to the game depicted in Fig. 5 except that qinit is colored with 3. One
can realize that, with this choice (of coloring of the state qinit), if the highest color i ∈ J0, 4K
such that ki is seen infinitely often is such that i ≺par 4, then Player A loses. The value of
this game is 0 as Player B can ensure looping on k0 and qinit (by playing, positionally and
deterministically, the middle column) thus ensuring that the highest color seen infinitely
often is 3. Thus, NewCol(q0, vcol) ≺par 4. In the game G2

q0,vcol, qinit is colored with 1. Again,
with this choice (of coloring of the state qinit), if the highest color i ∈ J0, 4K such that ki is
seen infinitely is such that i ≺par 2, then Player A loses. The value of this game is also 0
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as Player B can still play the middle column ensuring that the highest color seen infinitely
often is 1. Thus, NewCol(q0, vcol) ≺par 2. Consider now the game G0

q0,vcol, the one depicted
in Fig. 5. The value of the state qinit is now 1. Indeed, if Player A plays the two rows with
equal probability, one can see that this strategy parity dominates (see Def. 12) the valuation
v1

q0,vcol (recall Def. 33). Indeed, the BSCCs compatible with this strategy are {qinit, k3, k4}
and {qinit, k0} and they are even-colored. Hence, by Proposition 13, χG0

q1,col
(qinit) = 1 ≥ 1/2

and NewCol(q0, vcol) ⪰par 0. That is, NewCol(q0, vcol) = 0. ⌟

5.4 Faithful coloring function
To prove Theorem 25, we iteratively build a virtual coloring function and a local environment
function. We want to define the desirable property that the pair of coloring and environment
functions should satisfy that will be preserved step by step. First, we need to define the
notion of an environment function witnessing a color.

▶ Definition 37 (Environment witnessing a color). Let vcol : Qu → J0, eK be a virtual coloring
function, n ∈ J0, eK, and Ev : vcol−1[n] → Env(D) be an environment function. Assuming
that n is even (resp. odd), we say that the pair (vcol, Ev) witnesses the color n if for all
q ∈ vcol−1[n], SzA(Ev(q)) ≤ e − col(q) (resp. SzB(Ev(q)) ≤ o − col(q)) and all positional
strategies sA (resp. sB) generated by Ev (recall Def. 24) in the game Ln

vcol parity dominate
the valuation vu

n,vcol (resp. vu′

n,vcol for some u′ < u), recall Def. 31.

It means that, in the virtual games given by vcol, in the even layers, Player A can achieve at
least what she should be able to achieve in this u-slice (i.e. the value of the states is at least
u). Whereas, in the odd-colored layers, Player B can prevent Player A from achieving this.

We can now define the central notion of interest: for a pair of coloring function and
environment function to be faithful (to what really happens in the parity game). We only
give a definition of faitfhfulness that we can use in this paper, but note that in [4], we require
additional properties for faithfulness.

▶ Definition 38 (Faithful pair of coloring and environment functions). Let vcol : Qu → J0, eK
be a virtual coloring function, n ∈ J0, e + 1K, and Ev : Qu → Env(D) a partial environment
function defined on vcol−1[Jn, eK]. We say that (vcol, Ev) is faithful down to n if:

for all k ∈ Jn, eK, the pair (vcol, Ev) witnesses color k;
for all q ∈ Qu, if vcol(q) < n, then col(q) = vcol(q) and NewCol(q, vcol) < n;

If n = 0, we say that the pair (vcol, Ev) is completely faithful.

A benefit of faithful environments and coloring functions lies in the proposition below:
if all states are mapped w.r.t. the coloring function to e, then the environment function
guarantees the value u in the whole u-slice Qu.

▶ Proposition 39. For a coloring function vcol : Qu → J0, eK and an environment function
Ev : Qu → Env(D), assume that (vcol, Ev) is completely faithful and that vcol[Qu] = {e}.
Then, all Player-A positional strategies generated by the environment function Ev parity
dominate the valuation χG in the game Gu.

Proof. This is direct from the definitions. Indeed, as (vcol, Ev) is completely faithful, it
witnesses the color e: all Player-A positional strategies sA generated by Ev in the game
Le

vcol parity dominate the valuation vu
e,vcol. Since vcol[Qu] = {e}, the games Le

vcol and Gu are
identical. Similarly, the valuation vu

e,vcol is equal to the valuation χG in the game Gu. ◀
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5.5 Computing a completely faithful pair
Given Prop. 39, our goal is to come up with a pair of an environment function and a coloring
function completely faithful such that all states are colored with e. We first consider how to
obtain a completely faithful pair from the initial coloring function and the empty environment
function (which is faithful down to e + 1): we proceed by building a new pair that is faithful
down to n− 1, given a pair (vcol, Ev) faithful down to some n ∈ J1, e + 1K.

To do so, let us be guided by the second property of faithfulness: to be faithful down to n−1,
no state q ∈ Qu such that vcol(q) ≤ n−2 should be such that NewCol(q, vcol) = n−1. Hence,
we adopt the following procedure UpdateColEnv: we first associate an environment to all states
whose color is already n− 1. Then, for all states q ∈ Qu such that NewCol(q, vcol) = n− 1,
we change their colors to n − 1 until no state q ∈ Qu with vcol(q) ≤ n − 2 satisfies
NewCol(q, vcol) = n− 1. The environment associated to each such state q newly colored by
n − 1 is given by the coloring function vcol for which NewCol(q, vcol) = n − 1 for the first
time (crucially, this is done before the color of q is updated to n−1). We state as an informal
lemma the property satisfied by the procedure described above.

▶ Lemma 40. Let vcol : Qu → J0, eK, n ∈ J1, e + 1K be a coloring function, and Ev : Qu →
Env(D) be a partial environment function defined on vcol−1[Jn, eK]. Assume that (vcol, Ev) is
faithful down to n. Let (vcol′, Ev′)← UpdateColEnv(n− 1, vcol, Ev) be the pair computed by
the procedure described above. Then (vcol′, Ev′) is faithful down to n− 1.

We illustrate below this lemma on examples.

▶ Example 41. We consider the example depicted in Fig. 2. The first step is to build a pair
that is faithful down to e = 4. As mentioned in Ex. 36, we have NewCol(q5, col) = 4. Hence,
the color of this state is changed to 4 (we obtain a virtual coloring function vcolq5) and we
set Ev(q5) := E4

q5,col. Note that a Player-A GF-strategy σA is optimal in this environment
if and only if it plays both rows with positive probability. Furthermore, note that, in the
extracted game L4

vcolq5 , a Player-A positional strategy playing such a GF-strategy σA in q5

parity dominates the valuation v
1/2
Q4,colq5 . Hence, the pair (vcolq5 , Ev) is faithful down to 4.

Consider now the layer 3. First, the state q6 already has color 3, so it only remains to set
its environment: Ev(q6) := E3

q6,vcolq5 . We then realize that NewCol(q4, vcolq5) = 3. Indeed, q4
is colored with 2 and may go with equal probability to a state colored with 0 and to a state
colored with 3. The color of this state is therefore changed, thus obtaining a new virtual
coloring function vcolq5,q6,q4 . We set its environment: Ev(q4) := E3

q4,vcolq5 . One can realize
that the pair (vcolq5,q6,q4 , Ev) witnesses the color 3: a positional Player-B strategy generated
by this environment would be so that (i) from q6, it goes to q4 with probability 1 (to avoid
k4 that is colored with 4) and (ii) from q5, it goes to q6 with positive probability (to see the
color 3 with positive probability). Such a strategy has value 0 in the game L3

vcolq5 = L3
vcol

from Fig. 4, hence the pair (vcolq5,q6,q4 , Ev) witnesses the color 3.
We illustrate on this step why the environment needs to be set before setting the new color

and not after. That is, we explain why it would not be correct to set Ev(q4) := E3
q4,vcolq5,q6,q4

instead of what we do above. In this environment, the state q4 has color 3. Hence, looping
with probability 1 on q4 is an optimal GF-strategy for Player B w.r.t. (D, F(q4), Ev(q4)).
Then, the corresponding pair of coloring and environment functions would not witness the
color 3. Indeed, a Player B strategy that loops with probability 1 on q4 is generated by this
environment, and it has value 1 ≥ u (because the real color of this state is 2, and not 3).

This process is repeated down to 0. In Fig. 3, the depicted coloring function (with an
appropriate environment function, not shown in Fig. 3) are in fact completely faithful (which
is what the procedure UpdateColEnv would output on the coloring function of Fig. 2). ⌟
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Proof sketch. We want to prove that the pair (vcol′, Ev′) witnesses the color n − 1 (the
other condition for faithfulness is ensured by the construction). We consider the case where
n − 1 is even, the other case is similar (but one needs to take the point-of-view of Player
B). Consider a Player-A positional strategy sA generated by the environment function Ev′ in
the game Ln−1

vcol′ . Let Qn−1 := vcol′−1[n− 1] and let v := vu
n−1,vcol′ . For every q ∈ Qn−1, let

Yq := (D, F(q), Ev′(q)) be the local environment at state q and let Ev′(q) = ⟨cq, e, pq⟩. From
the characterization of Lemma 21 (item (ii.1)), by carefully analyzing the links between the
local games GYq for all q ∈ Qn−1 and the game Ln−1

vcol′ , we can show that the strategy sA
dominates the valuation v.

It remains to show that all BSCCs (that are not reduced to a stopping state and are)
compatible with sA are even-colored. Consider such a BSCC H and a Player-B deterministic
positional strategy sB which induces H. For every state q ∈ H, since no stopping state
appears in H, it must be that the probability to reach a stopping state in GYq

w.r.t. (σA, b) is
0. For every state q ∈ Qn−1, the coloring function vcolq associated with environment Ev′(q) is
such that vcolq(q) ≤ n−1.1 Hence, the color cq is such that cq = max(n−2, vcolq(q)) ≤ n−1.
Now, assume that some state ki is in H for some i > n− 1 ≥ cq. In that case, as explained
in Remark 22, the highest i such that ki is in H must be even. Hence, H is even-colored.
Assume now that no state ki in H is such that i > n−1. In that case, if a state in H has color
n−1 (like the state q6 in Fig. 3 in the case where n−1 = 3), then n−1 is the highest color in
H and H is even-colored. Consider the first state q whose color is now n−1 (w.r.t. vcol′) but
whose previous color was not n−1. In that case, we have cq = max(n−2, vcolq(q)) = n−2 is
odd. Furthermore, the state q has changed its color because NewCol(q, vcolq) = n− 1. With
Remark 19, since sA(q) is optimal w.r.t. Yq, it follows that there is a positive probability
to reach, in the game GYq

the state kn−1. In the game Ln−1
vcol′ , this corresponds to a positive

probability to reach a state q′ ∈ H colored with n− 1 w.r.t. vcolq (recall Def. 30). Since q is
the first state to have changed its color, we can deduce that q′ already had color n− 1 w.r.t.
vcol. Furthermore, one can show that q′ is colored with n− 1 w.r.t. the real coloring function
col. Overall, in the game Ln−1

vcol′ , with the GF-strategy sA(q), there is a positive probability to
reach in one step a state q′ colored with n− 1. Iteratively, we obtain that, considering the
k-th state whose color is now n− 1 (i.e. w.r.t. vcol′) but whose initial color was not n− 1,
there is a positive probability to reach (in at most k steps) a state colored with n− 1. Hence,
the highest color appearing in H is n− 1, which is even. We obtain that sA parity dominates
the valuation v. ◀

Applying iteratively this algorithm on all colors from e down to 0 starting with the initial
coloring function induces a completely faithful pair (vcol, Ev). However, it may be the case
that some states are not mapped to e, which does not allow us to apply Prop. 39. The
question is then: from such a completely faithful configuration, how can one make some
progress towards a situation where Prop. 39 can be applied?

▶ Example 42. Consider the coloring function of Fig. 3. As mentioned in Ex. 41, with an
appropriate environment function (not shown in Fig. 3), we have a completely faithful pair.
To gain some intuition on what should be done next, let us focus only on the states q1, q2, q3.
A simplified version is presented in Fig. 6 (with a slight modification: instead of going to q0,
q1 loops on itself): the initial (and true) colors of the states are in circles next to them and
their color w.r.t. the current virtual coloring function is written in red. In this game, it is

1 This is because all states q ∈ Qn−1 satisfy col(q) ≤ n − 1. This is one of the additional conditions for
faithfulness that we did mention, but that is used in the definition of faithfulness in [4].
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Figure 6 A (deterministic turn-
based) game with only three states.
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Figure 7 The same arena as in Fig. 2,3 but with a
different coloring function.

obvious that Player A wins surely from q2: indeed, either the game stays indefinitely in q2,
or it eventually reaches and settles in q1.

The current virtual color 1 assigned to both q2 and q3 does not properly reflect the fact
that if the game reaches q3, even though Player B plays optimally according to the local
game associated to q2, it will end up looping in q1, which will be losing for Player B. In a
way, we would like to propagate the information that reaching q1 is bad for Player B. Since
0 is the smallest color, there is no harm in increasing it to 2, the game from q1 will be the
same: it will be won by Player A by looping. Player B will now be able to know that going
to q1 is dangerous for her, which will be obtained by applying the previous iterative process.

In a more general concurrent game, the next step of the process when we have a completely
faithful configuration not satisfying the assumptions of Proposition 39 consists in changing
all the states with the least virtual color n to the color n + 2. However, note that there is a
(very important) second step: the colors of all states virtually colored with n + 1 should be
reset to their initial colors. The reason why can be seen again in Fig. 6. After the color of q1
becomes 2, the color of q3 will also become 2. However, if the color of the state q2 is not reset,
then it is not going to change since Player B can choose to loop to q2 and see the color 1 for
ever (in game G0

q2,vcol). That is, from Player B’s perspective, looping on q2 is winning, which
is not what happens in the real game: the coloring function does not faithfully describes
what happens in the game. The changes made to the coloring function vcol from Fig. 3 can
be seen in Fig. 7. Note that the process of increasing the colors of some states by 2 can only
be done with the least color (otherwise faithfulness will not be preserved). ⌟

The process IncLeast described in Ex. 42 can be summed up as follows: we increase
the least virtually-colored layer n by 2 and we reset the environment and colors of the last
but least virtually-colored layer. It ensures faithfulness down to n + 2 if the initial pair is
completely faithful, as informally stated below.

▶ Lemma 43. Let vcol : Qu → J0, eK, Ev : Qu → Env(D) be a coloring and an environment
function. Let n := min vcol[Q]. Assume that n ≤ e− 2 and the pair (vcol, Ev) is completely
faithful. If (vcol′, Ev′)← IncLeast(vcol, Ev) is the result of increasing the least-colored layer
by 2 and resetting the environment of the last but least-colored layer as described above, then
(vcol′, Ev′) is faithful down to n + 2.
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Proof sketch. Let Qn := vcol−1[n] and Qn+2 := vcol−1[n + 2]. Let us argue that the pair
(vcol′′, Ev) obtained after increasing the least color by 2, before resetting the color and
environment of the last but least-colored layer, witnesses the color n + 2.

Consider a Player-A positional strategy sA generated by the environment Ev in the game
Ln+2

vcol′′ . Let v := vu
n+1,vcol′′ . Similarly to the case of Lemma 40, sA dominates the valuation v.

Consider a BSCC H compatible with sA. If H ∩Qn+2 = ∅, then H is even-colored. Indeed,
(vcol, Ev) witnesses the color n and, in addition, the probability to go an (n + 1)-colored
state kn+2

i in the game Ln+2
vcol′′ is exactly the probability to go to an (n + 1)-colored state kn

i

in the game Ln
vcol (since n is the least color). Furthermore, H is also even-colored as soon

as H ∩Qn = ∅ since (vcol, Ev) witnesses the color n + 2. Now, assume that none of these
cases occur. Then, one can show that: either a state ki is seen for some i ≥ n + 2, and H

is even-colored; or, from some states in Qn+2, there is a positive probability to exit Qn+2
and no state ki is seen for i ≥ n + 2. Now, looking at what happens in game Ln+2

vcol , some
states ki are seen for i ≤ n + 1, and such states are colored with n + 1. Hence, since (vcol, Ev)
witnesses the color n + 2, it must be that the highest color in H is n + 2, which is even.
Therefore it is also the case in the game Ln+2

vcol′′ . In all the cases, H is even-colored. ◀

As stated in Lemma 43, the update of colors described in Ex. 42 can be done only if, for
a completely faithful pair, the least virtual color n appearing is at most e − 2. If n = e ,
we are actually in the scope of Lemma 39 since in that case all states have virtual color e.
However, there remains the case where we have n = e− 1. In fact, this case cannot happen.

▶ Lemma 44. Consider a coloring function vcol : Qu → J0, eK, an environment function
Ev : Qu → Env(D). Assume that (vcol, Ev) is completely faithful. Then, for C := vcol[Q], we
have min C ̸= e− 1.

Proof sketch. Let Qe−1 := vcol−1[e − 1]. Towards a contradiction, let sB be a Player-B
positional strategy generated by Ev in the game Le−1

vcol . It parity dominates the valuation
vu′

e−1,vcol for some u′ < u. Hence, all BSCCs compatible with sB are odd-colored: they all
stay in the layer Qe−1. Indeed, since e− 1 = min C, exiting Qe−1 while staying in Qu mean
seeing Qe := vcol−1[e] with e even and the highest color in the game. Hence, either the
game stays indefinitely in Qe−1 and Player B wins almost surely, or there is some positive
probability to visit stopping states, and in that case their expected values is at most u′.
Hence, in the game Gu, the strategy sB has values less than u from the states Qe−1 ⊆ Qu,
which is a contradiction. ◀

Finally, all these pieces are put together by iteratively applying UpdateColEnv until we
obtain a completely faithful pair and applying IncLeast to a completely faithful pair to make
some progress towards the completely faithful pair where all states are colored with e. The
only remaining step is to prove the termination of this procedure. Consider the virtual
coloring functions as vectors in Ne+1 indicating the number of states mapped to each color.
Then, one can realize that applying UpdateColEnv does not decrease these vectors for a
lexicographic order (i.e. we first compare the number of states mapped to e, then the number
of states mapped to e− 1, etc). Furthermore, applying IncLeast increases these vectors for a
lexicographic order. In addition, the maximum for this order is achieved when all states are
colored with e. Hence, the procedure described above terminates in finitely many steps. We
can now finalize the argument for proving Theorem 25.

Proof sketch of Theorem 25 for Player A. Pick u ∈ VG \ {0}. According to the previous
discussion, there is a completely faithful pair of environment and coloring functions (vcolu, Evu

A)
mapping each state in Qu to eu. Hence, by Proposition 39, all Player-A positional strategies
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generated by the environment function Evu
A parity dominate the valuation χG in the game

Gu. Since we assume that all game forms appearing in Qu are positionally maximizable
up to eu − col(q) w.r.t. Player A, such positional strategies generated by Evu

A do exist.
Considering the environment function EvA : Q → Ev(D) that merges all the environment
functions (Evu

A)u∈VG\{0} together (and that is defined arbitrarily on Q0), it follows by
Proposition 28, that all Player-A positional strategies generated by that environment function
Ev are optimal. ◀

6 Discussion on positionally optimizable game forms

As mentioned in the introduction, this work extends previous lines of research [1, 2, 3]. We
discuss the more closely related work [3]. The goal in [3] was to characterize the game forms
ensuring the existence of almost-optimal positional strategies for Büchi objectives (resp.
optimal positional strategies for co-Büchi objectives). In both cases, there is a lift from
local properties to global properties, similarly to what is done in this work. However, the
techniques are quite different: in [3], the proofs involve the use of nested fixed points, as
is done for computing values of graph games [9]. This establishes a link between local and
global behaviors. However, this comes at the cost of having to handle local (i.e. at game
form level) and global (i.e. at graph game level) fixed-points. With Büchi and co-Büchi
objectives, there are only two nested fixed points. (Recall that they can be expressed
as two-color parity objectives.) For general parity objectives, the number of fixed points
would be linear in the number of involved colors. That is why, in this work, we decided to
consider good local behaviors in a more abstract way, without considering how the values
are effectively computed. That way, we handle arbitrarily many colors instead of only two
without prohibitive complexification.

We conclude with a discussion on positionally optimizable game forms. First, we would
like to emphasize that Theorem 25 along with Remark 19 give exactly the game forms that
should be used in parity games to ensure the existence of positional optimal strategies for
both players. Indeed:

By Remark 19, given any game form that is not positionally optimizable, one can build a
small parity game from it, like in Definition 14, where a player has no optimal strategy;
By Theorem 25, if all the local interactions occurring in a concurrent parity game are
positionally optimizable game forms, then both players have positional optimal strategies.

However, it has to be noted that there are concurrent parity games with non-positionally
optimizable local interactions where both players have positional optimal strategies. This is
e.g. the case of parity games without stopping states where all states have the same color.

Let us now give some properties that are ensured by positionally optimizable game forms.
We first give some notations for positionally optimizable game forms (and the corresponding
decision problems).

▶ Definition 45. For n ∈ N, we let ParO(n) be the set of all game forms positionally
optimizable up to n and we let IsO(n) be the problem of deciding whether a game form is in
ParO(n). Furthermore, we let ParO :=

⋂
n∈N ParO(n) and we denote by IsO the problem of

deciding whether a game form is in ParO.

First, let us introduce the notion of relevant environment, i.e. environment E = ⟨c, e, p⟩
such that c ∈ {0, 1} and p takes all values in Jc, eK. They are fomally defined below.
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▶ Definition 46. For a set of outcomes O, an environment E = ⟨c, e, p⟩ ∈ Env is relevant if
p−1[{c− 1}] = p−1[{qinit}] = ∅ and for all i ∈ Jc, eK, there is some o ∈ O such that p(o) = i.
The size of a relevant environment E is equal to Sz(E) := e− c.

The benefit of relevant environments appears below: a game form is positionally op-
timizable if and only if there are optimal GF-strategies w.r.t. all relevant environments.

▶ Proposition 47. Consider a set of outcomes O and a game form F ∈ Form(O). For all
n ∈ N, the game form F is ParO(n) if and only if, for all relevant environments E with
Sz(E) ≤ n− 1, for both players, there is an optimal GF-strategy w.r.t. (O,F , E).

Some positionally optimizable game forms. As mentioned above, given the distance to
the highest color in the game, Theorem 25 and Remark 19 give exactly the game forms that
should be used in parity games to ensure the existence of positional optimal strategies for
both players. The game forms in ParO are the ones that can be used in all parity games,
regardless of the number of colors involved, while ensuring the existence of positional optimal
strategies (for both players). Such game forms do exist, e.g. turn-based game forms are
positionally optimizable (straightforwardly). In fact, all determined [1] game forms are
positionally optimizable. Furthermore, all game forms with at most two outcomes are in
ParO.

▶ Proposition 48. Consider a set of outcomes O and a game form F = ⟨ActA, ActB, O, ϱ⟩ ∈
Form(O). Assume that |O| ≤ 2 or that F is turn-based or that F is determined, i.e. such
that:

for all (a, b) ∈ ActA × ActB, we have ϱ(a, b) deterministic;
for all v : O→ {0, 1}, there is either some a ∈ ActA such that ϱ(a, ActB) ⊆ {1} or there
is either some b ∈ ActB such that ϱ(ActA, b) ⊆ {0}.

Then, F is positionally optimizable.

Decidability. Similarly to “maximizable” game forms designed for reachability games [2]
and to “maximizable” game forms designed (co-)Büchi games [3], it is rather easy to get
convinced that positionally optimizable game forms used in this paper can be defined in the
first-order theory of the reals (FO-R): the characterizations of Lemma 21 and the fact that it
is sufficient to only consider relevant environment, as stated in Proposition 47, even allow us
to place the ParO(n) (for all n) and the ParO problems in the ∀∃-fragment of FO-R.

▶ Proposition 49. For all n ∈ N, the problem IsO(n) is decidable. And so is IsO.

Hierarchy. For all n ∈ N, the game forms in ParO(n) are the ones to be used – to ensure
the existence of positional optimal strategies for both players – in parity games at states
where the gap between the color of the state and the maximum color in the game is at most
n. Straightforwardly, ParO(n) ⊆ ParO(n + 1). In fact, this inclusion is strict for all n ∈ N.
This defines an infinite hierarchy of game forms.

▶ Proposition 50. For all n ∈ N, we have ParO(n) ⊊ ParO(n + 1).
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