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Abstract
We study Lindström quantifiers that satisfy certain closure properties which are motivated by the
study of polymorphisms in the context of constraint satisfaction problems (CSP). When the algebra
of polymorphisms of a finite structure B satisfies certain equations, this gives rise to a natural
closure condition on the class of structures that map homomorphically to B. The collection of
quantifiers that satisfy closure conditions arising from a fixed set of equations are rather more general
than those arising as CSP. For any such conditions P, we define a pebble game that delimits the
distinguishing power of the infinitary logic with all quantifiers that are P-closed. We use the pebble
game to show that the problem of deciding whether a system of linear equations is solvable in Z /2Z
is not expressible in the infinitary logic with all quantifiers closed under a near-unanimity condition.
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1 Introduction

Generalized quantifiers, also known as Lindström quantifiers, have played a significant role in
the development of finite model theory. The subject of finite model theory is the expressive
power of logics in the finite, and Lindström quantifiers provide a very general and abstract
method of constructing logics. We can associate with any isomorphism-closed class of
structures K, a quantifier QK so that the extension L(QK) of a logic L with the quantifier
QK is the minimal extension of L that can express the class K, subject to certain natural
closure conditions. For this reason, comparing the expressive power of logics with Lindström
quantifiers is closely related to comparing the descriptive complexity of the underlying classes
of structures.

Another reason for the significance of Lindström quantifiers is that we have powerful
methods for proving inexpressibility in logics with such quantifiers. In particular, games,
based on Hella’s bijection games [17], are the basis of the most common inexpressivity results
that have been obtained in finite model theory. The k, n-bijection game was introduced
by Hella to characterize equivalence in the logic Lk

∞ω(Qn), which is the extension of the
infinitary logic with k variables by means of all n-ary Lindström quantifiers. A quantifier
QK is n-ary if the class K is defined over a vocabulary σ in which all relation symbols have
arity n or less. In particular, the k, 1-bijection game, often called the k-pebble bijection
game, characterizes equivalence in Lk

∞ω(Q1) which has the same expressive power as Ck
∞ω,

the k-variable infinitary logic with counting. Hella uses the k, n-bijection game to show that,
for each n, there is an (n+ 1)-ary quantifier that is not definable in Lk

∞ω(Qn) for any k.
The k, 1-bijection game has been widely used to establish inexpressibility results for Ck

∞ω.
The k, n-bijection game for n > 1 has received relatively less attention. One reason is that,
while equivalence in Ck

∞ω is a polynomial-time decidable relation, which is in fact a relation
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23:2 Quantifiers and Polymorphisms

much studied on graphs in the form of the Weisfeiler-Leman algorithm, in contrast the
relation induced by the k, n-bijection game for n > 1 reduces to isomorphism on graphs and
is intractable in general. Nonetheless, there is some interest in studying, for example, the
non-trivial equivalence induced by Lk

∞ω(Q2) on structures with a ternary relation. Grochow
and Levet [16] investigate this relation on finite groups.

A second reason why the logics Lω
∞ω(Qn) have attracted less interest is that in finite

model theory we are often interested in logics that are closed under vectorized first-order
interpretations. This is especially so in descriptive complexity as the complexity classes we
are trying to characterize usually have these closure properties. While Lω

∞ω(Q1) is closed
under first-order interpretations, this is not the case for Lω

∞ω(Qn) for n > 1. Indeed, the
closure of Lω

∞ω(Q2) under interpretations already includes Qn for all n and so can express
all properties of finite structures. So, it seems that beyond Lω

∞ω(Q1), interesting logics from
the point of view of complexity necessarily include quantifiers of all arities.

One way of getting meaningful logics that include quantifiers of unbounded arity is
to consider quantifiers restricted to stronger closure conditions than just closure under
isomorphisms. In recent work, novel game-based methods have established new inexpresibilty
results for such logics, i.e. logics with a wide class of quantifiers of unbounded arity, but
satisfying further restrictions. An important example is the class of linear-algebraic quantifiers,
introduced in [8] which is the closure under interpretations of binary quantifiers invariant under
invertible linear maps over finite fields. Equivalence in the resulting logic is characterized by
the invertible map games introduced in [10]. These games are used in a highly sophisticated
way by Lichter [21] to demonstrate a polynomial-time property that is not definable in
fixed-point logic with rank introduced in [9, 15]. The result is extended to the infinitary logic
with all linear-algebraic quantifiers in [7].

Another example is the recent result of Hella [18] showing a hierarchy theorem for
quantifiers based on constraint satisfaction problems (CSP), using a novel game. Recall
that for a fixed relational structure B, CSP(B) denotes the class of structures that map
homomorphically to B. Hella establishes that, for each n > 1, there is a structure B with
n+ 1 elements that is not definable in Lω

∞ω(Q1,CSPn), where CSPn denotes the collection
of all quantifiers of the form QCSP(B′) where B′ has at most n elements. Note that CSPn

includes quantifiers of all arities.
The interest in CSP quantifiers is inspired by the great progress that has been made in

classifying constraint satisfaction problems in recent years, resulting in the dichotomy theorem
of Bulatov and Zhuk [5, 24] stating that, for any structure B, CSP(B) is either polynomial
time computable, or NP-complete. The so-called algebraic approach to the classification of
CSP has shown that the dividing line between these alternatives is completely determined
by the algebra of polymorphisms of the structure B. More specifically, it is completely
determined by the equational theory of this algebra. As we make explicit in Section 3 below,
equations satisfied by the polymorphisms of B naturally give rise to certain closure properties
for the class of structures CSP(B), which we describe by partial polymorphisms.

The notion of partial polymorphism, as well as that of polymorphism, goes back to
Geiger and Bodnarchuk et al [14, 4], who proved a one-to-one correspondence between
sets of relations that are closed under definability by conjunctions of atomic formulas (i.e.,
positive primitive formulas without existential quantification) and sets of partial functions
that contain all projections and are closed under composition and restriction. Later Romov
[22] formulated this correspondence as a Galois connection: a relation R is definable in a
structure B by a conjunction of atomic formulas if, and only if, every partial function that is
a partial polymorphism of B is also a partial polymorphism of R.
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Partial polymorphism offer a more fine-grained tool for comparing the complexity of
CSPs and related problems than the method based on total polymorphisms. Schnoor and
Schnoor [23] showed that the above mentioned Galois connection for partial polymorphisms
can be used for analysing the complexity of enumerating the solutions of CSP(B). As an
application, they proved that, for a Boolean CSP(B), there exists an efficient enumeration
algorithm if, and only if, CSP(B) itself is polynomial time computable. Furthermore, Jonsson
et al. [20] proved that, for two structures B and C with the same domain, if all partial
polymorphisms of B are also partial polymorphisms of C, then CSP(C) can be reduced to
CSP(B) by a polynomial time reduction that increases the size of input structures by at
most a constant. As a corollary, they proved a tight result on the relative time complexity of
the corresponding CSPs: if CSP(B) can be solved in time 2(c+ε)n for every ε > 0, then so
can CSP(C).

A central aim of the present paper is to initiate the study of quantifiers closed under
partial polymorphisms. We present a Spoiler-Duplicator pebble game, based on bijection
games, which exactly characterises the expressive power of such quantifiers. More precisely,
there is such a game for any suitable family P of partial polymorphisms. The exact definition
of a quantifier being closed under the family P is given in Section 3; here we just remark that
this notion is not based on the Galois connection between relations and partial polymorphisms.
The definition the game and the proof of the characterization are given in Section 4.

As a case study, we consider the partial polymorphisms described by a near-unanimity
condition. It is known since the seminal work of Feder and Vardi [13] that if a structure B

admits a near-unanimity polymorphism, then CSP(B) has bounded width, i.e. it (or more
precisely, its complement) is definable in Datalog. On the other hand, the problem of
determining the solvability of a system of equations over the two-element field Z /2Z is
the classic example of a tractable CSP that is not of bounded width. Indeed, it is not
even definable in Cω

∞ω [2]. We show that the collection of quantifiers that are closed under
near-unanimity partial polymorphisms is much richer than the classes CSP(B) where B

has a near-unanimity polymorphism. The collection not only includes quantifiers which are
not CSP, but it also includes CSP quantifiers which are not of bounded width, including
intractable ones such as hypergraph colourability. Still, we are able to show that the problem
of solving systems of equations over Z /2Z is not definable in the extension of Cω

∞ω with all
quantifiers closed under near-unanimity partial polymorphisms. This sheds new light on the
inter-definability of constraint satisfaction problems. For instance, while it follows from the
arity hierarchy of [17] that the extension of Cω

∞ω with a quantifier for graph 3-colourability
still cannot define solvability of systems of equations over Z /2Z, our result shows this also
for the extension of Cω

∞ω with all hypergraph colourability quantifiers.

2 Preliminaries

We assume basic familiarity with logic, and in particular the logics commonly used in finite
model theory (see [11], for example). We write Lk

∞ω to denote the infinitary logic (that is,
the closure of first-order logic with infinitary conjunctions and disjunctions) with k variables
and Lω

∞ω for
⋃

k∈ω L
k
∞ω. We are mainly interested in the extensions of these logics with

generalized quantifiers, which we introduce in more detail in Section 2.1 below.
We use Fraktur letters A,B, . . . to denote structures and the corresponding Roman letters

A,B, . . . to denote their universes. Unless otherwise mentioned, all structures are assumed
to be finite. We use function notation, e.g. f : A → B to denote possibly partial functions.
If f : A → B is a function and a⃗ ∈ Am a tuple, we write f (⃗a) for the tuple in Bm obtained

CSL 2024



23:4 Quantifiers and Polymorphisms

by applying f to a⃗ componentwise. This extends to functions of arity greater than 1. Thus,
if f : An → B is a function of arity n and a⃗1, . . . , a⃗m ∈ An is a sequence of n-tuples, then
f (⃗a1, . . . , a⃗m) = (f (⃗a1), . . . , f (⃗am)). It is sometimes convenient to think of the sequence
a⃗1, . . . , a⃗m ∈ An as an m × n matrix M with Mij = (⃗ai)j and we may write f(M) for
f (⃗a1, . . . , am). On the other hand if N is a n×m matrix with entries in A, we write f̂(N) to
denote f(NT ). That is, for a⃗1, . . . , a⃗n ∈ Am f̂ (⃗a1, . . . , a⃗n) denotes (f (⃗b1), . . . , f (⃗bm)), where
b⃗i = (NT )i is the tuple of ith components of a⃗1, . . . , a⃗n. For a matrix M , we write Mi to
denote the vector formed by the ith row of M .

For a pair of structures A and B, a partial isomorphism from A to B is a partial function
f : A → B which is an isomorphism between the substructure of A induced by the domain
of f and the substructure of B induced by the image of f . We write PI(A,B) to denote the
collection of all partial isomorphisms from A to B.

We write N or ω to denote the natural numbers, and Z to denote the ring of integers.
For any n ∈ N, we write [n] to denote the set {1, . . . , n}. When mentioned without further
qualification, a graph G = (V,E) is simple and undirected. That is, it is a structure with
universe V and one binary relation E that is irreflexive and symmetric. The girth of a graph
G is the length of the shortest cycle in G.

A hypergraph is a pair (H,E) such that E is a set of subsets of H. (H,E) is n-uniform if
|e| = n for all e ∈ E. As usual, we treat an n-uniform hypergraph (H,E) as the corresponding
relational structure (H,R), where R := {(v1, . . . , vn) ∈ Hn | {v1, . . . , vn} ∈ E}.

2.1 Generalized quantifiers
Let σ, τ be relational vocabularies with τ = {R1, . . . , Rm}, and ar(Ri) = ri for each i ∈ [m].
An interpretation I of τ in σ with parameters z⃗ is a tuple of σ-formulas (ψ1, . . . , ψm) along
with tuples y⃗1, . . . , y⃗m of variables with |y⃗i| = ri for i ∈ [m], such that the free variables
of ψi are among y⃗iz⃗. Such an interpretation defines a mapping that takes a σ-structure
A, along with an interpretation α of the parameters z⃗ in A to a τ -structure B := I(A, α)
as follows. The universe of B is A, and the relations Ri ∈ τ are interpreted in B by
RB

i = {⃗b ∈ Ari | (A, α[⃗b/y⃗i]) |= ψi}.
Let L be a logic and K a class of τ -structures. The extension L(QK) of L by the generalized

quantifier for the class K is obtained by extending the syntax of L by the following formula
formation rule:

For I = (ψ1, . . . , ψm) an interpretation of τ in σ with parameters z⃗, ψ(z⃗) =
QKy⃗1, . . . , y⃗mI is a formula over the signature σ, with free variables z⃗. The semantics
of the formula is given by (A, α) |= ψ(z⃗), if, and only if, I(A, α) ∈ K.

The extension L(Q) of L by a collection Q of generalized quantifiers is defined by adding
the rules above to L for each QK ∈ Q separately.

The type of the quantifier QK is (r1, . . . , rm), and the arity of QK is max{r1, . . . , rm}.
For the sake of simplicity, we assume in the sequel that the type of QK is uniform, i.e.,
ri = rj for all i, j ∈ [m]. This is no loss of generality, since any quantifier QK is definably
equivalent with another quantifier QK′ of uniform type with the same arity. Furthermore,
we restrict the syntactic rule of QK by requiring that y⃗i = y⃗j for all i, j ∈ [m]. Then we can
denote the formula obtained by applying the rule simply by φ = QKy⃗ (ψ1, . . . , ψm).

Let Q = QK and Q′ = QK′ be generalized quantifiers. We say that Q is definable in
L(Q′) if the defining class K is definable in L(Q′), i.e., there is a sentence φ of L(Q′) such
that K = {A | A |= φ}.
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We write Qn to denote the collection of all quantifiers of arity at most n. Hella [17]
shows that for any n, there is a quantifier of arity n+ 1 that is not definable in Lω

∞ω(Qn).
The logic Lω

∞ω(Q1) is equivalent to Cω
∞ω, the infinitary logic with counting. The notion of

interpretation we have defined is fairly restricted in that it does not allow for relativization or
vectorizations (see, e.g. [11, Def. 12.3.6]. The relativizations and vectorizations of a quantifer
Q can always be seen as a collection of simple quantifiers of unbounded arity.

2.2 CSP and polymorphisms
Given relational structures A and B over the same vocabulary τ , a homomorphism h : A → B

is a function that takes elements of A to elements of B and such that for every R ∈ τ of arity
r and any a⃗ ∈ Ar, a⃗ ∈ RA implies h(⃗a) ∈ RB. For a fixed structure B, we write CSP(B)
to denote the collection of structures A for which there is some homomorphism h : A → B.
By the celebrated theorem of Bulatov and Zhuk, every class CSP(B) is either decidable in
polynomial time or NP-complete.

Given a τ -structure B and m ∈ N, we define a τ -structure Bm. Its universe is Bm

and if R in τ is a relation of arity r, and a⃗1, . . . , a⃗r ∈ Bm, then (⃗a1, . . . , a⃗r) ∈ RBm if, and
only if, (MT )j ∈ RB for all j ∈ [m] where M is the r × m matrix formed by (⃗a1, . . . , a⃗r).
Then, a polymorphism of B is a homomorphism p : Bm → B for some m. The collection
of polymorphisms of B forms an algebraic clone with universe B. It is known that the
equational theory of this algebra completely determines the computational complexity of
CSP(B) (see [3] for an expository account).

A function m : B3 → B is a majority function if it satisfies the equations m(a, a, b) =
m(a, b, a) = m(b, a, a) = a for all a, b ∈ B. More generally, for ℓ ≥ 3, a function n : Bℓ → B

is a near-unanimity function of arity ℓ if for any ℓ-tuple a⃗, we have n(⃗a) = a whenever at
least ℓ− 1 components of a⃗ are a. In particular, a near-unanimity function of arity 3 is a
majority function. A function M : B3 → B is a Maltsev function if it satisfies the identities
M(a, b, b) = M(b, b, a) = a for all a, b ∈ B.

For any structure B which has a near-unanimity polymorphism, the class CSP(B) is
decidable in polynomial time, and definable in Lω

∞ω. If B admits a Maltsev polymorphism,
then CSP(B) is also decidable in polynomial time, but may not be definable in Lω

∞ω or
Lω

∞ω(Q1), its extension with all unary quantifiers. The classic example of a CSP with
a Maltsev polymorphism that is not definable in Lω

∞ω(Q1) is solvability of systems of
equations over Z /2Z with ℓ variables per equation. We can treat this as the class of
structures CSP(Cℓ) where Cℓ is the structure with universe {0, 1} and two ℓ-ary relations
R0 = {(b1, . . . , bℓ) |

∑
i bi ≡ 0 (mod 2)} and R1 = {(b1, . . . , bℓ) |

∑
i bi ≡ 1 (mod 2)}.

If K = CSP(B) for some fixed structure B, we call QK a CSP quantifier. Write CSPn

for the collection of all CSP quantifiers QK where K = CSP(B) for a structure with at most
n elements. Note that there is no restriction on the number or arity of relations in the
signature of B and thus CSPn contains quantifiers of all arities. Hella [18] defines a pebble
game that characterizes equivalence of structures in the logic Lω

∞ω(Q1,CSPn) and shows
that there is a structure B on n+ 1 elements such that CSP(B) is not definable in this logic.

3 Partial polymorphisms

Let τ be a relational vocabulary, and let C be a τ -structure with a polymorphism p : Cn → C.
This gives rise to a closure condition on the class CSP(C). In particular, suppose B ∈ CSP(C)
by a homomorphism h : B → C. We can, in a sense, “close” B under the polymorphism p

CSL 2024



23:6 Quantifiers and Polymorphisms

by including in each relation RB (R ∈ τ) any tuple a⃗ for which h(⃗a) = p(h(⃗a1, . . . , a⃗n)) for
some a⃗1, . . . , a⃗n ∈ RB

i . The resulting structure B′ is still in CSP(C) as is any structure A

with the same universe as B and for which RA ⊆ RB′ for all R ∈ τ .
Our aim is to generalize this type of closure property from CSP quantifiers to a larger

class of generalized quantifiers. To formally define this, it is useful to introduce some notation.
For reasons that will become clear, we use partial functions p.

▶ Definition 1. Let A ̸= ∅ be a set, and let p be a partial function An → A.
(a) If R ⊆ Ar, then p(R) := {p̂(⃗a1, . . . , a⃗n) | a⃗1, . . . , a⃗n ∈ R}.
(b) If A = (A,RA

1 , . . . , R
A
m), then we denote the structure (A, p(RA

1 ), . . . , p(RA
m)) by p(A).

We say that p is a partial polymorphism of a τ -structure A with domain A if for every
R ∈ τ , the relation RA is closed with respect to p, i.e., p(RA) ⊆ RA.

The reason for considering partial functions is that we are usually interested in poly-
morphisms that satisfy certain equations. The equations specify the polymorphism partially,
but not totally. In other words, any polymorphism that extends the given partial function is
a polymorphism satisfying the required equations. Thus, we can uniformly specify closure
properties on our class of structures for polymorphisms satisfying the equations by only
requiring closure for the partial function. This is illustrated in the examples below.

By a family of partial functions we mean a class P that contains a partial function
pA : An → A for every finite set A, where n is a fixed positive integer. We give next some
important examples of families of partial functions that arise naturally from well-known
classes of polymorphisms.

▶ Example 2.
(a) The Maltsev family M consists of the partial functions MA : A3 → A such that

MA(a, b, b) = MA(b, b, a) = a for all a, b ∈ A, and MA(a, b, c) is undefined unless
a = b or b = c. If a structure A has a Maltsev polymorphism p : A3 → A, then clearly
MA is a restriction of p, whence it is a partial polymorphism of A.

(b) The family MJ of ternary partial majority functions consists of the partial functions
mA : A3 → A such that mA(a, a, b) = mA(a, b, a) = mA(b, a, a) = a for all a, b ∈ A, and
mA(a, b, c) is undefined if a, b and c are all distinct. If A has a majority polymorphism,
then mA is a restriction of it, whence it is a partial polymorphism of A.

(c) More generally, for each ℓ ≥ 3 we define the family Nℓ of ℓ-ary partial near-unanimity
functions nℓ

A : Aℓ → A as follows:
nℓ

A(a1, . . . , aℓ) = a if and only if |{i ∈ [n] | ai = a}| ≥ ℓ− 1.
In particular, MJ = N3.

We next give a formal definition for the closure property of generalized quantifiers that
arises from a family of partial functions. In the definition we use the notation A ≤ B if
A and B are τ -structures such that A = B and RA ⊆ RB for each R ∈ τ . Furthermore,
we define the union A ∪ B of A and B to be the τ -structure C such that C = A ∪ B and
RC = RA ∪RB for each R ∈ τ . Note that we do not assume here that A and B are disjoint.
On the contrary, we use the union A ∪ B specifically for structures A and B that share a
common universe A = B.

▶ Definition 3. Let P be a family of n-ary partial functions, and let QK be a generalized
quantifier of vocabulary τ . We say that QK is P-closed if the following holds for all τ -structures
A and B with A = B:

if B ∈ K and A ≤ pA(B) ∪ B for some pA ∈ P, then A ∈ K.
We denote the class of all P-closed quantifiers by QP .
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Note that the condition A ≤ pA(B) ∪ B holds if and only if for every R ∈ τ and every
a⃗ ∈ RA \RB there are tuples a⃗1, . . . , a⃗n ∈ RB such that a⃗ = p̂A(⃗a1, . . . , a⃗n).

The quantifier QK is downwards monotone if A ≤ B and B ∈ K implies A ∈ K. It follows
directly from Definition 3 that all P-closed quantifiers are downwards monotone.

▶ Proposition 4. If QK ∈ QP for some family P, then QK is downwards monotone.

▶ Remark 5. As far as we know, the notion of P-closed quantifiers (or classes) has not
been considered earlier. In particular, as we mentioned in Section 1, a quantifier QK being
P-closed is not based on the Galois connection between partial polymorphisms and relations:
by downwards monotonicity of QK, the class K usually contains structures A such that pA

is not a partial polymorphism of A. Note also that the structure D with full relations (i.e.,
RD = Dr for each R ∈ τ of arity r) is usually not in K although pD is a partial polymorphism
of D.

We show next that there are quantifiers that are P-closed for all families P of partial
functions.

▶ Proposition 6. Let K0 be the class of all {R}-structures A such that RA = ∅. Then
QK0 ∈ QP for any family P of partial functions.

Proof. If B ∈ K0, then RB = ∅, whence pB(B) = ∅. Thus, if A ≤ pB(B) ∪ B, then RA = ∅,
and hence A ∈ K0. ◀

Note that in the case ar(R) = 1, the quantifier QK0 of the proposition above is the
negation of the existential quantifier: A |= QK0xφ ⇐⇒ A |= ¬∃xφ. Thus, for any family
P, the first-order quantifiers can be defined from a P-closed quantifier using only negation.

Up to now we have not imposed any restrictions on the family P . It is natural to require
that the partial functions in P are uniformly defined, or at least that (A, pA) and (B, pB)
are isomorphic if |A| = |B|. Such requirements are captured by the notions defined below.

▶ Definition 7. Let P be a family of n-ary partial functions.
(a) P is invariant if it respects bijections: if f : A → B is a bijection and a1, . . . , an ∈ A,

then pB(f(a1), . . . , f(an)) ≃ f(pA(a1, . . . , an)). Here the symbol ≃ says that either both
sides are defined and have the same value, or both sides are undefined.

(b) P is strongly invariant if it respects injections: if f : A → B is an injection and
a1, . . . , an ∈ A, then pB(f(a1), . . . , f(an)) ≃ f(pA(a1, . . . , an)).

(c) P is projective, if it is strongly invariant and it is preserved by all functions: if
f : A → B is a function and a1, . . . , an ∈ A are such that pA(a1, . . . , an) is defined,
then pB(f(a1), . . . , f(an)) = f(pA(a1, . . . , an)).

It is easy to verify that P is invariant if, and only if, it is determined by equality types
on each cardinality: there are quantifier free formulas in the language of equality θm

P (x⃗, y)
such that if |A| = m, then pA(⃗a) = b ⇐⇒ A |= θm

P [⃗a/x⃗, b/y] holds for all a⃗ ∈ An and
b ∈ A. Similarly, P is strongly invariant if, and only if, the same holds with a single formula
θP = θm

P for all m ∈ ω.
Note that if the family P is strongly invariant, then for every finite set A, pA is a

partial choice function, i.e., pA(a1, . . . , an) ∈ {a1, . . . , an}. Indeed, if b := pA(a1, . . . , an) ̸∈
{a1, . . . , an} and B = A∪ {c}, where c /∈ A, then using the identity function f = idA of A in
the condition pB(f(a1), . . . , f(an)) = f(pA(a1, . . . , an)), we get pB(a1, . . . , an) = b. On the
other hand, using the injection f ′ : A → B that agrees with idA on A \ {b} but maps b to c,
we get the contradiction pB(a1, . . . , an) = c ̸= b.
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▶ Lemma 8. Let P be a family of n-ary partial choice functions. Then QK ∈ QP for any
unary downwards monotone quantifier QK. In particular this holds if P is strongly invariant.

Proof. Let τ be the vocabulary of K, and assume that B ∈ K and A ≤ pA(B) ∪ B. Then
for all R ∈ τ and a ∈ RA \ RB there are a1, . . . , an ∈ A such that pA(a1, . . . , an) = a and
ai ∈ RB for each i ∈ [n]. Since pA is a partial choice function, we have a ∈ {a1, . . . , an}, and
hence a ∈ RB. Thus we see that A ≤ B, and consequently A ∈ K, since QK is downwards
monotone. ◀

It is easy to see that the families M and Nℓ, ℓ ≥ 3, introduced in Example 2, are strongly
invariant. Indeed, the defining formulas θM and θNℓ

are easily obtained from the identities
that define these conditions. Thus, all unary downwards monotone quantifiers are M-closed
and Nℓ-closed. For the families Nℓ we can prove a much stronger result:

▶ Lemma 9. Let ℓ ≥ 3, and let QK be a downwards monotone quantifier of arity r < ℓ.
Then QK ∈ QNℓ

.

Proof. Let τ be the vocabulary of K, and assume that B ∈ K and A ≤ nℓ
A(B) ∪ B. Then

for all R ∈ τ and a⃗ = (a1, . . . , ar) ∈ RA \RB there are a⃗i = (a1
i , . . . , a

r
i ) ∈ RB, i ∈ [ℓ], such

that n̂ℓ
A(⃗a1, . . . , a⃗ℓ) = a⃗. Thus, for each j ∈ [r] there is at most one i ∈ [ℓ] such that aj

i ̸= aj ,
and hence there is at least one i ∈ [ℓ] such that a⃗ = a⃗i. This shows that A ≤ B, and since
QK is downwards monotone, we conclude that A ∈ K. ◀

Using a technique originally due to Imhof for (upwards) monotone quantifiers (see [19]),
we can show that any quantifier QK is definable by a downwards monotone quantifier of the
same arity. Indeed, if the vocabulary of K is τ = {R1, . . . , Rm}, where ar(Ri) = r for all
i ∈ [m], we let τ ′ := {S1, . . . , Sm} be a disjoint copy of τ , and τ∗ := τ ∪ τ ′. Furthermore,
we let K∗ be the class of all τ∗-structures A such that RA

i ∩ SA
i = ∅ for all i ∈ [m], and

(A,RA
1 , . . . , R

A
m) ∈ K or RA

i ∪ SA
i ̸= Ar for some i ∈ [m]. Then QK∗ is downwards monotone,

and clearly QKx⃗ (ψ1, . . . , ψm) is equivalent with QK∗ x⃗ (ψ1, . . . , ψm,¬ψ1, . . . ,¬ψm).
Using this observation, we get the following corollary to Lemmas 8 and 9.

▶ Corollary 10.
(a) Let P be as in Lemma 8. Then Lk

∞ω(QP ∪ Q1) ≤ Lk
∞ω(QP).

(b) Lk
∞ω(QNℓ

∪ Qℓ−1) ≤ Lk
∞ω(QNℓ

).

As explained in the beginning of this section, the definition of P-closed quantifiers was
inspired by the closure property of a CSP quantifier QCSP(C) that arises from a polymorphism
of C. Thus, it is natural to look for sufficient conditions on the family P and the target
structure C for QCSP(C) to be P-closed. It turns out that the notions of projectivity and
partial polymorphism lead to such a condition.

▶ Proposition 11. Let P be a projective family of n-ary partial functions, and let C be a
τ -structure. If pC is a partial polymorphism of C, then QCSP(C) ∈ QP .

Proof. Assume that B ∈ CSP(C) and A ≤ pA(B) ∪ B. Then A = B and there is a
homomorphism h : B → C. We show that h is a homomorphism A → C, and hence
A ∈ CSP(C). Thus let R ∈ τ , and let a⃗ ∈ RA. If a⃗ ∈ RB, then h(⃗a) ∈ RC by assumption.
On the other hand, if a⃗ ∈ RA \ RB, then there exist tuples a⃗1, . . . , a⃗n ∈ RB such that
a⃗ = p̂A(⃗a1, . . . , a⃗n). Since h is a homomorphism B → C, we have h(⃗ai) ∈ RC for each
i ∈ [n]. Since pC is a partial polymorphism of C, we have p̂C(h(⃗a1), . . . , h(⃗an)) ∈ RC. Finally,
since P is projective, we have h(⃗a) = h(p̂A(⃗a1, . . . , a⃗n)) = p̂C(h(⃗a1), . . . , h(⃗an)), and hence
h(⃗a) ∈ RC. ◀
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We can now apply Proposition 11 to the families introduced in Example 2.

▶ Example 12.
(a) Consider a constraint satisfaction problem CSP(C) such that C has a Maltsev polymorph-

ism p : C3 → C. We show that QCSP(C) ∈ QM. As pointed out in Example 2, MC is a
partial polymorphism of C. Thus, by Proposition 11 it suffices to show that the Maltsev
family M is projective.
Thus, assume that f : A → B is a function, and MA(a, b, c) is defined. Then a = b and
MA(a, b, c) = c, or b = c and MA(a, b, c) = a. In the former case we have f(a) = f(b),
whence MB(f(a), f(b), f(c)) = f(c) = f(MA(a, b, c)). In the latter case we have f(b) =
f(c), whence MB(f(a), f(b), f(c)) = f(a) = f(MA(a, b, c)).

(b) The n-uniform hypergraph m-colouring problem is CSP(Hn,m), where Hn,m = ([m], Rn,m)
is the complete n-uniform hypergraph with m vertices, i.e.,

Rn,m := {(v1, . . . , vn) ∈ [m]n | vi ̸= vj for all 1 ≤ i < j ≤ m}.

We show that QCSP(Hn,m) ∈ QMJ for all n ≥ 2 and m ≥ n. By Proposition 11 it suffices
to show that m[m] is a partial polymorphism of Hn,m, and the family MJ is projective.
To see that m[m] is a partial polymorphism of Hn,m, assume that a⃗i = (a1

i , . . . , a
n
i ) ∈ Rn,m

for i ∈ [3], and a⃗ = (a1, . . . , an) = m̂[m](⃗a1, a⃗2, a⃗3). By the definition of m[m], for each
j ∈ [n] we have |{i ∈ [3] | aj

i = aj}| ≥ 2. Thus for any two distinct j, k ∈ [n], there is
i ∈ [3] such that aj = aj

i and ak
i = ak, whence aj ̸= ak. Thus we have a⃗ ∈ Rn,m.

To show that MJ is projective, assume that f : A → B is a function, and mA(a, b, c)
is defined. Then a = b = mA(a, b, c), a = c = mA(a, b, c) or b = c = mA(a, b, c). In the
first case we have f(mA(a, b, c)) = f(a) = f(b) = mB(f(a), f(b), f(c)), as desired. The
two other cases are similar.

(c) In the same way we can show that the family Nℓ of partial near-unanimity polymorphisms
is projective for any ℓ ≥ 3. We relax now the notion of hypergraph coloring as follows:
Let H = (H,R) be an n-uniform hypergraph, and let k < n. A k-weak m-coloring
of H is a function f : H → [m] such that for all (u1, . . . , un) ∈ R and all i ∈ [m],
|{u1, . . . , un} ∩ f−1[{i}]| ≤ k. Thus, instead of requiring that all vertices in a hyperedge
(u1, . . . , un) must have different colors, a k-weak m-coloring allows up to k of them to
have the same color. (Note that there are no restrictions on how many at most k-element
subsets can be colored with a single color.) Observe now that there exists a k-weak
m-coloring of H if and only if H ∈ CSP(Hk

n,m), where Hk
n,m = ([m], Rk

n,m) is the structure
such that

Rk
n,m := {(v1, . . . , vn) ∈ [m]n | |{vi | i ∈ I}| ≥ 2 for all I ⊆ [n] with |I| = k + 1}.

Note that H1
n,m = Hn,m, whence m[m] = n3

[m] is a partial polymorphism of H1
n,m. It is

straightforward to generalize this to ℓ > 3: nℓ
[m] is a partial polymorhism of Hℓ−2

n,m. Thus
by Proposition 11, the CSP quantifier QCSP(Hℓ−2

n,m) is QNℓ
-closed.

▶ Remark 13. As shown in Example 12(b), the partial majority function m[m] is a partial
polymorphism of the structure Hn,m. However, there does not exist any polymorphism
p : [m]3 → [m] that extends m[m]. This can be verified directly, but it also follows from the
fact that CSP(C) is of bounded width for any C that has a majority polymorphism ([13]),
but CSP(Hn,m) is not of bounded width. The same holds for the partial functions nℓ

[m] and
the structures Hk

n,m in Example 12(c).
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4 Pebble game for P-closed quantifiers

In this section we introduce a pebble game that characterizes equivalence of structures with
respect to Lω

∞ω(QP), the extension of the infinitary k-variable logic Lω
∞ω by the class of all

P-closed quantifiers.
We fix a family P of n-ary partial functions for the rest of the section. Given two structures

A and B of the same vocabulary, and assignments α and β on A and B, respectively, such
that dom(α) = dom(β), we write (A, α) ≡k

∞ω,P (B, β) if the equivalence
(A, α) |= φ ⇐⇒ (B, β) |= φ

holds for all formulas φ ∈ Lk
∞ω(QP) with free variables in dom(α). If α = β = ∅, we write

simply A ≡k
∞ω,P B instead of (A, ∅) ≡k

∞ω,P (B, ∅).
The basic idea of our pebble game for a pair (A,B) of structures is the following. In

each round Duplicator gives a bijection f : A → B, just like in the bijection games of [17],
but instead of using b⃗ = f (⃗a) as answer for Spoiler’s move a⃗ ∈ Ar, she is allowed to give a
sequence b⃗1, . . . , b⃗n ∈ Br of alternative answers as long as b⃗ = p̂B (⃗b1, . . . , b⃗n). In particular,
b⃗ need not be among the list b⃗1, . . . , b⃗n. Spoiler completes the round by choosing one of
these alternatives b⃗i. Spoiler wins if a⃗ 7→ b⃗i is not a partial isomorphism; otherwise the game
carries on from the new position. Note that this allows more freedom to Duplicator than
in the ordinary k, n-bijection game. She can simulate a winning strategy in that game by
simply playing at each move the sequence b⃗1, . . . , b⃗n where each b⃗i = b⃗ = f (⃗a).

Observe now that if Duplicator has a winning strategy for the first round of the game,
then f(A) ≤ pB(B) ∪ B. Indeed, if Spoiler chooses a tuple a⃗ ∈ RA, then Duplicator
has to answer by either the tuple f (⃗a), or a sequence b⃗1, . . . , b⃗n ∈ Br of tuples such that
f (⃗a) = p̂B (⃗b1, . . . , b⃗n); in the first case she loses if f (⃗a) ̸∈ RB, and in the second case she
loses if b⃗i ̸∈ RB for some i ∈ [n]. Thus if Duplicator has a winning strategy in the one
round game and B ∈ K for some P-closed quantifier QK, then f(A) ∈ K, and since f is
an isomorphism A → f(A), also A ∈ K. In other words, if B |= QKy⃗ (R1(y⃗), . . . , Rm(y⃗)),
then A |= QKy⃗ (R1(y⃗), . . . , Rm(y⃗)). The reverse implication is obtained by using the move
described above with the structures switched.

By allowing only k variables and repeating rounds indefinitely (unless Spoiler wins at
some round), we obtain a game such that Duplicator having a winning strategy implies
A ≡k

∞ω,P B. However, in order to prove the converse implication we need to modify the
rules explained above. This is because pB(B) ∪ B is not necessarily closed with respect to
the function pB , and in the argument above it would equally well suffice that f(A) ≤ C for
some structure C that is obtained by applying pB repeatedly to B. In the next definition we
formalize the idea of such repeated applications.

▶ Definition 14. Let p : An → A be a partial function, and let R ⊆ Ar. We define a sequence
Γi

p(R), i ∈ ω, of r-ary relations on A by the following recursion:
Γ0

p(R) := R; Γi+1
p (R) := p(Γi

p(R)) ∪ Γi
p(R).

Furthermore, we define Γω
p (R) =

⋃
i∈ω Γi

p(R).
This is generalized to τ -structures in the natural way: for all i ∈ ω ∪ {ω}, Γi

p(A) is the
τ -structure C such that C = A and RC := Γi

p(RA) for each R ∈ τ .

Note that since Γi
p(R) ⊆ Γi+1

p (R) for all i ∈ ω (assuming A is finite) there exists j ≤ |Ar|
such that Γω

p (R) = Γj
p(R). Similarly for any finite structure A, Γω

p (A) = Γj
p(A) for some

j ≤ |Ar|, where r is the maximum arity of relations in A.
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▶ Lemma 15. Let P be a family of n-ary partial functions. A quantifier is P-closed if and
only if the implication

B ∈ K and A ≤ Γω
pA

(B) =⇒ A ∈ K

holds for all structures A and B with A = B.

Proof. Assume first that QK is P-closed, B ∈ K and A ≤ Γω
pA

(B). We show first by
induction on i that Γi

pA
(B) ∈ K for all i ∈ ω. For i = 0 this holds by assumption. If

Γi
pA

(B) ∈ K, then Γi+1
pA

(B) = pA(C) ∪ C, for C = Γi
pA

(B), and hence Γi+1
pA

(B) ∈ K follows
from the assumption that QK is P-closed.

As noted above, there exists j ∈ ω such that Γω
pA

(B) = Γj
pA

(B). Thus we have A ≤
Γj

pA
(B) ≤ Γj+1

pA
(B) = pA(Γj

pA
(B))∪Γj

pA
(B). Since Γj

pA
(B) ∈ K and K is P-closed, it follows

that A ∈ K.
Assume then that the implication

(∗) B ∈ K and A ≤ Γω
pA

(B) =⇒ A ∈ K

holds for all A and B with A = B. Assume further that B ∈ K and A ≤ pA(B) ∪ B. By
definition pA(B) ∪ B = Γ1

pA
(B), and since Γ1

pA
(B) ≤ Γω

pA
(B), we have A ≤ Γω

pA
(B). Thus

A ∈ K follows from the implication (∗). ◀

We are now ready to give the formal definition of our pebble game for P-closed quantifiers.
Let k be a positive integer. Assume that A and B are τ -structures for a relational vocabulary
τ . Furthermore, assume that α and β are assignments on A and B, respectively, such that
dom(α) = dom(β) ⊆ X, where X = {x1, . . . , xk}. The k-pebble P game for (A, α) and (B, β)
is played between Spoiler and Duplicator. We denote the game by PGP

k (A,B, α, β), and we
use the shorthand notation PGP

k (α, β) whenever A and B are clear from the context.

▶ Definition 16. The rules of the game PGP
k (A,B, α, β) are the following:

(1) If α 7→ β /∈ PI(A,B), then the game ends, and Spoiler wins.
(2) If (1) does not hold, there are two types of moves that Spoiler can choose to play:

Left P-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple y⃗ ∈ Xr

of distinct variables. Duplicator responds with a bijection f : B → A. Spoiler answers
by choosing an r-tuple b⃗ ∈ Br. Duplicator answers by choosing P ⊆ Ar such that
f (⃗b) ∈ Γω

pA
(P ). Spoiler completes the round by choosing a⃗ ∈ P . The players continue

by playing PGP
k (α′, β′), where α′ := α[⃗a/y⃗] and β′ := β [⃗b/y⃗].

Right P-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple y⃗ ∈ Xr

of distinct variables. Duplicator chooses next a bijection f : A → B. Spoiler answers
by choosing an r-tuple a⃗ ∈ Ar. Duplicator answers by choosing P ⊆ Br such that
f (⃗a) ∈ Γω

pB
(P ). Spoiler completes the round by choosing b⃗ ∈ P . The players continue

by playing PGP
k (α′, β′), where α′ := α[⃗a/y⃗] and β′ := β [⃗b/y⃗].

(3) Duplicator wins the game if Spoiler does not win it in a finite number of rounds.

We now prove that the game PGP
k indeed characterizes equivalence of structures with

respect to the infinitary k-variable logic with all P-closed quantifiers.

▶ Theorem 17. Let P be an invariant family of partial functions. Then Duplicator has a
winning strategy in PGP

k (A,B, α, β) if, and only if, (A, α) ≡k
∞ω,P (B, β).

Proof.
⇒: We prove by induction on φ ∈ Lk

∞ω(QP) that (for any assignments α and β) if
Duplicator has a winning strategy in PGP

k (α, β), then (A, α) |= φ ⇐⇒ (B, β) |= φ.
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If φ is an atomic formula, the claim follows from the fact that Spoiler always wins the
game PGP

k (α, β) immediately if α 7→ β /∈ PI(A,B).
The cases φ = ¬ψ, φ =

∨
Ψ and φ =

∧
Ψ are straightforward.

By Proposition 6, the negation of the existential quantifier is in QP , and hence we do
not need to consider the case φ = ∃xiψ separately.
Consider then the case φ = QKy⃗ I for some r-ary quantifier QK ∈ QP and interpret-
ation I = (ψ1, . . . , ψℓ). We start by assuming that (A, α) |= φ. Thus, I(A, α) :=
(A,R1, . . . , Rℓ) ∈ K. Let Spoiler play in the game PGP

k (α, β) a left P-quantifier move
with r and the tuple y⃗ ∈ Xr, and let f : B → A be the bijection given by the win-
ning strategy of Duplicator. Let I(B, β) := (B,R′

1, . . . , R
′
ℓ), and for each i ∈ [ℓ], let

Si := f(R′
i). We claim that D := (A,S1, . . . , Sℓ) ∈ K. Since f is an isomorphism

I(B, β) → D, it follows then that (B, β) |= φ.
To prove the claim it suffices to show that D ≤ Γω

pA
(I(A, α)), since then D ∈ K by

Lemma 15 and the assumption that QK is P-closed. To show this, let i ∈ [ℓ] and c⃗ ∈ Si.
We let Spoiler choose the tuple b⃗ = f−1(c⃗) as his answer to the bijection f . Thus,
(B, β [⃗b/y⃗]) |= ψi. Let P ⊆ Ar be the answer of Duplicator. Then by the rules of the game
c⃗ ∈ Γω

pA
(P ), and Duplicator has a winning strategy in the game PGP

k (α[⃗a/y⃗], β [⃗b/y⃗]) for
all a⃗ ∈ P . Hence by induction hypothesis (A, α[⃗a/y⃗]) |= ψi, i.e., a⃗ ∈ Ri, holds for all
a⃗ ∈ P . This shows that Si ⊆ Γω

pA
(Ri), and since this holds for all i ∈ [ℓ], we see that

D ≤ Γω
pA

(I(A, α)).
By using the right P-quantifier move in place of the left quantifier move, we can prove
that (B, β) |= φ implies (A, α) |= φ. Thus, (A, α) |= φ ⇐⇒ (B, β) |= φ, as desired.

⇐: Assume then that (A, α) ≡k
∞ω,P (B, β). Clearly it suffices to show that Duplicator

can play in the first round of the game PGP
k (α, β) in such a way that (A, α′) ≡k

∞ω,P (B, β′)
holds, where α′ and β′ are the assignments arising from the choices of Spoiler and Duplicator.

Assume first that Spoiler decides to play a left P-quantifier move in the first round of
PGP

k (α, β). Let y⃗ ∈ Xr be the tuple of variables he chooses. Since A and B are finite, for
each a⃗ ∈ Ar there is a formula Ψa⃗ ∈ Lk

∞ω(QP) such that for any τ -structure C of size at
most max{|A|, |B|}, any assignment γ on C, and any tuple c⃗ ∈ Cr we have

(A, α[⃗a/y⃗]) ≡k
∞ω,P (C, γ [⃗c/y⃗]) if and only if (C, γ [⃗c/y⃗]) |= Ψa⃗.

Let c⃗1, . . . , c⃗ℓ be a fixed enumeration of the set Ar, and let I be the interpretation
(Ψ1, . . . ,Ψm), where Ψj := Ψc⃗j

for each j ∈ [m]. We define K to be the closure of the
class {D | D ≤ Γω

pA
(I(A, α))} under isomorphisms. Note that if D ≤ Γω

pA
(I(A, α)) and

E ≤ Γω
pA

(D), then clearly E ≤ Γω
pA

(I(A, α)). Hence by Lemma 15, the quantifier QK is
P-closed. Moreover, since I(A, α) ∈ K, we have (A, α) |= QKy⃗ I, and consequently by
our assumption, (B, β) |= QKy⃗ I. Thus, there is a structure D ≤ Γω

pA
(I(A, α)) and an

isomorphism f : I(B, β) → D. We let Duplicator to use the bijection f : B → A as her
answer to the choice y⃗ of Spoiler.

Let b⃗ ∈ Br be the answer of Spoiler to f , and let c⃗ = f (⃗b). Clearly (A, α) |= ∀y⃗
∨

j∈[ℓ] Ψj ,
whence there exists j ∈ [ℓ] such that (B, β [⃗b/y⃗]) |= Ψj , or in other words, b⃗ ∈ R

I(B,β)
j . Since

f is an isomorphism I(B, β) → D, we have c⃗ ∈ RD
j . We let Duplicator to use P := R

I(A,α)
j

as her answer to the choice b⃗ of Spoiler; this is a legal move since D ≤ Γω
pA

(I(A, α)). Observe
now that since P = R

I(A,α)
j , we have (A, α[⃗a/y⃗]) |= Ψc⃗j

, and consequently (A, α[⃗cj/y⃗]) ≡k
∞ω,P

(A, α[⃗a/y⃗]), for all a⃗ ∈ P . On the other hand we also have (B, β [⃗b/y⃗]) |= Ψc⃗j
, and hence

(A, α[⃗cj/y⃗]) ≡k
∞ω,P (B, β [⃗b/y⃗]). Thus the condition (A, α′) ≡k

∞ω,P (B, β′), where α′ = α[⃗a/y⃗]
and β′ = β [⃗b/y⃗], holds after the first round of PGP

k (α, β) irrespective of the choice a⃗ ∈ P of
Spoiler in the end of the round.
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The case where Spoiler starts with a right P-quantifier move is handled in the same way
by switching the roles of (A, α) and (B, β). ◀

5 Playing the game

In this section we use the game PGk
P to show inexpressibility of a property of finite structures

in the infinitary finite variable logic Lω
∞ω augmented by all Nℓ-closed quantifiers. More

precisely, we prove that the Boolean constraint satisfaction problem CSP(Cℓ), where Cℓ is the
structure with C = {0, 1} and two ℓ-ary relations R0 = {(b1, . . . , bℓ) |

∑
i∈[ℓ] bi ≡ 0 (mod 2)}

and R1 = {(b1, . . . , bℓ) |
∑

i∈[ℓ] bi ≡ 1 (mod 2)}, is not definable in Lω
∞ω(QNℓ

).
In the proof of the undefinability of CSP(Cℓ) we use a variation of the well-known CFI

construction, due to Cai, Fürer and Immerman [6]. Our construction is a minor modification
of the one that was used in [17] for producing non-isomorphic structures on which Duplicator
wins the k, n-bijection game. We start by explaining the details of the construction.

Let G = (V,E,≤G) be a connected ℓ-regular ordered graph. For each vertex v ∈ V , we
use the notation E(v) for the set of edges adjacent to v and e⃗(v) = (e1, . . . , eℓ) for the tuple
that lists E(v) in the order ≤G. The CFI structures we use have in the universe two elements
(e, 1) and (e, 2) for each e ∈ E, and two ℓ-ary relations that connect such pairs (e, i) for edges
e that are adjacent to some vertex v ∈ V .

▶ Definition 18. Let G = (V,E,≤G) be a connected ℓ-regular ordered graph and let U ⊆ V .
We define a CFI structure Aℓ(G,U) = (Aℓ(G), RAℓ(G,U)

0 , R
Aℓ(G,U)
1 ), where ar(R0) = ar(R1) =

ℓ, as follows.
Aℓ(G) := E × [2],
R

Aℓ(G,U)
0 :=

⋃
v∈V \U R(v)∪

⋃
v∈U R̃(v) and RAℓ(G,U)

1 :=
⋃

v∈U R(v)∪
⋃

v∈V \U R̃(v), where
R(v) := {((e1, i1), . . . , (eℓ, iℓ)) | (e1, . . . , eℓ) = e⃗(v),

∑
j∈[ℓ] ij = 0 (mod 2)}, and

R̃(v) := {((e1, i1), . . . , (eℓ, iℓ)) | (e1, . . . , eℓ) = e⃗(v),
∑

j∈[ℓ] ij = 1 (mod 2)}.

For each v ∈ V , we denote the set E(v) × [2] by A(v). Furthermore, we define Aℓ(v) :=
(A(v), R(v), R̃(v)) and Ãℓ(v) := (A(v), R̃(v), R(v)).

By a similar argument as in the CFI structures constructed in [17] and [18] it can be
proved that Aℓ(G,U) and Aℓ(G,U ′) are isomorphic if and only if |U | and |U ′| are of the
same parity. We choose Aev

ℓ (G) := Aℓ(G, ∅) and Aod
ℓ (G) := Aℓ(G, {v0}) as representatives of

these two isomorphism classes, where v0 is the least element of V with respect to the linear
order ≤G. We show first that these structures are separated by CSP(Cℓ).

▶ Lemma 19. Aev
ℓ (G) ∈ CSP(Cℓ), but Aod

ℓ (G) ̸∈ CSP(Cℓ).

Proof. Let h : Aℓ(G) → {0, 1} be the function such that h((e, 1)) = 1 and h((e, 2)) = 0 for
all e ∈ E. Then for any tuple ((e1, i1), . . . , (eℓ, iℓ)) the parity of

∑
j∈[ℓ] h((ej , ij)) is the same

as the parity of
∑

j∈[ℓ] ij . Thus, h is a homomorphism Aev
ℓ (G) → Cℓ.

To show that Aod
ℓ (G) ̸∈ CSP(Cℓ), assume towards contradiction that g : Aℓ(G) → {0, 1}

is a homomorphism Aod
ℓ (G) → Cℓ. Then for every e ∈ E necessarily g((e, 1)) ̸= g((e, 2)).

Furthermore, for every v ∈ V \ {v0}, the number nv := |{e ∈ E(v) | g((e, 2)) = 1}| must be
even, while the number nv0 must be odd. Thus,

∑
v∈V nv must be odd. However, this is

impossible, since clearly
∑

v∈V nv = 2|{e ∈ E | g((e, 2)) = 1}|. ◀

Our aim is to prove, for a suitable graph G, that Duplicator has a winning strategy in
PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅). For the winning strategy, Duplicator needs a collection of well-
behaved bijections. We define such a collection GB in Definition 23 below. One requirement
is that the bijections preserve the first component of the elements (e, i) ∈ Aℓ(G).
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▶ Definition 20. A bijection f : Aℓ(G) → Aℓ(G) is edge preserving if for every e ∈ E and
i ∈ [2], f((e, i)) is either (e, 1) or (e, 2).

For any edge preserving f and any v ∈ V we denote by fv the restriction of f to the
set E(v) × [2]. The switching number swn(fv) of fv is |{e ∈ E(v) | fv((e, 1)) = (e, 2)}|. The
lemma below follows directly from the definitions of Aℓ(v) and Ãℓ(v).

▶ Lemma 21. Let f : Aℓ(G) → Aℓ(G) be an edge preserving bijection, and let v ∈ V .
(a) If swn(fv) is even, then fv is an automorphism of the structures Aℓ(v) and Ãℓ(v).
(b) If swn(fv) is odd, then fv is an isomorphism between the structures Aℓ(v) and Ãℓ(v).

Given an edge preserving bijection f : Aℓ(G) → Aℓ(G) we denote by Odd(f) the set of
all v ∈ V such that swn(fv) is odd. Observe that |Odd(f)| is necessarily even.

▶ Corollary 22. An edge preserving bijection f : Aℓ(G) → Aℓ(G) is an automorphism of the
structures Aev

ℓ (G) and Aod
ℓ (G) if and only if Odd(f) = ∅.

Proof. If Odd(f) = ∅, then by Lemma 21(a) fv is an automorphism of Aℓ(v) and Ãℓ(v)
for all v ∈ V . Clearly this means that f is an automorphism of Aev

ℓ (G) and Aod
ℓ (G). On

the other hand, if v ∈ Odd(f), then by Lemma 21(b), for any tuple a⃗ ∈ A(v)ℓ, we have
a⃗ ∈ R(v) ⇐⇒ f (⃗a) ∈ R̃(v). Since R(v) ∩ R̃(v) = ∅, it follows that f is not an automorphism
of Aev

ℓ (G) and Aod
ℓ (G). ◀

▶ Definition 23. Let f : Aℓ(G) → Aℓ(G) be edge preserving bijection. Then f is a good
bijection if either Odd(f) = ∅ or Odd(f) = {v0, v} for some v ∈ V \ {v0}. We denote the
set of all good bijections by GB.

Note that if f : Aℓ(G) → Aℓ(G) is a good bijection, then there is exactly one vertex
v∗ ∈ V such that fv∗ is not a partial isomorphism Aev

ℓ (G) → Aod
ℓ (G). In case Odd(f) = ∅,

v∗ = v0, while in case Odd(f) = {v0, v} for some v ̸= v0, v∗ = v. We denote this vertex v∗

by tw(f) (the twist of f).
Assume now that Duplicator has played a good bijection f in the game PGNℓ

k on the
structures Aev

ℓ (G) and Aod
ℓ (G). Then it is sure that Spoiler does not win the game in the

next position (α, β) if (e, 1) and (e, 2) are not in the range of α (and β) for any e ∈ E(tw(f)).
This leads us to the following notion.

▶ Definition 24. Let f be a good bijection, and let F ⊆ E. Then f is good for F if
E(tw(f)) ∩ F = ∅. We denote the set of all bijections that are good for F by GB(F ).

▶ Lemma 25. If f ∈ GB(F ), then f ↾ (F × [2]) is a partial isomorphism Aev
ℓ (G) → Aod

ℓ (G).

Proof. Clearly f ↾ (F × [2]) ⊆
⋃

v∈V \{tw(f)} fv. By Lemma 21, fv is an automorphism of
Aℓ(v) for any v ∈ V \ {tw(f), v0}, and if v0 ≠ tw(f), fv0 is an isomorphism Aℓ(v) → Ãℓ(v).
The claim follows from this. ◀

Given a good bijection f with tw(f) = u and an E-path P = (u0, . . . , um) from u = u0
to u′ = um, we obtain a new edge preserving bijection fP by switching f on the edges
ei := {ui, ui+1}, i < m, of P : fP ((ei, j)) = (ei, 3 − j) for i < m, and fP (c) = f(c) for other
c ∈ Aℓ(G). Clearly fP is also a good bijection, and tw(fP ) = u′.

In order to prove that Duplicator has a winning strategy in PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅)
we need to assume that the graph G has a certain largeness property with respect the
number k. We formulate this largeness property in terms of a game, CRGℓ

k(G), that is a
new variation of the Cops&Robber games used for similar purposes in [17] and [18].
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▶ Definition 26. The game CRGℓ
k(G) is played between two players, Cop and Robber. The

positions of the game are pairs (F, u), where F ⊆ E, |F | ≤ k, and u ∈ V . The rules of the
game are the following:

Assume that the position is (F, u).
If E(u) ∩ F ̸= ∅, the game ends and Cop wins.
Otherwise Cop chooses a set F ′ ⊆ E such that |F ′| ≤ k. Then Robber answers by giving
mutually disjoint E \ (F ∩ F ′)-paths Pi = (u, ui

1, . . . , u
i
ni

), i ∈ [ℓ], from u to vertices
ui := ui

ni
; here mutual disjointness means that Pi and Pi′ do not share edges for i ̸= i′

(i.e., ui
1 ̸= ui′

1 and {ui
j , u

i
j+1} ≠ {ui′

j′ , ui′

j′+1} for all j and j′). Then Cop completes the
round by choosing i ∈ [ℓ]. The next position is (F ′, ui).

The intuition of the game CRGℓ
k(G) is that Cop has k pebbles that he plays on edges of

G forming a set F ⊆ E; these pebbles mark the edges e such that (e, 1) or (e, 2) is in the
range of α or β in a position (α, β) of the game PGNℓ

k on Aev
ℓ (G) and Aod

ℓ (G). Robber has
one pebble that she plays on the vertices of G; this pebble marks the vertex tw(f), where f
is the good bijection played by Duplicator in the previous round of PGNℓ

k .
Cop captures Robber and wins the game if after some round (at least) one of his pebbles

is on an edge that is adjacent to the vertex containing Robber’s pebble. This corresponds to
a position (α, β) in the game PGNℓ

k such that α 7→ β is potentially not a partial isomorphism.
Otherwise Lemma 25 guarantees that α 7→ β is a partial isomorphism. Cop can then move
any number of his pebbles to new positions on G. While the pebbles Cop decides to move
are still on their way to their new positions, Robber is allowed to prepare ℓ mutually disjoint
escape routes along edges of G that do not contain any stationary pebbles of Cop. We show
in the proof of Theorem 29 that these escape routes generate tuples a⃗1, . . . , a⃗ℓ such that
f (⃗b) = q̂(⃗a1, . . . , a⃗ℓ), where q = nℓ

Aℓ(G) and b⃗ is the tuple chosen by Spoiler after Duplicator
played f . This gives Duplicator a legal answer P = {a⃗1, . . . , a⃗ℓ} to b⃗. Then Spoiler completes
the round by choosing one of the tuples in P . Correspondingly, in the end of the round
of CRGℓ

k(G) Cop chooses which escape route Robber has to use by blocking all but one of
them.

▶ Definition 27. Assume that u ∈ V and F ⊆ E is a set of edges such that |F | ≤ k. We say
that u is k-safe for F if Robber has a winning strategy in the game CRGℓ

k(G) starting from
position (F, u).

We prove next the existence of graphs G such that Robber has a winning strategy in the
game CRGℓ

k(G).

▶ Theorem 28. For every ℓ ≥ 3 and every k ≥ 1, there is an ℓ-regular graph G = (V,E)
such that every vertex v ∈ V is k-safe for ∅.

Proof. Clearly if Robber has a winning strategy in CRGℓ
k(G), it also has a winning strategy

in CRGℓ
k′(G) for k′ < k. Thus, it suffices to prove the theorem for k ≥ ℓ.

By a well-known result of Erdös and Sachs [12] (see also [1] for a more accessible
construction), there exist ℓ-regular connected graphs of girth g for arbitrarily large g. Choose
a positive integer d with d > log 2k

log(ℓ−1) + 1 and let G be an ℓ-regular graph of girth g > 6d.
We claim that any vertex v in G is k-safe for ∅.

To prove this, we show inductively that Robber can maintain the following invariant in
any position (F, u) reached during the game:
(∗) for each edge e ∈ F , neither end point of e is within distance d of u in G.
Note that, from the assumption that k ≥ ℓ and d > log 2k

log(ℓ−1) + 1, it follows that d ≥ 2. Thus,
the invariant (∗) guarantees, in particular, that Cop does not win at any point.
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Clearly the invariant (∗) is satisfied at the initial position, since F is empty. Suppose
now that it is satisfied in some position (F, u) and Cop chooses a set F ′ in the next move.
Let C ⊆ V denote the set of end points of all edges in F ′. Since |F ′| ≤ k, we have |C| ≤ 2k.

Let N ⊆ V denote the collection of vertices which are at distance at most 3d from u. By
the assumption on the girth of G, the induced subgraph G[N ] is a tree. We can consider it
as a rooted tree, with root u. Then, u has exactly ℓ children. All vertices in N at distance
less than 3d from u have exactly ℓ− 1 children (and one parent), and all vertices at distance
exactly 3d from u are leaves of the tree. This allows us to speak, for instance, of the subtree
rooted at a vertex u′ meaning the subgraph of G induced by the vertices x in N such that
the unique path from u to x in G[N ] goes through u′.

Let u1, . . . , uℓ be the children of u. For each i, let Ui denote the set of descendants of
ui that are at distance exactly d from u (and so at distance d − 1 from ui). Note that
the collection U1, . . . , Uℓ forms a partition of the set of vertices in N that are at distance
exactly d from u. Each x ∈ Ui is the root of a tree of height 2d. Moreover, since the tree
below ui is (ℓ− 1)-regular, Ui contains exactly (ℓ− 1)d−1 vertices. By the assumption that
d > log 2k

log(ℓ−1) + 1, it follows that (ℓ− 1)d−1 > 2k ≥ |C| and therefore each Ui contains at least
one vertex xi such that the subtree rooted at xi contains no vertex in C. Let yi be any
descendant of xi at distance d from xi and let Pi denote the unique path in G[N ] from u to
yi. Robber’s move is to play the paths P1, . . . , Pℓ. We now verify that this is a valid move,
and that it maintains the required invariant (∗).

First, note that the paths P1, . . . , Pℓ are paths in the tree G[N ] all starting at u and the
second vertex in path Pi is ui. It follows that the paths are pairwise edge disjoint. We next
argue that no path Pi goes through an edge in F ∩ F ′. Indeed, by the inductive assumption,
no endpoint of an edge in F appears within distance d of u and therefore the path from u

to xi does not go through any such vertex. Moreover, by the choice of xi, no endpoint of
an edge in F ′ appears in the subtree rooted at xi and therefore the path from xi to yi does
not go through any such vertex. Together these ensure that the path Pi does not visit any
vertex that is an endpoint of an edge in F ∩ F ′.

Finally, to see that the invariant (∗) is maintained, note that all vertices that are at
distance at most d from yi are in the subtree of G[N ] rooted at xi. The choice of xi means
this contains no vertex in C. This is exactly the condition that we wished to maintain. ◀

We are now ready to prove that a winning strategy for Robber in CRGℓ
k(G) generates a

winning strategy for Duplicator in the game PGNℓ

k on the structures Aev
ℓ (G) and Aod

ℓ (G).

▶ Theorem 29. Let G be a connected ℓ-regular ordered graph. If v0 is k-safe for the empty
set, then Duplicator has a winning strategy in the game PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅).

Proof. We show that Duplicator can maintain the following invariant for all positions (α, β)
obtained during the play of the game PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅):
(†) There exists a bijection f ∈ GB(Fα) such that p := α 7→ β ⊆ f and tw(f) is k-safe for

Fα, where Fα := {e ∈ E | rng(α) ∩ {e} × [2] ̸= ∅}.
Note that if (†) holds, then p ⊆ f ↾ (Fα × [2]) and, by Lemma 25, f ↾ (Fα × [2]) ∈
PI(Aev

ℓ (G),Aod
ℓ (G)), whence Spoiler does not win the game in position (α, β). Thus, main-

taining the invariant (†) during the play guarantees a win for Duplicator.
Note first that (†) holds in the initial position (α, β) = (∅, ∅) of the game: if f0 ∈ GB is

the bijection with tw(f0) = v0, as ∅ 7→ ∅ = ∅ ⊆ f0 and tw(f0) is k-safe for F∅ = ∅.
Assume then that (†) holds for a position (α, β), and assume that Spoiler plays a left

Nℓ-quantifier move by choosing r ≤ k and y⃗ ∈ Xr. Duplicator answers this by giving the
bijection f−1. Let b⃗ = (b1, . . . , br) ∈ Aℓ(G)r be the second part of Spoiler’s move, and let
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F ′ be the set {e ∈ E | rng(β [⃗b/y⃗]) ∩ {e} × [2] ̸= ∅}. Since tw(f) is k-safe for Fα, there are
mutually disjoint E \ (Fα ∩ F ′)-paths Pi, i ∈ [ℓ], from tw(f) to some vertices ui that are
k-safe for the set F ′. Let fPi

, i ∈ [ℓ], be the good bijections obtained from f as explained
before Definition 24. Now Duplicator answers the move b⃗ of Spoiler by giving the set
P = {a⃗1, . . . , a⃗ℓ} of r-tuples, where a⃗i := f−1

Pi
(⃗b) for each i ∈ [ℓ].

To see that this is a legal move, observe that since the paths Pi are disjoint, for each j ∈ [r]
there is at most one i ∈ [ℓ] such that f−1

Pi
(bj) ̸= f−1(bj). Thus we have q̂(⃗a1, . . . , a⃗ℓ) = f−1(⃗b),

and hence f−1(⃗b) ∈ q(P ) ⊆ Γω
q (P ) for q = nℓ

Aℓ(G), as required. Let Spoiler complete the
round of the game by choosing i ∈ [ℓ]; thus, the next position is (α′, β′) := (α[⃗ai/y⃗], β [⃗b/y⃗]).
It suffices now to show that (†) holds for the position (α′, β′) and the bijection f ′ := fPi

.
Note first that Fα′ = F ′, since clearly rng(α[⃗ai/y⃗]) ∩ {e} × [2] ̸= ∅ if, and only if,

rng(β [⃗b/y⃗])∩{e}×[2] ̸= ∅. Thus, tw(f ′) = ui is k-safe for Fα′ . This implies that f ′ ∈ GB(Fα′),
since otherwise by Definition 26, Cop would win the game CRGk(G) immediately in position
(Fα′ , tw(f ′)). It remains to show that p′ := α′ 7→ β′ is contained in f ′. For all components
aj

i of a⃗i we have p′(aj
i ) = bj = f ′(aj

i ) by definition of a⃗i. On the other hand, for any element
a ∈ dom(p′) \ {a1

i , . . . , a
r
i } we have p′(a) = p(a) = f(a). Furthermore, since the path Pi does

not contain any edges in Fα ∩ Fα′ , we have f ′ ↾ (Fα ∩ Fα′) × [2] = f ↾ (Fα ∩ Fα′) × [2], and
since clearly a ∈ (Fα ∩ Fα′) × [2], we see that f ′(a) = f(a). Thus, p′(a) = f ′(a).

The case where Spoiler plays a right Nℓ-quantifier move is similar. ◀

Note that the vocabulary of the structures Aev
ℓ (G) and Aod

ℓ (G) consists of two ℓ-ary
relation symbols. The presence of at least ℓ-ary relations is actually necessary: Duplicator
cannot have a winning strategy in PGNℓ

ℓ−1 on structures containing only relations of arity less
than ℓ, since by Corollary 10(b), all properties of such structures are definable in Lℓ−1

∞ω(QNℓ
).

From Lemma 19, Theorem 28 and Theorem 29, we immediately obtain the result.

▶ Theorem 30. For any ℓ ≥ 3, CSP(Cℓ) is not definable in Lω
∞ω(QNℓ

).

Note that CSP(Cℓ) corresponds to solving systems of linear equations over Z /2Z with
all equations containing (at most) ℓ variables. Thus, as a corollary we see that solvability of
such systems of equations cannot be expressed in Lω

∞ω(QNℓ
) for any ℓ. Furthermore, since

systems of linear equations over Z /2Z can be solved in polynomial time, we see that the
complexity class PTIME is not contained in Lω

∞ω(QNℓ
) for any ℓ.

Finally, note that since the class CSP(Cℓ) is downwards monotone, by Lemma 9 the
quantifier QCSP(Cℓ) is Nℓ+1-closed. Thus, we get the following hierarchy result for the
near-unanimity families Nℓ with respect to the arity ℓ of the partial functions.

▶ Theorem 31. For every ℓ ≥ 3 there is a quantifier in QNℓ+1 which is not definable in
Lω

∞ω(QNℓ
).

6 Conclusion

We have introduced new methods, in the form of pebble games, for proving inexpressibility in
logics extended with generalized quantifiers. There is special interest in proving inexpressibility
in logics with quantifiers of unbounded arity. We introduced a general method of defining
such collections inspired by the equational theories of polymorphisms arising in the study
of constraint satisfaction problems. Perhaps surprisingly, while the collection of CSP that
have near-unanimity polymorphisms is rather limited (as they all have bounded width), the
collection of quantifiers with the corresponding closure property is much richer, including even
CSP that are intractable. The pebble game gives a general method of proving inexpressibility
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that works for a wide variety of closure conditions. We were able to deploy it to prove that
solvability of systems of equations over Z /2Z is not definable using only quantifiers closed
under near-unanimity conditions.

It would be interesting to use the pebble games we have defined to show undefinability
with other collections of quantifiers closed under partial polymorphisms. Showing some
class is not definable with quantifiers closed under partial Maltsev polymorphisms would be
especially instructive. It would require using the pebble games with a construction that looks
radically different from the CFI-like constructions most often used. This is because CFI
constructions encode problems of solvability of equations over finite fields (or more generally
finite rings), and all of these problems are Maltsev-closed.
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