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—— Abstract

We characterize a universal normal produoidal category of monoidal contexts over an arbitrary
monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal
context represents an incomplete process: a piece of a decomposition, possibly containing missing
parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them
with a novel universal property. We apply this algebraic structure to the analysis of multi-party
protocols in arbitrary theories of processes.
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1 Introduction

Theories of processes, such as stochastic, partial or linear functions, are a foundational tool
in computer science. They help us model interacting systems using a solid mathematical
structure. Any theory of processes involving operations for sequential and parallel composition,
satisfying reasonable axioms, forms a monoidal category. Monoidal categories are versatile:
they can be used in the description of quantum circuits [2], stochastic processes [11, 24],
relational queries [9] and non-terminating processes [13], among other applications [16].

At the same time, monoidal categories have two intuitive, sound and complete calculi: the
first in terms of string diagrams [40], and the second in terms of their linear type theory [63].
String diagrams are a 2-dimensional syntax in which processes are represented by boxes, and
their inputs and outputs are connected by wires. The type theory of symmetric monoidal
categories is the basis of the more specialized arrow do-notation used in functional program-
ming languages [37, 51|, which becomes do-notation for Kleisli categories of commutative
monads [46, 28].

This manuscript studies an algebra of context for monoidal categories. Context is of
central importance in computer science: we model not only processes but also the environment
in which they act. While the algebra of 1-dimensional context is commonplace in applications
like parsing [45], the same concept was missing for 2-dimensional syntaxes, which are still
less frequent in computer science [21]. Let us showcase monoidal categories, their string
diagrams and the use of do-notation in the description of a protocol.
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Figure 1 TCP Three way handshake.

1.1 Protocol Description

The Transmission Control Protocol (T'CP) is a connection-based communication protocol.
Every connection begins with a three-way handshake: an exchange of messages that synchron-
izes the state of both parties. This handshake is defined in RFC793 to have three steps: SYN,
SYN-ACK and ACK [55]. The client initiates the communication by sending a synchronization
packet (SYN) to the server. The synchronization packet contains a pseudorandom number
associated to the session, the Initial Sequence Number of the client (CLI). The server
acknowledges this packet and sends a message (ACK) containing its own sequence number
(SRV) together with the client’s sequence number plus one (CLI+1). These two form the
SYN-ACK message. Finally, the client sends a final ACK message with the server’s sequence
number plus one, SRV + 1. When the protocol works correctly, both client and server end up
with the pair (CLI + 1,SRV + 1).

This protocol is traditionally described in terms of a communication diagram (Figure 1).
This diagram can be taken seriously as a formal mathematical object: it is a string diagram
describing a morphism in a monoidal category. The implementation of each component
of the protocol is traditionally written as pseudocode. This pseudocode can also be taken
seriously as the expression of a morphism in the same monoidal category, possibly with extra
structure: in this case, a commutative Freyd category (Figure 2a, see the full version [20,
Appendix C.1] [46]). That is, symmetric monoidal categories admit two different internal
languages, and we can use both to interpret formally the traditional description of a protocol
in terms of string diagrams and pseudocode.

1.2 Types for Message Passing

The last part in formalizing a multi-party protocol in terms of monoidal categories is to
actually separate its component parties. For instance, the three-way handshake can be split
into the client, the server and a channel. Here is where the existing literature in monoidal
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categories seems to fall short: the parts resulting from the decomposition of a monoidal
morphism are not necessarily monoidal morphisms themselves (see the full version [20,
Figure 14] for the diagrammatic representation). We say that these are only monoidal
contexts.

Contrary to monoidal morphisms, which only need to declare their input and output
types, monoidal contexts need behavioural types [54, 38] that specify the order and type of the
exchange of information along their boundary. A monoidal context may declare intermediate
send (1A) and receive (7 A) types, separated by a sequencing operator (<1). For instance, the
channel is a monoidal morphism just declaring that it takes an input message (Msg) and
produces another output message; but the client is a monoidal context that transforms its
memory type, Client, at the same time it sends, receives and then sends a message; and the
server transforms its memory type, Server while, dually to the client, it receives, sends and
then receives a message (Figure 2b).

(a) (b)

syn :: (Cli, Srv) ~>
((C1i, Srv), (Syn, Ack))
syn(client, server) = do B < LC(S5Ve; TMsg 1 !Msg < 7Msg) ;
client <- random NOISE € C (Msg; Msg) ;
return ((cli, 0), (cli, 0))

& € LC(Gliht: 'Msg < TMsg < IMsg) ;

Figure 2 (a) Implementation of SYN. (b) Types for the three parties.

Session types [36], including the send (!A) and receive (?A) polarized types, have been
commonplace in logics of message passing. Cockett and Pastro [14] already proposed a
categorical semantics for message-passing which, however, needs to go beyond monoidal
categories, into linear actegories and polyactegories.

Our claim is that, perhaps surprisingly, monoidal categories already have the necessary
algebraic structure to define monoidal contexts and their send-receive polarized types. Latent
to any monoidal category, there exists a universal category of contexts with polarized types
(1/?7) and parallel/sequence operators (®/<).

1.3 Reasoning with Contexts

This manuscript introduces the notion of monoidal context and symmetric monoidal context;
and it explains how dinaturality allows us to reason with them. In the same way that we
reason with monoidal morphisms using string diagrams, we can reason about monoidal
contexts using incomplete string diagrams [4, 59].

For instance, consider the following fact about the TCP three-way handshake: the client
does not need to store a starting SRV number for the server, as it will be overwritten as soon
as the real one arrives. This fact only concerns the actions of the client, and it is independent
of the server and the channel. We would like to reason about it preserving this modularity,
and this is what the incomplete diagrams in Figure 3 achieve.

Here, we define SYN* = SYN 3 PRJ to be the same as the SYN process but projecting out
only the client CLI number. We also define a new ACK* that ignores the server SRV number,
so that ACK = PRJ § ACK*. These two equations are enough to complete our reasoning.
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Figure 3 Reasoning only with the client.

Monoidal contexts and their incomplete diagrams are defined to be convenient tuples of
morphisms, e.g. (SYN|ACK) in our example; what makes them interesting is the equivalence
relation we impose on them: this equivalence relation makes the pair (SYN § PRJ|ACK*) equal
to (SYN|PRJ § ACK*). Dinaturality is the name we give to this relation, and we will see how it
arises canonically from the algebra of profunctors.

1.4 The Produoidal Algebra of Monoidal Context

Despite the relative popularity of string diagrams and other forms of formal 2-dimensional
syntax, the algebra of incomplete monoidal morphisms has remained obscure. This manuscript
elucidates this algebra: we show that, as monoidal morphisms together with their string
diagrams form monoidal categories, monoidal contexts together with their incomplete string
diagrams form normal produoidal categories. Normal produoidal categories were a poorly
understood categorical structure, for which we provide examples. Let us motivate “normal
produoidal categories” by parts.

First, the “duoidal” part. Monoidal contexts can be composed sequentially and in
parallel, but also nested together to fill the missing parts. Nesting is captured by categorical
composition, so we need specific tensors for both sequential (<1) and parallel (®) composition.
This is what duoidal categories provide. Duoidal categories are categories with two monoidal
structures, e.g. (<1, N) and (®, I). These two monoidal structures are in principle independent
but, whenever they share the same unit (I = N), they become well-suited to express process
dependence [62]: they become “normal”.

Finally, the “pro-” prefix. It is not that we want to impose this structure on top of
the monoidal one, but we want to capture the structure morphisms already form. The two
tensors (<1, ®) do not necessarily exist in the original category; in technical terms, they
are not representable or functorial, but virtual or profunctorial. This makes us turn to the
produoidal categories of Booker and Street [10, 66].

Not only is all of this algebra present in monoidal contexts. Monoidal contexts are the
canonical such algebra; in a precise sense given by universal properties. The slogan for the
main result of this manuscript (Theorem 5.4) is that

Monoidal contexts are the free normalization of the cofree produoidal category over a
monoidal category.
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1.5 Related Work

Far from being the proposal of yet another paradigm, monoidal contexts form a novel
algebraic characterization of a widespread paradigm. We argue that the idea of monoidal
contexts has been recurrent in the literature, just never appearing explicitly and formally.
Our main contribution is to universally characterize an algebra of monoidal contexts, in the
form of a normal produoidal category. In fact, recently, there have been multiple implicit
applications of monoidal contexts. Kissinger and Uijlen [41] describe higher order quantum
processes using contexts with holes in compact closed monoidal categories. Ghani, Hedges,
Winschel and Zahn [27] describe economic game theory in terms of lenses and incomplete
processes in cartesian monoidal categories. Bonchi, Piedeleu, Sobocinski and Zanasi [8] study
contextual equivalence in their monoidal category of affine signal flow graphs. Di Lavore, de
Felice and Romén [19] define monoidal streams by iterating monoidal context coalgebraically.

Category theory. Street already noted that the endoprofunctors of a monoidal category
had a duoidal structure [66]; Pastro and Street described a promonoidal structure on lenses
[50] and Garner and Lépez-Franco contributed a partial normalization procedure for duoidal
categories [25]. We build on top of this literature, putting it together, spelling out existence
proofs, popularizing its produoidal counterpart and providing multiple new results and
constructions that were previously missing (e.g. Theorems 3.8, 4.3, and 5.4).

Language theory. Motivated by language theory and the Chomsky-Schiitzenberger the-
orem, Melliés and Zeilberger [45] were the first to present the multicategorical splice-contour
adjunction. We are indebted to their exposition, which we extend to the promonoidal and
produoidal cases. Earnshaw and Sobocifiski [21] described a congruence on formal languages
of string diagrams using monoidal contexts. We prove how monoidal contexts arise from an
extended produoidal splice-contour adjunction; unifying these two threads.

Session types. Session types [35, 36] are the mainstay type formalism for communication
protocols, and they have been extensively applied to the w-calculus [60]. Our approach is not
set up to capture all of the features of a fully fledged session type theory [43]. Arguably, this
makes it more general in what it does: it always provides a universal way of implementing
send (!A) and receive (?A) operations in an arbitrary theory of processes represented by a
monoidal category. For instance, recursion and the internal/external choice duality [26, 54]
are not discussed, although they could be considered as extensions in the same way they are
to monoidal categories: via trace [29] and linear distributivity [15].

Lenses and incomplete diagrams. Lenses are a notion of bidirectional transformation [23]
that can be cast in arbitrary monoidal categories. The first mention of monoidal lenses
separate from their classical database counterparts [39] is due to Pastro and Street [50], who
identify them as an example of a promonoidal category. However, it was with a different
monoidal structure [56] that they became popular in recent years, spawning applications
not only in bidirectional transformations [23] but also in functional programming [53, 12],
open games [27], polynomial functors [49] and quantum combs [31]. Relating this monoidal
category of lenses with the previous promonoidal category of lenses was an open problem;
and the promonoidal structure was mostly ignored in applications. We solve this problem,
proving that lenses are a universal normal symmetric produoidal category (the symmetric
monoidal contexts), which endows them with a novel algebra and a novel universal property.
This also extends work on the relation between incomplete diagrams, comb-shaped diagrams,
and lenses [57, 59].

Finally, Nester et al. have recently proposed a syntax for lenses and message-passing [48, 7]
and lenses themselves have been applied to protocol specification [67]. Spivak [65] also
discusses the multicategory of wiring diagrams, later used for incomplete diagrams [52] and
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related to lenses [61]. The promonoidal categories we use can be seen as multicategories with
an extra coherence property. In this sense, we contribute the missing algebraic structure of
the universal multicategory of wiring diagrams relative to a monoidal category.

1.6 Contributions

Our main contribution is the universal characterization of a produoidal category of monoidal
contexts over a monoidal category (Theorem 5.4).

We construct an adjunction between monoidal categories and produoidal categories in
Section 3, and we characterize spliced monoidal arrows as the cofree produoidal category over
a monoidal category (Theorem 3.8); in order to do this, we also introduce a version of the
splice-contour construction that creates an adjunction between categories and promonoidal
categories, the interested reader can follow the full version [20, Appendix B].

We introduce the free normalization of an arbitrary produoidal category (Theorem 4.3).
Normalization had been only described for well-behaved duoidal categories [25]; we show that
any produoidal category can be normalized and we construct an idempotent normalization
monad. We universally characterize the algebra of monoidal contexts as a free normalization
(Theorem 5.4) in Section 5; we universally characterize the algebra of monoidal lenses as a free
symmetric normalization (Theorem 6.2) in Section 6. Finally, we introduce an interpretation
of send/receive types (!/?) (Proposition 6.5) in terms of monoidal lenses.

2 Preliminaries: Profunctors and Dinaturality

Profunctors describe families of processes indexed by the input and output types of a category.
Since they will be our main tool in the following, we give a brief introduction. More details
can be found in the full version of this paper [20, Appendix A].

» Definition 2.1. A profunctor P: By X ... X B, &0 Ag X ... X A,, is a functor

P:AJP... x A% x By x ... X B, — Set.

For our purposes, a profunctor P(Ao, ..., An; Bo, ..., Bm) is a family of processes indexed
by contravariant inputs Ag, ..., An and covariant outputs By, ..., By,. The profunctor is en-
dowed with jointly functorial left (>o, ..., =) and right (<o, ..., <) actions of the morphisms

of Ao, ..., A, and By, ..., B,,, respectively [5, 44].*

Composing profunctors is subtle: the same processes could arise as the composite of
different pairs of processes, so we need to impose an equivalence relation. Imagine we try to
connect two different processes:

pe P(AOa "'aAn;BOa"'vBM)v and qc Q(C()? "'7Ck;D07"'7Dh);

and we have some morphism f: B; — C} that translates the i-th output port of p to the j-th
input port of g. Let us write (;|;) for this connection operation. Note that we could connect
them in two different ways: we could

change the output of the first process p <; f before connecting both, (p <;f)il; ¢

or change the input of the second process f >; q before connecting both, p;|; (f >; ¢).

L We simply use (</>) without any subscript whenever the input/output is unique.
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These are different descriptions, made up of two different components. However, they
essentially describe the same process [19]: they are dinaturally equal. Indeed, profunctors
are canonically endowed with this notion of equivalence [5, 44], precisely equating these two
descriptions. Profunctors, and their elements, are thus composed up to dinatural equivalence.

» Definition 2.2 (Dinatural equivalence). Consider two profunctors P: By X ... X By, eo
Ag x ... x A, and Q: Dy x ... x Dj, o0 Cy x ... x Cy, such that B; = C;; and let S;ng(A;D)
be the set

Z P(A()...An; B(]XBm) X Q(CoXck,D()Dh)
Xe€B;

Dinatural equivalence, (~), on the set S;;?Q (A; D) is the smallest equivalence relation sat-
isfying (p < if il;4) ~ (pil; f =; @). The coend is defined as this coproduct quotiented by

dinaturality, Sl (A; D)/(~), and written as an integral.

XeC;
/ P(A()...An; B()XBm) X Q(CoXCk,DoDh)

» Definition 2.3 (Profunctor composition). Consider two profunctors P: By x ... xB,, e AgX
<. xAp and Q: Do x ... xDy, &0 Cyx ... xCy, such that B; = C;; their composition along ports
i and j is a profunctor PoQ) : BgXx...xDgX...xDp x...xB,, o Cyx...xAgX... XA, X...xCp;
we write it marking this connection

P(AoAn,Bo o Bm)OQ(CO ° ,,.Ck;DO,,.Dh),

and it is defined as the coproduct of the product of both profunctors, indexed by the common
variable, and quotiented by dinatural equivalence,

XeC
/ P(A()An,B()XBm) X Q(C()...X...Ck;D()...Dh).

3 Parallel-Sequential Context

Monoidal categories are an algebraic structure for sequential and parallel composition: they
contain a “tensoring” operator on morphisms, (®), apart from the usual sequencing, (), and
identities (id).

Figure 4 Example decomposition.

Assume a monoidal morphism factors as follows: fos(9® (hs(E® (losl1)))) ¢ f1. We can
say that this morphism came from dividing everything between fy and f; by a tensor. That
is, from a context fo ¢ (O ®@0O) ¢ f1. We filled the first hole of this context with a g, and then
proceeded to split the second part as h ¢ (O ® O) gid. Finally, we filled the first part with &
and the second one we filled with [y, id;, and [;.
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This section studies decomposition of morphisms in a monoidal category, in the same way
we study decomposition of morphisms in a category (see the full version [20, Appendix B]).
We present an algebraic structure for decomposing both sequential and parallel compositions:
produoidal categories.

3.1 Produoidal Categories

Produoidal categories, first defined by Booker and Street [10], provide an algebraic structure
for the interaction of sequential and parallel decomposition. A produoidal category V not
only contains morphisms, V(X;Y), as in a category, but also sequential splits, V(X;Yy < Y1),
and sequential units, V(X; N), provided by a promonoidal structure; and parallel splits,
V(X;Yy ® Y1) and parallel units, V(X; I), provided by another promonoidal structure.

These splits must be coherent. For instance, imagine we want to decompose X (sequen-
tially) into Yy, Y7 and Y5. Decomposing X into Yy and something (e), and then decomposing
that something into Y; and Y5 should be doable in essentially the same ways as decomposing
X into something (e) and Y3, and then decomposing that something into Y; and Y;. Formally,
we are saying that,

V(X;Yy <o) o V(e Y] <Ys) 2 V(X;e<1Ys)oV(e; Yy <Yr),

and, in fact, we just write V(X;Yy < Y] <Y3) for the set of such decompositions. This is
precisely what we ask for in a promonoidal structure.

» Definition 3.1 (Produoidal category). A produoidal category is a category V endowed with
two promonoidal structures,

V(e;e@e):VxVeoV andV(e;I):1eoV,
V(e;e<ie): VxVeoV, andV(e;N): 1eoV,

such that one laxly distributes over the other. This is to say that it is endowed with the
following natural laxators: ¥q: V(e; (X 1Y) ® (Z <W)) — V(e; (X ® Z) < (Y @ W)),
Yo: V(e;I) > V(eI <), po: V(e; N N) — V(e; N), and ¢p: V(e;1) — V(e; N). Lazators,
together with unitors and associators, must satisfy coherence conditions (see [20, Definition
J.7]). Denote by Produo the category of produoidal categories and produoidal functors.

» Remark 3.2 (Nesting profunctorial structures). Notation for nesting functorial structures,
say (<) and (®), is straightforward: we use expressions like (X7 ® Y1) <0 (X2 ® Ya) without a
second thought. Nesting the profunctorial (or virtual) structures (<) and (®) is more subtle:
defining V(e; X ® V') and V(e; X <Y) for each pair of objects X and Y does not itself define
what something like V(e; (X1 ® Y1) < (X2 ®Y2)) means. Recall that, in the profunctorial case,
X7 <Y; and X; ® Y7 are not objects themselves: they are just names for the profunctors
V(e; X7 <Y1) and V(e; X7 ® Y1), which are not representable.

Instead, when we write V(e; (X; ® Y1) < (X2 ®Y3)), we formally mean the composition of
profunctors V(e; o1 <eg)oV(e1; X1 ®Y7)oV(es; Xo®Ys). By convention, nesting profunctorial
structures means profunctor composition in this text.

3.2 Monoidal Contour of a Produoidal Category

Any produoidal category freely generates a monoidal category, its monoidal contour. Contours
form a monoidal category of paths around the decomposition trees of the produoidal category.
Contours follow a pleasant geometric pattern, where we follow the shape of the decomposition,
both in the parallel and sequential dimensions, to construct both sequential and parallel
compositions for a monoidal category.
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» Definition 3.3 (Monoidal contour). The contour of a produoidal category B is the monoidal
category DB presented by two objects, X* (left-handed) and X (right-handed), for each
object X € Boyj; and generated by arrows that arise from contouring both sequential and
parallel decompositions of the promonoidal category.

o sE ¢

Figure 5 Generators of the monoidal category of contours.

Specifically, it is presented by the following generators (i) a pair of morphisms ag €
DB(AL; X1L), ay € DB(X; AR) for each morphism a € B(A; X); (ii) a morphism ag €
DB(AL; AR), for each sequential unit a € C(A; N); (i) a pair of morphisms ag € DB(A%; )
and ag € DB(I; A®), for each parallel unit a € B(A;1); (iv) a triple of morphisms ag €
DB(AL; X1, ay € DB(XE;YE), ay € DB(YT; AR) for each sequential split a € B(A; X <1Y);
and (v) a pair of morphisms ag € DB(AY; X' ® YE) and a; € DB(X® @ Y; AR) for each
parallel split a € B(A4; X ® ), see Figure 5.

We impose some equations that arise naturally from the associator and unitor of the
sequential structure (<), as done by Mellies and Zeilberger [45]; but moreover, we also impose

some new equations, coming from the parallel structure (®), as depicted in Figures 6a and 6b.

We refer the interested reader to the full version [20] for the full list of equations.

(b)

Figure 6 Equations coming from laxators (a) and associators (b).

» Proposition 3.4. Monoidal contour extends to a functor D : Produo — Mon.

Proof. See the full version [20, Proposition E.3]. <

3.3 Produoidal Category of Spliced Monoidal Arrows

We want to go the other way around: given a monoidal category, what is the produoidal
category that tracks decomposition of arrows in that monoidal category? This subsection
finds a right adjoint to the monoidal contour construction: the produoidal category of spliced
monotidal arrows.

» Definition 3.5. Let (C,®,1) be a monoidal category. The produoidal category of spliced
monoidal arrows, TC, has as objects pairs of objects of C. It uses the following profunctors
to define

morphisms, TC (8;%) = C(4; X) x C(Y, B);
<30 = C(4; X) x C(Y; X') x C(Y'; B);
parallel splits, TC(3; i,( )= (A,X R XY xC(Y®Y'; B);
sequential units, TC(#; N) = C(4; B);
and parallel units, TC(4;1) = C(A;I) x C(I; B).

sequential splits, TC(4;+%
&

25:9
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In other words, morphisms are pairs of arrows written as f$05g € TC (4;%5). Sequential

splits are triples of arrows, written as f30sgs0sh € TC (g; £a );,/) Parallel splits are pairs
of arrows, written as f3(0®@0)iheTC (g; F® )15’/) Sequential units are arrows, written
simply as f € TC(4; N). parallel units are pairs of arrows, written as f || g € TC(8;1).

Finally, the laxators are defined by plugging the different pieces and reinterpreting the
relative position of the holes. Let us give an example of what this means; we refer the
interested reader to the full version [20, Appendix E.2] for full details.

» Example 3.6. For instance, the last laxator takes parallel sequences of holes, fo ¢ ((ho 0 ¢
h1s05hs) @ (kosOe ks 08 k2)) s f1 into sequences of parallel holes, fo 3 (ho ® ko) 5 (O ®
0) 5 (h1 @ k1) 3 (O®0) s (he ® k2) 5 f1.

» Remark 3.7. The produoidal algebra of spliced arrows is a natural construction: abstractly,
we know that there is a duoidal structure on the endomodules of any monoidal category
[18, 66] — this is its explicit produoidal counterpart. What may be more surprising is that
spliced arrows have themselves a universal property as part of an adjunction.

» Theorem 3.8. Spliced monoidal arrows form a produoidal category with their sequential
and parallel splits, units, and suitable coherence morphisms and laxators. Spliced monoidal
arrows extend to a functor T : Mlon — Produo. The monoidal contour and the produoidal
splice are left and right adjoints to each other, respectively.

Proof. See the full version [20, Propositions E.4 and E.9 and Theorem E.10]. <

» Remark 3.9. When C is a symmetric monoidal category, then 7C is moreover a symmetric
produoidal category with symmetry defined using the symmety of C.

3.4 Representable Parallel Structure

A produoidal category has two tensors, and neither is, in principle, representable. However,
the cofree produoidal category over a category we have just constructed happens also to have
a representable tensor, (®). Spliced monoidal arrows form a monoidal category.

» Proposition 3.10. Parallel splits and parallel units of spliced monoidal arrows are repres-
entable profunctors. That is, TC (f; ¢ ® if:) ~T7C (g; ggii,) , and TC (4 1) =2 TC(4 D).

In fact, these sets are equal by definition. However, we argue that there is a good reason
to work in the full generality of produoidal categories: produoidal categories can always be
normalized.

Normalization is a procedure to mix both tensors of a duoidal category, (®) and (<), but
not every duoidal category has a normalization [25]. It is folklore that one loses nothing
by regarding non-representable produoidal structures as representable duoidal structures on
presheaves, dismissing that they are moreover closed [18]; thus, one would expect only some
produoidal categories to be normalizable. Against folklore, we prove that every produoidal
category, representable or not, has a universal normalization, a normal produoidal category
which may be again representable or not (Theorem 4.3). We use this procedure to universally
characterize monoidal contexts in Section 5, which form a produoidal category without
representable structure.

» Remark 3.11. This means 7C has the structure of a wvirtual duoidal category [64] or
monoidal multicategory, defined by Aguiar, Haim and Lépez Franco [3] as a pseudomonoid
in the cartesian monoidal 2-category of multicategories.
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4 Interlude: Normalization

Produoidal categories seem to contain too much structure: of course, we want to split things
in two different ways, sequentially (<1) and in parallel (®); but that does not necessarily mean

that we want to keep track of two different types of units, parallel (I) and sequential (N).

The atomic components of our decomposition algebra should be the same, without having to
care if they are atomic for sequential composition or atomic for parallel composition.

Fortunately, there exists an abstract procedure that, starting from any produoidal category,
constructs a new produoidal category where both units are identified. This procedure is
known as normalization, and the resulting produoidal categories are called normal.

» Definition 4.1 (Normal produoidal category). A normal produoidal category is a produoidal
category where the lazator po: V(e;I) — V(e; N) is an isomorphism. Normal produoidal
categories form a category nProduo with produoidal functors between them and endowed
with fully faithful forgetful functor U: nProduo — Produo.

» Theorem 4.2 (Normalization construction). Let Vg 1 o N be a produoidal category. The
profunctor NV(e;e) = V(e; N @ e @ N) forms a promonad [33, 58]. Moreover, the Kleisli
category of this promonad is a normal produoidal category with the following splits and units:
M(A;BoayC)=VA;NBN®C®N); NV(A;B<inC) =V(4; (N BeN)<(N®
C®N)); NV(A;In) =V(A;N); and NV(A; Ny) = V(4; N).

Proof. See the full version [20, Theorem F.1]. <

Garner and Lépez Franco [25] introduced a partial normalization procedure for duoidal
categories. We contribute a general normalization procedure for produoidal categories
and we characterize it universally. Produoidal normalization behaves slightly better than
duoidal normalization: it always succeeds, and we prove that it forms an idempotent monad
(Theorem 4.3). The technical reason for this improvement is that the original duoidal
normalization required the existence of certain coequalizers in V; produoidal normalization
uses coequalizers in Set. See the full version [20, Appendix F.4] for an outline of the relation
between the two procedures.

» Theorem 4.3 (Free normal produoidal). Normalization extends to an idempotent monad.
Moreover, normalization determines an adjunction between produoidal categories and nor-
mal produoidal categories, N': Produo = nProduo: U. That is, NV is the free normal
produoidal category over V.

Proof. See the full version [20, Theorems F.3 and F.5]. <

In the previous Section 3, we constructed the produoidal category of spliced monoidal
arrows, which distinguishes between morphisms and morphisms with a hole in the monoidal
unit. This is because the latter hole splits the morphism in two parts. Normalization equates
both; it sews these two parts. In Section 5, we explicitly construct monoidal contexts, the
normalization of spliced monoidal arrows.

» Remark 4.4. Normalization is a generic procedure that applies to any produoidal category,
it does not matter if the parallel split (®) is symmetric or not. However, when ® happens to
be symmetric, we can also apply a more specialized normalization procedure: symmetric
normalization. See the full version [20, Appendix F.2].
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5 Monoidal Context: Mixing << and ® by normalization

Monoidal contexts formalize the notion of an incomplete morphism in a monoidal category.
The category of monoidal contexts will have a rich algebraic structure: we shall be able to
still compose contexts sequentially and in parallel and, at the same time, we shall be able to
fill a context using another monoidal context. Perhaps surprisingly, then, the category of
monoidal contexts is not even monoidal.

We justify this apparent contradiction in terms of profunctorial structure: the category is
not monoidal, but it does have two promonoidal structures that precisely represent sequential
and parallel composition. These structures form a normal produoidal category. In fact, we
show it to be the normalization of the produoidal category of spliced monoidal arrows. This
section constructs explicitly this normal produoidal category of monoidal contexts.

5.1 The Category of Monoidal Contexts

A monoidal context, MC (4 ;<), represents a process from A to B with a hole admitting
a process from X to Y. In this sense, monoidal contexts are similar to spliced monoidal
arrows. The difference with spliced monoidal arrows is that monoidal contexts allow for
communication to happen to the left and to the right of this hole.

» Definition 5.1 (Monoidal context). Let (C,®,I) be a monoidal category. Monoidal contexts
are the elements of the profunctor MC (4;%) =C(A4;0; @ X Q e3) o C(e1 ® Y ® e3; B) over
Cr x C.

In other words, a monoidal context from A to B, with a hole from X to Y, is an equivalence
class consisting of a pair of objects M, N € C,p; and a pair of morphisms f € C(4A; M@X®N)
and g € C(M ® Y ® N; B), quotiented by dinaturality of M and N (Figure 8). We write
monoidal contexts as

(f5(idy oB@idy)5g9) € MC(4;5).

In this notation, dinaturality explicitly means (f § (m ® idx @ n) ¢ (idw @ B®idy) $g) =
(f 5 (idy @ M®idy) 5 (m @ idy ®n) 5 g).

» Remark 5.2. Even when we introduce (id @ B®1id) as a piece of suggestive notation, we can
still write (¢ ® B ® h) unambiguously, because of dinaturality: (¢ ® id® k)3 (id@ B®id) =
(ido B®id) g (¢ ®@id @ h).

5.2 The Normal Produoidal Algebra of Monoidal Contexts

» Definition 5.3. Let us endow monoidal contexts with a normal produoidal structure. The
category of monoidal contexts, MC, has as objects pairs of objects of C. Units are defined
by MC (#; N) = C(A; B). We use the following profunctors to define sequential splits and
parallel splits,

MC (5 95) =C(A01 0 X @ e3) oC(01 @Y D er;03 0 X' @ 0y) C(030Y' @ 043 B);
MC(B:¥0y)=ClhneX0eaX ©e) oCle10Y R e @Y @ ey B).

In other words, sequential splits are triples of arrows quotiented by dinaturality and
written as f ¢ (ild@B®id) g (id @ B®id) 3 h. Parallel splits are pairs of arrows quotiented
by dinaturality and written as f 3 (id @ B® id @ B ® id) 3 g. Units are simply arrows
f: A — B. Morphisms are pairs of arrows, written as f ¢ (id @ B®id) ¢ g, and also quotiented
by dinaturality. Figure 7 gives the diagrammatic representations of these components.
Dinaturality for sequential splits and parallel splits is depicted in Figure 8.
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Figure 7 Morphisms, sequential and parallel splits, and units of the splice monoidal arrow
produoidal category.
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Figure 8 Dinaturality of morphisms, and sequential and parallel splits of monoidal contexts.

» Theorem 5.4. The category of monoidal contexts forms a normal produoidal category
with its units, sequential and parallel splits. Monoidal contexts are the free normalization
of the cofree produoidal category over a category. In other words, monoidal contexts are the
normalization of spliced monoidal arrows, NTC = MC.

Proof. See the full version [20, Propositions G.4 and G.5 and Theorem G.13]. |

6 Monoidal Lenses

Monoidal lenses are symmetric monoidal contexts. Again, the category of monoidal lenses
has a rich algebraic structure; and again, most of this structure exists only virtually in terms
of profunctors. In this case, though, the monoidal tensor does indeed exist: contrary to
monoidal contexts, monoidal lenses form also a monoidal category. This is perhaps why
applications of monoidal lenses have grown popular in recent years [56], with applications
in decision theory [27], supervised learning [17, 22] and most notably in functional data
accessing [42, 53, 6, 12]. The promonoidal structure of lenses was ignored, even when, after
now identifying for the first time its relation to the monoidal structure of lenses, we argue
that it could be potentially useful in these applications: e.g. in multi-stage decision problems,
or in multi-stage data accessors.

This section explicitly constructs the normal symmetric produoidal category of monoidal
lenses. We describe it for the first time by a universal property: it is the free symmetric
normalization of the cofree produoidal category.

6.1 The Normal Symmetric Produoidal Algebra of Monoidal Lenses

» Definition 6.1 (Monoidal Lens). Let (C,®,1I) be a symmetric monoidal category. A
monoidal lens of type LC(3; ) represents a process in a symmetric monoidal category with a

hole admitting a process from X toY [56]. Explicitly, monoidal lenses are the elements of
the profunctor LC (4 ;%) = C(4;e® X) o C(e @ Y; B) over C°? x C.
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In other words, a monoidal lens from A to B, with a hole from X to Y, is an equivalence
class consisting of a pair of objects M, N € Cyp; and a pair of morphisms f € C(4; M ® X)
and g € C(M ® Y; B), quotiented by dinaturality of M. We write monoidal lenses as
fs(idy @M 59 € LC(F:5).

» Theorem 6.2. Monoidal lenses form a mormal symmetric produoidal category with the
units given by LC (4 ; N) = C(A; B), and the following sequential and parallel splits.

LC(#:54%) = C(A;01® X)0C(e1® Y02 X') 0 Ce2 @ Y'; B);
LC(F:¥ @)= C(A40@X@X)oCle1 @Y @Y';B).

Monoidal lenses are the free symmetric normalization of the cofree symmetric produoidal
category over a symmetric monoidal category.

Proof. See the full version [20, Proposition H.1 and Theorem H.9]. <

» Remark 6.3 (Representable parallel structure). The parallel splitting structure of monoidal

lenses is representable, LC (é T ® i,(: ) =LC (g ; )}fgff ) . Lenses over a symmetric monoidal
category are known to be monoidal [56, 30], but it remained unexplained why a similar
structure was not present in non-symmetric lenses. The contradiction can be solved by
noting that both symmetric and non-symmetric lenses are indeed promonoidal, even if only

symmetric lenses provide a representable tensor.

» Remark 6.4 (Session notation for lenses). We will write !4 = (4) and 7B = (}) for the
objects of the produoidal category of lenses that have a monoidal unit as one of its objects.
These are enough to express all objects because !4 @ 7B = (4).

» Proposition 6.5. Let (C,®,1) be a symmetric monoidal category. There exist monoidal
functors (1): C — LC and (%): C°? — LC. Moreover, they satisfy the following properties
definitionally: C(e; 2A < ?B) = C(e; ?A® ?B); (A®B) = !A® IB; C(e; /1A« !B) =
C(e; /AR IB); 2(A® B) = ?A® ?B; and C(e; /A< ?B) 2 C(e; IA® ?B).

Proof. See the full version [20, Proposition H.7]. <

6.2 Protocol Analysis

Let us go back to our running example (Figure 1). We can now declare that the client and
server have the following types, representing the order in which they communicate,

erve

@ €LC (8%23% : IMsg < 7Msg < !Msg) ; B €LC (gervel{ ; TMsg < !Msg < ?Msg) )

Moreover, we can use the duoidal algebra to compose them. Indeed, tensoring client and
server, we get the following codomain type: (!Msg <1 ?Msg <1 !Msg) ® (?Msg <1 'Msg <1 ?Msg).
We then apply the laxators to mix inputs and outputs, obtaining (!Msg ® ?Msg) < (?Msg ®
!Msg) <1 (!Msg ® ?Msg), and we finally apply the unitors to fill the communication holes with
noisy channels of type Msg — Msg.

3 3 Client®Server.
P2 ( > ® B ) <\ NOISE® € LC (Client@Server’N) :

We end up obtaining the protocol as a single morphism Client ® Server — Client ® Server in
whatever category we are using to program. Assuming the category of finite stochastic maps,
this single morphism represents the distribution over the possible outcomes of the protocol.
Finally, by dinaturality, we can reason over independent parts of the protocol.
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» Remark 6.6. Let (3 ) = (SYN§ (id @ W) 5 ACK 5 (id @ W)). The equalities in Figure 1 are
a consequence of dinaturality over PRJ, which acts as the interchange law for incomplete
morphisms.

SYN¢ (id@ M) $ACK 3 (id @ H) = SYN* 3 (PRI®id) s ACK: (id@ W) =
SYN" 5 (id @ W) § (PRI ®id) § ACK § (id ® M) = SYN™ § (id ® W) § ACK™ 5 (id ® W).

7 Conclusions

Monoidal contexts are an algebra of incomplete processes, commonly generalizing lenses [56)
and spliced arrows [45]. In the same way that the m-calculus allows input/output channels of
an abstract model of computation, monoidal contexts allow input/output communication on
arbitrary theories of processes, such as stochastic or partial functions, quantum processes or
relational queries.

Monoidal contexts form a normal produoidal category: a highly structured and rich
categorical algebra. Moreover, they are the universal such algebra on a monoidal category.
This is good news for applications: the literature on concurrency is rich in frameworks; but
the lack of canonicity may get us confused when trying to choose, design, or compare among
them, as Abramsky [1] has pointed out. Precisely characterizing the universal property of a
model addresses this concern. This is also good news for the category theorist: not only is
this an example shedding light on a relatively obscure structure; it is a paradigmatic such
one.

We rely on two mathematical ideas: monoidal and duoidal categories on one hand, and
dinaturality and profunctorial structures on the other. Monoidal categories, which could
be accidentally dismissed as a toy version of cartesian categories, show that their string
diagrams can bootstrap our conceptual understanding of new fundamental process structures,
while keeping an abstraction over their implementation that cartesian categories cannot
afford. Duoidal categories are such an example: starting to appear insistently in computer
science [62, 34], they capture the posetal structure of process dependency and communication.
Dinaturality, virtual structures and profunctors, even if sometimes judged arcane, show again
that they can canonically model a notion as concrete as process composition.

7.1 Further Work

Dependencies. Shapiro and Spivak [62] prove that normal symmetric duoidal categories
with certain limits additionally have the structure of dependence categories: they can not
only express dependence structures generated by (<1) and (®), but arbitrary poset-mediated
dependence structures. Produoidal categories are better behaved: the limits always exist,
and we only require these are preserved by the coend (see the full version for details [20]).
Weakening dependence categories in this way combines the ideas of Shapiro and Spivak [62]
with those of Hefford and Kissinger [32], who employ virtual objects to deal with the
non-existence of tensor products in models of spacetime.

Language theory. Melliés and Zeilberger [45] used a multicategorical form of splice-contour
adjunction to give a novel proof of the Chomsky-Schiitzenberger representation theorem,
generalized to context-free languages in categories. Our produoidal splice-contour adjunction
(Section 3), combined with recent work on languages of morphisms in monoidal categories [21]
opens the way for a monoidal version of the Chomsky-Schiitzenberger theorem.
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String diagrams for concurrency. Nester et al. [48, 7] have recently introduced an alternative
description of lenses in terms of proarrow equipments, which have a good 2-dimensional
syntax [47] we can use for send/receive types (!/?). We have shown how this structure arises
universally in symmetric monoidal categories. It remains as further work to determine a good

2-dimensional syntax for concurrent programs with éteration and internal/external choice.

—— References

1

10

11

12

13

14

15

16

Samson Abramsky. What are the fundamental structures of concurrency?: We still don’t
know! In Luca Aceto and Andrew D. Gordon, editors, Proceedings of the Workshop “Essays
on Algebraic Process Calculi”, APC 25, Bertinoro, Italy, August 1-5, 2005, volume 162
of Electronic Notes in Theoretical Computer Science, pages 37—41. Elsevier, 2005. doi:
10.1016/j.entcs.2005.12.075.

Samson Abramsky and Bob Coecke. Categorical quantum mechanics. In Kurt Engesser, Dov M.
Gabbay, and Daniel Lehmann, editors, Handbook of Quantum Logic and Quantum Structures,
pages 261-323. Elsevier, Amsterdam, 2009. doi:10.1016/B978-0-444-52869-8.50010-4.
Marcelo Aguiar, Mariana Haim, and Ignacio Lépez Franco. Monads on higher monoi-
dal categories. Applied Categorical Structures, 26(3):413-458, June 2018. doi:10.1007/
$10485-017-9497-8.

Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries, and Jamie Vicary.
Modular categories as representations of the 3-dimensional bordism 2-category, 2015. arXiv:
1509.06811.

Jean Bénabou. Distributors at work. Lecture notes written by Thomas Streicher, 11, 2000.
Guillaume Boisseau and Jeremy Gibbons. What you needa know about yoneda: Profunctor
optics and the yoneda lemma (functional pearl). Proceedings of the ACM on Programming
Languages, 2(ICFP):1-27, 2018.

Guillaume Boisseau, Chad Nester, and Mario Romén. Cornering optics. In Proceedings Fifth
International Conference on Applied Category Theory, ACT 2022, Glasgow, United Kingdom,
18-22 July 2022, volume abs/2205.00842, 2022. doi:10.48550/arXiv.2205.00842.

Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Graphical affine algebra.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1-12. IEEE, 2019. doi:10.1109/LICS.2019.8785877.
Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical conjunctive queries. In Dan R.
Ghica and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic,
CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1-13:23.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.13.
Thomas Booker and Ross Street. Tannaka duality and convolution for duoidal categories.
Theory and Applications of Categories, 28(6):166-205, 2013.

Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Dia-
grams. Mathematical Structures in Computer Science, pages 1-34, March 2019. doi:
10.1017/50960129518000488.

Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily
Pillmore, and Mario Romén. Profunctor optics, a categorical update. CoRR, abs/2001.07488,
2020. arXiv:2001.07488.

J. Robin B. Cockett and Stephen Lack. Restriction categories I: categories of partial maps.
Theoretical Computer Science, 270(1-2):223-259, 2002. doi:10.1016/S0304-3975(00)00382-0.
J. Robin B. Cockett and Craig A. Pastro. The logic of message-passing. Sci. Comput. Program.,
74(8):498-533, 2009. doi:10.1016/j.scico.2007.11.005.

J. Robin B. Cockett and Robert A. G. Seely. Weakly distributive categories. Journal of Pure
and Applied Algebra, 114(2):133-173, 1997.

Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory of resources. Inf.
Comput., 250:59-86, 2016. doi:10.1016/j.ic.2016.02.008.


https://doi.org/10.1016/j.entcs.2005.12.075
https://doi.org/10.1016/j.entcs.2005.12.075
https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1007/s10485-017-9497-8
https://doi.org/10.1007/s10485-017-9497-8
https://arxiv.org/abs/1509.06811
https://arxiv.org/abs/1509.06811
https://doi.org/10.48550/arXiv.2205.00842
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
https://arxiv.org/abs/2001.07488
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/j.scico.2007.11.005
https://doi.org/10.1016/j.ic.2016.02.008

M. Earnshaw, J. Hefford, and M. Roman

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

Geoffrey S. H. Cruttwell, Bruno Gavranovié¢, Neil Ghani, Paul Wilson, and Fabio Zanasi.
Categorical foundations of gradient-based learning. In European Symposium on Programming,
pages 1-28. Springer, Cham, 2022.

Brian Day. On closed categories of functors. In Reports of the Midwest Category Seminar
1V, volume 137, pages 1-38, Berlin, Heidelberg, 1970. Springer Berlin Heidelberg. doi:
10.1007/BFb0060438.

Elena Di Lavore, Giovanni de Felice, and Mario Romén. Monoidal streams for dataflow
programming. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS '22, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3531130.3533365.

Matt Earnshaw, James Hefford, and Mario Romén. The produoidal algebra of process
decomposition, 2023. arXiv:2301.11867.

Matthew Earnshaw and Pawel Sobocinski. Regular Monoidal Languages. In Stefan Szeider,
Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 44:1-44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.2022.44.

Brendan Fong and Michael Johnson. Lenses and learners. arXiv preprint, 2019. arXiv:
1903.03671.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
29(3):17-es, 2007.

Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, 2020. arXiv:1908.07021.
Richard Garner and Ignacio Lépez Franco. Commutativity. Journal of Pure and Applied
Algebra, 220(5):1707-1751, 2016.

Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
S. Doaitse Swierstra, editor, Programming Languages and Systems, 8th European Symposium
on Programming, ESOP’99, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, 22-28 March, 1999,
Proceedings, volume 1576 of Lecture Notes in Computer Science, pages 74-90. Springer, 1999.
doi:10.1007/3-540-49099-X_6.

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Anuj Dawar and Erich Gradel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Ozford, UK, July 09-12, 2018, pages 472-481.
ACM, 2018. doi:10.1145/3209108.3209165.

René Guitart. Tenseurs et machines. Cahiers de topologie et géométrie différentielle
catégoriques, 21(1):5-62, 1980. URL: http://www.numdam.org/item/CTGDC_1980__21_1_5_0/.
Masahito Hasegawa. Models of sharing graphs: a categorical semantics of let and letrec. PhD
thesis, University of Edinburgh, UK, 1997. URL: http://hdl.handle.net/1842/15001.
Jules Hedges. Coherence for lenses and open games. arXiv preprint, 2017. arXiv:1704.02230.
James Hefford and Cole Comfort. Coend optics for quantum combs. arXiv preprint, 2022.
arXiv:2205.09027, doi:10.48550/ARXIV.2205.09027.

James Hefford and Aleks Kissinger. On the pre- and promonoidal structure of spacetime.
arXiv preprint, 2022. doi:10.48550/arXiv.2206.09678.

Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. In Stephen D. Brookes
and Michael W. Mislove, editors, Proceedings of the 22nd Annual Conference on Mathematical
Foundations of Programming Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, volume
158 of Electronic Notes in Theoretical Computer Science, pages 219-236. Elsevier, 2006.
doi:10.1016/j.entcs.2006.04.012.

25:17

CSL 2024


https://doi.org/10.1007/BFb0060438
https://doi.org/10.1007/BFb0060438
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1145/3531130.3533365
https://arxiv.org/abs/2301.11867
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://arxiv.org/abs/1903.03671
https://arxiv.org/abs/1903.03671
https://arxiv.org/abs/1908.07021
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1145/3209108.3209165
http://www.numdam.org/item/CTGDC_1980__21_1_5_0/
http://hdl.handle.net/1842/15001
https://arxiv.org/abs/1704.02230
https://arxiv.org/abs/2205.09027
https://doi.org/10.48550/ARXIV.2205.09027
https://doi.org/10.48550/arXiv.2206.09678
https://doi.org/10.1016/j.entcs.2006.04.012

25:18

The Produoidal Algebra of Process Decomposition

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Chris Heunen and Jesse Sigal. Duoidally enriched Freyd categories. arXiv preprint, 2023.
arXiv:2301.05162.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509-523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273—-284. ACM, 2008. doi:10.1145/1328438.1328472.
John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-3):67—
111, 2000. doi:10.1016/50167-6423(99)00023-4.

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, Anténio Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1-3:36, 2016. doi:10.1145/2873052.

Michael Johnson, Robert Rosebrugh, and Richard J. Wood. Lenses, fibrations and universal
translations. Mathematical structures in computer science, 22(1):25-42, 2012.

André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55-112, 1991. doi:10.1016/0001-8708(91)90003-P.

Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1-12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005095.
Edward Kmett. lens library, version 4.16. Hackage https://hackage. haskell. org/package/lens-
4.16, 2018, 2012.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In
Hans-Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages
358-371. ACM Press, 1996. doi:10.1145/237721.237804.

Fosco Loregian. (Co)end Calculus. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2021. doi:10.1017/9781108778657.

Paul-André Melliés and Noam Zeilberger. Parsing as a Lifting Problem and the Chomsky-
Schiitzenberger Representation Theorem. In MFPS 2022-38th conference on Mathematical
Foundations for Programming Semantics, 2022.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92, 1991.
doi:10.1016/0890-5401(91)90052-4.

David Jaz Myers. String diagrams for double categories and equipments, 2016. doi:10.48550/
arXiv.1612.02762.

Chad Nester. Concurrent Process Histories and Resource Transducers. Logical Methods in
Computer Science, Volume 19, Issue 1, January 2023. doi:10.46298/1mcs-19(1:7)2023.
Nelson Niu and David I. Spivak. Polynomial functors: A general theory of interaction. In
preparation, 2022.

Craig Pastro and Ross Street. Doubles for Monoidal Categories. arXiv preprint, 2007.
arXiv:0711.1859.

Ross Paterson. A new notation for arrows. In Benjamin C. Pierce, editor, Proceedings of
the Sizth ACM SIGPLAN International Conference on Functional Programming (ICFP ’01),
Firenze (Florence), Italy, September 3-5, 2001, pages 229-240. ACM, 2001. doi:10.1145/
507635.507664.

Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams as normal forms for
computing in symmetric monoidal categories. Electronic Proceedings in Theoretical Computer
Science, pages 49-64, February 2021.


https://arxiv.org/abs/2301.05162
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/2873052
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1109/LICS.2017.8005095
https://doi.org/10.1145/237721.237804
https://doi.org/10.1017/9781108778657
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.48550/arXiv.1612.02762
https://doi.org/10.48550/arXiv.1612.02762
https://doi.org/10.46298/lmcs-19(1:7)2023
https://arxiv.org/abs/0711.1859
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664

M

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

. Earnshaw, J. Hefford, and M. Roman

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data
accessors. Art Sci. Eng. Program., 1(2):7, 2017. doi:10.22152/programming-journal.org/
2017/1/7.

Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In
Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS ’93),
Montreal, Canada, June 19-23, 1993, pages 376—-385. IEEE Computer Society, 1993. doi:
10.1109/LICS.1993.287570.

J. Postel. Transmission control protocol. RFC 793, RFC Editor, September 1981. doi:
10.17487/RFC0O793.

Mitchell Riley. Categories of Optics. arXiv preprint, 2018. arXiv:1809.00738.

Mario Roman. Comb Diagrams for Discrete-Time Feedback. CoRR, abs/2003.06214, 2020.
arXiv:2003.06214.

Mario Romén. Promonads and string diagrams for effectful categories. In ACT ’22: Applied
Category Theory, Glasgow, United Kingdom, 18-22 July, 2022, volume abs/2205.07664, 2022.
doi:10.48550/arXiv.2205.07664.

Mario Roman. Open diagrams via coend calculus. Flectronic Proceedings in Theoretical
Computer Science, 333:65—78, February 2021. doi:10.4204/eptcs.333.5.

Davide Sangiorgi and David Walker. The Pi-Calculus — A theory of mobile processes. Cambridge
University Press, 2001.

Patrick Schultz, David 1. Spivak, and Christina Vasilakopoulou. Dynamical systems and
sheaves. Applied Categorical Structures, 28(1):1-57, 2020.

Brandon T. Shapiro and David I. Spivak. Duoidal structures for compositional dependence.

arXiv preprint, 2022. arXiv:2210.01962.
Michael Shulman. Categorical logic from a categorical point of view. Available on the web,
2016. URL: https://mikeshulman.github.io/catlog/catlog.pdf.

Michael Shulman. Duoidal category (nlab entry), section 2, 2017. , Last accessed on 2022-12-14.

URL: https://ncatlab.org/nlab/show/duoidal+category.

David I. Spivak. The operad of wiring diagrams: formalizing a graphical language for databases,
recursion, and plug-and-play circuits. CoRR, abs/1305.0297, 2013. arXiv:1305.0297.

Ross Street. Monoidal categories in, and linking, geometry and algebra. Bulletin of the Belgian
Mathematical Society-Simon Stevin, 19(5):769-820, 2012.

André Videla and Matteo Capucci. Lenses for composable servers. CoRR, abs/2203.15633,
2022. doi:10.48550/arXiv.2203.15633.

25:19

CSL 2024


https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://arxiv.org/abs/1809.00738
https://arxiv.org/abs/2003.06214
https://doi.org/10.48550/arXiv.2205.07664
https://doi.org/10.4204/eptcs.333.5
https://arxiv.org/abs/2210.01962
https://mikeshulman.github.io/catlog/catlog.pdf
https://ncatlab.org/nlab/show/duoidal+category
https://arxiv.org/abs/1305.0297
https://doi.org/10.48550/arXiv.2203.15633

	1 Introduction
	1.1 Protocol Description
	1.2 Types for Message Passing
	1.3 Reasoning with Contexts
	1.4 The Produoidal Algebra of Monoidal Context
	1.5 Related Work
	1.6 Contributions

	2 Preliminaries: Profunctors and Dinaturality
	3 Parallel-Sequential Context
	3.1 Produoidal Categories
	3.2 Monoidal Contour of a Produoidal Category
	3.3 Produoidal Category of Spliced Monoidal Arrows
	3.4 Representable Parallel Structure

	4 Interlude: Normalization
	5 Monoidal Context: Mixing vartriangleleft and  by normalization
	5.1 The Category of Monoidal Contexts
	5.2 The Normal Produoidal Algebra of Monoidal Contexts

	6 Monoidal Lenses
	6.1 The Normal Symmetric Produoidal Algebra of Monoidal Lenses
	6.2 Protocol Analysis

	7 Conclusions
	7.1 Further Work


