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Abstract
Several variants of Parikh automata on infinite words were recently introduced by Guha et
al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as
introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed
that every ω-language recognized by a blind counter machine is of the form

⋃
i
UiV

ω
i for Parikh

recognizable languages Ui, Vi, but blind counter machines fall short of characterizing this class of
ω-languages. They posed as an open problem to find a suitable automata-based characterization.
We introduce several additional variants of Parikh automata on infinite words that yield automata
characterizations of classes of ω-language of the form

⋃
i
UiV

ω
i for all combinations of languages Ui, Vi

being regular or Parikh-recognizable. When both Ui and Vi are regular, this coincides with Büchi’s
classical theorem. We study the effect of ε-transitions in all variants of Parikh automata and show
that almost all of them admit ε-elimination. Finally we study the classical decision problems with
applications to model checking.
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1 Introduction

Finite automata find numerous applications in formal language theory, logic, verification,
and many more, in particular due to their good closure properties and algorithmic properties.
To enrich this spectrum of applications even more, it has been a fruitful direction to add
features to finite automata to capture also situations beyond the regular realm.

One such possible extension of finite automata with counting mechanisms has been
introduced by Greibach in her study of blind and partially blind (one-way) multicounter
machines [18]. Blind multicounter machines are generalized by weighted automata as
introduced in [28]. Parikh automata (PA) were introduced by Klaedtke and Rueß in [26].
A PA is a non-deterministic finite automaton that is additionally equipped with a semi-
linear set C, and every transition is equipped with a d-tuple of non-negative integers.
Whenever an input word is read, d counters are initialized with the values 0 and every
time a transition is used, the counters are incremented by the values in the tuple of the
transition accordingly. An input word is accepted if the PA ends in an accepting state and
additionally, the resulting d-tuple of counter values lies in C. Klaedtke and Rueß showed
that PA are equivalent to weighted automata over the group (Zk, +, 0), and hence equivalent
to Greibach’s blind multicounter machines, as well as to reversal bounded multicounter
machines [2, 24]. Recently it was shown that these models can be translated into each other
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31:2 Remarks on Parikh-Recognizable Omega-languages

using only logarithmic space [3]. In this work we call the class of languages recognized by
any of these models Parikh recognizable. Klaedtke and Rueß [26] showed that the class of
Parikh recognizable languages is precisely the class of languages definable in weak existential
monadic second-order logic of one successor extended with linear cardinality constraints.
The class of Parikh-recognizable languages contains all regular languages, but also many
more, even languages that are not context-free, e. g., the language {anbncn | n ∈ N}. On
the other hand, the language of palindromes is context-free, but not Parikh-recognizable.
On finite words, blind counter automata, Parikh automata and related models have been
investigated extensively, extending [18, 26] for example by affine PA and PA on letters [6, 7],
bounded PA [8], two-way PA [16], PA with a pushdown stack [25] as well as a combination of
both [11], history-deterministic PA [12], automata and grammars with valences [13, 23], and
several algorithmic applications, e.g. in the context of path logics for querying graphs [15].

In the well-studied realm of verification of reactive systems, automata-related approaches
provide a powerful framework to tackle important problems such as the model checking
problem [1, 9, 10]. However, computations of systems are generally represented as infinite
objects, as we often expect them to not terminate (but rather interact with the environment).
Hence, automata processing infinite words are suited for these tasks. One common approach
is the following: assume we are given a system, e.g. represented as a Kripke structure K,
and a specification represented as an automaton A (or any formalism that can be translated
into one) accepting all counterexamples. Then we can verify that the system has no bad
computations by solving intersection-emptiness of K and A. Yet again, the most basic
model of Büchi automata (which recognize ω-regular languages) are quite limited in their
expressiveness, although they have nice closure properties.

Let us consider two examples. In a three-user setting in an operating system we
would like to ensure that none of the users gets a lot more resources than the other two.
A corresponding specification of bad computations can be modeled via the ω-language
{α ∈ {a, b, c}ω | there are infinitely many prefixes w of α with |w|a > |w|b + |w|c}, stating
that one user gets more resources than the other two users combined infinitely often. As
another example, consider a classical producer-consumer setting, where a producer continu-
ously produces a good, and a consumer consumes these goods continuously. We can model
this setting as an infinite word and ask that at no time the consumer has consumed more
than the producer has produced at this time. Bad computations can be modeled via the
ω-language {α ∈ {p, c}ω | there is a prefix w of α with |w|c > |w|p}. Such specifications are
not ω-regular, as these require to “count arbitrarily”. This motivates the study of blind-
counter and Parikh automata on infinite words, which was initiated by Fernau and Stiebe [14].
Independently, Klaedte and Rueß proposed possible extensions of Parikh automata on infinite
words. This line of research was recently picked up by Guha et al. [22].

Guha et al. [22] introduced safety, reachability, Büchi- and co-Büchi Parikh automata.
These models provide natural generalization of studied automata models with Parikh con-
ditions on infinite words. One shortcoming of safety, reachability and co-Büchi Parikh
automata is that they do not generalize Büchi automata, that is, they cannot recognize all
ω-regular languages. The non-emptiness problem, which is highly relevant for model checking
applications, is undecidable for safety and co-Büchi Parikh automata. Furthermore, none
of these models has ω-closure, meaning that for every model there is a Parikh-recognizable
language (on finite words) L such that Lω is not recognizable by any of these models. Guha
et al. raised the question whether (appropriate variants of) Parikh automata on infinite
words have the same expressive power as blind counter automata on infinite words.
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Büchi’s famous theorem states that ω-regular languages are characterized as languages
of the form

⋃
i UiV

ω
i , where the Ui and Vi are regular languages [4]. As a consequence of

the theorem, many properties of ω-regular languages are inherited from regular languages.
For example, the non-emptiness problem for Büchi automata can basically be solved by
testing non-emptiness for nondeterministic finite automata. In their systematic study of blind
counter automata, Fernau and Stiebe [14] considered the class K∗, the class of ω-languages of
the form

⋃
i UiV

ω
i for Parikh-recognizable languages Ui and Vi. They proved that the class of

ω-languages recognizable by blind counter machines is a proper subset of the class K∗. They
posed as an open problem to provide automata models that capture classes of ω-languages
of the form

⋃
i UiV

ω
i where Ui and Vi are described by a certain mechanism.

In this work we propose reachability-regular Parikh automata, limit Parikh automata, and
reset Parikh automata as new automata models.

We pick up the question of Fernau and Stiebe [14] to consider classes of ω-languages of
the form

⋃
i UiV

ω
i where Ui and Vi are described by a certain mechanism. We define the four

classes Lω
Reg,Reg, Lω

PA,Reg, Lω
Reg,PA and Lω

PA,PA of ω-languages of the form
⋃

i UiV
ω

i , where the
Ui, Vi are regular or Parikh-recognizable languages of finite words, respectively. By Büchi’s
theorem the class Lω

Reg,Reg is the class of ω-regular languages.
We show that the newly introduced reachability-regular Parikh automata, which are

a small modification of reachability Parikh automata (as introduced by Guha et al. [22])
capture exactly the class Lω

PA,Reg. This model turns out to be equivalent to limit Parikh
automata. This model was hinted at in the concluding remarks of [26].

Fully resolving the classification of the above mentioned classes we introduce reset Parikh
automata. In contrast to all other Parikh models, these are closed under the ω-operation,
while maintaining all algorithmic properties of PA (in particular, non-emptiness is NP-
complete and hence decidable). We show that the class of Reset-recognizable ω-languages is
a strict superclass of Lω

PA,PA. We show that appropriate graph-theoretic restrictions of reset
Parikh automata exactly capture the classes Lω

PA,PA and Lω
Reg,PA, yielding the first automata

characterizations for these classes.
The automata models introduced by Guha et al. [22] do not have ε-transitions, while

blind counter machines have such transitions. Towards answering the question of Guha et al.
we study the effect of ε-transitions in all Parikh automata models. We show that all models
except safety and co-Büchi Parikh automata admit ε-elimination. This in particular answers
the question of Guha et al. [22] whether blind counter automata and Büchi Parikh automata
have the same expressive power over infinite words affirmative. We show that safety and
co-Büchi automata with ε-transitions are strictly more powerful than their variants without
ε-transitions, and in particular, they give the models enough power to recognize all ω-regular
languages.

All lemmas with missing proofs are marked with (⋆), the full version [20] containing all
proofs can be found on arXiv.

2 Preliminaries

2.1 Finite and infinite words

We write N for the set of non-negative integers including 0, and Z for the set of all integers.
Let Σ be an alphabet, i. e., a finite non-empty set and let Σ∗ be the set of all finite words
over Σ. For a word w ∈ Σ∗, we denote by |w| the length of w, and by |w|a the number of
occurrences of the letter a ∈ Σ in w. We write ε for the empty word of length 0.

CSL 2024
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An infinite word over an alphabet Σ is a function α : N \ {0} → Σ. We often write αi

instead of α(i). Thus, we can understand an infinite word as an infinite sequence of symbols
α = α1α2α3 . . . For m ≤ n, we abbreviate the finite infix αm . . . αn by α[m, n]. We denote
by Σω the set of all infinite words over Σ. We call a subset L ⊆ Σω an ω-language. Moreover,
for L ⊆ Σ∗, we define Lω = {w1w2 · · · | wi ∈ L \ {ε}} ⊆ Σω.

2.2 Regular and ω-regular languages
A nondeterministic finite automaton (NFA) is a tuple A = (Q, Σ, q0, ∆, F ), where Q is the
finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q

is the set of transitions and F ⊆ Q is the set of accepting states. A run of A on a
word w = w1 . . . wn ∈ Σ∗ is a (possibly empty) sequence of transitions r = r1 . . . rn with
ri = (pi−1, wi, pi) ∈ ∆ such that p0 = q0. We say r is accepting if pn ∈ F . The empty run
on ε is accepting if q0 ∈ F . We define the language recognized by A as L(A) = {w ∈ Σ∗ |
there is an accepting run of A on w}. If a language L is recognized by some NFA A, we
call L regular.

A Büchi automaton is an NFA A = (Q, Σ, q0, ∆, F ) that takes infinite words as in-
put. A run of A on an infinite word α1α2α3 . . . is an infinite sequence of transitions
r = r1r2r3 . . . with ri = (pi−1, αi, pi) ∈ ∆ such that p0 = q0. We say r is accepting if
there are infinitely many i with pi ∈ F . We define the ω-language recognized by A as
Lω(A) = {α ∈ Σω | there is an accepting run of A on α}. If an ω-language L is recognized
by some Büchi automaton A, we call L ω-regular. Büchi’s theorem establishes an important
connection between regular and ω-regular languages:

▶ Theorem 1 (Büchi [4]). A language L ⊆ Σω is ω-regular if and only if there are regular
languages U1, V1, . . . , Un, Vn ⊆ Σ∗ for some n ≥ 1 such that L = U1V ω

1 ∪ · · · ∪ UnV ω
n .

If every state of a Büchi automaton A is accepting, we call A a safety automaton.

2.3 Semi-linear sets
For some d ≥ 1, a linear set of dimension d is a set of the form {b0 + b1z1 + · · · + bℓzℓ |
z1, . . . , zℓ ∈ N} ⊆ Nd for b0, . . . , bℓ ∈ Nd. If b0 = 0, then we call C a homogeneous linear
set. A semi-linear set is a finite union of linear sets. For vectors u = (u1, . . . , uc) ∈ Nc and
v = (v1, . . . , vd) ∈ Nd, we denote by u · v = (u1, . . . , uc, v1, . . . , vd) ∈ Nc+d the concatenation
of u and v. We extend this definition to sets of vectors. Let C ⊆ Nc and D ⊆ Nd. Then
C · D = {u · v | u ∈ C, v ∈ D} ⊆ Nc+d. We denote by 0d (or simply 0 if d is clear
from the context) the all-zero vector, and by ed

i (or simply ei) the d-dimensional vector
where the ith entry is 1 and all other entries are 0. We also consider semi-linear sets over
(N ∪ {∞})d, that is semi-linear sets with an additional symbol ∞ for infinity. As usual,
addition of vectors and multiplication of a vector with a number is defined component-wise,
where z + ∞ = ∞ + z = ∞ + ∞ = ∞ for all z ∈ N, z · ∞ = ∞ · z = ∞ for all z > 0 ∈ N,
and 0 · ∞ = ∞ · 0 = 0.

2.4 Parikh-recognizable languages
A Parikh automaton (PA) is a tuple A = (Q, Σ, q0, ∆, F, C) where Q, Σ, q0, and F are
defined as for NFA, ∆ ⊆ Q × Σ × Nd × Q is a finite set of labeled transitions, and C ⊆ Nd is
a semi-linear set. We call d the dimension of A and refer to the entries of a vector v in a
transition (p, a, v, q) as counters. Similar to NFA, a run of A on a word w = x1 . . . xn is a
(possibly empty) sequence of labeled transitions r = r1 . . . rn with ri = (pi−1, xi, vi, pi) ∈ ∆
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such that p0 = q0. We define the extended Parikh image of a run r as ρ(r) =
∑

i≤n vi (with
the convention that the empty sum equals 0). We say r is accepting if pn ∈ F and ρ(r) ∈ C,
referring to the latter condition as the Parikh condition. We define the language recognized
by A as L(A) = {w ∈ Σ∗ | there is an accepting run of A on w}. If a language L ⊆ Σ∗ is
recognized by some PA, then we call L Parikh-recognizable.

2.5 Graphs
A (directed) graph G consists of its vertex set V (G) and edge set E(G) ⊆ V (G) × V (G). In
particular, a graph G may have loops, that is, edges of the form (u, u). A (simple) path from
a vertex u to a vertex v in G is a sequence of pairwise distinct vertices v1 . . . vk such that
v1 = u, vk = v, and (vi, vi+1) ∈ E(G) for all 1 ≤ i < k. Similarly, a (simple) cycle in G is a
sequence of pairwise distinct vertices v1 . . . vk such that (vi, vi+1) ∈ E(G) for all 1 ≤ i < k,
and (vk, v1) ∈ E(G). If G has no cylces, we call G a directed acyclic graph (DAG). For a
subset U ⊆ V (G), we denote by G[U ] the graph G induced by U , i. e., the graph with vertex
set U and edge set {(u, v) ∈ E(G) | u, v ∈ U}. A strongly connected component (SCC) in G

is a maximal subset U ⊆ V (G) such that for all u, v ∈ U there is a path from u to v, i. e., all
vertices in U are reachable from each other. We write SCC(G) for the set of all strongly
connected components of G (observe that SCC(G) partitions V (G)). The condensation
of G, written C(G), is the DAG obtained from G by contracting each SCC of G into a single
vertex, that is V (C(G)) = SCC(G) and (U, V ) ∈ E(C(G)) if and only if there is u ∈ U

and v ∈ V with (u, v) ∈ E(G). We call the SCCs with no outgoing edges in C(G) leaves.
Note that an automaton can be seen as a labeled graph. Hence, all definitions translate to
automata by considering the underlying graph (to be precise, an automaton can be seen as a
labeled multigraph; however, we simply drop parallel edges).

3 Parikh automata on infinite words

In this section, we recall the acceptance conditions of Parikh automata operating on infinite
words that were studied before in the literature and introduce our new models. We make
some easy observations and compare the existing with the new automata models. We define
only the non-deterministic variants of these automata.

Let A = (Q, Σ, q0, ∆, F, C) be a PA. A run of A on an infinite word α = α1α2α3 . . . is
an infinite sequence of labeled transitions r = r1r2r3 . . . with ri = (pi−1, αi, vi, pi) ∈ ∆ such
that p0 = q0. The automata defined below differ only in their acceptance conditions. In the
following, whenever we say that an automaton A accepts an infinite word α, we mean that
there is an accepting run of A on α.

1. The run r satisfies the safety condition if for every i ≥ 0 we have pi ∈ F and ρ(r1 . . . ri) ∈ C.
We call a PA accepting with the safety condition a safety PA [22]. We define the ω-language
recognized by a safety PA A as Sω(A) = {α ∈ Σω | A accepts α}.

2. The run r satisfies the reachability condition if there is an i ≥ 1 such that pi ∈ F and
ρ(r1 . . . ri) ∈ C. We say there is an accepting hit in ri. We call a PA accepting with the
reachability condition a reachability PA [22]. We define the ω-language recognized by a
reachability PA A as Rω(A) = {α ∈ Σω | A accepts α}.

3. The run r satisfies the Büchi condition if there are infinitely many i ≥ 1 such that pi ∈ F

and ρ(r1 . . . ri) ∈ C. We call a PA accepting with the Büchi condition a Büchi PA [22]. We
define the ω-language recognized by a Büchi PA A as Bω(A) = {α ∈ Σω | A accepts α}.
Hence, a Büchi PA can be seen as a stronger variant of a reachability PA where we require
infinitely many accepting hits instead of a single one.

CSL 2024
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4. The run r satisfies the co-Büchi condition if there is i0 such that for every i ≥ i0 we
have pi ∈ F and ρ(r1 . . . ri) ∈ C. We call a PA accepting with the co-Büchi condition
a co-Büchi PA [22]. We define the ω-language recognized by a co-Büchi PA A as
CBω(A) = {α ∈ Σω | A accepts α}.
Hence, a co-Büchi PA can be seen as a weaker variant of safety PA where the safety
condition needs not necessarily be fulfilled from the beginning, but from some point
onwards.

Guha et al. [22] assume that reachability PA are complete, i.e., for every (p, a) ∈ Q×Σ there
are v ∈ Nd and q ∈ Q such that (p, a, v, q) ∈ ∆, as incompleteness allows to express additional
safety conditions. We also make this assumption in order to study “pure” reachability PA.
In fact, we can assume that all models are complete, as the other models can be completed
by adding a non-accepting sink. We remark that Guha et al. also considered asynchronous
reachability and Büchi PA, where the Parikh condition does not necessarily need to be
satisfied in accepting states. However, for non-deterministic automata this does not change
the expressiveness of the considered models [22].

We now define the models newly introduced in this work. As already observed in [22]
among the above considered models only Büchi PA can recognize all ω-regular languages.
For example, {α ∈ {a, b}ω | |α|a = ∞} cannot be recognized by safety PA, reachability PA
or co-Büchi PA.

We first extend reachability PA with the classical Büchi condition to obtain reachability-
regular PA. In Theorem 9 we show that these automata characterize ω-languages of the
form Lω

PA,Reg, hence, providing a robust and natural model.

5. The run satisfies the reachability and regularity condition if there is an i ≥ 1 such that
pi ∈ F and ρ(r1 . . . ri) ∈ C, and there are infinitely many j ≥ 1 such that pj ∈ F .
We call a PA accepting with the reachability and regularity condition a reachability-
regular PA. We define the ω-language recognized by a reachability-regular PA A as
RRω(A) = {α ∈ Σω | A accepts α} and call it reachability-regular.

Note that (in contrast to reachability PA) we may assume that reachability-regular PA
are complete without changing their expressiveness. Observe that every ω-regular language
is reachability-regular, as we can turn an arbitrary Büchi automaton into an equivalent
reachability-regular PA by labeling every transition with 0 and setting C = {0}.

We next introduce limit PA, which were proposed in the concluding remarks of [26]. As
we will prove in Theorem 9, this seemingly quite different model is equivalent to reachability-
regular PA.

6. The run satisfies the limit condition if there are infinitely many i ≥ 1 such that pi ∈ F ,
and if additionally ρ(r) ∈ C, where the jth component of ρ(r) is computed as follows. If
there are infinitely many i ≥ 1 such that the jth component of vi has a non-zero value,
then the jth component of ρ(r) is ∞. In other words, if the sum of values in a component
diverges, then its value is set to ∞. Otherwise, the infinite sum yields a positive integer.
We call a PA accepting with the limit condition a limit PA. We define the ω-language
recognized by a limit PA A as Lω(A) = {α ∈ Σω | A accepts α}.

Still, none of the yet introduced models have ω-closure. This shortcoming is addressed
with the following two models, which will turn out to be equivalent and form the basis of the
automata characterization of Lω

Reg,PA and Lω
PA,PA.
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7. The run satisfies the strong reset condition if the following holds. Let k0 = 0 and denote
by k1 < k2 < . . . the positions of all accepting states in r. Then r is accepting if k1, k2, . . .

is an infinite sequence and ρ(rki−1+1 . . . rki
) ∈ C for all i ≥ 1. We call a PA accepting

with the strong reset condition a strong reset PA. We define the ω-language recognized
by a strong reset PA A as SRω(A) = {α ∈ Σω | A accepts α}.

8. The run satisfies the weak reset condition if there are infinitely many reset positions
0 = k0 < k1 < k2, . . . such that pki

∈ F and ρ(rki−1+1 . . . rki
) ∈ C for all i ≥ 1. We call

a PA accepting with the weak reset condition a weak reset PA. We define the ω-language
recognized by a weak reset PA A as WRω(A) = {α ∈ Σω | A accepts α}.

Intuitively worded, whenever a strong reset PA enters an accepting state, the Parikh
condition must be satisfied. Then the counters are reset. Similarly, a weak reset PA may
reset the counters whenever there is an accepting hit, and they must reset infinitely often, too.
In the following we will often just speak of reset PA without explicitly stating whether they
are weak or strong. In this case, we mean the strong variant. We will show the equivalence
of the two models in Lemma 26 and Lemma 27.

q0 q1

b,

(
0
1

)
a,

(
1
0

) a,

(
1
0

)

b,

(
0
1

)
Figure 1 The automaton A with C = {(z, z′), (z, ∞) | z′ ≥ z} from Example 1.

▶ Example 1. Let A be the automaton in Figure 1 with C = {(z, z′), (z, ∞) | z′ ≥ z}.
If we interpret A as a PA (over finite words), then we have L(A) = {w ∈ {a, b}∗ · {b} |
|w|a ≤ |w|b} ∪ {ε}. The automaton is in the accepting state at the very beginning and
every time after reading a b. The first counter counts the occurrences of letter a, the
second one counts occurrences of b. By definition of C the automaton only accepts when
the second counter value is greater or equal to the first counter value (note that vectors
containing an ∞-entry have no additional effect).
If we interpret A as a safety PA, then we have Sω(A) = {b}ω. As q1 is not accepting,
only the b-loop on q0 may be used.
If we interpret A as a reachability PA, then we have Rω(A) = {α ∈ {a, b}ω | α has a
prefix in L(A)}. The automaton has satisfied the reachability condition after reading a
prefix in L(A) and accepts any continuation after that.
If we interpret A as a Büchi PA, then we have Bω(A) = L(A)ω. The automaton accepts
an infinite word if infinitely often the Parikh condition is satisfied in the accepting state.
Observe that C is a homogeneous linear set and the initial state as well as the accepting
state have the same outgoing transitions.
If we interpret A as a co-Büchi PA, then we have CBω(A) = L(A) · {b}ω. This is similar
to the safety PA, but the accepted words may have a finite “non-safe” prefix from L(A).

CSL 2024
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If we interpret A as a reachability-regular PA, then we have RRω(A) = {α ∈ {a, b}ω |
α has a prefix in L(A) and |α|b = ∞}. After having met the reachability condition the
automaton still needs to satisfy the Büchi condition, which enforces infinitely many visits
of the accepting state.
If we interpret A as a limit PA, then we have Lω(A) = {α ∈ {a, b}ω | |α|a < ∞}. The
automaton must visit the accepting state infinitely often. At the same time the extended
Parikh image must belong to C, which implies that the infinite word contains only some
finite number z of letter a (note that only the vectors of the form (z, ∞) have an effect
here, as at least one symbol must be seen infinitely often by the infinite pigeonhole
principle).
If we interpret A as a weak reset PA, then we have WRω(A) = L(A)ω. As a weak reset
PA may (but is not forced to) reset the counters upon visiting the accepting state, the
automaton may reset every time a (finite) infix in L(A) has been read.
If we interpret A as a strong reset PA, then we have SRω(A) = {b∗a}ω ∪ {b∗a}∗ · {b}ω.
Whenever the automaton reaches an accepting state also the Parikh condition must be
satisfied. This implies that the a-loop on q1 may never be used, as this would increase
the first counter value to at least 2, while the second counter value is 1 upon reaching the
accepting state q0 (which resets the counters).

▶ Remark. The automaton A in the example is deterministic. We note that Lω(A) is not
deterministic ω-regular but deterministic limit PA-recognizable.

4 Büchi-like characterizations

It was observed in [22] that Büchi PA recognize a strict subset of Lω
PA,PA. In this section we

first show that the class of reset PA-recognizable ω-languages is a strict superset of Lω
PA,PA.

Then we provide an automata-based characterization of Lω
PA,Reg, Lω

PA,PA, and Lω
Reg,PA. Towards

this goal we first establish some closure properties.
Guha et al. [22] have shown that safety, reachability, Büchi, and co-Büchi PA are closed

under union using a modification of the standard construction for PA, i. e., taking the disjoint
union of the automata (introducing a fresh initial state), and the disjoint union of the
semi-linear sets, where disjointness is achieved by “marking” every vector in the first set
by an additional 1 (increasing the dimension by 1), and all vectors in the second set by
an additional 2. We observe that the same construction also works for reachability-regular
and limit PA, and a small modification is sufficient to make the construction also work for
reset PA. We leave the details to the reader.

▶ Lemma 2. The classes of reachability-regular, limit PA-recognizable, and reset PA-
recognizable ω-languages are closed under union.

Furthermore, we show that these classes, as well as the class of Büchi PA-recognizable
ω-languages, are closed under left-concatenation with PA-recognizable languages. We provide
some details in the next lemma, as we will need to modify the standard construction in such
a way that we do not need to keep accepting states of the PA on finite words. This will help
to characterize Lω

PA,PA via (restricted) reset PA.

▶ Lemma 3 (⋆). The classes of reachability-regular, limit PA-recognizable, reset PA-
recognizable, and Büchi PA-recognizable ω-languages are closed under left-concatenation
with PA-recognizable languages.
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Before we continue, we show that we can normalize PA (on finite words) such that the
initial state is the only accepting state. This observation simplifies several proofs in this
section.

▶ Lemma 4 (⋆). Let A = (Q, Σ, q0, ∆, F, C) be a PA of dimension d. Then there exists an
equivalent PA A′ of dimension d + 1 with the following properties.

The initial state of A′ is the only accepting state.
SCC(A′) = {Q}.

We say that A′ is normalized.

Observe that we have SRω(A′) = L(A)ω, that is, every normalized PA interpreted as a
reset PA recognizes the ω-closure of the language recognized by the PA. As an immediate
consequence we obtain the following corollary.

▶ Corollary 5. The class of reset PA-recognizable ω-languages is closed under the ω-operation.

Combining these results we obtain that every ω-language in Lω
PA,PA, i.e. every ω-language

of the form
⋃

i UiV
ω

i is reset PA-recognizable. We show that the other direction does not
hold, i.e., the inclusion is strict.

▶ Lemma 6. The class Lω
PA,PA is a strict subclass of the class of reset PA-recognizable

ω-languages.

Proof. The inclusion is a direct consequence of Lemma 2, Lemma 3, and Corollary 5. Hence
we show that the inclusion is strict.

Consider the ω-language L = {anbn | n ≥ 1}ω ∪ {anbn | n ≥ 1}∗ · {a}ω. This ω-
language is reset PA-recognizable, as witnessed by the strong reset PA in Figure 2 with
C = {(z, z) | z ∈ N}.

q0 q1 q2 q3

a,

(
1
0

)
b,

(
0
1

)

b,

(
0
1

)

b,

(
0
1

)
b,

(
0
1

)

a,

(
1
0

)

a,

(
0
0

) a,

(
0
0

)

Figure 2 The strong reset PA for L = {anbn | n ≥ 1}ω ∪ {anbn | n ≥ 1}∗ · {a}ω.

We claim that L /∈ Lω
PA,PA. Assume towards a contraction that L ∈ Lω

PA,PA, i. e., there
are Parikh-recognizable languages U1, V1, . . . , Un, Vn such that L = U1V ω

1 ∪ · · · ∪ UnV ω
n .

Then there is some i ≤ n such that for infinitely many j ≥ 1 the infinite word αj =
aba2b2 . . . ajbj · aω ∈ UiV

ω
i . Then Vi must contain a word of the form v = ak, k > 0.

Additionally, there cannot be a word in Vi with infix b. To see this assume for sake of
contradiction that there is a word w ∈ Vi with ℓ = |w|b > 0. Let β = (vℓ+1w)ω. Observe
that β has an infix that consists of at least ℓ + 1 many a, followed by at most ℓ, but at least
one b, hence, no word of the form uβ with u ∈ Ui is in L. This is a contradiction, thus
Vi ⊆ {a}+.
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Since Ui ∈ LPA, there is a PA Ai with L(Ai) = Ui. Let m be the number of states
in Ai and w′ = aba2b2 . . . am4+1bm4+1. Then w′ is a prefix of a word accepted by Ai. Now
consider the infixes aℓbℓ and the pairs of states q1, q2, where we start reading aℓ and end
reading aℓ, and q3, q4 where we start to read bℓ and end to read bℓ, respectively. There
are m2 choices for the first pair and m2 choices for the second pair, hence m4 possibilities
in total. Hence, as we have more than m4 such infixes, there must be two with the same
associated states q1, q2, q3, q4. Then we can swap these two infixes and get a word of the
form ab . . . arbs . . . asbr . . . am4+1bm4+1 that is a prefix of some word in L(Ai) = Ui. But no
word in L has such a prefix, a contradiction. Thus, U1V ω

1 ∪ · · · ∪ UnV ω
n ̸= L. ◀

4.1 Characterization of Büchi Parikh automata
As mentioned in the last section, the class of ω-languages recognized by Büchi PA is a strict
subset of Lω

PA,PA, i. e., languages of the form
⋃

i UiV
ω

i for Parikh-recognizable Ui and Vi. In
this subsection we show that a restriction of the PA recognizing the Vi is sufficient to exactly
capture the expressiveness of Büchi PA. To be precise, we show the following.

▶ Lemma 7. The following are equivalent for all ω-languages L ⊆ Σω:
1. L is Büchi PA-recognizable.
2. L is of the form

⋃
i UiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable and Vi ∈ Σ∗ is recognized

by a normalized PA where C is a homogeneous linear set.

We note that we can translate every PA (with a linear set C) into an equivalent normal-
ized PA by Lemma 4. However, this construction adds a base vector, as we concatenate {1}
to C. In fact, this can generally not be avoided without losing expressiveness. It turns
out that this loss of expressiveness is exactly what we need to characterize the class of
ω-languages recognized by Büchi PA as stated in the previous lemma. The main reason for
this is pointed out in the following lemma.

▶ Lemma 8 (⋆). Let L be a language recognized by a (normalized) PA A =
(Q, Σ, q0, ∆, {q0}, C) where C is a homogeneous linear set. Then we have Bω(A) = L(A)ω.

This is the main ingredient to prove Lemma 7.

Proof of Lemma 7. We note that the proof in [22] showing that every ω-language L recog-
nized by a Büchi-PA is of the form

⋃
i UiVi for PA-recognizable Ui and Vi already constructs

PA for the Vi of the desired form. This shows the implication (1) ⇒ (2).
To show the implication (2) ⇒ (1), we use that the ω-closure of languages recognized

by PA of the stated form is Büchi PA-recognizable by Lemma 8. As Büchi PA are closed
under left-concatenation with PA-recognizable languages (Lemma 3) and union [22], the
claim follows. ◀

4.2 Characterization of Lω
PA,Reg

In this subsection we characterize Lω
PA,Reg by showing the following equivalences.

▶ Theorem 9. The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable, and Vi ⊆ Σ∗ is regular.

2. L is limit PA-recognizable.
3. L is reachability-regular.
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Observe that in the first item we may assume that L is of the form
⋃

i UiVi, where
Ui ∈ Σ∗ is Parikh-recognizable, and Vi ⊆ Σω is ω-regular. Then, by simple combinatorics and
Büchi’s theorem we have

⋃
i UiVi =

⋃
i Ui(

⋃
ji

Xji
Y ω

ji
) =

⋃
i,ji

Ui(Xji
Y ω

ji
) =

⋃
i,ji

(UiXji
)Y ω

ji
,

for regular languages Xji , Yji , where UiXji is Parikh-recognizable, as Parikh-recognizable
languages are closed under concatenation [5, Proposition 3].

To simplify the proof, it is convenient to consider the following generalizations of
Büchi automata. A transition-based generalized Büchi automaton (TGBA) is a tuple
A = (Q, Σ, q0, ∆, T ) where T ⊆ 2∆ is a collection of sets of transitions. Then a run
r1r2r3 . . . of A is accepting if for all T ∈ T there are infinitely many i such that ri ∈ T . It is
well-known that TGBA have the same expressiveness as Büchi automata [17].

Theorem 9 will be a direct consequence from the following lemmas. The first lemma
shows the implication (1) ⇒ (2).

▶ Lemma 10. If L ∈ Lω
PA,Reg, then L is limit PA-recognizable.

Proof. As the class of limit PA-recognizable ω-languages is closed under union by Lemma 2,
it is sufficient to show how to construct a limit PA for an ω-language of the form L = UV ω,
where U is Parikh-recognizable and V is regular.

Let A1 = (Q1, Σ, q1, ∆1, F1, C) be a PA with L(A1) = U and A2 = (Q2, Σ, q2, ∆2, F2)
be a Büchi automaton with Lω(A2) = V ω. We use the following standard construction for
concatenation. Let A = (Q1 ∪ Q2, Σ, q1, ∆, F2, C) be a limit PA where

∆ = ∆1 ∪ {(p, a, 0, q) | (p, a, q) ∈ ∆2} ∪ {(f, a, 0, q) | (q2, a, q) ∈ ∆2, f ∈ F1}.

We claim that Lω(A) = L.

⇒ To show Lω(A) ⊆ L, let α ∈ Lω(A) with accepting run r1r2r3 . . . where ri =
(pi−1, αi, vi, pi). As only the states in F2 are accepting, there is a position j such that
pj−1 ∈ F1 and pj ∈ Q2. In particular, all transitions of the copy of A2 are labeled with 0,
i. e., vi = 0 for all i ≥ j. Hence ρ(r) = ρ(r1 . . . rj−1) ∈ C (in particular, there is no ∞ value
in ρ(r)). We observe that r1 . . . rj−1 is an accepting run of A1 on α[1, j −1], as pj−1 ∈ F1 and
ρ(r1 . . . rj−1) ∈ C. For all i ≥ j let r′

i = (pi−1, αi, pi). Observe that (q2, αj , pj)r′
j+1r′

j+2 . . .

is an accepting run of A2 on αjαj+1αj+2 . . . , hence α ∈ L(A1) · Lω(A2) = L.

⇐ To show L = UV ω ⊆ Lω(A), let w ∈ L(A1) = U with accepting run s, and
α ∈ Lω(A2) = V ω with accepting run r = r1r2r3 . . . , where ri = (pi−1, α1, pi). Observe
that s is also a partial run of A on w, ending in an accepting state f . By definition of ∆, we
can continue the run s in A basically as in r. To be precise, let r′

1 = (f, α1, 0, p1), and, for
all i > 1 let r′

i = (pi−1, αi, 0, pi). Then sr′
1r′

2r′
3 . . . is an accepting run of A on wα, hence

wα ∈ Lω(A). ◀

Observe that the construction in the proof of the lemma works the same way when we
interpret A as a reachability-regular PA (every visit of an accepting state has the same good
counter value; this argument is even true if we interpret A as a Büchi PA), showing the
implication (1) ⇒ (3).

▶ Corollary 11. If L ∈ Lω
PA,Reg, then L is reachability-regular.

For the backwards direction we need an auxiliary lemma, essentially stating that semi-
linear sets over C ⊆ (N ∪ {∞})d can be modified such that ∞-entries in vectors in C are
replaced by arbitrary integers, and remain semi-linear.
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▶ Lemma 12. Let C ⊆ (N ∪ {∞})d be semi-linear and D ⊆ {1, . . . , d}. Let CD ⊆ Nd be the
set obtained from C as follows.
1. Remove every vector v = (v1, . . . , vd) where vi = ∞ for an i /∈ D.
2. As long as CD contains a vector v = (v1, . . . , vd) with vi = ∞ for an i ≤ d: replace v by

all vectors of the form (v1, . . . vi−1, z, vi+1, . . . , vd) for z ∈ N.
Then CD is semi-linear.

Proof. For a vector v = (v1, . . . , vd) ∈ (N ∪ {∞})d, let Inf(v) = {i | vi = ∞} denote the
positions of ∞-entries in v. Furthermore, let v̄ = (v̄1, . . . , v̄d) denote the vector obtained
from v by replacing every ∞-entry by 0, i. e., v̄i = 0 if vi = ∞, and v̄i = vi otherwise.

We carry out the following procedure for every linear set of the semi-linear set indepen-
dently, hence we assume that C = {b0 + b1z1 + · · · + bℓzℓ | z1, . . . , zℓ ∈ N} is linear. We also
assume that there is no bj with Inf(bj) ̸⊆ D, otherwise, we simply remove it.

Now, if Inf(b0) ̸⊆ D, then CD = ∅, as this implies that every vector in C has an ∞-entry
at an unwanted position (the first item of the lemma). Otherwise, CD = {b0 +

∑
j≤ℓ b̄jzj +∑

i∈Inf(bj) eizij | zj , zij ∈ N}, which is linear by definition. ◀

We are now ready to prove the following lemma, showing the implication (2) ⇒ (1).

▶ Lemma 13. If L is limit PA-recognizable, then L ∈ Lω
PA,Reg.

Proof. Let A = (Q, Σ, q0, ∆, F, C) be an limit PA of dimension d. The idea is as follows.
We guess a subset D ⊆ {1, . . . , d} of counters whose values we expect to be ∞. Observe that
every counter not in D has a finite value, hence for every such counter there is a point where
all transitions do not increment the counter further. For every subset D ⊆ {1, . . . , d} we
decompose A into a PA and a TGBA. In the first step we construct a PA where every counter
not in D reaches its final value and is verified. In the second step we construct a TGBA
ensuring that for every counter in D at least one transition adding a non-zero value to that
counter is used infinitely often. This can be encoded directly into the TGBA. Furthermore
we delete all transitions that modify counters not in D.

Fix D ⊆ {1, . . . , d} and f ∈ F , and define the PA AD
f = (Q, Σ, q0, ∆, {f}, CD) where CD

is defined as in Lemma 12. Furthermore, we define the TGBA BD
f = (Q, Σ, f, ∆D, T D)

where ∆D contains the subset of transitions of ∆ where the counters not in D have zero-values
(just the transitions without vectors for the counters, as we construct a TGBA). On the
other hand, for every counter i in D there is one acceptance component in T D that contains
exactly those transitions (again without vectors) where the ith counter has a non-zero value.
Finally, we encode the condition that at least one accepting state in F needs to by seen
infinitely often in T D by further adding the component {(p, a, q) ∈ ∆ | q ∈ F} (i. e. now we
need to see an incoming transition of a state in F infinitely often).

We claim that Lω(A) =
⋃

D⊆{1,...,d},f∈F L(AD
f ) · Lω(BD

f ), which by the comment below
Theorem 9 and the equivalence of TGBA and Büchi automata implies the statement of the
lemma. The details are presented in the appendix. ◀

The construction in Lemma 10 yields a limit PA whose semi-linear set C contains no
vector with an ∞-entry. Hence, by this observation and the construction in the previous
lemma we obtain the following corollary.

▶ Corollary 14. For every limit PA there is an equivalent limit PA whose semi-linear set
does not contain any ∞-entries.

Finally we show the implication (3) ⇒ (1).
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▶ Lemma 15. If L is reachability-regular, then L ∈ Lω
PA,Reg.

Proof. Let A = (Q, Σ, q0, ∆, F, C) be a reachability-regular PA. The intuition is as follows.
a reachability-regular PA just needs to verify the counters a single time. Hence, we can
recognize the prefixes of infinite words α ∈ Bω(A) that generate the accepting hit with a PA.
Further checking that an accepting state is seen infinitely often can be done with a Büchi
automaton.

Fix f ∈ F and let Af = (Q, Σ, q0, ∆, {f}, C) be the PA that is, syntactically equal
to A with the only difference that f is the only accepting state. Similarly, let Bf =
(Q, Σ, f, {(p, a, q) | (p, a, v, q) ∈ ∆}, F ) be the Büchi automaton obtained from A by setting f

as the initial state and the forgetting the vector labels.
We claim that RRω(A) =

⋃
f∈F L(Af ) · Lω(Bf ).

⇒ To show RRω(A) ⊆
⋃

f∈F L(Af ) · Lω(Bf ), let α ∈ Bω(A) with accepting run r =
r1r2r3 . . . where ri = (pi−1, αi, vi, pi). Let k be arbitrary such that there is an accepting
hit in rk (such a k exists by definition) and consider the prefix α[1, k]. Obviously r1 . . . rk

is an accepting run of Apk
on α[1, k]. Furthermore, there are infinitely many j such that

pj ∈ F by definition. In particular, there are also infinitely many j ≥ k with this property.
Let r′

i = (pi−1, αi, pi) for all i > k. Then r′
k+1r′

k+2 . . . is an accepting run of Bpk
on

αk+1αk+2 . . . (recall that pk is the initial state of Bpk
). Hence we have α[1, k] ∈ L(Apk

) and
αk+1αk+2 · · · ∈ Lω(Bpk

).
⇐ To show

⋃
f∈F L(Af ) · Lω(Bf ) ⊆ RRω(A), let w ∈ L(Af ) and β ∈ Lω(Bf ) for some

f ∈ F . We show wβ ∈ Bω(A). Let s = s1 . . . sn be an accepting run of Af on w, which ends
in the accepting state f with ρ(s) ∈ C by definition. Furthermore, let r = r1r2r3 . . . be an
accepting run of BD

f on β which starts in the accepting state f by definition. It is now easily
verified that sr′ with r′ = r′

1r′
2r′

3 . . . where r′
i = (pi−1, αi, vi, pi) (for an arbitrary vi such that

r′
i ∈ ∆) is an accepting run of A on wβ, as there is an accepting hit in sn, and the (infinitely

many) visits of an accepting state in r translate one-to-one, hence wβ ∈ Bω(A). ◀

As shown in Lemma 7, the class of Büchi PA-recognizable ω-languages is equivalent to
the class of ω-languages of the form

⋃
i UiV

ω
i where Ui and Vi are Parikh-recognizable, but

the PA for Vi is restricted in such a way that the initial state is the only accepting state
and the set is a homogeneous linear set. Observe that for every regular language L there is
a Büchi automaton A where the initial state is the only accepting state with Lω(A) = Lω

(see e.g. [29, Lemma 1.2]). Hence, Lω
PA,Reg is a subset of the class of Büchi PA-recognizable

ω-languages. This inclusion is also strict, as witnessed by the Büchi PA in Example 1 which
has the mentioned property.

▶ Corollary 16. The class Lω
PA,Reg is a strict subclass of the class of Büchi PA-recognizable

ω-languages.

We finish this subsection by observing that (complete) reachability PA capture a subclass
of Lω

PA,Reg where, due to completeness, all Vi = Σ.

▶ Observation 17. The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiΣω where Ui ⊆ Σ∗ is Parikh-recognizable.

2. L is reachability PA-recognizable.

4.3 Characterization of Lω
PA,PA and Lω

Reg,PA

In this section we give a characterization of Lω
PA,PA and a characterization of Lω

Reg,PA. As
mentioned in the beginning of this section, reset PA are too strong to capture this class.
However, restrictions of strong reset PA are good candidates to capture Lω

PA,PA as well
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as Lω
Reg,PA. In fact we show that it is sufficient to restrict the appearances of accepting states

to capture Lω
PA,PA, as specified by the first theorem of this subsection. Further restricting the

vectors yields a model capturing Lω
Reg,PA, as specified in the second theorem of this subsection.

Recall that the condensation of A is the DAG of strong components of the underlying graph
of A.

▶ Theorem 18. The following are equivalent for all ω-languages L ⊆ Σω.

1. L is of the form
⋃

i UiV
ω

i , where Ui, Vi ⊆ Σ∗ are Parikh-recognizable.

2. L is recognized by a strong reset PA A with the property that accepting states appear only
in the leaves of the condensation of A, and there is at most one accepting state per leaf.

Proof. (1) ⇒ (2). Let Ai = (Qi, Σ, qi, ∆i, Fi) for i ∈ {1, 2} be PA and let L = L(A1)·L(A2)ω.
By Lemma 4 we may assume that A2 is normalized (recall that by Corollary 5 this implies
SRω(A2) = L(A2)ω) and hence write L = L(A1) · SRω(A2). As pointed out in the proof of
Lemma 3, we can construct a reset PA A that recognizes L such that only the accepting
states of A2 remain accepting in A. As A2 is normalized, this means that only q2 is accepting
in A. Hence A satisfies the property of the theorem. Finally observe that the construction
in Lemma 2 maintains this property, implying that the construction presented in Lemma 6
always yields a reset PA of the desired form. ⌟

(2) ⇒ (1). Let A = (Q, Σ, q0, ∆, F, C) be a strong reset PA of dimension d with
the property of the theorem. Let f ∈ F and let Af = (Q, Σ, q0, ∆f , {f}, C · {1}) with
∆f = {p, a, v · 0, q) | (p, a, v, q) ∈ ∆, q ̸= f} ∪ {(p, a, v · 1, f) | (p, a, v, f) ∈ ∆} be the
PA of dimension d + 1 obtained from A by setting f as the only accepting state with an
additional counter that is 0 at every transition except the incoming transitions of f , where
the counter is set to 1. Additionally all vectors in C are concatenated with 1. Similarly,
let Af,f = (Q, Σ, f, ∆f , {f}, C · {1}) be the PA of dimension d + 1 obtained from Af by
setting f as the initial state.

⇒ To show SRω(A) ⊆
⋃

f∈F L(Af ) · L(Af,f )ω, let α ∈ Sω(A) with accepting run
r = r1r2r3 . . . where ri = (pi−1, αi, vi, pi). Let k1 < k2 < . . . be the positions of accepting
states in r, i. e., pki ∈ F for all i ≥ 1. First observe that the property in the theorem implies
pki

= pkj
for all i, j ≥ 1, i. e., no two distinct accepting states appear in r, since accepting

states appear only in different leaves of the condensation of A.
For j ≥ 1 define r′

j = (pj−1, αj , vj ·0, pj) if j ̸= ki for all i ≥ 1, and r′
j = (pj−1, αj , vj ·1, pj)

if j = ki for some i ≥ 1, i. e., we replace every transition rj by the corresponding transition
in ∆f .

Now consider the partial run r1 . . . rk1 and observe that pi ̸= pk1 for all i < k1, and
ρ(r1 . . . rk1) ∈ C by the definition of strong reset PA. Hence r′ = r′

1 . . . r′
k1

is an accepting
run of Apk1

on α[1, k1], as only a single accepting state appears in r′, the newly introduced
counter has a value of 1 when entering pk1 , i. e., ρ(r′) ∈ C · {1}, hence α[1, k1] ∈ L(Apk1

).
Finally, we show that α[ki + 1, ki+1] ∈ L(Apk1 ,pk1

). Observe that r′
ki+1 . . . r′

ki+1
is an

accepting run of Apk1 ,pk1
on α[ki + 1, ki+1]: we have ρ(rki+1 . . . rki+1) = v ∈ C by definition.

Again, as only a single accepting state appears in r′
ki+1 . . . r′

ki+1
, we have ρ(r′

ki+1 . . . r′
ki+1

) =
v·1 ∈ C ·{1}, and hence α[ki+1, ki+1] ∈ L(Apk1 ,pk1

). We conclude α ∈ L(Apk1
)·L(Apk1 ,pk1

)ω.

⇐ To show
⋃

f∈F L(Af ) · L(Af,f )ω ⊆ SRω(A), let u ∈ L(Af ), and v1, v2, · · · ∈ L(Af,f )
for some f ∈ F . We show that uv1v2 · · · ∈ SRω(A).
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First let u = u1 . . . un and r′ = r′
1 . . . r′

n with r′
i = (pi−1, ui, vi · ci, pi), where ci ∈ {0, 1},

be an accepting run of Af on u. Observe that ρ(r′) ∈ C · {1}, hence
∑

i≤n ci = 1, i. e., pn is
the only occurrence of an accepting state in r′ (if there was another, say pj , then cj = 1 by the
choice of ∆f , hence

∑
i≤n ci > 1, a contradiction). For all 1 ≤ i ≤ n let ri = (pi−1, ui, vi, pi).

Then r1 . . . rn is a partial run of A on w with ρ(r1 . . . rn) ∈ C and pn = f .
Similarly, no run of Af,f on any vi visits an accepting state before reading the last

symbol, hence we continue the run from rn on v1, v2, . . . using the same argument. Hence
uv1v2 · · · ∈ SRω(A), concluding the proof. ◀

As a side product of the proof of Theorem 18 we get the following corollary, which is in
general not true for arbitrary reset PA.

▶ Corollary 19. Let A = (Q, Σ, q0, ∆, F, C) be a strong reset PA with the property that
accepting states appear only in the leaves of the condensation of A, and there is at most one
accepting state per leaf. Then we have SRω(A) =

⋃
f∈F Sω(Q, Σ, q0, ∆, {f}, C).

By even further restricting the power of strong reset PA, we get the following characteri-
zation of Lω

Reg,PA.

▶ Theorem 20 (⋆). The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiV

ω
i , where Ui ⊆ Σ∗ is regular and Vi ⊆ Σ∗ is Parikh-recognizable.

2. L is recognized by a strong reset PA A with the following properties.
(a) At most one state q per leaf of the condensation of A may have incoming transitions

from outside the leaf, this state q is the only accepting state in the leaf, and there are
no accepting states in non-leaves.

(b) only transitions connecting states in a leaf may be labeled with a non-zero vector.

Observe that property (a) is a stronger property than the one of Theorem 18, hence,
strong reset PA with this restriction are at most as powerful as those that characterize Lω

PA,PA.
However, as a side product of the proof we get that property (a) is equivalent to the property
of Theorem 18. Hence, property (b) is mandatory to sufficiently weaken strong reset PA
such that they capture Lω

Reg,PA. In fact, using the notion of normalization, we can re-use
most of the ideas in the proof of Theorem 18.

5 Blind counter machines and ε-elimination

As mentioned in the introduction, blind counter machines as an extension of automata with
counting mechanisms were already introduced and studied in the 70s [18]. Over finite words
they are equivalent to Parikh automata [26]. Blind counter machines over infinite words were
first considered by Fernau and Stiebe [14]. In this section we first recall the definition of blind
counter machines as introduced by Fernau and Stiebe [14]. The definition of these automata
admits ε-transitions. It is easily observed that Büchi PA with ε-transitions are equivalent to
blind counter machines. Therefore, we extend all Parikh automata models studied in this
paper with ε-transitions and consider the natural question whether they admit ε-elimination
(over infinite words). We show that almost all models allow ε-elimination, the exception
being safety and co-Büchi PA. For the latter two models we observe that ε-transitions allow
to encode ω-regular conditions, meaning that such transitions give the models enough power
such that they can recognize all ω-regular languages.

A blind k-counter machine (CM) is a quintuple M = (Q, Σ, q0, ∆, F ) where Q, Σ, q0
and F are defined as for NFA, and ∆ ⊆ Q × (Σ ∪ {ε}) × Zk × Q is a finite set of integer
labeled transitions. In particular, the transitions of ∆ are labeled with possibly negative
integer vectors. Observe that ε-transitions are allowed.
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A configuration for an infinite word α = α1α2α3 . . . of M is a tuple of the form
c = (p, α1 . . . αi, αi+1αi+2 . . . , v) ∈ Q × Σ∗ × Σω × Zk for some i ≥ 0. A configuration c de-
rives into a configuration c′, written c ⊢ c′, if either c′ = (q, α1 . . . αi+1, αi+2 . . . , v + u)
and (p, αi+1, u, q) ∈ ∆, or c′ = (q, α1 . . . αi, αi+1αi+2 . . . , v + u) and (p, ε, u, q) ∈ ∆.
M accepts an infinite word α if there is an infinite sequence of configuration deriva-
tions c1 ⊢ c2 ⊢ c3 ⊢ . . . with c1 = (q0, ε, α, 0) such that for infinitely many i we have
ci = (pi, α1 . . . αj , αj+1αj+2 . . . , 0) with pi ∈ F and for all j ≥ 1 there is a configuration of
the form (p, α1 . . . αj , αj+1αj+2 . . . , v) for some p ∈ Q and v ∈ Zk in the sequence. That is,
a word is accepted if we infinitely often visit an accepting state when the counters are 0,
and every symbol of α is read at some point. We define the ω-language recognized by M as
Lω(M) = {α ∈ Σω | M accepts α}.

Parikh automata naturally generalize to Parikh automata with ε-transitions. An ε-
PA is a tuple A = (Q, Σ, q0, ∆, E , F, C) where E ⊆ Q × {ε} × Nd × Q is a finite set of
labeled ε-transitions, and all other entries are defined as for PA. A run of A on an infinite
word α1α2α3 . . . is an infinite sequence of transitions r ∈ (E∗∆)ω, say r = r1r2r3 . . . with
ri = (pi−1, γi, vi, pi) such that p0 = q0, and γi = ε if ri ∈ E , and γi = αj if ri ∈ ∆ is the j-th
occurrence of a (non-ε) transition in r. The acceptance conditions of the models translate to
runs of ε-PA in the obvious way. We use terms like ε-safety PA, ε-reachability PA, etc, to
denote an ε-PA with the respective acceptance condition.

Note that we can treat every PA as an ε-PA, that is, a PA A = (Q, Σ, q0, ∆, F, C) is
equivalent to the ε-PA A′ = (Q, Σ, q0, ∆,∅, F, C).

5.1 Equivalence of blind counter machines with Büchi PA
We start with the following simple observation.

▶ Lemma 21 (⋆). CM and ε-Büchi PA are equivalent.

5.2 ε-elimination for Parikh automata
We now show that almost all PA models admit ε-elimination. We first consider Büchi PA,
where ε-elimination implies the equivalence of blind counter machines and Büchi PA
by Lemma 21. We provided a direct but quite complicated proof in the manuscript [19]. We
thank Georg Zetzsche for outlining a much simpler proof, which we present here.

▶ Theorem 22. ε-Büchi PA admit ε-elimination.

Proof. Observe that the construction in Lemma 21 translates ε-free CM into ε-free Büchi PA.
We can hence translate a given Büchi PA into a CM and eliminate ε-transitions and then
translate back into a Büchi PA. Therefore, all we need to show is that CM admit ε-elimination.

To show that CM admit ε-elimination we observe that

L is recognized by a CM ⇐⇒ L =
⋃

i

UiV
ω

i ,

where Ui is a language of finite words that is recognized by a CM and Vi is a language of
finite words that is recognized by a CM where F = {q0}. The proof of this observation is
very similar to the proof of Lemma 7 and we leave the details to the reader.

As shown in [18, 27, 30], CM on finite words admit ε-elimination. Furthermore, the proof
technique established in [30, Lemma 7.7] it is immediate that the condition that F = {q0}
is preserved. We obtain ε-free CM A′

i and B′
i for the languages Ui and Vi. Using the
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construction of [26], we can translate A′
i and B′

i into PA Ai and Bi, where the Bi satisfy
Fi = {q0} and the sets Ci are homogeneous linear sets (Theorem 32 of [26]). Now the
statement follows by Lemma 7. ◀

We continue with ε-reachability, ε-reachability-regular and ε-limit PA, as we show ε-
elimination using the same technique for these models. As shown in Observation 17 and
Theorem 9, the class of ω-languages recognized by reachability PA coincides with the class of ω-
languages of the form

⋃
i UiΣω for Parikh-recognizable Ui, and the class of reachability-regular

and limit PA-recognizable ω-languages coincides with the class of ω-languages of the form⋃
i UiV

ω
i for Parikh-recognizable Ui and regular Vi, respectively. It is well-known that NFA

and PA on finite words are closed under homomorphisms and hence admit ε-elimination [26]
(as a consequence of [27, Proposition II.11], ε-transitions can even be eliminated without
changing the semi-linear set). The characterizations allow us to reduce ε-elimination of these
infinite word PA to the finite case.

▶ Lemma 23 (⋆). ε-reachability, ε-reachability-regular, and ε-limit PA admit ε-elimination.

Finally we show that safety and co-Büchi PA do not admit ε-elimination.

▶ Lemma 24. ε-safety PA and ε-co-Büchi PA do not admit ε-elimination.

Proof. Consider the automaton A in Figure 3 with C = {(z, z′) | z′ ≥ z}.

q0 q1

ε,

(
0
1

)
a,

(
0
0

) b,

(
1
0

)

b,

(
0
0

)
Figure 3 The ε-PA with C = {(z, z′) | z′ ≥ z} for the proof of Lemma 24.

If we interpret A as an ε-safety or ε-co-Büchi PA, we have we have Sω(A) = CBω(A) =
{ab+}ω. This ω-language is neither safety PA nor co-Büchi PA-recognizable (one can easily
adapt the proof in [22] showing that {α ∈ {a, b}ω | |α|a = ∞} is neither safety PA nor
co-Büchi PA-recognizable).

Observe how A utilizes the ε-transition to enforce that q0 is seen infinitely often: whenever
the b-loop on q1 is used, the first counter increments. The semi-linear set states that at no
point the first counter value may be greater than the second counter value which can only
be increased using the ε-loop on q0. Hence, any infinite word accepted by A may contain
arbitrary infixes of the form bn for n < ∞, as the automaton can use the ε-loop on q0 at
least n times before, but not bω. ◀

As a consequence of the previous proof we show that ε-safety PA and ε-co-Büchi PA
recognize all ω-regular languages, as the presented trick can be used to encode ω-regular
conditions, that is ε-transitions can be used to enforce that at least one state of a subset of
states needs to be visited infinitely often.

▶ Lemma 25 (⋆). Every ω-regular language is ε-safety PA and ε-co-Büchi recognizable.

Finally we show that strong ε-reset PA and weak ε-reset PA admit ε-elimination. We
show that these two models are equivalent. Hence to show this statement we only need to
argue that strong ε-reset PA admit ε-elimination.
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▶ Lemma 26 (⋆). Every strong ε-reset PA A is equivalent to a weak ε-reset PA A′ that has
the same set of states and uses one additional counter. If A is a strong reset PA, then A′ is
a weak reset PA.

▶ Lemma 27 (⋆). Every weak ε-reset PA A is equivalent to a strong ε-reset PA A′ with at
most twice the number of states and the same number of counters. If A is a strong reset PA,
then A′ is a weak reset PA.

▶ Lemma 28 (⋆). Strong ε-reset PA admit ε-elimination.

6 Decision problems

As shown by Guha et al. [22], the results for common decision problems translate from the
finite case to reachability PA and Büchi PA, that is, non-emptiness is NP-complete, and
universality (and hence inclusion and equivalence) are undecidable. We show that these
results translate to reset PA (which are more expressive), even if we allow ε-transitions
(which does not increase their expressiveness but our ε-elimination procedure constructs an
equivalent reset PA of super-polynomial size). Hence, (ε-)reset PA are a powerful model that
can still be used for algorithmic applications, such as the model checking problem.

The main reason for this is that the ω-languages recognized by reset PA are ultimately
periodic, meaning that whenever a reset PA accepts at least one infinite word, then it also
accepts an infinite word of the form uvω.

▶ Lemma 29 (⋆). Let A be an ε-reset PA. If SRω(A) ̸= ∅, then A accepts an infinite word
of the form uvω.

As a consequence, we can reduce non-emptiness for reset PA to the finite word case, as
clarified in the following lemma.

▶ Lemma 30 (⋆). Non-emptiness for ε-reset PA is NP-complete.

Furthermore, we study the following membership problem for automata processing infinite
words. Given an automaton A and finite words u, v, does A accept uvω?

Note that we can always construct a safety automaton that recognizes uvω and no
other infinite word with |uv| many states. Recall that every state of a safety automaton
is accepting. We show that the intersection of a reset PA-recognizable ω-language and a
safety automaton-recognizable ω-language remains reset PA-recognizable using a product
construction which is computable in polynomial time. Hence, we can reduce the membership
problem to the non-emptiness the standard way.

▶ Lemma 31 (⋆). The class of reset PA-recognizable ω-languages is closed under intersection
with safety automata-recognizable ω-languages.

As the membership problem for PA (on finite words) is NP-complete [15], and the
construction in the previous lemma can be computed efficiently, we obtain the following
result.

▶ Corollary 32. Membership for ε-reset PA is NP-complete.

Finally, we observe that universality, inclusion and equivalence remain undecidable
for (ε-)reset PA, as these problems are already undecidable for Büchi PA [22] and the
constructions showing that the class of Büchi PA-recognizable ω-languages is a subclass
of Lω

PA,PA, and that Lω
PA,PA is a subclass of the class of reset PA-recognizable ω-languages are

effective.
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rechability PA

reachability-regular PA
= limit PA = Lω

PA,Reg

Büchi PA

ω-regular = Lω
Reg,Reg reset PA (∗∗) = Lω

Reg,PA

co-Büchi PA ε-co-Büchi PA ε-safety PA safety PA

reset PA (∗) = Lω
PA,PA

strong reset PA
= weak reset PA

(∗) At most one state q per leaf of C(A) may have incoming transitions from outside the leaf, this
state q is the only accepting state in the leaf, and there are no accepting states in non-leaves;

(∗∗) and only transitions connecting states in leaves may be labeled with non-zero vectors.

Figure 4 Overview of our results. Arrows mean strict inclusions. If not explicitly shown otherwise,
all models are equivalent to their ε-counterparts.

7 Conclusion

We conclude by giving an overview of all characterizations and inclusions shown in this paper,
as depicted in Figure 4.

Recall the ω-languages motivated by the model checking problem from the introduction,
namely {α ∈ {a, b, c}ω | there are infinitely many prefixes w of α with |w|a > |w|b + |w|c},
representing unfair resource distributions of an operating system, and {α ∈ {p, c}ω |
there is a prefix w of α with |w|c > |w|p}, representing invalid computations in a producer-
consumer setting. Both of these ω-languages are Reset PA-recognizable (in fact, the first is
Büchi PA-recognizable and the second is even reachability PA-recognizable). As mentioned,
in a common approach we are given a system represented as a Kripke structure K, and a
specification of counter-examples given as an automaton, e.g. a reset PA A. By moving
the labels of the states of K to its transitions, we can see a Kripke structure as a safety
automaton AK (see [10, Theorem 28] for details). As every state of a safety automaton
is accepting, we can easily find a reset automaton recognizing all bad computations of K

(that is the intersection of the ω-languages recognized by AK and A) by Lemma 31. As
(non-)emptiness is decidable for reset PA, we can solve the model-checking problem by
computing the product automaton of AK and A and testing for emptiness, which is in coNP
by Lemma 30.
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