
Decidable (Ac)counting with Parikh and Muller:
Adding Presburger Arithmetic to Monadic Second-
Order Logic over Tree-Interpretable Structures
Luisa Herrmann #Ñ

Computational Logic Group, TU Dresden, Germany
Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Vincent Peth #

Département d’informatique de l’ÉNS, École normale supérieure, CNRS, PSL University, Paris,
France

Sebastian Rudolph #Ñ

Computational Logic Group, TU Dresden, Germany
Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Abstract
We propose ωMSO⋊⋉BAPA, an expressive logic for describing countable structures, which subsumes
and transcends both Counting Monadic Second-Order Logic (CMSO) and Boolean Algebra with
Presburger Arithmetic (BAPA). We show that satisfiability of ωMSO⋊⋉BAPA is decidable over
the class of labeled infinite binary trees, whereas it becomes undecidable even for a rather mild
relaxations. The decidability result is established by an elaborate multi-step transformation into a
particular normal form, followed by the deployment of Parikh-Muller Tree Automata, a novel kind
of automaton for infinite labeled binary trees, integrating and generalizing both Muller and Parikh
automata while still exhibiting a decidable (in fact PSpace-complete) emptiness problem. By means
of MSO-interpretations, we lift the decidability result to all tree-interpretable classes of structures,
including the classes of finite/countable structures of bounded treewidth/cliquewidth/partitionwidth.
We generalize the result further by showing that decidability is even preserved when coupling
width-restricted ωMSO⋊⋉BAPA with width-unrestricted two-variable logic with advanced counting.
A final showcase demonstrates how our results can be leveraged to harvest decidability results for
expressive µ-calculi extended by global Presburger constraints.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Tree
languages; Theory of computation → Automata over infinite objects; Theory of computation →
Automated reasoning

Keywords and phrases MSO, BAPA, Parikh-Muller tree automata, decidability, MSO-interpretations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.33

Related Version An extended version of the paper including more details and full proofs is available
at: https://arxiv.org/abs/2305.01962

Funding BMBF (SCADS22B) and SMWK by funding ScaDS.AI Dresden/Leipzig.
Sebastian Rudolph: European Research Council, Consolidator Grant DeciGUT (771779).

1 Introduction

Monadic second-order logic (MSO) is a popular, expressive, yet computationally reasonably
well-behaved logical formalism to deal with various classes of finite or countable structures. It
allows for expressing “mildly recursive” structural properties like connectedness or reachability,
which go beyond first-order logic yet meet crucial modeling demands in verification, database
theory, knowledge representation, and other fields of computational logic. The well-understood

© Luisa Herrmann, Vincent Peth, and Sebastian Rudolph;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luisa.herrmann@tu-dresden.de
https://iccl.inf.tu-dresden.de/web/Luisa_Herrmann
https://orcid.org/0009-0004-9532-0994
mailto:vincent.peth@ens.psl.eu
https://orcid.org/0009-0007-8450-0705
mailto:sebastian.rudolph@tu-dresden.de
http://sebastian-rudolph.de
https://orcid.org/0000-0002-1609-2080
https://doi.org/10.4230/LIPIcs.CSL.2024.33
https://arxiv.org/abs/2305.01962
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

link between MSO and automata theory has been very fertile in theory and practice. In
particular, the MSO theory of infinite binary trees is decidable by Rabin’s famous result [50],
and the same holds for structures of bounded treewidth, cliquewidth, and partitionwidth.

Unfortunately, MSO’s native capabilities to express cardinality relationships are very
limited; they are essentially restricted to fixed thresholds (e.g. “there are at least 10 leaves”).
Counting MSO [18, 17], denoted CMSO, extends MSO by modulo counting and a finiteness
test over sets (e.g. “there is an even number of nodes”), which increases expressiveness in
general, while over finite and infinite words or trees, CMSO can be simulated in plain MSO.
In contrast, enriching MSO with cardinality constraints [40, 41] (as in “all nodes have as many
incoming as outgoing edges”) increases the expressivity drastically, but causes satisfiability
to become undecidable even over finite words. Decidability (over finite words, trees, or
graphs of bounded treewidth [42]) can be recovered when confining set variables occurring in
cardinality constraints to those existentially quantified in front (MSO∃Card). One way to
show this is through Parikh automata extending finite automata by adding finitely many
counters and exploiting the relationship of Presburger arithmetic and semilinear sets [31].

Very recent work [37, 33, 35] extended Parikh word automata to infinite words and inves-
tigated the impact of various acceptance conditions, but left a logical characterization as
open question. As with the original Parikh automata, one central motivation behind these
works is to provide automata-based approaches for specifying and verifying systems beyond
regular languages. The study of ω-Parikh automata is motivated by reactive systems, whose
behaviors are typically represented by infinite words. Then, the plethora of branching-time
approaches in verification should call for a further generalization to ω-tree-automata. Yet, to
our knowledge, Parikh automata have not been studied in the context of infinite trees so far.

Another, orthogonal logical approach for describing sets and their cardinalities, motivated
by tasks from program analysis and verification, combines the first-order theory of Boolean
algebras (BA) with Presburger arithmetic (PA), resulting in the theory of BAPA [44, 45]. As
opposed to computationally benign extensions of MSO, BAPA provides stronger support
for arithmetic (so one can talk about “all selections with the same number of blue and red
nodes” or even “all selections with a share of 70% – 80% red nodes”, modeling statistical
information). BAPA usually assumes a finite universe, but can be extended to the countable
setting [46]; satisfiability is decidable in either case. However, very regrettably, BAPA lacks
non-unary relations, which is outright fatal when it comes to expressing structural properties.

Combining both worlds, we introduce ωMSO⋊⋉BAPA

ˈoːmzoǁˌbapa

ˈoːmzo‖ˌbapa

[ˈoːmzoǁˌbapa]

,1 a logic for countable
structures, which extends CMSO by BAPA’s set operations and Presburger statements,
strictly contains MSO∃Card, and allows for sophisticated structural-arithmetic statements
(Section 3). We warrant computational manageability by gently controlling the usage of
variables, noting that satisfiability turns undecidable otherwise (Section 4). Exhibiting an
elaborate transformation (Section 5), we prove that ωMSO⋊⋉BAPA formulae over trees can be
brought into a very restricted tree normal form (TNF). We then provide a characterization
showing that the sets of ω-trees satisfying TNF formulae coincide with the sets of trees
recognized by Parikh-Muller Tree Automata (PMTA), a novel automata model designed by
us – and the first-ever automaton model on infinite trees capable of testing Parikh conditions
(Section 6). PMTA generalize both Muller and Parikh automata and their emptiness is
decidable. The decidability of ωMSO⋊⋉BAPA over the class of labeled infinite binary trees
thereby obtained is then lifted to all tree-interpretable classes, including vast and practically

1 Note that the “⋊⋉” inside the name is meant to be pronounced as lateral click, commonly used by riders
and coachmen to urge on their horses, and present in several African languages as a consonant.

L. Herrmann, V. Peth, and S. Rudolph 33:3

relevant classes of finite or countable structures that are bounded in terms of certain width
measures (Section 7). Such width-bounded ωMSO⋊⋉BAPA can be decidably coupled with
width-unbounded two-variable logics with advanced counting (Section 8). We demonstrate
how to leverage our results to gain decidability results for statistics-enhanced formalisms of
the µ-calculus family, which subsumes branching-time logics such as CTL∗ (Section 9).

2 Preliminaries

As usual, for any n ∈ N, let [n] := {1, . . . , n}. In order to count to infinity, we use N
extended by (countable) infinity ∞, with arithmetics lifted in the usual way; in particular,
∞ + n = ∞ + ∞ = (n + 1) · ∞ = ∞ and 0 · ∞ = 0 as well as n ≤ ∞ and ∞ ≤ ∞. For
countable sets A, let |A| denote the element of N∪ {∞} that corresponds to their cardinality.

To define countable structures, assume the following countable, pairwise disjoint sets:
a set C of (individual) constants, denoted by a, b, c, ..., and, for every n ∈ N, a set Pn of n-ary
predicates, denoted by P, R, Q, The set of all predicates will be denoted by P :=

⋃
i∈N Pn,

and we let ar : P → N such that ar(Q) = n iff Q ∈ Pn. A (relational) signature S is a union
SC ∪SP of finite subsets of C and P, respectively. An S-structure is a pair A = (A, ·A), where
A is a countable, nonempty set, called the domain of A and ·A is a function that maps every
a ∈ SC to a domain element aA ∈ A, and every Q ∈ SP to an ar(Q)-ary relation QA ⊆ Aar(Q).

We define infinite trees starting from a finite, non-empty set Σ, called alphabet. A (full)
infinite binary tree (often simply called a tree) labeled by some alphabet Σ is a mapping
ξ : {0, 1}∗ → Σ. We denote the set of all trees labeled by Σ by Tω

Σ . A finite tree is a mapping
ξ : X → Σ where X is a finite, prefix-closed subset of {0, 1}∗. The set of all finite trees over Σ
will be denoted by TΣ. We sometimes refer to the domain X of ξ by pos(ξ), whose elements
we call positions or nodes of ξ. Given a tree ξ ∈ Tω

Σ and a finite, prefix-closed set X ⊆ {0, 1}∗,
we denote by ξ|X the finite tree in TΣ that has X as domain and coincides with ξ on X.

An (infinite) path π is an infinite sequence π = π1π2 . . . of positions from {0, 1}∗ such
that π1 = ε and, for each i ≥ 1, πi+1 ∈ (πi · {0, 1}). Given a tree ξ ∈ Tω

Σ and a path π, we
denote by ξ(π) the infinite word ξ(π1)ξ(π2) . . . obtained by concatenating the labels of ξ
along π. We denote by inf(ξ(π)) the set of all labels occurring infinitely often in ξ(π).

We will also find it convenient to represent trees over some given alphabet Σ = {a1, . . . , an}
as structures over the signature S = SP = {≻0,≻1, Pa1 , . . . , Pan

}: Thereby, a tree ξ ∈ Tω
Σ will

be represented by the structure Aξ with Aξ = {0, 1}∗, where ≻Aξ

0 = {(w,w0) | w ∈ {0, 1}∗}
and ≻Aξ

1 = {(w,w1) | w ∈ {0, 1}∗} while PAξ
ai = {u ∈ {0, 1}∗ | ξ(u) = ai} for each i ∈ [n].

When there is no danger of confusion, we will simply write ξ instead of Aξ.

3 Syntax and Semantics of ωMSO⋊⋉BAPA

We now introduce the logic ωMSO⋊⋉BAPA. The underlying “design principles” for this logical
formalism are to have a language that syntactically subsumes and tightly integrates CMSO
and BAPA, while still exhibiting favorable computational properties, even over countably
infinite structures. To this end, we will first define the language ωMSO·BAPA and then
obtain ωMSO⋊⋉BAPA by imposing some syntactic restrictions on the usage of variables.

▶ Definition 1 (Syntax of ωMSO·BAPA). Given a signature S = SC ∪ SP, together with three
countable and pairwise disjoint sets Vind of individual variables (denoted x, y, z, ...), Vset of
set variables (denoted X,Y, Z, ...), and Vnum of number variables (denoted k, l,m, n...), we
define the following sets of expressions by mutual induction:

CSL 2024

33:4 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

the set I of individual terms: ι ::= a | x
the set S of set terms (P being a unary predicate): S ::= {a} | P | X | Sc | S1∩S2 | S1∪S2
the set N of number terms:2 t ::= n | oo | k | #S | m t | t1 + t2
(with n ∈ N and m ∈ N \ {0}; we use typewriter font to indicate that we mean an explicit
representation of a constant natural number n or m rather than the symbol “n” or “m”)
the set F of (unrestricted) formulae:

φ ::= Q(ι1, . . . , ιn) | S(ι) | t -<fin t
′ | t -< t

′ | #S ≡n m | Fin(S) | true | false |
¬φ | φ ∧ φ′ | φ ∨ φ′ | ∃x.φ | ∀x.φ | ∃X.φ | ∀X.φ | ∃k.φ | ∀k.φ

The first six types of atomic formulae will be referred to as predicate atoms, set atoms,
classical Presburger atoms, modern Presburger atoms, modulo atoms, and finiteness
atoms, respectively. We use Presburger atoms and write t -<(fin) t

′ to jointly refer to the
classical and modern variants. A Presburger atom t -<(fin) t

′ is called simple, if it contains
at most one occurrence of a term of the shape #S and no occurrences of number variables.

▶ Definition 2 (Semantics of ωMSO·BAPA). A variable assignment (for a structure A) is a
function ν that maps

every individual variable x ∈ Vind to a domain element ν(x) ∈ A,
every set variable X ∈ Vset to a subset ν(X) ⊆ A of the domain, and
every number variable k ∈ Vnum to a number ν(k) ∈ N ∪ {∞}.

We write νx 7→a, νX 7→A′ , and νk7→n to denote ν updated in the way indicated in the subscript.
Given an interpretation A and a variable assignment ν, we let the function ·A,ν map
I to A by letting aA,ν = aA and xA,ν = ν(x),
S to 2A by letting

{a}A,ν = {aA,ν}
PA,ν = PA

XA,ν = ν(X)
(Sc)A,ν = A \ SA,ν

(S1 ∩ S2)A,ν = SA,ν
1 ∩ SA,ν

2
(S1 ∪ S2)A,ν = SA,ν

1 ∪ SA,ν
2

N to N ∪ {∞} by letting

nA,ν = n

ooA,ν = ∞
kA,ν = ν(k)

(#S)A,ν = |SA,ν |
(n t)A,ν = n · tA,ν

(t1 + t2)A,ν = tA,ν
1 + tA,ν

2

Finally we define satisfaction of formulae from F as follows: A, ν satisfies

Q(ι1,..., ιn) iff ((ι1)A,ν,..., (ιn)A,ν) ∈ QA

S(ι) iff ιA,ν ∈ SA,ν

t1 -< t2 iff tA,ν
1 ≤ tA,ν

2
t1 -<fin t2 iff tA,ν

1 ≤ tA,ν
2 < ∞

#S ≡n m iff (#S)A,ν = m mod n

and (#S)A,ν < ∞
Fin(S) iff |SA,ν | < ∞
¬φ iff A, ν ̸|= φ

φ1∧φ2 iff A, ν |= φ1 and A, ν |= φ2
φ1∨φ2 iff A, ν |= φ1 or A, ν |= φ2
∃x.φ iff A, νx 7→a |= φ for some a∈A
∀x.φ iff A, νx 7→a |= φ for all a∈A
∃X.φ iff A, νX 7→A′ |= φ for some A′ ⊆A

∀X.φ iff A, νX 7→A′ |= φ for all A′ ⊆A

∃k.φ iff A, νk7→n |= φ for some n∈N∪ {∞}
∀k.φ iff A, νk7→n |= φ for all n∈N∪ {∞}

Plus, we always let A, ν |= true and A, ν ̸|= false. For a formula φ, its free variables
(denoted free(φ)) are defined as usual; φ is a sentence if free(φ) = ∅. For sentences, ν does
not influence satisfaction, which allows us to write A |= φ and call A a model of φ in case
A, ν |= φ holds for any ν. We call φ satisfiable if it has a model.

2 We will consider number terms obtainable from each other through basic transformations (reordering,
factoring, summarizing, rules for ∞) as syntactically equal, allowing us to focus on simplified expressions.

L. Herrmann, V. Peth, and S. Rudolph 33:5

Note that, for notational homogeneity, we choose to write X(ι) instead of ι ∈ X. Where
convenient, we will also make use of the Boolean connectives ⇒ and ⇔ as abbreviations with
the usual meaning. While the original syntax of ωMSO·BAPA does not provide an explicit
equality predicate, both individual and set equality can be expressed (see further below).

▶ Definition 3 (Syntax of ωMSO⋊⋉BAPA). From now on, we will make the following as-
sumption (which is easily obtainable via renaming): In every formula, all quantifications use
different variable names and these are disjoint from the names of free variables. Given an
ωMSO·BAPA formula φ satisfying this assumption, we analyze its constituents as follows:

A (set or individual) variable is called assertive, if it is free, or it is existentially quantified
and the quantification does not occur inside the scope of a negation or of a universal (set,
individual, or number) quantifier.

The set of delicate individual and set variables is the smallest set of (non-assertive)
variables satisfying the following:

Every non-assertive set variable occurring in a non-simple Presburger atom is delicate.

If some atom contains a delicate (individual or set) variable, then all of this atom’s
non-assertive (individual or set) variables are delicate.

Then, φ is an ωMSO⋊⋉BAPA formula iff each of its predicate atoms Q(· · ·) contains at most
one delicate variable (possibly in multiple occurrences).

It is easy to see that, despite the above restrictions, ωMSO⋊⋉BAPA entirely encompasses
CMSO and MSO∃Card (no delicate variables) as well as BAPA (no predicates of arity >1).
For convenience and better readability, we will make use of the following abbreviations.

x = y := ∀Z.Z(x) ⇔ Z(y)
S ̸= ∅ := ∃z.S(z)
S ⊆ S′ := ∀z.S(z) ⇒ S′(z)
S = S′ := (S ⊆ S′) ∧ (S′ ⊆ S)

∃x∈S.φ := ∃x.S(x) ∧ φ

∀x∈S.φ := ∀x.S(x) ⇒ φ

t = t′ := (t -< t
′) ∧ (t′ -< t)

t =fin t
′ := (t -<fin t

′) ∧ (t′ -<fin t)

An analysis of these abbreviations reveals that ωMSO⋊⋉BAPA allows for the variables x, y
and set variables in S, S′ in these abbreviations to be delicate. We will also employ shortcuts
specific to the signature {≻0,≻1, Pa | a ∈ Σ} for Σ-labeled trees. Contrary to above, in these
shortcuts, x, y, X, Y must not be delicate to warrant inclusion in ωMSO⋊⋉BAPA (Obs. †).

X(x.i) := ∃y.x ≻i y ∧X(y)
x ≻ y := (x ≻0 y) ∨ (x ≻1 y)

φroot(x) := ¬∃z.(z ≻ x)
φ↑clsd(X) := ∀z.X(z.0) ∨X(z.1) ⇒ X(z)
x ≻∗ y := ∀Z.Z(y) ∧ φ↑clsd(Z) ⇒ Z(x)
x ≻+ y := (x ≻∗ y) ∧ (x ̸= y)

φ↓(x,X) := ∀z.
(
X(z) ⇔ x ≻∗ z

)
φpath(X) := X ̸= ∅ ∧ φ↑clsd(X) ∧ ∀z ∈X.

(
X(z.0) ⇔ ¬X(z.1)

)
φinf(X) := ∃Z.φpath(Z) ∧ ∀z ∈Z.∃z′∈X.(z ≻+ z′)

φ∩
inf(X,Y) := ∃Z.Z ⊆ X ∧ Z ⊆ Y ∧ φinf(Z)

CSL 2024

33:6 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Example 4. We use ωMSO⋊⋉BAPA to specify the class of all labeled infinite binary trees
over the alphabet Σ = {blue, red, green, yellow,black} satisfying the following property:
“There is a path X and some node x on X such that the following hold:
1. For every infinite selection Y of blue nodes from the x-descendants on the path X, there

is a selection Y ′ of red nodes from the whole tree, such that
a. Y and Y ′ contain the same number of nodes with infinitely many green descendants,
b. Y contains twice as many nodes as Y ′ having less than 10 yellow descendants.

2. For every finite selection Z of blue x-descendants, the total number of nodes lying on
paths from x to nodes of Z is even.”

∃X.∃x.φpath(X) ∧ X(x) ∧ ∃V0.φ↓(x, V0) ∧(
∃V1.

(
∀v1.V1(v1) ⇔ ∃V v1

↓ .φ↓(v1, V v1
↓) ∧ ¬Fin(V v1

↓ ∩ Pgreen)
)

∧

∃V2.
(
∀v2.V2(v2) ⇔ ∃V v2

↓ .φ↓(v2, V v2
↓) ∧ #(V v2

↓ ∩ Pyellow) -< 10
)

∧(
∀Y.

(
¬Fin(Y) ∧ Y ⊆ X ∩ V0 ∩ Pblue

)
⇒

∃Y ′.Y ′ ⊆ Pred ∧ #(Y ∩ V1) = #(Y ′ ∩ V1) ∧ #(Y ∩ V2) = 2 #(Y ′ ∩ V2)
))

∧(
∀Z.

(
Fin(Z) ∧ Z ⊆ V0 ∩ Pblue

)
⇒

∃V3.
(
∀v3.V3(v3) ⇔ (x ≻+ v3 ∧ ∃z ∈ Z.v3 ≻∗ z′)

)
∧ #V3 ≡2 0

)
Therein, we use set variables capturing all descendants of x (V0); all nodes with infinitely

many green descendants (V1); all nodes with less than 10 yellow descendants (V2); and all
nodes between x and elements of Z (V3). Analysing the variables yields that X, x, V0, V1,
and V2 are assertive, while Y and Y ′ are delicate due to their occurrence in the non-simple
Presburger atoms in the fifth line. Delicacy is not inherited further, thus no two delicate
variables occur in any predicate atom. Therefore the formula is indeed in ωMSO⋊⋉BAPA.
Note that it is crucial that V1 and V2 are defined “prematurely” outside the scope of ∀Y ,
so they become assertive and thus their occurrence in the (non-simple) Presburger atoms
does not turn them delicate. This technique of “encapsulating” unary descriptions into
assertive set variables unveils significant additional expressiveness of ωMSO⋊⋉BAPA. See also
Section 10 for a discussion on a handier syntax for this.

4 Mildly Extending ωMSO⋊⋉BAPA Leads to Undecidability

Just slightly relaxing the syntax of ωMSO⋊⋉BAPA allows us to express Hilbert’s 10th Problem.

▶ Definition 5 (Positive Diophantine Equation). A positive Diophantine equation D is a tuple
(NV,M, (nw)w∈M , (mw)w∈M) where NV is a non-empty, ordered set {z1, . . . ,zk} of number
variables; M (the variable products or monomials) is a finite and non-empty, prefix-closed
set of sorted variable sequences, i.e.,

M ⊆ {z1 . . .z1︸ ︷︷ ︸
i1

. . .zk . . .zk︸ ︷︷ ︸
ik

| i1, . . . , ik ∈ N};

and all nw and mw are from N and encode the monomial coefficients on either side of the
equation. A positive Diophantine equation is solvable if it admits a solution, where a solution
for D = (NV,M, (nw)w∈M , (mw)w∈M) is a variable assignment ν : NV → N satisfying∑

w=z
i1
1 ...z

ik
k

∈M
nw · ν(z1)i1 · ... · ν(zk)ik =

∑
w=z

i1
1 ...z

ik
k

∈M
mw · ν(z1)i1 · ... · ν(zk)ik .

L. Herrmann, V. Peth, and S. Rudolph 33:7

·w
·w

·w
·wzi

·wzi ·wzi

·wzi
·wzi ·wzi

·zi

·zi

φlab := ∃x∈Pε.φroot(x) ∧
∧

w∈M

(
∀x∈Pw ∪ Pŵ.∀y.x≻y ⇒ Pŵ(y) ∨

∨
wzi∈M

Pwzi (y)
)

φprod :=
∧

w,wzi∈M
∀y∈Pw.∃Z.φ↓(y, Z) ∧ #(Z ∩ Pwzi) =fin #Pzi

φsol :=
∑

w∈M
nw #Pw =fin

∑
w∈M

mw #Pw

Figure 1 Illustration of the intended model structure and definition of φD := φlab ∧ φprod ∧ φsol.

Solvability of positive Diophantine equations is undecidable, which is a straightforward
consequence of the undecidability of arbitrary Diophantine equations over integers [48].

We will show that for any D, we can compute an ωMSO·BAPA sentence φD whose satis-
fiability over labeled trees coincides with solvability of D, despite φD being only “minimally
outside” ωMSO⋊⋉BAPA — also contrasting the fact that sentences of this shape still warrant
decidable satisfiability over finite words [39, Thm. 8.13].

As detailed in Figure 1, we let φD := φlab ∧ φprod ∧ φsol characterize trees labeled by
w and ŵ, for w ∈ M , such that each model ξ of φD corresponds to a solution ν of D as
follows: for each z ∈ NV , the number of nodes in ξ labeled with z (i.e., #Pz) equals the
number that ν assigns to z. Likewise, for each variable product wzi ∈ M , we ensure that
#Pwzi

= #Pw · #Pzi
. To this end, we stipulate via φlab that for any w, all w-labeled nodes are

pairwise ≻∗-incomparable, and every wz-labeled node has exactly one w-labeled ancestor
(using the label ŵ for “padding” between w and wzi), and we enforce via φprod that for any
w,wzi ∈ M , each subtree rooted in a w-labeled node contains precisely as many wzi-labeled
nodes as there are zi-labeled nodes in the whole tree. Finally, under the conditions enforced
by φlab and φprod, φsol implements that the model indeed encodes a solution of the given D.

While the first conjunct is pure MSO and the third is a variable-free Presburger atom,
the second is not in ωMSO⋊⋉BAPA: ∃Z occurs inside the scope of ∀y, thus Z is not assertive.
Yet, as discussed in Section 3 (Obs. †), this is at odds with Z occurring in φ↓(y, Z).

▶ Proposition 6. For any positive Diophantine equation D, satisfaction of φD over (finite
or infinite) labeled trees coincides with solvability of D. Consequently, satisfiability of the
class of ωMSO·BAPA sentences of the shape φD is undecidable.

5 Transformation into Normal Form

Toward establishing our decidability result, we show that ωMSO⋊⋉BAPA formulae can be
transformed into a specific, very restricted normal form. To this end, we use a variety of
techniques, mostly known from the literature, but with some adjustments to our setting;
thus, due to space, we will restrict ourselves to a high-level description and examples. The
normalization procedure is subdivided into two phases: The first phase, establishing the
general normal form (GNF), is valid independently of the underlying class of structures. The
second phase, yielding the tree normal form (TNF), is specific to the class of labeled trees.

Given an ωMSO⋊⋉BAPA formula, substitute complex set expressions in modulo and finite-
ness atoms by new set variables (e.g. Fin(P ∩X) becomes ∃Y.(Y = P ∩X) ∧ Fin(Y)), remove
set operations from set atoms (e.g. turning (Pc ∩X)(y) into ¬P(y) ∧X(y)), and rewrite all sim-
ple Presburger atoms into plain MSO (e.g. 2 #P -< 3 becomes ∀xy.P(x)∧P(y) ⇒ x=y). Then,
skolemize all assertive variables (e.g. ∃x.∃X.∀y.R(x, y)⇒X(y) becomes ∀y.R(cx, y)⇒PX(y)).
Next “presburgerize” all non-Presburger atoms containing (only) delicate variables (e.g. re-
placing #X ≡3 1 with ∃k.#X =fin 3k + 1), which may require to turn delicate individual

CSL 2024

33:8 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

into set variables (e.g. ∀y.P(y) ⇒ X(y) becomes ∀Y.(#Y = 1) ∧ 1 -< #(P ∩ Y) ⇒ 1 -< #(X ∩ Y)).
The resulting formula exhibits a clear separation of variable usage: Presburger atoms use
delicate and number variables, all other atoms use non-delicate variables. In a subsequent
step, we “disentangle” the quantifiers, such that the scopes of quantified number or delicate
variables are strictly separated from those of non-delicate variables.3

We next apply “vennification” : a technique known from BAPA. In essence, we introduce
new number variables to count the number of elements contained in every Venn region, that
is, every possible combination of set (non-)memberships (with this, #(P ∪X) -< #Pc becomes
kP∩X+kPc∩X+kP∩Xc -< kPc∩X+kPc∩Xc). This allows us to remove all delicate set variables
from our formula. We are now in the setting where we can apply the well-known quantifier
elimination for Presburger Arithmetic over the “purely arithmetic” subformulae (which may
produce new modulo atoms) – since the latter is classically defined for N instead of N∪ {∞},
we require a pre-processing step implementing a vast case-distinction as to which of the Venn
regions are infinite. As a consequence, we obtain a formula free of number variables, with all
Presburger atoms being classic and outside any quantifier scope.

Finally, we “de-skolemize” : all constants and unary predicates introduced via the initial
skolemization, but also by the intermediate transformation steps, are projected away from
the signature, re-interpreting them as existentially quantified individual and set variables.
We thus recover “proper” equivalence with the initial formula. Last, we bring the formula in
disjunctive normal form and pull the trailing existential individual quantifiers inside.

▶ Definition 7 (General Normal Form). A Parikh constraint is a classical Presburger atom with-
out number variables and where all occurring set terms are set variables. An ωMSO⋊⋉BAPA
formula is in general normal form (GNF), if it is of the shape

∃X1. · · · ∃Xn.
∨k

i=1
(
φi ∧

∧li

j=1 χi,j

)
,

where the φi are CMSO formulae,4 whereas the χi,j are (unnegated) Parikh constraints.

▶ Theorem 8. For every ωMSO⋊⋉BAPA formula φ, it is possible to compute an equivalent
formula φ′ in general normal form.

We now focus on the case of labeled trees. Very similar to the case of CMSO, under this
assumption, we can equivalently transform the GNF formula into one without occurrences of
modulo and finiteness atoms. We rewrite #X ≡n m into the formula

Fin(X) ∧ ∃X0...∃Xn−1.
(

∃x.
(
φroot(x) ∧

∧
0≤i<n

i̸=m

¬Xi(x)
)

∧ ∀x.
(
(∃y∈X.x ≻∗ y) ∨ X0(x)

)
∧∧

i,j∈{0,...,n−1}
∀z.

(
Xi(z.0) ∧ Xj(z.1) ⇒ (¬X(z) ⇒ Xi⊕j(z)) ∧ (X(z) ⇒ Xi⊕j⊕1(z))

))
,

where ⊕ denotes addition modulo n. Finally, we replace all occurrences of Fin(X) by φfin(X),
as defined in Section 3. Thus, when employing ωMSO⋊⋉BAPA to describe labeled trees, we
can confine ourselves to an even more restrictive normal form.

▶ Definition 9 (Tree Normal Form). An ωMSO⋊⋉BAPA formula is in tree normal form (TNF),
if it is of the shape

∃X1. · · · ∃Xn.
∨k

i=1
(
φi ∧

∧li

j=1 χi,j

)
,

where the φi are plain MSO formulae and the χi,j are (unnegated) Parikh constraints.

▶ Theorem 10. For every ωMSO⋊⋉BAPA formula φ, it is possible to compute a formula φ′

in tree normal form that is equivalent to φ over all labeled infinite binary trees.

3 While this transformation is not very complicated technically, it may incur nonelementary blowup.
4 Recall that CMSO is MSO with modulo and finiteness atoms over set variables.

L. Herrmann, V. Peth, and S. Rudolph 33:9

6 Parikh-Muller Tree Automata

In this section, we introduce a novel type of automata, combining and generalizing Parikh
tree automata and Muller tree automata. We prove that the tree languages recognized by
this automaton type coincide with those definable by TNF formulae. Moreover, we show
that the emptiness problem of this automaton model is decidable. In combination, this yields
us decidable satisfiability of ωMSO⋊⋉BAPA over labeled infinite binary trees.

Variable-adorned Trees, Semilinear Sets, and Extended Parikh Maps

Given a finite set V ⊆ (Vind ∪ Vset), we denote by ΦV the set of all variable assignments of
variables from V to elements/subsets of {0, 1}∗. The set of V-models of a formula φ is the set
LV(φ) := {(ξ, ν) | ξ ∈ Tω

Σ , ν ∈ ΦV, ξ, ν |= φ} and by L(φ) we mean Lfree(φ)(φ). To represent
V-models, it is convenient to encode variable assignments ν ∈ ΦV into the alphabet. For
this, we let ΣV = Σ × 2V be a new alphabet and identify Σ∅ with Σ. We say that a tree
ξ ∈ Tω

ΣV
is valid (i.e., it encodes a variable assignment) if for each individual variable x in V

there is exactly one position in ξ where x occurs. As there is a bijection between Tω
Σ × ΦV

and the set of all valid trees in Tω
ΣV

, we use these two views interchangeably.
A set C ⊆ Ns, s ≥ 1, is linear if it is of the form C = {v⃗0 +

∑
i∈[l] miv⃗i | m1, . . . ,ml ∈ N}

for some l ∈ N and vectors v⃗0, . . . , v⃗l ∈ Ns. Any finite union of linear sets is called semilinear.
Given two vectors v⃗ = (v1, . . . , vs) ∈ Ns and v⃗′ = (v′

1, . . . , v
′
s′) ∈ Ns′ , we define their

concatenation v⃗ · v⃗′ as the vector (v1, . . . , vs, v
′
1, . . . , v

′
s′) ∈ Ns+s′ . This definition is lifted to

sets by letting C · C ′ = {v⃗ · v⃗′ | v⃗ ∈ C, v⃗′ ∈ C ′} ⊆ Ns+s′ for C ⊆ Ns, C ′ ⊆ Ns′.

▶ Lemma 11 ([30, 31]). The family of semilinear sets of Ns coincides with the family of Pres-
burger sets of Ns (i.e., sets of the form {(x1, . . . , xs) | φ(x1, . . . , xs)} for a Presburger formula
φ). Semilinear sets are closed under union, intersection, complement, and concatenation.

Given an alphabet Σ and some finite D ⊆ Ns for s ≥ 1, our automaton model works
with symbols from Σ ×D. Thus we use the projections ·Σ : Σ ×D → Σ with (a, d)Σ = a and
·D : Σ ×D → D with (a, d)D = d, which we will also apply to finite and infinite trees, resulting
in a pointwise substitution of labels. Moreover, the extended Parikh map Ψ: TΣ×D → Ns is
defined for each finite, non-empty tree ξ ∈ TΣ×D by Ψ(ξ) =

∑
i∈pos(ξ)(ξ(i))D .

Automaton Model

We now formally introduce our notion of a Parikh-Muller Tree Automaton (PMTA), which
recognizes infinite trees employing a Muller acceptance condition while also testing some
finite initial tree part for an arithmetic property related to Parikh’s commutative image [49].
This is implemented by utilizing a finite number of global counters, which are “blindly”
increased throughout the run, but are read off only once a posteriori – when it is verified
whether the tuple of the final counter values belongs to a given semilinear set.

▶ Definition 12 (Parikh-Muller Tree Automaton). Let Σ be an alphabet, let s ∈ N \ {0}, let
D ⊆ Ns be finite, and denote (Σ × D) ∪ Σ by Ξ. A PMTA (of dimension s) is a tuple
A = (Q,Ξ, qI ,∆,F , C) where Q = QP ∪ Qω ∪ {qI} is a finite set of states with QP ,Qω

disjoint and qI being the initial state, ∆ = ∆P ∪ ∆ω is the transition relation with

∆P ⊆ (QP ∪ {qI}) × (Σ ×D) ×Q×Q and ∆ω ⊆ (Qω ∪ {qI}) × Σ ×Qω ×Qω,

F ⊆ 2Qω is a set of final state sets, and C ⊆ Ns is a semilinear set named final constraint.

CSL 2024

33:10 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Definition 13 (Semantics of PMTA). A run of A on a tree ζ ∈ Tω
Ξ is a tree κζ ∈ Tω

Q whose
root is labeled with qI and which respects ∆ jointly with ζ. By definition of ∆, if a run exists,
then ζ−1(Σ ×D) is prefix-closed; we denote ζ|ζ−1(Σ×D) by ζcnt. A run κζ is accepting if
1. for each path π, we have inf(κζ(π)) ∈ F , and
2. if pos(ζcnt) ̸= ∅, then Ψ(ζcnt) ∈ C.
Note that, by the first condition, κζ being accepting implies finiteness of ζcnt and, thus,
well-definedness of the sum in Ψ(ζcnt). The set of all accepting runs of A on ζ will be denoted
by RunA(ζ). Then, the tree language of A, denoted by L(A), is the set

L(A) := {ξ ∈ Tω
Σ | ∃ζ ∈ Tω

Ξ with RunA(ζ) ̸= ∅ and (ζ)Σ = ξ} .

We highlight that, by choosing ∆P = ∅, we reobtain the well-known concept of a Muller
tree automaton (MTA). In this case, we can drop QP , D, ∆P , and C from A’s specification
without affecting its semantics. Thus, we define an MTA A by the tuple (Qω,Σ, qI ,∆ω,F).

For alphabets Σ,Γ, a relabeling (from Σ to Γ) is a mapping τ : Σ → P(Γ). We extend it
to a mapping τ : Tω

Σ → P(Tω
Γ) by letting ξ′ ∈ τ(ξ) if and only if for each position ϱ ∈ {0, 1}∗,

we have ξ′(ϱ) ∈ τ(ξ(ϱ)). Note that the reverse τ−1 of a relabeling τ is again a relabeling.

▶ Proposition 14. The set of tree languages recognized by Parikh-Muller tree automata is
closed under union, intersection, and relabeling.

Proof (sketch). As the proof techniques are rather standard and some of them were already
presented in earlier work [37], we only sketch the main ideas here. Let A1 and A2 be PMTA.

For the union, we construct a PMTA that starts in a fresh initial state. From there, it
can either enter the transitions of A1 or of A2; we keep apart the final constraints of A1
and A2 by using one additional dimension. The intersection PMTA is constructed as the
Cartesian product of A1 and A2; it uses the concatenation of final constraints of both given
PMTA and, as A1 and A2 might not “arithmetically test” the same initial tree part, it can
nondeterministically freeze parts of its counters on different paths. Relabeling is trivial. ◀

Correspondence of PMTA and ωMSO⋊⋉BAPA

We now provide a logical characterization of PMTAs, by showing that a tree language is
recognized by a PMTA precisely if it is the set of tree models of some ωMSO⋊⋉BAPA sentence.
The “only if” part is established by Proposition 15 and the “if” part by Proposition 17.

▶ Proposition 15. For any PMTA A, there is an ωMSO⋊⋉BAPA sentence φ with L(A) = L(φ).

Proof. Given a PMTA A = (Q,Ξ, qI ,∆,F , C), we adopt (and slightly simplify) the idea
from [41, Thm. 10] of how to encode counter values and the semilinear set C, and combine it
with the usual construction to define the behavior of an MTA by means of an MSO formula:
The existence of a run is defined by a sequence of existential set quantifiers representing
the states of A; one additional universal set quantifier ranging over paths is used to encode
the Muller acceptance condition. Furthermore, we (outermost) existentially quantify over
“counter contributions” using set quantifiers Z0

1 , ... ,Z
K
1 , . . . , Z

0
s , ... ,Z

K
s (with s being the

number of counters and K the greatest counter increment occurring in A’s transitions) – the
presence of a variable Zdi

i at a position indicates that di has to be added to the ith counter
to simulate the extended Parikh map. Then we enforce satisfaction of the final constraint C
by adding the conjunct φC defined as follows: By definition of C, there are k, l ∈ N \ {0} and
linear polynomials p1, . . . , pk : Nl → Ns such that C is the union of the images of p1, . . . , pk.

L. Herrmann, V. Peth, and S. Rudolph 33:11

Assume pg(m1, . . . ,ml) = v⃗0 + m1v⃗1 + . . . + mlv⃗l with v⃗j = (vj,1, . . . , vj,s). Then, using
number variables m1, . . . ,ml, we encode pg by

φpg
:= ∃m1 . . . ∃ml.

∧s
i=1

(∑K
d=0 d#Zd

i =fin v0,i + v1,im1 + . . .+ vl,iml

)
,

and let φC :=
(∧s

i=1
∧K

d=0 ∀x.¬Zd
i (x)

)
∨ φp1 ∨ . . . ∨ φpk

. This finishes the construction of
the overall sentence specifying L(A), which can be easily shown to be in ωMSO⋊⋉BAPA. ◀

The other direction is proved by an induction on the structure of TNF formulae involving
the closure properties of PMTA. The last piece that needs to be shown for this is the
recognizability of the models of a Parikh constraint.

▶ Lemma 16. For each Parikh constraint χ there is a PMTA A with L(A) = L(χ).

Proof. We assume w.l.o.g. that χ is of the form c +
∑

i∈[r] ci #Xi -<fin d +
∑

j∈[k] dj #Yj

where all Xi are pairwise distinct, and all Yj likewise. Given a subset θ ⊆ free(χ), we denote
by |θ|X the number

∑
Xi∈θ ci (and similar for |θ|Y). Then, assuming ξ(ϱ) = (σξ

ϱ, θ
ξ
ϱ), we get

L(χ) = {ξ ∈ Tω
Σfree(χ)

| c+
∑

ϱ∈pos(ξ) |θξ
ϱ|X ≤ d+

∑
ϱ∈pos(ξ) |θξ

ϱ|Y < ∞}

and, by the condition <∞, both sums can add up only finitely many non-zero elements.
Therefore, ξ ∈ L(χ) holds exactly if there is a non-empty, finite, prefix-closed Z ⊂ {0, 1}∗

that comprises all positions holding variable assignments and for which ξ|Z satisfies χ. This
condition can be verified by a PMTA defined in the following.

Let D = {(i, j) | 0 ≤ i ≤
∑

l∈[r] cl, 0 ≤ j ≤
∑

l∈[k] dl}. We construct the PMTA
A = ({qI , qf },Ξ, qI ,∆, {{qf }}, C) with Ξ = (Σfree(χ) ×D) ∪ Σfree(χ), ∆ = ∆P ∪ ∆ω where

∆P = {(qI ,
(
(σ, θ), (|θ|X , |θ|Y)

)
, q′, q′) | (σ, θ) ∈ Σfree(χ), q

′ ∈ {qI , qf }} and
∆ω = {(qf , (σ, ∅), qf , qf) | σ ∈ Σ}

and C = {(z1, z2) | c + z1 -<fin d + z2}.5 Then, one can easily show that L(χ) = L(A). ◀

▶ Proposition 17. For every ωMSO⋊⋉BAPA formula φ there is a PMTA A with L(A) = L(φ).

Proof. Let φ be an ωMSO⋊⋉BAPA formula. By Theorem 10, we can assume that φ is in
tree normal form, i.e., of the form ∃X1. · · · ∃Xn.

∨k
i=1

(
φi ∧

∧li

j=1 χi,j

)
, where φi are plain

MSO sentences and the χi,j are (unnegated) Parikh constraints. The proof of the statement
is an induction on the (now restricted) structure of φ using the well-known recognizability of
MSO sentences [50], Lemma 16, and Proposition 14. ◀

The characterization obtained through Proposition 15 and Proposition 17 also provides an
answer to the open problem posed by the authors in [35, 34] to find a logical characterization
for their reachability-regular Parikh automata (RRPA) on words: in the usual way, our tree
automata can simulate word automata (by embedding words in particular trees) and it is not
too hard to see that the word version of PMTA is expressively equivalent to RRPA (details
can be found in the appendix). Finally, by a routine inspection of the corresponding proofs
we easily observe that our logical characterization also applies to the word setting.

5 Note that by Lemma 11 we can use this description for a semilinear set.

CSL 2024

33:12 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

Deciding Emptiness of Parikh-Muller Tree Automata

Our proof of decidability (and complexity) of the emptiness problem of PMTA rests on the
respective results for the two components it combines, MTA and PTA. Thus, let us first
recall the definition of Parikh tree automata [40, 39], slightly adjusted to our setting.

▶ Definition 18 (Parikh tree automaton [41]). Let Σ be an alphabet, let s ≥ 1, and let D ⊆ Ns

be finite. A Parikh tree automaton (PTA) is a tuple A = (Q,Σ ×D, δ, qI , F, C) where Q is a
finite set of states, δ ⊆ Q× (Σ ×D) ×Q×Q is the transition relation, qI is the initial state,
F ⊆ Q is a set of final states, and C ⊆ Ns is a semilinear set.6 Given a finite tree ξ ∈ TΣ×D,
a run of A on ξ is a tree κξ ∈ TQ with pos(κξ) = {ε} ∪ {ui | u ∈ pos(ξ), i ∈ {0, 1}} and
κ(ε) = qI that respects the transition relation of A. The run κξ is said to be accepting if
Ψ(ξ) ∈ C and κξ(u) ∈ F for each leaf u ∈ pos(κξ) \ pos(ξ); we denote the set of all accepting
runs of A on ξ by RunA(ξ). Finally, the tree language of A, denoted L(A), is the set

L(A) := {ξ ∈ TΣ | ∃ξ′ ∈ TΣ×D with RunA(ξ′) ̸= ∅ and (ξ′)Σ = ξ} .

It was shown in [39] that non-emptiness is decidable for PTA. The exact complexity can
be obtained by adopting [28, Proposition III.2.] to the tree setting. This ultimately enables
us to establish the desired result for our automaton model.

▶ Proposition 19 (based on [39, 28]). Given a PTA A, deciding L(A) ̸= ∅ is NP-complete.

▶ Theorem 20. Given a PMTA A, deciding L(A) ̸= ∅ is PSpace-complete.

Proof (sketch). Let A = (Q,Ξ, qI ,∆,F , C) be a PMTA with Q = QP ∪ Qω ∪ {qI}, Ξ =
(Σ ×D) ∪ Σ, and ∆ = ∆P ∪ ∆ω. We observe that each tree in the language of A can be seen
as some finite tree over Σ × D (on which the Parikh constraint is tested), having infinite
trees from TΣ attached to all its leafs. This allows us to reduce PMTA non-emptiness testing
to deciding non-emptiness of Muller tree automata and Parikh tree automata. To this end,
consider

the Muller tree automaton AqI
= (Qω ∪ {qI},Σ, qI ,∆ω,F),

the Muller tree automata Aq = (Qω,Σ, q,∆ω,F) for all q ∈ Qω, and
the Parikh tree automaton AP = (Q,Σ × D, qI ,∆P , FP , C) with FP =
{q ∈Qω | L(Aq) ̸= ∅}.

As deciding L(Aq) ̸= ∅ is PSpace-complete [50, 38], AP can be constructed in PSpace
and, by Proposition 19, its non-emptiness can be decided in NP. Thus, the overall PSpace
complexity follows from the observation that L(A) ̸= ∅ iff L(AqI

) ̸= ∅ or L(AP) ̸= ∅. ◀

▶ Corollary 21. Satisfiability of ωMSO⋊⋉BAPA over labeled infinite binary trees is decidable.

7 Decidability over Tree-Interpretable Classes of Structures

Finally, we lift the obtained decidability result for labeled trees to much more general classes
of structures, leveraging the well-known technique of MSO-interpretations (also referred to
as MSO-transductions or MSO-definable functions in the literature [1, 19, 25, 20, 22]).

6 We note that the PTAs defined in [41] were total, i.e., δ is a function of type Q × (Σ × D) → P(Q × Q).
Each PTA as defined here can be made total by using an additional sink state.

L. Herrmann, V. Peth, and S. Rudolph 33:13

▶ Definition 22 (MSO-Interpretation). Given two signatures S and S′, an MSO-interpretation
is a sequence I = (φDom(x), (φc(x))c∈SC , (φQ(x1, . . . , xar(Q)))Q∈SP) of MSO-formulae over S′

(with free variables as indicated). We identify I with the partial function satisfying I(A) = B

for an S′-structure A and an S-structure B if {a ∈ A | A, {x 7→ a} |= φDom(x)} = B as well
as {a ∈ B | A, {x 7→ a} |= φc(x)} = {cB} for every c ∈ SC, and, for every Q ∈ SP, we have
QB = {(a1, . . . , aar(Q)) ∈ Bar(Q) | A, {xi 7→ ai}1≤i≤ar(Q) |= φQ(x1, . . . , xar(Q))}. For a class S

of S′-structures, let I(S) := {B | I(A) = B,A ∈ S}. A class Tof S-structures is tree-inter-
pretable, if it coincides with I(Tω

Σ) for some Σ and corresponding MSO-interpretation I.

The key insight for our result is that the well-known rewritability of MSO formulae under
MSO-interpretations can be lifted to ωMSO⋊⋉BAPA without much effort.

▶ Lemma 23. Let I be an MSO-interpretation. Then, for every ωMSO⋊⋉BAPA sentence φ
over S one can compute an ωMSO⋊⋉BAPA sentence φI over S′ satisfying A |= φI ⇐⇒ B |= φ

for every S′-structure A and S-structure B with I(A) ∼= B.

This insight can be used to show that decidability is propagated through MSO-interpreta-
tions, and thus can be guaranteed for all tree-interpretable classes, thanks to Corollary 21.

▶ Theorem 24. Let S be a class of structures over which satisfiability of ωMSO⋊⋉BAPA is
decidable, let I be an MSO-interpretation. Then satisfiability of ωMSO⋊⋉BAPA over I(S) is
decidable as well. In particular, ωMSO⋊⋉BAPA is decidable over any tree-interpretable class.

This result allows us, in one go, to harvest several decidability results, as tree-interpreta-
bility is able to capture classes of (finite or countable) structures whose treewidth [51],
cliquewidth [27, 22, 21, 36], or partitionwidth [10, 11, 26] is bounded by some value k ∈ N.

▶ Corollary 25. Given a signature S, satisfiability of ωMSO⋊⋉BAPA is decidable over the
classes of finite or countable S-structures of bounded treewidth, cliquewidth, and partitionwidth.

8 Incorporating Two-Variable-Logics without Width Restrictions

Corollary 25 constitutes a strong decidability result, also in view of the fact that lifting the
width restriction immediately leads to undecidability even for much weaker logics like FO. A
feasible way to nevertheless relax this restriction without putting decidability at risk and yet
maintaining all the expressive power of ωMSO⋊⋉BAPA is to “couple” it with another logic L
whose satisfiability problem is decidable over arbitrary structures. Then, one considers
sentences φ ∧ ψ, where φ is an ωMSO⋊⋉BAPA sentence while ψ is an L-sentence, and asks
for models whose reduct to the signature of φ adheres to the width restriction. That way,
signature elements of ψ not occurring in φ can “behave freely” and are not subject to the
imposed width constraint.7 Such a “coupling” of ωMSO⋊⋉BAPA and L can be made more or
less “tight” depending on the arity of the predicates allowed to be shared between φ and ψ.

We can show that a decidable coupling with shared unary predicates can be done for
L = FO2

Pres [7], an expressive extension of 2-variable first-order logic by Presburger-like
counting quantifiers of the form ∃S , where S ⊆ N ∪ {∞} is an ultimately periodic set from
N∪{∞} with the semantics defined by A, ν |= ∃Sx.φ iff |{a ∈ A | A, νx 7→a |= φ}| ∈ S. FO2

Pres
subsumes the prominent counting 2-variable first-order fragment C2 [32], but goes beyond
first-order logic. Its satisfiability problem was shown to be decidable only recently [7].

7 We refer to Kotek et al. [42] for a result that is similar in spirit, establishing decidability of finite
satisfiability of treewidth-bounded MSO2 coupled with C2.

CSL 2024

33:14 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Theorem 26. Let w be any of treewidth, cliquewidth, or partitionwidth, and let n ∈ N. Let
Sa and Sb be signatures whose only joint elements are unary predicates. Then the following
problem is decidable: Given a ωMSO⋊⋉BAPA sentence φ over Sa and a FO2

Pres sentence ψ
over Sb, does there exist a countable Sa∪Sb-structure C satisfying w(C|Sa) ≤ n and C |= φ∧ψ.

In a nutshell, this result is obtained by exploiting the fact that, for every FO2
Pres formula

ψ over Sb, one can construct a ωMSO⋊⋉BAPA formula ψ′ over the purely unary signature
Sa ∩ Sb that is satisfied by precisely those Sa-structures that are “Sa∩ Sb-compatible” with
some model of ψ. Consequently, the ωMSO⋊⋉BAPA formula φ∧ψ′ over Sa is such that for any
of its models A one finds a “Sa∩Sb-compatible” model B of ψ. Then, superimposing A and B

would yield a model C of φ∧ψ, which by construction satisfies w(C|Sa
) = w(A). Consequently,

to solve the decision problem of Theorem 26, it suffices to check if the ωMSO⋊⋉BAPA formula
φ ∧ ψ′ has a model A satisfying w(A|Sa

) ≤ n which is decidable by Corollary 25. We note
that the extended arithmetic capabilities of ωMSO⋊⋉BAPA are essential for this result, as ψ′

needs to encode linear inequalities over counts of realized atomic 1-types.

9 Showcase: Decidability of Tame Satisfiability of the Fully Enriched
µ-Calculus with Global Presburger Counting

An important and practically relevant class of expressive logical formalisms, which play
a pivotal role in logic-based knowledge representation and verification, is obtained from
variations and extensions of propositional modal logics [8, 9] and description logics [4, 53].
This class contains most ontology languages as well as PDL [29], CTL∗ [24], the propositional
modal µ-calculus [43] and their extensions. Modulo some representational variations, all these
logics’ model-theoretic semantics rest on structures over unary and binary predicates (often
interpreted as a transition system’s state space). While the simpler variants of this family
can be seen as fragments of first-order logic, the more expressive ones cannot, as they feature
fixed-point capabilities (through regular path expressions or explicit fixed-point operators).
Typically, decidability of the satisfiability problem in these logics follows from some sort of
tree-model property. Many of these logics exhibit some limited local counting capabilities
[54], but recently, there has been an increased interest in accommodating more advanced
arithmetic constraints [23, 47, 2, 5], including global constraints [3, 52] expressing statistical
information such as “more than 50% of the state space’s final states are successful”.

We will demonstrate the usefulness of ωMSO⋊⋉BAPA for establishing decidability results
at the example of adding global Presburger constraints to the fully enriched µ-calculus, a
very powerful formalism used in verification. We first introduce syntax and semantics.8

▶ Definition 27. Given a signature S = SC ∪ SP,1 ∪ SP,2 of constants, unary predicates and
binary predicates, the formulas of the fully enriched µ-calculus (FEµ) are defined by

φ ::= true | false | X | c | ¬c | P | ¬P | φ ∧ φ′ | φ ∨ φ′ | ⟨n, α⟩φ | [n, α]φ | µX.φ | νX.φ

where X is a set variable from some countable set Vset, P ∈ SP,1, n ∈ N and α has the form
R or R− for some R ∈ SP,2. For ease of presentation, we assume positive normal form.

8 For brevity and coherence, we slightly adjust the syntax and use classical model-theoretic semantics
(structures with unary and binary predicates) instead of the original one of modal logic (Kripke structures
with propositional variables and programs), as the two are well known to be equivalent.

L. Herrmann, V. Peth, and S. Rudolph 33:15

Given a structure A and a set variable assignment ν : Vset → 2A, the semantics JφKAν ⊆ A of
formulae φ is defined by the following function (stipulating (R−)A = {(a, a′) | (a′, a) ∈ RA}):

true 7→ A

false 7→ ∅
X 7→ ν(X) c 7→ {cA}

¬c 7→ A \ {cA}
P 7→ PA

¬P 7→ A \ PA

φ ∧ φ′ 7→ JφKAν ∩ Jφ′KAν
φ ∨ φ′ 7→ JφKAν ∪ Jφ′KAν

⟨n, α⟩φ 7→ {a | |{αA ∩ ({a}×JφKAν)}| ≥ n}
[n, α]φ 7→ {a | |{αA ∩ ({a}×(A \ JφKAν))}| ≤ n}

µX.φ 7→
⋂

{A′ ⊆ A | JφKAνX 7→A′ ⊆ A′}
νX.φ 7→

⋃
{A′ ⊆ A | A′ ⊆ JφKAνX 7→A′ }

A FEµ formula is closed if all occurrences of set variables are in the scope of some µ or ν.
A global FEµ Presburger constraint is a Parikh constraint (cf. Definition 7), where all set
variables have been replaced by closed FEµ formulae. Given a set Π of global FEµ Presburger
constraints, we let A |= Π if for every element of Π, replacing each of its closed FEµ formulae
ψ by JψKA∅ produces a statement valid in A. A closed FEµ formula φ is satisfiable wrt. Π if
there is some structure A |= Π with JφKA∅ ̸= ∅, in which case we call A a model of (φ,Π).

In fact, unrestricted satisfiability in FEµ (even without Presburger constraints) is unde-
cidable [13]. Decidability can be regained, however, when restricting to tame structures, also
commonly known as “quasi-forests” [15, 12, 16, 6].

▶ Definition 28 (tame structures). Let S = SC ∪ SP,1 ∪ SP,2 be a signature as above. A tame
structure A over S is a countable structure such that, for some finite set Roots,

the domain A of A is a forest, i.e., a prefix-closed subset of {rw | r ∈ Roots, w ∈ N∗},
the roots coincide with the named elements, i.e., Roots = {aA | a ∈ SC}, and
for every a, a′ ∈ A with (a, a′) ∈ RA for some R ∈ SP,2, either (i) {a, a′} ∩Roots ̸= ∅, or
(ii) a = a′, or (iii) a is a child of a′, or (iv) a′ is a child of a.

A logic has the tame model property if every satisfiable formula φ has a model that is tame
over the signature used by φ. The tame satisfiability problem consists in deciding if a given
formula has a tame model.

While the restriction to tame structures may seem somewhat arbitrary at first, it is well
justified: three maximal decidable sublogics of FEµ have the tame-model-property [12], in
which case satisfiability over arbitrary structures and tame structures coincide. Also, the
structural restriction has some plausibility from a transition system perspective in that one
distinguishes between a finite set of “named” states with arbitrary transitions between them
and potentially infinitely many “anonymous” states with more restricted access. It is easy to
see that all tame structures over S = SC ∪ SP have a treewidth not larger than |SC| + 1.

▶ Theorem 29. The tame satisfiability problem of the fully enriched µ-calculus with global
Presburger constraints is decidable.

Proof (sketch). Let S be a finite signature, φ a closed FEµ formula over S, and Π a finite set of
global FEµ Presburger constraints. Being a tame structure over S can be expressed by an MSO
sentence ψtame. We define a translation transx mapping closed FEµ formulae to ωMSO⋊⋉BAPA
formulae with free variable x such that A, {x 7→ a} |= transx(φ) iff a ∈ JφKA∅ . Based on
this, we exhibit another translation trans, which maps global FEµ Presburger constraints
to equivalent ωMSO⋊⋉BAPA sentences. Then, tame satisfiability of (φ,Π) corresponds
to satisfiability of the ωMSO⋊⋉BAPA sentence ψtame ∧ ∃x.transx(φ) ∧

∧
trans(Π) over all

countable structures of treewidth ≤ |SC| + 1, which is decidable by Corollary 25. ◀

Thanks to the expressive power of FEµ, the above result transfers to numerous other
prominent logics (and their fragments), including PDL and CTL∗ as well as the description
logics µALCOIQ and ALCOIQreg [14], for all of which tame satisfiability is thus decidable
even in the presence of global Presburger constraints. The argument easily extends to the
description logic ZOIQ [16], adding Boolean combinations of binary predicates (programs).

CSL 2024

33:16 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

10 Conclusion

We have proposed ωMSO⋊⋉BAPA, a logic with a high combined structural and arithmetic
expressivity, subsuming and properly extending existing popular formalisms for either purpose.
We have established decidability of the satisfiability of ωMSO⋊⋉BAPA formulae over arbitrary
tree-interpretable classes of structures. A key role is played by Parikh-Muller Tree Automata,
a novel type of automaton over labeled infinite binary trees with decidable emptiness.

For improving readability and succinctness, the syntax of our formalism could be extended
by “comprehension expressions”: set terms of the form {x |ψ} with x ∈ Vind and ψ ∈ F,
whose semantics is straightforwardly defined by {x |ψ}A,ν = {a ∈ A | A, νx 7→a |= ψ}. E.g.,
this allows us to write 2 #{x | ∃y.R(x, y)} = 3 #{y | ∃x.R(x, y)} rather than the more unwieldy

∃V1.(∀x.V1(x) ⇔ ∃y.R(x, y)) ∧ ∃V2.(∀y.V2(y) ⇔ ∃x.R(x, y)) ∧ 2 #V1 = 3 #V2.

Note that comprehension expressions do not increase expressivity; they can be removed from
a formula φ yielding an equivalent formula φ′ as follows: Let χ be the largest subformula of φ
that contains the expression {x |ψ} but no quantifiers binding any of the free variables of ψ.
Then, obtain φ′ from φ by replacing χ by χ′, where χ′ := ∃Z.(∀x.Z(x) ⇔ ψ)∧χ[{x |ψ} 7→ Z].
ωMSO⋊⋉BAPA membership of such extended formulae can then be decided based on their
“purified” variant,9 or by means of an elaborately refined analysis of variable interactions.

Concluding, we are quite confident that this paper’s findings and techniques will prove
useful as a generic tool for establishing decidability results for formalisms from various areas
of computer science such as knowledge representation or verification. That said, in view of
the non-elementary blow-ups abounding in our methods, we concede that they are unlikely
to be helpful in more fine-grained complexity analyses, once decidability is established.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for tree-decomposable

graphs (extended abstract). In Timo Lepistö and Arto Salomaa, editors, 15th International
Colloquium on Automata, Languages and Programming (ICALP 1988), volume 317 of LNCS,
pages 38–51. Springer, 1988. doi:10.1007/3-540-19488-6_105.

2 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme
Lang, editors, 24th European Conference on Artificial Intelligence, (ECAI 2020) – Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume
325 of Frontiers in Artificial Intelligence and Applications, pages 616–623. IOS Press, 2020.
doi:10.3233/FAIA200146.

3 Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions on concepts.
Artif. Intell., 88(1-2):195–213, 1996. doi:10.1016/S0004-3702(96)00010-0.

4 Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017. doi:10.1017/9781139025355.

5 Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable
logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2021), volume 213 of LIPIcs, pages 36:1–36:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.36.

9 The described removal technique is optimized toward producing formulae in ωMSO⋊⋉BAPA.

https://doi.org/10.1007/3-540-19488-6_105
https://doi.org/10.3233/FAIA200146
https://doi.org/10.1016/S0004-3702(96)00010-0
https://doi.org/10.1017/9781139025355
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36

L. Herrmann, V. Peth, and S. Rudolph 33:17

6 Bartosz Bednarczyk and Sebastian Rudolph. Worst-case optimal querying of very expressive
description logics with path expressions and succinct counting. In Sarit Kraus, editor, 28st
International Joint Conference on Artificial Intelligence (IJCAI 2019), pages 1530–1536.
ijcai.org, 2019. doi:10.24963/ijcai.2019/212.

7 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately
periodic counting. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume
168 of LIPIcs, pages 112:1–112:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.112.

8 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/
CBO9781107050884.

9 Patrick Blackburn, Johan F.A.K. van Benthem, and Frank Wolter, editors. Handbook of Modal
Logic, volume 3 of Studies in logic and practical reasoning. North-Holland, 2007.

10 Achim Blumensath. Structures of bounded partition width. PhD thesis, RWTH Aachen
University, Germany, 2003. URL: http://sylvester.bth.rwth-aachen.de/dissertationen/
2003/256/index.htm.

11 Achim Blumensath. A model-theoretic characterisation of clique width. Annals of Pure and
Applied Logic, 142(1-3):321–350, 2006. doi:10.1016/j.apal.2006.02.004.

12 Piero A. Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The complexity of
enriched mu-calculi. Log. Methods Comput. Sci., 4(3), 2008. doi:10.2168/LMCS-4(3:11)2008.

13 Piero A. Bonatti and Adriano Peron. On the undecidability of logics with converse, nominals,
recursion and counting. Artif. Intell., 158(1):75–96, 2004. doi:10.1016/j.artint.2004.04.
012.

14 Diego Calvanese and Giuseppe De Giacomo. Expressive Description Logics, pages 193–236.
Cambridge University Press, 2 edition, 2007. doi:10.1017/CBO9780511711787.007.

15 Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries
in expressive description logics: An automata-theoretic approach. In 22nd Conference on
Artificial Intelligence (AAAI 2007), pages 391–396. AAAI Press, 2007. URL: http://www.
aaai.org/Library/AAAI/2007/aaai07-061.php.

16 Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in expressive
description logics with nominals. In Craig Boutilier, editor, 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pages 714–720, 2009. URL: http://ijcai.org/
Proceedings/09/Papers/124.pdf.

17 Bruno Courcelle. The monadic second-order logic of graphs, II: Infinite graphs of bounded
width. Mathematical Systems Theory, 21(1):187–221, 1988. doi:10.1007/BF02088013.

18 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

19 Bruno Courcelle. The monadic second-order logic of graphs V. On closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153–202, 1991. doi:
10.1016/0304-3975(91)90387-H.

20 Bruno Courcelle. Monadic second-order definable graph transductions: A survey. Theoretical
Computer Science, 126(1):53–75, 1994. doi:10.1016/0304-3975(94)90268-2.

21 Bruno Courcelle. Clique-width of countable graphs: A compactness property. Discrete
Mathematics, 276(1-3):127–148, 2004. doi:10.1016/S0012-365X(03)00303-0.

22 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

23 Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J.
Appl. Log., 8(3):233–252, 2010. doi:10.1016/j.jal.2010.03.001.

24 E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: On
branching versus linear time. In John R. Wright, Larry Landweber, Alan J. Demers, and Tim
Teitelbaum, editors, 10th Annual ACM Symposium on Principles of Programming Languages
(POPL 1983), pages 127–140. ACM Press, 1983. doi:10.1145/567067.567081.

CSL 2024

https://doi.org/10.24963/ijcai.2019/212
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
http://sylvester.bth.rwth-aachen.de/dissertationen/2003/256/index.htm
http://sylvester.bth.rwth-aachen.de/dissertationen/2003/256/index.htm
https://doi.org/10.1016/j.apal.2006.02.004
https://doi.org/10.2168/LMCS-4(3:11)2008
https://doi.org/10.1016/j.artint.2004.04.012
https://doi.org/10.1016/j.artint.2004.04.012
https://doi.org/10.1017/CBO9780511711787.007
http://www.aaai.org/Library/AAAI/2007/aaai07-061.php
http://www.aaai.org/Library/AAAI/2007/aaai07-061.php
http://ijcai.org/Proceedings/09/Papers/124.pdf
http://ijcai.org/Proceedings/09/Papers/124.pdf
https://doi.org/10.1007/BF02088013
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/S0012-365X(03)00303-0
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/j.jal.2010.03.001
https://doi.org/10.1145/567067.567081

33:18 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

25 Joost Engelfriet. A characterization of context-free NCE graph languages by monadic second-
order logic on trees. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, 4th International Workshop on Graph-Grammars and Their Application to Computer
Science (Graph Grammars 1990), volume 532 of LNCS, pages 311–327. Springer, 1990.
doi:10.1007/BFb0017397.

26 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Decidability
of querying first-order theories via countermodels of finite width, 2023. arXiv:2304.06348.

27 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-
cliquewidth sets of existential rules: Toward a general criterion for decidable yet highly
expressive querying. In 26th International Conference on Database Theory (ICDT 2023),
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

28 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness
and Efficiency. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2015), pages 329–340, 2015. doi:10.1109/LICS.2015.39.

29 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

30 Seymour Ginsburg and Edwin H. Spanier. Bounded Algol-Like Languages. Transactions of
the American Mathematical Society, 113(2):333, 1964. doi:10.2307/1994067.

31 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.

32 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In
12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages 306–317. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614957.

33 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Parikh Automata on Infinite Words,
2023. arXiv:2301.08969.

34 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Remarks on Parikh-recognizable omega-
languages, 2023. arXiv:2307.07238.

35 Mario Grobler and Sebastian Siebertz. Büchi-like characterizations for Parikh-recognizable
omega-languages, 2023. arXiv:2302.04087.

36 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory of Computing Systems, 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

37 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata
over infinite words. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022), volume 250 of LIPIcs, pages 40:1–40:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.40.

38 Paul Hunter and Anuj Dawar. Complexity Bounds for Regular Games. In Joanna Jȩdrzejowicz
and Andrzej Szepietowski, editors, Mathematical Foundations of Computer Science (MFCS
2005), LNCS, pages 495–506. Springer, 2005. doi:10.1007/11549345_43.

39 Felix Klaedtke. Automata-based decision procedures for weak arithmetics. PhD thesis, University
of Freiburg, Freiburg im Breisgau, Germany, 2004. URL: http://freidok.ub.uni-freiburg.
de/volltexte/1439/index.html.

40 Felix Klaedtke and Harald Rueß. Parikh automata and monadic second-order logics with
linear cardinality constraints. Technical Report 177, Albert-Ludwigs-Universität Freiburg,
2002. (revised version).

41 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M.
Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata,
Languages and Programming, 30th International Colloquium (ICALP 2003), volume 2719 of
LNCS, pages 681–696. Springer, 2003. doi:10.1007/3-540-45061-0_54.

42 Tomer Kotek, Helmut Veith, and Florian Zuleger. Monadic Second Order Finite Satisfiability
and Unbounded Tree-Width. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages
13:1–13:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CSL.2016.13.

https://doi.org/10.1007/BFb0017397
https://arxiv.org/abs/2304.06348
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.2307/1994067
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1109/LICS.1997.614957
https://arxiv.org/abs/2301.08969
https://arxiv.org/abs/2307.07238
https://arxiv.org/abs/2302.04087
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://doi.org/10.1007/11549345_43
http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html
http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.4230/LIPIcs.CSL.2016.13
https://doi.org/10.4230/LIPIcs.CSL.2016.13

L. Herrmann, V. Peth, and S. Rudolph 33:19

43 Dexter Kozen. Results on the propositional µ-calculus. In Mogens Nielsen and Erik Meineche
Schmidt, editors, Automata, Languages and Programming, 9th Colloquium (ICALP 1982),
volume 140 of LNCS, pages 348–359. Springer, 1982. doi:10.1007/BFb0012782.

44 Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. An Algorithm for Deciding BAPA:
Boolean Algebra with Presburger Arithmetic. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar,
Moshe Y. Vardi, Gerhard Weikum, and Robert Nieuwenhuis, editors, Automated Deduction
(CADE 2005), volume 3632 of LNCS, pages 260–277. Springer, 2005. doi:10.1007/11532231_
20.

45 Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean Algebra with
Presburger Arithmetic. Journal of Automated Reasoning, 36(3):213–239, 2006. doi:10.1007/
s10817-006-9042-1.

46 Aless Lasaruk and Thomas Sturm. Effective Quantifier Elimination for Presburger Arithmetic
with Infinity. In Vladimir P. Gerdt, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing (CASC 2009), volume 5743 of LNCS, pages 195–212.
Springer, 2009. doi:10.1007/978-3-642-04103-7_18.

47 Yensen Limón, Edgard Benítez-Guerrero, Everardo Bárcenas, Guillermo Molero-Castillo,
and Alejandro Velázquez-Mena. A satisfiability algorithm for the mu-calculus for trees with
presburger constraints. In 7th International Conference in Software Engineering Research and
Innovation (CONISOFT 2019), pages 72–79, 2019. doi:10.1109/CONISOFT.2019.00020.

48 Yuri V. Matiyasevich. Hilbert’s Tenth Problem. Foundations of Computing. MIT Press, 1993.
49 Rohit J. Parikh. On Context-Free Languages. Journal of the ACM, 13(4):570–581, 1966.

doi:10.1145/321356.321364.
50 Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.

Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.
51 Neil Robertson and P.D Seymour. Graph minors. III. Planar tree-width. Journal of Combina-

torial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.
52 “Johann” Sebastian Rudolph. Presburger concept cardinality constraints in very expressive de-

scription logics – Allegro sexagenarioso ma non ritardando. In Carsten Lutz, Uli Sattler, Cesare
Tinelli, Anni-Yasmin Turhan, and Frank Wolter, editors, Description Logic, Theory Combina-
tion, and All That – Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday,
volume 11560 of LNCS, pages 542–561. Springer, 2019. doi:10.1007/978-3-030-22102-7_25.

53 Sebastian Rudolph. Foundations of description logics. In Axel Polleres, Claudia d’Amato,
Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F.
Patel-Schneider, editors, Lecture Notes of the 7th International Reasoning Web Summer
School (RW’11), volume 6848 of LNCS, pages 76–136. Springer, 2011. doi:10.1007/
978-3-642-23032-5_2.

54 Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in
expressive description logics. J. Artif. Intell. Res., 12:199–217, 2000. doi:10.1613/jair.705.

CSL 2024

https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/978-3-642-04103-7_18
https://doi.org/10.1109/CONISOFT.2019.00020
https://doi.org/10.1145/321356.321364
https://doi.org/10.2307/1995086
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1007/978-3-030-22102-7_25
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1613/jair.705

	1 Introduction
	2 Preliminaries
	3 Syntax and Semantics of ωMSO⋈BAPA
	4 Mildly Extending ωMSO⋈BAPA Leads to Undecidability
	5 Transformation into Normal Form
	6 Parikh-Muller Tree Automata
	7 Decidability over Tree-Interpretable Classes of Structures
	8 Incorporating Two-Variable-Logics without Width Restrictions
	9 Showcase: Decidability of Tame Satisfiability of the Fully Enriched µ-Calculus with Global Presburger Counting
	10 Conclusion

