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Abstract
Kopczyński (ICALP 2006) conjectured that prefix-independent half-positional winning conditions
are closed under finite unions. We refute this conjecture over finite arenas. For that, we introduce a
new class of prefix-independent bi-positional winning conditions called energy conditions over totally
ordered groups. We give an example of two such conditions whose union is not half-positional. We
also conjecture that every prefix-independent bi-positional winning condition coincides with some
energy condition over a totally ordered group on periodic sequences.
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1 Introduction

This paper is devoted to positional determinacy in turn-based infinite-duration games. An
arena is a (possibly, infinite) directed graph whose edges are colored into elements of some set
of colors C and whose nodes are partitioned between two players called Eve and Adam. They
play by traveling over the nodes of the arena. In each turn, one of the players chooses an
edge from the current node, and the players move toward the endpoint of this edge. Whether
it is an Eve’s or an Adam’s turn to choose depends on whether the current node is an Eve’s
node or an Adam’s node. This continues for infinitely many turns. As a result, the players
obtain an infinite word over C (by concatenating the colors of edges that appear in the
play). A winning condition W , which is a set of infinite words over C, defines the aims of
the players. Eve wants to obtain an infinite word that belongs to W , while Adam wants it to
be outside W .

A vast amount of literature in this area is devoted to positional strategies. A strategy of
Eve or Adam is positional if, for every node controlled by the player in question, there exists
an out-going edge which is always played by this strategy at this node. Implementing such
strategies is easy because we only have to specify one edge for each node of the corresponding
player. This makes these strategies relevant for such areas as controller synthesis [2], where
an implementation of a controller can be seen as its strategy against an environment.

Correspondingly, of great interest are winning conditions for which positional strategies
are always sufficient to play optimally (for one of the players or even for both of them). This
area has the following terminology. A winning condition W is half-positional if in every
arena Eve has a positional strategy σ such that for every node of the arena the following
holds: if σ is not winning w.r.t. W if the game starts at this node, then Adam has a winning
strategy w.r.t. W (not necessarily positional) from this node. To put it simply, σ must be
winning everywhere where Adam does not have a winning strategy. If this condition holds
in all finite arenas (but possibly does not hold in some infinite arenas), then W is called
half-positional over finite arenas. A winning condition W is bi-positional (over all or over
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34:2 Energy Games over Totally Ordered Groups

finite arenas) if additionally the same requirement as for Eve holds for Adam (or, in other
words, if both W and its complement are half-positional). The family of parity condition,
which is of great interest due to its applications in logic [20, 14], is known to be bi-positional
over finite and infinite arenas [9]. There exist winning conditions that are bi-positional over
finite arenas, but not even half-positional over infinite arenas, for instance, certain variants
of the mean-payoff condition [18].

Winning conditions, bi-positional over infinite arenas, are understood quite well. For
instance, it is known that all of them are ω-regular [4]. In turn, parity conditions are exactly
those winning conditions that are bi-positional over infinite arenas and are prefix-independent,
that is, closed under adding or removing finite prefixes [7].

Bi-positionality over finite arenas was studied by Gimbert and Zielonka [11, 12]. In [11],
they gave a simple sufficient condition for bi-positionality over finite arenas, suitable for
the majority of the applications, and in [12], they gave a condition which is sufficient and
necessary (but far more complex). Their sufficient and necessary condition has a corollary
called 1-to-2-player lifting, which is of great interest in practice. It states that as long as a
winning condition is half-positional for Eve in finite arenas without Adam and half-positional
for Adam in finite arenas without Eve, it is bi-positional in all finite arenas.

Recently, Ohlmann [18] obtained a sufficient and necessary condition for half-positionality
over infinite arenas. As for finite arenas, several sufficient conditions for half-positionality
were obtained in the literature [15, 1], but none of them is necessary.

Are there set operations under which bi-positional and half-positional winning conditions
are closed? Bi-positional winning conditions are closed under complement by definition. At
the same time, bi-positional winning conditions are not closed under intersection (and hence
under union) [17].

Closure properties of half-positional winning conditions were first addressed by Kop-
czyński [15]. He conjectured that prefix-independent half-positional winning conditions are
closed under union. This conjecture has many variants, depending on whether we mean
half-positionality over finite or infinite arenas, and whether we consider arbitrary unions or
only finite ones. Kopczyński himself refuted a variant for infinite arenas and uncountable
unions. He also noticed that dropping the prefix-independence assumption or changing union
to intersection immediately makes the conjecture false.

No counter-example, refuting it for finite or even countable unions, had been found. On
the positive side, several classes of prefix-independent half-positional winning conditions that
are closed under union were identified in the literature, including concave conditions (over
finite arenas and arbitrary unions) of Kopczyński [15] and conditions “excluding healing” of
Ohlmann [18] (for infinite arenas but at most countable unions).

In this paper, we refute the Kopczyński’s conjecture for finite arenas and finite unions.
Moreover, we present two winning conditions that are bi-positional over finite arenas and
whose union is not half-positional over finite arenas.

Kopczyński’s conjecture over infinite arenas for finite/countable unions remains open.
Additionally, there has been an interest in whether some variant of the Kopczyński’s conjecture
holds in a restriction to ω-regular condition. Bouyer et al. [3] obtained that prefix-independent
ω-regular conditions, recognizable by deterministic Büchi automata (DBA), are closed under
finite union. In fact, they simply show that every prefix-independent DBA-recognizable
ω-regular condition can be given as a set of sequences, having infinitely many occurrences of
some fixed subset of colors. Such conditions are trivially closed under finite unions.
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Our technique. We introduce a new class of bi-positional winning conditions called energy
conditions over totally ordered groups, or ETOG conditions for short. They are defined as
follows (see more details in Section 3). We consider elements of some totally ordered group
(we stress that it should be bi-ordered) as colors of edges. Given an infinite sequence of these
elements, we arrange them into a formal series. Eve wants the sequence of its partial sums
to have an infinite decreasing subsequence. Canonical energy conditions [5] can be defined in
this way over Z with the standard ordering.

In Section 4, we establish the bi-positionality (over finite arenas) of the ETOG conditions
using a sufficient condition of Gimbert and Zielonka. In Section 5, we refute the Kopczyński’s
conjecture over finite arenas and for finite unions. A key factor allowing us to do this is
that free groups can be totally ordered. We construct two energy conditions over a free
group with 2 generators whose union is not half-positional. We also observe in Section 5 that
energy conditions over free groups are non-permuting, and that they can be used to refute
1-to-2-player lifting for half-positionality.

We believe that the class of energy conditions over totally ordered groups is interesting
on its own. Namely, we find this class suitable for the following conjecture.

▶ Conjecture 1. Every prefix-independent winning condition, bi-positional over finite arenas,
coincides on periodic sequences with some energy condition over a totally ordered group.

We cannot expect it to hold for all sequences, but periodic ones are sufficient, say, for
algorithmic applications. If our conjecture is true, it gives an explicit description of the
class of bi-positional prefix-independent winning condition. This would be in line with an
explicit description of the class of continuous bi-positional payoffs from [16]. We discuss our
conjecture in more detail in Section 6, where we reduce it to a problem about free groups.

2 Preliminaries

From now on, we restrict ourselves to finite arenas and to bi(half)-positionality over finite
arenas.

If C is a set, we denote by C∗ (resp., by Cω) the set of all finite (resp., infinite) words
over C. For x ∈ C∗, by |x| we denote the length of x. Additionally, by C+ we denote the
set of all finite non-empty words over C. If x ∈ C+, then by xω we denote an infinite word
obtained by repeating x infinitely many times. The free group over C is denoted by FC .

An arena A over a non-empty finite set (of colors) C is a tuple ⟨VA, VB , E⟩, where VA

and VB are disjoint finite sets and E ⊆ (VA ∪ VE) × C × (VA ∪ VB) is such that for every
s ∈ VA ∪ VB there exist c ∈ C and t ∈ VA ∪ VB for which (s, c, t) ∈ E. Elements of VA are
called Eve’s nodes, and elements of VB are called Adam’s nodes. Elements of E are called
edges of A. An edge e = (s, c, t) ∈ E is represented as a c-colored arrow from s to t. We
use the notation source((s, c, t)) = s, col((s, c, t)) = c and target((s, c, t)) = t. Our definition
guarantees that every node v ∈ VA ∪ VB has an out-going edge, that is, an edge e such that
source(e) = v.

An infinite-duration game over A from a node s ∈ VA ∪ VB is played as follows. At the
beginning, one of the players chooses an edge e1 ∈ E with source(e1) = s. Namely, if s ∈ VA,
then Eve chooses e1, and if s ∈ VB, then Adam chooses e1. More generally, in the first n

turns players choose n edges e1, e2, . . . , en ∈ E, one edge per turn. These edges always form a
path in A, that is, we have target(e1) = source(e2), . . . , target(en−1) = source(en). Then the
(n + 1)st turn is played as follows. Players consider the endpoint node of the current path,
which is target(en). One of the players chooses an edge en+1 with source(en+1) = target(en).

CSL 2024



34:4 Energy Games over Totally Ordered Groups

Namely, if target(en) ∈ VA, then Eve chooses en+1, and if target(en) ∈ VB , then Adam chooses
en+1. After infinitely many turns, players get an infinite sequence of edges p = (e1, e2, e3, . . .)
called a play (it forms an infinite path in A).

A winning condition over a set of colors C is a subset W ⊆ Cω. A strategy of Eve is
winning from s ∈ VA ∪ VB w.r.t. W if any play p = (e1, e2, e3, . . .) with this strategy in the
infinite-duration game over A from s is such that its sequence of colors col(e1)col(e2)col(e3) . . .

belongs to W . Similarly, a strategy of Adam is winning from s ∈ VA ∪ VB w.r.t. W if any
play p = (e1, e2, e3, . . .) with this strategy in the infinite-duration game over A from s is such
that col(e1)col(e2)col(e3) . . . /∈ W .

A positional strategy of Eve is a function σ : VA → E such that source(σ(u)) = u for any
u ∈ VA. It is interpreted as follows: for any u ∈ VA, whenever Eve has to choose an edge
from u, she chooses σ(u). Similarly, a positional strategy of Adam is a function τ : VB → E

such that source(τ(u)) = u for any u ∈ VB . It is interpreted analogously.
A winning condition W ⊆ Cω is half-positional if for every finite arena A over C there

exists a positional strategy σ of Eve such that for every node s of A the following holds: if σ is
not winning w.r.t. W from s, then Adam has a winning strategy w.r.t. W from s. A winning
condition W is bi-positional if both W and its complement Cω \ W are half-positional.

A winning condition W ⊆ Cω is prefix-independent if for all x ∈ C∗ and α ∈ Cω we have
α ∈ W ⇐⇒ xα ∈ W .

We state the following sufficient condition for bi-positionality due to Gimbert and Zielonka.

▶ Definition 2. Let W ⊆ Cω be a winning condition over a finite set of colors C. We call
W fairly mixing if the following 3 conditions hold:

A) For every x ∈ C∗ and α, β ∈ Cω we have that

(xα /∈ W ∧ xβ ∈ W ) =⇒ (α /∈ W ∧ β ∈ W ).

B) For every S ∈ {W, Cω \ W}, for every x ∈ C+ and for every α ∈ Cω we have that

(xω ∈ S, α ∈ S) =⇒ (xα ∈ S).

C) For every S ∈ {W, Cω \W} and for every infinite sequence x1, x2, x3, . . . ∈ C+ it holds
that:[

(x1x3x5 . . . ∈ S
)

∧ (x2x4x6 . . . ∈ S) ∧ (∀n ≥ 1 xω
n ∈ S)

]
=⇒ x1x2x3 . . . ∈ S.

▶ Theorem 3 ([11]). Any fairly mixing winning condition is bi-positional over finite arenas.

3 Definition of Energy Games over Totally Ordered Groups

A totally ordered group [8] is a triple (G, +, ≤), where (G, +) is a group and ≤ is a total
order on G such that

a ≤ b =⇒ x + a + y ≤ x + b + y for all a, b, x, y ∈ G.

The neutral element of G is denoted by 0. We do not assume that + is commutative1.

1 Possibly, more common is to use the multiplicative notation for non-Abelian groups. However, we find
additive notation more suitable due to the intuition that comes with the standard energy games.
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Consider any finite set C of colors and any totally ordered group (G, +, ≤). By a
valuation of colors over (G, +, ≤) we mean any function val : C → G. It can be extended to
a homomorphism val : C∗ → G by setting

val(empty word) = 0, val(c1c2 . . . cn) = val(c1) + val(c2) + . . . + val(cn).

Additionally, for every infinite sequence of colors c1c2c3 . . . ∈ Cω, we denote by val(c1c2c3 . . .)
the sequences of valuations of its finite prefixes:

val(c1c2c3 . . .) = {val(c1 . . . cn)}∞
n=1.

In other words, val(c1c2c3 . . .) is the sequence of partial sums of the formal series∑∞
n=1 val(cn).
An energy condition over (G, +, ≤), defined by a valuation of colors val : C → G, is the

set W ⊆ Cω of all α ∈ Cω such that val(α) has an infinite decreasing subsequence. It is
immediate that any energy condition over a totally ordered group is prefix-independent.

As an illustration, we show that parity conditions fall into this definition. The parity
condition over d priorities is a winning condition W d

par ⊆ {1, 2, . . . , d}ω,

W d
par = {c1c2c3 . . . ∈ {1, 2, . . . , d}ω | lim sup

n→∞
ci is odd}.

Observe that W d
par is an energy condition over Zd with the lexicographic ordering, defined

by the following valuation:

val(d) = ((−1)d, 0, . . . 0)
val(d − 1) = (0, (−1)d−1, . . . 0)

...
val(1) = (0, 0, . . . , −1).

As far as we know, the most general class of bi-positional prefix-independent winning
conditions that were previously considered are priority mean payoff conditions [13]. They
can also be defined as energy conditions over Zd. Moreover, to define them, it is sufficient to
consider only valuations that map each color to a vector with at most 1 non-zero coordinate,
as in the case of parity conditions.

4 Bi-positionality of Energy Conditions over Totally Ordered Groups

In this section, we establish

▶ Theorem 4. Every ETOG condition is bi-positional over finite arenas.

We derive it from the following technical result (which will also be useful in Section 6). If
C is a non-empty finite set and W ⊆ Cω, define per(W ) = {x ∈ C+ | xω ∈ W} to be the set
of periods of periodic words from W .

▶ Proposition 5. Let C be a non-empty finite set. Consider any set P ⊆ C+ such that both
P and C+ \ P are closed under concatenations and cyclic shifts. Define a winning condition
WP ⊆ Cω as follows:

WP = {xy1y2y3 . . . | x ∈ C∗, y1, y2, y3, . . . ∈ P}.

Then WP is a prefix-independent fairly mixing winning condition with P = per(WP ).

CSL 2024



34:6 Energy Games over Totally Ordered Groups

Let us start with a derivation of Theorem 4.

Proof of Theorem 4 (modulo Proposition 5). Assume that W ⊆ Cω is an energy condition
over a totally ordered group (G, +, ≤), defined by a valuation of colors val : C → G. Set
P = {y ∈ C+ | val(y) < 0}. We claim that W = WP . Indeed, W consists of all
α = c1c2c3 . . . ∈ Cω such that

val(α) = (val(c1), val(c1c2), val(c1c2c3), . . .)

has an infinite decreasing subsequence. Consider any i < j. Observe that the jth element of
val(α) is smaller than the ith element of val(α) if and only if

−val(c1 . . . ci) + val(c1 . . . cj) = val(ci+1 . . . cj) < 0.

In other words, val(α) has an infinite decreasing subsequence if and only if α = c1c2c3 . . .

can be represented, except for some finite prefix, as a as a sequence of words with negative
valuations. This means that W = WP .

We now show that both P and C+ \ P are closed under concatenations and cyclic shifts.
By Proposition 5, this would imply that W = WP is fairly mixing. In turn, by Theorem 3,
this implies that W is bi-positional.

Consider any two words x, y ∈ C+. Obviously:

val(x) < 0, val(y) < 0 =⇒ val(xy) = val(x) + val(y) < 0,

val(x) ≥ 0, val(y) ≥ 0 =⇒ val(xy) = val(x) + val(y) ≥ 0.

This demonstrates that both P and C+ \ P are closed under concatenations. Now, we claim
that val(c1c2 . . . cn) < 0 ⇐⇒ val(c2 . . . cnc1) < 0 for any word c1c2 . . . cn ∈ C+ (this implies
that both P and C+ \ P are closed under cyclic shifts). Indeed,

val(c1) + val(c2) + . . . + val(cn) < 0
⇐⇒ −val(c1) + (val(c1) + val(c2) + . . . + val(cn)) + val(c1) < −val(c1) + 0 + val(c1)
⇐⇒ val(c2) + . . . + val(cn) + val(c1) < 0.

Proof of Proposition 5. Prefix-independence of WP is immediate. We now show that P =
per(WP ). We have zω ∈ WP for any z ∈ P by definition. Hence, P ⊆ per(WP ). Now, take
any z ∈ per(WP ). We show that z ∈ P . By definition of per(WP ), we have zω = xy1y2y3 . . .

for some x ∈ C∗ and y1, y2, y3 . . . ∈ P . There exist i < j such that |xy1 . . . yi| and |xy1 . . . yj |
are equal modulo |z|. This means that yj+1 . . . yj must be a multiple of some cyclic shift of
z. We have that yj+1 . . . yj ∈ P because P is closed under concatenations. This means that
this cyclic shift of z also belongs to P . Indeed, otherwise, we could write yj+1 . . . yj as a
multiple of some word from C+ \ P , and this is impossible because C+ \ P is closed under
concatenations. Since P is closed under cyclic shifts, we obtain z ∈ P .

Finally, we show that WP is fairly mixing. Since WP is prefix-independent, we should
care only about the third item of Definition 2. That is, we only have to show the following
two claims:[

(x1x3x5 . . . ∈ WP ) ∧ (x2x4x6 . . . ∈ WP ) ∧ (∀n ≥ 1 xω
n ∈ WP )

]
=⇒ x1x2x3 . . . ∈ WP , (1)[

(x1x3x5 . . . ∈ WP ) ∧ (x2x4x6 . . . ∈ WP ) ∧ (∀n ≥ 1 xω
n ∈ WP )

]
=⇒ x1x2x3 . . . ∈ WP , (2)

for every infinite sequence of words x1, x2, x3, . . . ∈ C+. Here, for brevity, by WP we denote
Cω \ WP .
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We first show (1). If xω
n ∈ WP for every n, then xn ∈ per(WP ) = P for every n, and

hence x1x2x3 . . . ∈ WP by definition.
A proof of (2) is more elaborate. Assume for contradiction that x1x2x3 . . . ∈ WP . Then

we can write x1x2x3 . . . = xy1y2y3 . . . for some x ∈ C∗ and y1, y2, y3, . . . ∈ P . One can
represent the equality as a sequence of “cuts” inside x1x2x3 . . ., as on the following picture:

x1 x2 x3 x4 x5

x y1

a b

first cut second cut

. . .

Either there are infinitely many cuts inside xn with odd indices, or there are infinitely
many cuts inside xn with even indices. Without loss of generality, we may assume that we
only have cuts inside xn with odd indices, and at most one for each n. Indeed, if necessary,
we can join several successive yi’s into one word (this is legal because P is closed under
concatenations).

We can now write each yi as yi = ax2kx2k+1 . . . x2mb for some a, b ∈ C∗ and 1 ≤ k ≤ m.
Now, let y′

i = ax2k+1x2k+3 . . . x2m−1b be a word which can be obtained from yi by removing
xn with even indices. Additionally, we let x′ ∈ C∗ be a word which can be obtained from x

in the same way. Since each xn with an even index lies entirely in some yi or in x, we have
that x1x3x5 . . . = x′y′

1y′
2y′

3 . . ., as the following picture illustrates:
x1 x3 x5

x′ y′
1

a b

first cut second cut

. . .

We will show that y′
i ∈ P for every P . This would contradict the fact that x1x3x5 . . . ∈ WP .

First, observe that xn /∈ P for every n. Indeed, we are given that xω
n ∈ WP for every n.

Hence, xn /∈ per(WP ) = P , as required.
Assume for contradiction that y′

i = ax2k+1x2k+3 . . . x2m−1b /∈ P . Using the fact that
C+ \ P is closed under concatenations and cyclic shifts, we obtain:

y′
i =ax2k+1x2k+3 . . . x2m−1b /∈ P

=⇒ x2k+1x2k+3 . . . x2m−1ba /∈ P

=⇒ x2kx2k+1x2k+3 . . . x2m−1ba /∈ P because x2k /∈ P

=⇒ x2k+3 . . . x2m−1bax2kx2k+1 /∈ P

=⇒ x2k+2x2k+3 . . . x2m−1bax2kx2k+1 /∈ P because x2k+2 /∈ P

...
=⇒ x2mbax2kx2k+1 . . . x2m−1 /∈ P because x2m /∈ P

=⇒ yi = ax2kx2k+1 . . . x2mb /∈ P,

contradiction. ◀
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34:8 Energy Games over Totally Ordered Groups

5 Refuting Kopczyński’s conjecture

▶ Theorem 6. There exist two ETOG conditions whose union is not half-positional over
finite arenas.

This theorem, together with the result that ETOG conditions are bi-positional over finite
arenas (Theorem 4), refutes the Kopczyński’s conjecture over finite arenas for finite unions.

Proof of Theorem 6. Consider the free group F{a,b} with 2 generators a, b. As was proved
by Shimbireva [19], see also [8, Page 18], free groups can be totally ordered. We take an
arbitrary total ordering ≤ of F{a,b}. We also consider its inverse ≤−1, which is also a total
ordering of F{a,b}. Define a set of colors C = {a, a−1, b, b−1, ε}. Here a−1, b−1 are inverses of
a, b in F{a,b}, and ε is the identity element of F{a,b}.

Let W1 ⊆ Cω be an energy condition over (F{a,b}, ≤), defined by a (suggestive) valuation
of colors which interprets elements of C as corresponding elements of F{a,b}. Similarly, we
let W2 ⊆ Cω be an energy condition over (F{a,b}, ≤−1), defined by the same valuation. The
only difference between W1 and W2 is that they are defined w.r.t. different total orderings of
F{a,b} (one ordering is the inverse of the other one).

We show that the union W1 ∪W2 is not half-positional. It consists of all α ∈ Cω such that
val(α) contains either an infinite decreasing subsequence w.r.t. ≤ or an infinite decreasing
subsequence w.r.t. ≤−1. In other words, it consists of all α ∈ Cω such that val(α) contains
either an infinite decreasing subsequence or an infinite increasing subsequence w.r.t. ≤.

We show that W1 ∪ W2 is not half-positional in the following finite arena.

εε

b

b−1

a

a−1

Here, Eve controls the square and Adam controls the two circles. Assume that the game
starts in the square. We show that Eve has a winning strategy w.r.t. W1 ∪ W2, but not a
positional one.

Eve has two positional strategies in this arena: always go to the left and always go to the
right. Consider, for example, the first one. Adam has the following counter-strategy which
wins against it: alternate the a-edge with the a−1-edge. We get the following sequence of
colors in the play of these two strategies:

εaεa−1εaεa−1 . . .

This sequence does not belong to W1 ∪ W2 because

val(εaεa−1εaεa−1 . . .) = ε, a, a, ε, ε, a, a, ε, . . .

There are only two distinct elements of F{a,b} occurring in val(εaεa−1εaεa−1 . . .). Hence, it
neither has an infinite decreasing subsequence nor an infinite increasing subsequence. By the
same argument, the second positional strategy of Eve (always go to the right) is not winning
w.r.t. W1 ∪ W2 either.
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On the other hand, Eve has the following winning strategy: alternate the edge to the left
circle with the edge to the right circle. Consider any play with this strategy. Its sequence of
colors looks as follows:

εa±1εb±1εa±1εb±1 . . .

We show that this sequence belongs to W1 ∪ W2. A restriction of val(εa±1εb±1εa±1εb±1) to
elements with even indices looks like this:

a±1, a±1b±1, a±1b±1a±1, a±1b±1a±1b±1 . . . (3)

All elements of (3) are distinct. Hence, by the Infinite Ramsey Theorem, it either has
an infinite decreasing subsequence or an infinite increasing subsequence w.r.t. ≤. Indeed,
consider an infinite complete graph over {1, 2, 3, . . .}, whose edges are colored green and red
as follows. Pick any i, j ∈ {1, 2, 3, . . .}, i < j. If the ith element of (3) is bigger than the
jth element of (3), then color the edge between i and j into green. Otherwise, color this
edge red (in this case, the ith element of (3) is smaller than the jth element of (3)). Our
graph has an infinite induced subgraph in which all edges are of the same color. If they are
all green (resp., red), then this subgraph defines an infinite decreasing (resp., increasing)
subsequence of (3). ◀

Additional remarks. Energy conditions over free groups are interesting because they are
non-permuting (if there is more than one generator). A prefix-independent winning condition
is permuting if it is closed under permuting periods of periodic sequences. All previously
known prefix-independent bi-positional winning conditions were permuting. This is because
they can be seen as energy conditions over Abelian groups (on periodic sequences). In a talk
of Colcombet and Niwiński [6] it was asked whether there exists a non-permuting bi-positional
prefix-independent winning condition. The answer is “yes”. For example, take W1 as above
in this section. Without loss of generality, we may assume that aba−1b−1 is negative w.r.t. ≤
(otherwise we can consider its inverse). Then (aba−1b−1)ω ∈ W1, but (aa−1bb−1)ω /∈ W1.

Additionally, the winning condition W1 ∪ W2 is interesting because it refutes 1-to-2-player
lifting for half-positionality. Namely, it is easy to see that W1 ∪ W2 is positional for Eve in
all arenas, where there are no nodes of Adam. This is because she can win in such arenas if
and only if there is a reachable non-zero simple cycle. But as we have shown, W1 ∪ W2 is
not positional for Eve in the presence of Adam. Previously, there were examples that refute
1-to-2-player lifting for half-positionality in stochastic games [10].

6 Discussing Conjecture 1

First, it is useful to understand how prefix-independent bi-positional winning conditions are
arranged on periodic sequences. Luckily, Proposition 5 gives an answer.

▶ Proposition 7. Let C be a finite non-empty set. Then for any P ⊆ C+ the following two
conditions are equivalent:

A) P = per(W ) for some prefix-independent bi-positional (over finite arenas) winning
condition W ⊆ Cω;
B) P and C+ \ P are closed under concatenations and cyclic shifts;

Proof. The fact that the second item implies the first item follows from Proposition 5. Indeed,
if P and C+ \ P are closed under concatenations and cyclic shifts, then P = per(WP ) for a
prefix-independent fairly mixing winning condition WP , which is bi-positional by Theorem 3.
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We now show that the first item implies the second item. The fact that P and C+ \ P are
closed under cyclic shifts is a consequence of the prefix-independence of W :

c1c2 . . . cn ∈ P ⇐⇒ (c1c2 . . . cn)ω ∈ W ⇐⇒ cn(c1c2 . . . cn)ω = (cnc1 . . . cn−1)ω ∈ W

⇐⇒ cnc1 . . . cn−1 ∈ P.

We now show that P is closed under concatenations (there is a similar argument for C+ \ P ).
Take any x, y ∈ P . Consider the following arena.

x

y

It has a central circle node that lies on two simple cycles, one of which is colored by x

and the other one by y. All nodes are controlled by Adam. Since, x, y ∈ P , we have that
xω, yω ∈ W . Hence, Adam does not have a positional winning strategy w.r.t. W from the
central circle. Since W is bi-positional, Adam has no winning strategy from the central circle
w.r.t. W . Now, assume that Adam alternates the x-cycle with the y-cycle. He obtains (xy)ω

as a sequence of colors. Since this strategy is not winning, we have xy ∈ P . ◀

In turn, periods of periodic sequences of ETOG conditions are arranged as follows.

▶ Proposition 8. Let C be a non-empty finite set and W ⊆ Cω be an energy condition
over a totally ordered group (G, +, ≤), defined by a valuation of colors val : C → G. Then
per(W ) = {x ∈ C+ | val(x) < 0}.

Proof. Define P = {x ∈ C+ | val(x) < 0}. By the argument from the derivation of
Theorem 4, we have W = WP . Moreover, it was shown there that P and C+ \ P are
closed under concatenations and cyclic shifts. Finally, by Proposition 5, we have that
P = per(WP ) = per(W ). ◀

Thus, Conjecture 1 is equivalent to the following conjecture.

▶ Conjecture 9. Let C be any non-empty finite set. Then for any P ⊆ C+ such that P and
C+ \ P are closed under concatenations and cyclic shifts there exists a totally ordered group
(G, +, ≤) and a valuation of colors val : C → G such that P = {x ∈ C+ | val(x) < 0}.

It might be concerning that P and C+ \ P are interchangeable in Conjecture 9, while val
treats them asymmetrically. Namely, we require it to be negative on P and non-negative on
C+ \ P . However, val can always be made strictly positive on C+ \ P . Namely, instead of G,
consider the direct product G × Z with the lexicographic order, and define a new valuation
of colors val′ : C → G × Z, val′(c) = (val(c), 1).

Finally, we notice that our conjecture can be reduced to a reasoning about free groups.

▶ Definition 10. A subset S of a group G is called an invariant sub-semigroup of G if
the following two conditions hold:

A) xy ∈ S for all x, y ∈ S (closure under multiplications);
B) gxg−1 ∈ S for all g ∈ G, x ∈ S (closure under conjugations with elements of G).
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▶ Conjecture 11. Consider an arbitrary non-empty finite set C and any P ⊆ C+ such
that P and C+ \ P are closed under concatenations and cyclic shifts. Then there exists
an invariant sub-semigroup S of the free group FC such that, first, C+ \ P is a subset of
S, second, P is disjoint with S, and third, for every g ∈ FC either g ∈ S or g−1 ∈ S (in
particular, S must have the neutral element).

▶ Proposition 12. Conjecture 9 is equivalent to Conjecture 11.

Proof. Consider an arbitrary non-empty finite set C. It is sufficient to show that for any
P ⊆ C+ the following two conditions are equivalent:

A) there exist a totally ordered group (G, +, ≤) and a valuation of colors val : C → G

such that P = {x ∈ C+ | val(x) < 0}.
B) there exists an invariant sub-semigroup S of the free group FC such that, first, C+ \ P

is a subset of S, second, P is disjoint with S, and third, for every g ∈ FC either g ∈ S or
g−1 ∈ S.

We first establish A) =⇒ B). Extend val to a homomorphism from FC to G by setting
val(c−1) = −val(c) for c ∈ C. Set S = {g ∈ FC | val(g) ≥ 0}. It is easy to check that all
conditions on S are satisfied.

Now we establish B) =⇒ A). Let S be as in B). Consider a binary relation ∼ on FC ,
defined by f ∼ g ⇐⇒ fg−1, gf−1 ∈ S for f, g ∈ FC . The fact that S is an invariant
sub-semigroup with the neutral element implies that ∼ is a congruence on the group FC . Let
G = FC/ ∼ be the corresponding quotient group. Now, consider a binary relation ⪯ on FC ,
defined by f ⪯ g ⇐⇒ gf−1 ∈ S for f, g ∈ FC (observe that f ∼ g ⇐⇒ f ⪯ g, g ⪯ f). It is
easy to see that ⪯ is correctly defined over FC/ ∼, whose elements are equivalence classes
of ∼. More formally, it holds that if a ∼ b, x ∼ y, then a ⪯ x ⇐⇒ b ⪯ y (it can again be
derived from the fact that S is an invariant sub-semigroup). It is also routine to check that
⪯ defines a total ordering on G. We need a condition that either g ∈ S or g−1 ∈ S for every
g ∈ FC only to show the totality of our order. Namely, to show that there are no f, g ∈ FC

with f ̸⪯ g and g ̸⪯ f , we notice that otherwise neither gf−1 nor fg−1 = (gf−1)−1 are in
S. Observe that the equivalence class of g ∈ FC w.r.t. ∼ is non-negative in (G, ⪯) if and
only if g ∈ S. Now, recall that C+ \ P is a subset of S and P is disjoint with P . Hence, if
we consider a valuation of colors val : C → G, which maps c ∈ C to its equivalence class
w.r.t. ∼, then P would be the set of words from C+ whose valuation is negative w.r.t. ⪯. ◀
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