
QLTL Model-Checking
François Laroussinie # Ñ

IRIF, Université Paris Cité, France

Loriane Leclercq #

Ecole Centrale de Nantes, CNRS, LS2N, Nantes, France

Arnaud Sangnier #

DIBRIS, Università di Genova, Italy

Abstract
Quantified LTL (QLTL) extends the temporal logic LTL with quantifications over atomic propositions.
Several semantics exist to handle these quantifications, depending on the definition of executions
over which formulas are interpreted: either infinite sequences of subsets of atomic propositions
(aka the “tree semantics”) or infinite sequences of control states combined with a labelling function
that associates atomic propositions to the control states (aka the “structure semantics”). The
main difference being that in the latter different occurrences of a control state should be labelled
similarly. The tree semantics has been intensively studied from the complexity and expressivity
point of view (especially in the work of Sistla [21, 22]) for which the satisfiability and model-checking
problems are known to be TOWER-complete. For the structure semantics, French has shown that
the satisfiability problem is undecidable [8]. We study here the model-checking problem for QLTL
under this semantics and prove that it is EXPSPACE-complete. We also show that the complexity
drops down to PSPACE-complete for two specific cases of structures, namely path and flat ones.

2012 ACM Subject Classification Theory of Computation → Logic

Keywords and phrases Quantified Linear-time temporal logic, Model-cheking, Verification, Automata
theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.35

Funding Loriane Leclercq: ANR project ProMiS ANR-19-CE25-0015

1 Introduction

Temporal logics (TLs) have been introduced in computer science in the late 1970’s by
Pnueli [19]; they provide a powerful formalism for specifying correctness properties of evolving
systems. Various kinds of temporal logics have been defined, with different expressive power
and algorithmic properties. For instance, the Computation Tree Logic (CTL) expresses
properties of the computation tree of the system under study (time is branching: a state
may have several successors), and the Linear-time Temporal Logic (LTL) expresses properties
of one execution at a time (a system is viewed as a set of executions).

In verification, we are mainly interested in two decision problems: the satisfiability
problem (given a formula, decide whether there exists a model for it) and the model-checking
problem (given a potential model and a formula, decide whether the formula holds true or not
over the model). For the temporal logic LTL, it is well known that both these problems are
PSPACE-complete. The key argument is the construction of an automaton that recognises
the models (a set of infinite words) of a fixed formula. For CTL, the model-checking can be
done in polynomial time while satisfiability is EXPTIME-complete (these decision procedures
can also be based on automata techniques, but this time we need to use tree automata).

In terms of expressiveness, classical temporal logics like CTL or LTL still have some
limitations: in particular, they lack the ability of counting. For instance, they cannot express
that an event occurs (at least) at every even position along a path, or that a state has

© François Laroussinie, Loriane Leclercq, and Arnaud Sangnier;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francoisl@irif.fr
https://www.irif.fr/~francoisl/
mailto:loriane.leclercq@ls2n.fr
https://orcid.org/0000-0002-6254-8691
mailto:arnaud.sangnier@unige.it
https://doi.org/10.4230/LIPIcs.CSL.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 QLTL Model-Checking

exactly two successors. In order to cope with this, temporal logics have been extended with
propositional quantifiers [21, 22]: in this framework, a formula ∃p.φ is verified when there is
a way of labelling the current execution by p in such a way that φ holds true.

Different semantics for quantified TLs have been studied in the literature depending on the
definition of the quantifiers. For example, consider a formula Φ of the linear-time temporal
logic QLTL (i.e., LTL extended with propositions quantifiers). We can interpret Φ either over
an infinite word over the alphabet 2AP (where AP denotes the set of atomic propositions used
in Φ), or over a labelled execution composed by an infinite sequence of control states (some
of them may have several occurrences along the execution) and a labelling function which
maps each control state to a set of atomic propositions. These two points of view coincide
for LTL formulas. But as soon as quantifiers are added, the two semantics are quite different:
in the first one (called the tree semantics), each position along the execution corresponds to
a new (control) state whose labelling is independent of the others. In the second one (called
the structure semantics), two occurrences of the same control state are always labelled in the
same manner.

The tree semantics has been studied extensively, especially in [22] where QLTL is proven
to be as expressive as S1S (the monadic second-order logic with one successor), and the
satisfiability and model-checking problems for the k-alternation fragment are shown k-
EXPSPACE-complete.

For QLTL with the structure semantics, the main result concerns the satisfiability problem.
In this setting, the satisfiability problem is stated as follows: given a QLTL formula Φ, does
there exist an infinite word ρ ∈ Qω where Q is an alphabet describing the control states, and
a labelling ℓ : Q 7→ 2AP (where AP is the set of atomic propositions occuring in Φ) such that
the labelled execution (ρ, ℓ) satisfies Φ? French has shown that this problem is undecidable
even when Q is assumed to be finite [8].

In this paper, we focus on the model-checking problem for QLTL under the structure
semantics. We first explain the types of properties we can express with this logic, and
then we show that the problem is EXPSPACE-complete. We also consider two other special
model-checking problems: when the structure is a path of the form ρ1 · ρω

2 and when the
structure is flat. In both cases, we prove that the problem is then PSPACE-complete.

Related results. Adding quantifications over atomic propositions in LTL has been first
considered in [21, 22] for the tree semantics: both the expressiveness and the complexity
have been studied. The stutter-invariant fragment of QLTL, with a restricted notion of
propositional quantification, was developed in [6]. Proof systems for QLTL were developed
(still with the tree semantics), both with and without past-time modalities [11, 9].

For QLTL under the structure semantics, the main contribution is [8] where French shows
that satisfiability is undecidable.

Propositional quantifications have also been studied for branching-time temporal logics.
The extension of CTL∗ with external existential quantification was compared with tree
automata over binary trees [5]. In [13], restricted quantifications are added to CTL. In [7],
the satisfiability of QCTL∗ was proven undecidable in the structure semantics, and decidable
in the tree semantics. In [14], QCTL and QCTL∗ are considered (both for the structure
semantics and the tree semantics): the expressive power (relationship with the monadic
second-order logic MSO) and complexity (for model-checking and satisfiability) are studied.
In [1], the satisfiability problem of several fragments of QCTL (e.g. with only the EX modality)
under the tree semantics is shown to be TOWER-complete, i.e. exactly as it is for the full
QCTL logic. In [10], a model-checking algorithm is proposed for QCTL with the structure
semantics based on a reduction to QBF and experimental results are discussed (with several
QBF solvers).

F. Laroussinie, L. Leclercq, and A. Sangnier 35:3

The model-checking problem restricted to a path has been studied in [16, 18]. The
(existential) model-checking of LTL over flat structures has been first studied in [12] where it
is shown to be in NP and later on, in [4], the problem has been shown to be NP-complete
even when adding past operators.

2 Model and Logic

2.1 Kripke Structures and Labelled Executions

In formal verification, systems are usually modelled with labelled transition systems (or
Kripke structures): we have a finite set of control states, transitions to move from a state to
another one and a labelling function which associates a set of atomic propositions with every
control state. In this paper, we consider a countable set of atomic propositions denoted by
AP. Kripke structures are then formally defined as follows.

▶ Definition 1. A Kripke structure (KS) is a tuple K = ⟨Q,R, qin, ℓ⟩ where Q is a finite
set of states, R ⊆ Q×Q is a set of transitions (we assume that for any q ∈ Q, there exists
q′ ∈ Q s.t. (q, q′) ∈ R), qin ∈ Q is the initial control state and ℓ : Q → 2AP is a labelling
function.

The semantics of such a transition system is either the structure itself or its unfolding
(an infinite labelled tree), and an execution can be seen either as an infinite sequence of
labelled control states or an infinite word over the alphabet 2AP (the underlying control
states are forgotten). These two points of view coincide when considering fragments of CTL∗

logic: the truth value of a formula does not depend on this choice of semantics. There
is no way to distinguish two different control states if their behaviours defined in terms
of atomic proposition and transitions are “equivalent” (i.e. bisimilar) w.r.t. the considered
logic. Classically the infinite 2AP-labelled tree unfolding is used to base decision procedures
over automata theory (word automata for linear-time temporal logic, or tree automata for
branching-time temporal logic). And the “structure” view is used for example to develop
classical algorithms for CTL-like logics (corresponding to basic graph analysis).

Adding quantifications over atomic propositions makes a big difference (see Section 3)
between these two approaches. Indeed labelling control states implies that every occurrence
of a state will carry the same labels. It can be seen as a second order quantification over the
control states of the structure. For example it becomes possible to specify that there exists a
self-loop from a given state (we can mark a single control state in order to distinguish it from
other ones). With the “labelled tree” semantics, every position can be labelled independently.
As in previous works on this topic, we will refer to the former semantics as the structure
semantics and the latter as the tree semantics. For the linear-time logic QLTL, the most
popular approach is the tree semantics: in [22], Sistla et al. showed important properties
about its complexity and its relation with Büchi automata. Here we consider the structure
semantics where the model for QLTL formulas are labelled executions.

An execution ρ of a Kripke structure K = ⟨Q,R, qin, ℓ⟩ is an infinite sequence of states
q0q1q2 . . . such that (qi, qi+1) ∈ R for all i ∈ N. Given i ∈ N, we use ρ(i) to denote qi the
i-th (control) state of ρ, and ρ≥i to denote qiqi+1qi+2 . . . its i-th suffix. Finally a labelled
execution is a pair (ρ, λ) where ρ is an execution and λ is a labelling function from Q to
2AP. We use ExecK(q) [resp. Execlab

K(q)] to denote the set of executions ρ [resp. labelled
executions (ρ, λ)] in K starting from q, i.e. such that ρ(0) = q.

CSL 2024

35:4 QLTL Model-Checking

2.2 Syntax and (Structure) Semantics of QLTL
We present now the definition of the logic QLTL, which extends the classical linear-time
temporal logic LTL with quantifications over atomic propositions. The syntax of QLTL is
given by the following grammar:

φ ::= q | ¬φ | φ ∨ φ | Xφ | φUφ | ∃p. φ

where q and p range over AP.
In the structure semantics, QLTL formulas are evaluated over labelled executions of a

Kripke structure K = ⟨Q,R, qin, ℓ⟩. Before providing the formal semantics, we need to
introduce another notion. Given a set P ⊆ AP, two labellings λ and λ′ from Q to 2AP are
said to be P -equivalent (denoted by λ ≡P λ′) iff λ(q) ∩ P = λ′(q) ∩ P for every q ∈ Q. The
semantics of QLTL formulas is then provided by the satisfaction relation |= between a labelled
execution (ρ, λ) and a formula φ which is defined inductively as follows:

(ρ, λ) |= p iff p ∈ λ(ρ(0))
(ρ, λ) |= ¬φ iff (ρ, λ) ̸|= φ

(ρ, λ) |= φ ∨ ψ iff (ρ, λ) |= φ or (ρ, λ) |= ψ

(ρ, λ) |= Xφ iff (ρ≥1, λ) |= φ

(ρ, λ) |= φUψ iff there exists i ≥ 0 s.t. (ρ≥i, λ) |= ψ and (ρ≥j , λ) |= φ for all i > j ≥ 0
(ρ, λ) |= ∃p. φ iff there exists a labelling λ′ s.t. λ′ ≡AP\{p} λ and (ρ, λ′) |= φ

In the sequel, we use standard abbreviations such as ⊤, ⊥, ∧, ⇒ and ⇔. We also
use the additional (classical) temporal modalities of LTL : Fφ = ⊤Uφ, Gφ = ¬F¬φ and
φRψ = ¬((¬φ)U(¬ψ)). Moreover, we use the following abbreviations related to quantifiers
over atomic propositions : ∀p. φ = ¬∃p. ¬φ, and for a set P = {p1, . . . , pk} ⊆ AP, we write
∃P.φ for ∃p1. . . .∃pk.φ and ∀P.φ for ∀p1. . . .∀pk.φ.

Given a formula φ, we denote by SubF(φ) the set of its subformulas and Prop(φ) the set
of the atomic propositions. A proposition p is said to be free in φ if it appears out of scope
of some operator ∃p. . . . or ∀p.

The size of a formula φ ∈ QLTL, denoted |φ|, is defined inductively by : |q| = 1,
|¬φ| = |∃p.φ| = |∀p.φ| = |Xφ| = 1 + |φ|, |φ∨ψ| = |φUψ| = |φRψ| = 1 + |φ| + |ψ|. Moreover,
we use th(φ) to denote the temporal height of φ, i.e. the maximal number of nested temporal
modalities in φ.

A formula is said to be in negated normal form (NNF) if negations apply only to atomic
propositions. Any QLTL formula φ can be transformed into an equivalent NNF formula ψ
s.t. |ψ| = O(|φ|). Note that ψ is built from boolean operators ∧ and ∨, Temporal modalities
X, U and R, atomic propositions and their negations, and quantifiers ∃ and ∀.

Two QLTL formulas φ and ψ are said to be equivalent (written φ ≡ ψ) iff for any labelled
execution (ρ, λ), we have (ρ, λ) |= φ iff (ρ, λ) |= ψ. This equivalence is substitutive.

We write K |=∃ φ when φ is satisfied by a labelled execution (ρ, ℓ) in K rooted at the
initial state qin, and K |=∀ φ when every such labelled execution in K satisfy φ.

3 What can we express with QLTL?

To illustrate the kind of properties that can be expressed with QLTL with the structure
semantics, we introduce the following abbreviation:

∃1p.φ = ∃p.
(

Fp ∧
(
∀p′.(F(p ∧ p′) ⇒ G(p ⇒ p′))

)
∧ φ

)

F. Laroussinie, L. Leclercq, and A. Sangnier 35:5

and its dual ∀1p.φ = ¬∃1p.¬φ. Informally ∃1p.φ is satisfied if one can label exactly one
control state (reachable from the current position) by p in order to make φ to be satisfied by
the execution.

Now we can express the fact that a labelled execution (ρ, λ) is built from a finite number
of control states (which is of course always the case when considering finite KS). The following
formula expresses this property:

Φfinite = ∃1q.∀p.
(

(pU(q ∧ p)) ⇒ (Gp)
)

Assume that the property holds true for (ρ, λ). Then there is a last occurring control state:
the control state whose first occurrence is located after the first occurrence of every other
control state. Clearly if we label this state by q, any p-labelling of all states occurring before
q-state labels all states of ρ. Conversely if the formula is satisfied by some execution (ρ, λ),
it implies that the p-labelling limited to control states occurring over a finite prefix allows us
to label all ρ-states.

One can also ensure that at least k distinct control states occur infinitely often along an
execution with the following formula:

Φ≥k = ∃1q1 . . . qk.
∧

1≤i ̸=j≤k

G(¬qi ∨ ¬qj) ∧
∧

1≤i≤k

(
GF(qi)

)
We can also specify that any position satisfying the proposition a is always followed by

the same control state with:

Φsucc = ∃1q.
(

G (a ⇒ X q)
)

An execution (ρ, λ) is deterministic if every control state occurring along ρ is always
followed by the same control state. This property can easily be expressed with QLTL:

Φdeter = ∀1q.∀1q′.
(

F(q ∧ Xq′) ⇒ G(q ⇒ Xq′)
)

Indeed, assume we label two control states by q and q′ respectively, and the formula (q ∧ Xq′)
holds true at a position along ρ, then we require that every occurrence of q is followed by q′.
This is precisely the definition of deterministic execution.

When the set of control states Q is fixed and finite, any quantification ∃p.φ is equivalent
to some disjunction of all possible subsets associated with the proposition p. And then any
QLTL formula is equivalent for executions built with exactly |Q|-control states to some QLTL
formula with a unique existential quantification:

▶ Proposition 2. Let k ≥ 1. Any QLTL formula Φ is equivalent for labelled executions
containing exactly k distinct control states to some QLTL formula Φ̃ = ∃p0 . . . p2k−1.Φ̂ where
Φ̂ belongs to LTL.

Proof. Consider a set of control states Q s.t. |Q| = k. We use 2k new atomic propositions in
order to label every possible subset over Q. The formula Φ̂ combines two parts: the first one
ensures this labelling of subsets and the second one is just Φ where every existential (resp.
universal) quantification is replaced by a disjunction (resp. conjunction). Formally given a
QLTL formula φ, we define φ̃k inductively as follows:

p̃k = p φ̃1 ∧ φ2
k

= φ̃1
k ∧ φ̃2

k ¬̃φ1
k = ¬φ̃1

k
φ̃1Uφ2

k

= φ̃1
kUφ̃2

k

X̃φ1
k

= Xφ̃1
k ∃̃p.α

k
=

∨
0≤i<2k

˜α[p 7→ pi]
k

∀̃p.α
k

=
∧

0≤i<2k

˜α[p 7→ pi]
k

CSL 2024

35:6 QLTL Model-Checking

And then it remains to show that for any execution (ρ, ℓ) and for any QLTL formula Φ, if
the number of distinct control states occurring along ρ equals k, we have:

(ρ, ℓ) |= Φ iff (ρ, ℓ) |= ∃p0 . . . p2k−1.
(∧

0≤i<j<2k

F(pi ⇔ ¬pj)
)

∧ Φ̃k

The proof is based on the fact that the labelling of every pi labels a specific subset of
control states. This is ensured by the first part of the formula: there are 2k labellings and all
are different. Property 2 is then proved. ◀

We can observe several important differences with the tree semantics 1. For example,
under the tree semantics, the formula Φdeter is valid (as every position corresponds to a new
control state). It is also well known that the property Evenc(p) defined by “a control state
is labelled by p iff at least one of its occurrences is located at an even position along the
execution” can easily be expressed with the tree semantics, but this is not true anymore with
the structure semantics:

▶ Proposition 3. With the structure semantics, there is no QLTL formula equivalent to the
property Evenc(p).

Proof. We reuse a construction of [24] for proving that LTL cannot express that a proposition
holds for every even state. Consider the set of control states Q = {q, q′} and the execution
ρk = qk · q′ · qω for k > 0. We can easily observe that the labelled execution (ρk, ℓ) satisfies
Evenc(p) if and only if (1) k is even and both q and q′ are labelled by p, or (2) k is odd and
only q is labelled by p.

Now we can show that given k, k′ ≥ 1 and any LTL formula ψ s.t. |ψ| ≤ min(k, k′), we
have: (ρk, ℓ) |= ψ ⇔ (ρk′ , ℓ) |= ψ. The proof of this result is done by induction over |ψ|:

|ψ| = 1: ψ is an atomic proposition, and ℓ(ρk(0)) = ℓ(ρk′(0)) as k, k′ ≥ 1.
|ψ| = n+ 1: We distinguish several cases (and omit the case of Boolean combinators):
ψ = Xψ1: consider k, k′ ≥ n+ 1 and assume (ρk, ℓ) |= Xψ1. Then (ρk−1, ℓ) |= ψ1. As
both k − 1 and k′ − 1 are greater or equal to n = |ψ1|, we have by i.h. (ρk′−1, ℓ) |= ψ1
and then (ρk′ , ℓ) |= Xψ1.
ψ = ψ1Uψ2: consider k, k′ ≥ n+ 1 and assume (ρk, ℓ) |= ψ1Uψ2. Then there exists
i ≥ 0 s.t. ((ρk)≥i, ℓ) |= ψ2 and for any 0 ≤ j < we have ((ρk)≥j , ℓ) |= ψ1. We
distinguish several cases:
∗ k > k′ and k− i ≤ k′: then ψ2 holds true for ((ρk′)≥i−(k−k′), ℓ) and ψ1 is verified for

any ((ρk′)≥j , ℓ) for 0 ≤ j < i− (k − k′), and this provides the result ((ρk′), ℓ) |= ψ.
∗ k > k′ and k − i > k′: In this case, we know that ((ρk)≥i, ℓ) |= ψ2 is equivalent to

((ρk−i), ℓ) |= ψ2 and k − i and k′ are both greater than |ψ2|, which allows us to use
the i.h. and deduce ((ρk′), ℓ) |= ψ2, and then ((ρk′), ℓ) |= ψ.

∗ k < k′: if (ρk, ℓ) |= ψ1, then we can use the i.h. as in the previous case to deduce
that for all j s.t. (ρk′−j , ℓ) |= ψ1 for any 0 ≤ j ≤ k′ − k. This ensures the result.
And if (ρk, ℓ) |= ψ2, we deduce directly (ρk′ , ℓ) |= ψ2 by the i.h. In both case, we
obtain (ρk′ , ℓ) |= ψ

Now assume that there exists some QLTL formula Ψ equivalent to Evenc(p). From
Proposition 2, there exists a formula of the form Ψ′ = ∃P.ψ with ψ ∈ LTL such that Ψ and Ψ′

are equivalent over all the executions ρk (and more generally over any execution containing
two control states). Let K be the size of ψ.

1 The tree semantics has not been formally defined but it just consists in interpreting formulas over words
in (2AP)ω or equivalently over labelled executions where every control state occurs exactly once.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:7

Consider the odd integer λ = 2 · K + 1 and the labelling ℓ defined by ℓ(q) = {p}
and ℓ(q′) = ∅. We know that (ρλ, ℓ) |= Evenc(p) and (ρλ+1, ℓ) ̸|= Evenc(p), and therefore
(ρλ, ℓ) |= Ψ′ and (ρλ+1, ℓ) ̸|= Ψ′. Then there exists an extended labelling ℓ′ of ℓ such that
(ρλ, ℓ

′) |= ψ. And from the previous result, we can deduce (ρλ+1, ℓ
′) |= ψ as λ and λ+ 1 are

greater than |ψ|, and this contradicts the fact (ρλ+1, ℓ) ̸|= Ψ′. ◀

Note that Evenc(p) is expressible when every control state always occurs at positions
of the same parity (and this explains why this property is easily expressed with the tree
semantics where every position corresponds to a unique control state).

Finally we can also notice that the U modality cannot be expressed with F, X and
quantifications (contrary to what happens in tree semantics). Let LQ(F,X) (resp. L(F,X))
be the fragment of QLTL (resp. LTL) where the Until modality is replaced by its weak form
F. We have:

▶ Proposition 4. With the structure semantics, there is no LQ(F,X) formula equivalent to
the formula aUb.

Proof. Consider the set Q = {q0, q1, q2} and an integer k > 0. Let ρk be the finite sequence
(q0)k · q1 and ρ′

k be the finite sequence (q0)k · q2. Consider the labelling function ℓ over Q
defined as follows: ℓ(q0) = {a}, ℓ(q1) = {b} and ℓ(q2) = ∅. Let πk (resp. π′

k) be the infinite
execution (ρk ·ρ′

k)ω (resp. (ρ′
k ·ρk)ω). We clearly have (πk, ℓ) |= aUb and (π′

k, ℓ) ̸|= aUb. Now
assume that there exists some LQ(F,X) formula Ψ equivalent to aUb. Over the executions
πk and π′

k, such a formula would be equivalent to some formula of the form ∃P.ψ with ψ an
L(F,X) formula (indeed Proposition 2 does not introduce any U modality). And then we
would have (πk, ℓ) |= ∃P.ψ and (π′

k, ℓ) ̸|= ∃P.ψ. Now let ℓ′ be the extended labelling ℓ′ with 8
atomic propositions p0, . . . , p7 that label each subset of Q such that (πk, ℓ

′) |= ψ. Note that
the L(F,X) formula ψ does not depend on k: its construction is only based on the number
of control states in the structures.

It remains to show that if k is large enough (i.e. larger than the number of nested X on
top of the formula), then we have (π′

k, ℓ
′) |= ψ, which contradicts the hypothesis. Let hX(φ)

be the height of Next modalities on the top of φ. We can prove the following result: for any
ψ ∈ L(F,X) such that hX(ψ) < k − i, we have ((πk)≥i, ℓ

′) |= ψ ⇔ ((π′
k)≥i, ℓ

′) |= ψ. The
proof is done by induction over hX(ψ):

hX(ψ) = 0: If ψ is an atomic proposition, it is true because ℓ′((πk)(i)) = ℓ′((π′
k)(i)) if

i < k. If ψ = Fψ1 and ((πk)≥i, ℓ
′) |= ψ, then there exists i′ ≥ i such that ((πk)≥i′ , ℓ′) |=

ψ1 and given the definition of executions πk and π′
k, there exists i′′ ≥ i such that

((πk)≥i′ , ℓ′) = ((π′
k)≥i′′ , ℓ′). The same holds when ((π′

k)≥i, ℓ
′) |= ψ.

hX(ψ) > 0: in that case, ψ is a Boolean combination of atomic propositions, F-formulas
or X-formulas. The Boolean part is easily handled by a induction over the size of
the formula, and the last case is when ψ = Xψ1. Assume ((πk)≥i, ℓ

′) |= Xψ1, then
((πk)≥i+1, ℓ

′) |= ψ1, then by i.h. we get ((π′
k)≥i+1, ℓ

′) |= ψ1 since hX(ψ1) < k− i− 1, and
then ((π′

k)≥i, ℓ
′) |= Xψ1. The other direction is done in a similar way.

In conclusion, the formula ∃P.ψ obtained from the hypothetical Ψ is fixed, as is hX(ψ). For
any k > hX(ψ), we know that ((πk), ℓ′) |= ψ if and only if ((π′

k), ℓ′) |= ψ and this contradicts
the fact that Ψ is equivalent to aUb. ◀

CSL 2024

35:8 QLTL Model-Checking

4 Model checking

4.1 The model-checking problem
The model-checking problem consists in verifying that a given formula is satisfied by a
given model. In our framework, we can consider several variants of this problem. First, we
distinguish between the existential and the universal model-checking problem:

MC∃(QLTL): Given a KS K = ⟨Q,R, qin, ℓ⟩ and a formula φ ∈ QLTL, does there exist a
labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying φ, i.e. K |=∃ φ ?
MC∀(QLTL): Given a KS K = ⟨Q,R, qin, ℓ⟩ and a formula φ ∈ QLTL, do all labelled
executions (ρ, ℓ) ∈ Execlab

K(qin) satisfy φ, i.e. K |=∀ φ ?

Note that in the statement of these two problems, we assume that the initial labelling
associated with the executions is the labelling ℓ of the Kripke structure K. We point out the
fact that these two problems are strongly related, indeed we can use for instance an algorithm
for MC∃(QLTL) to solve MC∀(QLTL) since all labelled executions (ρ, ℓ) ∈ Execlab

K(qin) satisfy
φ iff there does not exist a labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying ¬φ.

▶ Example 5. Let K be the Kripke structure of Figure 1 rooted at qin where atomic
propositions are defined next to nodes. Now, we can consider the two following formulas:

Ψ0 = Φdeter ⇒
(

F a ⇒ G ¬c
)

, and

Ψ1 =
(

F G c
)

⇒ Φdeter.
where Φdeter is the formula we defined previously. We can observe that Ψ0 holds true for every
execution starting from qin (if the execution is deterministic, q2 will be followed by q4 or
always by q3), but this is not true for Ψ1 (an execution ending with a loop in q4 may contain
both the edges q2 → q3 and q2 → q4). Therefore we clearly have K |=∀ Ψ0 and K ̸|=∀ Ψ1.

qin q1

q2 q4

q3

b a

c

Figure 1 Example of model-checking problem.

4.2 Upper bound for the QLTL model-checking problems
This section is devoted to show the EXPSPACE-membership of MC∃(QLTL) and MC∀(QLTL).
For this matter, we rely on alternating Büchi automata. Note that for what concerns the
LTL (existential) model-checking, one technique consists in translating an LTL formula into
an alternating Büchi automaton, which recognises all the models of the LTL formula, and
in performing a cross-product with the Kripke structure to check whether an execution of
the structure is accepted by the automaton (see, e.g. [23]). Such a method can as well be
used to decide the satisfiability of LTL formulas by checking the emptiness of the associated
automata. As the satisfiability problem is undecidable for QLTL [8], such a translation to
a class of automata with a decidable emptiness problem will not exist. However we shall
see that dealing with the model-checking problem allows us to rely on the Kripke structure
to build an alternating Büchi automaton which will recognise the executions satisfying the
QLTL formula. We now pursue with the formal explanation.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:9

▶ Definition 6. An Alternating Büchi Automaton (ABA) on infinite words is a tuple
A = (S,Σ, sin, δ, F) where S is a finite set of states, Σ is a finite alphabet, sin is the initial
state, δ : S × Σ → B+(S) is the transition function assigning a positive Boolean formula over
S including false (⊥) and true (⊤), to every pair (s, σ), and F ⊆ S is the accepting set of
states.

In order to define how ABAs recognise infinite words over the alphabet Σ, we first need
to introduce labelled trees. Given a set Γ, a Γ-labelled tree is a pair (T, σ) where:

T ⊆ N∗ is a tree, that is, a set of finite words in N∗, called the nodes of T , such that for
any t ∈ T and n ∈ N, if t · n ∈ T , then t ∈ T and t · k ∈ T for any 0 ≤ k < n. The empty
word ε represents the root of T . A node t ∈ T is said to be at depth i ≥ 0 if its length is
equal to i (the root node is hence at depth 0).
σ : T 7→ Γ assigns an element in Γ to every node of T .

Given an automaton A, a run of A over an infinite word w = a0a1 · · · ∈ Σω is a S-labelled
tree T = (T, σ) such that: σ(ε) = sin and every node t at depth i (written |t| = i) has k
(k ≥ 0) children t1,. . . ,tk such that the formula δ(σ(t), ai) is interpreted to true when one
assigns ⊤ to every state in {σ(t1), . . . , σ(tk)} and ⊥ to other states. Such a run is accepting
when every infinite branch of T contains infinitely often nodes labelled by states in F and
every finite branch ends in a node t such that δ(σ(t), a|t|) = ⊤. We use L(A) to denote the
set of words accepted by A. Deciding whether L(A) = ∅ is a PSPACE-complete problem [2].

We will now show how to build an ABA accepting the executions of a Kripke structure
satisfying a QLTL formula. Let K = ⟨Q,R, qin, ℓ⟩ be a Kripke structure and φ a QLTL formula
in negated normal form. We define the ABA Aφ,K = (S,Q, sin, δ, F) over the alphabet Q
with:

S = {sin} ∪Q ∪ {(ψ, λ) | ψ ∈ SubF(φ) and λ : Q 7→ 2Prop(φ)};
F contains the elements (ψ, λ) such that ψ is not of the form ψ1Uψ2;
and the transition function δ is defined in Figure 2.

Note that the size of S (i.e. |S|) is in O(|Q| + |φ| · 2|Prop(φ)|·|Q|). The intuition behind this
construction is that we distinguish two parts in the automaton. First, the states in Q are
used to ensure that the accepting word in Qω corresponds to some execution in K (see the
definition of δ(q, q), in equations 2 to 5). The other part (the states (ψ, λ) from 6 to 14)
ensures that the subformula ψ holds for true along the forthcoming execution labelled with
λ. The key to the correct translation to solve the model-checking problem is that, in this
ABA, the same word over Q is recognised along every branch of the execution tree. The
equation 1 ensures that the two parts of the automaton are visited to check whether the
word corresponds to a correct execution from the structure and that it satisfies the formula.

To state the correctness of the construction, we will use Aφ,K[s] to denote the automaton
where s is used as the initial state. We have then:

▶ Lemma 7. Let ψ be a subformula of φ, q be a control state, ρ be an infinite sequence in
Qω and λ : Q 7→ 2Prop(φ) be a labelling function (defined on the free variables in ψ). The two
following properties hold:
1. ρ ∈ L(Aφ,K[q]) ⇔ ρ ∈ ExecK(q),
2. ρ ∈ L(Aφ,K[(ψ, λ)]) ⇔ (ρ, λ) |= ψ.

Proof. The first result comes directly from the definition of δ(q,−) when q ∈ Q.
The second point is proved by induction over ψ. We only focus on the main cases and note
that we omit argument when the reverse direction is similar to the described one:

ψ = p: If ρ ∈ L(Aφ,K[(p, λ]), then by def. δ((p, λ), ρ(0)) = ⊤ and we have p ∈ λ(ρ(0))
and then (ρ, λ) |= p. The reverse direction is similar.

CSL 2024

35:10 QLTL Model-Checking

δ(sin, q) =δ((φ, ℓ), q) ∧ δ(qin, q) (1)

δ(q, q) =
∨

(q,q′)∈R

q′ (2)

δ(q, q′) =⊥ if q ̸= q′ (3)
δ((⊤, λ), q) =⊤ (4)
δ((⊥, λ), q) =⊥ (5)

δ((p, λ), q) =
{

⊤ if p ∈ λ(q)
⊥ otherwise

(6)

δ((¬p, λ), q) =
{

⊥ if p ∈ λ(q)
⊤ otherwise

(7)

δ((ψ1 ∨ ψ2, λ), q) =δ((ψ1, λ), q) ∨ δ((ψ2, λ), q) (8)
δ((ψ1 ∧ ψ2, λ), q) =δ((ψ1, λ), q) ∧ δ((ψ2, λ), q) (9)

δ((Xψ, λ), q) =(ψ, λ) (10)
δ((ψ1Uψ2, λ), q) =δ((ψ2, λ), q) ∨ (δ((ψ1, λ), q) ∧ (ψ1Uψ2, λ)) (11)
δ((ψ1Rψ2, λ), q) =δ((ψ2, λ), q) ∧ (δ((ψ1, λ), q) ∨ (ψ1Rψ2, λ)) (12)

δ((∃p.ψ, λ), q) =
∨

P ⊆Q

δ((ψ, λ[p⇝ P]), q) (13)

δ((∀p.ψ, λ), q) =
∧

P ⊆Q

δ((ψ, λ[p⇝ P]), q) (14)

where λ[p⇝ P] denotes the labelling function λ′ defined by: λ′(q) = λ(q) ∪ {p} if q ∈ P and
λ′(q) = λ(q) otherwise.

Figure 2 Definition of δ.

ψ = ψ1 ∧ ψ2: If ρ ∈ L(Aφ,K[(ψ1 ∧ ψ2, λ)], then by def. of δ we have ρ ∈ L(Aφ,K[(ψ1, λ)])
and ρ ∈ L(Aφ,K[(ψ2, λ)]). By ind. hyp. we can deduce (ρ, λ) |= ψ1 and (ρ, λ) |= ψ2, and
therefore (ρ, λ) |= ψ. The reverse direction is similar.
ψ = Xψ1: If ρ ∈ L(Aφ,K[(Xψ1, λ)]), then by def. of δ we have ρ≥1 ∈ L(Aφ,K[(ψ1, λ)] and
by i.h. we have (ρ≥1, λ) |= ψ1, from which we get (ρ, λ) |= Xψ1 by the semantics of X.
ψ = ψ1Uψ2: If ρ ∈ L(Aφ,K[(ψ, λ)]), then by def. of δ we have either (1) δ((ψ2, λ), ρ(0))
holds true for the run (that is ρ ∈ L(Aφ,K[(ψ2, λ)]) or equivalently (ρ, λ) |= ψ2), or
δ((ψ1, λ), ρ(0)) holds true and one successor node (in the execution tree) is recognised
by the state (ψ1Uψ2, λ), and so on. As any infinite branch cannot be labelled infinitely
often by some (ψ1Uψ2,−)-state, this stops at some level k with the satisfaction of
δ((ψ2, λ), ρ(0)). From this we can deduce by i.h. that (ρ≥k, λ) |= ψ2 and (ρ≥i, λ) |= ψ1
for 0 ≤ i < k. This is precisely the definition of ψ1Uψ2.
Now assume (ρ, λ) |= ψ1Uψ2. By definition, there exists k ≥ 0 s.t. (ρ≥k, λ) |= ψ2
and (ρ≥i, λ) |= ψ1 for 0 ≤ i < k. By i.h. we get ρ≥k ∈ L(Aφ,K[(ψ2, λ)]) and ρ≥i ∈
L(Aφ,K[(ψ1, λ]) for 0 ≤ i < k. We can deduce that ρ ∈ L(Aφ,K[(ψ1Uψ2, λ)]).
ψ = ∃p.ψ1. If ρ ∈ L(Aφ,K[(ψ, λ)]), then by def. of δ, there exists some P ⊆ Q s.t.
δ((ψ1, λ[p ⇝ P]), q) holds true for the run. By i.h. we get (ρ, λ[p ⇝ P]) |= ψ1, which
implies (ρ, λ) |= ∃p.ψ1. ◀

F. Laroussinie, L. Leclercq, and A. Sangnier 35:11

Note that if we apply the previous lemma with the formula φ and the labelling ℓ of K
and since δ(sin, q) = δ((φ, ℓ), q) ∧ δ(qin, q) for all q ∈ Q, we deduce that L(Aφ,K) ̸= ∅ if and
only if there exists a labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying φ. Furthermore since
the number of states of Aφ,K is in O(|Q| + |φ| · 2|Prop(φ)|·|Q|) and the emptiness problem for
ABA is PSPACE-complete [2], we deduce the following result.

▶ Proposition 8. MC∃(QLTL) and MC∀(QLTL) are in EXPSPACE.

4.3 Lower bound for the QLTL model-checking problems

To prove the complexity lower bound (EXPSPACE-hardness), we use a domino tiling problem
that we shall now define. Let C be a finite set of colours. A tile’s type is then a tuple
(cdown, cleft, cup, cright) in C4. Let T be a finite set of tile’s type. Given two integers a
and b, a T -tiling function for the a × b-grid (with a rows and b columns) is a function
f : [0, a − 1] × [0, b − 1] → T such that for all 0 ≤ i < a and 0 ≤ j < b, we have: (1)
f(i, j)up = f(i+ 1, j)down if i < a− 1, and (2) f(i, j)right = f(i, j + 1)left if j < b− 1. As a
matter of fact, the tiling function ensures that adjacent tiles share the same colour.

When such a function exists, we say that the grid can be tiled. We now define the
following tiling decision problem T :
Input: a set of colours C, a set of tile’s types T , an integer m (encoded in unary) and
tinit, tfinal ∈ T

Output: yes iff there exists an integer n and a T -tiling function f for the n× 2m-grid such
that f(0, 0) = tinit and f(n− 1, 2m − 1) = tfinal.
This problem is EXPSPACE-complete (see e.g. [20]) and has already been used to prove
complexity lower bound for variant of LTL as in [15]. We adapt here the reduction proposed
in this latter work to our context.

▶ Proposition 9. MC∃(QLTL) and MC∀(QLTL) are EXPSPACE-hard.

Proof. Let T = (C, T, tinit, tfinal,m) be an instance of the tiling problem with T =
{t1, . . . , tp}. We build a Kripke structure KT and a QLTL formula ΦT such that there
exist a labelled execution (ρ, ℓ) ∈ Execlab

KT (qin) satisfying φ if and only if there is some
n such that the n × 2m-grid can be tiled. The path witnessing the existence of the tiling
function for the grid n× 2m is of the form qin ·

(
((b1 · · · bm) · t)2m

)n

·Eω (with bj ∈ {b−
j , b

+
j }

for all j ∈ {1, . . . ,m} and t ∈ {t1, . . . , tp}). This word represents the sequence of the lines
of the grid. The i-th line is listed from the cell (i, 0) to cell (i, 2m − 1): each cell description
starts with a sequence of m bits which encodes the cell’s column number, followed by the
type of tile associated with it. Such a path clearly belongs to the generic Kripke structure
depicted in Figure 3 where we suppose that control states and their associated labels are the
same.

We now build a QLTL formula ΦT to specify what is a “tiling function” path in KT . First
we use b±

j as a shorthand for b+
j ∨ b−

j . The formula ΦT is a conjunction of several properties:

The tile tinit (resp. tfinal) occurs at the first (resp. last) cell:

Φ1 = X
[(m∧

j=1
Xj−1 b−

j

)
∧ Xm tinit

]
∧ F

[(m∧
j=1

Xj−1b+
j

)
∧ Xm (tfinal ∧ XE)

)]

CSL 2024

35:12 QLTL Model-Checking

qin

b−
1

b+
1

b−
2

b+
2

...

...

b−
m

b+
m

...

tp

t2

t1

E

Figure 3 Kripke structure KT for the tiling problem.

The ordering of the cells is correct (w.r.t. the counter encoded by the bjs):

Φ2 = G
[(
b±

1 ∧ ¬Xm+1E
)

⇒
(
b+

1 ⇔ Xm+1b−
1

)]
∧ G

m−1∧
j=1

[(
b+

j ∧ Xm+1b−
j

)
⇔ X

(
b+

j+1 ⇔ Xm+1b−
j+1

)]
The first part of Φ2 ensures that the b−

1 and b+
1 alternate when considering two successive

cells (except at the end of the execution before looping forever at E). The second part
ensures that the sign of bj+1 changes between two successive cells if and only if the bit bj

goes from ⊤ (1) to ⊥ (0).
The successive cells along a row have to agree on the colour of the shared side (that is
f(i, j)right = f(i, j + 1)left for 0 ≤ j < 2m − 1):

Φ3 =
∧
t∈T

G
[
t ⇒

(∨
t′∈T s.t.

tright=t′
left

(Xm+1t′) ∨ XE ∨ (
m∧

j=1
Xjb−

j)
)]

The successive cells along a column have to agree on the colour of the shared side (that
is f(i, j)up = f(i + 1, j)down for 0 ≤ i < n − 1). This is the difficult part because the
two cells are separated by an exponential number of states. To specify this property, we
need the quantification of atomic propositions: we can store the number of the cell (i.e.
the values of the bjs) and access the next cell with this number. For this, we define two
shorthand, first we have:

StoreNb(p) = (
m∧

j=1
Xj−1 p) ∧ G(p ⇒

m∨
j=1

b±
j) ∧

m∧
j=1

F((b+
j ∧ ¬p) ∨ (b−

j ∧ ¬p))

StoreNb labels m consecutive states by p and ensures that only bjs states can be labelled
and that either b+

j or b−
j is not labelled by p: therefore the p-labelling describes exactly

the number of the column of the current cell (assuming that the formula is evaluated at

the beginning of the cell, that is over b+
1 or b−

1). And now we can use Nb(p) = (
m∧

j=1
Xj p)

to locate the cells of the row “p”.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:13

We can now state the property ensuring that two successive cells on the same column
share the same colour on the common side:

Φ4 =
∧
t∈T

G
[(
b±

1 ∧ Xmt
)

⇒
(

XG (¬
m−1∧
j=1

Xjb−
j) ∨

∃p.
[
StoreNb(p) ∧ X

(
(¬Nb(p)) U (Nb(p) ∧

∨
t′∈T s.t.

tup=t′
down

Xm+1t′)
)])]

The subformula XG(¬
m−1∧
j=1

Xjb−
j) is used to exclude the last column where there is no

correspondence to ensure. The U operator allows us to select exactly the next cell of the
column p.

Finally we have: ΦT = Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4. And we can easily conclude that T is a positive
instance of the tiling problem iff there exists an execution (ρ, ℓ) ∈ Execlab

KT (qin) such that
(ρ, ℓ) |= ΦT . ◀

From Propositions 8 and 9, we can deduce the main theorem about QLTL model-checking.

▶ Theorem 10. MC∃(QLTL) and MC∀(QLTL) are EXPSPACE-complete.

4.4 Relation with QCTL*
As CTL∗ which extends both CTL and LTL, we can consider the logic QCTL∗. Two variants
of QCTL∗ have been defined in literature: in the first one, called FCTL∗ (see [7]), the formula
∃p.φ is defined as a path formula (as U or X) and in the second variant, called QCTL∗

(see [14]), it is defined as a state formula. For the tree semantics, both logics are equally
expressive, but with the structure semantics, there is a big difference in terms of expressivity
(FCTL∗ may express the existence of an eulerian path which is not possible with QCTL∗) and
while the model-checking problem is PSPACE-complete for QCTL∗, for FCTL∗ the model-
checking algorithm is based on a reduction to the tree semantics and its complexity is in
k-EXPTIME where k is the number of alternations of quantifications. Clearly the logic QLTL
we consider here can be seen as a fragment of FCTL∗ but it is not included in QCTL∗: the
expressiveness of the two logics are different and none of the two is strictly more expressive
than the other. However, it is worth noting that selecting an execution first and then looking
for a labelling, as for QLTL, induces a complexity blow-up.

However we can still use the result about QCTL∗ model-checking to define a last verification
problem for Prenex formulas Q.ψ with ψ ∈ LTL, where we look for labellings of the full
structure, and then select paths in the structure. Such an approach corresponds to a
model-checking instance for QCTL∗. Formally we define these verification problems (denoted
MC∀(q-LTL) or MC∃(q-LTL)) as follows: given a structure K = ⟨Q, q0, R, ℓ⟩ and a formula
Q.ψ with ψ ∈ LTL and Q a block of quantifications, decide whether ⟨Q, q0, R, ℓ⟩ |=∀ Q.ψ
with:

⟨Q, q0, R, ℓ⟩ |=∀∃p.Q.ψ ⇔ ∃Q′ ⊆ Q s.t. ⟨Q, q0, R, ℓ[p 7→ Q′]⟩ |=∀ Q.ψ
⟨Q, q0, R, ℓ⟩ |=∀∀p.Q.ψ ⇔ ∀Q′ ⊆ Q, we have ⟨Q, q0, R, ℓ[p 7→ Q′]⟩ |=∀ Q.ψ

and where ⟨Q, q0, R, ℓ⟩ |=∀ ψ with ψ ∈ LTL is interpreted as usual. In the same way, we
can define the existential variant MC∃(q-LTL). Clearly MC∀(q-LTL) and MC∃(q-LTL) are
PSPACE-complete (PSPACE-hard due to QBF, and PSPACE-easy due to QCTL∗).

CSL 2024

35:14 QLTL Model-Checking

This defines an interesting class of problems that are different from the ones we introduced
before for QLTL and whose complexity is better. For example, if we consider a two-player
turn-based game G = (Q1, Q2, q0, RG , F1, F2) where Q1 (resp. Q2) are the states of Player 1
(resp. Player 2), q0 ∈ Q1 ∪Q2 is the initial state and RG ⊆ (Q1 ∪Q2) × {0, 1} × (Q1 ∪Q2)
is the transition relation (NB: we assume that in every state of Player i, there are exactly
two possible moves labelled by 0 and 1, and we label every transition by the number of the
move it corresponds to) and F1 (resp. F2) is the set of winning positions of Player 1 (resp.
Player 2). The existence of a memoryless strategy for Player 1 (or 2) can easily be reduced
to a model-checking problem of MC∀(q-LTL) by considering the following Kripke structure
KG = ⟨Q, q0, R, ℓ⟩:

Q = Q1 ∪Q2 ∪ {(q, q′, ε) | q ∈ Q1 and (q, ε, q′) ∈ RG};
R = {(q, q′) | q ∈ Q2 and (q,−, q′) ∈ R} ∪ {(q, (q, ε, q′)) | q ∈ Q1 and (q, ε, q′) ∈ R} ∪
{((q, ε, q′), q′) | (q, ε, q′) ∈ Q};
ℓ labels the structure KG as follows: states in Q1 (resp. Q2) are labelled with P1 (resp.
P2), states in F1 (resp. F2) are labelled with W1 (resp. W2). And intermediary states
(q, ε, q′) are labelled by Cε (in order to specify which move is currently played by Player
1).

Clearly a memoryless strategy for Player 1 consists in marking every Q1 states by the move
(0 or 1) corresponding to the strategy. Here with only two allowed moves, it suffices to
use a single atomic proposition c. Therefore the existence of a memoryless strategy can be
expressed with the following formula:

Ψstrat = ∃c.
[
G

(
(P1 ∧ c) ⇒ (X C1) ∧ (P1 ∧ ¬c) ⇒ (X C0)

)
⇒ FW1

]
5 Model Checking Paths and Flat Structures

We present here some restrictions on the considered structures which allow to obtain better
complexity bounds for the model checking of QLTL formulas. We first consider ultimately
periodic paths and use the facts that the model-checking problem for the branching logic
QCTL (with the structure semantics) is PSPACE-complete [14] and that morally a QLTL
formula over a path can be translated into a QCTL formula (in a path there is indeed
no branching). We then study the model-checking problem for QLTL restricted to Kripke
structures with no nested loop and show it is as well PSPACE-complete. To obtain the
upper bound, we follow the same reasoning as the one presented in [4] to show that the
model-checking problem for LTL with Past is in NP. It relies on two aspects: a stuttering
theorem for QLTL and the fact that we can represent finitely all the executions of a flat
structure with what we call iterated path schemas.

5.1 Path Model Checking
We first consider path as it is done in [17] for LTL. Given a set of states Q, a labelled path
is an ultimately-periodic structure (ρ1 · ρω

2 , ℓ) with ρ1 ∈ Q∗, ρ2 ∈ Q+ and ℓ : Q → 2AP is
a labelling function. The size of such a structure is given by the sum of the length of the
sequences ρ1 and ρ2. We use MCp(QLTL) to denote this model-checking problem which
takes as input a labelled path (ρ1 · ρω

2 , ℓ) and a formula φ ∈ QLTL and which asks whether
(ρ1 · ρω

2 , ℓ) |= φ. Note that in a path the same control state might appear more than one time
in ρ1 and ρ2. We have then the following result:

▶ Theorem 11. MCp(QLTL) is PSPACE-complete.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:15

Proof. PSPACE-hardness comes from the QBF problem: a QBF instance Φ belongs to QLTL,
and its validity can be directly reduced to some path model-checking problem (qω, ℓ∅) |= Φ.
The PSPACE-membership comes from the PSPACE-membership of the model-checking prob-
lem for QCTL in structure semantics [14]: when considering a single path, the QLTL formula
φ has the same truth value as the QCTL formula φ̂ with every temporal modality X, U or
R associated with some existential or universal path quantifier. This provides the result. ◀

5.2 Flat Kripke Structures and Path Schemas

A Kripke structure is said to be flat (sometimes the term weak is used, see e.g. [12]) if every
node in the underlying graph belongs to at most one simple cycle (a simple cycle is a cycle
where each edge appears at most once) [3]. Figure 4 presents an example of a flat Kripke
structure. Note that if we add an edge for instance from state q4 to q2 then the structure will
not be flat anymore as the control states q2, q3 and q4 will belong to two simple cycles. It is
worth noticing that path model-checking is not subsumed by flat structure model-checking
(and of course, neither does the opposite) because in a path there is no restriction on the
occurrences of a state, whereas in a flat structure each occurrence of a state (except the last
one) is necessarily followed by the same state.

q0

q1

q2 q3

q4

Figure 4 A flat Kripke structure.

We then denote by MCf,∃(QLTL) (resp. MCf,∀(QLTL)) the existential (resp. universal)
model-checking problem MC∃(QLTL) (resp. MC∀(QLTL)) restricted to flat Kripke structures.
As for the general case, our method to solve MCf,∃(QLTL) can be used (with the same
complexity bound) to solve MCf,∀(QLTL) by taking the negation of the formula.

Flat Kripke structures are easier to analyse than general structures, because we can
represent their executions thanks to a finite set of path schemas (of polynomial size). Let
K = ⟨Q,R, qin, ℓ⟩ be a flat Kripke structures. A path p in K is a finite (non-empty) sequence
of control states q0, . . . , qk ∈ Q+ such that (qi, qi+1) ∈ R for all i ∈ [0, k − 1]. We denote by
first(p) the first control state q0 of the sequence and last(p) the last one equals to qk. A loop
is then a path p such that first(p) = last(p). A path schema P is an expression of the form
p1l1p2l2 . . . pklk such that :

pi is a path for all i ∈ [1, k];

li is a loop for all i ∈ [1, k];

first(p1) = qin and first(li) = last(pi) = first(pi+1) for all i ∈ [1, k − 1] and first(lk) =
last(pk).

CSL 2024

35:16 QLTL Model-Checking

The size of a path schema P = p1l1p2l2 . . . pklk is the sum of the lengths of each sequence
composing it. We say that an execution ρ ∈ Qω respects a path schema P = p1l1p2l2 . . . pklk
iff there exists n1, . . . , nk−1 ∈ N \ {0} such that ρ = p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k . Fi-

nally, for all n1, . . . , nk−1 ∈ N \ {0}, by definition of path schemas, we have that
p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k is an execution. From Section 3 of [4] we have the following

proposition2:

▶ Proposition 12 ([4]). In a flat Kripke structure, for each execution ρ, there exists a path
schema P of size smaller than 3 ∗ |Q| such that ρ respects P .

5.3 Stuttering Result for QLTL
In [4], the authors have shown a general stuttering theorem for LTL with past, they have
proved that if an execution of the form ρ1s

Mρ2 (where ρ1 and s are finite sequence of states)
satisfies an LTL formula φ of temporal height at most N and if M > 2N , then the execution
ρ1s

2N+1ρ2 satisfies φ as well. In other words, to satisfy φ there is no need to repeat the infix
s more than 2N + 1 times. We shall see that we have the same result for QLTL.

Let K = ⟨Q,R, q0, ℓ⟩ be a Kripke structure (not necessarily flat) and assume that we
have two executions ρ = ρ1s

Mρ2 and ρ′ = ρ1s
M ′
ρ2 with ρ1, s ∈ Q∗ and ρ2 ∈ Qω and

M,M ′ > 2N for some N ≥ 2. In Section 4 of [4], the authors present an equivalence relation
(parametrised by N) between positions in ρ and ρ′ which can be defined as for i, i′ ∈ N, we
have (ρ, i) ≡N (ρ′, i′) if and only if one of the following conditions holds:
1. i, i′ < |ρ1| +N · |s| and i = i′

2. i ≥ |ρ1| + (M −N) · |s| and i′ ≥ |ρ1| + (M ′ −N) · |s| and (i− i′) = (M −M ′) · |s|
3. |ρ1| +N · |s| ≤ i < |ρ1| + (M −N) · |s| and |ρ1| +N · |s| ≤ i′ < |ρ1| + (M ′ −N) · |s| and

|i− i′| = 0 mod |s|
Intuitively, this relation states that either i and i′ should be at the same position in the
parts consisting of ρ1 and the first N copies of s and in the same relative positions in the
last N copies of s and in ρ2, otherwise i and i′ should be at the same position in s. We
can show following the exact same steps as for the proof of Theorem 4.1 of [4], that if
φ is a QLTL formula such that th(φ) ≤ N and if (ρ, i) ≡N (ρ′, i′) then for all labellings
λ, we have (ρ≥i, λ) |= φ iff (ρ′

≥i′ , λ) |= φ. This proof is done by a double induction on
the structure of φ and on N , and we should pay attention to two aspects. First, for LTL
there is no need to consider labelling, however here we take them into account, but since
the sequence of control states is the same (modulo the iterations of s) in ρ and ρ′, we can
universally quantify on labellings (for each labelling we get two new sequences of subset
of atomic propositions, and we use the fact that results for LTL hold for such sequences).
Second, in order to reuse the induction reasoning, we should take care of the specific case
of subformula ∃p. ψ. Assume hence that we have (ρ, i) ≡N ′ (ρ′, i′) and that for ψ such
that th(ψ) ≤ N ′, we have (ρ≥i, λ

′) |= ψ iff (ρ′
≥i′ , λ′) |= ψ for all labelling λ′. Now for any

labelling λ, we have that there exists λ′ ≡AP\{p} λ s.t. (ρ≥i, λ
′) |= ψ if and only if there

exists λ′′ ≡AP\{p} λ s.t. (ρ′
≥i′ , λ′′) |= ψ (simply take λ′ = λ′′). And we can hence conclude,

since the temporal height of ∃p. ψ is the same as ψ, that for all labellings λ, we have
(ρ≥i, λ) |= ∃p. ψ iff (ρ′

≥i′ , λ) |= ∃p. ψ. Finally, since (ρ, 0) ≡N (ρ′, 0) for any N ≥ 2, we can
adapt Theorem 4.1 of [4] to our case.

2 In [4], the size of path schema is bounded by 2 ∗ |R|, since we consider here sequence of control states,
we use 3 as a constant to stay on the safe side.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:17

▶ Proposition 13. Let N ≥ 2 and M,M ′ > 2N and ρ = ρ1s
Mρ2 and ρ′ = ρ1s

M ′
ρ2 with

ρ1, s ∈ Q∗ and ρ2 ∈ Qω. For all QLTL formulas φ such that th(φ) ≤ N , we have (ρ, ℓ) |= φ

iff (ρ′, ℓ) |= φ.

5.4 Algorithm for Flat Kripke Structures
We now present the algorithm to solve MCf,∃(QLTL). Let K = ⟨Q,R, qin, ℓ⟩ be a flat Kripke
structure and φ a QLTL formula such that th(φ) ≤ N . Assume there exists a labelled
execution (ρ, ℓ) ∈ Execlab

K(q0) satisfying φ. Using Proposition 12, there exists a path schema
P = p1l1p2l2 . . . pklk (of size smaller than 3 ∗ |Q|) and n1, . . . , nk−1 ∈ N \ {0} such that
ρ = p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k . Now for all i ∈ {1, . . . , k−1}, we define n′

i = min(ni, 2N+5)
and let ρ′ be the execution p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k , thanks to Proposition 13, we get that

(ρ′, ℓ) |= φ. This gives us the path for a non-deterministic PSPACE-algorithm. We seek for a
path schema P = p1l1p2l2 . . . pklk and for (k− 1) positive naturals n′

1, . . . , n
′
k−1 smaller than

2N+5 such that (p1l
n′

1
1 p2l

n′
2

2 . . . pk−1l
n′

k−1
k−1 pkl

ω
k , ℓ) |= φ. Note that p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k

is of polynomial size in the size of the flat Kripke structure K and the formula φ and that
checking whether (p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k , ℓ) |= φ can be done in polynomial space

thanks to Theorem 11. We use then Savitch’s theorem to obtain a PSPACE-algorithm. For
the lower bound, the proof is the same as for the path model-checking.

▶ Theorem 14. MCf,∃(QLTL) and MCf,∀(QLTL) are PSPACE-complete.

6 Conclusion

We studied the model-checking problem for QLTL for the structure semantics. (In this
semantics, executions are seen as an infinite sequence of control states, together with a
labelling function that associates atomic propositions to the control states.) To begin with,
we proved that the model-checking problem is EXPSPACE-complete. To obtain a better
understanding of this semantics, we have considered some variants of the model-checking
problem, with a restriction on the form of the structures: path model-checking and model-
checking of flat structures. Both problems turn out to be PSPACE-complete. Our results are
summarised in Figure 5. We also showed that the problems MC∀(q-LTL) and MC∃(q-LTL)
corresponding to another way of considering quantifications are PSPACE-complete.

problem: MC∃(QLTL) MC∀(QLTL) MCp(QLTL) MCf,∃(QLTL) MCf,∀(QLTL)
complexity: EXPSPACE-complete PSPACE-complete

Figure 5 Complexity of QLTL model-checking.

The interesting properties that this semantics can express (as the finite number of
reachable control states, the determinism of an execution) leads us to continue studying
this semantics by working on the satisfiability problem of fragments of QLTL and on the
expressivity of prenex formulas.

References
1 B. Bednarczyk and S. Demri. Why Does Propositional Quantification Make Modal and

Temporal Logics on Trees Robustly Hard? Logical Methods in Computer Science, 18(3):5:1–
5:46, July 2022.

2 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

CSL 2024

35:18 QLTL Model-Checking

3 H. Comon and Y. Jurski. Multiple counter automata, safety analysis and PA. In CAV’98,
volume 1427 of LNCS, pages 268–279. Springer, 1998.

4 S. Demri, A. K. Dhar, and A. Sangnier. Taming past LTL and flat counter systems. Inf.
Comput., 242:306–339, 2015.

5 E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and Control,
61(3):175–201, June 1984.

6 K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In Nicolas
Halbwachs and Doron A. Peled, editors, CAV’99), volume 1633 of LNCS, pages 236–248.
Springer-Verlag, July 1999.

7 T. French. Decidability of quantified propositional branching time logics. In AJCAI’01, volume
2256 of LNCS, pages 165–176. Springer-Verlag, December 2001.

8 T. French. Quantified propositional temporal logic with repeating states. In TIME-ICTL’03,
pages 155–165. IEEE Comp. Soc. Press, July 2003.

9 T. French and M. Reynolds. A sound and complete proof system for QPTL. In Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, AIML’02,
pages 127–148. King’s College Publications, 2003.

10 A. Hossain and F. Laroussinie. QCTL model-checking with QBF solvers. Inf. Comput.,
280:104642, 2021.

11 Y. Kesten and A. Pnueli. Complete proof system for QPTL. Journal of Logic and Computation,
12(5):701–745, October 2002.

12 L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In CONCUR’11, volume 6901
of LNCS, pages 419–433. Springer, 2011.

13 O. Kupferman. Augmenting branching temporal logics with existential quantification over
atomic propositions. In CAV’95, volume 939 of LNCS, pages 325–338. Springer-Verlag, July
1995.

14 F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logical Methods
in Computer Science, 10(4), 2014.

15 F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In
LICS’02, pages 383–392. IEEE Computer Society, 2002.

16 N. Markey and P.Schnoebelen. Model checking a path. In CONCUR’03, volume 2761 of LNCS,
pages 248–262. Springer, 2003.

17 N. Markey and P. Schnoebelen. Model checking a path. In CONCUR’03, volume 2761 of
LNCS, pages 248–262. Springer, 2003.

18 Markey N and P. Schnoebelen. Mu-calculus path checking. Inf. Process. Lett., 97(6):225–230,
2006.

19 A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE Comp. Soc. Press,
October-November 1977.

20 F. Schwarzentruber. The complexity of tiling problems. CoRR, abs/1907.00102, 2019.
21 A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD

thesis, Harvard University, Cambridge, Massachussets, USA, 1983.
22 A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata

with applications to temporal logics. Theoretical Computer Science, 49:217–237, 1987.
23 M. Y. Vardi. Alternating automata and program verification. In Jan van Leeuwen, editor,

Computer Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages
471–485. Springer, 1995.

24 P. Wolper. Temporal logic can be more expressive. Inf. Control., 56(1/2):72–99, 1983.

	1 Introduction
	2 Model and Logic
	2.1 Kripke Structures and Labelled Executions
	2.2 Syntax and (Structure) Semantics of QLTL

	3 What can we express with QLTL?
	4 Model checking
	4.1 The model-checking problem
	4.2 Upper bound for the QLTL model-checking problems
	4.3 Lower bound for the QLTL model-checking problems
	4.4 Relation with QCTL*

	5 Model Checking Paths and Flat Structures
	5.1 Path Model Checking
	5.2 Flat Kripke Structures and Path Schemas
	5.3 Stuttering Result for QLTL
	5.4 Algorithm for Flat Kripke Structures

	6 Conclusion

