
Confluence of Conditional Rewriting Modulo
Salvador Lucas #Ñ

DSIC & VRAIN, Universitat Politècnica de València, Spain

Abstract
We investigate confluence of rewriting with Equational Generalized Term Rewriting Systems R,
consisting of Horn clauses, some of them defining conditional equations s = t⇐ c and rewriting rules
ℓ→ r ⇐ c. In both cases, c is a sequence of atoms, possibly defined by using additional Horn clauses.
Such systems include Equational Term Rewriting Systems and (join, oriented, and semi-equational)
Conditional Term Rewriting Systems. A set of equations E defines an equivalence =E and quotient
set T (F ,X )/=E of terms, where reductions s→R/E t using rules in R occur. For such systems, we
obtain a finite set of conditional pairs π, which can be viewed as logical sentences, to prove and
disprove confluence of →R/E by (dis)proving joinability of such conditional pairs π.
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1 Introduction

A sequence 0, s(0), s(s(0)) of numbers in Peano’s notation is usually written as a term
by using a “pairing” (binary) operator ++ as in t1 = (0 ++ s(0)) ++ s(s(0)) or t2 =
0 ++ (s(0) ++ s(s(0))). This is necessary when computing with (variants of) Term Rewriting
Systems (TRSs [1]). However, multiple presentations of the sequence are possible. We can
overcome this if ++ is associative, i.e., the equation xs ++ (ys ++ zs) = (xs ++ ys) ++ zs is
satisfied for all terms xs, ys, and zs. Then, t1 and t2 are made equivalent modulo associativity
and become members of an equivalence class [t], consisting of all terms which are equivalent
to t modulo associativity. Here, t can be t1 or t2, the specific choice being immaterial.

In general, if T (F ,X ) is the set of terms built from a signature F and variables in X , a set
of equations E on terms defines an equivalence =E and a partition T (F ,X )/=E of T (F ,X )
into equivalence classes. When additionally considering a set of rules R, it is natural to
view rewriting computations as transformations [s]E →R/E [t]E of equivalence classes. Here,
[s]E →R/E [t]E (i.e., rewriting modulo) means that s′ →R t′ for some s′ ∈ [s]E and t′ ∈ [t]E .
We often just write s→R/E t. In this paper we are interested in E-confluence of R, i.e., the
commutation of the following diagram:

[s]E

∗R/E

��

∗
R/E

// [t]E

∗R/E

��

[t′]E
∗
R/E

// [u]E

In [10], Jouannaud addressed the problem of proving E-confluence of equational term rewriting,
where E and R consist of (unconditional) equations and rewrite rules, respectively. In this
paper we consider conditional rules ℓ→ r ⇐ c and conditional equations s = t⇐ d, where c

and d are sequences of atoms, possibly defined by Horn clauses.
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37:2 Confluence of Conditional Rewriting Modulo

▶ Example 1. The signature F = {0, s, ++ } can be used to represent nonempty sequences
of natural numbers in Peano’s notation. A single number is considered a sequence as well.

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (1)
Nat(0) (2)

Nat(s(n)) ⇐ Nat(n) (3)
x ≈ y ⇐ x→∗ y (4)

0 + n → n (5)
s(m) + n → s(m + n) (6)

sum(n) → n⇐ Nat(n) (7)
sum(m ++ ns) → m + n

⇐ Nat(m), sum(ns) ≈ n (8)

Predicate Nat defined by clauses (2) and (3) identifies an expression (without variables) as
representing a natural number ; clause (4) describes the interpretation of conditions s ≈ t as
reachability in conditional rules like (8). The application of a rule like (8) to a term sum(t) is
as follows: for each substitution σ, if (i) t =E σ(m ++ ns), (ii) Nat(σ(m)) holds, and (iii)
sum(σ(ns)) rewrites to σ(n), then we obtain σ(m) + σ(n). Note that associativity of ++ is
essential to obtain the expected functionality of sum as it permits the “reorganization” of t

into t′, i.e., σ(m) ++ σ(ns), so that, for the first member σ(m) of t′, Nat(σ(m)) holds.

For the analysis of E-confluence of ETRSs, E-critical pairs were considered [10, Definition 10].
Given unconditional (variable disjoint) rules ℓ → r and ℓ′ → r′, a nonvariable position
p ∈ Pos(ℓ) and an E-unifier θ such that θ(ℓ|p) =E θ(ℓ′), an E-critical pair ⟨θ(ℓ)[θ(r′)]p, θ(r)⟩
is obtained. However, in sharp contrast with TRSs [13, 9], (i) there is no general E-unification
algorithm and “for each equational theory one must invent a special algorithm” [22, page 74].
Furthermore, even for E-unifying terms, (ii) there can be several, even infinitely many
E-unifiers θ which must be considered to obtain a complete set of E-critical pairs which can
be used to check E-confluence of R [2, 20]. In order to improve this situation, we propose
the use of Logic-based Conditional Critical Pairs instead.

▶ Example 2 (Continuing Example 1). Terms sum(n) and sum(m ++ ns) syntactically unify
with mgu θ = {n 7→ m ++ ns}. However, there are infinitely many E-unifiers θa,b,c = {n 7→
(sa(0) ++ sb(0)) ++ sc(0), m 7→ sa(0), ns 7→ (sb(0) ++ sc(0))} for all a, b, c ≥ 0 which cannot
be seen as refinements τ ◦ θ of θ for some substitution τ (in the usual way). This leads
to infinitely many (conditional) critical pairs for (7) and (8). Instead, a single logic-based
conditional critical pair would represent them all:

⟨m′ + n′, n⟩ ⇐ sum(n) = sum(m′ ++ ns′), Nat(n), Nat(m′), sum(ns′) ≈ n′ (9)

After some preliminary notions and notations (Section 2) and a summary of Jouannaud and
Kirchner’s results [11] we rely on (Section 3), the contributions of this paper are: (i) we
introduce Equational Generalized Term Rewriting Systems (EGTRSs) R consisting of a set
of conditional equations E and conditional rules R whose conditional parts are sequences of
atoms, possibly defined by definite Horn clauses in a set H; then, (ii) rewriting computations
(modulo) are described as deduction in a first-order theory obtained from E, H, and R

(Section 4). After that, (iii) confluence of EGTRSs modulo is investigated by considering
the structure of peaks that may lead to diverging computations. We distinguish between
rewriting and coherence peaks and show that the first ones can be used to disprove confluence
modulo (Sections 5 and 6). Also, (iv) we provide a logic-based definition of (conditional)
critical pair which avoids the explicit computation of E-unifiers. We also show that other
conditional pairs (namely, conditional variable pairs and down conditional critical pairs) are
necessary to capture (non-)E-confluence of EGTRSs (Section 7). Finally, (v) we show that
by using appropriate notions of joinability (modulo), such pairs permit to obtain proofs
of E-confluence and non-E-confluence (Section 8). Section 9 discusses some related work.
Section 10 concludes and points to some future work. For the sake of clarity, additional
details about the analysis of confluence of R in Example 1 are supplied in Appendix A.
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2 Preliminaries

In the following, s.t. means such that and iff means if and only if. We assume some familiarity
with the basic notions of term rewriting [1, 19] and first-order logic [5, 18]. For the sake of
readability, though, here we summarize the main notions and notations we use.

Abstract Reduction Relations. Given a binary relation R⊆ A×A on a set A, we often
write a R b or b R−1 a instead of (a, b) ∈R. The composition of two relations R and R′ is
written R ◦ R′ and defined as follows: for all a, b ∈ A, a R ◦ R′ b iff there is c ∈ A such
that a R c and c R′ b. The reflexive closure of R is denoted by R=; the transitive closure of
R is denoted by R+; and the reflexive and transitive closure by R∗. An element a ∈ A is
R-irreducible (or just irreducible if no confusion arises) if there is no b such that a R b. We
say that b ∈ A is R-reachable from a ∈ A if a R∗ b. We say that a, b ∈ R are R-joinable if
there is c ∈ A such that a R∗ c and b R∗ c. Also, a, b ∈R are R-convertible if a (R ∪ R−1)∗ b.
Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then a is
R-terminating; R is terminating if a is R-terminating for all a ∈ A. We say that R is (locally)
confluent if, for all a, b, c ∈ A, if a R∗ b and a R∗ c (resp. a R b and a R c), then b and c

are R-joinable.
Signatures, Terms, Positions. In this paper, X denotes a countable set of variables.

A signature of symbols is a set of symbols each with a fixed arity. We use F to denote a
signature of function symbols, i.e., {f, g, . . .} whose arity is given by a mapping ar : F → N.
The set of terms built from F and X is T (F ,X ). The set of variables occurring in t is Var(t).
Terms are viewed as labeled trees in the usual way. Positions p are represented by chains of
positive natural numbers used to address subterms t|p of t. The set of positions of a term t

is Pos(t). The set of positions of a subterm s in t is denoted Poss(t). The set of positions
of non-variable symbols in t are denoted as PosF (t). Positions are ordered by the prefix
ordering ≤ on sequences: given positions p, q, we write p ≤ q iff p is a prefix of q. If p ̸≤ q

and q ̸≤ p, we say that p and q are disjoint (written p ∥ q).
First-Order Logic. Here, Π denotes a signature of predicate symbols. First-order formulas

are built using function symbols from F , predicate symbols from Π, and variables from
X in the usual way. In particular, atomic formulas A (often called atoms in the realm of
automated theorem proving [23, page 2], but also in [12, pages 79 & 149]) are expressions
P (t1, . . . , tn) where P ∈ Π and t1, . . . , tn are terms; we often refer to P as root(A).

A first-order theory (FO-theory for short) Th is a set of sentences (formulas whose
variables are all quantified). In the following, given an FO-theory Th and a formula φ,
Th ⊢ φ means that φ is deducible from (or a logical consequence of) Th by using a correct
and complete deduction procedure [5, 18]. A sequence A1, . . . , An of atoms Ai, 1 ≤ i ≤ n is
Th-feasible with respect to a theory Th (or just feasible if no confusion arises), if there is a
substitution σ such that Th ⊢ σ(Ai) holds for all 1 ≤ i ≤ n; otherwise, it is infeasible [7].

3 Abstract analysis of confluence of rewriting modulo

Following [11, Section 2], in this section t, t′, . . . refer to elements of a set A. Let ⊢⊣E be
a symmetric relation on A and ∼E be its reflexive and transitive closure: an equivalence
relation often called E-equality. Let →R (R for short) be a binary relation on A. Given R
and E, the relation →R/E (R / E for short), is called reduction (with →R) modulo ∼E and
defined as

→R/E = ∼E ◦ →R ◦ ∼E (10)

CSL 2024
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Local confluence modulo E of RE with R Local coherence modulo E of RE

Figure 1 Confluence and coherence properties: 3rd and 5th diagrams in [11, Figure 2.1].

▶ Definition 3 (Confluence and termination of R modulo E). Let R and E be as above. Then,
R is confluent modulo E (or E-confluent) iff for all t, t1, t2 ∈ A, if t →∗R/E t1 and
t →∗R/E t2, then there are t′1 and t′2 such that t1 →∗R/E t′1, t2 →∗R/E t′2 and t′1 ∼E t′2 [11,
Def. 1].1

R is terminating modulo E (or E-terminating) iff →R/E is terminating [11, p. 1158].
Computing with R / E is difficult as it may involve searching inside an infinite E-equivalence
class [t]E for some t′ on which a R-reduction step can be performed. Peterson and Stickel
investigated this problem for TRSs R and equational theories E. They introduced a reduction
relation on terms, usually denoted →R,E , which can be advantageously used for this purpose
[20]. In their abstract setting, Jouannaud and Kirchner use a relation →RE (RE for short)
satisfying the following fundamental assumption [11, page 1158]:

R⊆ RE ⊆ R / E (11)

Then, confluence of R / E is investigated by means of appropriate properties of RE. As in
[10, 11], we rely on the following related properties of (abstract) relations.

▶ Definition 4. Consider R, E, RE, and R / E as above, and t1, t2 ∈ A. A pair ⟨t1, t2⟩ is
1. R / E-joinable (t1 ↓R/E t2), iff ∃ t′1, t′2 s.t. t1 →∗R/E t′1, t2 →∗R/E t′2, and t′1 ∼E t′2.2

2. RE-joinable modulo E, (t1 ↓RE t2), iff ∃ t′1, t′2 s.t. t1 →∗RE t′1, t2 →∗RE t′2, and t′1 ∼E t′2 [11,
Def. 2].

3. right-strict RE-joinable modulo E, (t1 ↓rs
RE t2), iff ∃ t′1, t′2 s.t. t1 →∗RE t′1, t2 →+

RE t′2, and
t′1 ∼E t′2.

▶ Definition 5 (Abstract confluence and coherence). Consider R, E, RE, and R / E as above.
According to [11, Definition 3] (see Figure 1),
1. R is RE-Church-Rosser modulo E iff for all t and t′, t (⊢⊣E ∪ →R ∪ R← )∗ t′ implies t ↓RE t′.
2. RE is locally confluent modulo E with R iff for all t, t′, and t′′, if t→RE t′ and t→R t′′,

then t′ ↓RE t′′.
3. RE is locally coherent modulo E iff for all t, t′, and t′′, if t →RE t′ and t ⊢⊣E t′′, then

t′ ↓rs
RE t′′.

1 Definition 1 in [11] does not use the last requirement t′
1 ∼E t′

2 as the authors assume t, t1, and t2
to be E-equivalence classes on A (i.e., t, t1, t2 ∈ A/∼E) rather than t, t1, t2 ∈ A. In order to make
the difference explicit, consider A = {a, b, c}, E be given by (the reflexive, transitive, and symmetric
closure of) b ∼E c, and R be given by a R b and a R c. Then, a →R/E b and also a →R/E c, but b
and c are →R/E-irreducible. And →∗

R/E= {(a, a)(b, b), (c, c), (a, b), (a, c)}. Thus, neither b→∗
R/E c nor

c →∗
R/E b, i.e., as a relation on A, →R/E is not confluent. However, b ∼E c. As a relation on A/∼E,

→R/E is confluent.
2 Continuing footnote 1, requiring this last equivalence step can be essential to achieve “joinability”. For

instance, this is necessary for b and c in the example of the footnote to be R / E-joinable.
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▶ Proposition 6 ([11, p. 1160, bullet 1]). If R is RE-Church-Rosser modulo E, then R is
E-confluent.

▶ Theorem 7 ([11, Theorem 5]). If R is E-terminating, then R is RE-Church-Rosser modulo
E iff RE is (i) locally confluent modulo E with R and (ii) locally coherent modulo E.

Theorem 7 and Proposition 6, yield a sufficient condition for E-confluence of R.

▶ Corollary 8. If R is E-terminating, then R is E-confluent if RE is (i) locally confluent with
R modulo E and (ii) locally coherent modulo E.

In the following, we investigate how to deal with the abstract peaks displayed in Figure 1:

t′
RE← t →R t′′ (12) t′

RE← t ⊢⊣E t′′ (13)

that we call R-peaks (12) and E-peaks (13), as they share the same leftmost part, with RE,
but differ on the rightmost part, with R and E, respectively. In general, non-joinability of
these peaks does not entail non-E-confluence of R (Corollary 8 is just a sufficient condition
for E-confluence). However, we have:

▶ Proposition 9. If t′ and t′′ in (12) are not R/E-joinable, then R is not E-confluent.

Note that coherence peaks (13) are trivially R/E-joinable, as t′′ →R/E t′.

4 Equational Generalized Term Rewriting Systems

The following definition introduces the kind of computational systems we consider here
which can be viewed as an specialization of Generalized Term Rewriting Systems (GTRSs)
introduced in [15] (see Section 9 for a more detailed comparison).

▶ Definition 10 (Equational Generalized Term Rewriting Systems). An Equational Generalized
Term Rewriting System (EGTRS) is a tuple R = (F , Π, E, H, R) where F is a signature
of function symbols Π is a signature of predicate symbols with =,→,→∗∈ Π, and, for c a
sequence A1, . . . , An of atomic formulas,

E is a set of conditional equations s = t⇐ c, for terms s and t;
H is a set of definite Horn clauses A ⇐ c where A = P (t1, . . . , tn) for some terms
t1, . . . , tn, n ≥ 0, is such that P /∈ {=,→,→∗}; and
R is a set of conditional rules ℓ→ r ⇐ c for terms ℓ /∈ X and r.

Note that E ∪H ∪R is a set of (definite) Horn clauses.

Requiring root(A) /∈ {=,→,→∗} for all A⇐ c ∈ H ensures that computational predicates
=, →, and →∗ are defined by E and R only (with an auxiliary use of H).
▶ Remark 11 (Conditions s ≈ t and their interpretation). In the literature about Conditional
TRSs (CTRSs, see, e.g., [19, Chapter 7]), symbol ≈ is often used to specify conditions s ≈ t in
rules having different interpretations: as joinability, reachability, etc. [19, Definition 7.1.3]. In
EGTRSs, ≈ would be treated as a predicate in Π and the desired interpretation is explicitly
obtained by including in H an appropriate set of clauses defining ≈. For instance, (4) in
Example 1 interprets ≈ as reachability.

▶ Notation 12. Equations s = t ⇐ c in E are often transformed into rules by chosing
a left-to-right or right-to-left orientation: −→E = {s → t ⇐ c | s = t ⇐ c ∈ E}, and
←−
E = {t → s ⇐ c | s = t ⇐ c ∈ E}. We let

↔
E= −→E ∪ ←−E . Note that

↔
E may contain rules

λ→ ρ⇐ c whose left-hand side λ is a variable. Let D(
↔
E) = {root(λ) | λ→ ρ⇐ d ∈

↔
E}.

CSL 2024



37:6 Confluence of Conditional Rewriting Modulo

Table 1 Generic sentences of the FO-theory of EGTRSs.

Label Sentence
(Rf)▷◁ (∀x) x ▷◁ x

(Tr)▷◁ (∀x, y, z) x ▷◁ y ∧ y ▷◁ z ⇒ x ▷◁ z

(Sy)▷◁ (∀x, y) y ▷◁ x⇒ x ▷◁ y

(Co)▷◁ (∀x, y, z) x ▷◁ y ∧ y ▷◁∗ z ⇒ x ▷◁∗ z

(Pr)▷◁
f,i (∀x1, . . . , xk, yi) xi ▷◁ yi ⇒ f(x1, . . . , xi, . . . , xk) ▷◁ f(x1, . . . , yi, . . . , xk)

(HC)A⇐A1,...,An (∀x⃗) A1 ∧ · · · ∧An ⇒ A

(R,E)ℓ→r⇐A1,...,An (∀x, x⃗) x = ℓ ∧A1 ∧ · · · ∧An ⇒ x
ps→ r

(R/E) (∀x, x′, y, y′) x = x′ ∧ x′ → y′ ∧ y′ = y ⇒ x
rm→ y

▶ Definition 13. We say that P ∈ Π depends on R if P ∈ {→,→∗} or there is A ⇐
A1, . . . , An ∈ E ∪H with root(A) = P such that root(Ai) depends on R for some 1 ≤ i ≤ n.

In this paper, computational relations (e.g., =E , →R, →R,E , →R/E ,. . . ) induced by an
EGTRS R = (F , Π, E, H, R) are defined by deduction of atoms s = t (equality in E), s→ t

(one-step rewriting in the usual sense), s
ps→ t (rewriting modulo à la Peterson & Stickel),

s
rm→ t (rewriting modulo), etc., in some FO-theory. We extend Π with ps→, rm→, etc., and also
≈ps, ≈rm (as they depend on the previous predicates). Our FO-theories are obtained from
the generic sentences in Table 1, where:

Sentences (Rf)▷◁, (Tr)▷◁, and (Sy)▷◁, which are parametric on a binary relation ▷◁, express
reflexivity, transitivity, and symmetry of ▷◁, respectively;
(Co)▷◁ expresses compatibility of one-step and many-step reduction with ▷◁;
for each k-ary function symbol f , 1 ≤ i ≤ k, and x1, . . . , xk and yi distinct variables,
(Pr)▷◁

f,i propagates an ▷◁-step to the i-th immediate subterm of an f -rooted term;
(HC)α presents a clause α : A⇐ A1, . . . , An, with variables x⃗ as a sentence.
(R,E)α defines a Peterson & Stickel rewriting step s →R,E t (at the root) using rule
α : ℓ→ r ⇐ c with variables x⃗. Here, x /∈ x⃗.
(R/E) defines reduction modulo →R/E in the usual way.

The following example illustrates the differences between (i) rewriting with →R (where a
term t is rewritten if t|p = σ(ℓ) for some position p in t, rule ℓ→ r ⇐ c in R, and substitution
σ such that σ(c) holds), (ii) rewriting modulo →R/E (where a term t is rewritten if it is
E-equivalent to another term t′ to which a rewrite rule applies as above), and (iii) rewriting à
la Peterson & Stickel →R,E (where a term t is rewritten if some subterm t|p is E-equivalent
to an instance σ(ℓ) of the left-hand side ℓ of a rewrite rule ℓ→ r ⇐ c and σ(c) holds).

▶ Example 14. Consider E = {(14), (15)} and R = (F , R) with R = {(16), (17)}, where

b = f(a) (14)
a = c (15)

c → d (16)
b → d (17)

Then, f(a) is →R-irreducible. However, f(a) →R,E f(d) because a =E c →R d. Further-
more, f(a) →R/E f(d) because f(a) =E f(c) →R f(d). However, f(a) →R/E d because
f(a) =E b→R d, but f(a) ̸→R,E d because f(a) is not E-equivalent to the left-hand side of
any rule.

Now, consider the following parametric theories with parameters S (referring to a signature),
E (a set of equations), and R (a set of rules):
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ThEq[S,E] = {(Rf)= , (Sy)= , (Tr)=}} ∪ {(Pr)=
f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)e | e ∈ E}

ThR[S,R] = {(Rf)→∗
, (Co)→} ∪ {(Pr)→f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)α | α ∈ R}}

ThR,M[S,R] = {(Rf)
ps−→∗ , (Co)

ps→} ∪ {(Pr)
ps→
f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(R,E)α | α ∈ R}

ThR/M[S,R] = {(Rf)
rm−→∗ , (Co)

rm→, } ∪ {(Pr)→f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)α | α ∈ R}} ∪ {(R/E)}

Note that, in ThR/M[S,R] propagation sentences are given for → rather than for rm→; this is
consistent with the usual definition of rewriting modulo implemented by (R/E).

Since rules α : ℓ → r ⇐ c in R are used to specify different computational relations
(see Definition 17), conditions s ≈ t ∈ c have different interpretations depending on the
targetted relation: the meaning of ≈ is based on predicate → if α is used to describe the
usual (conditional) rewrite relation →R; however, ≈ should be treated using ps→ if α is used
to describe Peterson & Stickel’s rewriting modulo →R,E ; and ≈ should be treated using rm→
if α is used to describe →R/E . A simple way to deal with this situation is the following.

▶ Definition 15. Let R = (F , Π, E, H, R) be an EGTRS.
Hps (resp. Hrm) is obtained from H by replacing in each A ⇐ A1, . . . , An ∈ H all
occurrences of ≈, → and →∗ by ≈ps, ps→ and ps−→∗ (resp. ≈rm, rm→, and rm−→∗).
Rps (Rrm) is obtained from R by replacing all occurrences of ≈ in each ℓ→ r ⇐ c ∈ R

by ≈ps (≈rm).

▶ Example 16. For R in Example 1, Hrm and Rrm are (Hps and Rps are similar):

Nat(0) (18)
Nat(s(n)) ⇐ Nat(n) (19)

x ≈rm y ⇐ x
rm−→∗ y (20)

0 + n → n (21)
s(m) + n → s(m + n) (22)

sum(n) → n⇐ Nat(n) (23)
sum(m ++ ns) → m + n⇐ Nat(m), sum(ns) ≈rm n (24)

Given an EGTRS R = (F , Π, E, H, R) whose equality predicate = does not depend on R,3
the following theories are obtained:

ThE = ThEq[F , E] ∪ {(HC)α | α ∈ H}
ThR = ThEq[F , E] ∪ ThR[F , R] ∪ {(HC)α | α ∈ H}

ThR,E = ThEq[F , E] ∪ ThR,M[F , Rps] ∪ {(HC)α | α ∈ Hps}
ThR/E = ThEq[F , E] ∪ ThR/M[F , Rrm] ∪ {(HC)α | α ∈ Hrm}

These theories are used to define the expected computational relations as follows.

▶ Definition 17. Let R = (F , Π, E, H, R) be an EGTRS and s, t ∈ T (F ,X ).
We write s =E t (resp. s→↔

E
t) iff ThE ⊢ s = t (resp. ThR[F ,

↔
E] ⊢ s→ t) holds.

We write s→R t (resp. s→R,E t and s→R/E t) iff ThR ⊢ s→ t (resp. ThR,E ⊢ s
ps→ t

and ThR/E ⊢ s
rm→ t) holds. Similarly for s→∗R t (resp. s→∗R,E t and s→∗R/E t).

▶ Definition 18 (Confluence and termination modulo of an EGTRS). Let R = (F , Π, E, H, R)
be an EGTRS. We say that
R is confluent modulo E (or E-confluent) iff for all terms t, t1, and t2, if t →∗R/E t1
and t→∗R/E t2, then there are t′1 and t′2 such that t1 →∗R/E t′1, t2 →∗R/E t′2 and t′1 =E t′2.
R is terminating modulo E (or E-terminating) iff →R/E is terminating.

3 Requiring that = does not depend on R implies that the “meaning” of equational atoms s = t does not
depend on the rules in R.
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Table 2 Abstract notions in Section 3 applied to EGTRSs.

Abstract reduction: ⊢⊣E ∼E →R →RE →R/E

Application to EGTRSs: →↔
E

=E →Rrm →Rrm ,E →R/E

Note that (i) →↔
E

is symmetric by definition of
↔
E; (ii) =E is an equivalence due to (Rf)=

(reflexivity), (Sy)= (symmetry), and (Tr)= (transitivity), all included in ThE ; and (iii) =E

is the reflexive and transitive closure of →↔
E

. Unfortunately, the relationship between →R,
=E , and →R/E , is not as required. In particular, →R/E = (=E ◦ →R ◦ =E) does not hold.

▶ Example 19. Consider the following EGTRS

a = b (25)
x ≈ y ⇐ x→∗ y (26)

a → c (27)
a → d⇐ b ≈ c (28)

We have a →R c; but (28) is ThF,R-infeasible, hence a ̸→R d. However, a →R/E d,
as b =E a →R c, i.e., b →R/E c and (28) can be used. Thus, →R = {(a, c)},
(=E ◦ →R ◦ =E) = {(a, c), (b, c)}, and →R/E = {(a, c), (b, c), (a, d), (b, d)}, i.e.,
→R/E ̸= (=E ◦ →R ◦ =E).

▶ Remark 20 (Rewriting modulo and rewriting in conditional systems). Example 19 shows
a mismatch between the definition of →R/E for an EGTRS R (Definition 17) and the
abstract definition (10), usually understood for ETRSs. For EGTRSs (and already for
CTRSs), the connection →R/E = (=E ◦ →R ◦ =E) is lost. This is because the conditions
in rules are treated using, e.g., →∗R to obtain →R (see, e.g., [19, Definition 7.1.4]), whereas
computations with →R/E evaluate conditions using →∗R/E instead, see, e.g., [4, page 819].
We overcome this problem as follows.

▶ Definition 21 (CR-theory of an EGTRS). Let R = (F , Π, E, H, R) be an EGTRS. The
CR-theory of R is

Rcr = ThEq[F , E] ∪ ThR[F , Rrm ] ∪ ThR,M[F , Rrm ] ∪ ThR/M[F , Rrm ] ∪ {(HC)α | α ∈ Hrm}

Then, →Rrm and →Rrm ,E (and also →∗Rrm and →∗Rrm ,E) are defined as follows:

s→Rrm t ⇔ Rcr ⊢ s→ t and s→Rrm ,E t ⇔ Rcr ⊢ s
ps→ t

In contrast to →R and →R,E , to obtain →Rrm and →Rrm ,E conditions in rules are evaluated
using →R/E (instead of →R and →R,E). Now, the requirements (10) and (11) are fulfilled.

▶ Proposition 22. Let R = (F , Π, E, H, R) be an EGTRS. Then, →R/E = (=E ◦ →Rrm

◦ =E). Also, →Rrm ⊆→Rrm ,E ⊆→R/E.

▶ Remark 23 (Use of Jouannaud & Kirchner’s abstract framework). By the first statement
in Proposition 22, E-confluence of EGTRSs (Definition 18) and E-confluence of →Rrm (as
an abstract relation on terms, Definition 3) coincide. This enables the use of the results of
Section 3 to analyze E-confluence of EGTRSs.
The results in Section 3 apply to EGTRSs according to the correspondence in Table 2. As a
consequence of Proposition 6 and Theorem 7 we have the following.

▶ Corollary 24. Let R = (F , Π, E, H, R) be an EGTRS. If R is E-terminating and→Rrm ,E is
locally confluent modulo E with →Rrm and locally coherent modulo E, then R is E-confluent.
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The following result is essential in the analysis of peaks in Sections 5 and 6.

▶ Proposition 25. Let R = (F , Π, E, H, R) be a EGTRS and s, t ∈ T (F ,X ).
If s→Rrm t, then there is p ∈ Pos(s) and ℓ→ r ⇐ c ∈ Rrm such that (i) s|p = σ(ℓ) for
some substitution σ, (ii) for all A ∈ c, Rcr ⊢ σ(A) holds, and (iii) t = s[σ(r)]p.
If s→Rrm ,E t, then there is p ∈ Pos(s) and ℓ→ r ⇐ c ∈ Rrm such that (i) s|p =E σ(ℓ)
for some substitution σ, (ii) for all A ∈ c, Rcr ⊢ σ(A) holds, and (iii) t = s[σ(r)]p.

5 Analysis of local confluence modulo E of →Rrm ,E with →Rrm

Given an EGTRS R = (F , Π, E, H, R) and terms s, t, and t′, rewriting peaks (12) become:

t Rrm ,E←s→Rrm t′ (29)

▶ Example 26. Consider E and R (=Rrm) in Example 14 viewed as an EGTRS R =
({a, b, c, d, f}, {=,→,→∗}, E, ∅, R). Since (i) f(c) =E f(a) =E b →(17) d and (ii) c →(16) d,
we have the following rewriting peak:

d (17),E←
←−−−
f( c−→) →(16) f(d) (30)

The Rrm, E-joinability of all peaks (29) characterizes local confluence modulo E of →Rrm ,E

with →Rrm , which provides an ingredient to prove E-confluence (see Corollary 24). By
Proposition 25, there are positions p, p′ ∈ Pos(s), rules α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm

sharing no variable (rename if necessary), and substitution σ, such that (i) s|p = w =E σ(ℓ)
and σ(c) hold; and (ii) s|p′ = σ(ℓ′) and σ(c′) hold, i.e., every rewriting peak is of the form

t = s[σ(r)]p Rrm ,E← s[w←−]p = s = s[σ(ℓ′)
−−→

]p′ →Rrm s[σ(r′)]p′ = t′ (31)

Depending on the relative location of p and p′, different classes of peaks (31) are distinguished.

Disjoint rewriting peaks. If p and p′ in (31) are disjoint, i.e., p ∥ p′, then s =
s[w]p[σ′(ℓ′)]p′ = s[σ′(ℓ′)]p′ [w]p. Accordingly, (31) can be written as follows:

t = s[σ(r)]p[σ(ℓ′)]p′ Rrm ,E← s[w←−]p[σ(ℓ′)
−−→

]p′ →Rrm s[w]p[σ(r′)]p′ = t′ (32)

Now, t = s[σ(r)]p[σ(ℓ′)
−−→

]p′ →Rrm s[σ(r)]p[σ(r′)]p′ Rrm ,E← s[w←−]p[σ(r′)]p′ = t′, i.e., t and t′

are Rrm, E-joinable.

Nested rewriting peaks. If p′ = p.p ∈ Pos(s) for p and p′ in (31) and some position p,
then (31) can be written in one of the following possibilities, according to the position where
the →Rrm -step applies (by abuse, we also use t and t′).
1. In the first case, rewriting with →Rrm occurs above or on the →Rrm ,E-step and we have

t = σ(ℓ′)[σ(r)]p Rrm ,E← σ(ℓ′)[←−w ]p−−−−−−→
→Rrm σ(r′) = t′ (33)

where w =E σ(ℓ) and p ≥ Λ. We call (33) an Rrm-up peak. We distinguish two cases:
a. If p ∈ PosF (ℓ′), then σ(ℓ′)|p = σ(ℓ′|p) = w =E σ(ℓ), i.e., ℓ and ℓ′|p E-unify and we

say that (33) is an E-critical Rrm-up peak;
b. If p /∈ PosF (ℓ′), there is x ∈ Var(ℓ′) such that ℓ′|q = x for some q ≤ p and (33) is a

variable Rrm-up peak.
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2. In the second case, rewriting with →Rrm occurs below the →Rrm ,E-step; we have
t = σ(r) Rrm ,E←

←−−−−−−
w[σ(ℓ′)
−−→

]p →Rrm w[σ(r′)]p = t′ (34)
where w = w[σ(ℓ′)]p =E σ(ℓ) and p > Λ, as p = Λ coincide with p = Λ in (33). We call
(34) an Rrm-down peak. For instance, (30) is an Rrm-down peak.

▶ Remark 27. If E = ∅, then →Rrm ,E=→Rrm , and Rrm-up and Rrm-down peaks boil down
into a unique class of peaks, just distinguishing critical and variable peaks.

From the proof of [11, Theorem 16] (Case 4 in page 1171), for Rrm-down peaks involving
unconditional rules, we have:

▶ Proposition 28. Let R = (F , Π, E, H, R) be an EGTRS. If →Rrm ,E is locally coherent
modulo E, then Rrm-down peaks (34) such that α and α′ are unconditional rules are Rrm, E-
joinable.

6 Analysis of local coherence modulo E of →Rrm ,E

Given an EGTRS R = (F , Π, E, H, R) and terms s, t, t′, coherence peaks (13) are of the
form

t Rrm ,E←s→↔
E

t′ (35)

Given a term s, positions p, p′ ∈ Pos(s), an oriented equation λ → ρ ⇐ d ∈
↔
E, a rule

α : ℓ→ r ⇐ c ∈ Rrm (sharing no variables), and substitution σ, such that (i) s|p = w =E σ(ℓ)
and σ(c) hold; and (ii) s|p′ = σ(λ) and σ(d) hold, every coherence peak (35) is of the form

t = s[σ(r)]p Rrm ,E← s[w←−]p = s = s[σ(λ)
−−→

]p′ →↔
E

s[σ(ρ)]p′ = t′ (36)

Disjoint coherence peaks. If p and p′ in (36) are disjoint, then s = s[w]p[σ(λ)]p′ =
s[σ(λ)]p′ [w]p and we have:

t = s[σ(r)]p[σ(λ)]p′ ↔
E
← s[σ(r)]p[σ(ρ)]p′ Rrm ,E← s[w]p[σ(ρ)]p′ = t′

Since t →↔
E

s[σ(r)]p[σ(ρ)]p′ implies t =E s[σ(r)]p[σ(ρ)]p′ , we conclude that t and t′ are
right-strict Rrm, E-joinable.

Nested coherence peaks. If p and p′ in (36) are not disjoint, then (36) can be written in
one of the following three ways (again, by abuse, we use t and t′):

t = σ(λ)[σ(r)]p Rrm ,E←
←−−
σ(λ)
−−→

→↔
E

σ(ρ) = t′ (37)

t = σ(λ)[σ(r)]p Rrm ,E← σ(λ)[←−w ]p−−−−−−→
→↔

E
σ(ρ) = t′ (38)

t = σ(r) Rrm ,E←
←−−−−−
w[σ(λ)
−−→

]p →↔
E

w[σ(ρ)]p = t′ (39)

that we call E-root (37), E-up (38), and E-down (39) coherence peaks, depending on the
application of the →↔

E
-step. Note that σ(ℓ) =E σ(λ) in (37), and p > Λ in (38) and (39).

▶ Proposition 29. Coherence peaks (37) and (39) are right-strict Rrm, E-joinable.

Now, we investigate finite representations of nested rewriting and coherence peaks.
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7 Conditional pairs for proving E-confluence of EGTRSs

In the following, we deal with general conditional pairs, or just conditional pairs, as follows,
see [15, Section 5]:

▶ Definition 30 (Conditional pair). A conditional pair is an expression ⟨s, t⟩︸︷︷︸
peak

⇐ A1, . . . , An︸ ︷︷ ︸
conditional part

,

where s and t are terms and A1, . . . , An are atoms.

▶ Definition 31 (Joinability of conditional pairs). Let R = (F , Π, E, H, E) be an EGTRS. A
conditional pair π : ⟨s, t⟩ ⇐ c is Rrm, E-joinable (resp. right-strict Rrm, E-joinable, R/E-
joinable) iff for all substitutions σ, if Rcr ⊢ σ(A) holds for all A ∈ c, then σ(s) and σ(t) are
Rrm, E-joinable (resp. right-strict Rrm, E-joinable, R/E-joinable).

▶ Definition 32 (Feasible conditional pair). Let R be an EGTRS. A general conditional pair
⟨s, t⟩ ⇐ c is Rcr-feasible (or just feasible if Rcr is clear from the context) if c is Rcr-feasible.

The following result is immediate from Definitions 31 and 32.

▶ Proposition 33. Let R be an EGTRS. Rcr-infeasible conditional pairs are Rrm, E-joinable
(resp. right-strict Rrm, E-joinable, R/E-joinable)

We describe three families of conditional pairs which are useful to prove and disprove
E-confluence.

7.1 Logic-based conditional critical pairs
These pairs capture Rrm-up and E-up critical peaks.

▶ Definition 34 (Logic-based conditional critical pair). Let α : ℓ→ r ⇐ c and α′ : ℓ′ → r′ ⇐ c′

be two rules sharing no variables, together with a non-variable position p ∈ PosF (ℓ). The
logic-based conditional critical pair (LCCP for short) πα,p,α′ of α at position p with α′ is:

πα,p,α′ : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ (40)

Our terminology “logic-based conditional critical pair” tries to avoid confusion with the
E-critical pairs for ETRSs of [11, Definition 12] and also the conditional critical pairs for
rewrite theories of [4, Definition 6] which make an explicit use of E-unifiers which we avoid
by including the atom ℓ|p = ℓ′ in the conditional part of (40). Given sets of rules U and
V , we let GLCCP(U, V ) = {πα,p,α′ | α : ℓ → r ⇐ c ∈ U, p ∈ PosF (ℓ), α′ ∈ V }. For
R = (F , Π, E, H, R), we let

LCCP(R) = GLCCP(Rrm, Rrm) and LCCP(E,R) = GLCCP(
↔
E, Rrm)

For GTRSs involving finite sets of equations and rules, both LCCP(R) and LCCP(E,R) are
finite. The following result shows that they suffice to capture any possible critical peak.

▶ Proposition 35 (Critical peaks and LCCPs). Let R = (F , Π, E, H, R) be a EGTRS.
Let α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, induce Rrm-up critical
peaks (33) with p ∈ PosF (ℓ′) as in (33). Then, (33) is Rrm, E-joinable (R/E-joinable),
iff πα,p,α′ ∈ LCCP(R) is Rrm, E-joinable (R/E-joinable).
Let α : ℓ → r ⇐ c ∈ Rrm and β : λ → ρ ⇐ d ∈

↔
E, sharing no variable, induce E-up

critical peaks (38) with p ∈ PosF (λ) as in (38). Then, (38) is right-strict Rrm, E-joinable
(R/E-joinable) iff πα,p,β ∈ LCCP(E,R) is right-strict Rrm, E-joinable (R/E-joinable).
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▶ Example 36. (Continuing Example 26) LCCP(R) consists of:
α p α′ LCCP

(16) Λ (16) ⟨d, d⟩ ⇐ c = c (41)
(16) Λ (17) ⟨d, d⟩ ⇐ c = b (42)
(17) Λ (17) ⟨d, d⟩ ⇐ b = c (43)

which are all trivially Rrm, E-joinable. Note that π(17),Λ,(16) is not considered as it is
Rrm, E-joinable iff π(16),Λ,(17) is. Regarding LCCP(E,R), we have that π←−−(14),1,(16) i.e.,

⟨f(d), b⟩ ⇐ a = c

is not right-strictRrm, E-joinable: although the conditional part a = c holds, and b→Rrm ,E d,
⟨f(d), d⟩ is not Rrm, E-joinable.

▶ Example 37. For R in Example 1, LCCP(R) consists of 22 LCCPs. The complete list and
proofs of Rrm, E-joinability are given in Appendix A. Representative examples are:

π(24),Λ,(24) is

⟨m′+n′, m+n⟩ ⇐ sum(m ++ ns) = sum(m′ ++ ns′), Nat(m), sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′

If a substitution σ satisfies the conditional part, then σ(m ++ ns) =E σ(m′ ++ ns′), i.e.,
the sequences σ(m ++ ns) and σ(m′ ++ ns′) are identical except for the distribution of
parenthesis. Furthermore, σ(m) and σ(m′) are the same natural number in Peano’s nota-
tion. Therefore, σ(ns) and σ(ns′) are identical up to parenthization. Hence, sum(σ(ns))
and sum(σ(ns′)) can be reduced by →∗R/E to the same expression, i.e., we can assume
that σ(n) and σ(n′) coincide and thus that σ(m + n) and σ(m′ + n′) are Rrm, E-joinable.
π(21),Λ,(22) is ⟨s(m′ + n′), n⟩ ⇐ 0 + n = s(m′) + n′. Since the conditional part is clearly
infeasible, π(21),Λ,(22) is trivially Rrm, E-joinable.

LCCP(E,R) consists of 16 LCCPs. Every π ∈ LCCP(E,R) is infeasible: they include a
condition s = t where s is rooted with ++ and t is always rooted with a different symbol.
For instance, π−→(1),Λ,(21) is ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = 0 + n. Thus, every
π ∈ LCCP(E,R) is right-strict Rrm, E-joinable, see Appendix A too. Hence, all pairs in
LCCP(R) are Rrm, E-joinable and all pairs in LCCP(E,R) are right-strict Rrm, E-joinable.

7.2 Conditional variable pairs
These pairs capture Rrm-up and E-up variable peaks.

▶ Definition 38 (Parametric conditional variable pair). Let α : s→ t⇐ c be a rule where s

can be a variable, x ∈ Var(s), p ∈ Posx(s), and x′ /∈ α be a fresh variable. Let ▷◁ be a binary
relation on terms. Define a ▷◁-parametric Conditional Variable Pair (CVP) π▷◁

α,x,p as follows:

π▷◁
α,x,p : ⟨s[x′]p, t⟩ ⇐ x ▷◁ x′, c (44)

In the following, CVP(U, ▷◁) is the set of all ▷◁-parametric CVPs in a set of rules U . We let

CVP(R) = CVP(Rrm,
ps→) and CVP(E) = CVP(

↔
E,

ps→)

▶ Proposition 39 (Variable peaks and CVPs). Let R = (F , Π, E, H, R) be an EGTRS.
Let α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, determine variable
Rrm-up peaks (33) with p /∈ PosF (ℓ′) as in (33). Then, (33) is Rrm, E-joinable (R/E-
joinable) iff π

ps→
α′,x,q ∈ CVP(R) (for some x ∈ Var(ℓ′) and q ∈ Posx(ℓ′) such that q ≤ p)

is Rrm, E-joinable (R/E-joinable).
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Let α : ℓ→ r ⇐ c ∈ Rrm and β : λ→ ρ⇐ d ∈
↔
E, sharing no variable, determine variable

E-up peaks (38) with p /∈ PosF (λ) as in (38). Then, (38) is right-strict Rrm, E-joinable
(R/E-joinable) iff π

ps→
β,x,q ∈ CVP(E) (for some q ∈ Posx(λ) and x ∈ Var(λ) such that

q ≤ p) is right-strict Rrm, E-joinable (R/E-joinable).
For unconditional rules, we have the following.

▶ Proposition 40. Let R = (F , Π, E, H, R) be an EGTRS and α : λ→ ρ be an unconditional
rule, where λ can be a variable. Then, for all x ∈ Var(λ) and p ∈ Posx(λ), π

ps→
α,x,p is Rrm, E-

joinable. If x ∈ Var(ρ), then π is right-strict joinable.

Accordingly, in the following we dismiss from CVP(R) those CVPs obtained from uncondi-
tional rules in R; and we also dismiss from CVP(E) those CVPs obtained from unconditional
rules λ→ ρ ∈

↔
E whose critical variable x occurs in ρ.

▶ Example 41. For R in Example 1, CVP(R) consists of the following:
α var. p CVP

(23) n 1 ⟨sum(n′), n⟩ ⇐ n
ps→ n′, Nat(n) (45)

(24) m 1.1 ⟨sum(m′ ++ ns), m + n⟩ ⇐ m
ps→ m′, Nat(m), sum(ns) ≈rm n (46)

(24) ns 1.2 ⟨sum(m ++ ns′), m + n⟩ ⇐ ns
ps→ ns′, Nat(m), sum(ns) ≈rm n (47)

These CVPs are infeasible, as terms t satisfying Nat(t) are of the form sp(0) for some p ≥ 0
and hence →Rrm ,E-irreducible. Hence they are Rrm, E-joinable. The set CVP(E) is empty,
as all variables in the left hand side of the unconditional rules

−→
(1) and

←−
(1) also occur in the

corresponding right-hand side (Proposition 40).

For R in Example 26, CVP(R) = ∅.

7.3 Down conditional critical pairs
Rrm-down peaks (34) combine possible rule overlaps (modulo) and the application of rules
“below” a variable. Unfortunately, these two sources of divergence do not admit a neat
separation (as done for Rrm-up peaks) into “critical” and “variable” Rrm-down peaks to
be captured by means of LCCPs and CVPs. Alternatively, down conditional critical pairs
capture these two (mingled) situations at once. First consider the predicate �× defining a
strict subterm relation on pairs (s, t) of terms by the following clauses:

(Sb)�
×

f,i (f(x1, . . . , xi, . . . , xk), f(x1, . . . , x′
i, . . . , xk)) �× (xi, x′

i)
(Sb2)�

×

f,i (f(x1, . . . , xi, . . . , xk), f(x1, . . . , x′
i, . . . , xk)) �× (x, x′)⇐ (xi, x′

i) �× (x, x′)

Let Th�×(F) = {(HC)(Sb)�×
f,i

, (HC)(Sb2)�×
f,i

| f ∈ F , 1 ≤ i ≤ ar(f)}.

▶ Proposition 42. Let F be a signature and s, t, u, v be terms. Then, Th�×(F) ⊢ (s, t)�×(u, v)
holds iff there is a nonempty context C[ ] such that s = C[u] and t = C[v].

▶ Definition 43 (Down conditional critical pairs). Let R = (F , Π, E, H, R) be an EGTRS.
Rules α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm (sharing no variables) define a Down
Conditional Critical Pair (DCCP for short) as follows:

πα,α′ : ⟨r, x′⟩ ⇐ x = ℓ, (x, x′)�×(ℓ′, r′), c, c′ (48)

where x and x′ are fresh variables. The set of DCCPs of R is

DCCP(R) = {πα,α′ | α, α′ ∈ Rrm}
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▶ Proposition 44 (Rrm-peaks and DCCPs). Let R = (F , Π, E, H, R) be an EGTRS. Let
α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, determine Rrm-down
critical peaks (34). Then, (34) is Rrm, E-joinable (R/E-joinable) iff πα,α′ ∈ DCCP(R) is
Rrm, E-joinable (R/E-joinable).

▶ Remark 45 (Continuing Remark 27). If E = ∅ in an EGTRS R = (F , Π, E, H, R), then all
peaks represented by DCCP(R) are captured by LCCP(R) and CVP(R).

▶ Example 46. For R in Example 26, DCCP(R) consists of the following DCCPs:
α α′ DCCP

(16) (16) ⟨d, x′⟩ ⇐ x = c, (x, x′) �×(c, d) (49)
(16) (17) ⟨d, x′⟩ ⇐ x = b, (x, x′) �×(c, d) (50)
(17) (16) ⟨d, x′⟩ ⇐ x = c, (x, x′) �×(b, d) (51)
(17) (17) ⟨d, x′⟩ ⇐ x = b, (x, x′) �×(b, d) (52)

As for (50), σ = {x 7→ f(c), x′ 7→ f(d)} satisfies the conditional part as σ(x) = f(c) =E

f(a) =E b and (f(c), f(d) �×(c, d). However, d and f(d) are not Rrm, E-joinable.

▶ Proposition 47. Let R = (F , Π, E, H, R) be an EGTRS and α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐
c′ ∈ Rrm be such that ℓ = ℓ[x1, . . . , xn] is linear, Var(ℓ) = {x1, . . . , xn}, and for all terms
t, if t =E σ(ℓ) for some substitution σ satisfying c and c′, then t = ℓ[t1, . . . , tn] for some
terms t1, . . . , tn. If every LCCP πα,p,α′ is Rrm, E-joinable for all p ∈ PosF (ℓ), and every
CVP π

ps→
α,x,q is Rrm, E-joinable for all x ∈ Var(ℓ) and q ∈ Posx(ℓ), then the DCCP πα,α′ is

Rrm, E-joinable.

By Propositions 28 and 44, dealing with EGTRSs R such that →Rrm ,E is locally coherent
modulo E, we can dismiss DCCPs for unconditional rules α and α′.

▶ Example 48. For R in Example 1, DCCP(R) consists of 16 DCCPs (involving a conditional
rule). The complete list (with all Rrm, E-joinability proofs) is given in Appendix A. A
representative example is π(21),(24), i.e.,

⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) �×(sum(m′ ++ ns′), m′ + n′), Nat(m′), sum(ns′) ≈rm n′

If σ satisfies the conditional part, then σ(x) =E 0 + σ(n) holds. Since + /∈ D(
↔
E), it follows

that σ(x) = 0 + σ(n). Thus, by Proposition 47 and since every π ∈ LCCP(R) ∪ CVP(R) is
Rrm, E-joinable (Examples 37 and 41), π(21),(24) is Rrm, E-joinable.

Example 46 shows that Rrm, E-joinability of all π ∈ LCCP(R) ∪ CVP(R) does not imply
Rrm, E-joinability of DCCPs in DCCP(R) unless the conditions in Proposition 47 are fulfilled.

8 Proving and disproving E-confluence

The following result shows how to prove and disprove E-confluence.

▶ Theorem 49. Let R = (F , Π, E, H, R) be an EGTRS.
1. →Rrm ,E is locally confluent modulo E with →Rrm iff every π ∈ LCCP(R) ∪ CVP(R) ∪

DCCP(R) is Rrm, E-joinable.
2. →Rrm ,E is locally coherent modulo E iff every π ∈ LCCP(E,R) ∪ CVP(E) is right-strict
Rrm, E-joinable.

3. If R is E-terminating, then R is →Rrm ,E-Church-Rosser modulo E iff every π ∈
LCCP(R)∪CVP(R)∪DCCP(R) is Rrm, E-joinable, and every π ∈ LCCP(E,R)∪CVP(E)
is right-strict Rrm, E-joinable.
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4. If R is E-terminating, every π ∈ LCCP(R)∪CVP(R)∪DCCP(R) is Rrm, E-joinable, and
every π ∈ LCCP(E,R) ∪ CVP(E) is right-strict Rrm, E-joinable, then R is E-confluent.

5. If there is π ∈ LCCP(R)∪CVP(R)∪DCCP(R) which is not R/E-joinable, then R is not
E-confluent.

▶ Example 50. (Continuing Example 1) For R in Example 1, every π ∈ LCCP(R) ∪
CVP(R) ∪ DCCP(R) is Rrm, E-joinable (see Examples 37, 41, and 48) and every π ∈
LCCP(E,R) ∪ CVP(E) is right-strict Rrm, E-joinable (see Examples 37 and 41). It is not
difficult to see that R is E-terminating. Thus, by Theorem 49(4), R is E-confluent.

▶ Example 51. For R in Example 26, the DCCP (50) has been proved non-R/E-joinable
in Example 46. By Theorem 49(5), R is not E-confluent. Note that all pairs in LCCP(R)
are joinable (see Example 36) and CVP(R) is empty. Thus, DCCP(R) is the only set of
conditional pairs that can be used to disprove E-confluence of R.

9 Related work

GTRSs and EGTRSs. A Generalized Term Rewriting System (GTRS, [15, Definition 51])
is a tuple R = (F , Π, µ, H, R), where F , Π, H and R are defined as above, and µ is a
replacement map establishing which arguments µ(f) can be rewritten for each function
symbol f ∈ F [14]. EGTRSs do not use replacement maps, which corresponds to “use” the
so-called top replacement map µ⊤ which permits all rewritings in all arguments of symbols.
We have borrowed from [15, Definition 30] the notion of conditional variable pair, although
we use it here in a slightly different way, as conditional pairs ⟨s, t⟩ ⇐ x

ps→ x′, c where ps→
is interpreted as →R,E , but possible rewritings in c may correspond to →R/E , →∗R/E , etc.
Conditional variable pairs of GTRSs R are written ⟨s, t⟩ ⇐ x → x′, c, where → is the
one-step rewrite relation →R of R and conditions in c are treated using →R, →∗R, etc.

Plaisted proposed quite a general notion of conditional rewrite systems where rules are viewed
as clauses including (possibly many) negative literals [21]. In this respect, EGTRSs are
particular cases of Plaisted’s conditional rewrite systems. Plaisted also provides a complete
specification of the logical theory which could be used (together with such rules) to obtain
the desired reduction, see [21, page 217]. However, equational components are not allowed.

Jouannaud and Kirchner’s main result for ETRSs [11, Theorem 16], cannot be used to
disprove E-confluence of ETRSs. For instance, the proof of non-E-confluence of R in Example
26 would not be obtained. Actually, (30) in Example 26 is an R-down rewriting peak. Such
peaks are explictly excluded to obtain E-critical pairs in [10, 11]4. Our down conditional
critical pairs (DCCPs) fill this gap. On the other hand, Jouannaud and Kirchner’s results
for proving confluence of ETRSs modulo permit an application to relations RE on terms
like →L ∪ →N ,E , where L and N are a partition of R where L includes left-linear rules
only and N includes any other rules [11, Section 3.5]. The case considered here, →R,E , is a
particular case of the previous one, where L = ∅ and N = R. Under these conditions, [11,
Theorem 16] treats proofs of E-confluence essentially as our Theorem 49.(4) (as CVP(R) and
DCCP(R) can be dismissed according to the discussion above). The aforementioned more
general treatment for EGTRSs is left as an interesting subject for future work.

4 “we do not consider the case where →R applies at an occurrence p and →R,E at the outermost occurrence
Λ” [11, below E-critical pairs lemma] (notation adapted).
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Durán and Meseguer investigated E-confluence of conditional rewrite theories R = (F , A, R)
[4]. Such theories include CTRSs. Conditional equations s = t⇐ c can be specified, but they
are treated as conditional rewrite rules (in R) by imposing some specific orientation (e.g.,
s→ t⇐ c). Only unconditional equations s = t (called axioms) which are linear and regular
(i.e., Var(s) = Var(t) [4, page 819]) are used in E (denoted A in [4]). The main result about
E-confluence is [4, Theorem 2], which characterizes E-confluence by the joinability of the set
of conditional E-critical pairs obtained from rules ℓ→ r ⇐ c and ℓ′ → r′ ⇐ c′ in R (which
may include oriented conditional equations) by computing (if possible) the A-unifiers of ℓ|p
and ℓ′ for some nonvariable position p ∈ PosF (ℓ) [4, Definition 6]. However, a number of
restrictions are imposed: (i) A is a set of linear and regular unconditional equations; (ii)
R is strongly A-coherent (i.e., for all terms u, u′, and v, if u →R/A v and u =A u′, then
u′ →R,A v′ and v =A v′ [4, page 819]); (iii) the rules in R are strongly deterministic [4,
Definition 1]; (iv) R is quasi-decreasing [4, Definition 2]. Again, this result would not apply
to disprove E-confluence of R in Example 26; note that E satisfies the requirements for
axioms A in [4]. We have: b =E f(a)→R f(d), i.e., b→R/E f(d), but the only →R,E-step on
b is b→R,E d, and f(d) ̸=E d. Thus, R is not strongly E-coherent and [4, Theorem 2] does
not apply. Also, the proof of E-confluence for R in Example 1 could not (in principle) be
obtained from [4, Theorem 2]: since the set of E-unifiers for the left-hand sides of rules is
infinite (Example 2), the joinability of infinitely many conditional E-critical pairs should be
checked. Also, we do not require (i)-(iv) above in Theorem 49; only E-termination.

10 Conclusion and future work

We have introduced Equational Generalized Term Rewriting Systems (EGTRSs) consisting of
conditional rules and conditional equations whose conditions are sequences of atoms, possibly
defined by additional Horn clauses. Rewriting computations with EGTRSs R are described
by deduction in appropriate FO-theories. We show that E-confluence of EGTRSs can be
proved and disproved by checking (right-strict) Rrm, E-joinability or non-R/E-joinability of
finite sets of conditional pairs of three kinds: Logic-based Conditional Critical Pairs (LCCPs),
Conditional Variable Pairs (CVPs), and Down Conditional Critical Pairs (DCCPs). As
far as we know, none of them had been used in proofs of E-confluence yet. The discussed
examples suggest that the new techniques can be useful.

Future work. Much work remains to be done for a practical use of these new proposals. The-
orem 49 heavily relies on checking (right-strict) Rrm, E-joinability and non-R/E-joinability
of LCCPs, CVPs, and DCCPs, to obtain proofs of (non) E-confluence. We plan to improve
our tool CONFident [8], which implements methods for the analysis of similar conditional pairs
(see [15, 16]) and heavily relies on the (in)feasibility results developed in [7] and implemented
in the tool infChecker. It also uses theorem provers like Prover9 [17] and model generators
like Mace4 [17] and AGES [6] to implement these checkings. Overall, this approach has
proved useful to prove confluence of variants of TRSs, see [8, Section 9] for an account.
Unfortunately, our preliminary attempts to follow this methodology to prove E-confluence of
EGTRSs in CONFident suggest that the use of the generic reasoning methods implemented
in these tools is not powerful enough as to deal with the conditional pairs involved in
E-confluence proofs. For instance, LCCPs avoid considering (infinitely many) conditional
E-critical pairs. From a practical point of view, though (in particular, to obtain an efficient
implementation), it is important to investigate the possibility of a mixed use of conditional
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E-critical pairs together with LCCPs. For instance, if there is an E-unification algorithm
and the set of (complete) E-unifiers is finite, then the corresponding (computable and finite
set of) conditional E-critical pairs could be used instead of LCCPs. In spite of this, DCCPs
and CVPs remain as main ingredients in proofs of (non-)E-confluence.

Finally, exploring the impact of our techniques in first-order deduction modulo see, e.g., [3]
and the references therein, is another interesting subject of future work.
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A Conditional pairs for the main running example

A.1 LCCP(R) for R in Example 1

The LCCPs in LCCP(R) for R in Example 1 are displayed in Figure 2. The following result
is useful to analyze their joinability.

▶ Proposition 52. Let R be an EGTRS and π : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ ∈ LCCP(R). If
root(ℓ|p), root(ℓ′) /∈ D(

↔
E), and root(ℓ|p) ̸= root(ℓ′), then π is Rcr-infeasible.

Proof. By definition of LCCP, since p ∈ PosF (ℓ) and α′ ∈ Rrm, we have that ℓ|p, ℓ′ /∈ X .
Thus, for all substitutions σ satisfying ℓ|p = ℓ′, we have σ(ℓ|p)→∗↔

E
σ(ℓ′). Since root(ℓ|p) ̸=

root(ℓ′) and reductions with→↔
E

cannot ultimately lead to a root symbol root(σ(ℓ′)) = root(ℓ′)
in the sequence above, π is Rcr-infeasible. ◀

Regarding Rrm, E-joinability of these LCCPS,
By Proposition 52, the LCCPs (54)–(60); (62)–(67); and (71)–(74) are Rcr-infeasible,
hence Rrm, E-joinable.
(69) is also infeasible as the satisfaction of Nat(n) by a substitution σ is possible only
if σ(n) = sp(0) for some p ≥ 0; in this case, sum(σ(n)) = sum(σ(m′) ++ σ(ns′)), i.e.,
sum(sp(0)) = sum(σ(m′) ++ σ(ns′)) does not hold in Rcr.
The Rrm, E-joinability of (70) is discussed in Example 37. The Rrm, E-joinability of (53),
(61), (68) and (70) is concluded in a similar way.

Thus, every π ∈ LCCP(R) is Rrm, E-joinable.
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α p α′ LCCP
(21) Λ (21) ⟨n′, n⟩ ⇐ 0 + n = 0 + n′ (53)
(21) Λ (22) ⟨s(m′ + n′), n⟩ ⇐ 0 + n = s(m′) + n′ (54)
(21) Λ (23) ⟨n′, n⟩ ⇐ 0 + n = sum(n′), Nat(n′) (55)
(21) Λ (24) ⟨m′ + n′, n⟩ ⇐ 0 + n = sum(m′ ++ ns′), Nat(m′), sum(ns′) ≈rm n′ (56)
(21) 1 (21) ⟨n′ + n, n⟩ ⇐ 0 = 0 + n (57)
(21) 1 (22) ⟨s(m′ + n′) + n, n⟩ ⇐ 0 = s(m′) + n′ (58)
(21) 1 (23) ⟨n′ + n, n⟩ ⇐ 0 = sum(n′), Nat(n′) (59)
(21) 1 (24) ⟨(m′ + n′) + n, n⟩ ⇐ 0 = sum(m′ ++ ns′), Nat(m′), sum(ns′) ≈rm n′ (60)
(22) Λ (22) ⟨s(m′ + n′), s(m + n)⟩ ⇐ s(m) + n = s(m′) + n′ (61)
(22) Λ (23) ⟨n′, s(m + n)⟩ ⇐ s(m) + n = sum(n′), Nat(n′) (62)
(22) Λ (24) ⟨m′ + n′, s(m + n)⟩ ⇐ s(m) + n = sum(m′ ++ ns′), Nat(m′), sum(ns′) (63)
(22) 1 (21) ⟨n′ + n, s(m + n)⟩ ⇐ s(m) = 0 + n′ (64)
(22) 1 (22) ⟨s(m′ + n′) + n, s(m + n)⟩ ⇐ s(m) = s(m′) + n′ (65)
(22) 1 (23) ⟨n′ + n, s(m + n)⟩ ⇐ s(m) = sum(n′), Nat(n′) (66)
(22) 1 (24) ⟨m′ + n′ + n, s(m + n)⟩ ⇐ s(m) = sum(m′ ++ ns′), Nat(m′), sum(ns′) (67)
(23) Λ (23) ⟨n′, n⟩ ⇐ sum(n) = sum(n′), Nat(n), Nat(n′) (68)
(23) Λ (24) ⟨m′ + n′, n⟩ ⇐ sum(n) = sum(m′ ++ ns′), Nat(n), Nat(m′), sum(ns′) ≈rm n′ (69)
(24) Λ (24) ⟨m′ + n′, m + n⟩ ⇐ sum(m ++ ns) = sum(m′ ++ ns′), Nat(m),

sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (70)
(24) 1 (21) ⟨sum(n′), m + n⟩ ⇐ m ++ ns = 0 + n′, Nat(m), sum(ns) ≈rm n (71)
(24) 1 (22) ⟨sum(s(m′ + n′)), m + n⟩ ⇐ m ++ ns = s(m′) + n′, Nat(m), sum(ns) ≈rm n (72)
(24) 1 (23) ⟨sum(n′), m + n⟩ ⇐ m ++ ns = sum(n′), Nat(m), sum(ns) ≈rm n, Nat(n′) (73)
(24) 1 (24) ⟨sum(m′ + n′), m + n⟩ ⇐ m ++ ns = sum(m′ ++ ns′), Nat(m),

sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (74)

Figure 2 LCCPs of R in Example 1.

A.2 LCCP(E, R) for R in Example 1
The LCCPs in LCCP(E,R) for R in Example 1 are displayed in Figure 3. The following
result is useful to analyze their joinability. Here, we say that a set U of conditional rules is
collapsing if there is a feasible rule in U whose right-hand side is a variable.

▶ Proposition 53. Let R be an EGTRS and π : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ ∈ LCCP(E,R). If
↔
E is not collapsing and root(ℓ′) /∈ D(

↔
E), then π is Rcr-infeasible.

Proof. By definition of LCCP, since p ∈ PosF (ℓ) and α′ ∈ Rrm, we have that ℓ|p, ℓ′ /∈ X .
Thus, for all substitutions σ satisfying ℓ|p = ℓ′, we have σ(ℓ|p) →∗↔

E
σ(ℓ′). Since

↔
E is

not collapsing and root(ℓ′) /∈ D(
↔
E), reductions with →↔

E
cannot ultimately lead to a root

symbol root(σ(ℓ′)) = root(ℓ′) /∈ D(
↔
E) in the sequence above, π is Rcr-infeasible. ◀

The following example shows that non-collapsingness of
↔
E is necessary for Proposition 53 to

hold.

▶ Example 54. Consider the following EGTRS

0 + x = x (75)
f(0) → 0 (76)

We have the following LCCP in LCCP(E,R):

⟨x, x⟩ ⇐ 0 + x = f(0) (77)
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α p α′ LCCP
−→
(1) Λ (21) ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = 0 + n (78)
−→
(1) Λ (22) ⟨s(m + n), (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = s(m) + n (79)
−→
(1) Λ (23) ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = sum(n), Nat(n) (80)
−→
(1) Λ (24) ⟨m + n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = sum(m ++ ns),

Nat(m), sum(ns) ≈rm n (81)−→
(1) 2 (21) ⟨xs ++ n, (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = 0 + n (82)
−→
(1) 2 (22) ⟨xs ++ s(m + n), (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = s(m) + n (83)
−→
(1) 2 (23) ⟨xs ++ n, (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = sum(n), Nat(n) (84)
−→
(1) 2 (24) ⟨xs ++ (m + n), (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = sum(m ++ ns), Nat(m),

sum(ns) ≈rm n (85)←−
(1) Λ (21) ⟨n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = 0 + n (86)
←−
(1) Λ (22) ⟨s(m + n), xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = s(m) + n (87)
←−
(1) Λ (23) ⟨n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = sum(n), Nat(n) (88)
←−
(1) Λ (24) ⟨m + n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = sum(m ++ ns), Nat(m),

sum(ns) ≈rm n (89)←−
(1) 1 (21) ⟨n ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = 0 + n (90)
−→
(1) 1 (22) ⟨s(m + n) ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = s(m) + n (91)
←−
(1) 1 (23) ⟨n ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = sum(n), Nat(n) (92)
←−
(1) 1 (24) ⟨(m + n) ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = sum(m ++ ns), Nat(m)

sum(ns) ≈rm n (93)

Figure 3 LCCPs of E and R in Example 1.

Substitution σ = {x 7→ f(0)} satisfies the conditional part of (77), i.e., it is Rcr-feasible.

By Proposition 53, the LCCPs in Figure 3 are all Rcr-infeasible, hence right-strict Rrm, E-
joinable. Thus, every π ∈ LCCP(E,R) is right-strict Rrm, E-joinable.

A.3 DCCP(R) for R in Example 1
The DCCPs in DCCP(R) for R in Example 1 are displayed in Figure 4.

α α′ DCCP
(21) (23) ⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) �×(sum(n′), n′), Nat(n′) (94)

(21) (24) ⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) �×(sum(m′ ++ ns′), m′ + n′), Nat(m′),
sum(ns′) ≈rm n′ (95)

(22) (23) ⟨s(m + n), x′⟩ ⇐ x = s(m) + n, (x, x′) �×(sum(n′), n′), Nat(n′) (96)

(22) (24) ⟨s(m + n), x′⟩ ⇐ x = s(m) + n, (x, x′) �×(sum(m′ ++ ns′), m′ + n′), Nat(m′),
sum(ns′) ≈rm n′ (97)

(23) (21) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) �×(0 + n′, n′), Nat(n) (98)
(23) (22) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) �×(s(m′) + n′, s(m′ + n′)), Nat(n) (99)
(23) (23) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) �×(sum(n′), n′), Nat(n), Nat(n′) (100)

(23) (24) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) �×(sum(m′ ++ ns′), m′ + n′), Nat(n), Nat(m′),
sum(ns′) ≈rm n′ (101)

(24) (21) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) �×(0 + n′, n′), Nat(m),
sum(ns) ≈rm n (102)

(24) (22) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) �×(s(m′) + n′, s(m′ + n′)),
Nat(m), sum(ns) ≈rm n (103)

(24) (23) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) �×(sum(n′), n′), Nat(m),
sum(ns) ≈rm n, Nat(n′) (104)

(24) (24) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) �×(sum(m′ ++ ns′), m′ + n′),
Nat(m), sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (105)

Figure 4 DCCPs for R in Example 1.
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By Proposition 47, since we have proven above that every π ∈ LCCP(R) ∪ CVP(R) is
Rrm, E-joinable, the DCCPs (94)–(101) are Rrm, E-joinable.
Regarding (102)–(105), notice that all these DCCPs contain the following conditions in the
conditional part: (i) x = sum(m ++ ns) and (ii) Nat(m). Therefore, for all substitutions σ

satisfying them, σ(m) = sp(0) for some p ≥ 0 and σ(x) = sum(sp(0) ++ σ(ns)). Therefore,
Proposition 47 can be applied to conclude Rrm, E-joinability of all of them.

Therefore, every π ∈ DCCP(R) is Rrm, E-joinable.

CSL 2024
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