
32nd EACSL Annual Conference
on Computer Science Logic

CSL 2024, February 19–23, 2024, Naples, Italy

Edited by

Aniello Murano
Alexandra Silva

LIPIcs – Vo l . 288 – CSL 2024 www.dagstuh l .de/ l i p i c s

Editors

Aniello Murano
University of Naples Federico II, Italy
nello.murano@gmail.com

Alexandra Silva
Cornell University, Ithaca, NY, USA
alexandra.silva@gmail.com

ACM Classification 2012
Theory of computation → Logic

ISBN 978-3-95977-310-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-310-2.

Publication date
February, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2024.0

ISBN 978-3-95977-310-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4876-3448
mailto:nello.murano@gmail.com
https://orcid.org/0000-0001-5014-9784
mailto:alexandra.silva@gmail.com
https://www.dagstuhl.de/dagpub/978-3-95977-310-2
https://www.dagstuhl.de/dagpub/978-3-95977-310-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CSL.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-310-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CSL 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Aniello Murano and Alexandra Silva . 0:ix–0:x

Program Committee
. 0:xi

External Reviewers
. 0:xiii

Ackermann Award

The Ackermann Award 2023
Maribel Fernández, Jean Goubault-Larrecq, and Delia Kesner . 1:1–1:4

Invited Talks

Craig Interpolation for Decidable Fragments of First-Order Logic
Balder ten Cate . 2:1–2:2

Artificial Intelligence and Artificial Ignorance
Georg Gottlob . 3:1–3:1

Approximating Fixpoints of Approximated Functions
Barbara König . 4:1–4:1

Strategy Synthesis for Partially Observable Stochastic Games with Neural
Perception Mechanisms

Marta Kwiatkowska . 5:1–5:2

Logical Algorithmics: From Theory to Practice
Moshe Y. Vardi . 6:1–6:1

Regular Papers

Semantic Bounds and Multi Types, Revisited
Beniamino Accattoli . 7:1–7:24

Infinitary Cut-Elimination via Finite Approximations
Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri . 8:1–8:19

Descriptive Complexity for Neural Networks via Boolean Networks
Veeti Ahvonen, Damian Heiman, and Antti Kuusisto . 9:1–9:22

Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories
Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, and Paolo Pistone 10:1–10:19

Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids
Quentin Aristote . 11:1–11:20

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Extending the WMSO+U Logic with Quantification over Tuples
Anita Badyl and Paweł Parys . 12:1–12:20

A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus
Philippe Balbiani, Han Gao, Çiğdem Gencer, and Nicola Olivetti 13:1–13:21

Tropical Mathematics and the Lambda-Calculus I: Metric and Differential
Analysis of Effectful Programs

Davide Barbarossa and Paolo Pistone . 14:1–14:23

Expressivity Landscape for Logics with Probabilistic Interventionist
Counterfactuals

Fausto Barbero and Jonni Virtema . 15:1–15:19

A General Constructive Form of Higman’s Lemma
Stefano Berardi, Gabriele Buriola, and Peter Schuster . 16:1–16:17

Quantifiying the Robustness of Dynamical Systems. Relating Time and Space to
Length and Precision

Manon Blanc and Olivier Bournez . 17:1–17:20

From Local to Global Optimality in Concurrent Parity Games
Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux . 18:1–18:21

Ehrenfeucht–Fraïssé Games in Semiring Semantics
Sophie Brinke, Erich Grädel, and Lovro Mrkonjić . 19:1–19:22

Quantum Circuit Completeness: Extensions and Simplifications
Alexandre Clément, Noé Delorme, Simon Perdrix, and Renaud Vilmart 20:1–20:23

Reverse Tangent Categories
Geoffrey Cruttwell and Jean-Simon Pacaud Lemay . 21:1–21:21

Intuitionistic Gödel-Löb Logic, à la Simpson: Labelled Systems and Birelational
Semantics

Anupam Das, Iris van der Giessen, and Sonia Marin . 22:1–22:18

Quantifiers Closed Under Partial Polymorphisms
Anuj Dawar and Lauri Hella . 23:1–23:19

The Worst-Case Complexity of Symmetric Strategy Improvement
Tom van Dijk, Georg Loho, and Matthew T. Maat . 24:1–24:19

The Produoidal Algebra of Process Decomposition
Matt Earnshaw, James Hefford, and Mario Román . 25:1–25:19

Extensions and Limits of the Specker-Blatter Theorem
Eldar Fischer and Johann A. Makowsky . 26:1–26:20

Going Deep and Going Wide: Counting Logic and Homomorphism
Indistinguishability over Graphs of Bounded Treedepth and Treewidth

Eva Fluck, Tim Seppelt, and Gian Luca Spitzer . 27:1–27:17

Realizability Models for Large Cardinals
Laura Fontanella, Guillaume Geoffroy, and Richard Matthews 28:1–28:18

Contents 0:vii

The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions
Yannick Forster, Dominik Kirst, and Niklas Mück . 29:1–29:20

A Many-Sorted Epistemic Logic for Chromatic Hypergraphs
Éric Goubault, Roman Kniazev, and Jérémy Ledent . 30:1–30:18

Remarks on Parikh-Recognizable Omega-languages
Mario Grobler, Leif Sabellek, and Sebastian Siebertz . 31:1–31:21

Characterising and Verifying the Core in Concurrent Multi-Player Mean-Payoff
Games

Julian Gutierrez, Anthony W. Lin, Muhammad Najib, Thomas Steeples, and
Michael Wooldridge . 32:1–32:25

Decidable (Ac)counting with Parikh and Muller: Adding Presburger Arithmetic
to Monadic Second- Order Logic over Tree-Interpretable Structures

Luisa Herrmann, Vincent Peth, and Sebastian Rudolph . 33:1–33:19

Energy Games over Totally Ordered Groups
Alexander Kozachinskiy . 34:1–34:12

QLTL Model-Checking
François Laroussinie, Loriane Leclercq, and Arnaud Sangnier . 35:1–35:18

Limitations of Game Comonads for Invertible-Map Equivalence via
Homomorphism Indistinguishability

Moritz Lichter, Benedikt Pago, and Tim Seppelt . 36:1–36:19

Confluence of Conditional Rewriting Modulo
Salvador Lucas . 37:1–37:21

A First Order Theory of Diagram Chasing
Assia Mahboubi and Matthieu Piquerez . 38:1–38:19

What Monads Can and Cannot Do with a Bit of Extra Time
Rasmus Ejlers Møgelberg and Maaike Annebet Zwart . 39:1–39:18

Syntactically and Semantically Regular Languages of λ-Terms Coincide Through
Logical Relations

Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn . 40:1–40:22

Promise and Infinite-Domain Constraint Satisfaction
Antoine Mottet . 41:1–41:19

Local Operators in Topos Theory and Separation of Semi-Classical Axioms in
Intuitionistic Arithmetic

Satoshi Nakata . 42:1–42:21

Coherence by Normalization for Linear Multicategorical Structures
Federico Olimpieri . 43:1–43:17

Conservativity of Type Theory over Higher-Order Arithmetic
Daniël Otten and Benno van den Berg . 44:1–44:23

A Generic Characterization of Generalized Unary Temporal Logic and
Two-Variable First-Order Logic

Thomas Place and Marc Zeitoun . 45:1–45:23

CSL 2024

0:viii Contents

Concurrent Stochastic Lossy Channel Games
Daniel Stan, Muhammad Najib, Anthony Widjaja Lin, and Parosh Aziz Abdulla . . 46:1–46:19

Towards Univalent Reference Types: The Impact of Univalence on Denotational
Semantics

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal . 47:1–47:21

Guarded Hybrid Team Logics
Marius Tritschler . 48:1–48:22

Preface

This volume contains the papers presented at CSL 2024, the 32nd meeting in the conference
series Computer Science Logic (CSL), the annual conference of the European Association for
Computer Science Logic (EACSL). CSL 2024 was held from 19th to 23th February 2024 in
Naples, Italy.

CSL started as a series of international workshops, and became an international conference
in 1992. Previous instalments of CSL were held in Warsaw (2023), Göttingen (2022, on-line),
Ljubljana (2021, on-line), Barcelona (2020), Birmingham (2018), Stockholm (2017), Marseille
(2016), Berlin (2015), Vienna (2014), Torino (2013), Fontainebleau (2012), Bergen(2011),
Brno (2010), Coimbra (2009), Bologna (2008), Lausanne (2007), Szeged (2006), Oxford
(2005), Karpacz (2004), Vienna (2003), Edinburgh (2002), Paris (2001), Munich (2000),
Madrid (1999), Brno (1998), Aarhus (1997), Utrecht (1996), Paderborn (1995), Kazimierz
(1994), Swansea (1993) and San Miniato (1992).

CSL is an interdisciplinary conference, spanning both basic and application-oriented
research in mathematical logic and computer science. It is a forum for the presentation
of research on all aspects of logic and its applications, including automated deduction
and interactive theorem proving, constructive mathematics and type theory, equational
logic and term rewriting, automata and games, game semantics, modal and temporal logic,
logical aspects of computational complexity, finite model theory, computational proof theory,
logic programming and constraints, lambda calculus and combinatory logic, domain theory,
categorical logic and topological semantics, database theory, specification, extraction and
transformation of programs, logical aspects of quantum computing, logical foundations of
programming paradigms, verification and program analysis, linear logic, higher-order logic,
and non-monotonic reasoning.

The conference received 106 abstracts of which 86 were followed up by full-paper submis-
sions. The programme committee selected 42 papers for presentation at the conference. Each
paper was reviewed by at least three members of the programme committee, with the help of
external reviewers. The submission and reviewing process, programme committee discussion,
and author notifications were all handled by the Easychair conference management system.
In addition to the contributed papers, there were five invited talks, by: Balder ten Cate
(University of Amsterdam, The Netherlands), Georg Gottlob (University of Calabria, Italy),
Barbara König (University of Duisburg-Essen, Germany), Marta Kwiatkowska (Oxford
University, United Kingdom), and Moshe Vardi (Rice University, United States). Barbara
König was a joint invited speaker with the co-located workshop FICS (Fixpoints in Computer
Science). We thank the invited speakers for their stimulating talks and papers, which greatly
contributed to the success of the conference.

One of the major regular events at CSL conferences is the presentation of the Ackermann
Award: the annual EACSL award for an outstanding dissertation in the area of logic in
computer science. The recipients of the award are selected by jury from a field of international
nominees, and the recipients receive their award at a ceremony at which they give a prize
lecture on their dissertation. This year, the jury elected to give the Ackermann Award 2023
to Gabriele Vanoni for his thesis “On Reasonable Space and Time Cost Models for the
λ-Calculus”, defended at the University of Bologna (Italy) under the supervision of Ugo
Dal Lago. The award was presented during the conference. The citation for the award is
included in the proceedings. Another significant event at CSL 2024 was the presentation
of the Helena Rasiowa Award, named after the eminent Polish mathematician and logician
32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Helena Rasiowa (1917 – 1994) whose work had an essential impact on the emerging field of
logic in computer science. The Helena Rasiowa Award, presented for the first time at CSL
2022, is given to the best paper, as decided by the programme committee, that is written
solely by students or to which students were the main contributors. There was a strong field
of candidates for this award edition, with 13 of the accepted papers eligible. From these,
the programme committee selected Quentin Aristote as the recipient of the 2024 Helena
Rasiowa Award, for his paper “Active Learning of Deterministic Transducers with Outputs
in Arbitrary Monoids”. Quentin Aristote is a PhD student at IRIF under the supervision of
Daniela Petrisan.

CSL 2023 also had two affiliated workshops: Fixpoints in Computer Science (FICS) and
the Logic Mentoring Workshop (LMW).

We are very grateful to all the members of the CSL 2024 programme committee and
external reviewers for their careful and efficient evaluation of the papers submitted. We
would like to thank also the members of the organisation committee – Marco Aruta, Davide
Catta, Francesco Chiarello, Angelo Ferrando, Michał Tomasz Godziszewski, Alfredo Laino,
Giulia Longo, Vadim Malvone, Munyque Mittelmann, Francesco Noviello – for taking care
to ensure a smooth-running and enjoyable conference. It was as always a pleasure to work
with Maribel Fernandez who, as the EACSL president, provided excellent guidance. The
proceedings of CSL 2024 are published as a volume in the LIPIcs series. We thank Michael
Wagner, Michael Didas and all the Dagstuhl/LIPIcs team for their ongoing support and for
the high quality preparation of these proceedings. Last, but not least, we are very grateful to
the Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, the Università
degli Studi di Napoli Federico II, and the Consorzio di Ricerca per l’Energia, l’Automazione
e le Tecnologie dell’Elettromagnetismo (CREATE) for supporting the organisation of this
conference.

Aniello Murano and Alexandra Silva 7th December 2023

Program Committee Members

Shaull Almagor (Technion)
Christel Baier (TU Dresden)
Filippo Bonchi (University of Pisa)
James Brotherston (University College London)
Valentina Castiglioni (Reykjavik University)
Taolue Chen (Birkbeck, University of London)
Diana Costa (Universidade de Lisboa)
Silvia Ghilezan (University of Novi Sad)
Nina Gierasimczuk (Technical University of Denmark)
Sam van Gool (Université Paris Cité)
Wojtek Jamroga (Polish Academy of Sciences)
Benjamin Kaminski (Saarland University)
Tobias Kappé (Open University of the Netherlands and ILLC, University of Amsterdam)
Shin-Ya Katsumata (National Institute of Informatics)
Marie Kerjean (CNRS, LIPN, Université Sorbonne Paris Nord)
Juha Kontinen (University of Helsinki)
Clemens Kupke (University of Strathclyde)
Martin Lange (University of Kassel)
Carsten Lutz (Universität Bremen)
Nicolas Markey (IRISA, CNRS & INRIA & Univ. Rennes 1)
Larry Moss (Indiana University Bloomington)
Aniello Murano (University of Naples Federico II, co-chair)
Pierre Ohlmann (University of Warsaw)
Guillermo Perez (University of Antwerp)
Nir Piterman (Chalmers University of Technology)
Jurriaan Rot (Radboud University)
Lutz Schröder (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Alexandra Silva (Cornell University, co-chair)
Sonja Smets (University of Amsterdam)
Pawel Sobocinski (Tallinn University of Technology)
Luca Spada (Università di Salerno)
Sam Staton (University of Oxford)
Christine Tasson (LIP6 - Sorbonne Université)
Andrea Turrini (Institute of Software, Chinese Academy of Sciences)
Martin Zimmermann (Aalborg University)

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Marco Abbadini
Matteo Acclavio
Yehia Alrahman
Amazigh Amrane
Eugene Asarin
Robert Atkey
Shaun Azzopardi
Henning Basold
Nicolas Basset
Emmanuel Beffara
Benno van den Berg
Valentin Blot
Ilario Bonacina
Flavien Breuvart
Alessandro Bruni
Florian Bruse
Simon Burton
Davide Catta
Aggeliki Chalki
James Chapman
Vikraman Choudhury
Andrea Corradini
Fredrik Dahlqvist
Tiziano Dalmonte
Luc Dartois
Anuj Dawar
Daniele Dell’Erba
Ryan Doenges
Peter Dybjer
Mirna Dzamonja
Kord Eickmeyer
Hugo Férée
Daniel Figueiredo
Marie Fortin
Zeinab Galal
Francesco Gavazzo
Guillaume Geoffroy
Lorenzo Gheri
Alessandro Di Giorgio
Jean Goubault-Larrecq
Mario Grobler
Ji Guan
Adrien Guatto
Shibashis Guha
Ronald de Haan

Amar Hadzihasanovic
Miika Hannula
Daniel Hausmann
Markus Hecher
Lauri Hella
Léo Henry
Tom Hirschowitz
Åsa Hirvonen
Mathieu Huot
Tomáš Jakl
Prabhat Jha
Makoto Kanazawa
Alex Kavvos
Yevgeny Kazakov
Yan Kim
Eryk Kopczynski
Louwe Kuijer
Stepan Kuznetsov
Ambroise Lafont
Victor Lagerkvist
Serafina Lapenta
Graham Leigh
Pierre Lescanne
Yong Li
Moritz Lichter
Luigi Liquori
Fosco Loregian
Tim Lyon
Alexandre Madeira
Alessio Mansutti
Radu Mardare
Sonia Marin
Manuel Martins
Samuele Maschio
Damiano Mazza
Arne Meier
Arne Meier
Matías Menni
Giuseppe Metere
Vincent Michielini
Lukasz Mikulski
Joe Moeller
Joshua Moerman
Sean Moss
Fredrik Nordvall Forsberg

Jovana Obradović
Federico Olimpieri
Jakub Opršal
Martin Otto
Paritosh Pandya
Luca Paolini
Nicolas Peltier
Wojciech Penczek
Diogo Poças
Cécilia Pradic
Ritam Raha
Gaurav Rattan
Mario Román
Neil Ross
Wojciech Rozowski
Jakub Rydval
Marco Sälzer
Matteo Sammartino
Alessio Santamaria
Alexis Saurin
Sven Schewe
Ezra Schoen
Pascal Schweitzer
Thomas Seiller
Paul Shafer
Ian Shillito
Teofil Sidoruk
Jesse Sigal
Matthieu Sozeau
Luca Di Stefano
Andrew Swan
Lê Thành Dũng Nguyen
Katrine Thoft
Stelios Tsampas
Ruben Turkenburg
Jouko Vaananen
Lena Verscht
Jonni Virtema
Jana Wagemaker
James Wood
Zhilin Wu
Tetsuo Yokoyama
Noam Zeilberger
Stanislav Živný

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Ackermann Award 2023
Maribel Fernández #

Department of Informatics, King’s College London, UK

Jean Goubault-Larrecq #

LSV, Ecole Normale Supérieure Paris-Saclay, France

Delia Kesner #

IRIF (CNRS UMR 8243) – Université Paris Cité, France

Abstract
Report on the 2023 Ackermann Award.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Lambda calculus; Theory of computation → Equational logic and rewriting

Keywords and phrases lambda-calculus, computational complexity, geometry of interaction, abstract
machines, intersection types

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.1

Category Ackermann Award

1 The Ackermann Award

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. It is presented at CSL, the annual conference of the EACSL (European
Association for Computer Science Logic). This year, the 19th Ackermann Award is presented
at CSL 2024 in Naples, Italy.

A call for nominations was issued in February 2023, open to any PhD dissertation (on
any topic represented at the annual CSL and LICS conferences) formally accepted by a
degree-granting institution in fulfilment of the PhD degree between 1 January 2022 and
31 December 2022. The Jury received ten nominations, which came from a number of
different countries around the world: the nominees obtained their doctorates at institutions
in Australia, Brazil, Germany, Italy, Spain and Sweden.

The topics covered a wide range of areas in Logic and Computer Science. All the nominated
PhD theses were of a very high quality and contained significant contributions to their
particular fields. On behalf of the Ackermann Jury, we extend our warmest congratulations
to all the nominated candidates for their outstanding work.

All the submissions were evaluated by the Jury, and after two phases of reviewing and
extensive discussion, the jury decided to grant the 2023 Ackermann Award to Gabriele
Vanoni for the PhD thesis entitled On Reasonable Space and Time Cost Models for the
λ-Calculus, completed at the University of Bologna, Italy, in 2022.

2 Citation

Gabriele Vanoni receives the 2023 Ackermann Award of the European Association of Computer
Science Logic for the PhD thesis

On Reasonable Space and Time Cost Models for the λ-Calculus,

which provides the first reasonable space cost model for the λ-calculus, showing that the space
complexity of functional programs is equivalent to that of Turing machines. To achieve this

© Maribel Fernández, Jean Goubault-Larrecq, and Delia Kesner;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 1; pp. 1:1–1:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Maribel.Fernandez@kcl.ac.uk
https://orcid.org/0000-0001-8325-5815
mailto:goubault@lsv.ens-cachan.fr
mailto:kesner@irif.fr
https://doi.org/10.4230/LIPIcs.CSL.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 The Ackermann Award 2023

ambitious goal, the thesis defines new abstract machines for call-by-name and call-by-value
evaluation of λ-terms, as well as providing a characterisation of this new reasonable space
measure by means of intersection types.

2.1 Background to the thesis
The thesis is in the domain of logical foundations of functional programming languages. More
precisely, it studies space and time cost models for functional programs.

The use of resources (time and space consumption) during computation is typically
measured on Turing machines (TMs), where time complexity refers to the number of steps
the machine needs to perform until it stops, and space complexity is the number of tape cells
used during the computation. However, TMs are a low-level model of computation, which
does not provide an understanding of the time and space consumed on higher-level models of
computation such as the ones that are at the core of modern programming languages.

The Slot and van Emde Boas Invariance Thesis states that a time (respectively, space)
cost model is reasonable for a computation model C if there are mutual simulations between
Turing machines and C such that the overhead is polynomial in time (respectively, linear
in space). The rationale is that under the Invariance Thesis, complexity classes (such as
LOGSPACE, P, PSPACE) are machine independent.

In his PhD thesis, Vanoni addresses the problem of finding out whether it is possible to
define a reasonable space cost model for the λ-calculus, the paradigmatic computation model
for functional programming languages.

2.2 Contributions of the thesis
In order to achieve the objective of the thesis, the work is organised in two stages. The first
half of Vanoni’s thesis is devoted to disproving a longstanding open conjecture in the field,
originally stating that Girard’s Geometry of Interaction is a reasonable space cost model
for the λ-calculus. The second half of the thesis uses the intuitions gained with this first
negative result to finally build a reasonable space cost model for the λ-calculus.

More precisely, the thesis starts by considering an evaluator for the λ-calculus, the λIAM,
which is based on Girard’s Geometry of Interaction. The latter was conjectured to be a good
candidate to obtain a reasonable cost model for space. Vanoni disproved this conjecture by a
detailed complexity analysis using new variants of non-idempotent intersection types. As
a consequence, he changed the target of his analysis and considered a variant of Krivine’s
abstract machine (a standard evaluation mechanism for the call-by-name λ-calculus), which
he optimised for space complexity and implemented without any pointer. By analysing a
refined version of the encoding of Turing machines into the λ-calculus, Vanoni concluded that
the space consumed by this machine is indeed a reasonable space cost model. In particular,
for the first time it was also possible to measure sub-linear space complexities. This result
translates also to the call-by-value case.

One should note that the challenges are rather formidable. For one, the various abstract
machines need to implement computations in the λ-calculus with a fine control over garbage
collection. The λIAM was promising precisely because it did not need any garbage collection.
Vanoni’s modified Krivine abstract machine instead resorts to eager garbage collection.
Another subtle point is that, in order to obtain meaningful notions of sub-linear space
complexity, one needs to separate the amount of work space from the size of the input,
since the latter must not be counted, as in Turing machine models; and the usual abstract
machines for the λ-calculus do not allow one to distinguish between input and non-input
data.

M. Fernández, J. Goubault-Larrecq, and D. Kesner 1:3

Finally, Vanoni provided a characterisation of this new reasonable space measure by
means of intersection types. This was instrumental in characterising the space complexity of
each of the abstract machines considered, and was done through a minimal, yet non-trivial,
modification of the original type system proposed by de Carvalho. Eventually, this leads
Vanoni to obtain characterisations of reasonable space complexity that are modular and
independent of the machine model.

2.3 Biographical sketch
Gabriele Vanoni carried out his PhD under the supervision of Ugo Dal Lago at the University
of Bologna, Italy. He is the winner of the E.W. Beth Dissertation Prize 2023 and Best Italian
PhD thesis in theoretical computer science 2023 (awarded by the Italian Chapter of EATCS).
He won a Distinguished Paper Award at ICFP 2022, and his LICS 2022 paper was selected
for the LMCS special issue. He was invited speaker at DCM 2023 and TLLA 2023. After
a year as a postdoctoral researcher at Inria in Sophia Antipolis, he is now a postdoctoral
researcher at IRIF in Paris.

3 Jury

The jury for the Ackermann Award 2023 consisted of eight members, two of them ex officio,
namely, the president and the vice-president of EACSL. In addition, the jury also included a
representative of SIGLOG (the ACM Special Interest Group on Logic and Computation).

The members of the jury were:
Christel Baier (Technical University Dresden);
Maribel Fernández (King’s College London), president of EACSL;
Joost-Pieter Katoen (RWTH Aachen University), ACM SIGLOG representative;
Delia Kesner (IRIF, Université Paris Cité);
Slawomir Lasota (University of Warsaw);
Jean Goubault-Larrecq (ENS Paris-Saclay);
Florin Manea (University of Göttingen), vice-president of EACSL;
James Worrell (University of Oxford).

4 Previous winners

Previous winners of the Ackermann Award were
2005, Oxford:

Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from the Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

CSL 2024

1:4 The Ackermann Award 2023

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
no award given.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

2013, Turin:
Matteo Mio from Italy.

2014, Vienna:
Michael Elberfeld from Germany.

2015, Berlin:
Hugo Férée from France, and
Mickael Randour from Belgium.

2016, Marseille:
Nicolai Kraus from Germany

2017, Stockholm:
Amaury Pouly from France.

2018, Birmingham:
Amina Doumane from France.

2019, Barcelona (conference in 2020):
Antoine Mottet from France.

2020, Ljubljana (conference online in 2021)
Benjamin Kaminski from Germany.

2021, Göttingen (conference online in 2022)
Marie Fortin from France, and
Sandra Kiefer from Germany

2022, Warsaw (conference in 2023)
Alexander Bentkamp from The Netherlands.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.

Craig Interpolation for Decidable Fragments of
First-Order Logic
Balder ten Cate # Ñ

ILLC, University of Amsterdam, The Netherlands

Abstract
The Craig Interpolation Property (CIP) is a property of logics. It states that, for all formulas φ and
ψ, if φ |= ψ, then there exists an “interpolant” ϑ such that φ |= ϑ and ϑ |= ψ, and such that all
non-logical symbols occurring in ϑ occur both in φ and in ψ. Craig [6] proved in 1957 that first-order
logic (FO) has this property. Since then, many refinements of Craig’s result have been obtained
(e.g., [12, 3]). These have found applications in various areas of computer science and AI, including
formal verification, modular hard/software specification and automated deduction [11, 4, 7], and
more recently prominently in databases [14, 2] and knowledge representation [10, 5, 9]. In this
invited talk, we will survey recent work pertaining to Craig interpolation for various important
decidable fragment of first-order logic, including guarded fragments, finite-variable fragments, and
ordered fragments. Most of these fragments lack the CIP (the guarded-negation fragment GNFO
being a notable exception [1]). We will discuss strategies that have been proposed in recent literature
to deal with this lack of CIP, as well as recent results that shed light on where, within the landscape
of decidable fragment of first-order logic, one may find logics that enjoy CIP [8, 13].

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Automated reasoning

Keywords and phrases First-Order Logic, Decidable Fragments, Craig Interpolation

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.2

Category Invited Talk

Funding Balder ten Cate: Supported by EU Horizon 2020 grant MSCA-101031081.

References
1 Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting guarded negation queries. In

Proceedings of MFCS 2013, pages 98–110, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
2 Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura. Generating plans

from proofs : the interpolation-based approach to query reformulation. Synthesis Lectures on
Data Management. Morgan & Claypool, 2016.

3 Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. Generating plans from proofs.
ACM Trans. Database Syst., 40(4):22:1–22:45, 2016. doi:10.1145/2847523.

4 Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey Rivkin.
Combined covers and beth definability. In Proceedings of the 10th International Joint
Conference on Automated Reasoning, Part I, IJCAR 2020, pages 181–200. Springer, 2020.
doi:10.1007/978-3-030-51074-9_11.

5 Balder ten Cate, Enrico Franconi, and Inanç Seylan. Beth definability in expressive description
logics. J. Artif. Int. Res., 48(1):347–414, October 2013.

6 William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957. doi:10.2307/2963594.

7 Krystof Hoder, Andreas Holzer, Laura Kovács, and Andrei Voronkov. Vinter: A Vampire-based
tool for interpolation. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Languages
and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13, 2012.
Proceedings, volume 7705 of Lecture Notes in Computer Science, pages 148–156. Springer,
2012. doi:10.1007/978-3-642-35182-2_11.

© Balder ten Cate;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.d.tencate@uva.nl
http://staff.science.uva.nl/b.d.tencate
https://orcid.org/0000-0002-2538-5846
https://doi.org/10.4230/LIPIcs.CSL.2024.2
https://doi.org/10.1145/2847523
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.2307/2963594
https://doi.org/10.1007/978-3-642-35182-2_11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Craig Interpolation for Decidable Fragments

8 Jean Christoph Jung and Frank Wolter. Living without beth and craig: Definitions and
interpolants in the guarded and two-variable fragments. In Proceedings of LICS 2021, pages
1–14. IEEE Computer Society, July 2021. doi:10.1109/LICS52264.2021.9470585.

9 Patrick Koopmann and Renate A. Schmidt. Uniform interpolation and forgetting for ALC
ontologies with ABoxes. In Proceedings of the 29th AAAI Conference on Artificial Intelligence,
AAAI 2015, pages 175–181. AAAI Press, 2015. URL: http://www.aaai.org/ocs/index.php/
AAAI/AAAI15/paper/view/9981.

10 Carsten Lutz and Frank Wolter. Foundations for uniform interpolation and forgetting in
expressive description logics. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI 2011, pages 989–995. IJCAI/AAAI, 2011. doi:10.5591/
978-1-57735-516-8/IJCAI11-170.

11 Kenneth L. McMillan. Interpolation and model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
421–446. Springer, 2018. doi:10.1007/978-3-319-10575-8_14.

12 Martin Otto. An interpolation theorem. The Bulletin of Symbolic Logic, 6(4):447–462, 2000.
URL: http://www.jstor.org/stable/420966.

13 Balder ten Cate and Jesse Comer. Craig interpolation for decidable first-order fragments, 2023.
arXiv:2310.08689.

14 David Toman and Grant E. Weddell. Fundamentals of Physical Design and Query Compilation.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. doi:10.2200/
S00363ED1V01Y201105DTM018.

https://doi.org/10.1109/LICS52264.2021.9470585
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.1007/978-3-319-10575-8_14
http://www.jstor.org/stable/420966
https://arxiv.org/abs/2310.08689
https://doi.org/10.2200/S00363ED1V01Y201105DTM018
https://doi.org/10.2200/S00363ED1V01Y201105DTM018

Artificial Intelligence and Artificial Ignorance
Georg Gottlob #

University of Calabria, Italy
University of Oxford, UK

Abstract
This invited talk first delves into the division between the two primary branches of AI research:
symbolic AI, which predominantly focuses on knowledge representation and logical reasoning, and
sub-symbolic AI, primarily centered on machine learning employing neural networks. We explore
both the notable accomplishments and the challenges encountered in each of these approaches. We
provide instances where traditional deep learning encounters limitations, and we elucidate significant
obstacles in achieving automated symbolic reasoning. We then discuss the recent groundbreaking
advancements in generative AI, driven by language models such as ChatGPT. We showcase instances
where these models excel and, conversely, where they exhibit shortcomings and produce erroneous
information. We identify and illustrate five key reasons for potential failures in language models,
which include:

(i) information loss due to data compression,
(ii) training bias,
(iii) the incorporation of incorrect external data,
(iv) the misordering of results, and
(v) the failure to detect and resolve logical inconsistencies contained in a sequence of LLM-generated

prompt-answers.
Lastly, we touch upon the Chat2Data project, which endeavors to leverage language models for the
automated verification and enhancement of relational databases, all while mitigating the pitfalls
(i)–(v) mentioned earlier.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Machine learning; Computing methodologies → Knowledge representation and
reasoning; Computing methodologies → Natural language generation; Information systems → World
Wide Web

Keywords and phrases AI applications, symbolic AI, sub-symbolic AI, AI usefulness, achievements
of symbolic AI, achievements of machine learning, machine learning errors and mistakes, large
language models, LLMs, LLM usefulness, LLM mistakes, inaccuracies

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.3

Category Invited Talk

Funding Georg Gottlob: The author was supported by the Royal Society Research Professorship
project “RAISON DATA” (Reference No. RP\R1\201074) and by the University of Calabria.

© Georg Gottlob;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georg.gottlob@sjc.ox.ac.uk
https://orcid.org/0000-0002-2353-5230
https://doi.org/10.4230/LIPIcs.CSL.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Approximating Fixpoints of Approximated
Functions
Barbara König #

University of Duisburg-Essen, Germany

Abstract
There is a large body of work on fixpoint theorems, guaranteeing the existence of fixpoints
for certain functions and providing methods for computing them. This includes for instance
Banachs’s fixpoint theorem, the well-known result by Knaster-Tarski that is frequently
employed in computer science and Kleene iteration.

It is less clear how to compute fixpoints if the function whose (least) fixpoint we are
interested in is not known exactly, but can only be obtained by a sequence of subsequently
better approximations. This scenario occurs for instance in the context of reinforcement
learning, where the probabilities of a Markov decision process (MDP) – for which one wants
to learn a strategy - are unknown and can only be sampled. There are several solutions
to this problem where the fixpoint computation (for determining the value vector and the
optimal strategy) and the exploration of the model are interleaved. However, these methods
work only well for discounted MDPs, that is in the contractive setting, but not for general
MDPs, that is for non-expansive functions.

After describing and motivating the problem, we will in particular concentrate on the
non-expansive case. There are many interesting systems who value vectors can be obtained
by determining the fixpoints of non-expansive functions. Other than contractive functions,
they do not guarantee uniqueness of the fixpoint, making it more difficult to approximate
the least fixpoint by methods other than Kleene iteration. And also Kleene iteration fails if
the function under consideration is only approximated.

We hence describe a dampened Mann iteration scheme for (higher-dimensional) functions
on the reals that converges to the least fixpoint from everywhere. This scheme can also be
adapted to functions that are approximated, under certain conditions.

We will in particular study the case of MDPs and consider a related problem that arises
when performing model-checking for quantitative µ-calculi, which involves the computation
of nested fixpoints.

This is joint work with Paolo Baldan, Sebastian Gurke, Tommaso Padoan and Florian
Wittbold.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Program reasoning; Theory of computation → Reinforcement learning

Keywords and phrases fixpoints, approximation, Markov decision processes

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.4

Category Invited Talk

© Barbara König;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barbara_koenig@uni-due.de
https://orcid.org/0000-0002-4193-2889
https://doi.org/10.4230/LIPIcs.CSL.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Strategy Synthesis for Partially Observable
Stochastic Games with Neural Perception
Mechanisms
Marta Kwiatkowska # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
Strategic reasoning is essential to ensure stable multi-agent coordination in complex environments,
as it enables synthesis of optimal (or near-optimal) agent strategies and equilibria that guarantee
expected outcomes, even in adversarial scenarios. Partially-observable stochastic games (POSGs) are
a natural model for real-world settings involving multiple agents, uncertainty and partial information,
but lack practical algorithms for computing or approximating optimal values and strategies. Recently,
progress has been made for one-sided POSGs, a subclass of two-agent, zero-sum POSGs where only
one agent has partial information while the other agent is assumed to have full knowledge of the
state, with heuristic search value iteration (HSVI) proposed for computing approximately optimal
values and strategies in one-sided POSGs [1]. This model is well suited to safety-critical applications,
when making worst-case assumptions about one agent; examples include the attacker in a security
application, modelled, e.g., as a patrolling or pursuit-evasion game.

However, many realistic autonomous coordination scenarios involve agents perceiving continuous
environments using data-driven observation functions, typically implemented as neural networks
(NNs). Examples include autonomous vehicles using NNs to perform object recognition or to estimate
pedestrian intention, or NN-enabled vision in an airborne pursuit-evasion scenario. Such perception
mechanisms bring new challenges, notably continuous environments, which are inherently tied to
NN-enabled perception because of standard training regimes. This means that naive discretisation
is difficult, since decision boundaries obtained for data-driven perception are typically irregular and
can be misaligned with gridding schemes for discretisation, affecting the precision of the computed
strategies.

This invited paper will discuss progress with developing a model class and algorithms for one-
sided POSGs with neural perception mechanisms [2, 3] that work directly with their continuous
state space. Building on continuous-state POMDPs with NN perception mechanisms [4], where the
key idea is that ReLU neural network classifiers induce a finite decomposition of the continuous
environment into polyhedra for each classification label, a piecewise constant representation for the
value, reward and perception functions is developed that forms the basis for a variant of HSVI, a
point-based solution method that computes a lower and upper bound on the value function from
a given belief to compute an (approximately) optimal strategy. We extend these ideas from the
single-agent (POMDP) setting [4] to zero-sum POSGs. In the game setting, this involves solving
a normal form game at each stage and iteration, and goes significantly beyond HSVI for finite
POSGs [1].

2012 ACM Subject Classification Theory of computation → Logic and verification; Computing
methodologies → Neural networks

Keywords and phrases Stochastic games, neural networks, formal verification, strategy synthesis

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.5

Category Invited Talk

Related Version Full Version: https://arxiv.org/abs/2310.11566

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 834115).

© Marta Kwiatkowska;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 5; pp. 5:1–5:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marta.kwiatkowska@cs.ox.ac.uk
http://http://www.cs.ox.ac.uk/marta.kwiatkowska/
https://orcid.org/0000-0001-9022-7599
https://doi.org/10.4230/LIPIcs.CSL.2024.5
https://arxiv.org/abs/2310.11566
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Strategy Synthesis for POSGs with Neural Perception

References
1 Karel Horák, Branislav Bošanskỳ, Vojtěch Kovařík, and Christopher Kiekintveld. Solving

zero-sum one-sided partially observable stochastic games. Artificial Intelligence, 316:103838,
2023.

2 R. Yan, G. Santos, G. Norman, D. Parker, and M. Kwiatkowska. Strategy synthesis for
zero-sum neuro-symbolic concurrent stochastic games. arXiv, 2022. Accepted to Information
and Computation. arXiv:2202.06255.

3 Rui Yan, Gabriel Santos, Gethin Norman, David Parker, and Marta Kwiatkowska. Partially
observable stochastic games with neural perception mechanisms. arXiv, 2023. arXiv:2310.
11566.

4 Rui Yan, Gabriel Santos, Gethin Norman, David Parker, and Marta Kwiatkowska. Point-based
value iteration for neuro-symbolic POMDPs. arXiv, 2023. arXiv:2306.17639.

https://arxiv.org/abs/2202.06255
https://arxiv.org/abs/2310.11566
https://arxiv.org/abs/2310.11566
https://arxiv.org/abs/2306.17639

Logical Algorithmics: From Theory to Practice
Moshe Y. Vardi # Ñ

Rice University, Houston, TX, USA

Abstract
The standard approach to algorithm development is to focus on a specific problem and develop for it
a specific algorithm. Codd’s introduction of the relational model in 1970 included two fundamental
ideas: (1) Relations provide a universal data representation formalism, and (2) Relational databases
can be queried using first-order logic. Realizing these ideas required the development of a meta-
algorithm, which takes a declarative query and executes it with respect to a database. In this talk, I
will describe this approach, which I call Logical Algorithmics, in detail, and explore its profound
ramification.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy; Theory of computation → Design and analysis of algorithms

Keywords and phrases Logic, Algorithms

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.6

Category Invited Talk

Funding Work supported in part by NSF grants IIS-1527668, CCF-1704883, IIS-1830549, CNS-
2016656, DoD MURI grant N00014-20-1-2787, and an award from the Maryland Procurement
Office.

References
1 Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting with

algebraic decision diagrams. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1468–1476. AAAI Press, 2020.
doi:10.1609/AAAI.V34I02.5505.

2 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000. doi:10.1006/JCSS.2000.1713.

3 Guoqiang Pan and Moshe Y. Vardi. Symbolic techniques in satisfiability solving. J. Autom.
Reason., 35(1-3):25–50, 2005. doi:10.1007/S10817-005-9009-7.

4 Vu H. N. Phan and Moshe Y. Vardi. DPO: dynamic-programming optimization on hybrid
constraints. CoRR, abs/2205.08632, 2022. doi:10.48550/ARXIV.2205.08632.

5 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

6 Moshe Y. Vardi. On the complexity of bounded-variable queries. In Mihalis Yannakakis and
Serge Abiteboul, editors, Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 22-25, 1995, San Jose, California, USA,
pages 266–276. ACM Press, 1995. doi:10.1145/212433.212474.

© Moshe Y. Vardi;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 6; pp. 6:1–6:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vardi@cs.rice.edu
http://www.cs.rice.edu/~vardi
https://orcid.org/0000-0002-0661-5773
https://doi.org/10.4230/LIPIcs.CSL.2024.6
https://doi.org/10.1609/AAAI.V34I02.5505
https://doi.org/10.1006/JCSS.2000.1713
https://doi.org/10.1007/S10817-005-9009-7
https://doi.org/10.48550/ARXIV.2205.08632
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/212433.212474
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Semantic Bounds and Multi Types, Revisited
Beniamino Accattoli #

Inria & LIX, École Poytechnique, Palaiseau, France

Abstract
Intersection types are a standard tool in operational and semantical studies of the λ-calculus. De
Carvalho showed how multi types, a quantitative variant of intersection types providing a handy
presentation of the relational denotational model, allows one to extract precise bounds on the number
of β-steps and the size of normal forms.

In the last few years, de Carvalho’s work has been extended and adapted to a number of λ-calculi,
evaluation strategies, and abstract machines. These works, however, only adapt the first part of
his work, that extracts bounds from multi type derivations, while never consider the second part,
which deals with extracting bounds from the multi types themselves. The reason is that this second
part is more technical, and requires to reason up to type substitutions. It is however also the most
interesting, because it shows that the bounding power is inherent to the relational model (which is
induced by the types, without the derivations), independently of its presentation as a type system.

Here we dissect and clarify the second part of de Carvalho’s work, establishing a link with
principal multi types, and isolating a key property independent of type substitutions.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Denotational semantics; Theory of computation → Operational semantics

Keywords and phrases Lambda calculus, intersection types, denotational semantics, linear logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.7

Related Version Paper with proof appendix hosted on arXiv: http://arxiv.org/abs/2311.18233 [1]

1 Introduction

Denotational semantics studies invariants of program evaluation. The typical way in which it
is connected to the operational semantics of λ-calculi is at the qualitative level, via adequacy:
the denotational interpretation JtK of a λ-term t is non-trivial (typically non-empty) if and
only if the evaluation of t terminates.

At first sight, denotational semantics cannot provide quantitative operational insights
such as evaluation lengths, because of its invariance by evaluation. Things are in fact not so
black and white. Being invariant by evaluation, denotational semantics models normal forms,
and in a compositional way: by composing the interpretations of two terms one can obtain
the interpretation of the result of their application – therefore, denotational semantics does
reflect the evaluation process somehow.

The aim of this paper is to revisit some overlooked – but we believe important – results
for the λ-calculus by de Carvalho, about the extraction of bounds on evaluation lengths and
the size of normal forms from the interpretation of terms into the relational model.

Relational Semantics and Multi Types. The relational model [37, 17] is a simple denota-
tional semantics of the λ-calculus induced by the relational model of linear logic, via the
representation of the λ-calculus in linear logic. It is a paradigmatic model, underlying many
others [30, 31, 24, 45, 48], mainly studied by Ehrhard and his students and co-authors
[38, 18, 21, 16, 32, 33, 34, 26, 47, 46, 49, 15], the importance of which has emerged slowly.
One of its features is that it admits a handy presentation via an intersection type system.

The distinguished property of intersection types is that they characterize termination
properties, in the sense that they not only enforce termination, but they also type all
terminating terms. Additionally, by tuning the definition of the type system, one can capture

© Beniamino Accattoli;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beniamino.accattoli@inria.fr
https://orcid.org/0000-0003-4944-9944
https://doi.org/10.4230/LIPIcs.CSL.2024.7
http://arxiv.org/abs/2311.18233
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Semantic Bounds and Multi Types, Revisited

different notions of termination (weak head/head/leftmost termination, strong normalization,
call-by-value/need, etc). Such a characterization usually induces a model: the set of types
for a term t is an invariant of the characterized notion of evaluation →, which gives rise to a
denotational semantics which is adequate for →. Therefore, intersection type systems are a
tool halfway the operational and the denotational semantics of the λ-calculus.

Multi types are a linear logic-related variant of intersection types where intersections are
non-idempotent (they are also known as non-idempotent intersection types), that is where
A ∩ A ≠ A. The set of multi types judgements derivable for a term t provides a denotation
JtK which coincides with the interpretation into the relational model.

Multi Types and Quantitative Bounds. In a seminal work, de Carvalho used the multi
type system to obtain exact bounds on the evaluation lengths and the size of normal form
for λ-terms [25, 27]. The relevance of his work was fully appreciated by the community
only a decade later (as surveyed below), when it blossomed into a number of variations and
extensions by other authors. De Carvalho developed two main results, but only the first one
has widely permeated the community. The second one is arguably the most technical but
also the deeper one. The aim of this paper is to make it accessible to a wider audience.

De Carvalho’s original presentation in [25, 27] uses multi types to measure two forms
of strong evaluations realized by abstract machines, implementing the head and leftmost
call-by-name strategies. In this overview, we prefer to slightly depart from the (by now
somewhat outdated) details of his work, forgetting about abstract machines, focussing on
leftmost evaluation (the head case is treated at the end of the paper), and isolating three
(rather than two) kinds of bounds:
1. Bounds from type derivations. The size |Φ| of a type derivation Φ ▷ Γ ⊢ t : L bounds

the number of leftmost steps from t to its normal form nf(t) plus the size |nf(t)| of the
normal form. Moreover, derivations of minimal size provide exact bounds.

2. Size bounds from types. The types in the final judgment – a point of the relational
interpretation JtK – also provide a bound, independently of the derivation Φ. Being
invariant by evaluation, they cannot bound evaluation lengths. They do however bound
the size |nf(t)| of the normal form, and bounds are exact when types are minimal.

3. Bounds from composable types. De Carvalho shows that types can be used to bound
evaluation lengths compositionally: from the types in JtK and JuK it is possible to extract
bounds about the leftmost evaluation and the normal form of tu, with no reference to type
derivations. Exact bounds rest on a complex construction involving type substitutions.

The third kind of bounds is de Carvalho’s second result, and it is where the bounding power
of the multi type system (which is just one possible way of defining relational semantics) is
lifted to relational semantics. Therefore, the lifting guarantees that the bounding power is an
inherent feature of the relational model – multi types are just a handy tool to show it.

Of the three results, the third one is the most technical. In particular, it requires to
enrich the type system with an infinity of type variables and work up to type substitutions.
The puzzling fact is that these extra features play no role in the two previous points.

De Carvalho’s Legacy. De Carvalho developed his results in his PhD, defended in 2007 [25].
His work was known by the community thanks to a technical report, turned into a journal
paper only much later, in 2018 [27]. Soon after his PhD, he adapted his work to linear logic,
with Pagani and Tortora de Falco [28, 29]. Then, Bernadet and Graham-Lengrand adapted
his work to measure the longest evaluation in the λ-calculus [14], but they only provided
bounds of the first kind (from type derivations).

B. Accattoli 7:3

At the time, it was not known whether it would make sense to count the number of
β-steps (or linear logic cut-elimination steps) as a reasonable measure of complexity. After
the case of the λ-calculus was clarified in the positive by Accattoli and Dal Lago [2], de
Carvalho’s work has been revisited by Accattoli et al. [7]. The revisitation started a new
wave of works adapting de Carvalho’s study to many evaluation strategies and extensions of
the λ-calculus, including call-by-value [8, 9], call-by-need [10], a linear logic presentation of
call-by-push-value [19, 42], the λµ-calculus [41], the λ-calculus with pattern matching [13],
generalized applications [35], fully lazy sharing [39], global state [12], the probabilistic λ-
calculus [23], the abstract machine underlying the geometry of interaction [3], and even
adapted as to measure space [4, 5]. All these works provide bounds of the first kind, and
some of them also of the second kind, but none of them deals with those of the third kind
(bounds from composable types).

Contributions. This paper revisits the bounds from composable types, appeared only in
[27, 28]. Beyond providing cleaner proofs of the results, we have a very close look at these
bounds, isolating the subtleties and decomposing the proofs in smaller steps. In particular:

Subtlety 1, minimality does not work: when bounding a single term, both derivations and
types provide exact bounds when they are minimal. When dealing with the application
of t to u, every pair of composable types for them provides bounds. We stress that the
technicalities for bounds from composable types are inherent to the problem, since the
minimal composable pair in general does not provide exact bounds.
Subtlety 2, the gap between derivations and types: we draw attention to the fact that the
previous subtlety stems from a fact about derivations in isolation, namely that, for a
normal term t, both the derivation Φ ▷ Γ ⊢ t :L and the types in Γ and L provide bounds
for |t|, but they may not coincide. In general, the bound from types is laxer. The bounds
gap hinders the possibility of lifting the bounding power from derivations to types, if
bounds from some derivations are not reflected by any type in the interpretation JtK.
Dry representation and type substitutions: we isolate the property behind de Carvalho’s
solution of this problem, which rests on type variables and type substitutions, and we
connect it with the study of principal types. The idea is that given a type derivation
Φ ▷ Γ ⊢ t : L for which there is a gap between the bound from Φ and the bound from
Γ and L, there always is a second dry derivation Ψ ▷ ∆ ⊢ t : L′, whose types ∆ and L′

give the same bound as the first derivation Φ, plus a type substitution σ turning Ψ into
Φ. Then, all bounds coming from derivations can also be seen as coming from types,
potentially from the types of other derivations – the dry ones – but related via type
substitutions.
Removing substitutions: lastly, we show that weaker bounds from composable types can
be obtained without dealing with an infinity of type variables and type substitutions. This
point provides both a simplified route to the (slightly weaker) bounds and an explanation
of why these additional technicalities are needed for the full result.

Internal vs External View. The problem studied in the paper can also be seen in a more
abstract way. Terms, or more generally programs, can be studied from two perspectives,
which are distinct and yet entangled. The internal view considers programs as closed systems
and looks at their internal evaluation in isolation. In the external view, programs are seen as
parts of larger systems. What is relevant is how programs compose and interact with each
other, their internal evaluation is instead secondary and hidden.

CSL 2024

7:4 Semantic Bounds and Multi Types, Revisited

Cost analyses are usually done following the internal view, while denotational semantics
and types are external-oriented tools. Normal forms can be seen as internalizing the external
information, as they are normal for the internal process and thus retain only information for
potential external interactions. Multi type derivations capture both the number of steps of
typed terms (which is an internal information) and the structure of their normal forms (which
is the internalization of external information). Multi types instead capture the external
information only (each type capturing a potential interaction).

Bounds from composable types connect internal and external information, as they use
types (that are external) to bound the length of evaluation (which is internal) of the isolated
system given by the two composed terms. The bounds are obtained building over the
connection between types and normal forms. The difficulty in this study stems from the fact
that in general there is a gap between how the external information is represented in types
(richly, distinguishing between different interactions) and how it is internalized in normal
forms (in a raw way, all possible interactions are flattened on a single object).

Limits of de Carvalho’s Approach. The aim of this paper is also to highlight a fundamental
limitation of de Carvalho’s work. As we ourselves suggested, bounds from composable types
can be seen as lifting the bounding power from the type system to the relational model.
There is however a delicate point, as the lifting does not cover the whole of the model. The
relational model, indeed, does not only interpret full normal forms and terminating terms,
but also head normal forms and terms that are head normalizable. In particular, there are
terms that are hereditarily head normalizing and yet never fully normalize, such as fix-point
combinators. For these terms, which have non-empty interpretation in the relational model,
de Carvalho’s study does not say anything, because it assumes that the terms to be composed
are fully normal. De Carvalho’s bounds for head reduction do not solve the issue, they rather
make it worse, since his theorems for the head case still have to assume that the composed
terms are fully normal, which seems an unnatural assumption that is nonetheless mandatory.

Consequently, de Carvalho’s technique does not apply to all terms having non-empty
interpretation in the relational model. Here, we point out the problem, which is a first
essential step. We do not aim at solving it, because it seems to require the development
of a new approach, not just a refinement of de Carvalho’s. Abstractly, the limits of his
technique come from the fact that external information is measured by reducing it to internal
information, rather than measuring it separately from it, which would allow one to measure
external information even when the internal evaluation process does not fully terminate.

Proofs. A few proofs are omitted and can be found in the Proof Appendix available on
ArXiv [1].

2 Head and Leftmost Reductions and Normal Forms

Basics of λ. The set Λ of untyped λ-terms is defined by t ::= x | λx.t | t t, which are
considered as quotiented by α-equivalence. The capture-avoiding substitution of x by u in t

is written t{x�u}.

β-Reduction and Normal Forms. β-reduction →β ⊆ Λ × Λ is defined as follows:

β-Reduction

ax
(λx.t)u →β t{x�u}

t →β t′
λ

λx.t →β λx.t′

t →β t′
@l

tu →β t′u

t →β t′
@r

ut →β ut′

B. Accattoli 7:5

It is well known that β-reduction is non-deterministic but confluent, that is, a term can have
at most one normal form. Normal forms (for β) are described by the following grammar
relying on the mutually inductive notion of neutral term:

Neutral terms n ::= x | nf Normal forms f ::= n | λx.f

An alternative streamlined definition of normal forms is f := λx1. . . . λxn.(yf1 . . . fk) with
n, k ≥ 0, y possibly equal to one of the xi, and the terms fj normal forms themselves.

For our quantitative study, we need a notion of size of normal forms. We use the following
inner one, which counts the number of inner nodes of a term, when seen as a tree having
variables as leaves, as it is the one that best matches what shall be measured via multi types.

▶ Definition 1 (Inner size). The inner size of λ-terms is defined as follows:

|x|in := 0 |λx.u|in := |u|in + 1 |ur|in := |u|in + |r|in + 1

Head Reduction. A deterministic notion of evaluation for λ-terms is head reduction, which
reduces only the left branch of a term, when seen as a tree. The definition follows (it is
obtained by omitting rule @r in the definition of β, and constraining t not to be an abstraction
in rule @l):

Head reduction

ax
(λx.t)u →h t{x�u}

t →h t′
λ

λx.t →h λx.t′

t →h t′ t ̸= λx.r
@l

tu →h t′u

Let I := λz.z be the identity combinator, δ := λx.xx be the duplicator, and consider the
following examples: δIt →h IIt and λy.(δI) →h λy.II but (λy.(δI))t ̸→h (λy.II)t , as it rather
reduces to (δI){y�t} = δI.

Head reduction might not compute normal forms, since it does not evaluate arguments.
Its notion of normal form follows:

Head normal forms h ::= λx1. . . . λxn.(yt1 . . . tk)
with n, k ≥ 0 and y possibly equal to one of the xi.

We shall also need a notion of head size for head normal forms defined as |h|h := n + k if
h = λx1. . . . λxn.(yt1 . . . tk).

Leftmost Reduction. Leftmost-outermost reduction →lo (shortened to leftmost) is a de-
terministic extension of head reduction as to reduce arguments and reach normal forms. The
definition relies on the notion of neutral term n used to describe normal forms.

Leftmost(-Outermost) Reduction

ax
(λx.t)u →lo t{x�u}

t →lo t′
λ

λx.t →lo λx.t′

t →lo t′ t ̸= λx.r
@l

tu →lo t′u

n is neutral t →lo t′
@r

nt →lo nt′

Examples: x(II)(II) →lo xI(II) but x(II)(II) ̸→lo x(II)I and δ(II)(II) ̸→lo δI(II).
Leftmost normal forms are simply normal forms and – crucially – leftmost reduction is

normalizing, that is, if t has a β-reduction t →∗
β f to normal form then leftmost reduction

reaches that normal form, that is, t →∗
lo f . For a recent simple proof of this classic result see

Accattoli et al. [6].

CSL 2024

7:6 Semantic Bounds and Multi Types, Revisited

ax
x : [L] ⊢ x :L

Γ ⊢ t :L
λ

Γ \\x ⊢ λx.t :Γ(x)⊸ L
Γ ⊢ t :M⊸L ∆ ⊢ u :M

@
Γ ⊎ ∆ ⊢ tu :L

[Γi ⊢ t :Li]i∈I
many⊎

i∈I
Γi ⊢ t : [Li]i∈I

Figure 1 De Carvalho’s multi type system.

3 Multi Types, Head Reduction, and Bounds From Type Derivations

In this section, we give our presentation of de Carvalho’s system of multi types, and recall
some results from the literature. In particular, we recall the characterization of head reduction,
how multi types induce the relational model, and the bounds that can be extracted from
type derivations for the length of head evaluations and the head size of head normal forms.

Multi Types. There are two layers of types, linear and multi types, built over a countably
infinite set of (linear) type variables:

Linear type variables TyVars := {X, Y, Z, W, X1, Y′, Z2, . . .}
Linear types L, L′ ::= X ∈ TyVars | M⊸ L
Multi types M, N ::= [L1, . . . , Ln] n ∈ N

Generic types T, T′ ::= L | M

where [L1, . . . , Ln] is our notation for finite multisets. The empty multi type [] obtained by
taking n = 0 is also denoted by 0. Often, multi types are presented using a single type
variable X instead of countably many. Most results are unaffected, but we shall see that for
de Carvalho’s semantic bounds we need countably many type variables.

A multi type [L1, . . . , Ln] has to be intended as a conjunction L1 ∧ · · · ∧ Ln of linear types
L1, . . . , Ln, for a commutative, associative, non-idempotent conjunction ∧ (morally a tensor
⊗), of neutral element 0. The intuition is that a linear type corresponds to a single use of
a term t, and that t is typed with a multiset M of n linear types if it is going to be used
(at most) n times, that is, if t is part of a larger term u, then a copy of t shall end up in
evaluation position during the evaluation of u.

Typing Rules. The derivation rules for the multi types system are in Figure 1. Judgments
have shape Γ ⊢ t : M or Γ ⊢ t : L where t is a term, M is a multi type, L is a linear type,
and Γ is a type context, that is, a total function from variables to multi types such that
dom(Γ) := {x | Γ(x) ̸= 0} is finite, usually represented as x1 : M1, . . . , xn : Mn (for some
n ∈ N) if dom(Γ) ⊆ {x1, . . . , xn} and Γ(xi) = Mi for all 1 ≤ i ≤ n.

The abstraction rule λ uses the notation Γ \\x for the type context defined as Γ on every
variable but possibly x, for which (Γ \\x)(x) = 0. It is a compact way to express the rule in
both the cases x ∈ dom(Γ) and x /∈ dom(Γ). Note that the application rule @ requires the
argument to be typed with a multi type M, which is necessarily introduced by rule many,
the hypotheses of which are a multi set of derivations, indexed by a possibly empty set I.
When I is empty, the rule has no premises and can type every term. For instance, ⊢ Ω:0
is derivable, but no linear type can be assigned to Ω. Essentially, 0 is the type of erasable
terms, and every term is erasable in the λ-calculus.

Technicalities about Types. The type context Γ is empty if dom(Γ) = ∅. Multi-set sum
⊎ is extended to type contexts point-wise, i.e. (Γ ⊎ ∆)(x) := Γ(x) ⊎ ∆(x) for each variable
x. This notion is extended to a finite family of type contexts as expected, in particular⊎

i∈J Γi is the empty context when J = ∅. Given two type contexts Γ and ∆ such that

B. Accattoli 7:7

dom(Γ) ∩ dom(∆) = ∅, the type context Γ, ∆ is defined by (Γ, ∆)(x) := Γ(x) if x ∈ dom(Γ),
(Γ, ∆)(x) := ∆(x) if x ∈ dom(∆), and (Γ, ∆)(x) := 0 otherwise. Note that Γ, x :0 = Γ, where
we implicitly assume x /∈ dom(Γ).

Type Derivations. We write Φ ▷ Γ ⊢ t :T if Φ is a (type) derivation (i.e. a tree constructed
using the rules in Figure 1) with conclusion the multi judgment Γ ⊢ t :T. In particular, we
write Φ ▷⊢ t :T when Γ is empty. We write Φ ▷ t if Φ ▷ Γ ⊢ t :T for some type context Γ
and some type T.

We need a notion of size of type derivations, which shall be used to extract bounds for
the number of evaluation steps and the size of normal forms.

▶ Definition 2 (Inner size of derivations). Let Φ be a type derivation. The inner size |Φ|in of
Φ is the number of occurrences of rules λ and @ in Φ.

Subject Reduction and Expansion, and Relational Semantics. The first properties of the
type system that we recall are subject reduction and expansion, which hold for every β-step.

▶ Proposition 3. Let t →β t′.
1. Subject reduction: if Φ ▷ Γ ⊢ t : L then there is a derivation Φ′ ▷ Γ ⊢ t′ : L such that

|Φ′|in ≤ |Φ|in. Moreover, if t →h t′ then |Φ′|in = |Φ|in − 2.
2. Subject expansion: if Φ′ ▷ Γ ⊢ t′ :L then there is a derivation Φ ▷ Γ ⊢ t :L.

Together, subject reduction and expansion state that type judgements are invariants
of β-reduction. Such invariants actually induce a denotational model of the λ-calculus, its
(call-by-name) relational semantics.

Let t be a term and x1, . . . , xn (n ≥ 0) be pairwise distinct variables. The list x⃗ =
(x1, . . . , xn) is suitable for t if fv(t) ⊆ {x1, . . . , xn}. If x⃗ = (x1, . . . , xn) is suitable for t, the
relational semantics JtKx⃗ of t for x⃗ is defined by:

JtKx⃗ := {((M1, . . . , Mn), L) | ∃ Φ ▷ x1 :M1, . . . , xn :Mn ⊢ t :L}.

The following property is an immediate corollary of subject reduction and expansion.

▶ Proposition 4 (Invariance). Let x⃗ = (x1, . . . , xn) be suitable for two terms t and u. If
t →β u then JtKx⃗ = JuKx⃗.

Characterizing Head Termination. Note the quantitative aspect of subject reduction
(Prop. 3.1), stating that the derivation size cannot increase after a reduction step, and that
it decreases with head steps (of 2 because removing a head β redex removes a λ and a @
rule). It does not say that it decreases at every step because steps occurring in sub-terms
typed with rule many might not change the size. For instance, if xt → xt′ and t is typed
using a empty many rule (i.e. with 0 premises), which is a sub-derivation of size 0, then also
t′ is typed using a empty many rule, of size 0. Therefore, not all typable terms terminate, as
for instance xΩ is typable as follows, for any linear type L, but it has no normal form:

ax
x : [[0]⊸ L] ⊢ x : [0]⊸ L

many
⊢ Ω:0

@
x : [[0]⊸ L] ⊢ xΩ:L

(1)

0 More precisely, such a model is the restriction of the relational model for lineal logic to the image of
Girard’s [36] call-by-name translation (A ⇒ B)n =!An ⊸ Bn of the intuitionistic arrow into linear logic.

CSL 2024

7:8 Semantic Bounds and Multi Types, Revisited

Since the size of type derivations decreases at every head step, it provides a termination
measure for the head reduction of typable terms. Therefore, typable terms are head termin-
ating – this is also called correctness of the type system (with respect to head reduction).
Conversely, every head normal forms is typable. Additionally, one can show that the size of
type derivations bounds the head size of head normal forms, and that there exists derivations
having exactly the head size of the normal form, as in the example (1) above.

▶ Proposition 5 (Typability of head normal forms). Let h be a head normal form.
1. Lax bounds for all pairs: if Φ ▷ Γ ⊢ h :L then |h|h ≤ |Φ|in;
2. Existence and exact bounds: there exists a derivation Φ ▷ Γ ⊢ h :L such that |h|h = |Φ|in.

Typability of all head normal forms (Prop. 5.2) together with subject expansion (Prop. 3.2)
implies the completeness of the type system: every head terminating term is typable.

▶ Theorem 6 (Typability characterizes head normalization).
1. Correctness: if Φ ▷ t then there exists a head normalizing evaluation t →n

h h with h

normal and 2n + |h|h ≤ |Φ|in.
2. Completeness: if t →n

h h is a head normalizing evaluation, then there exists a derivation
Φ ▷ t. In particular, there is a derivation Φ for which 2n + |h|h = |Φ|in.

The quantitative bounds involve 2n rather than n because every β redex is typed in a type
derivation Φ using two rules (λ and @). The type derivation captures only the head size
of the normal form, because in general it ignores arguments, and so it cannot catch the
inner size. For instance, for the head normal form xΩ of head size |xΩ|h = 1 (but inner size
|xΩ|in = 6) the derivation (1) has inner size 1.

The head characterization theorem implies the following property of the semantics.

▶ Theorem 7 (Adequacy of relational semantics for head reduction). Let x⃗ = (x1, . . . , xn) be
suitable for t. Then JtKx⃗ is non-empty if and only if t is →h-normalizing.

Summing up, multi types naturally model head reduction. De Carvalho’s bounds from
composable types, however, rest on normal forms, which are reached by leftmost reduction,
rather than on head normal forms and head reduction. Therefore, the next section recalls
how multi types relate to leftmost reduction and normal forms.

4 Bounds From Derivations Via (Unitary) Shrinking

In this section, we recall how to extend the results of the previous section to leftmost reduction
→lo and full normal forms, via the so called shrinking constraint. We follow the presentation
of Accattoli et al. [7] (removing some of the aspects of their work that are not relevant here),
but the definition of shrinking judgements is standard and not due to [7], see for instance
Krivine’s book [44], de Carvalho [44, 27], Kesner and Ventura [40], or Bucciarelli et al. [20].

The Need for Shrinking. Consider the derivation of end sequent x : [0⊸ L] ⊢ xΩ:L in (1).
Since xΩ is →lo-diverging, this derivation has to be excluded somehow. The problem here
is that since x has an erasing type – that is an arrow type with 0 on the left – then the
diverging subterm Ω does not get typed. Excluding the use of 0 is too drastic, because the
paradigmatic erasing term λy.x is normal and can be typed only with x : [L] ⊢⊢⊢λy.x : 0⊸ L.

The idea is that only some occurrences of 0 are dangerous. The given examples seem to
suggest that if 0 occurs on the right side of ⊢ it is fine, while if it occurs in the typing context
it is not. Things are subtler. Extending example (1) with an abstraction, one obtains the
→lo-diverging term λx.xΩ and the typing ⊢⊢⊢λx.xΩ : [0⊸ L]⊸ L, that show that 0 can be

B. Accattoli 7:9

dangerous also on the right of ⊢. The dangerous occurrences of 0 turn out to be those on the
left of an even number of arrows, considering the ⊢ symbols as an arrow. This is formalized
by the shrinking constraint, which allows one to characterize leftmost termination.

Defining Shrinking. There are two mutually defined notions of shrinking types, left and
right, the key point of which is that right multi types cannot be empty (note n ≥ 1), so that
0 is forbidden on the left of top arrows ⊸ for left linear types. Their definition follows:

Left and right (shrinking) types

Right linear type Lr ::= X ∈ TyVars | Ml ⊸ Lr

Left linear type Ll ::= X ∈ TyVars | Mr ⊸ Ll

Right multi type Mr ::= [Lr
1, . . . , Lr

n] n ≥ 1
Left multi type Ml ::= [Ll

1, . . . , Ll
n] n ≥ 0

The notions extend to type contexts and to derivations as follows:
A type context x1 :M1, . . . , xn :Mn is left if each Mi is left;
A derivation Φ ▷ Γ ⊢ t :L is shrinking if Γ is left and L is right.

For instance, [X] is both left and right, while 0 is left but not right, and [0⊸X] is right but
not left. Note that the derivation in (1) is not shrinking. By adding the shrinking constraint,
we can now characterize leftmost normalization with multi types, with quantitative bounds
involving the inner size of the normal form.

▶ Theorem 8 (Shrinking typability characterizes leftmost normalization, [7]).
1. Correctness: if Φ ▷ t is a shrinking derivation, then there exists a normalizing evaluation

t →n
lo f with f normal and 2n + |f |in ≤ |Φ|in.

2. Completeness: if t →∗
lo f is a normalizing evaluation, then there exists a shrinking

derivation Φ ▷ t.

Unitary Shrinking. Shrinking is enough to ensure termination, but not to capture the exact
number of steps to normal form together with the exact size of the normal form. The point
is somewhat dual to shrinkingness, as it concerns arguments that have to be typed, but that
should not be typed too many times. Consider the evaluation y(Iz) →lo yz that involves 1
leftmost step and produces a normal form of inner size 1. The following shrinking derivation
types the argument Iz twice (the easy derivation of z : [X] ⊢ Iz :X of inner size 2 is omitted),
instead of once, and it has size 5, instead of the required 3 (obtained as 2*1+1):

ax
y : [[X, X]⊸Y] ⊢ y : [X, X]⊸Y

[z : [X] ⊢ Iz :X]i=1,2
many

z : [X, X] ⊢ Iz : [X, X]
@

y : [[X, X]⊸Y], z : [X, X] ⊢ y(Iz) :Y
(2)

To obtain exact bounds, one needs unitary shrinking types and derivations, that type
arguments of normal forms only once, obtained by constraining some multi-sets – the right
ones – to be singletons. The definition follows:

Unitary left and right (shrinking) types

Unitary right linear types Lur ::= X ∈ TyVars | Mul ⊸ Lur

Unitary left linear types Lul ::= X ∈ TyVars | Mur ⊸ Lul

Unitary right multi types Mur ::= [Lur]
Unitary left multi types Mul ::= [Lul

1 , . . . , Lul
n] n ≥ 0

The notions extend to type contexts and to derivations as expected:

CSL 2024

7:10 Semantic Bounds and Multi Types, Revisited

A type context x1 :M1, . . . , xn :Mn is unitary left if each Mi is unitary left;
A derivation Φ ▷ Γ ⊢ t :L is unitary shrinking if Γ is unitary left and L is unitary right.

For instance, the derivation in (2) is not unitary shrinking, because the multi type [[X, X]⊸Y]
of y is not unitary left, since [X, X] is not unitary right. A derivable unitary shrinking typing
for y(Iz) is y : [[X]⊸Y], z : [X] ⊢ y(Iz) :Y, obtained via a derivation of inner size 3.

The following refinement of the shrinking characterization theorem (Thm. 8) holds.

▶ Theorem 9 (Unitary shrinking typability measures leftmost evaluation, [7]).
1. Correctness: if Φ ▷ t is a unitary shrinking derivation, then there exists a normalizing

evaluation t →n
lo f with f normal and 2n + |f |in = |Φ|in.

2. Completeness: if t →∗
lo f is a normalizing evaluation, then there exists a unitary shrinking

derivation Φ ▷ t.

Normal Forms. The proof of the last theorem rests on two properties of normal forms that
it is useful to state explicitly, for comparison with the study of the next sections.

▶ Proposition 10 (Unitary shrinking derivations and normal forms, [7]). Let f be normal.
1. Lax bounds: if Φ ▷ f is a shrinking derivation then |f |in ≤ |Φ|in;
2. Exact bounds: there exists a unitary shrinking derivation Φ ▷ f such that |f |in = |Φ|in.

5 Bounds from Types

In this section, we recall the bounds on the size of normal forms that can be extracted from
types rather than from type derivations.

Bounds from Types. The types appearing in the final judgement of a shrinking derivation
for t bound the inner size |f |in of the normal form f of t, according to a notion of type size
given below, and independently of the derivation itself. For example, consider the easily
derivable (unitary shrinking) derivation Φ ▷⊢ δ : [[X]⊸X, X]⊸X for δ = λx.xx. There are
two arrows in the type (judgement) and the normal form has inner size two. Of course,
one also has to take into account the arrow symbols appearing in the typing context, when
present.

Note, however, that types – even unitary shrinking ones – in general do not provide exact
bounds: taking the derivation of Φ for δ and substituting X with [Y]⊸Y everywhere in Φ
one obtains a unitary shrinking derivation Ψ having the same size of Φ but final (still unitary
shrinking) judgement:

Ψ ▷ ⊢⊢⊢δ : [[[Y]⊸Y]⊸ [Y]⊸Y, [Y]⊸Y]⊸ [Y]⊸Y

which has six arrows while |δ|in = 2.

▶ Definition 11 (Type size). The size | · | of types and typing contexts is defined as follows:

Types |X| := 0 |M⊸ L| := |M| + |L| + 1 |[L1, . . . , Ln]| :=
∑n

i=1 |Li|
Type ctxs |ϵ| := 0 |x : M; Γ| := |M| + |Γ|

Clearly, |T| ≥ 0 and |M| = 0 if and only if M is a possibly empty multi set of type variables.
Given a type context Γ = x1 :M1, . . . , xn :Mn we often consider the list of its types, noted

Γ̂ := (M1, . . . , Mn). Since any list of multi types (M1, . . . , Mn) can be seen as extracted from
a type context Γ, we use the notation Γ̂ for lists of multi types. The size of a list of multi
types is |(M1, . . . , Mn)| :=

∑n
i=1 |Mi|, and that of the conclusion of a derivation π ▷ Γ ⊢ e :L

is |(Γ̂, L)| := |Γ̂| + |L|. Clearly, dom(Γ) = ∅ implies |Γ̂| = 0.

B. Accattoli 7:11

▶ Proposition 12 (Shrinking types bound the size of normal forms, [7]). Let f be a normal
form.
1. Lax bounds for all types: if Φ ▷ Γ ⊢ f :L is a shrinking derivation then |f |in ≤ |(Γ̂, L)|;
2. Exact bounds for special types: there exists a unitary shrinking derivation Φ ▷ Γ ⊢ f :L

such that |f |in = |(Γ̂, L)|.

6 Dissecting Bounds From Types via Skeletons and Dry Judgements

In this section, we decompose and elaborate over the bounds on the size of normal forms
extracted from types given in the previous section. The analysis is the main contribution of
this paper. In particular, we develop notions and tools that shall be used in the next section
to understand the issues concerning how to extract exact bounds from composable types.

Types Bound the Size of Derivations. The first observation is that the lax bounds of
Prop. 12.1 are a consequence of the more general fact that types bound the size of derivations,
proved next, together with the already proved fact that derivations bound the size of normal
forms (Prop. 10). The second point of the following proposition is the main statement, the
first one is an auxiliary one that is needed for the proof to go through.

▶ Proposition 13 (Types bound the size of derivations for normal forms). Let Φ ▷ Γ ⊢ t :T be
a derivation.
1. Neutral: if t is a neutral term then |Φ|in ≤ |Γ̂| − |T|.
2. Normal: if t is a normal form then |Φ|in ≤ |Γ̂| + |T|.

Proof. By mutual induction on the definition of neutral and normal terms, followed by an
induction on the type derivation Φ.
1. t is a neutral term. Cases of the last rule:

Rule many. Then T is a multi type M = [Li]i∈I and the last rule is necessarily many.
So, necessarily, for some finite set of indices I,

Φ =
[Φi ▷ Γi ⊢ t :Li]i∈Imany

⊎i∈IΓi ⊢ t : [Li]i∈I

where Γ = ⊎i∈IΓi. By i.h. (on Φi), |Φi|in ≤ |Γ̂i| − |Li|, thus |Φ|in =
∑

i∈I |Φi|in ≤∑
i∈I |Γ̂i| −

∑
i∈I |Li| = | ˆ⊎i∈IΓi| − |[Li]i∈I | = |Γ̂| − |M|.

Rule ax, that is, t = x. Then:

Φ = ax
x : [L] ⊢ x :L

where T = L and Γ = x : [L]. Since |Φ|in = 0 and |T| = |L| = |[L]| = |Γ̂|, then
|Φ|in = 0 = |Γ̂| − |T|.
Rule @, that is, t = nf . Then necessarily:

Φ =
Φn ▷ ∆ ⊢ n :N⊸ L Φf ▷ Σ ⊢ f :N

@
∆ ⊎ Σ ⊢ nf :L

where T = L and Γ = ∆ ⊎ Σ. By i.h. (on the definition of neutral terms and normal
forms), |Φn|in ≤ |∆̂| − |N⊸ L| = |∆̂| − |N| − |L| − 1 and |Φf |in ≤ |Σ̂| + |N|. Therefore,

|Φ|in = |Φn|in + |Φf |in + 1 ≤i.h. |∆̂| − |N| − |L| − 1 + |Φf |in + 1
= |∆̂| − |N| − |L| + |Φf |in ≤i.h. |∆̂| − |N| − |L| + |Σ̂| + |N|
= |∆̂| + |Σ̂| − |L| = |Γ̂| − |T|.

CSL 2024

7:12 Semantic Bounds and Multi Types, Revisited

2. t is a normal form. If t is a neutral term, then the statement follows from Point 1, which
stronger than the statement that we need to prove. Otherwise, t is an abstraction. If
the last rule is many then we reason exactly as for neutral terms. The remaining cases is
when the last rule is λ, that is, t = λx.f and Φ is necessarily of the form:

Φ′ ▷ ∆ ⊢ f :L′
λ

∆ \\x ⊢ λx.f :∆(x)⊸ L′

where T = ∆(x)⊸ L′ and Γ = ∆ \\x. By i.h.,

|Φ′|in ≤i.h. |∆̂| + |L′| = | ˆ∆ \\x| + |∆(x)| + |L′| = | ˆ∆ \\x| + |∆(x)⊸ L′| − 1

Therefore,

|Φ|in = |Φ′|in + 1 ≤ | ˆ∆ \\x| + |∆(x)⊸ L′| − 1 + 1
= | ˆ∆ \\x| + |∆(x)⊸ L′| = |Γ̂| + |T|.

◀

Note that the bound holds for every derivation, without requiring them to be shrinking.
This fact means that the connection between types and derivations is stronger than the one
between derivations and normal forms. Note also that the bound does not hold for head
normal forms, as can be seen by inspecting examples (1) (p. 7) and (2) (p. 9).

Exact Bounds from Types. We now turn our attention to exact bounds. Having showed
that bounds for normal forms factor through bounds for derivations (Prop. 13), we actually
turn to exact bounds for derivations, from types. The idea, as usual, is that exact bounds
are given by types of minimal size. To describe such minimal types we shall use a modified
dry typing system for normal forms related to principal judgements, that shall derive only
minimal types. Additionally, we use a relation between derivations having the same structure
but assigning possibly different types, also considered by de Carvalho.

Skeleton Equivalence. We formalize the notion of derivations having the same skeleton,
that is, the same mute structure. Skeleton equivalence ∼ relates derivations having the same
rules arranged in the same way, but not necessarily having the same types.

▶ Definition 14 (Skeleton equivalence). Let t be a term. Two derivations Φ ▷ t and Ψ ▷ t are
skeleton equivalent, noted Φ ∼ Ψ, if they end with the same kind of rule and the derivations
on the premises are ∼-equivalent, namely they fall in one of the following cases:

Both Φ and Ψ are axioms.
Both Φ and Ψ end with rule @, their two left premises Φl and Ψl satisfy Φl ∼ Ψl, and
their right premises Φr and Ψr satisfy Φr ∼ Ψr – similarly for rules λ.
Both Φ and Ψ end with a rule many with n premises and there is a permutation ρ of
{1, . . . , n} such that the i-th premise Φi of Φ and the ρ(i)-th premise Ψρ(i) of Ψ satisfy
Φi ∼ Ψρ(i) for i ∈ {1, . . . , n}.

The next lemma shows that skeleton equivalence preserves more or less everything one
can imagine, but types. We denote by #m the cardinality of a multiset m.

▶ Lemma 15 (Skeletal invariants). Let Φ ▷ Γ ⊢ t :T and Ψ ▷ ∆ ⊢ t :T′ be two derivations
such that Φ ∼ Ψ. Then |Φ|in = |Ψ|in, dom(Γ) = dom(∆), #(Γ(x)) = #(∆(x)) for every
variable x, and T is a multi type if and only if T′ is, and in that case #T = #T′. Moreover,
Φ is shrinking (resp. unitary shrinking) if and only if Ψ is.

Proof. Straightforward induction on Φ. ◀

B. Accattoli 7:13

ax∗

x : [X] ⊢d x :X
Φ ▷ Γ ⊢d n :X Ψ ▷ ∆ ⊢d f :M Y fresh, Φ # Ψ

@∗

(Γ{X�(M⊸Y)} ⊎ ∆) ⊢d nf :Y

Γ ⊢d f :L
λ∗

Γ \\x ⊢d λx.f :Γ(x)⊸ L

[
Φi ▷ Γi ⊢d f :Li

]
i∈I

#i∈I Φi

many∗⊎
i∈I

Γi ⊢d f : [Li]i∈I

Figure 2 Dry multi type system for normal forms.

Principal and Dry Judgements. Simple types admits principal judgements (or typings),
that is, for every term t there exists a principal judgement Γ ⊢ t :A such that for every other
judgement ∆ ⊢ t :B for t there exists a type substitution σ such that Γσ = ∆ and Aσ = B.
Multi types do not have principal judgements, since there is no single judgement for a term
that subsumes all others up to substitutions. The literature has studied a weakened notion of
principal judgement, subsuming all judgements up to substitution and up to another (very
technical) operation called expansion, which – roughly – duplicates multi sets [22, 50, 43].

What we are going to do next, intuitively, is following the other natural route when
principal judgements do not exist: we study a notion of principal set of special judgements
for a term t, called dry judgements, which are such that every ordinary judgement for t

can be seen as a dry judgement up to substitution. In fact, we only study this property for
normal forms, and we also relate the derivations producing those judgements. We need some
definitions.

Supports and Substitutions. The support of a type derivation Φ ▷ Γ ⊢ t : T is the set
TyVars(Φ) := {X | X occurs in Φ} of type variables appearing in Φ, and the final support
is the set TyVarsF(Φ) := {X | X occurs in Γ or T} of type variables appearing in the last
judgement of Φ. We write Φ # Ψ as a shortcut for TyVars(Φ) ∩ TyVars(Ψ) = ∅ and given
{Φi}i∈I we write #i∈I Φi when TyVars(Φh) ∩ TyVars(Φk) = ∅ for any two distinct h, k ∈ I.

A type substitution σ is a function from type variables to linear types that is the identity
but a for finite number of type variables. It is extended to act on types, multi types, type
contexts, and derivations as expected.

Dry Judgements. Dry judgements for normal forms are derived using the rules in Fig. 2.
There are three key points. Firstly, only normal forms are typable. Secondly, neutral terms
are always typed with a type variable (which is minimal) and when they are applied (in rule
@∗) their type is enlarged on-the-fly via a type substitution {X�(M⊸Y)} depending on the
type of the argument. Thirdly, the system uses many type variables, and for the rules with
more than one premise (i.e. @∗ and many∗) it requires them to have disjoint supports. This
is where having countably many type variables plays a role, as having only a finite number
would not allow one to prove the subsumption up to substitutions property of dry derivations,
given by Thm. 19.2 below.

Dry derivations can be seen as standard derivations, as the second point of the next
lemma states. It is obtained using the straightforward fact that standard derivations are
stable by type substitutions. Note the use of skeleton equivalence.

▶ Lemma 16. Let t be a term and f be a normal form.
1. Substitutivity for standard: if Φ ▷ Γ ⊢ t : L then for any linear type L′ there exists

Φ{X�L′} ▷ Γ{X�L′} ⊢ t :L{X�L′} such that Φ ∼ Φ{X�L′}.
2. Dry derivations are standard: if Φ ▷ Γ ⊢d f :L then there exists Ψ ▷ Γ ⊢ f :L such that

Φ ∼ Ψ.

CSL 2024

7:14 Semantic Bounds and Multi Types, Revisited

Proof. The first point is a straightforward induction on Φ. The second point is by induction
on Φ. The only rule of the dry system that is not a rule of the standard system is @∗:

Φn ▷ Γn ⊢d n :X Φf ′ ▷ Γf ′ ⊢d f ′ :M Y fresh, Φ # Ψ
@∗

Γn{X�(M⊸Y)} ⊎ Γf ′ ⊢d nf ′ :Y

with f = nf ′, Γ = Γn{X�(M⊸Y)} ⊎ Γf ′ , T = Y. By i.h., there exist Ψn ▷ Γn ⊢ n : X
and Ψf ′ ▷ Γf ′ ⊢ f ′ : M. By Point 1, there exists a derivation: Ψn{X�(M⊸Y)} ▷
Γn{X�(M⊸Y)} ⊢ n :M⊸Y Then we build Ψ as follows:

Ψn{X�(M⊸Y)} ▷ Γn{X�(M⊸Y)} ⊢ n :M⊸Y Ψf ′ ▷ Γf ′ ⊢ f ′ :M
@

Γn{X�(M⊸Y)} ⊎ Γf ′ ⊢ nf ′ :Y

Skeleton equivalence of Φ and Ψ follows immediately from the skeleton equivalences of the
i.h. plus the one of Point 1. ◀

Next, we prove that types in dry judgements are always minimal and – crucially – capture
the size of the derivation itself. This is obtained via a strong property for type variables in
dry judgements, reminiscent of similar properties in multiplicative linear logic, and enforced
by the requirements about disjoint supports in the derivation rules.

▶ Proposition 17. Let f be a normal form.
1. Dry derivations and variable types occurrences: if Φ ▷ Γ ⊢d f :T then X has exactly two

occurrences in (Γ, T) for every X ∈ TyVarsF(Φ).
2. Dry derivations are minimal: if Φ ▷ Γ ⊢d f :L then |Φ|in = |(Γ̂, L)|.

Proof.
1. By induction on Φ, looking at its last rule. For ax∗, the statement evidently holds, and for

λ∗ and rule many∗ it follows from the i.h., since these rules preserve and do not introduce
occurrences of type variable. If the last rule of Φ is @∗, then Φ has shape:

Φ =
Φ1 ▷ ∆ ⊢d n :X Φ2 ▷ Σ ⊢d f ′ :M Y fresh, Φ # Ψ

@∗

∆{X�(M⊸Y)} ⊎ Σ ⊢d nf ′ :Y

with f = nf ′, T = Y, and Γ = ∆{X�(M⊸Y)} ⊎ Σ. By i.h., X occurs exactly once
in ∆, thus Y occurs exactly twice in (Γ, T). Note that TyVarsF(Φ) = (TyVarsF(Φ1) \
{X}) ∪ TyVarsF(Φ2) ∪ {Y}. By i.h., each type variable in TyVarsF(Φ1) \ {X} (resp.
TyVarsF(Φ2)) occurs exactly twice in ∆ (resp. (Σ, M)). Moreover, by hypothesis
TyVars(Φ1) ∩ TyVars(Φ2) = ∅, so each such type variable occurs exactly twice in (Γ, T).

2. By induction on Φ, looking at its last rule. Cases:
Rule ax∗: the statement holds because |Φ|in = 0 = |([X], X)|.
Rule many∗: it follows from the i.h.
Rule λ∗: it follows from the i.h. because rule λ∗ add 1 to the size of the derivation,
but the the size of the judgement also grows of 1, because of the introduced arrow.
Rule @∗: then Φ has the following shape:

Φ1 ▷ ∆ ⊢d n :X Φ2 ▷ Σ ⊢d f :M Y fresh, Φ # Ψ
@∗

∆{X�(M⊸Y)} ⊎ Σ ⊢d nf :Y

with Γ = ∆{X�(M⊸Y)} ⊎ Σ. By Point 1, X occurs exactly once in ∆. Then we have:

|Φ|in = |Φ1|in + |Φ2|in + 1 =i.h. |∆| + |Σ| + |M| + 1
= |∆| + |Σ| + |M⊸Y| =P.1 |∆{X�(M⊸Y)}| + |Σ|
= |∆{X�(M⊸Y)}| + |Σ| + |Y| ◀

B. Accattoli 7:15

Dry Representation. We now prove the key property of the analysis, which also justifies
seeing dry derivations as defining a set of principal judgements. The idea is that every
(standard) derivation Φ admits a dry derivation Ψ that is skeleton equivalent to Φ – which
by the skeletal invariants above entails that they have the same size – and such that there is
a substitution turning Ψ into Φ. We need an auxiliary lemma that shall also be useful in the
next section, about renamings of dry derivations.

▶ Lemma 18 (Dry derivations are stable by renaming). Let Φ ▷ Γ ⊢d f : T be a dry type
derivation TyVars(Φ) = {X1, . . . , Xn} and Y1, . . . , Yn be distinct type variables Φ. Then
the derivation Φ{X1,...,Xn�Y1,...,Yn} obtained by simultaneously replacing Xi with Yi in Φ for
i ∈ {1, . . . , n} is a dry type derivation such that Φ ∼ Φ{X1,...,Xn�Y1,...,Yn}.

Proof. Straightforward induction on Φ. ◀

▶ Theorem 19. Let f be a normal form and Φ ▷ Γ ⊢ f :T be a type derivation.
1. Dry representation: there exists a dry derivation Ψ ▷ ∆ ⊢d f :T′ such that Φ ∼ Ψ;
2. Type substitution: there exists a type substitution σ such that ∆σ = Γ and T′σ = T.

Proof. By induction on Φ. Cases of the last rule:
Rule ax. Then Φ is a ax rule of conclusion x : [L] ⊢ x :L. The dry representation Ψ of Φ is
a ax rule of conclusion x : [X] ⊢d x :X. The type substitution of the statement is {X�L}.
Rule λ: it follows by the i.h.
Rule many: it follows by the i.h. Note that, by stability of dry derivations under renaming
(Lemma 18), we can assume that all the derivations Ψi given by the i.h. are on disjoint
supports, so that the constraint #i∈I Ψi for rule many∗ is satisfied.
Rule @: then f = nf ′ and Φ has the following shape:

Φn ▷ Γn ⊢ n :M⊸L Φf ′ ▷ Γf ′ ⊢ f ′ :M
@

Γn ⊎ Γf ′ ⊢ nf ′ :L

with Γ = Γn ⊎ Γf ′ and T = L. About the dry representation, by i.h. there are dry
derivations Ψn ▷ ∆n ⊢d n :X and Ψf ′ ▷ ∆f ′ ⊢d f ′ :N such that Φn ∼ Ψn and Φf ′ ∼ Ψf ′ .
By stability of dry derivations under renaming (Lemma 18), we can assume that Ψn # Ψn.
Then Ψ is obtained as follows:

Ψn ▷ ∆n ⊢d n :X Ψf ′ ▷ ∆f ′ ⊢d f ′ :N Y fresh, Ψn # Ψn
@∗

∆n{X�(N⊸Y)} ⊎ ∆f ′ ⊢d nf ′ :Y

About the type substitution, by i.h., there are substitutions σn and σf ′ such that
∆nσn = Γn and Xσn = M⊸ L, and ∆f ′σf ′ = Γf ′ and Nσf ′ = M. We can assume that
dom(σn) = dom(∆n) and dom(σf ′) = dom(∆f ′), and we know that dom(σn)∩dom(σf ′) =
∅. Define the substitution σ as σn on dom(σn) \ {X}, as σf ′ on dom(σf ′), and as {Y�L}
on Y. Note that σn(X) = M⊸ L and let σ′

n be σn without {X�(M⊸ L)}. Then:

(∆n{X�(N⊸Y)} ⊎ ∆f ′)σ = ∆nσ′
n{X�(Nσf ′ ⊸Y{Y�L})} ⊎ ∆f ′σf ′

=i.h. ∆nσ′
n{X�(M⊸ L)} ⊎ Γf ′

= ∆nσn ⊎ Γf ′ =i.h. Γn ⊎ Γf ′ = Γ

and Yσ = Y{Y�L} = L = T. ◀

CSL 2024

7:16 Semantic Bounds and Multi Types, Revisited

Removing Substitutions. In the previous theorem, the substitution part rests on the
properties of dry derivations enabled by the countable number of type variables in the type
system. We now show that a slightly weaker result is possible even with only one type
variable and without dry derivations. The type substitution part shall not be recoverable,
but the representation and the quantitative bounds are.

Let Γ ⊢1 t :L denote a (standard) type derivation built using only 1-types, that is, types
built using a single fixed type variable X.

▶ Theorem 20 (Size representation). Let f be a normal term and Φ ▷ Γ ⊢ f :L be a derivation.
Then there exists a derivation Ψ ▷ ∆ ⊢1 f :L′ such that Ψ ∼ Φ and |Ψ|in = |∆̂| + |L′|.

The proof of the theorem in fact requires a stronger statement for the induction to go through,
in particular having a separate point about neutral terms, for which a stronger property
holds. See the technical report [1].

7 Bounds From Composable Types

In this section, we finally study bounds from composable types for leftmost evaluation and
normal forms, which is the technical and neglected part of de Carvalho’s work. To ease the
study, we restrict to closed terms, so that type contexts disappear – de Carvalho does the
same. There are however no issues in dealing with open terms.

Composable Types. De Carvalho’s idea is that, given two normal forms t and u, one can
extract bounds for tu by looking only at the types of t and u – that is, at JtK and JuK –
because a derivation for tu is just the application of a derivation for t and one for u. We
need to give a formal status to composable types, and we also need a notion of types that
compose up to a type substitution.

▶ Definition 21 (Composable pairs). Let t and u be closed terms.
A (shrinking) composable pair (of types) for t and u is a pair p = (L, M) such that
L = M⊸ L′ ∈ JtK, M ∈ JuK, and L′ is right. The set of composable pairs of t and u is
noted ShComPairs(t, u).
A (shrinking) composable pair up to substitution for t and u is a pair p = (L, M) such
that there exists a type substitution σ such that (Lσ, Mσ) ∈ ShComPairs(t, u). The set of
composable pairs up to substitution of t and u is noted as ShComPairsSub(t, u).

Note that if (M⊸ L′, M) ∈ ShComPairs(t, u) only L′ is required to be a right shrinking type
(as it is the only type in the judgement for tu after composition), while M⊸ L′ might very
well not be a right shrinking type (if M is not left). The constraint that L′ is right in the
definition of ShComPairs(t, u) ensures the following property.

▶ Lemma 22 (Normalization and composable types). Let t and u be closed terms. Then tu

→lo-normalizes if and only if ShComPairs(t, u) ̸= ∅.

Proof. If tu normalizes then by shrinking completeness (Thm. 8) there exists a shrinking
derivation Φ ⊢ tu :L with L right. The last rule of Φ is @ and its premises give a composable
pair (M⊸ L, M) for t and u, for some M. Therefore, ShComPairs(t, u) ⊃ {(M⊸ L, M)} ̸= ∅.

Vice versa, if ShComPairs(t, u) ̸= ∅ then every composable pair induces a shrinking
derivation for tu, by connecting the two derivations producing the composable pair via rule
@. Thus, tu is typable. By shrinking correctness (Thm. 8), tu is →lo-normalizing. ◀

B. Accattoli 7:17

Normal Forms and Composable Types. To warm up, we first show how to bound the size
of normal forms from composable pairs.

▶ Theorem 23 (Normal form bounds from composable types). Let t and u be closed terms
such that there is a normalizing evaluation d : tu →∗

lo f .
1. Lax bounds: |f |in ≤ |L| for every composable pair (M⊸ L, M) ∈ ShComPairs(t, u).
2. Exact bounds from special pairs: moreover, there exists a composable pair (M⊸ L, M) ∈

ShComPairs(t, u) such that |f |in = |L|.

Proof.
1. Let (M⊸ L, M) ∈ ShComPairs(t, u) be a composable pair. Then, there are derivations

Φt ▷⊢ t :M⊸ L and Φu ▷⊢ u :M. We compose them as a derivation Φ for tu via rule @:

Φ := Φt ▷⊢ t :M⊸ L Φu ▷⊢ u :M
@

⊢ tu :L

Note that the definition of composable pair guarantees that L is right (shrinking), so that
Φ is shrinking. By shrinking correctness (Thm. 8), there is a derivation ⊢ f : L. Since
shrinking types bound the size of normal forms (Prop. 12), |f |in ≤ |L|.

2. By Prop. 12.2, there exists a unitary shrinking derivation Ψ ▷⊢ f : L for f such that
|L| = |f |in. Pulling back the final judgement of Ψ using subject expansion (Prop. 3.2), we
obtain a derivation Θ ⊢ tu :L. The last rule of Θ is @ and its premises give a composable
pair (M⊸ L, M) for t and u, for some M. ◀

Lax Evaluation Bounds from Composable Types. Now, we study how to additionally
extract (bounds on) the number of leftmost step from a composable pair. Obtaining lax
bounds is easy. The idea is that the composed type bounds the size of a derivation for tu,
which in turns provides bounds about tu, as shown in Sect. 4. We also show that even
composable pairs up to substitution yield bounds.

▶ Theorem 24 (Lax bounds from composable types). Let f and f ′ be closed normal terms
such that d : ff ′ →∗

lo f ′′ with f ′′ normal. Then:
1. Lax bounds and types: 2|d| + |f ′′|in ≤ |L| + |M| + 1 for every composable pair (L, M) ∈

ShComPairs(f, f ′).
2. Lax bounds and types, up to substitutions: 2|d| + |f ′′|in ≤ |L| + |M| + 1 for every

composable pair up to substitution (L, M) ∈ ShComPairsSub(f, f ′).

Proof.
1. Let (L, M) ∈ ShComPairs(f, f ′) be a composable pair, which implies L = M⊸ L′ for

some right L′. Then, there are two derivations Φf ▷⊢ f :M⊸ L′ and Φf ′ ▷⊢ f ′ :M. We
compose them via a @ rule into a derivation Φ for ff ′:

Φ :=
Φf ▷⊢ f :M⊸ L′ Φf ′ ▷⊢ f ′ :M

@
⊢ ff ′ :L′

By definition of composable pair, L′ is right shrinking, so that Φ is shrinking. By shrinking
correctness (Thm. 8), 2|d| + |f ′′|in ≤ |Φ|in = |Φf |in + |Φf ′ |in + 1. Now, since types bound
the size of the derivation for normal terms (Prop. 13), we obtain |Φf |in ≤ |M⊸ L′| and
|Φf ′ |in ≤ |M|. Therefore, 2|d| + |f ′′|in ≤ |Φ|in ≤ |M⊸ L′| + |M| + 1, as required.

2. Let (L, M) ∈ ShComPairsSub(f, f ′) be a composable pair up to substitution, which implies
that there exist a type substitution σ such that Lσ = N⊸ L′, Mσ = N for some right
L′ and some N. Then, there are two derivations Φf ▷⊢ f : L and Φf ′ ▷⊢ f ′ : M. By

CSL 2024

7:18 Semantic Bounds and Multi Types, Revisited

ax
x : [[W2] ⊸ W2] ⊢ x : [W2] ⊸ W2

ax
x : [W2] ⊢ x :W2

many
x : [W2] ⊢ x : [W2]

@
x : [[W2] ⊸ W2, W2] ⊢ xx :W2

λ
Ψδ ▷⊢ λx.xx : [[W2] ⊸ W2, W2] ⊸ W2

ax
y : [W2] ⊢ y :W2

λ
⊢ λy.y : [W2] ⊸ W2

ax
y : [W] ⊢ y :W

λ
⊢ λy.y : [W] ⊸ W

many
ΨI ▷⊢ λy.y : [[W2] ⊸ W2, W2]

@
⊢ δI :W2

Figure 3 Unitary shrinking derivation ΨδI of minimal type for δI, where W2 := [W]⊸W.

Lemma 16.1, applying σ to Φf and Φf ′ we obtain two derivations Ψf ▷⊢ f :N⊸ L′ and
Ψf ′ ▷⊢ f ′ :N such that Φf ∼ Ψf and Φf ′ ∼ Ψf ′ . We compose them via a @ rule into a
derivation Ψ for ff ′:

Ψ :=
Ψf ▷⊢ f :N⊸ L′ Ψf ′ ▷⊢ f ′ :N

@
⊢ ff ′ :L′

Since L′ is right, Ψ is shrinking. By shrinking correctness (Thm. 8), 2|d|+ |f ′′|in ≤ |Ψ|in =
|Ψf |in+|Ψf ′ |in+1. By the skeletal invariants (Lemma 15), we obtain |Ψf |in+|Ψf ′ |in+1 =
|Φf |in+|Φf ′ |in+1. Since types bound the size of the derivation for normal terms (Prop. 13),
|Φf |in ≤ |L| and |Φf ′ |in ≤ |M|. Therefore, 2|d| + |f ′′|in ≤ |L| + |M| + 1, as required. ◀

Note that the hypotheses for bounding evaluation lengths are stronger than for bounding
normal forms (Thm. 23), as the two applied terms f and f ′ are required to be normal. If
the two composed terms are not normal, then there is no way to measure the extra steps to
their normal forms using their types, because types are invariant by reduction. The stronger
hypotheses limit the scope of the result: if t := λx.xΩf with f normal and u := λy.λz.z then
tu →3

lo f and Thm. 23 can be applied, while Thm. 24 cannot, because of the diverging Ω
sub-term in t.

Exact Bounds from Composable Types. Now, the tricky point is how to obtain exact
bounds. The problem is that for the application of two normal terms f and f ′, the minimal
composable pair in general does not provide exact bounds, and – dually – minimal types for
f and f ′ do not compose. The following example pinpoints the subtleties.

Key Example. Consider the unitary shrinking derivations Φδ and ΦI of minimal types for
δ := λx.xx and for I := λy.y:

Φδ =

ax
x : [[Z]⊸Z] ⊢ x : [Z]⊸Z

ax
x : [Z] ⊢ x :Z

@
x : [[Z]⊸Z, Z] ⊢ xx :Z

λ
⊢ λx.xx : [[Z]⊸Z, Z]⊸Z

ΦI =
ax

y : [W] ⊢ y :W
λ

⊢ λy.y : [W]⊸W

Note that, pleasantly, |Φδ|in = 2 = |[[Z]⊸Z, Z]⊸Z| = |δ|in, and |ΦI|in = 1 = |[W]⊸W| =
|I|in. Now, consider the application δI. Note that, unfortunately, the two obtained minimal
types do not compose, and not just because they use different type variables: identifying Z
and W would not be enough, one actually needs to identify Z with W2 := [W]⊸W. The
unitary shrinking derivation ΨδI for δI with minimal types (which provides exact information
for δI) obtained in this way is in Fig. 3. Note that its sub-derivations Ψδ and ΨI for δ and I
do not derive minimal types. The derivation ΨδI indeed is obtained by composing:
1. The variant Ψδ of Φδ which has the same exact structure of Φδ and where every occurrence

of Z has been replaced by W2, obtaining the type [[[W2]⊸W2, W2]]⊸W2,

B. Accattoli 7:19

2. With ΨI, which puts together two derivations for I, one being ΦI (of type W2), and one
being the variant Φ′

I of ΦI (of type [W2]⊸W2) where W has been replaced by W2.
Note that there is a gap between:

The length of the evaluation d : δI →lo II →lo I, that takes 2 steps, plus the size of the
normal form |I|in = 1, so that 2|d| + |I|in = 5, and
The size of the composable pair p = ([[Z2]⊸Z2, Z2]⊸Z2, [[Z2]⊸Z2, Z2]), which is 10.

The point is that the types derived by Ψδ and ΨI are not minimal, so their sizes are bigger
than |Ψδ|in and |ΨI|in, and do not provide exact bounds for δI. For instance, the size of
[[W2]⊸W2, W2]⊸W2, which is the type of Ψδ, is 6, while |Ψδ|in = 2 – this is an instance
of the mentioned gap. Summing up, minimal types do not compose, and composable types do
not give exact bounds.

Out of the Impasse. De Carvalho solves this cul-de-sac using composable pairs up to
substitution. With respect to our example, he considers the composable pair p given by Ψ,
but computes the bound using the pair p′ = ([[Z]⊸Y, Z]⊸Y, [[X]⊸X, [X′]⊸X′]), which
is minimal and non-composable. It is obtained by collecting the types of the dry version
of Ψδ (of type [[Z]⊸Y, Z]⊸Y) and the dry version of ΨI (typing I twice thus having type
[[X]⊸X, [X′]⊸X′]). The last bit is noting that p′ is composable up to the substitution
σ := {Z�W2}{Y�W2}{X�W2}{X′�W}, since p′σ = p.

Roughly, for minimal types to compose, they usually have to be expanded, as we have
done in the example when substituting Z with W2. Such an expansion introduces some noise
in the measures, so that even minimal composable pairs might not provide exact bounds. De
Carvalho’s trick is to reverse the expansion, considering composable pairs up to substitution.
Our notion of dry derivation makes the expansion reversal technically clean.

Main Result. We can now prove the main result of the paper, namely de Carvalho’s exact
bounds from composable types.

▶ Theorem 25 (Exact bounds from composable types). Let f and f ′ be normal. If d : ff ′ →∗
lo

f ′′ and f ′′ is normal. Then:
1. Exact bounds: there exist L ∈ JfK and M ∈ Jf ′K such that 2|d| + |f ′′|in = |L| + |M| + 1,

and L and M are obtained by drying the composable pair induced by a unitary shrinking
derivation for ff ′.

2. From types composable up to substitution: moreover, (L, M) are composable up to
substitution, that is, (L, M) ∈ ShComPairsSub(f, f ′).

Proof.
1. By unitary shrinking completeness (Thm. 9), there is a unitary shrinking derivation

Φ ▷ ff ′ which, by unitary shrinking correctness, satisfies 2|d| + |f ′′|in = |Φ|in. The last
rule of Φ is an @ rule, that is, Φ has the following shape:

Φf ▷⊢ f :N⊸ L′ Φf ′ ▷⊢ f ′ :N
@

⊢ ff ′ :L′

With L′ right linear type. Note that |Φ|in = |Φf |in + |Φf ′ |in + 1. By dry representation
(Thm. 19.1), there are dry derivations Ψf ▷⊢ f :L and Ψf ′ ▷⊢ f ′ :M such that Φf ∼ Ψf

and Φf ′ ∼ Ψf ′ . By the properties of skeletal invariants (Lemma 15), |Φf |in = |Ψf |in

and |Φf ′ |in = |Ψf ′ |in. By the fact that dry derivations have minimal types (Prop. 17),
|Ψf |in = |L| and |Ψf ′ |in = |M|. Putting it all together, we obtain:

2|d| + |f ′′|in =T.9 |Φf |in + |Φf ′ |in + 1
=L.15 |Ψf |in + |Ψf ′ |in + 1 =P r. 17 |L| + |M| + 1

CSL 2024

7:20 Semantic Bounds and Multi Types, Revisited

2. By the type substitution part of the dry representation theorem (Thm. 19.2), there exist
substitutions σf and σf ′ such that Lσf = N⊸ L′ and Mσf ′ = N. By stability of dry
derivations under renaming (Lemma 18), we can assume that the supports of Ψf and
Ψf ′ are disjoint, so that the domains of σf and σf ′ are disjoint, allowing us to define σ

as σf ∪ σf ′ , for which Lσ = Lσf = N⊸ L′ and Mσ = Mσf ′ = N. Finally, note that L′ is
right by hypothesis (because Φ is shrinking), so that (L, M) ∈ ShComPairsSub(f, f ′). ◀

8 The Less Satisfying Head Case

We conclude our study by adapting the bounds from composable types to the case of head
reduction. The study is slightly different in that we omit the study of type substitutions and
dry derivations. We do so to show that one can obtain the first part of the de Carvalho’s
result – which in our opinion is the important one – by resting only on the simpler size
representation theorem of Sect. 6, with no need of bothering about countably many type
variables and dry derivations.

We give only the proof of the main theorem, as the other ones are variants of those in
the previous section. They can be found in the technical report [1].

The Head Case. Let ComPairs(t, u) and ComPairsSub(t, u) be the analogous sets of
ShComPairs(t, u) and ShComPairsSub(t, u) but without asking that the composed type
is right shrinking, which is not needed for characterizing head termination.

▶ Lemma 26 (Head normalization and composable types). Let t and u be closed terms. Then
tu →h-normalizes if and only if ComPairs(t, u) ̸= ∅.

The next theorem adapts lax bounds.

▶ Theorem 27 (Lax bounds for head reduction from composable types). Let f and f ′ be closed
normal terms such that d : ff ′ →∗

lo h with h head normal. Then:
1. Lax bounds and types: 2|d| + |h|h ≤ |L| + |M| + 1 for every composable pair (L, M) ∈

ComPairs(f, f ′).
2. Lax bounds and types, up to substitutions: 2|d|+ |h|h ≤ |L|+ |M|+1 for every composable

pair up to substitution (L, M) ∈ ComPairsSub(f, f ′).

▶ Theorem 28 (Exact bounds for head reduction from composable types). Let f and f ′ be
normal and such that d : ff ′ →∗

h h with h head normal. Then there exist L ∈ JfK and
M ∈ Jf ′K such that 2|d| + |h|h = |L| + |M| + 1.

Proof. By head completeness (Thm. 6), there is a derivation Φ ▷ ff ′ satisfying 2|d| + |h|h =
|Φ|in. The last rule of Φ is an @ rule, that is, Φ has the following shape:

Φf ▷⊢ f :N⊸ L′ Φf ′ ▷⊢ f ′ :N
@

⊢ ff ′ :L′

Note that |Φ|in = |Φf |in + |Φf ′ |in +1. By size representation (Thm. 20), there are Ψf ▷⊢ f :L
and Ψf ′ ▷⊢ f ′ :M such that Φf ∼ Ψf and |Ψf |in = |L|, and Φf ′ ∼ Ψf ′ and |Ψf ′ |in = |M|.

By the properties of skeletal invariants (Lemma 15), |Φf |in = |Ψf |in and |Φf ′ |in = |Ψf ′ |in.
Putting it all together, we obtain:

2|d| + |h|h =T.6 |Φf |in + |Φf ′ |in + 1
=L.15 |Ψf |in + |Ψf ′ |in + 1 =T.20 |L| + |M| + 1. ◀

B. Accattoli 7:21

Note that the hypotheses f and f ′ are normal is not a typo, we do mean normal, not
head normal. The stronger hypotheses are required because the evaluation d leading to h

might involve arbitrary sub-terms of f and f ′, not just their heads. For instance if f := λx.xt

and f ′ := I then ff ′ →h It →h t, and t is not a head sub-term of f .
This is where the results are less satisfying. Having to assume that f and f ′ are normal

might be acceptable for leftmost reduction but it limits considerably the value of de Carvalho’s
analysis in the head case, which is the case naturally corresponding to relational semantics.
Indeed, there are many head normalizing terms that have no normal form – the paradigmatic
example begin given by fix-point operators – and about which Thm. 28 does not say anything.

9 Conclusions

In 2007, de Carvalho developed a sharp quantitative analysis of the λ-calculus using multi
types and the relational model. His study has been influential, leading to a recent new
wave of studies in the λ-calculus halfway between operational and denotational semantics.
Only the first and simpler half of de Carvalho’s results, however, has really permeated the
community. The second more technical – and probably even more interesting – part, which
lifts the quantitative analysis to the relational model, has instead been ignored by the recent
literature. This paper dissects it and revisits it, pointing out the underlying subtleties and
clarifying the concepts and tools for its proof.

A preliminary version of this work led to the adaption of de Carvalho’s compositional
bounds to call-by-value, which can be found in the technical report [11] by Accattoli et al.
Hopefully, further adaptations to other λ-calculi will be developed.

About future work, a sharper study for the head case should be developed, as to avoid
the normal form hypotheses. The main weakness of de Carvalho’s results, indeed, is that
they really work only for strong reduction, at present. As we hinted at in the introduction,
probably a finer understanding of the external vs internal behaviour of terms is needed.

References
1 Beniamino Accattoli. Semantic bound and multi types, revisited, 2023. arXiv:2311.18233.
2 Beniamino Accattoli and Ugo Dal Lago. (Leftmost-outermost) Beta reduction is invariant,

indeed. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.
3 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The (in)efficiency of interaction.

Proc. ACM Program. Lang., 5(POPL):1–33, 2021. doi:10.1145/3434332.
4 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The space of interaction. In 36th

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 – July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470726.

5 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Multi types and reasonable space.
Proc. ACM Program. Lang., 6(ICFP):799–825, 2022. doi:10.1145/3547650.

6 Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorization and normalization,
essentially. In Anthony Widjaja Lin, editor, Programming Languages and Systems – 17th
Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings,
volume 11893 of Lecture Notes in Computer Science, pages 159–180. Springer, 2019. doi:
10.1007/978-3-030-34175-6_9.

7 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. J. Funct. Program., 30:e14, 2020. doi:10.1017/S095679682000012X.

8 Beniamino Accattoli and Giulio Guerrieri. Types of fireballs. In Programming Languages and
Systems – 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6,
2018, Proceedings, volume 11275 of Lecture Notes in Computer Science, pages 45–66. Springer,
2018. doi:10.1007/978-3-030-02768-1_3.

CSL 2024

https://arxiv.org/abs/2311.18233
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3434332
https://doi.org/10.1109/LICS52264.2021.9470726
https://doi.org/10.1145/3547650
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-030-02768-1_3

7:22 Semantic Bounds and Multi Types, Revisited

9 Beniamino Accattoli and Giulio Guerrieri. The theory of call-by-value solvability. Proc. ACM
Program. Lang., 6(ICFP):855–885, 2022. doi:10.1145/3547652.

10 Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. Types by need. In Programming
Languages and Systems – 28th European Symposium on Programming, ESOP 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in
Computer Science, pages 410–439. Springer, 2019. doi:10.1007/978-3-030-17184-1_15.

11 Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. Semantic bounds and strong
call-by-value normalization. CoRR, abs/2104.13979, 2021. URL: https://arxiv.org/abs/
2104.13979.

12 Sandra Alves, Delia Kesner, and Miguel Ramos. Quantitative global memory. In Helle Hvid
Hansen, Andre Scedrov, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information,
and Computation – 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July
11-14, 2023, Proceedings, volume 13923 of Lecture Notes in Computer Science, pages 53–68.
Springer, 2023. doi:10.1007/978-3-031-39784-4_4.

13 Sandra Alves, Delia Kesner, and Daniel Ventura. A quantitative understanding of pattern
matching. In 25th International Conference on Types for Proofs and Programs, TYPES 2019,
June 11-14, 2019, Oslo, Norway, volume 175 of LIPIcs, pages 3:1–3:36. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.TYPES.2019.3.

14 Alexis Bernadet and Stéphane Lengrand. Non-idempotent intersection types and strong
normalisation. Logical Methods in Computer Science, 9(4), 2013. doi:10.2168/LMCS-9(4:
3)2013.

15 Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. Relational graph models at
work. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:2)2018.

16 Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, and Giulio Manzonetto. Full abstrac-
tion for resource calculus with tests. In Marc Bezem, editor, Computer Science Logic, 25th
International Workshop / 20th Annual Conference of the EACSL, CSL 2011, September 12-15,
2011, Bergen, Norway, Proceedings, volume 12 of LIPIcs, pages 97–111. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.CSL.2011.97.

17 Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Ann. Pure Appl. Logic, 109(3):205–241, 2001. doi:10.1016/S0168-0072(00)
00056-7.

18 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. A relational model of a parallel
and non-deterministic lambda-calculus. In Sergei N. Artëmov and Anil Nerode, editors, Logical
Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach,
FL, USA, January 3-6, 2009. Proceedings, volume 5407 of Lecture Notes in Computer Science,
pages 107–121. Springer, 2009. doi:10.1007/978-3-540-92687-0_8.

19 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. In Functional and Logic Programming – 15th International Symposium, FLOPS
2020, Akita, Japan, September 14-16, 2020, Proceedings, pages 13–32. Springer, 2020. doi:
10.1007/978-3-030-59025-3_2.

20 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017. doi:10.1093/JIGPAL/JZX018.

21 Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. Exponentials with infinite multipli-
cities. In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International
Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August
23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 170–184.
Springer, 2010. doi:10.1007/978-3-642-15205-4_16.

22 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Math. Log. Q., 27(2-6):45–58, 1981. doi:10.1002/malq.19810270205.

https://doi.org/10.1145/3547652
https://doi.org/10.1007/978-3-030-17184-1_15
https://arxiv.org/abs/2104.13979
https://arxiv.org/abs/2104.13979
https://doi.org/10.1007/978-3-031-39784-4_4
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.23638/LMCS-14(3:2)2018
https://doi.org/10.4230/LIPIcs.CSL.2011.97
https://doi.org/10.1016/S0168-0072(00)00056-7
https://doi.org/10.1016/S0168-0072(00)00056-7
https://doi.org/10.1007/978-3-540-92687-0_8
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/JIGPAL/JZX018
https://doi.org/10.1007/978-3-642-15205-4_16
https://doi.org/10.1002/malq.19810270205

B. Accattoli 7:23

23 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. Intersection types and
(positive) almost-sure termination. Proc. ACM Program. Lang., 5(POPL):1–32, 2021. doi:
10.1145/3434313.

24 Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput., 209(6):966–991, 2011. doi:10.1016/j.ic.2011.02.
001.

25 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Thèse de doctorat,
Université Aix-Marseille II, 2007.

26 Daniel de Carvalho. The relational model is injective for multiplicative exponential linear
logic. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille, France,
volume 62 of LIPIcs, pages 41:1–41:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CSL.2016.41.

27 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Str. in Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

28 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure
of the execution time in linear logic. Theor. Comput. Sci., 412(20):1884–1902, 2011. doi:
10.1016/j.tcs.2010.12.017.

29 Daniel de Carvalho and Lorenzo Tortora de Falco. A semantic account of strong normalization
in linear logic. Inf. Comput., 248:104–129, 2016. doi:10.1016/j.ic.2015.12.010.

30 Thomas Ehrhard. Hypercoherences: A strongly stable model of linear logic. Math. Struct.
Comput. Sci., 3(4):365–385, 1993. doi:10.1017/S0960129500000281.

31 Thomas Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615–646, 2005.
doi:10.1017/S0960129504004645.

32 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Computer Science Logic
(CSL’12) – 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012,
September 3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 259–273. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.CSL.2012.259.

33 Thomas Ehrhard. The scott model of linear logic is the extensional collapse of its relational
model. Theor. Comput. Sci., 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

34 Thomas Ehrhard. Non-idempotent intersection types in logical form. In Jean Goubault-
Larrecq and Barbara König, editors, Foundations of Software Science and Computation
Structures – 23rd International Conference, FOSSACS 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, volume 12077 of Lecture Notes in Computer Science, pages 198–216.
Springer, 2020. doi:10.1007/978-3-030-45231-5_11.

35 José Espírito Santo, Delia Kesner, and Loïc Peyrot. A faithful and quantitative notion
of distant reduction for generalized applications. In Patricia Bouyer and Lutz Schröder,
editors, Foundations of Software Science and Computation Structures – 25th International
Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
volume 13242 of Lecture Notes in Computer Science, pages 285–304. Springer, 2022. doi:
10.1007/978-3-030-99253-8_15.

36 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

37 Jean-Yves Girard. Normal functors, power series and the λ-calculus. Annals of Pure and
Applied Logic, 37:129–177, 1988. doi:10.1016/0168-0072(88)90025-5.

38 Martin Hyland, Misao Nagayama, John Power, and Giuseppe Rosolini. A category theoretic
formulation for engeler-style models of the untyped λ-calculus. Electronic Notes in Theoret-
ical Computer Science, 161:43–57, 2006. Proceedings of the Third Irish Conference on the
Mathematical Foundations of Computer Science and Information Technology (MFCSIT 2004).
doi:10.1016/j.entcs.2006.04.024.

CSL 2024

https://doi.org/10.1145/3434313
https://doi.org/10.1145/3434313
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.1017/S0960129500000281
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1007/978-3-030-45231-5_11
https://doi.org/10.1007/978-3-030-99253-8_15
https://doi.org/10.1007/978-3-030-99253-8_15
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/10.1016/j.entcs.2006.04.024

7:24 Semantic Bounds and Multi Types, Revisited

39 Delia Kesner, Loïc Peyrot, and Daniel Ventura. The spirit of node replication. In Stefan Kiefer
and Christine Tasson, editors, Foundations of Software Science and Computation Structures –
24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27 – April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages
344–364. Springer, 2021. doi:10.1007/978-3-030-71995-1_18.

40 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus. In
Josep Díaz, Ivan Lanese, and Davide Sangiorgi, editors, Theoretical Computer Science – 8th
IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy, September 1-3, 2014.
Proceedings, volume 8705 of Lecture Notes in Computer Science, pages 296–310. Springer,
2014. doi:10.1007/978-3-662-44602-7_23.

41 Delia Kesner and Pierre Vial. Consuming and persistent types for classical logic. In LICS ’20:
35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany,
July 8-11, 2020, pages 619–632, 2020. doi:10.1145/3373718.3394774.

42 Delia Kesner and Andrés Viso. Encoding tight typing in a unified framework. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 27:1–27:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.27.

43 A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types using
expansion variables. Theor. Comput. Sci., 311(1-3):1–70, 2004. doi:10.1016/j.tcs.2003.10.
032.

44 Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series. Masson, 1993.
45 Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models

of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 301–310. IEEE Computer Society,
2013. doi:10.1109/LICS.2013.36.

46 Giulio Manzonetto. A general class of models of H*. In Rastislav Královic and Damian Niwinski,
editors, Mathematical Foundations of Computer Science 2009, 34th International Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, volume
5734 of Lecture Notes in Computer Science, pages 574–586. Springer, 2009. doi:10.1007/
978-3-642-03816-7_49.

47 Giulio Manzonetto and Domenico Ruoppolo. Relational graph models, taylor expansion and
extensionality. In Bart Jacobs, Alexandra Silva, and Sam Staton, editors, Proceedings of the
30th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2014,
Ithaca, NY, USA, June 12-15, 2014, volume 308 of Electronic Notes in Theoretical Computer
Science, pages 245–272. Elsevier, 2014. doi:10.1016/j.entcs.2014.10.014.

48 C.-H. Luke Ong. Quantitative semantics of the lambda calculus: Some generalisations of the
relational model. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005064.

49 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational models.
Math. Struct. Comput. Sci., 27(5):626–650, 2017. doi:10.1017/S0960129515000316.

50 Simona Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci., 59:181–209, 1988. doi:10.1016/0304-3975(88)90101-6.

https://doi.org/10.1007/978-3-030-71995-1_18
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1145/3373718.3394774
https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1007/978-3-642-03816-7_49
https://doi.org/10.1007/978-3-642-03816-7_49
https://doi.org/10.1016/j.entcs.2014.10.014
https://doi.org/10.1109/LICS.2017.8005064
https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1016/0304-3975(88)90101-6

Infinitary Cut-Elimination via Finite Approximations
Matteo Acclavio Ñ

University of Southern Denmark, Odense, Denmark
University of Sussex, Department of Informatics, Brighton, UK

Gianluca Curzi # Ñ

University of Birmingham, UK
University of Gothenburg, Sweden

Giulio Guerrieri # Ñ

University of Sussex, Department of Informatics, Brighton, UK
Abstract

We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear
logic where the exponential modality ! is interpreted as a constructor for streams over finite data.
Logical consistency is maintained at a global level by adapting a standard progressing criterion. We
present an infinitary version of cut-elimination based on finite approximations, and we prove that,
in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit.
Furthermore, we show that cut-elimination preserves the progressing criterion and various regularity
conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational
semantics for our systems based on the relational model.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Proof theory

Keywords and phrases cut-elimination, non-wellfounded proofs, parsimonious logic, linear logic,
proof theory, approximation, sequent calculus, non-uniform proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.8

Related Version Full Version: https://arxiv.org/abs/2308.07789

Funding Matteo Acclavio: Supported by Villum Fonden, grant no. 50079

Acknowledgements We would like to thank Anupam Das, Abhishek De, Farzad Jafar-Rahmani,
Alexis Saurin, Tito (Lê Thành Dung Nguyên), Damiano Mazza and the anonymous reviewers for
their useful comments and suggestions.

1 Introduction

Non-wellfounded proof theory studies proofs as possibly infinite (but finitely branching) trees,
where logical consistency is maintained via global conditions called progressing (or validity)
criteria. In this setting, the so-called regular (also called circular) proofs receive a special
attention, as they admit a finite description in terms of (possibly cyclic) directed graphs.

This area of proof theory makes its first appearance (in its modern guise) in the modal
µ-calculus [29, 14]. Since then, it has been extensively investigated from many perspectives
(see, e.g., [8, 34, 13, 23]), establishing itself as an ideal setting for manipulating least and
greatest fixed points, and hence for modeling induction and coinduction principles.

Non-wellfounded proof theory has been applied to constructive fixed point logics i.e.,
with a computational interpretation based on the Curry-Howard correspondence [35]. A key
example can be found in the context of linear logic (LL) [21], a logic implementing a finer
control on resources thanks to the exponential modalities ! and ?. In this framework, the
most extensively studied fixed point logic is µMALL, defined as the exponential-free fragment
of LL with least and greatest fixed point operators (respectively, µ and its dual ν) [7, 6].

In [7] Baelde and Miller have shown that the exponentials can be recovered in µMALL
by exploiting the fixed points operators, i.e., by defining !A := νX.(1 & A & (X ⊗ X)) and
?A := µX.(⊥ ⊕ A ⊕ (X ` X)). As these authors notice, the fixed point-based definition of !

© Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

matteoacclavio.com
https://orcid.org/0000-0002-0425-2825
mailto:gianluca.curzi@gu.se
http://www.gianlucacurzi.com
https://orcid.org/0000-0001-8746-1704
mailto:g.guerrieri@sussex.ac.uk
https://pageperso.lis-lab.fr/~giulio.guerrieri/
https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CSL.2024.8
https://arxiv.org/abs/2308.07789
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Infinitary Cut-Elimination via Finite Approximations

and ? can be regarded as a more permissive variant of the standard exponentials, since a
proof of νX.(1 & A & (X ⊗ X)) could be constructed using different proofs of A, whereas in
LL a proof of !A is constructed uniformly using a single proof of A. This proof-theoretical
notion of non-uniformity is indeed a central feature of the fixed-point exponentials.

However, the above encoding is not free of issues. First, as discussed in full detail
in [16], the encoding of the exponentials does not verify the Seely isomorphisms, syntactically
expressed by the equivalence !(A & B) ˛ (!A ⊗ !B), an essential property for modeling
exponentials in LL. Specifically, the fixed-point definition of ! relies on the multiplicative
connective ⊗, which forces an interpretation of !A based on lists rather than multisets.
Secondly, as pointed out in [7], there is a neat mismatch between cut-elimination for the
exponentials of LL and the one for the fixed point exponentials of µMALL. While the first
problem is related to syntactic deficiencies of the encoding, and does not undermine further
investigations on fixed point-based definitions of the exponential modalities, the second one
is more critical. These apparent differences between the two exponentials contribute to
stressing an important aspect in linear logic modalities, i.e., their non-canonicity [31, 12]1.

On a parallel research thread, Mazza [25, 26, 27] studied parsimonious logic, a variant
of linear logic where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A ⊗ !A)
and invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A ⊗ !A (contraction). In
parsimonious logic, a proof of !A can be interpreted as a stream over (a finite set of) proofs of
A, i.e., as a greatest fixed point, where the linear implications A ⊗ !A ⊸ !A (co-absorption)
and !A ⊸ A ⊗ !A (absorption) can be read computationally as the push and pop operations
on streams. More specifically, a formula !A is introduced by an infinitely branching rule
that takes a finite set of proofs D1, . . . , Dn of A and a (possibly non-recursive) function
f : N → {1, . . . , n} as premises, and constructs a proof of !A representing a stream of proofs of
the form S = (Df(0), Df(1), . . . , Df(n), . . .). Hence, parsimonious logic exponential modalities
exploit in an essential way the above-mentioned proof-theoretical non-uniformity, which in
turn deeply interfaces with notions of non-uniformity from computational complexity [27].

The analysis of parsimonious logic conducted in [26, 27] reveals that fixed point definitions
of the exponentials are better behaving when digging and contraction are discarded. On the
other hand, the co-absorption rule cannot be derived in LL, and so it prevents parsimonious
logic becoming a genuine subsystem of the latter. This led the authors of the present
paper to introduce parsimonious linear logic, a subsystem of linear logic (in particular,
co-absorption-free) that nonetheless allows a stream-based interpretation of the exponentials.

We present two finitary proof systems for parsimonious linear logic: the system nuPLL,
supporting non-uniform exponentials, and PLL, a fully uniform version. We investigate
non-wellfounded counterparts of nuPLL and PLL, adapting to our setting the progressing
criterion to maintain logical consistency. To recover the proof-theoretical behavior of nuPLL
and PLL, we identify further global conditions on non-wellfounded proofs, that is, some forms
of regularity to capture the notions of uniformity and non-uniformity. This leads us to two
main non-wellfounded proof systems: regular parsimonious linear logic (rPLL∞), defined via
the regularity condition and corresponding to PLL, and weakly regular parsimonious linear
logic (wrPLL∞), defined via a weak regularity condition and corresponding to nuPLL.

The major contribution of this paper is the study of continuous cut-elimination in the
setting of non-wellfounded parsimonious linear logic. We first introduce Scott-domains
of partially defined non-wellfounded proofs, ordered by an approximation relation. Here,
undefinedness in proofs is expressed by the use of an axiom introducing an arbitrary sequent;

1 One can construct LL proof systems with alternative (not equivalent) exponential modalities, see [28].

M. Acclavio, G. Curzi, and G. Guerrieri 8:3

this approach is analogous to the one used to define Böhm trees in the λ-calculus: intuitively,
a non-wellfounded proof is kind of like a Böhm tree that may be described by its finite
approximations, with the difference that – in the λ-calculus – Böhm trees, and therefore their
finite approximations, are normal (that is, cut-free) by definition, whereas here proofs need not
be cut-free and so the approximations too may contain cuts. Then, we define special infinitary
proof rewriting strategies called maximal and continuous infinitary cut-elimination strategies
(mc-ices) which compute (Scott-)continuous functions. Productivity in this framework is
established by showing that, in presence of a good global condition (progressing, regularity or
weak regularity), these continuous functions return totally defined cut-free non-wellfounded
proofs and preserve the global condition: progressing (Theorem 33.1), and regularity or weak
regularity (Theorem 33.2).

On a technical side, we stress that our methods and results distinguish from previous
approaches to cut-elimination in a non-wellfounded setting in many respects. First, we
get rid of many technical notions typically introduced to prove infinitary cut-elimination,
such as the multicut rule or the fairness conditions (as in, e.g., [20, 6]), as these notions
are subsumed by a finitary approximation approach to cut-elimination. Furthermore, we
prove productivity of cut-elimination and preservation of the progressing condition in a more
direct and constructive way, i.e., without going through auxiliary proof systems and avoiding
arguments by contradiction (see, e.g., [6]). Finally, we prove for the first time preservation of
regularity properties under continuous cut-elimination, essentially exploiting methods for
compressing transfinite rewriting sequences to ω-long ones from [36, 25, 33].

Finally, we define a denotational semantics for non-wellfounded parsimonious logic based
on the relational model, with a standard multiset-based interpretation of the exponentials,
and we show that this semantics is preserved under continuous cut-elimination (Theorem 38).
We also prove that extending non-wellfounded parsimonious linear logic with digging prevents
the existence of a cut-elimination result preserving the semantics (Theorem 40). Therefore,
the impossibility of a stream-based definition of ! that validates digging (and contraction).

Additional details of the proofs are provided in the extended version of this paper [2].

2 Preliminary notions

In this section we recall some basic notions from (non-wellfounded) proof theory, fixing the
notation that will be adopted in this paper.

2.1 Derivations and coderivations
We assume that the reader is familiar with the syntax of sequent calculus, e.g. [37]. Here we
specify some conventions adopted to simplify the content of this paper.

We consider (sequent) rules of the form r
Γ

or
Γ1

r
Γ

or
Γ1 Γ2

r
Γ

, and we refer to the

sequents Γ1 and Γ2 as the premises, and to the sequent Γ as the conclusion of the rule r.
To avoid technicalities of the sequents-as-lists presentation, we follow [6] and we consider
sequents as sets of occurrences of formulas from a given set of formulas. In particular, when
we refer to a formula in a sequent we always consider a specific occurrence of it.

▶ Definition 1. A (binary, possibly infinite) tree T is a subset of words in {1, 2}∗ that contains
the empty word ϵ (the root of T) and is ordered-prefix-closed (i.e., if n ∈ {1, 2} and vn ∈ T ,
then v ∈ T , and if moreover v2 ∈ T , then v1 ∈ T). The elements of T are called nodes and
their height is the length of the word. A child of v ∈ T is any vn ∈ T with n ∈ {1, 2}. The

CSL 2024

8:4 Infinitary Cut-Elimination via Finite Approximations

ax
A, A⊥

Γ, A A⊥, ∆
cut

Γ, ∆
Γ, A B, ∆

⊗
Γ, ∆, A ⊗ B

Γ, A, B`
Γ, A ` B

1
1

Γ
⊥

Γ, ⊥
Γ, A

f!p
?Γ, !A

Γ
?w

Γ, ?A

Γ, A, ?A
?b

Γ, ?A

Figure 1 Sequent calculus rules of PLL.

prefix order is a partial order ≤T on T defined by: for any v, v′ ∈ T , v ≤T v′ if v′ = vw

for some w ∈ {1, 2}∗. A maximal element of ≤T is a leaf of T . A branch of T is a set
B ⊆ T such that ϵ ∈ B and if w ∈ B is not a leaf of T then w has exactly one child in B.

A coderivation over a set of rules S is a labeling D of a tree T by sequents such that if
v is a node of T with children v1, . . . , vn (with n ∈ {0, 1, 2}), then there is an occurrence of
a rule r in S with conclusion the sequent D(v) and premises the sequents D(v1), . . . , D(vn).
The height of r in D is the height of the node v ∈ T such that D(v) is the conclusion of r.

The conclusion of D is the sequent D(ϵ). If v is a node of the tree, the sub-coderivation
of D rooted at v is the coderivation Dv defined by Dv(w) = D(vw).

A coderivation D is r-free (for a rule r∈S) if it contains no occurrence of r. It is regular
if it has finitely many distinct sub-coderivations; it is non-wellfounded if it labels an infinite
tree, and it is a derivation (with size |D| ∈ N) if it labels a finite tree (with |D| nodes).

Given a set of coderivations X, a sequent Γ is provable in X (noted ⊢X Γ) if there is a
coderivation in X with conclusion Γ.

While derivations are represented as finite trees, regular coderivations (also called circular
or cyclic) can be represented as finite directed (possibly cyclic) graphs: a cycle is created by
linking the roots of two identical subcoderivations.

▶ Definition 2. Let D be a coderivation labeling a tree T . A bar (resp. prebar) of D is a
set V ⊆ T where:

any branch (resp. infinite branch) of the tree T underlying D contains a node in V;
any pair of nodes in V are mutually incomparable with respect to the prefix order ≤T .

The height of a prebar V of D is the minimal height of the nodes of V.

3 Parsimonious Linear Logic

In this paper we consider the set of formulas for propositional multiplicative-exponential
linear logic with units (MELL). These are generated by a countable set of propositional
variables A = {X, Y, . . .} using the following grammar:

A, B ::= X | X⊥ | A ⊗ B | A ` B | !A | ?A | 1 | ⊥

A !-formula (resp. ?-formula) is a formula of the form !A (resp. ?A). Linear negation
(·)⊥ is defined by De Morgan’s laws (A⊥)⊥ = A , (A ⊗ B)⊥ = A⊥ `B⊥ , (!A)⊥ = ?A⊥ , and
(1)⊥ = ⊥ while linear implication is defined as A ⊸ B := A⊥ ` B.

▶ Definition 3. Parsimonious linear logic, denoted by PLL, is the set of rules in Figure 1,
that is, axiom (ax), cut (cut), tensor (⊗), par (`), one (1), bottom (⊥), functorial
promotion (f!p), weakening (?w), absorption (?b). Rules ax, ⊗, `, 1 and ⊥ are called
multiplicative, while rules f!p, ?w and ?b are called exponential. We also denote by PLL
the set of derivations over the rules in PLL.

▶ Example 4. Figure 2 gives some examples of derivation in PLL. The (distinct) derivations
0 and 1 prove the same formula N := !(X ⊸ X) ⊸ X ⊸ X. The derivation Dabs proves the
absorption law !A ⊸ A ⊗ !A; the derivation Dder proves the dereliction law !A ⊸ A.

M. Acclavio, G. Curzi, and G. Guerrieri 8:5

0 1 Dabs Dder

ax
X⊥, X

?w
?(X ⊗ X⊥), X⊥, X`

?(X ⊗ X⊥), X⊥ ` X`
?(X ⊗ X⊥) ` X⊥ ` X

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, X⊥, X

?b
?(X ⊗ X⊥), X⊥, X`×2

?(X ⊗ X⊥) ` X⊥ ` X

ax
A⊥, A

ax
?A⊥, !A

⊗
A⊥, ?A⊥, A ⊗ !A

?b
?A⊥, A ⊗ !A`

?A⊥ ` (A ⊗ !A)

ax
A⊥, A

?w
A⊥, ?A⊥, A

?b
?A⊥, A`

?A⊥ ` A

Figure 2 Examples of derivations in PLL.

ax
A, A⊥ Γ, A

cut
Γ, A

→cut Γ, A

Γ, A, B`
Γ, A ` B

∆, A⊥ B⊥, Σ
⊗

∆, A⊥ ⊗ B⊥, Σ
cut

Γ, ∆, Σ
→cut

Γ, B, A A⊥, ∆
cut

Γ, ∆, B B⊥, Σ
cut

Γ, ∆, Σ

Γ
⊥

Γ, ⊥
1

1
cut

Γ
→cut Γ

Figure 3 Multiplicative cut-elimination steps in PLL.

The cut-elimination relation →cut in PLL is the union of principal cut-elimination steps
in Figure 3 (multiplicative) and Figure 4 (exponential) and commutative cut-elimination
steps in Figure 5. The reflexive-transitive closure of →cut is noted →∗

cut.

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.

Sketch of proof. We associate with any derivation D in PLL a derivation D♠ in MELL
sequent calculus. Thanks to additional commutative cut-elimination steps, we prove that cut-
elimination in MELL rewrites D♠ to the translation of a derivation in PLL. The termination
of cut-elimination in PLL follows from strong normalisation of (second-order) MELL [30]. ◀

Akin to light linear logic [22, 24, 32], the exponential rules of PLL are weaker than those
in MELL: the usual promotion rule is replaced by f!p (functorial promotion), and the usual
contraction and dereliction rules by ?b. As a consequence, the digging formula !A ⊸ !!A
and the contraction formula !A ⊸ !A ⊗ !A are not provable in PLL (unlike the dereliction
formula, Example 4). This allows us to interpret computationally these weaker exponentials
in terms of streams, as well as to control the complexity of cut-elimination [26, 27].

It is easy to show that MELL = PLL + digging: if we add the digging formula as an axiom
(or equivalently, the digging rule ??d in Figure 13) to the set of rules in Figure 1, then the
contraction formula becomes provable, and the obtained proof system coincides with MELL.

4 Non-wellfounded Parsimonious Linear Logic

In linear logic, a formula !A is interpreted as the availability of A at will. This intuition still
holds in PLL. Indeed, the Curry-Howard correspondence interprets rule f!p introducing the
modality ! as an operator taking a derivation D of A and creating a (infinite) stream (D, D, . . . ,

D, . . .) of copies of the proof D. Each element of the stream is accessed via the cut-elimination
step f!p vs ?b in Figure 4: rule ?b is interpreted as an operator popping one copy of D out
of the stream. Pushing these ideas further, Mazza [26] introduced parsimonious logic PL, a
type system (comprising rules f!p and ?b) characterizing the logspace decidable problems.

Mazza and Terui then introduced in [27] another type system, nuPL∀ℓ, based on parsi-
monious logic and capturing the complexity class P/poly (i.e., the problems decidable by
polynomial size families of Boolean circuits [5]). Their system is endowed with a non-uniform
version of the functorial promotion, which takes a finite set of proofs D1, . . . , Dn of A and a

CSL 2024

8:6 Infinitary Cut-Elimination via Finite Approximations

Γ, A
f!p

?Γ, !A
A⊥, ∆, B

f!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
f!p

?Γ, ?∆, !B

Γ, A
f!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

Γ, A
f!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 4 Exponential cut-elimination steps in PLL.

Γ1, A
r

Γ, A A⊥, ∆
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆
r

Γ, ∆

Γ1, A Γ2
r

Γ, A ∆, A⊥
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆ Γ2
r

Γ, ∆

Figure 5 Commutative cut-elimination steps in PLL, where r ̸= cut.

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A

{
D′

i

A⊥, ∆, B

}
i∈Nib!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut

Di

Γ, A

D′
i

A⊥, ∆, B
cut

Γ, ∆, B

i∈Nib!p

?Γ, ?∆, !B

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
D0

Γ, A

{
Di+1

Γ, A

}
i∈Nib!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 6 Exponential cut-elimination steps in nuPLL.

(possibly non-recursive) function f : N → {1, . . . , n} as premises, and constructs a proof of !A
modeling the stream (Df(0), Df(1), . . . , Df(n), . . .). This typing rule is the key tool to encode
the so-called advices for Turing machines, an essential step to show completeness for P/poly.

In a similar vein, we can endow PLL with a non-uniform version of f!p called infinitely
branching promotion (ib!p), which constructs a stream (D0, D1, . . . , Dn, . . .) with finite
support, i.e., made of finitely many distinct derivations (of the same conclusion):2

D0

Γ, A

D1

Γ, A · · ·
Dn

Γ, A · · ·
ib!p {Di | i ∈ N} is finite

?Γ, !A
!w

!A
Γ, A ∆, !A

!b
Γ, ∆, !A (1)

The side condition on ib!p provides a proof theoretic counterpart to the function f : N →
{1, . . . , n} in nuPL∀ℓ. Clearly, f!p is subsumed by the rule ib!p, as it corresponds to the
special (uniform) case where Di = Di+1 for all i ∈ N.

2 Rule ib!p is reminiscent of the ω-rule used in (first-order) Peano arithmetic to derive formulas of the
form ∀xϕ that cannot be proven in a uniform way.

M. Acclavio, G. Curzi, and G. Guerrieri 8:7

D := ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

D? :=

...
?b

A, A, ?A
?b

A, ?A
?b

?A

Figure 7 Two non-wellfounded and non-progressing coderivations in PLL∞.

▶ Definition 6. We define the set of rules nuPLL := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, ib!p}. We
also denote by nuPLL the set of derivations over the rules in nuPLL.3

There are some notable differences between nuPLL and Mazza and Terui’s original system
nuPL∀ℓ [27]. As opposed to nuPLL, nuPL∀ℓ is formulated as an intuitionistic (type) system.
Furthermore, to achieve completeness for P/poly, these authors introduced second-order
quantifiers and the co-absorption (!b) and co-weakening (!w) rules displayed in (1).

Cut-elimination steps for nuPLL are in Figures 3, 5, and 6. In particular, the step
ib!p-vs-?b in Figure 6 pops the first premise D0 of ib!p out of the stream (D0, D1, . . . , Dn, . . .).

4.1 From infinitely branching proofs to non-wellfounded proofs
In this paper we explore a dual approach to the one of nuPL∀ℓ (and nuPLL): instead of
considering (wellfounded) derivations with infinite branching, we consider (non-wellfounded)
coderivations with finite branching. For this purpose, the infinitary rule ib!p of nuPLL is
replaced by the binary rule below, called conditional promotion (c!p):

Γ, A ?Γ, !A
c!p

?Γ, !A
(2)

▶ Definition 7. We define the set of rules PLL∞ := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, c!p}. We also
denote by PLL∞ the set of coderivations over the rules in PLL∞.

In other words, PLL∞ is the set of coderivations generated by the same rules as PLL,
except that f!p is replaced by c!p. From now on, we will only consider coderivations in PLL∞.

▶ Example 8. Figure 7 shows two non-wellfounded coderivations in PLL∞: D (resp. D?)
has an infinite branch of cut (resp. ?b) rules, and is (resp. is not) regular.

We can embed PLL and nuPLL into PLL∞ via the conclusion-preserving translations
(·)◦ : PLL → PLL∞ and (·)• : nuPLL → PLL∞ defined in Figure 8 by induction on derivations:
they map all rules to themselves except f!p and ib!p, which are “unpacked” into non-
wellfounded coderivations that iterate infinitely many times the rule c!p.

An infinite chain of c!p rules (Figure 9) is a structure of interest in itself in PLL∞.

▶ Definition 9. A non-wellfounded box (nwb for short) is a coderivation D ∈ PLL∞

with an infinite branch {ϵ, 2, 22, . . . } (the main branch of D) all labeled by c!p rules as
in Figure 9, where !A in the conclusion is the principal formula of D, and D0, D1, . . . are
the calls of D. We denote D by c!p(D0,...,Dn,...).

3 To be rigorous, this requires a slight change in Definition 1: the tree labeled by a derivation in nuPLL
must be over Nω instead of {1, 2}∗, in order to deal with infinitely branching derivations.

CSL 2024

8:8 Infinitary Cut-Elimination via Finite Approximations

 D

Γ′
r

Γ

◦

:=
D◦

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ

◦

:=
D1

◦

Γ1

D2
◦

Γ2
t

Γ

 D

Γ, A
f!p

?Γ, !A

◦

:= D◦

Γ, A

D◦

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A
c!p

?Γ, !A

 D

Γ′
r

Γ

•

:=
D•

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ

•

:=
D1

•

Γ1

D2
•

Γ2
t

Γ

 D0

Γ, A · · ·
Dn

Γ, A · · ·
ib!p

?Γ, !A

•

:= D•
0

Γ, A

D•
n

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
for all r ∈ {`, ⊥, ?w, ?b} and t ∈ {cut, ⊗} (ax and 1 are translated by themselves).

Figure 8 Translations (·)◦ from PLL to PLL∞, and (·)• from nuPLL to PLL∞.

D = c!p(D0,...,Dn,...) =
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

Figure 9 A non-wellfounded box in PLL∞.

Let S = c!p(D0,...,Dn,...) be a nwb. We may write S(i) to denote Di. We say that S

has finite support (resp. is periodic with period k) if {S(i) | i ∈ N} is finite (resp. if
S(i) = S(k + i) for any i ∈ N). A coderivation D has finite support (resp. is periodic) if
any nwb in D has finite support (resp. is periodic).

▶ Example 10. The only cut-free derivations of the formula N := !(X ⊸ X) ⊸ X ⊸ X are
of the form n below on the right, for all n ∈ N, up to permutations of the rules ?w, ?b and ⊗
(the derivations 0 and 1 in Example 4 are special cases of it)

c!p(i0,...,in,...) =
i0

N

i1

N

in

N

...
c!p

!N
c!p

...
c!p

!N
c!p

!N

n :=

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

ax
X⊥, X

⊗ ×(n−1)
X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?b×n

?(X ⊗ X⊥), X⊥, X`×2
?(X ⊗ X⊥) ` X⊥ ` X

(3)

Consider the nwb c!p(i0,...,in,...) above on the left, proving the formula !N, where ij ∈ {0, 1}
for all j ∈ N. Thus c!p(i0,...,in,...) has finite support, as its only calls can be 0 or 1, and it is
periodic if and only if so is the infinite sequence (i0, . . . , in, . . .) ∈ {0, 1}ω.

The cut-elimination steps →cut for PLL∞ are in Figures 3, 5, and 10. Computationally,
they allow the c!p rule to be interpreted as a coinductive definition of a stream of type !A
from a stream of the same type to which an element of type A is prepended. In particular, the
cut-elimination step c!p vs ?b accesses the head of a stream: rule ?b acts as a pop operator.

As a consequence, the nwb in Figure 9 constructs a stream (D0, D1, . . . , Dn, . . .) similarly
to ib!p but, unlike the latter, all the Di’s may be pairwise distinct. The reader expert in linear
logic can see a nwb as a box with possibly infinitely many distinct contents (its calls), while
usual linear logic boxes (and f!p in PLL) provide infinitely many copies of the same content.

M. Acclavio, G. Curzi, and G. Guerrieri 8:9

Γ, A ?Γ, !A
c!p

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

c!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B

?Γ, !A ?A⊥, ?∆, !B
cut

?Γ, ?∆, !B
c!p

?Γ, ?∆, !B

Γ, A ?Γ, !A
c!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

Γ, A ?Γ, !A
c!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
?Γ, !A

Γ, A ∆, A⊥, ?A⊥
cut

Γ, ∆, ?A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 10 Exponential cut-elimination steps for coderivations of PLL∞.

ax
A, A⊥

F 1, . . . F
n
, A A⊥, G1, . . . , G

mcut
F 1, . . . , F

n
, G1, . . . , G

m

F 1, . . . F
n
, A , B

`
F 1, . . . , F

n
, A ` B

F 1, . . . F
n
, A B, G1, . . . , G

m⊗
F 1, . . . , F

n
, A ⊗ B, G1, . . . , G

m

1
1

F 1, . . . , F
n⊥

F 1, . . . , F
n
, ⊥

F1, . . . , Fn, A ?F 1, . . . , ?F
n
, !A

c!p
?F 1, . . . , ?F

n
, !A

F 1, . . . , F
n?w

F 1, . . . , F
n
, ?A

F 1, . . . , F
n
, A, ?A

?b
F 1, . . . , F

n
, ?A

Figure 11 PLL∞ rules: edges connect a formula in the conclusion with its parent(s) in a premise.

Rules f!p in PLL and ib!p in nuPLL are mapped by (·)◦ and (·)• into nwbs, which are
non-wellfounded coderivations. Hence, the cut-elimination steps f!p vs f!p in PLL and ib!p vs
ib!p in nuPLL can only be simulated by infinitely many cut-elimination steps in PLL∞.

Note that D ∈ PLL∞ in Figure 7 is not cut-free, and if D →cut D then D = D : thus D
cannot reduce to a cut-free coderivation, and so the cut-elimination theorem fails in PLL∞.

4.2 Consistency via a progressing criterion
In a non-wellfounded setting such as PLL∞, any sequent is provable. Indeed, the (non-
wellfounded) coderivation D in Figure 7 shows that any non-empty sequent (in particular,
any formula) is provable in PLL∞, and the empty sequent is provable in PLL∞ by applying
the cut rule on the conclusions B and B⊥ (for any formula B) of two derivations D .

The standard way to recover logical consistency in non-wellfounded proof theory is to
introduce a global soundness condition on coderivations, called progressing criterion [23, 13].
In PLL∞, this criterion relies on tracking occurrences of !-formulas in a coderivation.

▶ Definition 11. Let D be a coderivation in PLL∞. It is weakly progressing if every infinite
branch contains infinitely many right premises of c!p-rules.

An occurrence of a formula in a premise of a rule r is the parent of an occurrence of a
formula in the conclusion if they are connected according to the edges depicted in Figure 11.

A !-thread (resp. ?-thread) in D is a maximal sequence (Ai)i∈I of !-formulas (resp. ?-
formulas) for some downward-closed I ⊆ N such that Ai+1 is the parent of Ai for all i ∈ I. A
!-thread (Ai)i∈I is progressing if Aj is in the conclusion of a c!p for infinitely many j ∈ I.
D is progressing if every infinite branch contains a progressing !-thread. We define pPLL∞

(resp. wpPLL∞) as the set of progressing (resp. weak-progressing) coderivations in PLL∞.

▶ Remark 12. Clearly, any progressing coderivation is weakly progressing too, but the
converse fails (Example 13), therefore pPLL∞ ⊊ wpPLL∞. Moreover, the main branch of any
nwb contains by definition a progressing !-thread of its principal formula.

▶ Example 13. Coderivations in Figure 7 are not weakly progressing (hence, not progressing):
the rightmost branch of D , i.e., the branch {ϵ, 2, 22, . . .}, and the unique branch of D? are
infinite and contain no c!p-rules. In contrast, the nwb c!p(i0,...,in,...) in Example 10 is

CSL 2024

8:10 Infinitary Cut-Elimination via Finite Approximations

progressing by Remark 12, since its main branch is the only infinite branch. Below, a regular,
weakly progressing but not progressing coderivation (!X in the conclusion of c!p is a cut
formula, so the branch {ϵ, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread).

ax
X, X⊥

ax
X, X⊥

...
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥, !X
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥ , !X
c!p

?X⊥ , !X

▶ Lemma 14. Let Γ be a sequent. Then, ⊢PLL Γ if and only if ⊢wpPLL∞ Γ.

Proof. Given D ∈ PLL, D◦ ∈ PLL∞ preserves the conclusion and is progressing, hence weakly
progressing (see Remark 12). Conversely, given a weakly progressing coderivation D, we define
a derivation Df ∈ PLL with the same conclusion by applying, bottom-up, the translation:

 D

Γ′
r

Γ

f

:=
Df

Γ′
r

Γ

 D1

Γ1

D2

Γ2
r

Γ

f

:=
D1

f

Γ1

D2
f

Γ2
r

Γ

 D

Γ, A

D′

?Γ, !A
c!p

?Γ, !A

f

:=
Df

Γ, A
f!p

?Γ, !A

with r ̸= c!p. Note that the derivation Df is well-defined because D is weakly progressing. ◀

▶ Corollary 15. The empty sequent is not provable in wpPLL∞ (and hence in pPLL∞).

Proof. If the empty sequent were provable in wpPLL∞, then there would be a cut-free
derivation D ∈ PLL of the empty sequent by Lemma 14 and Theorem 5, but this is impossible
since cut is the only rule in PLL that could have the empty sequent in its conclusion. ◀

4.3 Recovering (weak forms of) regularity
The progressing criterion cannot capture the finiteness condition of the rule ib!p in the
derivations in nuPLL. By means of example, consider the nwb below, which is progressing
but cannot be the image of the rule ib!p via (·)• (see Figure 8) since {Di | i ∈ N} is infinite.

D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

with Di = c!p(1,...,1︸︷︷︸
i

,0,...) for each i ∈ N. (4)

To identify in pPLL∞ the coderivations corresponding to derivations in nuPLL and in PLL
via the translations (·)• and (·)◦, respectively, we need additional conditions.

▶ Definition 16. A coderivation is weakly regular if it has only finitely many distinct
sub-coderivations whose conclusions are left premises of c!p-rules; it is finitely expandable
if any branch contains finitely many cut and ?b rules. We denote by wrPLL∞ (resp. rPLL∞)
the set of weakly regular (resp. regular) and finitely expandable coderivations in pPLL∞.

▶ Remark 17. Regularity implies weak regularity and the converse fails as shown in Example 18
below, so rPLL∞ ⊊ wrPLL∞. Given D ∈ PLL∞ progressing and finitely expandable, it is
regular (resp. weakly regular) if and only if any nwb in D is periodic (resp. has finite support).

M. Acclavio, G. Curzi, and G. Guerrieri 8:11

▶ Example 18. Coderivations D and D? in Figure 7 are not finitely expandable, as their
infinite branch has infinitely many cut or ?b, but they are weakly regular, since they have no
c!p rules. The coderivation in (4) is not weakly regular because {Di | i ∈ N} is infinite.

An example of a weakly regular but not regular coderivation is the nwb c!p(i0,...,in,...) in
Example 10 when the infinite sequence (ij)j∈N ∈ {0, 1}ω is not periodic: 0 and 1 are the only
coderivations ending in the left premise of a c!p rule (so the nwb is weakly regular), but there
are infinitely many distinct coderivations ending in the right premise of a c!p rule (so the
nwb is not regular). Moreover, that nwb is finitely expandable, as it contains no ?b or cut.

The sets rPLL∞ and wrPLL∞ are the non-wellfounded counterparts of PLL and nuPLL,
respectively. Indeed, we have the following correspondence via the translations (·)◦ and (·)•.

▶ Proposition 19.
1. If D ∈ PLL (resp. D ∈ nuPLL) with conclusion Γ, then D◦ ∈ rPLL∞ (resp. D• ∈ wrPLL∞)

with conclusion Γ, and every c!p in D◦ (resp. D•) belongs to a nwb.
2. If D′ ∈ rPLL∞ (resp. D′ ∈ wrPLL∞) and every c!p in D′ belongs to a nwb, then there is

D ∈ PLL (resp. D ∈ nuPLL) such that D◦ = D′ (resp. D• = D′).
Progressing and weak progressing coincide in finitely expandable coderivations.

▶ Lemma 20. Let D ∈ PLL∞ be finitely expandable. If D ∈ wpPLL∞ then any infinite branch
contains the main branch of a nwb. Moreover, D ∈ pPLL∞ if and only if D ∈ wpPLL∞.

Proof. Let D ∈ wpPLL∞ be finitely expandable, and let B be an infinite branch in D.
By finite expandability there is h ∈ N such that B contains no conclusion of a cut or ?b
with height greater than h. Moreover, by weakly progressing there is an infinite sequence
h ≤ h0 < h1 < . . . < hn < . . . such that the sequent of B at height hi has shape ?Γi, !Ai. By
inspecting the rules in Figure 1, each such ?Γi, !Ai can be the conclusion of either a ?w or a
c!p (with right premise ?Γi, !Ai). So, there is a k large enough such that, for any i ≥ k, only
the latter case applies (and, in particular, Γi = Γ and Ai = A for some Γ, A). Therefore, hk

is the root of a nwb. This also shows D ∈ pPLL∞. By Remark 12, pPLL∞ ⊆ wpPLL∞. ◀

By inspecting the steps in Figures 3, 5, and 10, we prove the following preservations.

▶ Proposition 21. Cut elimination preserves weak-regularity, regularity and finite expandab-
ility. Therefore, if D ∈ X with X ∈ {rPLL∞, wrPLL∞} and D →cut D′, then also D′ ∈ X.

5 Continuous cut-elimination

Cut-elimination for (finitary) sequent calculi proceeds by introducing a proof rewriting
strategy that stepwise decreases an appropriate termination ordering (see, e.g, [37]). Typically,
these proof rewriting strategies consist on pushing upward the topmost cuts via the cut-
elimination steps in order to eventually eliminate them.

A somewhat dual approach is investigated in the context of non-wellfounded proofs [6, 20].
It consists on infinitary proof rewriting strategies that gradually push upward the bottommost
cuts. In this setting, the progressing condition is essential to guarantee productivity, i.e., that
such proof rewriting strategies construct strictly increasing approximations of the cut-free
proof, which can thus be obtained as a (well-defined) limit.

A major obstacle of this approach arises when the bottommost cut r is below another one
r′. In this case, no cut-elimination step can be applied to r, so proof rewriting runs into an
apparent stumbling block. To circumvent this problem, in [6, 20] a special cut-elimination
step is introduced, which merges r and r′ in a single, generalized cut rule called multicut.

CSL 2024

8:12 Infinitary Cut-Elimination via Finite Approximations

In this section we study a continuous cut-elimination method that does not rely on
multicut rules, following an alternative idea in which the notion of approximation plays an
even more central rule, inspired by the topological approaches to infinite trees [9]. To this
end, we assume the reader familiar with basic definitions on domain-theory (see, e.g., [4]).

5.1 Approximating coderivations
We introduce open coderivations to approximate coderivations. They form Scott-domains,
on top of which we define continuous cut elimination. We also exploit them to decompose a
finitely expandable and progressing coderivation into a finite approximation beneath nwbs.

▶ Definition 22. We define the set of rules oPLL∞ := PLL∞ ∪ {hyp}, where hyp := hyp
Γ

for

any sequent Γ.4 We will also refer to oPLL∞ as the set of coderivations over oPLL∞, which we
call open coderivations. An open coderivation is normal if no cut-elimination step can be
applied to it, that is, if one premise of each cut is a hyp. An open derivation is a derivation
in oPLL∞. We denote by oPLL∞(Γ) the set of open coderivations with conclusion Γ.

▶ Definition 23. Let D be an open coderivation, V ⊆ {1, 2}∗ be a set of mutually incomparable
(w.r.t. the prefix order) nodes of D, and {D′

ν}ν∈V be a set of open coderivations where D′
ν

has the same conclusion as the subderivation Dν of D. We denote by D{D′
ν/ν}ν∈V =

D(D′
ν1

/ν1, . . . , D′
νn

/νn), the open coderivation obtained by replacing each Dν with D′
ν .

The pruning of D over V is the open coderivation ⌊D⌋V = D{hyp/ν}ν∈V . If D and D′

are two open coderivations, then we say that D is an approximation of D′ (noted D ⪯ D′)
iff D = ⌊D′⌋V for some V ⊆ {1, 2}∗. An approximation is finite if it is an open derivation.

We denote by K(D) the set of finite approximations of D.

Note that D and ⌊D⌋V (and hence D′ if D ⪯ D′) have the same conclusion. Any open
coderivation D is the supremum of its finite approximations, i.e. D =

⊔
D′∈K(D) D′. Indeed:

▶ Proposition 24. For any sequent Γ, the poset (oPLL∞(Γ), ⪯) is a Scott-domain with least
element the open derivation hyp and with maximal elements the coderivations (in PLL∞) with
conclusion Γ. The compact elements are precisely the open derivations in oPLL∞(Γ).

Cut-elimination steps essentially do not increase the size of open derivations, hence:

▶ Lemma 25. →cut over open derivations is strongly normalizing and confluent.

Progressing and finitely expandable coderivations can be approximated in a canonical way.
Indeed, by Lemma 20 we have:

▶ Proposition 26. If D ∈ pPLL∞ is finitely expandable, then there is a prebar V ⊆ {1, 2}∗ of
D such that each v ∈ V is the root of a nwb in D.

▶ Definition 27. Let D ∈ pPLL∞ be finitely expandable. The decomposition prebar of D is
the minimal prebar V of D such that, for all ν ∈ V, Dν is a nwb. We denote with border(D)
such a bar and we set base(D) := ⌊D⌋border(D).

Note that, by weak König lemma, in the above definition border(D) is finite and base(D)
is a finite approximation of D.

4 Previously introduced notions and definitions on coderivations extend to open coderivations in the
obvious way, e.g. the global conditions of Definitions 11 and 16 and the cut-elimination relation →cut.

M. Acclavio, G. Curzi, and G. Guerrieri 8:13

5.2 Domain-theoretic approach to continuous cut-elimination
In this subsection we define maximal and continuous infinitary cut-elimination strategies
(mc-ices), special rewriting strategies that stepwise generate ω-chains approximating the cut-
free version of an open coderivation. In other words, a mc-ices computes a (Scott-)continuous
function from open coderivations to cut-free open coderivations. Then, we introduce the
height-by-height mc-ices, a notable example of mc-ices that will be used for our results, and
we show that any two mc-icess compute the same (Scott-)continuous function.

In what follows, σ denotes a countable sequence of coderivations, and σ(i) denotes the
(i + 1)-th coderivation in σ. We denote the length of a sequence σ by ℓ(σ) ≤ ω.

▶ Definition 28. An infinitary cut elimination strategy (or ices for short) is a family
σ = {σD}D∈oPLL∞ where, for all D ∈ oPLL∞, σD is a sequence of open coderivations such
that σD(0) = D and σD(i) →cut σD(i + 1) for all 0 ≤ i < ℓ(σD). Given an ices σ, we define
the function fσ : oPLL∞(Γ) → oPLL∞(Γ) as fσ(D) :=

⊔ℓ(σD)
i=0 cf(σD(i)) where cf(Di) is the

greatest cut-free approximation of Di (w.r.t. ⪯). 5. An ices σ is a mc-ices if it is:
maximal: σD(ℓ(σD)) is normal for any open derivation D (ℓ(σD) < ω by Lemma 25);
(Scott)-continuous: fσ is Scott-continuous.

Roughly, a maximal ices is an ices that applies cut-elimination steps to open derivations
(i.e., finite approximations) until a normal (possibly cut-free) open derivation is reached.
The following property states that all mc-icess induce the same continuous function, an easy
consequence of Lemma 25 and continuity.

▶ Proposition 29. If σ and σ′ are two mc-icess, then fσ = fσ′ .

Therefore, we define a specific mc-ices we use in our proofs, where cut-elimination steps
are applied in a deterministic way to the minimal reducible cut-rules.

▶ Definition 30. The height-by-height ices is defined as σ∞ = {σ∞
D }D∈oPLL∞ where

σ∞
D (0) = D for each D ∈ oPLL∞, and σ∞

D (i + 1) is the open coderivation obtained by applying
a cut-elimination step to the rightmost reducible cut-rule with minimal height in σ∞

D (i).

▶ Proposition 31. The ices σ∞ is a mc-ices.

Proof. By Lemma 25, any open derivation D normalizes in nD ∈ N steps; so, if D is an open
derivation, ℓ(σ∞

D) = nD with σ∞
D (nD) normal by definition of σ∞. Hence, σ∞ is maximal.

Since σ∞
D (i) is defined by applying a finite number of cut-eliminations steps to D, then

there is D′ ∈ K(D) such that σ∞
D (i) = σ∞

D′(i), and therefore cf(σ∞
D (i)) = cf(σ∞

D′(i)) ⪯ fσ∞(D′)
for all 0 ≤ i ≤ ℓ(σ∞). Thus fσ∞(D) ⪯

⊔
D′∈K(D) fσ∞(D′). Moreover

⊔
D′∈K(D) fσ∞(D′) ⪯

fσ∞(D) because σ∞ is monotone by construction. Therefore, fσ∞ is continuous. ◀

In order to prove our results, we introduce the notion of chain of cut-rules, which allows
us to keep track of the dynamic of cut-elimination steps during infinitary rewriting. Note
that the definition of cut-chain is the analogue of the multi-cut reduction sequences from [6].

▶ Definition 32 (Chains). Let σ = {σD}D∈oPLL∞ be an ices. We write ri 7→σ ri+1 if ri+1 is a
cut-rule in σD(i + 1) produced by applying a cut-elimination step to the cut-rule ri in σD(i).

A cut-chain in σD is a sequence (ri)i<α of cut rules with α ≤ ℓ(σD), such that ri a rule
in σD(i), and either ri = ri+1 or ri 7→σ ri+1. We say that a chain starts at r0 and that each
ri+1 is a descendant of ri.

5 fσ is well-defined, as (cf(σD(i)))0≤i<ℓ(σD) is an ω-chain in oPLL∞ and so its sup exists by Proposition 24.

CSL 2024

8:14 Infinitary Cut-Elimination via Finite Approximations

We conclude this section by providing the sketch of proof for the continuous cut-elimination
theorem, the main contribution of this paper, establishing a productivity result and showing
that continuous cut-elimination preserves all global conditions.

▶ Theorem 33 (Continuous Cut-Elimination).
1. If D ∈ pPLL∞, then so is fσ∞(D).
2. If D ∈ wrPLL∞ (resp. D ∈ rPLL∞), then so is fσ∞(D).

Sketch of the proof.
1. We have to prove that fσ∞(D) is hyp-free (i.e., productivity) and that any of its infinite

branches contains a progressing !-thread. To facilitate our argument, leveraging on
symmetry of the cut rules, we assume w.l.o.g. that !-formulas can only be cut in the
left-hand premise of a cut-rule.
We first show that, for any infinite cut-chain (ri)i there is a descendant ri in σ∞

D (i) whose
right premise is the conclusion of a c!p-rule. Since B has infinitely many c!p rules by
progressing condition, every cut-rule with a premise in B is eventually reducible, so that
there are infinitely many i ≥ i0 such that ri 7→σ ri+1. Therefore, if the right-premise of ri

did not eventually become conclusion of a c!p-rule we could identify an infinite branch of
D that has no progressing !-thread.
Now, let B∗ be a branch of fσ∞(D). If B∗ has been obtained from D after finitely many
cut-elimination steps then it is clearly hyp-free and, if infinite, it has a progressing !-thread
(Proposition 21). Otherwise, B∗ has been constructed by an infinite cut-chain (ri)i with
minimal height. By repeatedly applying the above property, we have that there are
infinitely many ri whose rightmost premise is the conclusion of a c!p-rule r∗, and such
that ri 7→σ ri+1 is a step permuting r∗ downward (since r∗ it is on the left premise of
ri, its principal !-formula cannot be a cut-formula of ri by assumption). This means
that B∗ contains infinitely many c!p rules, and so it is hyp-free. To prove that there is
a progressing !-thread in B∗ it suffices to show that infinitely many c!p rules of B∗ are
descendants of the same branch B of D, as the existence of a progressing !-thread of B∗

would follow directly from the existence of a (unique) progressing !-thread of B.
2. Akin to linear logic, we define the depth of a coderivation as the maximal number of

nested nwbs, and we prove that the depth of (weakly) regular coderivations is always
finite. Moreover, by Proposition 26, a progressing and finitely expandable coderivation
D can be decomposed to a nwb-free finite approximation base(D) and a series of nwbs

whose calls have smaller depth. Using this property we define, by induction on the depth
of D, a maximal and transfinite ices reducing the calls of the nwbs one by one. The
proof of preservation of (weak) regularity under cut-elimination for such an ices follows
by construction since, by Remark 17, if we reduce a nwb with finite support (resp. a
periodic nwb) via our transfinite ices, then we obtain in the limit a cut-free nwb with
finite support (resp. a periodic nwb). We then show that this transfinite ices can be
compressed to a (ω-long) mc-ices using methods studied in [36, 33], and we conclude the
proof by Item 1 and by the fact that fσ∞(D) is finitely expandable and (weakly) regular
for such a mc-ices. ◀

By definition (as the sup of cut-free open coderivations) fσ∞(D) is cut-free. Each item of
Theorem 33 says in particular that fσ∞(D) is hyp-free, which means that fσ∞(D) is obtained
by eliminating all the cuts in D. This may not be the case if D does not fulfill any of the
global conditions in the hypotheses of Theorem 33: fσ∞(D) is still cut-free but may contain
some “truncating” hyp that “prevented” eliminating some cut in D, as in the example below.

M. Acclavio, G. Curzi, and G. Guerrieri 8:15

t

ax
A, A⊥

|

n

=
{

(x, x) x ∈ JAK
} u

w
v

D′

Γ, A

D′′

∆, A⊥
cut

Γ, ∆

}

�
~

n

=

 (x⃗, y⃗) ∃z ∈ JAK s.t.
(x⃗, z) ∈ JD′Kn−1

and
(z, y⃗) ∈ JD′′Kn−1

u

w
v

D′

Γ
⊥

Γ, ⊥

}

�
~

n

=
{

(x⃗, ∗) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, B`
Γ, A ` B

}

�
~

n

=
{

(x⃗, (y, z)) (x⃗, y, z) ∈ JD′Kn−1
}

t

1
1

|

n

= {∗}

u

w
v

D′

Γ, A

D′′

∆, B
⊗

Γ, ∆, A ⊗ B

}

�
~

n

=

 (x⃗, y⃗, (x, y))
(x⃗, x) ∈ JD′Kn−1

and
(y⃗, y) ∈ JD′′Kn−1

t

hyp
Γ

|

n

= ∅

u

w
v

D′

Γ
?w

Γ, ?A

}

�
~

n

=
{

(x⃗, []) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, ?A
?b

Γ, ?A

}

�
~

n

=
{

(x⃗, [y] + µ) (x⃗, y, µ) ∈ JD′Kn−1
}

u

w
v

D′

Γ, A

D′′

?Γ, !A
c!p

?Γ, !A

}

�
~

n

=
{

([⃗], [])
}

∪

 ([x1] + µ1, . . . , [xk] + µk, [x] + µ)
(x1, . . . , xk, x) ∈ JD′Kn−1

and
(µ1, . . . , µk, µ) ∈ JD′′Kn−1

Figure 12 Inductive definition of the set JDKn, for n > 0.

▶ Example 34. For any finite approximation D of the (non-weakly progressing, non-finitely
expandable) open coderivation D , we have fσ∞(D) = hyp, so fσ∞(D) = hyp by continuity.

6 Relational semantics for non-wellfounded proofs

Here we define a denotational model for oPLL∞ based on relational semantics, which interprets
an open coderivation as the union of the interpretations of its finite approximations, as in [17].
We show that relational semantics is sound for oPLL∞, but not for its extension with digging.

Relational semantics interprets exponential by finite multisets, denoted by brackets, e.g.,
[x1, . . . , xn]; + denotes the multiset union, and Mf (X) denotes the set of finite multisets
over a set X. To correctly define the semantics of a coderivation, we need to see sequents as
finite sequences of formulas (taking their order into account), which means that we have to
add an exchange rule to oPLL∞ to swap the order of two consecutive formulas in a sequent.

▶ Definition 35. We associate with each formula A a set JAK defined as follows:

JXK := DX J1K := {∗} JA ⊗ BK := JAK × JBK J!AK := Mf (JAK) JA⊥K := JAK

where DX is an arbitrary set. For a sequent Γ = A1, . . . , An, we set JΓK := JA1 ` · · · ` AnK.
Given D ∈ PLL ∪ oPLL∞ with conclusion Γ, we set JDK :=

⋃
n≥0JDKn ⊆ JΓK, where

JDK0 = ∅ and, for all i ∈ N \ {0}, JDKi is defined inductively according to Figure 12.

▶ Example 36. For the coderivations D and D? in Figure 7, JD K = JD?K = ∅. For the
derivations 0 and 1 in Figure 2, J0K = {([], (x, x)) | x ∈ DX} and J1K = {([(x, y)], (x, y)) |
x, y ∈ DX}. For the coderivation c!p(i0,...,in,...) in Example 10 (with ij ∈ {0, 1} for all j ∈ N),

Jc!p(i0,...,in,...)K = {[]} ∪
{

[xi0 , . . . , xin
] ∈ Mf (JNK) | n ∈ N, xij

∈ JijK ∀ 0 ≤ j ≤ n
}

. For the
derivation n in Example 10 (for any n ∈ N), JnK = {([(x1, x2), . . . , (xn, xn+1)], (x1, xn+1)) |
x1, . . . , xn+1 ∈ DX}. Note that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m, and that
JnK is stable under permutations of the rules ?w, ?b and ⊗ in n (that is, if D is obtained
from n by permuting the rules ?w, ?b or ⊗, then JDK = JnK).

CSL 2024

8:16 Infinitary Cut-Elimination via Finite Approximations

Γ, ??A
??d

Γ, ?A

u

w
v

D′

Γ, ??A
??d

Γ, ?A

}

�
~

0

= ∅

u

w
v

D′

Γ, ??A
??d

Γ, ?A

}

�
~

n

=
{(

x⃗,

m∑
i=1

µi

)
(x⃗, [µ1, . . . , µm]) ∈ JD′Kn−1 , m ∈ N

}

Figure 13 The rule ??d and its interpretation in the relational semantics (n > 0).

By inspecting the cut-elimination steps and by continuity, we can prove the soundness of
relational semantics with respect to cut-elimination (Theorem 38), thanks to the fact the
interpretation of a coderivation is the union the interpretations of its finite approximation.

▶ Lemma 37. Let D ∈ oPLL∞. Then, JDK = J
⊔

D′∈K(D) D′K =
⋃

D′∈K(D)JD′K.

▶ Theorem 38 (Soundness).
1. Let D ∈ oPLL∞. If D →cut D′, then JDK = JD′K.
2. Let D ∈ oPLL∞. If σ is a mc-ices, then JDK = Jfσ(D)K.

By Theorem 38 and since cut-free coderivations have non-empty semantics, we have:

▶ Corollary 39. Let D ∈ wpPLL∞. Then JDK ̸= ∅.
We define the set of rules MELL∞ := PLL∞ ∪ {??d} where the rule ??d (digging) is

defined in Figure 13. We also denote by MELL∞ the set of coderivations over the rules in
MELL∞. Relational semantics is naturally extended to MELL∞ as shown in Figure 13.

The proof system MELL∞ can be seen as a non-wellfounded version of MELL. We show
that, as opposed to several fragments of PLL∞, in any good fragment of MELL∞ with digging,
cut-elimination cannot reduce to cut-free coderivations and preserve both the progressing
condition and relational semantics.

▶ Theorem 40. Let X ⊆ MELL∞ contain non-wellfounded coderivations with ??d. Let →cut+
be a cut-elimination relation on X preserving the progressing condition, containing →cut in
Figures 3, 5, and 10 and reducing every coderivation in X to a cut-free one. Then, →cut+
does not preserve relational semantics.

Proof. Consider the coderivations D??d and D̂??d below, where D = c!p(0,1,0,1,...) and, for all
i ∈ N, Di ∈ {c!p(ki

0,...,ki
n,...) | ki

j ∈ N for all j ∈ N} (n is defined in Example 10 for all n ∈ N).

D??d :=
D

!N

ax
??N⊥, !!N

??d
?N⊥, !!N

cut
!!N

D̂??d :=
D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

Coderivations D̂??d are the only cut-free and progressing ones with conclusion !!N. Indeed, any
cut-free coderivation of !!N or !N must end with a c!p, and the only cut-free and progressing
coderivations of N are the derivations of the form n for any n ∈ N, up to permutations of
the rules ?w, ?b and ⊗ (other cut-free coderivations of N exist, but they have an infinite
branch containing infinitely many ?b rules and no c!p rules, hence they are not progressing).
Therefore, for whatever definition of the cut-elimination steps concerning ??d that preserves
the progressing condition, necessarily D??d will reduce to D̂??d, since D??d is progressing.

We show that JD̂??dK ̸⊆ JD??dK. First, it can be easily shown that if, in one of the Di =
c!p(ki

0,...,ki
n,...) in D̂??d, one of the ki

j is different from 0 or 1, then there is x ∈ JD̂??dK∖ JD??dK
(this basically follows from the fact that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m,

M. Acclavio, G. Curzi, and G. Guerrieri 8:17

see Example 36). Let us now suppose that in D̂??d, for all i ∈ N, Di = c!p(ki
0,...,ki

n,...) with
ki

j ∈ {0, 1} for all j ∈ N. Let 0̂ and 1̂ be any element of J0K and J1K, respectively (see
Example 36). Note that 0̂ ≠ 1̂. It is easy to verify that [[0̂], [0̂]], [[1̂], [1̂]] /∈ JD??dK, since
[0̂, 0̂], [1̂, 1̂] /∈ JDK (see Example 36). Concerning JD̂??dK, notice that, since k0

0, k1
0, k2

0 ∈ {0, 1},
either k0

0 = k1
0 or k1

0 = k2
0 or k2

0 = k0
0. In the first case, we have [[k0

0], [k1
0]] ∈ JD̂??dK, in the

second case we have [[k1
0], [k2

0]] ∈ JD̂??dK, and in the last case we have [[k2
0], [k0

0]] ∈ JD̂??dK. ◀

7 Conclusion and future work

For future research, we envisage extending our contributions in many directions. First, our
notion of finite approximation seems intimately related with that of Taylor expansion from
differential linear logic (DiLL) [18, 19, 15], where the rule hyp (quite like the rule 0 from DiLL,
[3]) serves to model approximations of boxes. This connection with Taylor expansions becomes
even more apparent in Mazza’s original systems for parsimonious logic [26, 27], which comprise
co-absorption and co-weakening rules typical of DiLL. These considerations deserve further
investigations. Secondly, building on a series of recent works in Cyclic Implicit Complexity,
i.e., implicit computational complexity in the setting of circular and non-wellfounded proof
theory [11, 10], we are currently working on second-order extensions of wrPLL∞ and rPLL∞ to
characterize the complexity classes P/poly and P (see [1]). These results would reformulate
in a non-wellfounded setting the characterization of P/poly presented in [27].

References
1 Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. Non-uniform polynomial time via

non-wellfounded parsimonious proofs. Unpublished. URL: http://gianlucacurzi.com/
Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf.

2 Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. Infinitary cut-elimination via finite
approximations (extended version). CoRR, abs/2308.07789, 2023. doi:10.48550/ARXIV.2308.
07789.

3 Matteo Acclavio and Giulio Guerrieri. A deep inference system for differential linear logic.
In Proceedings Second Joint International Workshop on Linearity & Trends in Linear Logic
and Applications, Linearity&TLLA@IJCAR-FSCD 2020, volume 353 of EPTCS, pages 26–49,
2020. doi:10.4204/EPTCS.353.2.

4 Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of
Cambridge tracts in theoretical computer science. Cambridge University Press, 1998.

5 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. doi:10.1017/CBO9780511804090.

6 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille,
France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

7 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum
Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19,
2007, Proceedings, volume 4790 of Lecture Notes in Computer Science, pages 92–106. Springer,
2007. doi:10.1007/978-3-540-75560-9_9.

8 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011.

9 Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25(2):95–169, 1983. doi:10.1016/0304-3975(83)90059-2.

CSL 2024

http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
https://doi.org/10.48550/ARXIV.2308.07789
https://doi.org/10.48550/ARXIV.2308.07789
https://doi.org/10.4204/EPTCS.353.2
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.1016/0304-3975(83)90059-2

8:18 Infinitary Cut-Elimination via Finite Approximations

10 Gianluca Curzi and Anupam Das. Cyclic implicit complexity. In Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3531130.3533340.

11 Gianluca Curzi and Anupam Das. Non-uniform complexity via non-wellfounded proofs.
In 31st EACSL Annual Conference on Computer Science Logic, CSL 2023, volume 252 of
LIPIcs, pages 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CSL.2023.16.

12 Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput.,
183(1):123–137, 2003. doi:10.1016/S0890-5401(03)00010-5.

13 Anupam Das. On the logical strength of confluence and normalisation for cyclic proofs. In 6th
International Conference on Formal Structures for Computation and Deduction, FSCD 2021,
volume 195 of LIPIcs, pages 29:1–29:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSCD.2021.29.

14 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 273–284. Springer, 2006.

15 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antideriv-
atives. Math. Struct. Comput. Sci., 28(7):995–1060, 2018. doi:10.1017/S0960129516000372.

16 Thomas Ehrhard and Farzad Jafar-Rahmani. On the denotational semantics of linear logic with
least and greatest fixed points of formulas. CoRR, abs/1906.05593, 2019. arXiv:1906.05593.

17 Thomas Ehrhard, Farzad Jafar-Rahmani, and Alexis Saurin. On relation between totality
semantic and syntactic validity. In 5th International Workshop on Trends in Linear Lo-
gic and Applications (TLLA 2021), June 2021. URL: https://hal-lirmm.ccsd.cnrs.fr/
lirmm-03271408.

18 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006. doi:10.1016/J.TCS.2006.08.003.

19 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008. doi:10.1016/J.TCS.2008.06.
001.

20 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Computer Science Logic 2013, CSL 2013, volume 23 of LIPIcs, pages 248–262. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

21 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

22 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
doi:10.1006/inco.1998.2700.

23 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs, system T, and the power
of contraction. Proc. ACM Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434282.

24 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1):163–
180, 2004. Implicit Computational Complexity. doi:10.1016/j.tcs.2003.10.018.

25 Damiano Mazza. Non-uniform polytime computation in the infinitary affine lambda-calculus. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming – 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 305–317. Springer, 2014. doi:10.1007/978-3-662-43951-7_26.

26 Damiano Mazza. Simple parsimonious types and logarithmic space. In 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, volume 41 of LIPIcs, pages 24–40. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.24.

27 Damiano Mazza and Kazushige Terui. Parsimonious types and non-uniform computation. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming – 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 350–361. Springer, 2015. doi:10.1007/978-3-662-47666-6_28.

https://doi.org/10.1145/3531130.3533340
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://doi.org/10.1017/S0960129516000372
https://arxiv.org/abs/1906.05593
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://doi.org/10.1016/J.TCS.2006.08.003
https://doi.org/10.1016/J.TCS.2008.06.001
https://doi.org/10.1016/J.TCS.2008.06.001
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1145/3434282
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1007/978-3-662-43951-7_26
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1007/978-3-662-47666-6_28

M. Acclavio, G. Curzi, and G. Guerrieri 8:19

28 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials.
In António Porto and Francisco Javier López-Fraguas, editors, Proceedings of the 11th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
pages 129–140. ACM, 2009. doi:10.1145/1599410.1599427.

29 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer
Science, 163(1-2):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.

30 Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second order
linear logic. Theor. Comput. Sci., 411(2):410–444, January 2010. doi:10.1016/j.tcs.2009.
07.053.

31 Myriam Quatrini. Sémantique cohérente des exponentielles: de la logique linéaire à la logique
classique. PhD thesis, Aix-Marseille 2, 1995.

32 Luca Roversi and Luca Vercelli. Safe recursion on notation into a light logic by levels. In
Patrick Baillot, editor, Proceedings International Workshop on Developments in Implicit
Computational complExity, DICE 2010, Paphos, Cyprus, 27-28th March 2010, volume 23 of
EPTCS, pages 63–77, 2010. doi:10.4204/EPTCS.23.5.

33 Alexis Saurin. A linear perspective on cut-elimination for non-wellfounded sequent calculi
with least and greatest fixed points (extended version). working paper or preprint, 2023. URL:
https://hal.science/hal-04169137.

34 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza and
Andrzej S. Murawski, editors, Foundations of Software Science and Computation Structures –
20th International Conference, FOSSACS 2017, Proceedings, volume 10203 of Lecture Notes
in Computer Science, pages 283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

35 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,
Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc.,
USA, 2006.

36 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 2003.

37 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2 edition, 2000. doi:10.1017/
CBO9781139168717.

CSL 2024

https://doi.org/10.1145/1599410.1599427
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.4204/EPTCS.23.5
https://hal.science/hal-04169137
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717

Descriptive Complexity for Neural Networks via
Boolean Networks
Veeti Ahvonen # Ñ

Tampere University, Finland

Damian Heiman #

Tampere University, Finland

Antti Kuusisto # Ñ

Tampere University, Finland

Abstract
We investigate the descriptive complexity of a class of neural networks with unrestricted topologies
and piecewise polynomial activation functions. We consider the general scenario where the running
time is unlimited and floating-point numbers are used for simulating reals. We characterize these
neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes
of the neural networks and the corresponding Boolean rule formulae are polynomially related. In
fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also
analyze the delays in running times due to the translations. In the translation from neural networks
to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time.
In the converse translation, the time delay is linear in both factors. We also obtain translations
between the rule-based logic for Boolean networks, the diamond-free fragment of modal substitution
calculus and a class of recursive Boolean circuits where the number of input and output gates match.

2012 ACM Subject Classification Computing methodologies → Neural networks; Theory of com-
putation → Finite Model Theory; Mathematics of computing → Numerical analysis; Computer
systems organization → Parallel architectures

Keywords and phrases Descriptive complexity, neural networks, Boolean networks, floating-point
arithmetic, logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.9

Related Version Full Version: https://arxiv.org/abs/2308.06277

Funding Antti Kuusisto was supported by the Academy of Finland project Theory of computational
logics, grant numbers 352419, 352420, 353027, 324435, 328987. Damian Heiman was supported
by the same project, grant number 353027. Antti Kuusisto was also supported by the Academy
of Finland consortium project Explaining AI via Logic (XAILOG), grant number 345612. Veeti
Ahvonen was supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of
Science and Letters.

1 Introduction

This article investigates the descriptive complexity of neural networks, giving a logical
characterization for a class of general neural networks which have the topology of directed
graphs and unlimited running time. The characterization is based on Boolean networks [5, 14].
Boolean networks have a long history, originating from the work of Kauffman in the 1960s [10].
Current applications include a wide variety of research relating to topics varying from biology
and medicine to telecommunications and beyond, see, e.g., [16, 15, 14].

Boolean networks are usually not defined via a logical syntax, but it is easy to give them
one as follows. Consider the set T = {X1, . . . , Xk} of Boolean variables. A Boolean rule over
T is an expression of the form Xi :− φ where Xi ∈ T is a head predicate and φ is a Boolean

© Veeti Ahvonen, Damian Heiman, and Antti Kuusisto;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veeti.ahvonen@tuni.fi
https://homepages.tuni.fi/veeti.ahvonen/
https://orcid.org/0009-0007-4819-0199
mailto:damian.heiman@tuni.fi
https://orcid.org/0009-0000-6038-7006
mailto:antti.kuusisto@tuni.fi
https://homepages.tuni.fi/antti.kuusisto/
https://orcid.org/0000-0003-1356-8749
https://doi.org/10.4230/LIPIcs.CSL.2024.9
https://arxiv.org/abs/2308.06277
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Descriptive Complexity for Neural Networks via Boolean Networks

formula over the syntax φ ::= ⊤ | Xj | ¬φ | φ∧φ, where Xj ∈ T . A Boolean program over T
is then a set of Boolean rules (over T), one rule for each Xi. Given an input f : T → {0, 1}
and executing the rules in parallel, the program then produces a time-series of k-bit strings
in a natural way (see the preliminaries section for the full details). An extended Boolean
program over T is a Boolean program over some S ⊇ T together with a terminal clause
Xj(0) :− b for each Xj ∈ S \ T , where b ∈ {⊤,⊥}. Extended programs produce time-series
just like regular programs, but they also contain auxiliary variables Xj ∈ S \ T whose initial
value is not part of the input but is instead given via a terminal clause (cf. the preliminaries
section). The logic used in this paper, Boolean network logic BNL, consists of extended
Boolean programs.

It turns out that BNL is also closely related to the diamond-free fragment of modal
substitution calculus MSC used in [11] to characterize distributed message passing automata.
Calling that fragment SC (for substitution calculus), we prove that programs of SC and BNL
can be translated to each other with only a linear increase in program size. Thereby our
characterization via BNL can alternatively be obtained via SC. Moreover, we also show that
BNL is closely related to self-feeding circuits. Informally, self-feeding circuits are a class
of Boolean circuits where the number of input and output gates match. Each self-feeding
circuit is associated with an initializing function. An initializing function fixes the input for
some subset of the set of input gates. The fixed gates are intuitively “auxiliary gates”; this is
analogous to the terminal clauses for auxiliary variables in a BNL-program. To execute a
self-feeding circuit, it is given an input that consists of values for the non-auxiliary input
gates. With a given input, a self-feeding circuit induces a time-series of bit strings (whose
length matches the number of output gates) as follows. In round zero, the bit string is
obtained as a combination of the values given by the initializing function and input. In each
subsequent round n, the string in round n is obtained by feeding the string from the previous
round n − 1 to the circuit. We prove that programs of BNL and self-feeding circuits can
likewise be translated to each other with only a linear increase in size.

The neural network (NN) model we consider is very general. We allow unrestricted
topologies for the underlying directed graphs, including loops, thereby considering the
recurrent setting. The reals are modeled via floating-point numbers and the running times
are unlimited. We show that for each NN, there exists a corresponding program of BNL
that simulates the time series of the NN for each input, and vice versa, BNL-programs can –
likewise – be simulated by NNs. Furthermore, the sizes of the NNs and BNL-programs are
shown to be polynomially related.

In a bit more detail, let S = (p, q, β) denote a floating-point system with fraction precision
p, exponent precision q and base β (see Section 3.2 for the definitions). Let N denote the
number of nodes in an NN and ∆ the maximum degree of the underlying graph. Modeling
activation functions via piecewise polynomial functions, let P denote the number of pieces
required and Ω the maximum order of the involved polynomials. Then the following holds.

▶ Theorem 14. Given a general neural network N for S = (p, q, β) with N nodes, degree
∆, piece-size P and order Ω, we can construct a BNL-program Λ such that N and Λ are
asynchronously equivalent in S where for r = max{p, q},
1. the size of Λ is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)), and
2. the computation delay of Λ is O((log(Ω) + 1)(log(r) + log(β)) + log(∆)).

Here (and also in the below theorem) asynchronous equivalence means that the modeled time
series can be repeated but with a delay between significant computation rounds. The time
delays in our results are not arbitrary but rather modest. For modeling Boolean network

V. Ahvonen, D. Heiman, and A. Kuusisto 9:3

logic via a general neural network, let the depth of a program refer to the maximum nesting
depth of Boolean formulas appearing in rules. Our result is for NNs that use the activation
function ReLU(x) = max{0, x}, but it can be generalized for other activation functions.

▶ Theorem 15. Given a BNL-program Λ of size s and depth d, we can construct a general
neural network N for any floating-point system S with at most s nodes, degree at most 2,
ReLU activation functions and computation delay O(d) (or O(s) since s > d) such that Λ
and N are asynchronously equivalent in binary.

It is worth noting that in our setting, while we allow for general topologies and unlimited
running times, our systems have inherently finite input spaces. In the framework of NN
models, this is a well-justified assumption for a wide variety of modeling purposes. Our
results stress the close relations between the size and time resources of general NNs and
BNL-programs. Furthermore, as outputs we consider time series rather than a single-output
framework. Indeed, it is worth noting that trivially a single Boolean function suffices to
model any NN with a finite input space when limiting to single outputs only and not caring
about size and time blow-ups in translations.

Related work. The closely related topic of descriptive complexity of graph neural networks
(or GNNs) has been studied by Barceló et al. in [3], and by Grohe in [7], [6]. In [7], the GNNs
operate via feedforward neural networks, and a natural connection between these models and
the circuit complexity class TC0 is established via logic. The feedforward model in [7] uses
rational piecewise linear approximable activation functions, meaning that the parameters
of the linear representations of activation functions are finitely representable in a binary
floating-point system. In the current paper, we allow floating-point systems with an arbitrary
base, which can be useful, as a change of base often allows inadmissible reals to become
admissible. Moreover, our activation functions are piecewise polynomially definable, meaning
that most of the widely used activation functions are directly representable in our framework,
e.g., ReLU. Furthermore, practically all activation functions are reasonably approximable.

Neural networks are special kinds of distributed systems, and descriptive complexity of
distributed computing was initiated in Hella et al. [8], Kuusisto [11] and Hella et al. [9] by
relating distributed complexity classes to modal logics. While [8] and [9] gave characterizations
to constant-time distributed complexity classes via modal logics, [11] lifted the work to general
non-constant-time algorithms by characterizing finite distributed message passing automata
via the modal substitution calculus MSC. This was recently lifted to circuit-based networks
with identifiers in Ahvonen et al. [1], also utilizing modal substitution calculus. The logic
MSC has been linked to a range of other logics. For example, in [11], it is shown to contain
the µ-fragment of the modal µ-calculus, and it is easy to translate MSC into a fragment of
partial fixed-point logic. Building on [11], Reiter shows in [13] that this fragment of the modal
µ-calculus captures finite message passing automata in the asynchronous setting. It is worth
noting here that also [3] utilizes modal logic, establishing a match between aggregate-combine
graph neural networks and graded modal logic. The logics BNL and SC used in this article
are rule-based systems. Rule-based logics are used widely in various applications, involving
systems such as Datalog, answer-set programming (ASP) formalisms, and many others.

2 Preliminaries

First we introduce some basic concepts. For any set S, we let ℘(S) denote the power set of
S and we let |S| denote the size (or cardinality) of S. We let N and Z+ denote the sets of
non-negative and positive integers respectively. For every n ∈ Z+, we let [n] = {1, . . . , n} and
[0;n] = {0, . . . , n}. We let bold lower-case letters a,b, c, . . . denote strings. The letters of a

CSL 2024

9:4 Descriptive Complexity for Neural Networks via Boolean Networks

string are written directly next to each other, i.e. abc, or with dots in-between, i.e. a · b · c,
or a mix of both, i.e. abc · def . Omitted segments of strings are represented with three dots,
i.e. abcd · · ·wxyz. If s = s0 · · · sk−1 is a string of length k, then for any j ∈ [0; k − 1], we let
s(j) denote the letter sj . The alphabet for the strings will depend on the context. We let
VAR = {Vi | i ∈ N } denote the (countably infinite) set of all schema variables. Mostly, we
will use meta variables X, Y , Z and so on, to denote symbols in VAR. We assume a linear
order <VAR over the set VAR. Moreover, for any set T ⊆ VAR, a linear order <T is induced
by <VAR. We let PROP = { pi | i ∈ N } denote the (countably infinite) set of proposition
symbols that is associated with the linear order <PROP, inducing a linear order <P over any
subset P ⊆ PROP. We let Π ⊆ PROP denote a finite subset of proposition symbols. When
we talk about rounds in any context, we refer to non-negative integers that are interpreted
as discrete steps of a computation.

2.1 Discrete time series
Next we consider infinite sequences of bit strings, i.e., we consider discrete time series of
strings over the alphabet {0, 1}. To separate important strings from less important ones, we
need to define when a time series produces an output; importantly, we allow an arbitrary
number of outputs. We will define two separate general output conditions for time series. In
the first approach, special bits indicate when to output. In the second approach the output
rounds are fixed, and we do not include bits that indicate when to output.

The formal definition for the first approach is as follows. Let k ∈ Z+ and let B denote an
infinite sequence (bj)j∈N of k-bit strings bj ∈ {0, 1}k. Let A ⊆ [k] and P ⊆ [k] be subsets of
bits called attention bits and print bits respectively (or bit positions, strictly speaking).
The sets A and P induce corresponding sequences (aj)j∈N and (pj)j∈N of substrings of the
strings in B. More formally, (aj)j∈N records the substrings with positions in A, and (pj)j∈N
records the substrings with positions in P . Next we define output conditions for B with
respect to attention and print bits. If at least one bit in an is 1 (for some n ∈ N), then we
say that B outputs pn in round n and that n is an output round. More precisely, B
outputs in round n with respect to (k, A, P), and pn is the output of B in round
n with respect to (k, A, P). Let O ⊆ N be the set of output rounds induced by B w.r.t.
(k,A, P); they induce a subsequence (bj)j∈O of B. We call the sequence (pj)j∈O the output
sequence of B (w.r.t. (k,A, P)).

Next we define an output condition where output rounds are fixed by a set O ⊆ N and
attention bits are excluded. We say that S outputs in rounds O (and also, in any particular
round n ∈ O). Outputs and output sequences w.r.t. (k,O, P) are defined analogously.

We study the two approaches for the sake of generality. The difference between the two
output frameworks is that the output rounds are induced internally from within the sequence
in the first approach, while they are given externally from the outside in the second one.
For instance, it is natural to indicate output conditions within a program if it is part of the
program’s design. Retroactively, it might be more natural to augment a program to draw
attention to rounds the original design doesn’t account for, and a different mechanism could
be used to compute the output rounds, e.g., a Turing machine.

2.2 Modal substitution calculus MSC and Boolean network logic BNL
We next define modal substitution calculus MSC introduced in [11]. Let Π ⊆ PROP be a finite
set of proposition symbols and T ⊆ VAR. A terminal clause (over (Π, T)) is a string of the
form Vi(0) :− φ, where Vi ∈ T and φ is defined over the language φ ::= ⊤ | pi | ¬φ | φ∧φ | ♢φ
where pi ∈ Π (i.e., φ is a formula of modal logic over Π). An iteration clause (over (Π, T)) is

V. Ahvonen, D. Heiman, and A. Kuusisto 9:5

a string of the form Vi :− ψ where ψ is a (Π, T)-formula of modal substitution calculus
(or MSC) defined over the language ψ ::= ⊤ | pi | Vi | ¬ψ | ψ ∧ ψ | ♢ψ where pi ∈ Π and
Vi ∈ T . We also use symbols ⊥,∨,→ and ↔ as shorthand in the usual way. In a terminal
clause Vi(0) :− φ, the symbol Vi is the head predicate and φ is the body of the clause.
Analogously, for an iteration clause Vi :− ψ, we say that Vi is the head predicate and ψ is
the body of the iteration clause.

Let T = {X1, . . . , Xn} ⊆ VAR be a finite, nonempty set of n ∈ Z+ distinct schema
variables. A (Π, T)-program of MSC is defined as a list

X1(0) :− φ1 X1 :− ψ1,

...
...

Xn(0) :− φn Xn :− ψn,

where each schema variable in T has precisely one terminal and one iteration clause. Inform-
ally, the terminal and iteration clauses of a program can be seen as the “rules” of the program.
The diamond-free fragment of MSC called substitution calculus SC simply restricts the
terminal and iteration clauses, not allowing diamonds ♢. Note that in SC the bodies of
terminal clauses are thereby formulae of propositional logic. Moreover, the programs of
MSC (and SC) are also associated with a set P ⊆ T of print predicates and either a set
A ⊆ T of attention predicates or an attention function A : {0, 1}k → ℘(N), where k
is the number of distinct proposition symbols that appear in the program. Informally, the
attention predicates and the attention function are analogous to the two output conditions
discussed for time series. We will later discuss how either can be used to determine a set of
output rounds for the program. We use attention predicates by default, and only discuss the
attention function when specified.

Usually, a run of a program of MSC is defined over a Kripke-model, but a run of a
(Π, T)-program of SC is defined over a model M of propositional logic, i.e., M is a valuation
Π → {0, 1} assigning a truth value to each proposition symbol in Π. The semantics of
formulae of propositional logic in model M are defined as follows: M |= pi (read: pi is true
in M) iff the valuation of pi is 1, and the semantics of ∧, ¬ and ⊤ is the usual one. If Π′ ⊆ Π
is the set of proposition symbols that appear in the program, the linear order <Π′ and the
model M induce a binary string i ∈ {0, 1}|Π′| that serves as input, i.e., the ith bit of i is 1 iff
the valuation of the ith proposition in Π′ is 1. Let Λ be a (Π, T)-program of MSC. The truth
of a (Π, T)-formula ψ in round n ∈ N (written M |= ψn) is defined as follows: 1) M |= ⊤n

always holds, 2) M |= pn
i iff M |= pi (where pi ∈ Π), 3) if ψ := ¬θ, then M |= (¬θ)n iff

M ̸|= θn, 4) if ψ := (χ ∧ θ), then M |= (χ ∧ θ)n iff M |= χn and M |= θn, and 5) the truth
of a head predicate Xi is defined separately as follows. We define that M |= X0

i if M |= φi

where φi is the body of the terminal clause of Xi in Λ. Assume we have defined the truth of
all (Π, T)-formulae in round n. We define that M |= Xn+1

i iff M |= ψn
i where ψi is the body

of the iteration clause of Xi in Λ.
We then define Boolean network logic (or BNL) which we will later show to be

equivalent to the fragment SC. Boolean network logic gets its name from Boolean networks,
which are discrete dynamical systems commonly used in various fields, e.g., biology, telecom-
munications and various others. For example, they are used to describe genetic regulatory
networks (e.g., [10]). A Boolean network consists of a set of Boolean variables, i.e. variables
that only get Boolean values 0 or 1. Each variable is given an initial Boolean value called the
“seed”. The Boolean values of all variables are updated in discrete steps starting with the
seed. In each step, each variable updates its Boolean value using its own Boolean function.
The updated value is determined from the Boolean values of all variables in the previous
step. There is no general syntax for Boolean networks, but BNL will give us a suitable one.

CSL 2024

9:6 Descriptive Complexity for Neural Networks via Boolean Networks

Let T ⊆ VAR. A T -formula of Boolean network logic (or BNL) is defined over
the language ψ ::= ⊤ | Vi | ¬ψ | ψ ∧ ψ, where Vi ∈ T (i.e. we do not include propositions).
Assume now that T is finite and nonempty. There are three main differences between T -
programs of BNL and SC: 1) The terminal clauses of BNL are either of the form X(0) :− ⊤
or X(0) :− ⊥. 2) The bodies of iteration clauses of BNL are T -formulae of BNL. 3) Each
schema variable in a BNL-program has exactly one iteration clause and either one or zero
terminal clauses. We let I denote the predicates that do not have terminal clauses, which
we call input predicates. For example, consider a BNL-program with the terminal clause
X(0) :− ⊤ and the iteration clauses Y :− Y ∧ X and X :− ¬X. Here Y is the sole input
predicate and X acts as an auxiliary predicate. Bodies and head predicates of clauses are
defined analogously to SC (and MSC). A BNL-program also includes print predicates and
either attention predicates or an attention function A : {0, 1}k → ℘(N), where k = |I|.

The run of a program of BNL is defined over a model M, i.e. M is a valuation I → {0, 1}.
Analogously to a model of SC, any model for BNL and the set I induce a binary string
i ∈ {0, 1}|I| that serves as input. (Note that vice versa each string i ∈ {0, 1}|I| induces a
model with valuation I → {0, 1} such that Ij 7→ i(j) if I0, . . . , I|I|−1 enumerates the set I
in the order <VAR.) The truth of a T -formula is defined analogously to SC except for the
truth value of head predicates in round 0. If X ∈ I, we define that M |= X0 if the valuation
of X in M is 1. If X /∈ I, then M |= X0 if the body of the terminal clause of X is ⊤.

Let X1, . . . , Xn enumerate the set T of schema variables (in the order <VAR). Let Λ be a
T -program of SC (or BNL), and M a model for SC (or respectively M for BNL) that induces
an input i ∈ {0, 1}k, where k is the number of proposition symbols (or resp. the number
of input predicates). Each time step (or round) t ∈ N defines a global configuration
gt : T → {0, 1}. The global configuration at time step t is induced by the values of head
predicates, i.e., gt(Xi) = 1 iff M |= Xt

i (or resp. M |= Xt
i), for each Xi ∈ T . Thus, an

SC-program (or BNL-program) also induces an infinite sequence (st)t∈N called the global
configuration sequence (with input i), where st = gt(X1) · · · gt(Xn). The set of print
predicates P corresponds to the set of print bits { i | Xi ∈ P }. If the program has attention
predicates A, then A corresponds to the set of attention bits { i | Xi ∈ A }. If the program
has an attention function A, then the output rounds are given by A(i). Therefore, analogously
to the general output conditions defined for infinite sequences of bit strings, a program of
SC or BNL with an input i also induces output rounds and an output sequence w.r.t.
(n,A,P) (or resp. w.r.t. (n,A(i),P)).

We say that a (Π, T)-program of SC and a T ′-program of BNL (or likewise, two BNL-
programs) are asynchronously equivalent if they have the same output sequences with
every input. We say that they are globally equivalent if they also have the same global
configuration sequences and output rounds with each input (note that identical inputs require
that |Π′| = |I|, where Π′ ⊆ Π is the set of proposition symbols that appear in the SC-program
and I is the set of input predicates of the BNL-program). We define the delay between two
asynchronously equivalent objects x and y. Let x1, x2, . . . and y1, y2, . . . enumerate their
(possibly infinite) sets of output rounds in ascending order. Assume that the cardinality of
the sets of output rounds is the same and xn ≥ yn for every n ∈ N. If T is the smallest
amount of time steps (that might depend on x or y) such that T · yn ≥ xn for every n ∈ N,
then we say that the computation delay of x is T . The case for yn ≥ xn is analogous.

The size of a program of SC or BNL is defined as the number of appearances of ⊤,
proposition symbols pi, head predicates Vi and logical connectives ¬ and ∧ in its terminal
and iteration clauses. The depth d(ψ) of a BNL-formula or SC-formula is defined recursively:

V. Ahvonen, D. Heiman, and A. Kuusisto 9:7

1) d(pi) = d(⊤) = d(X) = 0, where pi is a proposition symbol and X is a schema variable,
2) d(¬ψ) = d(ψ) + 1 and 3) d(ψ ∧ θ) = max{d(ψ), d(θ)} + 1. The depth of a BNL-program
is the maximum depth of the bodies of its iteration clauses.

BNL-programs inherit a number of properties from Boolean networks. Each reachable
combination of truth values for the head predicates (i.e., each reachable global configuration) is
called a state and together they form a state space. Note that certain global configurations
may not be reachable, because neither they nor their preceding states are possible states at
round 0 due to the terminal clauses of the BNL-program. Given that the number of states
is finite, a BNL-program will eventually either reach a single stable state or begin looping
through a sequence of states. A stable state is called a point attractor, a fixed-point
attractor or simply a fixed point, whereas a looping sequence of multiple states is a cycle
attractor. The smallest amount of time it takes to reach an attractor from a given state
is called the transient time of that state. The transient time of a BNL-program is the
maximum transient time of a state in its state space [5]. The concept of transient time is
also applicable to SC, since it is also deterministic and eventually stabilizes with each input.

Consider the fragment BNL0 where no head predicate of a program is allowed to have a
terminal clause. The programs of this logic BNL0 are an exact match with Boolean networks;
each program encodes a Boolean network, and vice versa. The logic BNL extends this
framework by allowing terminal clauses.

A BNL-program that only has fixed points (i.e., no input leads to a cycle attractor)
and outputs precisely at fixed points, is called a halting BNL-program. For a halting
BNL-program Λ with input predicates I and print predicates P, each input i ∈ {0, 1}|I|

results in a single (repeating) output denoted by Λ(i), which is the output string determined
by the fixed-point values of the print predicates. In this sense, a halting BNL-program is like
a function Λ: {0, 1}|I| → {0, 1}|P|. We say that Λ specifies a function f : {0, 1}ℓ → {0, 1}k

if |I| = ℓ, |P| = k and Λ(i) = f(i) for all i ∈ {0, 1}ℓ. The computation time of a halting
BNL-program is its transient time.

We introduce two useful tools that are used when constructing BNL-programs (these
tools are also definable via MSC or SC). Flagging is one of the most useful tools similar to
adding “if-else” conditions in programming. Given two formulae φ and χ, and a rule X :− ψ,
flagging X (w.r.t. φ and χ) means rewriting the rule X :− ψ as X :− (φ ∧ ψ) ∨ (¬φ ∧ χ).
Now, if φ is true then the truth value of X depends on the truth value of ψ, and if φ is false
then the truth value of X depends on the truth value of χ. We call φ the flag and χ the
backup. Often χ is X itself meaning that the truth value of X does not change if φ is false.
Using flags, it is possible to create branches in a program, and thereby combine subprograms
into a single, bigger program.

A one-hot counter is defined as a sequence of schema variables T0, T1, . . . , Tn with the
terminal clauses T0(0) :− ⊤ and Ti(0) :− ⊥ for all i ≥ 1, and iteration clauses T0 :− Tn and
Ti :− Ti−1 for all i ≥ 1. Exactly one of these schema variables is true in any one time step,
and they turn on in a looping sequence from left to right. Tt is true in round t for all t ≤ n.
In round n+ 1, T0 is true again and the cycle continues. This is ideal for flagging: Tn can be
used as a flag for attention predicates to trigger an output round once every n time steps.

We are ready to prove that BNL is equivalent to SC.

▶ Theorem 1. Each SC-program of transient time T has an asynchronously equivalent
BNL-program of linear size and transient time T + 1, and each BNL-program has a globally
equivalent SC-program of linear size.

CSL 2024

9:8 Descriptive Complexity for Neural Networks via Boolean Networks

Proof sketch. For the full proof, see [2]. From SC to BNL, we create a BNL-program that
uses one time step to compute the terminal clauses of the SC-program; the terminal clauses
of the SC-program are embedded into the iteration clauses of the BNL-program using a
flag. From BNL to SC, we amend the BNL-program with the missing terminal clauses using
proposition symbols. ◀

2.3 Link to self-feeding circuits
In this section we introduce self-feeding circuits. We will show that for every BNL-program,
we can construct an equivalent self-feeding circuit and vice versa. We also pay special
attention to the size and time complexities in the translations.

We first recall some basics related to circuits and then define a related self-feeding circuit
model. A Boolean circuit is a directed, acyclic graph where at least each node of non-zero
in-degree is labeled by one of the symbols ∧,∨,¬. The nodes of a circuit are called gates.
The in-degree of a gate u is called the fan-in of u, and the out-degree of u is the fan-out.
The input gates of a circuit are precisely the gates that have zero fan-in and no label ∧,∨
or ¬. The output gates are the ones with fan-out zero; we allow multiple output gates in a
circuit. The fan-in of every gate labeled with ¬ is 1.

The size |C| of a circuit C is the number of gates in C. The depth depth(C) (or the
computation/evaluation time) of C is the length of the longest path (number of edges)
from an input gate to an output gate. The height height(G) of a gate G in C is the length
of the longest path from an input gate to the gate G. The sets of input and output gates of
a circuit are both linearly ordered. A circuit with n input gates and k output gates then
computes (or specifies) a function of type {0, 1}n → {0, 1}k. This is done in the natural
way, analogously to the Boolean operators corresponding to ∧,∨,¬; see, for example, [12] for
the formal definition. The output of the circuit is the binary string determined by the bits of
the output gates. Note that gates with the labels ∧,∨ can have any fan-in (also 0), meaning
that by default, circuits have unbounded fan-in. In the elaborations below, we say a circuit
is fan-in bounded (or the circuit has a bounded fan-in) if the fan-in of every ∧-gate and
∨-gate of the circuit is at most 2. The ∧-gates that have zero fan-in always output 1, and
therefore correspond to the symbol ⊤. The ∨-gates that have zero fan-in always output 0
and therefore, similarly, correspond to the symbol ⊥.

Analogously to circuits, a Boolean formula φ with n variables specifies a function of type
{0, 1}n → {0, 1}. Let B denote the set of all Boolean formulas, and let C denote the set of all
circuits. Given x and y in the set B ∪ C, we say that x and y are equivalent if they specify
the same function.

Let k ∈ Z+. A self-feeding circuit for k is a circuit C that specifies a function

f : {0, 1}k → {0, 1}k.

The circuit C is associated with a set of input positions I ⊆ [k] and an initializing
function π : [k] \ I → {0, 1}. The elements of [k] \ I are called auxiliary positions.
Moreover, C is also associated with a set P ⊆ [k] of print positions and either with a set
A ⊆ [k] of attention positions or an attention function a : {0, 1}|I| → ℘(N).

Informally, a self-feeding circuit computes as follows. The non-auxiliary input gates
are fed with the input and the auxiliary input gates are fed with the values given by the
initializing function; then the circuit produces an output in the ordinary way. After that
in each round n the output from the previous round n− 1 is fed back to the circuit itself
to produce a new binary string. We then define the computation of self-feeding circuits
formally. Let C be a self-feeding circuit for k with input positions I and input i : I → {0, 1}

V. Ahvonen, D. Heiman, and A. Kuusisto 9:9

(or the corresponding bit string i ∈ {0, 1}|I|). Respectively, the function π ∪ i corresponds
to the binary string sπ∪i ∈ {0, 1}k, where for each j ∈ [k], if j ∈ I, then sπ∪i(j − 1) = i(j)
and if j /∈ I, then sπ∪i(j − 1) = π(j). Each round n ∈ N defines a global configuration
gn ∈ {0, 1}k. The configuration of round 0 is the k-bit binary string g0 = sπ∪i. Recursively,
assume we have defined gn. Then gn+1 is the output string of C when it is fed with the
string gn. Now, consider the sequence (gn)n∈N of k-bit strings that C produces. The circuit
C with input i (or i) also induces a set of output rounds and an output sequence w.r.t.
(k,A, P) (or (k, a(i), P)). Analogously to SC and BNL, we define asynchronous equivalence,
global equivalence and computation delay between two self-feeding circuits or between a
self-feeding circuit and a program.

We recall a well-known fact. The lemma below is related to the fact that the Boolean
functions in the circuit complexity class NC1 (with one output gate) are equivalent to the
Boolean functions in the class of polynomial-size Boolean formulas.

▶ Lemma 2 ([4]). Given a Boolean formula of size n, there exists an equivalent circuit with
bounded fan-in, one output gate, size O(n2) and formula depth O(log n).

It is easy to obtain the following theorems.

▶ Theorem 3. Given a BNL-program of size n and depth d, we can construct a globally
equivalent self-feeding circuit with bounded fan-in, size O(n) and depth d. Moreover, we can
also construct a globally equivalent self-feeding circuit with bounded fan-in, size O(n3) and
depth O(log n).

Proof. We prove both claims at once. Let Λ be a BNL-program of size n. We construct
a globally equivalent self-feeding circuit CΛ as follows. Let X1, . . . , Xm enumerate the
head predicates and ψ1, . . . , ψm the corresponding rules of the head predicates of Λ. Let I
denote the set of input predicates of Λ. Each rule ψi is transformed into a corresponding
circuit Ci with bounded fan-in as follows. To prove the first claim, each Ci is obtained in a
straightforward way from the tree representation of ψi, and therefore the size of each circuit
Ci is linear in the size of ψi. Respectively to prove the second claim, each Ci is obtained
by applying Lemma 2. We combine each circuit Ci to one circuit CΛ such that they share
the common input gates. The initializing function π is defined as follows. If Xi /∈ I, then
π(i) = 1 if the rule of the terminal clause of Xi is ⊤ and respectively π(i) = 0 if the rule
of the terminal clause of Xi is ⊥. The depth of the obtained circuit CΛ is O(log n) if each
circuit Ci is obtained by applying Lemma 2 and otherwise the depth is d, since combining
circuits does not affect the depth. The size of CΛ is O(n3) if Lemma 2 was applied to circuits
Ci since there are at most n head predicates and the size of each Ci is O(n2). Otherwise
the size of C is O(n) since each Ci was linear in the size of the corresponding rule ψi. The
corresponding input positions, print positions and attention positions (or attention function)
are straightforward to define. Clearly CΛ is globally equivalent to Λ. ◀

▶ Theorem 4. Given a self-feeding circuit C with size n, depth d and m edges, we can
construct an asynchronously equivalent BNL-program of size O(n + m) and computation
delay O(d). Moreover, if C has bounded fan-in then the size of the program is O(n).

Proof. The proof is heavily based on the proof of Lemma 3 and Theorem 4 in [1], but we give
a sketch of the proof. We assume that d > 0. The case for d = 0 is trivial. First we modify
C so that we obtain a globally equivalent circuit C ′ of size O(n) such that the height of each
output gate is O(d), see for example [1]. We define a one-hot counter T0, . . . , Tdepth(C′) as
defined before. We define a head predicate XG for each gate G in C ′ as follows. If G is an

CSL 2024

9:10 Descriptive Complexity for Neural Networks via Boolean Networks

∧-gate at height h and Y1, . . . , Yk are corresponding head predicates of gates that connect to
G, then XG :− (Th ∧ Y1 ∧ · · · ∧ Yk) ∨ (¬Th ∧ψG), where ψG is XG if G is not an output gate
and otherwise ψG is ⊥. Moreover, if the fan-in of G is zero, then XG :− (Th ∧⊤)∨(¬Th ∧ψG).
The cases for ∨-gates and ¬ -gates are analogous. Intuitively, the one-hot counter is used
as a flag to make sure that each XG evaluates in the correct time. Let π be the initializing
function of C ′. If G is the ith input gate and G′ is the ith output gate, then we define
XG :− (T0 ∧XG′) ∨ (¬T0 ∧XG).

The input, print and attention predicates are the predicates corresponding to the output
gates in input, print and attention positions respectively. If C ′ has an attention function a,
then we define the attention function a′ such that a′(i) = { (depth(C ′) + 1)n | n ∈ a(i) }. The
constructed program is clearly asynchronously equivalent to C. Moreover the computation
delay is O(d) since it takes depht(C ′) rounds to “simulate” each round of C. The size is also
clearly O(n+m) and O(n) if C is fan-in bounded. ◀

3 Arithmetic with BNL

In this section we first show how to carry out integer addition and multiplication in Boolean
network logic in parallel. We then extend this demonstration to floating-point arithmetic,
including floating-point polynomials and piecewise polynomial functions.

The algorithms we use for integers are mostly well known and thus some of the formal
details are spared; they can be found in [2]. Informally, the idea is to split both addition
and multiplication into simple steps that are executed in parallel. We will show that we
can simulate integer arithmetic (respectively, floating-point arithmetic) by programs whose
size is polynomial in the size of the integers (respectively, in the size of the floating-point
system). We also analyze the time delays of the constructed programs. The time delay is
polylogarithmic in the size of the integers (and resp. in the size of the floating-point system)
and sometimes even a constant. Ultimately, the same applies to floating-point polynomials
and piecewise polynomial functions.

3.1 Integer arithmetic
We next define how a halting BNL-program simulates integer functions in an arbitrary base
β ∈ Z, β ≥ 2. Informally, we represent integers with bit strings that are split into substrings
of length β, where exactly one bit in each substring is 1 and the others are 0. Formally, let
s1, . . . , sk ∈ {0, 1}β be one-hots, i.e. bit strings with exactly one 1. We say that s = s1 · · · sk

corresponds to b1 · · · bk ∈ [0;β − 1]k if for every bi, we have si(bi) = 1 (and other values
in si are zero). For example, if β = 5, then 00100 · 01000 · 00001 ∈ {0, 1}β·3 corresponds to
2 · 1 · 4 ∈ [0; 4]3. We say that s is a one-hot representation of b1 · · · bk.

Using the binary one-hot representations, we can present integers in BNL by assigning
each bit with a head predicate that is true if and only if the bit is 1. The sign (+ or −) of a
number can likewise be handled with a single bit that is true iff the sign is positive.

▶ Definition 5. Let β ∈ Z, β ≥ 2, be a base. We say that a halting BNL-program Λ
simulates (or computes) a function f : [0;β − 1]ℓ → [0;β − 1]k if for each input string
i ∈ {0, 1}ℓβ that corresponds to b ∈ [0;β − 1]ℓ, the output Λ(i) also corresponds to f(b).

We note that comparison of two p-length integers in base β can be simulated with a
BNL-program of size O(pβ2 + p2) and computation time 2. The one-hot representations of
the numbers are first coded into input predicates. Then in round 1, auxiliary predicates
determine which number has the higher digit in each position, which requires β2 space for

V. Ahvonen, D. Heiman, and A. Kuusisto 9:11

each of the p positions. Finally in round 2, the attention/output predicates check that if the
first number had a lower digit in some position i, then it has a greater digit in some position
j to the left of i; this requires O(p2) space.

Parallel addition
In this section we construct a parallel integer addition algorithm via BNL-programs. The
algorithm is mostly well known and is based on how integer addition is computed in Nick’s
class NC1 (sometimes called the carry-lookahead method), i.e., we parallelize the textbook
method (sometimes called the long addition algorithm). Here the main difference to integer
addition in Nick’s class is that we generalize the algorithm for arbitrary bases.

To illustrate our method of carrying out integer addition, consider the following example
of adding x = 614 and y = 187 in base 10. Let c1, c2 and c3 denote the carry over digits and
let s1, s2, s3 and s4 denote the digits of the sum x + y from right to left. We have

c1 = 1 = ⌊(4 + 7)/10⌋, c2 = 1 = ⌊(1 + 8 + c1)/10⌋, c3 = 0 = ⌊(6 + 1 + c2)/10⌋

and therefore s1 = 1, s2 = 0, s3 = 8 and s4 = 0 = c3, since (4 + 7) ≡ 1(mod 10),
(1 + 8 + 1) ≡ 0(mod 10) and (6 + 1 + 1) ≡ 8(mod 10). Therefore x + y = 0801, as wanted.
As we can see, in order to know that c2 = 1 we have to first check if c1 = 1. In other words,
we have to check if a carry from a previous position has been propagated forward.

Now we are ready to prove the following lemma.

▶ Lemma 6. Given a base β ∈ Z, β ≥ 2 and p ∈ Z+, adding two numbers in [0;β − 1]p can
be simulated with a (halting) BNL-program of size O(p3 + pβ2) and computation time O(1).

Proof. We start with an informal description. Consider the addition of two p-digit integers
x = xp · · ·x1 and y = yp · · · y1 in a base β ≥ 2 (we also allow leading zeros). We assume that
the signs of both x and y are positive since this can be easily generalized for arbitrary signs.
For i ∈ [p], we let c1 =

⌊
x1+y1

β

⌋
and ci+1 =

⌊
xi+1+yi+1+ci

β

⌋
denote the carry digits. We let s

denote the result of the addition, that is, x + y = (xp · · ·x1) + (yp · · · y1) = sp+1 · · · s1 =: s,
where for j ∈ [p], xj + yj + cj−1 ≡ sj modβ (if j = 1, then cj−1 is omitted), and sp+1 = cp.
The hard part is to compute the carry digits ci. We note that ci is 1 if and only if the sum
of xi, yi and ci−1 is at least β. The problem is that the sum of xi and yi might be less than
β. Therefore, we have to also check if ci−1 is 1. To compute ci−1 we have to check if the
sum of xi−1, yi−1 and ci−2 is at least β and so on. So in order to compute ci, we might have
to check all previous carry digits.

So, in the worst case for ci there are O(p) possibilities where adding xj and yj (j < i)
might lead the carry digit cj to become 1 and in the worst case there are O(p) digits between
j and i for whom we need to check if they carry cj further. Since we are going to use one-hot
representations this requires O(p3 + pβ2) space in total but it can be done in O(1) time
steps, as we will show next.

We will write a BNL-program of size O(p3 + pβ2) that computes the sum of two integers
(where β is the base and p is the length of the integers) in O(1) steps. We assume that integers
x = xp · · ·x1 and y = yp · · · y1 in [0;β − 1]p (where we allow leading zeros) are encoded
to variables Xj,m and Yj,m, where j ∈ [p] and m ∈ [0;β − 1], using one-hot representation.
For example, consider the integer 13. It can be represented in base 10 with the following
variables: Z1,0, . . . , Z1,9 and Z2,0, . . . , Z2,9, where precisely Z2,1 and Z1,3 are true and the
others are false. For i ∈ [p] and b ∈ {0, 1}, we have

CSL 2024

9:12 Descriptive Complexity for Neural Networks via Boolean Networks

Oi,b :−
∨

⌊(n+m+b)/β⌋=1

(Xi,n ∧ Yi,m)

︸ ︷︷ ︸
O(β)

, Ci :−
∨

1≤j≤i

(
Oj,0 ∧

∧
j<k<i

(
Ok,1

))
︸ ︷︷ ︸

O(p2)

.

The predicates Oi,0 determine whether the sum of the digits in position i will result in a
carry-over digit. The predicates Oi,1 determine whether the sum of the digits in position i

will result in a carry-over digit presuming that the sum of digits in position i− 1 has resulted
in a carry-over digit. Finally, the predicates Ci determine whether a carry-over digit is
created in position i taking into account the whole sum.

Therefore we can write rules for variables Si,k (i ∈ [p+ 1] and k ∈ [0;β − 1]) that will
represent the sum of x and y in one-hot representation. For i = 1 and k ∈ [0;β − 1], we have

S1,k :−
∨

n+m≡k(mod β)

(X1,n ∧ Y1,m)

︸ ︷︷ ︸
O(β)

and for i ∈ {2, . . . , p}, we have

Si,k :−
∨

n+m≡k(mod β)

(Xi,n ∧ Yi,m ∧ ¬Ci−1)

︸ ︷︷ ︸
O(β)

∨
∨

n+m+1≡k(mod β)

(Xi,n ∧ Yi,m ∧ Ci−1)

︸ ︷︷ ︸
O(β)

.

For i = p+ 1, we have Sp+1,0 :− ¬Cp, Sp+1,1 :− Cp, and Sp+1,k :− ⊥ for every k ∈ [β − 1].
After three iteration rounds, the values of predicates Si,k have been computed. The program
could be timed by using one-hot counters and flags correctly to avoid unwanted values for
the predicates in steps one and two, but this is trivial to add and does not affect the size
and time complexity. We have O(p) predicates Oi,b of size O(β), O(p) predicates Ci of
size O(p2) and O(pβ) predicates Si,k of size O(β). The total size of the program is thus
O(pβ + p3 + pβ2) = O(p3 + pβ2).

If x and y both have negative signs, we can use the same addition algorithm; the output
simply includes a negative sign. If x and y have opposite signs, we need to use a subtraction
algorithm instead. First, we need to compare x and y with signs omitted; in other words, we
compare which number has a greater absolute value (this also determines the sign of the
output). As stated before, this requires O(pβ2 + p2) space and 2 iteration rounds. Then, we
modify the addition algorithm above in the following way. Instead of adding digits together,
we subtract them; the digits of the number with the smaller absolute value are subtracted
from the digits of the number with the greater absolute value. If the subtraction of two digits
goes below 0, it results in a negative carry −1. Otherwise the algorithm works in the same
exact way, and thus adds nothing to the size and time complexity of the program. ◀

Parallel multiplication
In this section we introduce a parallel multiplication algorithm. The parallelization method
is mostly well known and is based on splitting the multiplication into simple addition tasks.

▶ Lemma 7. Given a base β ∈ Z, β ≥ 2, multiplication of any two numbers in [0;β − 1]p
can be simulated with a (halting) BNL-program of size O(p4 + p3β2 + pβ4) and computation
time O(log(p) + log(β)).

V. Ahvonen, D. Heiman, and A. Kuusisto 9:13

Proof sketch. The formal explanations and examples are in [2]. Assume that we have two
p-digit integers (we allow leading zeros, i.e. the leftmost digits can be zeros): a multiplicand
x and a multiplier y = yp · · · y1 in an arbitrary base β ∈ Z, β ≥ 2. The parallel multiplication
algorithm computes in the following two steps. (1) We run p different multiplications in
parallel where the multiplicand x is multiplied by yi0 · · · 0 with i− 1 zeros on the right (for
each i ∈ [p] in base β). Each multiplication is actually also computed in parallel by using
the parallel addition algorithm to obtain relatively small space and time complexities. As a
result we obtain p different numbers of length 2p. (2) We add the numbers obtained in the
first step together in parallel using the parallel addition algorithm. ◀

3.2 Floating-point arithmetic
In this section we consider floating-point arithmetic, including polynomials and piecewise
polynomial functions. We show that BNL-programs can simulate these in polynomial space
and in polylogarithmic time, and some simple arithmetic operations even in constant time.

Floating-point system
A floating-point number in a system S = (p, q, β) (where p, q, β ∈ Z+, β ≥ 2) is a number
that can be represented in the form ±0.d1d2 · · · dp × β±e1···eq , where di, ei ∈ [0;β − 1]. For
such a number in system S, we call f = 0.d1d2 . . . dp the fraction, the dot between 0 and d1
the radix point, p the fraction precision, e = ±e1 · · · eq the exponent, q the exponent
precision and β the base (or radix).

A floating-point number in a system S may have many different representations such as
0.10 × 101 and 0.01 × 102 which are both representations of the number 1. To ensure that our
calculations are well defined, we desire a single form for all non-zero numbers. We say that a
floating-point number (or more specifically, a floating-point representation) is normalized,
if 1) d1 ̸= 0, or 2) f = 0, e is the smallest possible value and the sign of the fraction is +.

For a floating-point system S = (p, q, β), we define an extended system of raw floating-
point numbers S+(p′, q′) (where p′ ≥ p and q′ ≥ q) that possess a representation of the
form ±d0.d1d2 · · · dp′ × β±e1···eq′ . When performing floating-point arithmetic, the precise
outcomes of the calculations may be raw numbers, i.e., no longer in the same system as
the operands strictly speaking. Therefore, in practical scenarios, we have p′ = O(p) and
q′ = O(q). Consider, e.g., the numbers 99 and 2 which are both in the system S = (2, 1, 10),
but their sum 101 is not, because 3 digits are required to represent the fraction precisely.
For this purpose, we must round numbers.

The easiest way to round a number is truncation, where the least significant digits of the
number are simply omitted, rounding the number toward zero. On the other hand, the most
common method is to round to the nearest floating-point number, with ties rounding to the
number with an even least significant digit. This is called round-to-nearest ties-to-even.

Representing floating-point numbers in binary
Our way of representing floating-points of arbitrary base in binary is based on international
standards (e.g. IEEE 754). Informally, if b represents a floating-point number in a system
S = (p, q, β), then the first two bits encode the signs of the exponent and fraction. The next
qβ bits encode the exponent in base β, and the last pβ bits encode the fraction in base β.

Before we go into the details, we have to define simulation of functions that compute
with floating-point numbers in a system S = (p, q, β). Let F = ±f × β±e be a floating-point
number in system S. Let p1,p2 ∈ {0, 1} and s1, . . . , sq, s′

1, . . . , s′
p ∈ {0, 1}β . We say that

CSL 2024

9:14 Descriptive Complexity for Neural Networks via Boolean Networks

s = p1p2s1 · · · sqs′
1 · · · s′

p corresponds to F (or s is a one-hot representation of F) if
(1) p1 = 1 iff the sign of the exponent is +, (2) p2 = 1 iff the sign of the fraction is +, (3)
s1 · · · sq corresponds to e = e1 · · · eq, and (4) s′

1 · · · s′
p corresponds to f = 0.d1d2 · · · dp (or,

more precisely, to d1 · · · dp). Correspondence is defined analogously for raw floating-point
numbers; we simply replace p and q with p′ and q′, and add one more bit string s0 ∈ {0, 1}β

that must correspond to the digit d0 to the left of the radix point. Likewise, we say that
a bit string s corresponds to a sequence (F1, . . . , Fk) of floating-point numbers if s is the
concatenation of the bit strings that correspond to F1, . . . , Fk from left to right. For example,
in the system S = (4, 3, 3) the number −0.2001 × 3+120 has the corresponding string

1︸︷︷︸
p1

· 0︸︷︷︸
p2

· 010 · 001 · 100︸ ︷︷ ︸
s1s2s3

· 001 · 100 · 100 · 010︸ ︷︷ ︸
s′

1s′
2s′

3s′
4

.

▶ Definition 8. Let S = (p, q, β) be a floating-point system, and let S+ = (p′, q′) be a raw
floating-point system. We say that a halting BNL-program Λ simulates a function f : Sℓ →
Sk (or respectively f : (S+)ℓ → Sk) if the output Λ(i1 · · · iℓ) corresponds to f(F1, . . . , Fℓ)
for any F1, . . . , Fℓ ∈ S (or resp. F1, . . . , Fℓ ∈ S+) and the corresponding inputs i1, . . . , iℓ ∈
{0, 1}2+β(p+q) (or resp. i1, . . . , iℓ ∈ {0, 1}2+β(p′+1+q′)).

Later when we construct programs for the floating-point operations, e.g. normalization,
we will use a tool called shifting, which means moving each digit of a fraction to the left or
right by one (e.g. shifting a fraction 0.012 once to the left leads to 0.120)

Consider a raw floating-point number ±0.d1d2 · · · dp′ × β±e1···eq′ where d1 ̸= 0, which we
seek to round to the system S = (p, q, β) (where p ≤ p′ and q ≤ q′) using round-to-nearest
ties-to-even. First, we check whether e1 · · · eq′−q = 0 · · · 0; if not, then we have exceeded the
maximum exponent and output the highest or lowest possible number depending on the
sign of the fraction. If yes, we set e′ = eq′−q+1 · · · eq′ . Next, we check the value of dp+1. If
dp+1 <

β
2 , then we let f ′ = d1 · · · dp. If dp+1 >

β
2 , then we let f ′ = d1 · · · dp + 0p−11 using

integer addition. (We round to the nearest number in both cases.) If dp+1 = β
2 , then we let

f ′ = d1 · · · dp if dp is even and f ′ = d1 · · · dp + 0 · · · 01 if dp is odd. (In other words, in the
case of a tie we round to the nearest number whose rightmost digit is even.) Finally, if f ′ has
precision p+ 1, then we must shift the fraction to the right and round again; otherwise we
output ±0.f ′ × β±e′ where the signs are the same as before rounding. A BNL-program that
carries out the rounding clearly takes as much space as integer addition for the fractions, i.e.,
O(p3 + pβ2). Instead of integer addition, we could use a different method using carries that
would result in size O(p2β), but this does not affect our other results.

Normalizing a floating-point number
We informally describe how the normalization of raw floating-point numbers can be done. By
normalization we mean that a raw floating-point number is normalized as described above.

▶ Lemma 9. Let S = (p, q, β) be a floating-point system. Normalization of a raw floating-
point number in S+(p′, q′) to the floating-point system S, where p′ = O(p) and q′ = O(q),
can be simulated with a (halting) BNL-program of size O(r3 + r2β2) and computation time
O(1), where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. Let S = (p, q, β) be a floating-point system.
The normalization of a raw floating-point number f × βe (we do not write down the signs
here) in system S+(p′, q′) to the system S, where p′ = O(p) and q′ = O(q) can be split into
the following cases.

V. Ahvonen, D. Heiman, and A. Kuusisto 9:15

1. If f = 0, we only set e to the smallest possible value and the sign of the fraction to +.
2. If 0 < |f | < 1, then we can calculate in a few steps how much we have to shift the fraction

to the left (and decrease the exponent).
3. If |f | ≥ 1, we shift the fraction to the right by one (and decrease the exponent by one)

and, after that, round the number to match fraction precision p. The rounding might
lead to a non-normalized floating-point number, but we only have to shift the number to
the right again at most once (because after rounding, |f | ≤ 1).

The hard part is to keep the time complexity as low as possible. We do not go into the
details here (full proofs are in [2]), but the main idea is to apply parallel integer addition
specified in Section 3.1. ◀

Addition of floating-point numbers
In this section we show that we can simulate floating-point addition via BNL-programs,
which is possible even in constant time.

▶ Lemma 10. Addition of two (normalized) floating-point numbers in S = (p, q, β) can be
simulated with a (halting) BNL-program of size O(r3 + r2β2) and computation time O(1),
where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. In the parts where we add or normalize
numbers, we apply the results obtained in earlier sections. The addition is done in the
following steps. (1) We compare which of the exponents is greater and store it. (2) We
determine the difference d between the exponents. If d is greater than the length of the
fractions, we are done and output the number with the greater exponent. If d is smaller
than the length of the fractions, then we shift the fraction of the number with the smaller
exponent to the right d times. We then perform integer addition on the fractions and store
the result. (3) We obtain a number whose exponent was obtained in the first step and whose
fraction was obtained in the second step. We normalize this number. ◀

Multiplication of floating-point numbers
In this section we show that we can simulate floating-point multiplication via BNL-programs.
The multiplication requires logarithmic time, since the proof applies the result obtained for
integer multiplication in Lemma 7.

▶ Lemma 11. Multiplication of two (normalized) floating-point numbers in S = (p, q, β) can
be simulated with a (halting) BNL-program of size O(r4 + r3β2 + rβ4) and computation time
O(log(r) + log(β)), where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. Informally, we do the following.
1. We add the exponents together by using the parallel (integer) addition algorithm and

store the result. If the result is less than the maximum exponent, we move to the next
step. Otherwise, we are done and output the largest possible number, i.e. the number
with the highest possible fraction and exponent in the system.

2. We multiply the fractions using the integer multiplication algorithm and store the product.
3. We obtain a number whose exponent was obtained in the first step and whose fraction

was obtained in the second step. We normalize this number.
Applying the results of parallel (integer) addition, parallel (integer) multiplication, and
normalization described in the previous sections, we obtain the wanted results. ◀

CSL 2024

9:16 Descriptive Complexity for Neural Networks via Boolean Networks

Floating-point polynomials and piecewise polynomial functions
Next we consider floating-point polynomials and activation functions that are piecewise
polynomial. A piecewise polynomial function (with a single variable) is defined as separate
polynomials over certain intervals of real numbers. For instance, the function “f(x) = x2

when x ≥ 0 and f(x) = −x when x < 0” is piecewise polynomial; the intervals are the sets
of non-negative and negative numbers and the attached polynomials are x2 and −x. In a
floating-point system, a piecewise polynomial function is an approximation, much like addition
and multiplication. We perform approximations after each addition and multiplication; as
a result, the calculations must be performed in some canonical order because the order of
approximations will influence the result. By the number of pieces, we refer to the number of
intervals that the piecewise polynomial function is defined over; our example above has 2
pieces. We obtain the following theorem.

▶ Theorem 12. Assume we have a piecewise polynomial function α : S → S, where each
polynomial is of the form anx

n + · · · + a1x + a0 where n ∈ N, ai ∈ S = (p, q, β) for each
0 ≤ i ≤ n and r = max{p, q} (addition and multiplication approximated in S). Let Ω be the
highest order of the polynomials (or 1 if the highest order is 0) and let P ∈ Z+ be the number
of pieces. We can construct a BNL-program Λ that simulates α(x) such that
1. the size of Λ is O(PΩ2(r4 + r3β2 + rβ4)), and
2. the computation time of Λ is O((log(Ω) + 1)(log(r) + log(β))).

Proof sketch. The full proof can be found in [2]. We obtain BNL-programs that simulate the
polynomials in polynomial space and polylogarithmic time. When calculating a floating-point
polynomial anx

n + · · · + a1x + a0, the order of calculations is as follows: Multiplications
are handled first. When carrying out the multiplication x1 · x2 · ... · xk, we simultaneously
calculate the products y1 = x1 ·x2, y2 = x3 ·x4, etc. (If k is an odd number, the multiplicand
xk has no pair. In this case we define y(k+1)/2 = xk.) Then, in similar fashion we calculate
the products z1 = y1 · y2, z2 = y3 · y4, etc. We continue this until we have calculated the
whole product. After multiplications, we handle the sums in identical fashion. We obtain
the wanted results by simulating the additions and multiplications of each polynomial as
described in Lemmas 10 and 11. ◀

4 Descriptive complexity for general neural networks

In this section, we establish connections between Boolean network logic and neural networks.
Informally, we define a general neural network as a weighted directed graph (with any
topology) operating on floating-point numbers in some system S. Each node receives either
a fixed initial value or an input as its first activation value. In each communication round
a node sends its activation value to its neighbours and calculates a new activation value
as follows. Each node multiplies the activation values of its neighbours with associated
weights, adds them together with a node-specific bias and feeds the result into a node-specific
activation function. Note that floating-point systems are bounded, and the input space of a
neural network is thus finite.

Before specifying neural networks formally, we introduce some concepts for infinite
sequences of floating-point numbers analogous to infinite sequences of bit strings. Let k ∈ Z+
and let S = (p, q, β) be a floating-point system. Let F denote an infinite sequence (fj)j∈N
of k-floating-point strings fj ∈ Sk. Let A ⊆ [k] and P ⊆ [k] be subsets of positions called
attention positions and print positions respectively. The sets A and P induce corresponding
sequences (aj)j∈N and (pj)j∈N of substrings of the strings in F . More formally, (aj)j∈N

V. Ahvonen, D. Heiman, and A. Kuusisto 9:17

records the substrings with positions in A, and (pj)j∈N records the substrings with positions
in P . Next we define output conditions for F with respect to attention and print positions.
Let t ∈ S|A| denote a set of thresholds for each attention position. If at least one floating-point
number in an exceeds the threshold in the same position in t (for some n ∈ N), then we say
that F outputs pn in round n and that n is an output round. More precisely, F outputs
in round n with respect to (k,A, P, t), and pn is the output of F in round n with
respect to (k,A, P, t) . Let O ⊆ N be the set of output rounds; they induce a subsequence
(fj)j∈O of F . We call the sequence (pj)j∈O the output sequence of F .

Next we define an output condition where output rounds are fixed by a set O ⊆ N and
attention bits are excluded along with thresholds. We say that S outputs in rounds O (and
also, in any particular round n ∈ O). Outputs and output sequences w.r.t. (k,O, P) are
defined analogously.

4.1 General neural networks
Next we define neural networks formally. A (directed) graph is a tuple (V,E), where V is
a finite set of nodes and E ⊆ V × V is a set of edges. Note that we allow self-loops on
graphs, i.e. edges (v, v) ∈ E. A general neural network N (for floating-point system S) is
defined as a tuple (G, a, b,w, π), where G = (V,E,<V) is a directed graph associated with a
linear order <V for nodes in V . The network N contains sets I,O ⊆ V of input and output
nodes respectively, and a set H = V \ (I ∪O) of hidden nodes. The tuples a = (αv)v∈V and
b = (bv)v∈V are assignments of a piecewise polynomial activation function αv : S → S and
a bias bv ∈ S for each node. Likewise, w = (we)e∈E is an assignment of a weight we ∈ S

for each edge. The function π : (V \ I) → S assigns an initial value to each non-input node.
The computation of a general neural network is defined with a given input function

i : I → S. Similar to BNL-programs, an input function i also induces a floating-point string
i ∈ S|I|, and respectively a floating-point string induces an input function. The state of
the network at time t is a function gt : V → S, which is defined recursively as follows.
For t = 0, we have g0(v) = i(v) for input nodes and g0(v) = π(v) for non-input nodes. Now
assume we have defined the state at time t. The state at time t+ 1 is defined as follows:

gt+1(v) = αv

(
bv +

∑
(u,v)∈E

(
gt(u) · w(u,v)

))
.

More specifically, the sum is unfolded from left to right according to the order <V of
the nodes u ∈ V . For each piece of an activation function, we assume a normal form
anx

n + · · · + a1x+ a0, which designates the order of operations (as in the proof sketch of
Theorem 12). If we designate that u1, . . . , uk enumerate the set O of output nodes in the
order <V , then the state of the system induces an output tuple ot = (gt(u1), . . . , gt(uk)) at
time t for all t ≥ 0.

We once again define two frameworks for designating output rounds, one machine-internal
and one machine-external framework. In the first framework, the set V contains a set A
of attention nodes u, each of which is associated with a threshold su ∈ S; the order of
the nodes induces a threshold string t ∈ S|A|. In the second framework, attention nodes
are excluded and the neural network is associated instead with an attention function
a : S|I| → ℘(N).

Next we define how the output rounds and output sequence are obtained. Let v1, . . . , vn

enumerate the nodes of the neural network (in the order <V). Let i : I → S be an input
function that induces an input i ∈ S|I|. A neural network induces an infinite sequence (st)t∈N
called the network state sequence (with input i), where st = gt(v1) · · · gt(vn). The set of

CSL 2024

9:18 Descriptive Complexity for Neural Networks via Boolean Networks

output nodes O corresponds to the set of print positions { i | vi ∈ O }. If the network has
attention nodes A, then A corresponds to the set of attention positions { i | vi ∈ A }. If the
network has an attention function a, then the output rounds are given by a(i). Therefore,
analogously to the general output conditions defined for infinite sequences of floating-point
strings, a neural network with an input i also induces output rounds and an output
sequence w.r.t. (n,A,O, t) (or resp. w.r.t. (n, a(i), O)).

We then define some parameters that will be important when describing how neural
networks and BNL-programs are related in terms of space and time complexity. The in-degree
of a node v is the number of nodes u such that there is an edge (u, v) ∈ E; we say that u is a
neighbour of v. Note that we allow reflexive loops so a node might be its own “neighbour”.
The degree of a general neural network N is the maximum in-degree of the underlying
graph. The piece-size of N is the maximum number of “pieces” across all its piecewise
polynomial activation functions. The order of N is the highest order of a “piece” of its
piecewise polynomial activation functions.

A general neural network can easily emulate typical feedforward neural networks. This
requires that the graph of the general neural network is connected and acyclic, the sets I, O
and H are chosen correctly and the graph topology is as required, with all paths from an
input node to an output node being of the same length. Unlike in a classical feedforward
neural network, the hidden and output nodes of a general neural network have an initial value,
but they are erased as the calculations flow through the network, so this is an inconsequential,
essentially syntactic phenomenon. The inputs are also erased in the same way, likewise an
inconsequential syntactic phenomenon. Finally, there is a round t where the general neural
network outputs the same values as a corresponding feedforward network would.

In general, our neural network models are recurrent in the sense that they allow loops.
They are one-to-many networks, in other words, they can map each input to a sequence of
outputs unlike feedforward neural networks which always map each input to a single output.

4.2 Equivalence and time series problems
In order to translate neural networks to BNL-programs and vice versa, we define time
series problems for both floating-point numbers and binary numbers, and two types of
corresponding equivalence relations. The reason for this is obvious, as BNL-programs operate
with binary numbers and neural networks with floating-point numbers. Informally, in the
below asynchronous equivalence means that the modeled time series can be repeated but
with a delay between output rounds. The time delays in our results are not arbitrary but
rather modest. Moreover, we do not fix the attention mechanism for the programs or neural
networks, and our definitions work in both cases.

First we define notions for floating-points. Let k, ℓ ∈ N, P ⊆ [k] and let S = (p, q, β)
be a floating-point system. We let F(k, P, S) denote the family of sequences F = (fn)n∈N
of k-strings fn ∈ Sk of numbers in S with print position set P . A (floating-point) time
series problem P for (ℓ, k, P) in S is a function P : Sℓ → F(k, P, S) ×℘(N). With a given
input (F1, . . . , Fℓ) ∈ Sℓ, P gives a sequence (fn)n∈N ∈ F(k, P, S) and a subset O ∈ ℘(N) and
therefore P induces the output sequence of (fn)n∈N w.r.t. (k,O, P) (P induces a subsequence
(pn)n∈N, and O further induces the output sequence (pn)n∈O). Let Λ be a BNL-program
with (β(p+ q) + 2)|P | print predicates and (β(p+ q) + 2)ℓ input predicates. We say that
Λ simulates a solution for time series problem P if for every input i ∈ {0, 1}(β(p+q)+2)ℓ

corresponding to (F1, . . . , Fℓ) ∈ Sℓ, the output sequence of Λ with input i corresponds to
the output sequence induced by P(F1, . . . , Fℓ), i.e., the output strings of Λ correspond to
the output strings of P. A neural network N with ℓ input nodes and |P | output nodes

V. Ahvonen, D. Heiman, and A. Kuusisto 9:19

solves P if the output sequence of N with input (F1, . . . , Fℓ) is the output sequence induced
by P(F1, . . . , Fℓ). We say that a BNL-program Λ and a neural network N (for S) are
asynchronously equivalent in S if the time series problems in S simulated by Λ are
exactly the ones solved by N .

We define notions for binaries in similar fashion. Recall that k, ℓ ∈ N, P ⊆ [k]. Similarly,
let S(k, P) denote the family of k-bit string sequences B = (bn)n∈N with print bit set P . A
(binary) time series problem P for (ℓ, k, P) is a function P : {0, 1}ℓ → S(k, P) × ℘(N)
that assigns a k-bit string sequence and a set O ∈ ℘(N) of output rounds to every input
i ∈ {0, 1}ℓ; together they induce an output sequence w.r.t. (k,O, P). We say that a
BNL-program Λ with ℓ input predicates and |P | print predicates solves P if the output
sequence of Λ with any input i ∈ {0, 1}ℓ is the output sequence induced by P(i). We say that
a neural network N for floating point system S with ℓ input nodes and |P | output nodes
simulates a solution for binary time series problem P if for every input (F1, . . . , Fℓ) ∈ Sℓ

that represents i ∈ {0, 1}ℓ (i.e. every Fi represents 0 or 1), the output sequence of N with
input (F1, . . . , Fℓ) corresponds to the output sequence induced by P(i) (in the same fashion,
where every floating-point number represents 0 or 1). We say that a BNL-program Λ and a
general neural network N are asynchronously equivalent in binary if the time series
problems in binary simulated by N are exactly the ones solved by Λ.

We define the computation delay between two objects that are asynchronously equival-
ent (in binary or in floating-point system S) analogously to the computation delay defined in
the preliminaries.

▶ Remark 13. Asynchronous equivalence in binary could be extended to two BNL-programs;
this is consistent with the asynchronous equivalence defined in preliminaries. Therefore
asynchronous equivalence in binary could also extend for SC and self-feeding circuits. We
could also define equivalence between two neural networks. Informally, two neural networks
are asynchronously equivalent if they solve exactly the same floating-point time series
problems. It is also possible to define a weakened equivalence relation for neural networks,
where a neural network simulates another neural network in “binary” as follows. Let P be a
floating-point time series problem for (ℓ, k, P) in S = (p, q, β) and let P′ be a binary time
series problem for ((β(p+ q) + 2)ℓ, (β(p+ q) + 2)k, P ′), where P ′ is the set of bit positions
which corresponds to positions in P . We say that P′ corresponds to P if for each f ∈ Sℓ and
the unique bit string i ∈ {0, 1}(β(p+q)+2)ℓ that corresponds to f , we have that the output
sequence induced by P′(i) corresponds to the one induced by P(f). We say that neural
networks N and N ′ are weakly asynchronously equivalent in S if the time series problems
in S solved by N are exactly the ones with a corresponding binary time series problem
simulated by N ′, or respectively the time series problems in S solved by N ′ are exactly the
ones with a corresponding binary time series problem simulated by N .

4.3 From NN to BNL

We provide a translation from general neural networks to Boolean network logic. The proof
is based on the results obtained for floating-point arithmetic in Section 3.2.

▶ Theorem 14. Given a general neural network N for S = (p, q, β) with N nodes, degree ∆,
piece-size P and order Ω (or Ω = 1 if the order is 0), we can construct a BNL-program Λ
such that N and Λ are asynchronously equivalent in S where for r = max{p, q},
1. the size of Λ is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)), and
2. the computation delay of Λ is O((log(Ω) + 1)(log(r) + log(β)) + log(∆)).

CSL 2024

9:20 Descriptive Complexity for Neural Networks via Boolean Networks

Proof. First we consider the framework where output rounds are defined by attention nodes
and attention predicates. We consider the setting where output rounds are fixed as a corollary.

We use separate head predicates Su,e, Su,f , Eu,i,b, and Fu,j,b (i ∈ [q], j ∈ [p], b ∈ [0;β−1])
for each node u of N . Together, they encode the 1) exponent sign, 2) fraction sign, 3)
exponent and 4) fraction of the activation values of u in one-hot representation as described
in Section 3.2. These calculations are done using the arithmetic algorithms from the same
section. The program can not calculate a new activation value in one step like a neural
network does, as each arithmetic operation takes some time to compute. The input of a single
node is a floating-point number with q digits for the exponent, p digits for the fraction, and a
sign for both. Its one-hot representation therefore has (p+ q)β + 2 bits; exactly the number
of head predicates assigned for each node. Each of these predicates receives a corresponding
bit as input. For instance, if the input floating-point number of u is −0.314 × 10+01, then
the head predicates Su,e, Eu,1,0, Eu,2,1, Fu,1,3, Fu,2,1 and Fu,3,4 get the input 1 while all the
other head predicates for u get the input 0.

After receiving these inputs, the rest of the program is built by applying the programs
for floating-point addition and multiplication constructed in Section 3.2 to the aggregations
and activation functions of each node in the established canonical order of operations. The
calculations are timed with a one-hot counter, i.e., predicates T0, . . . , Tn as described in
Section 2.2. Here n is the worst-case number of rounds required for the algorithms to calculate
an activation value for a node in the network (based on the number of neighbours, as well as
the order and number of pieces of the activation function). The predicates in this counter are
used to stall the head predicates for each node such that they receive the bits corresponding
to the new activation values at the same time (this includes the print predicates, which
are all the predicates corresponding to output nodes). The attention nodes have additional
predicates that correspond to the threshold values; during rounds where the activation values
have been calculated, an attention predicate turns true if this value is exceeded.

We compute additions and multiplications for each node in the network; this can be done
simultaneously for each node. Each node requires at most ∆ multiplications and additions
in the aggregation before the use of the activation function. Multiplications can be done
simultaneously and sums in parallel as described in section 3. These steps require size
O(N∆(r4 + r3β2 + rβ4)) (each of the N nodes performs O(∆) multiplications/additions; the
size of the multiplication is O(r4 + r3β2 + rβ4) which dwarfs the addition size O(r3 + r2β2))
and the overall time required is O(log(r) + log(β)) + O(log(∆)) (multiplication + addition).

After the aggregation come the activation functions. Since they are piecewise polynomial,
we may apply Theorem 12, using the piece-size and order of the network. If Ω = 0 we are
done, so assume that Ω ∈ Z+. Each of the N nodes calculates at most P polynomial pieces
of order at most Ω, which gives us a size of O(NPΩ2(r4 + r3β2 + rβ4)). This requires only
O((log(Ω) + 1)(log(r) + log(β))) time. The same predicates are used for the calculation
of each subsequent global configuration of the network. Timing the calculations does not
increase the size and time complexity. Adding the sizes and times together, the size of
the program is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)) and computing each global configuration
of N requires time O(log(r) + log(β)) + O(log(∆)) + O((log(Ω) + 1)(log(r) + log(β))) =
O((log(Ω) + 1)(log(r) + log(β)) + log(∆)); the first O(log(r) + log(β)) is not dwarfed if Ω = 1.

The case for the second framework, where output rounds are given by an attention
function, is obtained as a corollary. We simply take the worst case time for calculating a new
activation value with the aggregations and piecewise polynomial functions in BNL; let’s say
the worst case is T rounds. If a : Sk → ℘(N) is the attention function of N , then the attention
function of Λ is the function a′ : {0, 1}k(β(p+q)+2) → ℘(N), a′(i) = Ta(i′) = {Tn | n ∈ a(i′)}
where i ∈ {0, 1}k(β(p+q)+2) corresponds to i′ ∈ Sk. ◀

V. Ahvonen, D. Heiman, and A. Kuusisto 9:21

4.4 From BNL to NN

Before the formal translation from BNL-programs to general neural networks, we introduce
two typical piecewise polynomial activation functions with just two pieces and order at most
1. These are the well-known rectified linear unit and the Heaviside step function. Recall that
an activation function is a function S → S, where S is a floating-point system. The rectified
linear unit ReLU is defined by ReLU(x) = max{0, x} and the Heaviside step function
H is defined by H(x) = 1 if x > 0, and H(x) = 0, otherwise. It is easy to generalize our
results for other activation functions.

▶ Theorem 15. Given a BNL-program Λ of size s and depth d, we can construct a general
neural network N for any floating-point system S with at most s nodes, degree at most 2,
ReLU (or Heaviside) activation functions and computation delay O(d) (or O(s) since s > d)
such that Λ and N are asynchronously equivalent in binary.

Proof sketch. The full proof can be found in [2]. The aggregation each node performs on
the activation values of its neighbours weakens neural networks in the sense that much of
the information related to specific neighbours is lost. Due to this, a single node of a neural
network can’t imitate an arbitrary iteration clause where each predicate has a precise role.
Instead, the program Λ is first turned into an asynchronously equivalent “fully-open” program
Λ′ that is described in [2]. Informally, that means each body of the iteration clauses of Λ′

includes at most one logical connective. This is turned into a neural network by creating a
node for each predicate of Λ′. The network only uses the floating-point numbers −1, 0, 1, 2,
and the iteration clauses can all be calculated with ReLU or Heaviside by choosing the
weights and biases appropriately. ◀

We have shown a translation from neural networks to BNL-programs and vice versa.
Using the translations in succession, it is possible to transform a neural network into a weakly
asynchronously equivalent neural network that only uses 1 and 0 as activation values, and
either ReLU or Heaviside activation functions in every node. Generalizing our result for
other activation functions is possible.

The match between BNL and neural networks provides a concrete demonstration of
the obvious fact that – in some relevant sense – there is no difference between symbolic
and non-symbolic approaches. Under reasonable background assumptions, non-symbolic
approaches can be technically reduced to symbolic ones. More than to the differences between
the symbolic and non-symbolic realms, the clear advantages of modern AI methods relate to
the difference between systems based on explicit programming and systems that involve an
aspect of learning not based on explicit and fully controlled programming steps.

5 Conclusion

We have shown a strong equivalence between a general class of one-to-many neural networks
and Boolean network logic in terms of discrete time series. The translations are simple in both
directions, with reasonable time and size blow-ups. We receive similar results for the logic SC
due to Theorem 1 and self-feeding circuits due to Theorem 3. The link to self-feeding circuits
is novel, since it allows us to apply circuit based methods to reason about neural networks
in the recurrent setting. Interesting future directions involve investigating extensions with
randomization as well as studying the effects of using alternatives to floating-point numbers,
such as, for example, fixed-point arithmetic.

CSL 2024

9:22 Descriptive Complexity for Neural Networks via Boolean Networks

References
1 Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto. Descriptive complexity

for distributed computing with circuits. In Jérôme Leroux, Sylvain Lombardy, and David
Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of
LIPIcs, pages 9:1–9:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.MFCS.2023.9.

2 Veeti Ahvonen, Damian Heiman, and Antti Kuusisto. Descriptive complexity for neural
networks via boolean networks. CoRR, abs/2308.06277, 2023. doi:10.48550/arXiv.2308.
06277.

3 Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

4 Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean formulae. Information
Processing Letters, 49(3):151–155, 1994. doi:10.1016/0020-0190(94)90093-0.

5 Daizhan Cheng and Hongsheng Qi. A linear representation of dynamics of boolean networks.
IEEE Transactions on Automatic Control, 55(10):2251–2258, 2010.

6 Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–17.
IEEE, 2021.

7 Martin Grohe. The descriptive complexity of graph neural networks, 2023. arXiv:2303.04613.
8 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko

Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. In Proceedings of the 2012 ACM Symposium on Principles of
distributed computing, pages 185–194, 2012.

9 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko
Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. Distributed Comput., 28(1):31–53, 2015.

10 Stuart Kauffman. Homeostasis and differentiation in random genetic control networks. Nature,
224(5215):177–178, 1969.

11 Antti Kuusisto. Modal Logic and Distributed Message Passing Automata. In Computer
Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 452–468, 2013.

12 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

13 Fabian Reiter. Asynchronous distributed automata: A characterization of the modal mu-
fragment. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 100:1–100:14, 2017.

14 Julian D Schwab, Silke D Kühlwein, Nensi Ikonomi, Michael Kühl, and Hans A Kestler.
Concepts in boolean network modeling: What do they all mean? Computational and structural
biotechnology journal, 18:571–582, 2020.

15 Massimiliano Zanin and Alexander N Pisarchik. Boolean networks for cryptography and
secure communication. Nonlinear Science Letters B: Chaos, Fractal and Synchronization. Vol,
1(1):27–34, 2011.

16 Ranran Zhang, Mithun Vinod Shah, Jun Yang, Susan B Nyland, Xin Liu, Jong K Yun, Réka
Albert, and Thomas P Loughran Jr. Network model of survival signaling in large granular
lymphocyte leukemia. Proceedings of the National Academy of Sciences, 105(42):16308–16313,
2008.

https://doi.org/10.4230/LIPICS.MFCS.2023.9
https://doi.org/10.4230/LIPICS.MFCS.2023.9
https://doi.org/10.48550/arXiv.2308.06277
https://doi.org/10.48550/arXiv.2308.06277
https://doi.org/10.1016/0020-0190(94)90093-0
https://arxiv.org/abs/2303.04613

Enumerating Error Bounded Polytime Algorithms
Through Arithmetical Theories
Melissa Antonelli #

Helsinki Institute for Information Technology, Finland

Ugo Dal Lago #

Bologna University, Italy
Inria, Université Côte d’Azur, Sophia Antipolis, France

Davide Davoli #

Inria, Université Côte d’Azur, Sophia Antipolis, France

Isabel Oitavem #

Center for Mathematics and Applications (NOVA Math), NOVA FCT, Caparica, Portugal
Department of Mathematics, NOVA FCT, Caparica, Portugal

Paolo Pistone #

Bologna University, Italy

Abstract
We consider a minimal extension of the language of arithmetic, such that the bounded formulas
provably total in a suitably-defined theory à la Buss (expressed in this new language) precisely
capture polytime random functions. Then, we provide two new characterizations of the semantic
class BPP obtained by internalizing the error-bound check within a logical system: the first relies
on measure-sensitive quantifiers, while the second is based on standard first-order quantification.
This leads us to introduce a family of effectively enumerable subclasses of BPP, called BPPT and
consisting of languages captured by those probabilistic Turing machines whose underlying error can
be proved bounded in T. As a paradigmatic example of this approach, we establish that polynomial
identity testing is in BPPT, where T = I∆0 + Exp is a well-studied theory based on bounded
induction.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Proof theory

Keywords and phrases Bounded Arithmetic, Randomized Computation, Implicit Computational
Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.10

Related Version Extended Version: https://arxiv.org/abs/2311.15003 [1]

Funding The first, second, third and fifth authors’ work is supported by the European Research
Council through the project DIAPASoN ERC COoG 818616, and by the French “Agence Nationale
de la Recherche” through the project PPS ANR-19-C48-0014. The first author’s work is supported
by the Helsinki Institute for Information Technology. The third author’s work is supported by the
French “Agence Nationale de la Recherche” through the project UCA DS4H ANR-17-EURE-0004.
The fourth author’s work is supported by national funds through the “FCT-Fundação para a Ciência
e a Tecnologia, I.P.”, through the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for
Mathematics and Applications).

1 Introduction

Since the early days of computer science, numerous and profound interactions with mathemat-
ical logic have emerged (think of the seminal works by Turing [55] and Church [9]). Among
the sub-fields of computer science that have benefited the most from this dialogue, we should

© Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, and Paolo Pistone;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melissa.antonelli@helsinki.fi
https://orcid.org/0009-0006-9072-4847
mailto:ugo.dallago@unibo.it
https://orcid.org/0000-0001-9200-070X
mailto:davide.davoli@inria.fr
mailto:oitavem@fct.unl.pt
https://orcid.org/0000-0002-3573-9281
mailto:paolo.pistone2@unibo.it
https://orcid.org/0000-0003-4250-9051
https://doi.org/10.4230/LIPIcs.CSL.2024.10
https://arxiv.org/abs/2311.15003
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

certainly mention the theory of programming languages (e.g. through the Curry-Howard
correspondence [17, 38, 54]), the theory of databases (e.g. through Codd’s Theorem [11])
and computational complexity (e.g. through descriptive complexity [4, 39]). In particular,
this last discipline deals with complexity classes [36, 10, 3], the nature of which still remains
today, more than fifty years after the introduction of P and NP [12, 36], somewhat obscure.

The possibility of describing fundamental classes within the language of mathematical
logic offered a better understanding of their nature: since the seventies [22, 15], but especially
from the eighties and nineties [7, 32, 4, 39, 42], the logical characterization of several crucial
classes has made it possible to consider them from a new viewpoint, less dependent on
concrete machine models and explicit resource bounds. Characterizing complexity classes
by way of a simple enough proof-of-recursion theoretical system also means being able to
enumerate the problems belonging to them, and thus to devise sound and complete languages
for the class, from which type systems and static analysis methodologies can be derived [37].

Among the various classes of problems considered in computational complexity, those
defined on the basis of randomized algorithms [49] have appeared difficult to capture with
the tools of logic. These include important and well-studied classes like BPP or ZPP.
The former, in particular, is often considered as the class of feasible problems, and most
complexity theorists conjecture that it actually coincides with P. One might thus expect
it to be possible to obtain an enumeration of BPP, along the lines of the many examples
known for classes like P, or even PP [18, 19]. However, by simply looking at its definition,
BPP looks pretty different from P. Notably, the former, but not the latter, is an example
of what is usually called a semantic class: the definition of BPP relies on algorithms which
are both efficient and not too erratic: once an input is fixed, one of the two possible outputs
must clearly prevail over the other; in other words, there is some fixed probability p, bounded
away from 1

2 , such that, on any input x, the machine outputs some value bx ∈ {0, 1} with
probability at least p. The existence of an effective enumerable family of algorithms deciding
all and only the problems in BPP is still an open question.

In this paper we make a step towards a logical understanding of semantic complexity
classes, and in particular of the logical and proof-theoretic complexity involved in keeping
error-bounds under control. Our contributions can be divided in three parts. First, we
generalize to the probabilistic setting the path indicated by bounded arithmetic [7, 24], a
well-known approach to capture polynomial time algorithms, by extending usual arithmetical
languages with a distinguished unary predicate Flip(x), playing the role of a source of
randomness. We define a bounded theory RΣb

1-NIA as the randomized analogue of Buss’
S1

2 [7] and Ferreira’s Σb
1-NIA [25], and show that the functions which can be proved total in

RΣb
1-NIA are precisely the polytime random functions [53], i.e. those functions from strings

to distributions of strings which can be computed by polytime probabilistic Turing machines
(PTM, for short). Then, we move towards proper randomized classes by considering ways to
keep the probability of error under control from within the logic. We first consider measure
quantifiers [48, 46, 2], well-studied second-order quantifiers capable of measuring the extent
to which a formula is true; we then show that these quantifiers, when applied to bounded
formulas, can be encoded via standard first-order quantification. This way we obtain two
characterizations of the problems in BPP, yet still semantic in nature: the error-bound
check is translated into conditions which are not based on provability in some formal system,
but rather on the truth of some formula in the standard model of first-order arithmetic.

While these results, which rely on semantic conditions, do not shed light on the enumera-
tion problem for BPP directly, they set the conditions for a proof-theoretic investigation of
this class: our last contribution is the introduction of a family of new syntactic subclasses of

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:3

BPP, each called BPPT, and consisting of those languages for which the error-bounding
condition is not only true, but also provable in some (non necessarily bounded) theory T.
This reduces the enumeration problem to that of finding a recursively enumerable (r.e., for
short) arithmetical theory T such that BPP = BPPT. To witness the difficulty of this
problem, we show that the error-bounding condition is Π0

1-complete and that establishing
that BPP cannot be enumerated would be at least as hard as refuting the BPP = P
conjecture. At the same time, we show that polynomial identity testing (PIT), one of the few
problems in BPP currently not known to be in P lies in BPPT, where T = I∆0 + Exp is a
well-studied [35] sub-theory of PA, thus identifying an interesting and effectively enumerable
subclass of BPP.

The main technical contributions of this paper can thus be summarized as follows:
We introduce the arithmetical theory RΣb

1-NIA and prove that the random functions
which are Σb

1-representable in it are precisely those which can be computed in polynomial
time. The proof of the correspondence goes through the definition of a class of oracle
recursive functions, called POR, which is shown equivalent to the class of probabilistic
polytime random functions RFP. The overall structure of the proof is described in
Section 3, while further details can be found in the extended version of this paper [1].
We exploit this result to obtain a new syntactic characterization of PP and, more inter-
estingly, two semantic characterizations of BPP, the first based on measure quantifiers
and the second relying on standard, first-order quantification. This is in Section 4.
Finally, we introduce a family of syntactic subclasses BPPT ⊆ BPP of provable BPP-
problems, relative to a theory T. After showing that the property of being non-erratic is
Π0

1-complete, we establish that PIT is in BPP(I∆0+Exp).We conclude by showing how our
approach relates to existing works capturing BPP languages in bounded arithmetic [41].
All this can be found in Section 5 and Section 7.

Related Work. While a recursion-theoretic characterization of the syntactic class PP
can be found in [18], most existing characterizations of BPP are based on some external,
semantic condition [20, 47]. In particular, Eickmeyer and Grohe [21] provide a semantic
characterization of BPP in a logic with fixed-point operators and a special counting quantifier,
associated with a probabilistic semantics not too different from the quantitative interpretation
we present in Section 3. On the other hand, [41] and [40] uses bounded arithmetic to provide
characterizations of (both syntactic and semantic) randomized classes, such as ZPP, RP
and coRP, and also provides a semantic characterization of BPP. An in-depth comparison
is thus in order, and can be found in Section 7. Finally, [47] defines a higher-order language
for polytime oracle recursive functions based on an adaptation of Bellantoni-Cook’s safe
recursion.

2 On the Enumeration of Complexity Classes

Before delving into the technical details, it is worth spending a few words on the problem
of enumerating complexity classes, and on the reasons why it is more difficult for semantic
classes than for syntactic ones.

First of all, it is worth observing that, although the distinction between syntactic and
semantic classes appears in many popular textbooks (e.g. in [3, 50]), in the literature these
notions are not defined in a precise way. Roughly speaking, syntactic classes are those which
can be defined via limitations on the amount of resources (i.e. units of either time or space)
that the underlying algorithm is allowed to use. Typical examples are the class P of problems

CSL 2024

10:4 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

solvable in polynomial time and the class PSPACE of problems solvable in polynomial
space. Instead, the definition of a semantic class usually requires, beyond some resource
condition, an additional condition, sometimes called a promise, typically expressing that the
underlying algorithm returns the correct answer often enough. A typical example here is the
class BPP considered in this paper (cf. Definition 12), corresponding to problems solvable
in polynomial time by probabilistic algorithms with some fixed error bound strictly smaller
than 1

2 . Sometimes the distinction between syntactic and semantic classes may be subtle.
For instance, as we discuss in Section 4, the class PP, whose definition also comprises a
promise, is generally considered a syntactic class.

Notice that the sense of the terms “syntactic” and “semantic”, when referred to complexity
classes, is not clearly related to the sense that these terms have in mathematical logic. To
a certain extent, the analysis that we develop in this paper with the tools of bounded
arithmetic may help to clarify this point. On the one hand, well-known results in bounded
arithmetic (cf. [7, 8]) provide a characterization of syntactic classes like P in terms of purely
proof-theoretic conditions (i.e. provability in some weak fragment of Peano Arithmetic); on the
other hand, we establish that, for a semantic class like BPP, an arithmetical characterization
can be obtained by employing both proof-theoretic and model-theoretic conditions (i.e. truth
in the standard model of Peano Arithmetic).

A natural question is whether such genuinely semantic (i.e. model-theoretic) conditions
can somehow be eliminated in favor of purely syntactic (i.e. proof-theoretic) ones. In fact,
this is a non-trivial problem, since, as proved in Section 5 (cf. Proposition 21), the promise
underlying BPP is expressed by a Π0

1-complete arithmetical formula. One should of course
recall, however, that the distinction between semantic and syntactic classes refers to how a
class is defined and not to the underlying set of problems. It is thus of intensional nature. In
other words, even if P and BPP are defined in a different way, it could well be that someday
we discover that P = BPP: in this case BPP would become a syntactic class, and, as we
show in Section 5 (cf. Proposition 20), a purely proof-theoretic characterization of BPP
would be available.

The problem of showing that a complexity class can be enumerated (i.e. that one can
devise a recursive enumeration of, say, Turing Machines solving all and only the problems in
the class) provides a different, and useful, angle to look at the distinction between syntactic
and semantic classes. Ordinary syntactic classes, such as P, PP, and PSPACE, are quite
simple to enumerate. While verifying resource bounds for arbitrary programs is very difficult,
it is surprisingly easy to define an enumeration of resource bounded algorithms containing
at least one algorithm for any problem in one of the aforementioned classes. To clarify
what we mean, suppose we want to characterize the class P. On the one hand, the class
of all algorithms working in polynomial time is recursion-theoretically very hard, actually
Σ0

2-complete [34]. On the other hand, the class of those programs consisting of a for loop
executed a polynomial number of times, whose body itself consists of conditionals and simple
enough instructions manipulating string variables, is both trivial to enumerate and big enough
to characterize P, at least in an extensional sense: every problem in this class is decided by
at least one program in the class and every algorithm in this class works in polytime. Many
characterizations of P (and of other syntactic classes), as those based on safe-recursion [4, 45],
light and soft linear logic [31, 30, 44], and bounded arithmetic [7], can be seen as instances
of the just described pattern, where the precise class of polytime programs varies, while the
underlying class of problems remains unchanged.

But what about semantic classes? Being resource bounded is not sufficient for an algorithm
to solve a problem in some semantic class, since there can well be algorithms getting it wrong
too often. For instance, it may well be that some probabilistic Turing Machine running in

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:5

polynomial time does not solve any problem in BPP. For this reason, unfortunately, the
enumeration strategy sketched above does not seem to be readily applicable to semantic
classes. How can we isolate a simple enough subclass of algorithms – which are not only
resource bounded, but also not too erratic – at the same time saturating the class?

We think that the results in this paper, concerning proof-theoretic and model-theoretic
characterizations of probabilistic complexity classes, may provide new insights on the nature
of this problem, without giving a definite answer. Indeed, observe that the existence of
a purely proof-theoretic characterization of some complexity class C via some recursively
enumerable theory T directly leads to providing an enumeration of C (by enumerating the
theorems of T). In this way, the problem of enumerating a semantic class C is directly related
to the existence of some strong enough theory T.

In the following sections we do not prove BPP to be effectively enumerable, which is still
out of reach. On the one hand we show that proving the non-enumerability of BPP is as
hard as proving that P is different from BPP. On the other hand, we show that there exist
subclasses of BPP which are large enough to include interesting problems in BPP and still
“syntactic enough” to be effectively enumerable via some arithmetical theory.

3 Bounded Arithmetic and Polytime Random Functions

In this section we discuss our first result, namely, the characterization of polytime random
functions via bounded arithmetic.

3.1 From Arithmetic to Randomized Computation, Subrecursively
We introduce the two main ingredients on which our characterization of polytime random
functions relies: a randomized bounded theory of arithmetic RΣb

1-NIA, and a Cobham-style
function algebra for polytime oracle recursive functions, called POR.

Recursive Functions and Arithmetical Formulas. The study of so-called bounded theories of
arithmetic, i.e. subsystems of PA in which only bounded quantifications are admitted, initiated
by Parikh and Buss, has led to characterize several complexity classes [51, 14, 7, 8, 24, 43].
At the core of these characterizations lies the well-known fact (dating back to Gödel’s [33])
that recursive functions can be represented in PA by means of Σ0

1-formulas, i.e. formulas of
the form ∃x1.∃xn.A, where A is a bounded formula. For example, the formula

A(x1, x2, y) := ∃x3.x1 × x2 = x3 ∧ y = succ(x3)

represents the function f(x1, x2) = (x1 × x2) + 1. Indeed, in PA one can prove that
∀x1.∀x2.∃!y.A(x1, x2, y), namely that A expresses a functional relation, and check that for all
n1, n2, m ∈ N, A(n1, n2, m) holds (in the standard model N) precisely when m = f(n1, n2).
Buss’ intuition was then that, by considering theories weaker than PA, it becomes possible
to capture functions computable within given resource bounds [7, 8].

In order to extend this approach to classes of random computable functions, we rely on
a simple correspondence between first-order predicates over natural numbers and oracles
from the Cantor space {0, 1}N, following [2]. Indeed, suppose the aforementioned recursive
function f has now the ability to observe (part of) an infinite sequence of bits. For instance,
f might observe the first bit and return (x1 × x2) + 1 if this is 0, and return 0 otherwise. Our
idea is that we can capture the call by f to the oracle by adding to the standard language
of PA a new unary predicate Flip(x), to be interpreted as a stream of (random) bits. Our
function f can then be represented by the following formula:

CSL 2024

10:6 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

B(x1, x2, y) :=
(
Flip(0) ∧ ∃x3.x1 × x2 = x3 ∧ y = succ(x3)

)
∨

(
¬Flip(0) ∧ y = 0

)
.

As in the case above, it is possible to prove that B(x1, x2, y) is functional, that is, that
∀x1.∀x2.∃!y.B(x1, x2, y). However, since B now contains the unary predicate symbol Flip(x),
the actual numerical function that B represents depends on the choice of an interpretation
for Flip(x), i.e. on the choice of an oracle for f .

In the rest of this section we develop this idea in detail, establishing a correspondence
between polytime random functions and a class of oracle-recursive functions which are
provably total in a suitable bounded theory relying on the predicate Flip.

The Language RL. We let B := {0, 1}, S := B∗ indicate the set of finite words from B, and
O := BS. We introduce a language for first-order arithmetic incorporating the new predicate
symbol Flip(x) and its interpretation in the standard model. Following [26], we consider a
first-order signature for natural numbers in binary notation. Consistently, formulas will be
interpreted over S rather than N. Working with strings is not essential and all results below
could be spelled out in a language for natural numbers. Indeed, bounded theories may be
formulated in both ways equivalently, e.g. Ferreira’s Σb

1-NIA and Buss’ S1
2 [26].

▶ Definition 1. The terms and formulas of RL are defined by the grammars below:

t, s ::= x | ϵ | 0 | 1 | t ⌢ s | t × s

F, G ::= Flip(t) | t = s | t ⊆ s | ¬F | F ∧ G | F ∨ G | ∃x.F | ∀x.F.

The function symbol ⌢ stands for string concatenation, while t×u indicates the concatenation
of t with itself a number of times corresponding to the length of u. The binary predicate ⊆
stands for the initial substring relation. As usual, we let A → B := ¬A ∨ B.

We adopt the following abbreviations: ts for t ⌢ s; 1t for 1 × t; t ⪯ s for 1t ⊆ 1s, i.e. the
length of t is smaller than that of s; t|r = s for (1r ⊆ 1t ∧ s ⊆ t ∧ 1r = 1s) ∨ (1t ⊆ 1r ∧ s = t),
i.e s is the truncation of t at the length of r. For each string σ ∈ S, we let σ be the term of
RL representing it (e.g. ϵ = ϵ, σ0 = σ0 and σ1 = σ1).

As for standard bounded arithmetics [7, 23], a defining feature of our theory is the focus
on so-called bounded quantification. In RL, bounded quantifications are of the forms ∀x.1x ⊆
1t → F and ∃x.1x ⊆ 1t ∧ F , abbreviated as ∀x ⪯ t.F and ∃x ⪯ t.F . Following [23], we
adopt subword quantifications as those quantifications of the forms ∀x.(∃w ⊆ t.wx ⊆ t) → F

and ∃x.∃w ⊆ t.wx ⊆ t ∧ F , abbreviated as ∀x ⊆∗ t.F and ∃x ⊆∗ t.F . An RL-formula F

is said to be a Σb
1-formula if it is of the form ∃x1 ⪯ t1.∃xn ⪯ tn.G, where the only

quantifications in G are subword ones. The distinction between bounded and subword
quantifications is relevant for complexity reasons: if σ ∈ S is a string of length k, the witness
of a subword existentially quantified formula ∃y.y ⊆∗ σ ∧ H is to be looked for among all
possible sub-strings of σ, i.e. within a space of size O(k2), while the witness of a bounded
formula ∃y ⪯ σ.H is to be looked for among all possible strings of length k, i.e. within a
space of size O(2k).

The Borel Semantics of RL. We introduce a quantitative semantics for formulas of RL,
inspired by the one introduced in [2]. While the function symbols of RL, as well as the
predicate symbols “=” and “⊆”, have a standard interpretation as relations over S, the
idea is that the predicate symbol Flip may stand for an arbitrary subset of S, that is, an
arbitrarily chosen ω ∈ O. For this reason, we take as the interpretation of a RL-formula

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:7

F the set JF K ⊆ O of all possible interpretations of Flip satisfying F . Importantly, such
sets JF K can be proved to be measurable, a fact that will turn out essential in Section 4.
Indeed, the canonical first-order model of RL over S can be extended to a probability space
(O, σ(C), µ) defined in a standard way: here σ(C) ⊆ ℘(O) is the Borel σ-algebra generated
by cylinders Cb

σ = {ω | ω(σ) = b}, with b ∈ {0, 1}, and µ is the unique measure such that
µ(Cb

σ) = 1
2 (see [5]). While the interpretation of terms is standard, the interpretation of

formulas is defined below.

▶ Definition 2 (Borel Semantics of RL). Given a term t, a formula F and an environment
ξ : G → S, where G is the set of term variables, the interpretation of F under ξ is the
measurable set JF Kξ ∈ σ(C) inductively defined as follows:

Jt = sKξ :=
{
O if JtKξ = JsKξ

∅ otherwise

Jt ⊆ sKξ :=
{
O if JtKξ⊆JsKξ

∅ otherwise

JFlip(t)Kξ := {ω | ω(JtKξ) = 1}
J¬GKξ := O − JGKξ

JG ∨ HKξ := JGKξ ∪ JHKξ

JG ∧ HKξ := JGKξ ∩ JHKξ

J∃x.GKξ :=
⋃
i∈S

JGKξ{x←i}

J∀x.GKξ :=
⋂
i∈S

JGKξ{x←i}.

This semantics is well-defined as the sets JFlip(t)Kξ, Jt = sKξ and Jt ⊆ sKξ are measurable
and measurability is preserved by all the logical operators.

Observe that an interpretation of the language RL, in the usual first-order sense, requires
some ξ as above as well as an interpretation ω for Flip(x). One can easily check by induction
that, for any formula F and interpretation ξ, ω ∈ JF Kξ precisely when F is satisfied in the
first-order environment formed by ξ and ω.

The Bounded Theory RΣb
1-NIA. We now introduce a bounded theory in the language

RL, called RΣb
1-NIA, which can be seen as a probabilistic counterpart to Ferreira’s Σb

1-NIA
[25]. The theory RΣb

1-NIA is defined by axioms belonging to two classes:
Basic axioms (where b ∈ {0, 1}):

xϵ = x

x(yb) = (xy)b
x × ϵ = ϵ

x × yb = (x × y)x
x ⊆ ϵ ↔ x = ϵ

x ⊆ yb ↔ x ⊆ y ∨ x = yb

xb = yb → x = y

x0 ̸= y1 xb ̸= ϵ.

Axiom schema for induction on notation: B(ϵ)∧∀x.
(
B(x) → B(x0)∧B(x1)

)
→ ∀x.B(x),

where B is a Σb
1-formula in RL.

The axiom schema for induction on notation adapts the usual induction schema of PA to
the binary representation. As standard in bound arithmetic, restriction to Σb

1-formulas, is
essential to characterize algorithms with bounded resources. Indeed, more general instances
of this schema would lead to represent functions which are not polytime computable.

An Algebra of Polytime Oracle Recursive Functions. We now introduce a Cobham-style
function algebra, called POR, for polytime oracle recursive functions, and show that it is
captured by a class of bounded formulas provably representable in the theory RΣb

1-NIA. This
algebra is inspired by Ferreira’s PTCA [23, 25]. Yet, a fundamental difference is that the
functions we define are of the form f : Sk × O → S, i.e. they carry an additional argument
ω : S → B, to be interpreted as the underlying stream of random bits. Furthermore, our
class includes the basic query function, which can be used to observe any bit from ω.

The class POR is the smallest class of functions from Sk × O to S, containing the empty
function E(x, ω) = ϵ, the projection functions P n

i (x1, . . . , xn, ω) = xi, the word-successor
function Sb(x, ω) = xb, the conditional function C(ϵ, y, z0, z1, ω) = y and C(xb, y, z0, z1, ω) =
zb, where b ∈ B (corresponding to b ∈ {0, 1}), the query function Q(x, ω) = ω(x), and closed
under the following schemata:

CSL 2024

10:8 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

Composition, where f is defined from g, h1, . . . , hk as f(x⃗, ω) = g(h1(x⃗, ω), . . . ,

hk(x⃗, ω), ω).
Bounded recursion on notation, where f is defined from g, h0, h1 as

f(x⃗, ϵ, ω) = g(x⃗, ω)
f(x⃗, y0, ω) = h0

(
x⃗, y, f(x⃗, y, ω), ω

)
|t(x⃗,y)

f(x⃗, y1, ω) = h1
(
x⃗, y, f(x⃗, y, ω), ω

)
|t(x⃗,y),

with t obtained from ϵ, 0, 1, ⌢, × by explicit definition, i.e. by applying ⌢ and × on
constants ϵ, 0, 1, and variables x⃗ and y.

We now show that functions of POR are precisely those which are Σb
1-representable

in RΣb
1-NIA. To do so, we slightly modify Buss’ representability conditions by adding a

constraint relating the quantitative semantics of formulas in RL and the additional functional
parameter ω of oracle recursive functions.

▶ Definition 3. A function f : Sk × O → S is Σb
1-representable in RΣb

1-NIA if there exists a
Σb

1-formula G(x⃗, y) of RL such that:
1. RΣb

1-NIA ⊢ ∀x⃗.∃!y.G(x⃗, y),
2. for all σ1, . . . , σk, τ ∈ S and ω ∈ O, f(σ1, . . . , σk, ω) = τ iff ω ∈ JG(σ1, . . . σk, τ)K.

Condition 1. above does not say that the unique value y is obtained as a function of
x⃗ only. Indeed, the truth-value of a formula depends both on the value of its first-order
variables and on the value assigned to the random predicate Flip. Hence this condition says
that y is uniquely determined as a function both of its first-order inputs and of an oracle
from O, precisely as functions of POR.

▶ Theorem 4. For any f : Sk × O → S, f is Σb
1-representable in RΣb

1-NIA iff f ∈ POR.

Proof sketch. (⇐) The desired Σb
1-formula is constructed by induction on the structure of

oracle recursive functions. Observe that the formula ∀x⃗.∃!y.G(x⃗, y) occurring in Condition
1. of Definition 3 is not Σb

1, since it is universally quantified while the existential quantifier is
not bounded. Hence, in order to apply the inductive steps (corresponding to functions defined
by composition and bounded recursion on notation), we need to adapt Parikh’s theorem [51]
(which holds for S1

2 and Σb
1-NIA) to RΣb

1-NIA, to state that if RΣb
1-NIA ⊢ ∀x⃗.∃y.G(x⃗, y),

where G(x⃗, y) is a Σb
1-formula, then we can find a term t such that RΣb

1-NIA ⊢ ∀x⃗.∃y ⪯
t.G(x⃗, y). (⇒) The proof consists in adapting Cook and Urquhart’s argument for system
IPVω [13], and this goes through a realizability interpretation of the intuitionistic version of
RΣb

1-NIA, called IRΣb
1-NIA. Further details can be found in the extended version of this

paper [1]. ◀

3.2 Characterizing Polytime Random Functions
Theorem 4 shows that it is possible to characterize POR by means of a system of bounded
arithmetic. Yet, this is not enough to deal with classes, like BPP or RP, which are defined
in terms of functions computed by PTMs. Observe that there is a crucial difference in the
way in which probabilistic machines and oracle recursive functions access randomness, so our
next goal is to fill the gap, by relating these classes of functions.

Let D(S) indicate the set of distributions over S, that is, those functions λ : S → [0, 1] such
that

∑
σ∈S λ(σ) = 1. By a random function we mean a function of the form f : Sk → D(S).

Observe that any (polytime) PTM M computes a random function fM, where, for every
σ1, . . . , σk, τ ∈ S, fM(σ1, . . . , σk)(τ) coincides with the probability that M(σ1♯ . . . ♯σk) ⇓ τ .
However, a random function needs not be computed by a PTM in general. We define the
following class of polytime random functions:

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:9

▶ Definition 5 (Class RFP). The class RFP is made of all random functions f : Sk → D(S)
such that f = fM, for some PTM M running in polynomial time.

Functions of RFP are closed under monadic composition ⋄, where (g ⋄ f)(σ)(τ) =∑
ρ∈S g(ρ)(τ) · f(σ)(ρ) (one can check fN ⋄ fM = fN◦M, where ◦ indicates PTM composition).
Since functions of RFP have a different shape from those of POR, we must adapt the

notion of Σb
1-representability for them, relying on the fact that any closed RL-formula F

generates a measurable set JF K ⊆ BN.

▶ Definition 6. A function f : Sk → D(S) is Σb
1-representable in RΣb

1-NIA if there exists a
Σb

1-formula G(x⃗, y) of RL such that:
1. RΣb

1-NIA ⊢ ∀x⃗.∃!y.G(x⃗, y),
2. for all σ1, . . . , σk, τ ∈ S, f(σ1, . . . , σk, τ) = µ

(
JG(σ1, . . . , σk, τ)K

)
.

Notice that any Σb
1-formula G(x⃗, y) satisfying Condition 1. from Definition 6 actually

defines a random function ⟨G⟩ : S → D(S) given by ⟨G⟩(σ⃗)(τ) = µ(JG(σ⃗, τ)K), where ⟨G⟩ is
Σb

1-represented by G. Moreover, if G represents some f ∈ RFP, then f = ⟨G⟩. In analogy
with Theorem 4, we can now prove the following result:

▶ Theorem 7. For any f : Sk → D(S), f is Σb
1-representable in RΣb

1-NIA iff f ∈ RFP.

Thanks to Theorem 4, the proof of the result above simply consists in showing that POR
and RFP can be related as stated below.

▶ Lemma 8. For all functions f : Sk × O → S in POR there exists g : Sk → D(S) in RFP
such that for all σ1, . . . , σk, τ ∈ S, µ({ω | f(σ⃗, ω) = τ}) = g(σ1, . . . , σk, τ), and conversely.

Proof sketch. The first step of our proof consists in replacing the class RFP by an in-
termediate class SFP corresponding to functions computed by polytime stream Turing
machines (STM, for short). These are defined as deterministic TM with one extra read-
only tape: at the beginning of the computation the extra tape is sampled from BN, and
at each computation step the machine reads one new bit from this tape. Then we show
that for any function f : Sk → D(S) computed by some polytime PTM there is a function
g : Sk ×BN → S computed by a polytime STM such that for all σ1, . . . , σk, τ ∈ S, and η ∈ BN,
f(σ1, . . . , σk, τ) = µ({η | g(σ1, . . . , σk, η) = τ}), and conversely. To conclude, we prove the
correspondence between the classes POR and SFP:
(SFP ⇒ POR) The encoding relies on the remark that, given an input x ∈ S and an

extra-tape η ∈ BN, an STM S running in polynomial time can only access a finite portion
of η, bounded by some polynomial p(|x|). This way the behavior of S is encoded by a
POR-function h(x, y), where the second string y corresponds to ηp(|x|), and we can define
f ♯(x, ω) = h(x, e(x, ω)), where e : S × O → S is a function of POR which mimics the
prefix extractor η 7→ ηp(|x|), in the sense that its outputs have the same distributions of
all possible η’s prefixes (yet over O rather than BN).

(POR ⇒ SFP) Here we must consider that these two models not only invoke oracles of
different shape, but also that functions of POR can manipulate such oracles in a much
more liberal way than STMs. Notably, the STM accesses oracle bits in a linear way: each
bit is used exactly once and cannot be re-invoked. Moreover, at each step of computation
the STM queries a new oracle bit, while functions of POR can access the oracle, so to
say, on demand. The argument rests then on a chain of simulations, making use of a
class of imperative languages inspired by Winskell’s IMP [56], each one taking care of one
specific oracle access policy: first non-linear and on-demand (as for POR), then linear
but still on-demand, and finally linear and not on-demand (as for STMs). ◀

CSL 2024

10:10 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

4 Semantic Characterizations of BPP

We now turn our attention to randomized complexity classes. This requires us to consider
how random functions (and thus PTMs) may correspond to languages, i.e. subsets of S. The
language computed by a random function can naturally be defined via a majority rule:

▶ Definition 9. Let f : S → D(S) be a random function. The language Lang(f) ⊆ S is
defined by σ ∈ Lang(f) iff f(σ)(ϵ) > 1

2 .

It is instructive to first take a look at the case of the class PP, recalled below:

▶ Definition 10 (PP). Given a language L ⊆ S, L ∈ PP iff there is a polynomial time
PTM M such that for any σ ∈ S, Pr[M(σ) = χL(σ)] > 1

2 , where, χL : S → {0, 1} is the
characteristic function of L.

At first glance, PP might be considered a semantic class, since its definition comprises both
a resource condition and a promise. However, PP is generally considered a syntactic class,
due to the fact that, when trying to capture the machines solving languages in PP, the
promise condition can actually be eliminated. Indeed, any PTM M running in polynomial
time recognizes some language in PP, namely the language L = Lang(f), where f is the
polytime random function computed by M. Furthermore, the class PP can be enumerated
(see e.g. [18]).

Using Theorem 7, the remarks above readily lead to a proof-theoretic characterization of
PP via RΣb

1-NIA.

▶ Proposition 11 (Syntactic Characterization of PP). For any language L ⊆ S, L ∈ PP iff
there is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. L = Lang(⟨G⟩).

The characterization above provides an enumeration of PP (by enumerating the pairs
made of a formula G and a proof in RΣb

1-NIA of Condition 1). However, while a majority
rule is enough to capture the problems in PP, the definition of a semantic class like BPP
requires a different condition.

▶ Definition 12 (BPP). Given a language L ⊆ S, L ∈ BPP iff there is a polynomial time
PTM M such that for any σ ∈ S, Pr[M(σ) = χL(σ)] ≥ 2

3 .

The class BPP can be captured by “non-erratic” probabilistic algorithms, i.e. such that, for
a fixed input, one possible output is definitely more likely than the others.

▶ Definition 13. A random function f : S → D(S) is non-erratic if for all σ ∈ S, f(σ)(τ) ≥ 2
3

holds for some value τ ∈ S.

▶ Lemma 14. For any language L ⊆ S, L ∈ BPP iff L = Lang(f), for some non-erratic
random function f ∈ RFP.

Proof. For any non-erratic RFP-function f , let M be the PTM computing k ⋄ f , where
k(ϵ) = 1 and k(σ ̸= ϵ) = 0; then M computes χLang(f) with error ≤ 1

3 . Conversely, if
L ∈ BPP, let M be a PTM accepting L with error ≤ 1

3 ; then L = Lang(h ⋄ fM), where
h(1) = ϵ and h(σ ̸= 1) = 0. ◀

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:11

Lemma 14 suggests that, in order to characterize BPP in the spirit of Proposition 11, a
new condition has to be added, corresponding to the fact that G represents a non-erratic
random function. In the rest of this section we discuss two approaches to measure error
bounds for probabilistic algorithms, leading to two different characterizations of BPP: first
via measure quantifiers [2], then by purely arithmetical means. While both such methods
ultimately consist in showing that the truth of a formula in the standard model of RΣb

1-NIA,
they also suggest a more proof-theoretic approach, that we explore in Section 5.

BPP via Measure Quantifiers. As we have seen, any RL-formula F is associated with a
measurable set JF K ⊆ O. So, a natural idea, already explored in [2], consists in enriching RL
with measure-quantifiers [48, 46], that is, second-order quantifiers of the form CqF , where
q ∈ [0, 1] ∩ Q, intuitively expressing that the measure of JF K is greater than (or equal to)
q. Then, let RLMQ be the extension of RL with measure-quantified formulas Ct/sF , where
t, s are terms. The Borel semantics of RL naturally extends to RLMQ letting JCt/sF Kξ = O
when |JsKξ| > 0 and µ(JF Kξ) ≥ |JtKξ|

|JsKξ| both hold, and JCt/sF Kξ = ∅ otherwise. To improve
readability, for all n, m ∈ N, we abbreviate C1n/1m

F as Cn/mF .
Measure quantifiers can now be used to express that the formula representing a random

function is non-erratic, as shown below.

▶ Theorem 15 (First Characterization of BPP). For any language L ⊆ S, L ∈ BPP iff there
is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x∃!y.G(x, y),
2. ⊨ ∀x.∃y.C2/3G(x, y),
3. L = Lang(⟨G⟩).

Proof. Let L ∈ BPP and g : S → D(S) be a function of RFP computing L with uniform
error-bound (which, thanks to Lemma 14, we can suppose to be non-erratic). By Theorem 7,
there is a Σb

1-formula G(x, y) such that g = ⟨G⟩. So, for all σ ∈ S, µ(JG(σ, τ)K) = g(σ)(τ) ≥ 2
3

holds for some τ ∈ S, which shows that Condition 2. holds. Conversely, if Conditions 1.-3. hold,
then ⟨G⟩ computes L with the desired error bound, so L ∈ BPP. ◀

Arithmetizing Measure Quantifiers. Theorem 15 relies on the tight correspondence between
arithmetic and probabilistic computation; yet, Condition 2. involves formulas which are not
in the language of first-order arithmetic. Lemma 16 below shows that measure quantification
over bounded formulas of RL can be expressed arithmetically.

▶ Lemma 16 (De-Randomization of Bounded Formulas). For any Σb
1-formula F (x⃗) of

RL, there exists a Flip-free Π0
1-formula TwoThirds[F](x⃗) such that for any σ⃗ ∈ S,

⊨ TwoThirds[F](σ⃗) holds iff µ(JF (σ⃗)K) ≥ 2
3 .

Proof. First, observe that for any bounded RL-formula F (x⃗), strings σ⃗ and ω ∈ O, to check
whether ω ∈ JF (σ⃗)K only a finite portions of bits of ω has to be observed. More precisely, we
can construct a RL-term tF (x⃗) such that for any σ⃗ ∈ S and ω, ω′ ∈ O, if ω and ω′ agree on all
strings shorter than tF (σ⃗), then ω ∈ JF (σ)K iff ω′ ∈ JF (σ)K. Now, all finitely many relevant
bits ω(τ), for |τ | ≤ tF (σ⃗) can be encoded as a unique string w of length ≤ 2|tF (σ⃗)| where the
bit wi corresponds to the value ω(τ), where τ is obtained by stripping the right-most bit
from the binary representation of i. We obtain in this way a Flip-free formula F ∗(x⃗, y) such
that measuring JF (σ)K corresponds to counting the strings y of length ≤ 2|tF (σ⃗)| making
F ∗(x⃗, y) true, i.e. to showing∣∣∣ {

τ ⪯ 2|tF (σ⃗)|
∣∣∣ F ∗(σ⃗, τ)

} ∣∣∣ ≥ 2
3 · N, (⋆)

CSL 2024

10:12 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

where 2ϵ = 1 and 2σb = 2σ2σ is an exponential function on strings and N = 2(2|tF (σ)|)
is the total amount of the strings to be counted. (⋆) can be encoded in a standard way
yielding a bounded formula F ♯(x⃗) in the language of arithmetic extended with the function
symbol 2x. Finally, the function symbol 2x can be eliminated using a ∆0

0-formula exp(x, y)
defining the exponential function (see [28]), yielding a Flip-free Π0

1-formula of RL of the
form ∀z1.∀zk.exp(t1, z1) ∧ · · · ∧ exp(tk, zk) → F ♯(x⃗, z1, . . . , zk). ◀

▶ Remark 17. It is important to observe at this point that the elimination of Flip via
counting takes us beyond the usual machinery of bounded arithmetic, since we employ some
operation which is not polytime. This is indeed not surprising, since the counting problems
associated with polytime problems (generating the class ♯P) are not even known to belong to
the polynomial hierarchy PH (while, by Toda’s theorem, we know that PH ⊆ P♯P).
Theorem 15 and Lemma 16 together yield a purely arithmetical characterization of BPP.
Let NotErratic[G] indicate the arithmetical formula ∀x.∃y ⪯ 0.TwoThirds[G](x, y).

▶ Theorem 18 (Second Characterization of BPP). For any language L ⊆ S, L ∈ BPP when
there is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. ⊨ NotErratic[G],
3. L = Lang(⟨G⟩).

5 Provably BPP Problems

The characterization provided by Theorem 18 is still semantic in nature, as it provides no
way to effectively enumerate BPP: the crucial Condition 2 is not checked within a formal
system, but over the standard model of RL. Yet, since the condition is now expressed in
purely arithmetical terms, it makes sense to consider syntactic variants of Condition 2, where
the model-theoretic check is replaced by provability in some sufficiently expressive theory.

We will work in extensions of RΣb
1-NIA+Exp, where Exp = ∀x.∃y.exp(x, y) is the formula

expressing the totality of the exponential function (which is used in the de-randomization of
Lemma 16). This naturally leads to the following definition:

▶ Definition 19 (Class BPPT). Let T ⊇ RΣb
1-NIA + Exp be a theory in the language RL.

The class BPP relative to T, denoted BPPT, contains all languages L ⊆ S such that for
some Σb

1-formula G(x, y) the following hold:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. T ⊢ NotErratic[G],
3. L = Lang(⟨G⟩).

Whenever T is sound (i.e. T ⊢ F implies that F is true in the standard model), it is clear that
BPPT ⊆ BPP. However, a crucial difference between the syntactic class BPPT and the
semantic class BPP is that, when T is recursively enumerable, BPPT can be enumerated
(by enumerating the proofs of Condition 1. and 2. in T). Hence, the enumerability problem
for BPP translates into the question whether one can find a sound r.e. theory T such that
BPPT = BPP. Let us first observe that the relevance of this problem is tightly related to
the question BPP = P:

▶ Proposition 20. If BPP = P, then there exists a r.e. theory T such that BPP = BPPT.

Proof. If BPP = P, and L ∈ BPP, then there is a polytime deterministic TM µ accepting
it. µ yields then a PTM µ∗ in a trivial way. Since the corresponding formula G of RL does
not contain Flip, NotErratic[G] can be proved in e.g. RΣb

1-NIA + Exp. ◀

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:13

The counter-positive of the result above is even more interesting, as it says that establishing
that no r.e. theory T is such that BPPT = BPP is at least as hard as establishing that
BPP ̸= P. Yet, without knowing whether BPP = P, how hard may it be to find a theory
T such that BPP = BPPT?

Observe that, when G is Σb
1, NotErratic[G] is expressed by a Π0

1-formula: as
TwoThirds[G](x⃗) is of the form ∀z⃗. ∧i exp(ti, zi) → F ♯(x⃗, z⃗), the condition is expressed
by the Π0

1-formula ∀x.∀z⃗. ∧i exp(ti, zi) → ∃y ⪯ 0.F ♯(x⃗, z⃗). Hence, if we us fix some re-
cursive enumeration (Mn)n∈N of polytime PTM as well as a recursive coding ♯M of such
machines as natural numbers, the fact that M is non-erratic is expressed by some Π0

1-formula
φNotErratic(♯M). The Π0

1-set NotErratic = {e | φNotErratic(e)} indicates then the sets of codes
corresponding to non-erratic machines.

The possibility of finding a theory strong enough to prove all positive instances of
Condition 2 is then ruled out by the following result.

▶ Proposition 21. NotErratic is Π0
1-complete.

Proof. We reduce to NotErratic the Π0
1-complete problem HALTn2 consisting of codes of TM

halting in time at most n2 (see [29]). With any TM µ associate a polytime PTM µ∗ that,
on input x, yields TRUE with prob. 1

2 , and otherwise simulates µ(x) on |x|2 steps, yielding
TRUE if the computation of µ(x) terminated, and FALSE otherwise. Then it is easily seen
that µ ∈ HALTn2 iff µ∗ ∈ NotErratic. ◀

▶ Corollary 22. Codes of poly-time and non-erratic PTMs form a Σ0
2-complete set.

Proof. As we say, for a PTM, solving some BPP-problem is equivalent to being polytime
and non-erratic. Being the code of a polytime (P)TM is a Σ0

2-complete property [34]. By
Proposition 21, checking non-erraticity does not increase the logical complexity. ◀

Proposition 21 implies that for any consistent theory T one can always find some non-
erratic polytime PTM whose non-erraticity is not provable in T. Indeed, since NotErratic is
Π0

1-complete, we can reduce to it the Π0
1-set of codes of consistent r.e. theories. Hence, if T

is some consistent theory such that for any code e ∈ NotErratic, T proves φNotErratic(e), then
T can prove all Π0

1-statement expressing the consistency of some consistent r.e. theory, and
thus, in particular, the one expressing its own consistency, contradicting (Rosser’s variant of)
Gödel’s second incompleteness theorem.

Observe that Corollary 22 suggests that the enumerability problem might be very difficult,
but it does not provide a negative answer to it. Indeed, recall that what we are interested
in is not an enumeration of all non-erratic polytime PTM, but an enumeration containing
at least one machine for each problem in BPP. In other words, the question remains open
whether, for any non-erratic polytime PTM, it is possible to find a machine solving the same
problem but whose non-erratic behavior can be proved in some fixed theory T. While we do
not know the answer to this question, we can still show that a relatively weak arithmetical
theory is capable of proving the non-erraticity of a machine solving one of the (very few)
problems in BPP which are currently not known to be in P.

6 Polynomial Zero Testing is Provably BPP

In this section we establish that PIT is in BPP(I∆0+Exp). We recall that I∆0 + Exp is the
fragment of Peano Arithmetics with induction restricted to bounded formulas, together with
the totality of the exponential function.

CSL 2024

10:14 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

▶ Remark 23. While I∆0 + Exp is a theory in the usual language of PA, here we work
in a language for binary strings. Indeed, what we here call I∆0 + Exp is actually the
corresponding theory ∆0-NIA + Exp, formulated for the language RL without Flip, and
defined as Σb

1-NIA + Exp with induction extended to all bounded formulas, plus the axiom
Exp. Based on [26] ∆0-NIA corresponds to Buss’ theory S2, which, in turn, is known to
correspond to I∆0 + Ω1, indeed a sub-theory of I∆0 + Exp.

The PIT problem asks to decide the identity of the polynomial computed by two arith-
metical circuits. These are basically DAGs whose nodes can be labeled so as to denote an
input, an output, the constants 0, 1 or an arithmetic operation. These structures can easily
be encoded, e.g. using lists, as terms of RL.

▶ Definition 24 (cf. [3]). The problem PIT asks to decide whether two arithmetical circuits
p, q encoded as lists of nodes describe the same polynomial, i.e. Z |= p = q.

Usually, PIT is reduced to another problem: the so-called Polynomial Zero Testing (PZT)
problem, which asks to decide whether a polynomial computing a circuit over Z is zero, i.e.
to check whether Z |= p = 0. Indeed, Z |= p = q if and only if Z |= p − q = 0. Our proof of
the fact that the language PZT is in BPP(I∆0+Exp) is structured as follows:

We identify a Σb
1-formula G(x, y) of RL characterizing the polytime algorithm PZT from [3],

and we turn it into a Flip-free formula G∗(x, y, z) as in Lemma 16, where the variable z

stands for the source of randomness;
We identify a Flip-free ∆0

0-formula H(x, y) which represents the naïve deterministic
algorithm for PZT.
We show that I∆0 + Exp proves a statement showing that the formulas G∗ and H are
equivalent in at least 2

3 of all (finitely many) relevant values of z. In other words, we
establish I∆0 + Exp ⊢ ∀x.∀y.TwoThirds[G(x, y) ↔ H(x, y)].

From the last step, since the totality of H is provable in I∆0+Exp, we can deduce I∆0+Exp ⊢
∀x.∃y.TwoThirds[G](x, y), as required in Definition 19.

Each of the aforementioned steps will be described in one of the forthcoming paragraphs,
although the details are discussed in the extended version of this paper [1].

The Randomized Algorithm. Our algorithm for PZT takes an input x, which encodes a
circuit p of size m on the variables v1, . . . , vn, it draws r1, . . . , rn uniformly at random from
{0, . . . , 2m+3 −1} and k from {1, . . . , 22m}, then it computes the value of p(r1, . . . , rn) mod k,
so to ensure that during the evaluation no overflow can take place. This is done linearly
many times in |x| (we call this value s), as to ensure that, if the polynomial is not identically
zero, the probability to evaluate p on values witnessing this property at least once grows
over 2

3 . Finally, if all the evaluations returned 0 as output the input is accepted; otherwise,
it is rejected.

The procedure described above is correct only when the size of the input circuit x is
greater than some constant ϱ. If this is not the case, our algorithm queries a table T

storing all the pairs (xi, χPZT(xi)) for |xi| < ϱ, to obtain χPZT(xi). The table T can be
pre-computed, having just a constant number of entries. This algorithm, which we call PZT,
is inspired by [3] and described in detail in the extended version of this paper [1].

As the input circuit is evaluated modulo some k ∈ Z, the algorithm works in time
polynomial with respect to |x|. Therefore, as a consequence of Theorem 4 and Lemma 8,
there is a Σb

1-formula G(x, y) of RL that represents it. The extended version of this paper [1]
also contains a lower-level description of this formula G.

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:15

The Underlying Language. We show that there is a predicate H of RL such that H(x, ϵ)
holds if and only if x is the encoding of a circuit in PZT; otherwise, H(x, 0) holds. This
predicate realizes the function h described by the following algorithm:
1. Take in input x, and check whether it is a polynomial circuit with one output; if it is not,

reject it. Otherwise:
2. Compute the polynomial term p represented by x, and reduce it to a normal form p.
3. Check whether all the coefficients of the terms are null. If this is true, output ϵ, otherwise

output 1 and terminate.
For reasonable encodings of polynomial circuits and expressions, h is elementary recursive
and therefore there is a predicate H which characterizes it, and I∆0 + Exp proves the
totality of h. Moreover, we have h = χPZT, as for every polynomial p with coefficients in Z,
Z |= ∀x⃗.p(x⃗) = 0 iff all the monomials in the normal form of p have zero as coefficient.

Proving the Error Bound. We now show that the formula G is not-erratic and that it
decides Lang(⟨G⟩). With the notations G∗ and tG from the the proof of Lemma 16, this can
be reduced to proving in I∆0 + Exp the following two claims:

⊢ ∀z. (|z| = tG(x) ∧ G∗(x, 0, z)) → H(x, 0), (†)

⊢ ∀x.
∣∣∣ {

z ⪯ 2tG(x))
∣∣∣ G∗(x, ϵ, z) → H(x, ϵ))

} ∣∣∣ ≥ 2
3 · 2|2

tG(x)|. (‡)

(†) states that whenever the randomized algorithm rejects an input, then so does the
deterministic one, while (‡), which is reminiscent of (⋆), states that in at least 2

3 of all
possible cases, if the randomized algorithm accepts the circuit, the deterministic one accepts
it too. Jointly, (†) and (‡) imply that the equivalence G∗(x, y, z) ↔ H(x, y) holds in at least
2/3 of all possible cases.

While Claim (†) is a consequence of the compatibility of the mod k function with addition
and multiplication, which are easily proved in I∆0 + Exp, the proof of Claim (‡) is more
articulated and relies on the Schwartz-Zippel Lemma, providing a lower bound to the
probability of evaluating the polynomial on values witnessing that it is not identically zero,
and the Prime Number Theorem (whose provability in I∆0 + Exp is known [16]) which
bounds the probability to choose a bad value for k, i.e. one of those values causing PZT to
return the wrong value. Detailed arguments are provided in the extended version of this
paper [1].

Closure under Polytime Reduction. Only assessing that a problem belongs to BPPT does
not tell us anything about other languages of this class; for this reason, we are interested
in showing that BPPT is closed under polytime reduction. This allows us to start from
PZT ∈ BPP(I∆0+Exp) to conclude that all problems which can be reduced to PZT in
polynomial time belong to this class, and in particular that PIT ∈ BPP(I∆0+Exp). This is
assessed by the following proposition, proved in the the extended version of this paper:

▶ Proposition 25. For any theory T ⊇ RΣb
1-NIA + Exp, language L ∈ BPPT and language

M ⊆ S, if there is a polytime reduction from M to L, then M ∈ BPPT.

▶ Corollary 26. PIT is in BPP(I∆0+Exp).

CSL 2024

10:16 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

7 On Jeřábek’s Characterization of BPP

As mentioned in Section 1, a semantic characterization of BPP based on bounded arithmetic
was already provided by Jeřábek in [41]. This approach relies on checking, against the
standard model, the truth of a formula which, rather than expressing that some machine is
non-erratic, expresses what can be seen as a second totality condition (beyond the formula
expressing the totality of the algorithm). Hence, also within this approach we think it makes
sense to investigate which problems can be proved to be in BPP within some given theory.

In this section, we relate the two approaches by showing that the problems in BPPT are
provably definable BPP problems, in the sense of [41], within some suitable extension of the
bounded theory PV1[13].

A PTM is represented in this setting by two provably total functions (A, r), where the
machine accepts on input x with probability less than p/q when Prw<r(x)(A(x, w)) ≤ p/q.
Jeřábek focuses on the theory PV1, extended with an axiom schema dWPHP (PV1)called the
dual weak pigeonhole principle (cf. [41, pp. 962ff.]) for PV1 (i.e. the axiom stating that for
every PV1-definable function f , f is not a surjection from x to x2). The reason is that this
theory is capable of proving approximate counting formulas of the form Prw<r(x)(A(x, w)) ⪯0
p/q, where “⪯0” is a relation equivalent to “≤” up to some polynomially small error
(recall that, in order to establish exact counting results, we were forced to use non-polytime
operations, cf. Remark 17). The representation of BPP problems hinges on the definition, for
any probabilistic algorithm (A, r), of L+

A,r(x) := Prw<r(x)(¬A(x, w)) ≤ 1/3 and L−A,r(x) :=
Prw<r(x)(A(x, w)) ≤ 1/3. Checking if the algorithm (A, r) solves some problem in BPP
reduces then to checking the “totality” formula ⊨ ∀x.L+

A,r(x) ∨ L−A,r(x).
Now, first observe that, modulo an encoding of strings via numbers, everything which is

provable in RΣb
1-NIA without the predicate Flip can be proved in the theory S1

2(PV) [13],
which extends both PV1 and Buss’ S1

2 . Moreover, by arguing as in the proof of Lemma
14, in our characterization of BPP we can w.l.o.g. suppose that the formula G satisfies
EpsZero[G] := ∀x.∀y.G(x, y) → y = ϵ ∨ y = 0. Under this assumption, the de-randomization
procedure described in the proof of Lemma 16 turns G into a pair (A, r), where A = G∗ is
Flip-free and r(x) = tG(x), and the languages L+

A,r(x) and L−A,r(x) correspond then to the
formulas L+

G(x) := TwoThirds[G(−, ϵ)](x), and L−G(x) := TwoThirds[G(−, 0)](x).
Now, since from T ⊢ ∀x.∃y.TwoThirds[G](x, y) and EpsZero[G] one can deduce T ⊢

∀x.L+
G(x) ∨ L−G(x), we arrive at the following:

▶ Proposition 27. Let L be a language with L = Lang(⟨G⟩). If L ∈ BPPT, then
∀x.L+

G(x) ∨ L−G(x) is provable in some recursively enumerable extension of PV1. Conversely,
if PV1+dWPHP(PV1) ⊢ ∀x.L+

G(x) ∨ L−G(x), then L ∈ BPPRΣb
1-NIA+Exp.

The second statement above relies on the fact that approximate counting can be replaced by
exact counting in RΣb

1-NIA + Exp (i.e. “⪯0” can be replaced by “≤”).

8 Future Work

The authors see this work as a starting point for a long-term study on the logical nature of
semantic classes. From this point of view, many ideas for further work naturally arise.

An exciting direction is the study of the expressiveness of the new syntactic classes BPPT,
that is, an investigation on the kinds of error bounds which can be proved in the arithmetical
theories lying between standard bounded theories like S1

2 , PV and PA, but also in theories
which are more expressive than PA (like e.g. second-order theories). Surely, classes of the
form BPPT could be analyzed also as for the existence of complete problems and hierarchy
theorems for them, since such results are not known to hold for BPP itself [27].

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:17

Our approach to BPP suggests that extensions to other complexity classes of randomized
algorithms like ZPP, RP and coRP could make sense. Notice that this requires to deal
not only with error-bounds, but also with either average class complexity or with failure in
decision procedures.

Finally, given the tight connections between bounded arithmetics and proof complexity,
another natural direction is the study of applications of our work to randomized variations
on the theme, for example recent investigations on random resolution refutations [41, 6, 52],
i.e. resolution systems where proofs may make errors but are correct most of the time.

9 Conclusion

The logical characterization of randomized complexity classes, in particular those having
a semantic nature, is a great challenge. This paper contributes to the understanding of
this problem by showing not only how resource bounded randomized computation can be
captured within the language of arithmetic, but also that the latter offers convenient tools to
control error bounds, the essential ingredient in the definition of classes like BPP and ZPP.

We believe that the main contribution of this work is a first example of a sort of reverse
computational complexity for probabilistic algorithms. As we discussed in Section 5, while
the restriction to bounded theories is crucial in order to capture polytime algorithms via a
totality condition, it is not necessary to prove error bounds for probabilistic (even polynomial
time) algorithms. In particular, the (difficult) challenge of enumerating BPP translates into
the challenge of proving BPP = BPPT for some strong enough r.e. theory T. So, it is worth
exploring how much can be proved within expressive arithmetical theories. For this reason
we focused here on a well-known problem, PIT, which is known to be in BPP, but not in P,
showing that the whole argument for PIT ∈ BPP can be formalized in a fragment of PA,
namely I∆0 + Exp.

References
1 M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone. Enumerating error bounded

polytime algorithms through arithmetical theories, 2023. arXiv:2311.15003.
2 M. Antonelli, U. Dal Lago, and P. Pistone. On measure quantifiers in first-order arithmetic.

In Proc. of CiE 2021, pages 12–24. Springer-Verlag, 2021.
3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2009.
4 S. Bellantoni and S. Cook. A New Recursion-Theoretic Characterization of the Polytime

Functions. Computational Complexity, 2:97–110, 1992.
5 P. Billingsley. Probability and Measure. Wiley, 1995.
6 S. Buss, A.L. Kolodziejczyk, and N. Thapen. Fragments of Approximate Counting. Journal

of Symbolic Logic, 79(2):496–525, 2014.
7 S.R. Buss. Bounded Arithmetic. PhD thesis, Princeton University, 1986.
8 S.R. Buss. First-Order Proof Theory of Arithmetic. In S.R: Buss, editor, Handbook of Proof

Theory. Elsavier, 1998.
9 A. Church. An Unsolvable Problem of Elementary Number Theory. American J. of Mathe-

matics, 58(2):345–363, 1992.
10 A. Cobham. The intrinsic computational difficulty of functions. In Proc. of the 1964 Interna-

tional Congress on Logics, Methodology and Philosophy of Science, pages 24–30. North-Holland
Publishing, 1965.

11 E.F. Codd. Relational Completeness of Data Base Sublanguages. In Proc. of 6th Courant
Computer Science Symposium., pages 65–98, 1972.

CSL 2024

https://arxiv.org/abs/2311.15003

10:18 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

12 S. Cook. The Complexity of Theorem Proving Procedures. In Proc. of STOC 1971, pages
151–158, 1971.

13 S. Cook and A. Urquhart. Functional Interpretations of Feasibly Constructive Arithmetic.
Annals of Pure and Applied Logic, 63(2):103–200, 1993.

14 S.A. Cook. Feasibly constructive proofs and the propositional calculus. In ACM Press, editor,
Proc. of STOC 1975, pages 83–97, 1975.

15 S.A. Cook and R.A. Reckhow. Efficiency of Propositional Proof Systems. Journal of Symbolic
Logic, 44(1):36–50, 1979.

16 C. Cornaros and C. Dimitracopoulos. The Prime Number Theorem and Fragments of PA.
Archive for Mathematical Logic, 33:265–281, August 1994.

17 H. B. Curry. Functionality in Combinatory Logic. Proceedings of the National Academy of
Sciences, 20(11):584–590, 1934.

18 U. Dal Lago, R. Kahle, and I. Oitavem. A Recursion-Theoretic Characterization of the
probabilistic Class PP. In Proc. of MFCS 2021, pages 1–12. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

19 U. Dal Lago, R. Kahle, and I. Oitavem. Implicit Recursion-Theoretic Characterizations of
Counting Classes. Archive for Mathematical Logic, May 2022.

20 U. Dal Lago and P. Parisen Toldin. A Higher-Order Characterization of Probabilistic Polyno-
mial Time. Information and Computation, 241:114–141, 2015.

21 K. Eickmeyer and M. Grohe. Randomisation and Derandomisation in Descriptive Complexity
Theory. In Proc. of CSL 2010. Springer, 2010.

22 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, 7:43–73, 1974.

23 F. Ferreira. Polynomial-Time Computable Arithmetic and Conservative Extesions. Ph.D.
Dissertation, December 1988.

24 F. Ferreira. Polynomial-Time Computable Arithmetic. In W. Sieg, editor, Logic and Compu-
tation, volume 106 of Contemporary Mathematics, pages 137–156. AMS, 1990.

25 F. Ferreira. Stockmeyer induction, pages 161–180. Birkhäuser Boston, Boston, MA, 1990.
doi:10.1007/978-1-4612-3466-1_9.

26 G. Ferreira and I. Oitavem. An Interpretation of S1
2 in Σb

1-NIA. Portugaliae Mathematica,
63:137–156, 2006.

27 L. Fortnow. Comparing notions of full derandomization. In Proceedings of the 16th Annual
IEEE Conference on Computational Complexity, pages 28–34, Chicago, IL, USA, 2001. IEEE
Computer Society.

28 H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arithmetic and the MRDP theorem.
Logic and Algorithmic, Monograph. Enseign. Math., 30:187–206, 1982.

29 D. Gajser. Verifying Time Complexity of Turing Machines. Informatica, 40:369–370, 2016.
30 J.-Y. Girard. Light Linear Logic. Information and Computation, 2(143):175–204, 1998.
31 J.-Y. Girard and Y. Lafont. Advances in Linear Logic. Cambridge University Press, 1995.
32 J.-Y. Girard, A. Scedrov, and P. Scott. Bounded Linear Logic: A Modular Approach to

Polynomial-Time Computability. Theoretical Computer Science, 97(1):1–66, 1992.
33 K. Gödel. Über Formal Unentscheidbare Sätze der Principia Mathematica and Verwandter

Systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.
34 P. Hájek. Arithmetical Hierarchy and Complexity of Computation. Theoretical Computer

Science, 8(2):227–237, 1979.
35 P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer, Berlin-

Heidelberg, 1998.
36 J. Hartmanis and R.E. Stearns. On the Computational Complexity of Algorithms. Transactions

of the AMS, 117:285–306, 1965.
37 M. Hofmann. Programming Languages Capturing Complexity Classes. SIGACT News,

31(1):31–42, March 2000.

https://doi.org/10.1007/978-1-4612-3466-1_9

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:19

38 H. A. Howard. The Formulae-as-Types Notion of Construction. In To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

39 N. Immerman. Descriptive Complexity. Springer, 1999.
40 E. Jeřábek. Dual Weak Pigeonhole Principle, Boolean Complexity, and Derandomization.

Annals of Pure and Applied Logic, 129(1):1–37, 2004.
41 E. Jeřábek. Approximate Counting in Bounded Arithmetic. Journal of Symbolic Logic,

72(3):959–993, 2007.
42 J. Krajíček and P. Pudlák. Propositional Proof Systems, the Consistency of First-Order

Theories and the Complexity of Computations. Journal of Symboic Logic, 54(3):1063–1079,
1989.

43 J. Krajíček, P. Pudlák, and G. Takeuti. Bounded Arithmetic and the Polynomial Hierarchy.
Annals of Pure and Applied Logic, 52:143–153, 1991.

44 Y. Lafont. Soft Linear Logic and Polynomial Time. Theoretical Computer Science, 1/2(318):163–
180, 2004.

45 D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and
Polytime. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 320–343. Springer,
1995.

46 H. Michalewski and M. Mio. Measure Quantifiers in Monadic Second Order Logic. In Proc. of
LFCS, pages 267–282, Cham, 2016. Springer.

47 J. Mitchell, M. Mitchell, and A. Scedrov. A Linguistic Characterization of Bounded Oracle
Computation and Probabilistic Polynomial Time. In Proc. of FOCS 1998, pages 725–733.
IEEE Computer Society, 1998.

48 C. Morgenstern. The Measure Quantifier. Journal of Symbolic Logic, 44(1):103–108, 1979.
49 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge;

NY, 1995.
50 C.H. Papadimitriou. Computational Complexity. Pearson Education, 1993.
51 R. Parikh. Existence and Feasibility in Arithmetic. Journal of Symbolic Logic, 36:494–508,

1971.
52 P. Pudlák and N. Thapen. Random Resolution Refutations. Computational Complexity,

28:185–239, 2019.
53 E.S. Santos. Probabilistic Turing Machines and Computability. AMS, 22(3):704–710, 1969.
54 M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
55 A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc.

London Mathematical Society, pages 2–42, 230–265, 1936-37.
56 G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT press,

1993.

CSL 2024

Active Learning of Deterministic Transducers with
Outputs in Arbitrary Monoids
Quentin Aristote # Ñ

École Normale Supérieure de Paris, PSL University, France
Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Abstract
We study monoidal transducers, transition systems arising as deterministic automata whose trans-
itions also produce outputs in an arbitrary monoid, for instance allowing outputs to commute or to
cancel out. We use the categorical framework for minimization and learning of Colcombet, Petrişan
and Stabile to recover the notion of minimal transducer recognizing a language, and give necessary
and sufficient conditions on the output monoid for this minimal transducer to exist and be unique
(up to isomorphism). The categorical framework then provides an abstract algorithm for learning
it using membership and equivalence queries, and we discuss practical aspects of this algorithm’s
implementation.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases transducers, monoids, active learning, category theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.11

Related Version Extended Version: https://ens.hal.science/hal-04172251v2

1 Introduction

Transducers are (possibly infinite) transition systems that take input words over an input
alphabet and translate them to some output words over an output alphabet. They are
numerous ways to implement them, but here we focus on subsequential transducers, i.e
deterministic automata whose transitions also produce an output (see Figure 1 for an
example). They are used in diverse fields such as compilers [11], linguistics [13], or natural
language processing [14].

Two subsequential transducers are considered equivalent when they recognize the same
subsequential function, that is if, given the same input, they always produce the same output.
A natural question is thus whether there is a (unique) minimal transducer recognizing a given
function (a transducer with a minimal number of states and which produces its ouput as
early as possible), and whether this minimal transducer is computable. The answer to both
these questions is positive when there exists a finite subsequential transducer recognizing this
function: the minimal transducer can then for example be computed through minimization [6].

Active learning of transducers

Another method for computing a minimal transducer is to learn it through Vilar’s al-
gorithm [21], a generalization to transducers of Angluin’s L*-algorithm, which learns the
minimal deterministic automaton recognizing a language [1]. Vilar’s algorithm thus relies on
the existence of an oracle which may answer two types of queries, namely:

membership queries: when queried with an input word, the oracle answers with the
corresponding expected output word;
equivalence queries: when queried with a hypothesis transducer, the oracle answers whether
this transducer recognizes the target function, and, if not, provides a counter-example
input word for which this transducer is wrong.

© Quentin Aristote;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin.aristote@irif.fr
https://quentin.aristote.fr/
https://orcid.org/0009-0001-4061-7553
https://doi.org/10.4230/LIPIcs.CSL.2024.11
https://ens.hal.science/hal-04172251v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

The basic idea of the algorithm is to use the membership queries to infer partial knowledge
of the target function on a finite subset of input words, and, when some closure and consistency
conditions are fulfilled, use this partial knowledge to build a hypothesis transducer to submit
to the oracle through an equivalence query: the oracle then either confirms this transducer is
the right one, or provides a counter-example input word on which more knowledge of the
target function should be inferred.

Figure 1 Two transducers: unlike automata, the transitions are also labelled with output words.

1 2

3

ϵ

a|γαβ

b|
α

a|γβα

a|γαβ

b|α

α α

α

(a) A monoidal transducer A.

1 2

ϵ

a|γαβ
b|α

a|γβα

b|α

α α

(b) A hypothesis transducer built when learning A.

Consider for instance the partial function recognized by the minimal transducer A of
Figure 1a over the input alphabet A = {a, b} and output alphabet Σ = {α, β, γ}. We write
this function L(▷−◁) : A∗ → Σ∗ ⊔ {⊥}, and let e ∈ A∗ and ϵ ∈ Σ∗ stand for the respective
empty words over these two alphabets. To learn A, the algorithm maintains a subset Q ⊂ A∗

of prefixes of input words and a subset T ⊂ A∗ of suffixes of input words, and keeps track of
the restriction of L(▷−◁) to words in QT ∪ QAT . The prefixes in Q will be made into states
of the hypothesis transducer, and two prefixes q, q′ ∈ Q will correspond to two different states
if there is a suffix t ∈ T such that L(▷qt◁) ̸= L(▷q′t◁). Informally, closure then holds when
for any state q ∈ Q and input letter a ∈ A an a-transition to some state q′ ∈ Q can always
be built; consistency holds when there is always at most one consistent choice for such a q′

and when the newly-built a-transition can be equipped with an output word. The execution
of the learning algorithm for the function recognized by A would thus look like the following.

The algorithm starts with Q = T = {e} only consisting of the empty input word. In
a hypothesis transducer, we would want e ∈ Q to correspond to the initial state, and the
output value produced by the initial transition to be the longest common prefix Λ(e) of each
L(▷et◁) for t ∈ T , here Λ(e) = α. But the longest common prefix Λ(a) of each L(▷at◁) for
t ∈ T is γαβα, of which Λ(e) is not a prefix: it is not possible to make the output of the
first a-transition so that following the initial transition and then the a-transition produces
a prefix of Λ(a)! This is a first kind of consistency issue, which we solve by adding a to T ,
turning Λ(e) into the empty output word ϵ and Λ(a) into γαβ.

Now Q = {e} and T = {e, a}. The initial transition should go into the state corresponding
to e and output Λ(e) = ϵ, the final transition from this state should output Λ(e)−1L(▷e◁) = α,
the a-transition from this state should output Λ(e)−1Λ(a) = γαβ, and this a-transition
followed by a final transition should output Λ(e)−1L(▷a◁) = γαβα. This a-transition should
moreover lead to a state from which another a-transition followed by a final transition outputs
Λ(a)−1L(▷aa◁) = γβα2: in particular, it cannot lead back to the state corresponding to e,
because γβα2 ̸= γαβα. But this state is the only state accounted for by Q, so now we have
no candidate for its successor when following the a-transition! This is a closure issue, which
we solve by adding a to Q, the corresponding new state then being the candidate successor
we were looking for.

Q. Aristote 11:3

Once Q = T = {e, a}, there are no closure nor consistency issues and we may thus build
the hypothesis transducer given by Figure 1b: it coincides with A on QA ∪ QAT . Submitting
it to the oracle we learn that this transducer is not the one we are looking for, and we get as
counter-example the input word bb, which indeed satisfies L(▷bb◁) = ⊥ and yet for which our
hypothesis transducer produced the output word α3: we thus add bb and its prefixes to Q.

With Q = {e, a, b, bb} and T = {e, a} there is another kind of consistency issue, because the
states corresponding to e and b are not distinguished by T (Λ(e)−1L(▷et◁) = Λ(b)−1L(▷bt◁)
for all t ∈ T) and should thus be merged in the hypothesis transducer, yet this is not the case
of their candidate successors when following an additional b-transition (L(▷ebe◁) = α yet
L(▷bbe◁) = ⊥ is undefined)! This issue is solved by adding b to T , after which there are again
no closure nor consistency issues and we may thus build A as our new hypothesis transducer.
The algorithm finally stops as the oracle confirms that we found the right transducer.

Transducers with outputs in arbitrary monoids

In the example above we assumed the output of the transducer consisted of words over
the output alphabet Σ = {α, β, γ}, that is of elements of the free monoid Σ∗. But in some
contexts it may be relevant to assume that certain output words can be swapped or can cancel
each other out. In other words, transducers may be considered to be monoidal and have
output not in a free monoid, but in a quotient of a free monoid. An example of a non-trivial
family of monoids that should be interesting to use as the output of a transducer is the family
of trace monoids, that are used in concurrency theory to model sequences of executions where
some jobs are independent of one another and may thus be run asynchronously: transducers
with outputs in trace monoids could be used to programatically schedule jobs. Algebraically,
trace monoids are just free monoids where some pairs of letters are allowed to commute.
For instance, the transducers of Figure 1 could be considered under the assumption that
αβ = βα, in which case the states 1 and 2 would have the same behavior.

This raises the question of the existence and computability of a minimal monoidal
transducer recognizing a function with output in an arbitrary monoid. In [12], Gerdjikov
gave some conditions on the output monoid for minimal monoidal transducers to exist and
be unique up to isomorphism, along with a minimization algorithm that generalizes the one
for (non-monoidal) transducers. This question had also been addressed in [10], although in a
less satisfying way as the minimization algorithm relied on the existence of stronger oracles.
Yet, to the best of the author’s knowledge, no work has addressed the problem of learning
minimal monoidal transducers through membership and equivalence queries.

As all monoids are quotients of free monoids, a first solution would of course be to consider
the target function to have output in a free monoid, learn the minimal (non-monoidal)
transducer recognizing this function using Vilar’s algorithm, and only then consider the
resulting transducer to have output in a non-free monoid and minimize it using Gerdjikov’s
minimization algorithm. But this solution is unsatisfactory as, during the learning phase, it
may introduce states that will be optimized away during the minimization phase. For instance,
learning the function recognized by the transducer A of Figure 1a with the assumption that
αβ = βα would first produce A itself before having its states 1 and 2 merged during the
minimization phase. Worse still, it is possible to find a partial function with output in a
finitely generated quotient monoid Σ∗/∼ and recognized by a finite monoidal transducer,
and yet so that, when this function is considered to have output in Σ∗, Vilar’s algorithm
may not even terminate if, when answering membership queries, the oracle does not carefully
choose the representatives in Σ∗ of each equivalence class in Σ∗/∼ (this is made formal
by Lemma 34 in the appendix; the idea of finding such an example was suggested by an
anonymous reviewer whom the author thanks).

CSL 2024

11:4 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

A more satisfactory solution would hence do away with the minimization phase and
instead use the assumptions on the output monoid during the learning phase to directly
produce the minimal monoidal transducer.

Structure and contributions

In this work we thus study the problem of generalizing Vilar’s algorithm to monoidal trans-
ducers. To this aim, we first recall in Section 2 the categorical framework of Colcombet,
Petrişan and Stabile for learning minimal transition systems [7]. This framework encom-
passes both Angluin’s and Vilar’s algorithms, as well as a similar algorithm for weighted
automata [4, 5]. We use this specific framework because, while others exist, they either do
not encompass transducers or require stronger assumptions [3, 19, 20]. In Section 3 we then
instantiate this framework to retrieve monoidal transducers as transition systems whose
state-spaces live in a certain category (Section 3.2). Studying the existence of specific struc-
tures in this category – namely, powers of the terminal object (Section 3.3) and factorization
systems (Section 3.4) – we then give conditions for the framework to apply and hence for the
minimal monoidal transducers to exist and be computable.

This paper’s contributions are thus the following:
necessary and sufficient conditions on the output monoid for the categorical framework
of Colcombet, Petrişan and Stabile to apply to monoidal transducers are given;
these conditions mostly overlap those of Gerdjikov, but are nonetheless not equivalent: in
particular, they extend the class of output monoids for which minimization is known to
be possible, although with a possibly worse complexity bound;
practical details on the implementation of the abstract monoidal transducer-learning
algorithm that results from the categorical framework are given;
in particular, additional structure on the category in which the framework is instantiated
provides a neat categorical explanation to both the different kinds of consistency issues
that arise in the learning algorithm and the main steps that are taken in every transducer
minimization algorithm.

2 Categorical approach to learning minimal automata

In this section we recall (and extend) the definitions and results of Colcombet, Petrişan
and Stabile [16, 8]. We assume basic knowledge of category theory [15], but we also focus
on the example of deterministic complete automata and on the counter-example of non-
deterministic automata. We do not explain it here but the framework also applies to weighted
automata [4, 5, 17] and (non-monoidal) transducers (as generalized in Section 3).

2.1 Automata and languages as functors
Let I, the input category, be the category freely generated by the diagram in ▷−→

a↶
st ◁−→ out

where a ranges in the input alphabet A: the objects are the vertices of the graph and the
morphisms paths between two vertices. I represents the basic structure of automata as
transition systems: st represents the state-space, ▷ the initial configuration, each a : st → st
the transition along the corresponding letter, and ◁ the output values associated to each
state. An automaton is then an instantiation of I in some output category:

▶ Definition 1 ((C, X, Y)-automaton). Given an output category C, a (C, X, Y)-automaton
is a functor A : I → C such that A(in) = X and A(out) = Y .

Q. Aristote 11:5

▶ Example 2 ((non-)deterministic automata). If 1 = {∗} and 2 = {⊥, ⊤}, a (Set, 1, 2)-
automaton A is a (possibly infinite) deterministic complete automaton: it is given by a
state-set S = A(st), transition functions A(a) : S → S for each a ∈ A, an initial state
s0 = A(▷)(∗) ∈ S and a set of accepting states F = {s ∈ S | A(◁)(s) = ⊤} ⊆ S. Similarly,
a (Rel, 1, 1)-automaton (where Rel is the category of sets and relations between them) is
a (possibly infinite) non-deterministic automaton: it is given by a state-set S = A(st),
transition relations A(a) ⊆ S × S, a set of initial states A(▷) ⊆ 1 × S ∼= S and a set of
accepting states A(◁) ⊆ S × 1 ∼= S.

▶ Definition 3 ((C, X, Y)-language). In the same way, we define a language to be a functor
L : O → C, where O, the category of observable inputs, is the full subcategory of I on in and
out. In other words, a language is the data of two objects X = L(in) and Y = L(out) in C
(in which case we speak of a (C, X, Y)-language), and, for each word w ∈ A∗, of a morphism
L(▷w◁) : X → Y . In particular, composing an automaton A : I → C with the embedding
ι : O ↪→ I, we get the language LA = A ◦ ι recognized by A.

▶ Example 4 (languages). The language recognized by a (Set, 1, 2)-automaton A is the
language recognized by the corresponding complete deterministic automaton: for a given
w ∈ A∗, LA(▷w◁)(∗) = ⊤ if and only if w belongs to the language, and the equality
LA(▷w◁) = A(▷w◁) = A(▷)A(w)A(◁) means that we can decide whether w is in the language
by checking whether the state we get in by following w from the initial state is accepting.
Such a language could also be seen as a set of relations L(▷w◁) ⊆ 1 × 1, where ∗ is related to
itself if and only if w belongs to L. The language recognized by a (Rel, 1, 1)-automaton is
thus the language recognized by the corresponding non-deterministic automaton.

▶ Definition 5 (category of automata recognizing a language). Given a category C and a
language L : O → C, we define the category Auto(L) whose objects are (C, L(in), L(out))-
automata A recognizing L, and whose morphisms A → A′ are natural transformations whose
components on L(in) and L(out) are the identity. In other words, a morphism of automata
is given by a morphism f : A(st) → A′(st) in C such that A′(▷) = f ◦ A(▷) (it preserves
the initial configuration), A′(a) ◦ f = f ◦ A(a) (it commutes with the transitions), and
A′(◁) ◦ f = A(◁) (it preserves the output values).

2.2 Factorization systems and the minimal automaton recognizing a
language

▶ Definition 6 (factorization system). In a category C, a factorization system (E , M) is
the data of a class of E-morphisms (represented with ↠) and a class of M-morphisms
(represented with ↣) M such that

every arrow f in C may be factored as f = m ◦ e with m ∈ M and e ∈ E;
E and M are both stable under composition;
for every commuting diagram as below where m ∈ M and e ∈ E there is a unique diagonal
fill-in d : Y1 → Y2 such that u = d ◦ e and v = m ◦ d.
X Y1

Y2 Z

e

u v
d

m

▶ Example 7. In Set surjective and injective functions form a factorization system (Surj, Inj)
such that a map f : X → Y factors through its image f(X) ⊆ Y . In Rel a factorization
system is given by E-morphisms those relations r : X → Y such that every y ∈ Y is related

CSL 2024

11:6 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

to some x ∈ X by r, and M-morphisms the graphs of injective functions (i.e. m ∈ M if
and only if there is an injective function f such that (x, y) ∈ m ⇐⇒ y = f(x)). A relation
r : X → Y then factors through the subset {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y .

▶ Lemma 8 (factorization system on Auto(L) [16, Lemma 2.8]). Given L : I → C and
(E , M) a factorization system on C, Auto(L) has a factorization given by those natural
transformations whose components are respectively E- and M-morphisms.

Because of this last result, we use (E , M) to refer both to a factorization on C and to its
extensions to categories of automata.

▶ Definition 9 (minimal object). When a category C, equipped with a factorization system
(E , M), has both an initial object I and a final object F (for every object X there is exactly
one morphism I → X and one morphism X → F), we define its (E , M)-minimal object Min
to be the one that (E , M)-factors the unique arrow I → F as I ↠ Min ↣ F . For every
object X we also define Reach X and Obs X by the (E , M)-factorizations I ↠ Reach X ↣ X

and X ↠ Obs X ↣ F .

▶ Proposition 10 (uniqueness of the minimal object [16, Lemma 2.3]). The minimal object
of a category C is unique up to isomorphism, so that for every other object X, Min ∼=
Obs(Reach X) ∼= Reach(Obs X): there are in particular spans X ↢ Reach X ↠ Min and
co-spans Min ↣ Obs X ↞ X. It is in that last sense that Min is (E , M)-smaller than every
other object X, and is thus minimal.

▶ Example 11 (initial, final and minimal automata [16, Example 3.1]). Since Set is complete
and cocomplete, the category of (Set, 1, 2)-automata recognizing a language L : I → Set
has an initial, a final and a minimal object. The initial automaton has state-set A∗, initial
state ϵ ∈ A∗, transition functions δa(w) = wa and accepting states the w ∈ A∗ such that w

is in L. Similarly, the final automaton has state-set 2A∗ , initial state L, transition functions
δa(L) = a−1L and accepting states the L ∈ 2A∗ such that ϵ is in L. The minimal automaton
for the factorization system of Example 7 thus has the Myhill-Nerode equivalence classes
for its states. It is unique up to isomorphism and its (E , M)-minimality ensures that it is
the complete deterministic automaton with the smallest state-set that recognizes L : it is in
particular finite as soon as L is recognized by a finite automaton.

On the contrary, there is no good notion of a unique minimal non-deterministic automaton
recognizing a regular ((Rel, 1, 1)-) language L. Auto(L) does have an initial and a final
object: the initial automaton is the initial deterministic automaton recognizing L, and the
final automaton is the (non-deterministic) transpose of this initial automaton. But there
is no factorization system that gives rise to a meaningful minimal object: for instance, the
minimal object for the factorization system described in Example 7 has for state-set the set
of suffixes of words in L.

Notice how in Example 11 the initial and final (Set, 1, 2)-automata have for respective
state-sets A∗, the disjoint union of |A∗| copies of 1, and 2A∗ , the cartesian product of
|A∗| copies of 2. A similar result holds for non-deterministic automata and generalizes as
Theorem 12, itself summarized by the diagram below, where κ and π are the canonical
inclusion and projections and [−] and ⟨−⟩ are the copairing and pairing of arrows.

Q. Aristote 11:7

∐
A∗ L(in)

L(in) Min(L)(st) L(out)∏
A∗ L(out)

[L(▷w◁)]w∈A ∗

∐
w∈A∗ κwa

κϵ

⟨L(▷w◁)⟩
w∈A ∗

πϵ∏
w∈A∗ πaw

▶ Theorem 12 ([16, Lemma 3.2]). Given a countable alphabet A and a language L : I → C,
if C has all countable copowers of L(in) then Auto(L) has an initial object Ainit(L) with
Ainit(L)(st) =

∐
A∗ L(in);

dually if C has all countable powers of L(out) then Auto(L) has a final object Afinal(L)
with Afinal(L)(st) =

∏
A∗ L(out);

hence when both of the previous items hold and C comes equipped with a factorization
system (E , M), Auto(L) has an (E , M)-minimal object Min L.

We now have all the ingredients to define algorithms for computing the minimal automaton
recognizing a language. But since we will also want to prove the termination of these
algorithms, we need an additional notion of finiteness.

▶ Definition 13 (E-artinian and M-noetherian objects [7, Definition 24]). In a category C
equipped with a factorization system (E , M), an object X is said to be M-noetherian if every
strict chain of M-subobjects is finite: if (xn : Xn ↣ X)n∈N and (mn : Xn ↣ Xn+1) form
the commutative diagram

X

X0 X1 · · ·

x0

m0

x1

m1

then only finitely many of the mn’s may not be isomorphisms. Dually, X is E-artinian if
Xop is Eop-noetherian in Cop, that is if every strict cochain of E-quotients of X is finite.

While Colcombet, Petrişan and Stabile do not give complexity results for their algorithm,
it is straightforward to do so, hence we extend their definition so that it also measures the
size of an object in C.

▶ Definition 14 (co-E- and M-lengths). For a fixed x0 : X0 ↣ X, we call M-length of
x0, written lengthM x0, the (possibly infinite) supremum of the lengths (the number of
pairs of consecutive subobjects) of strict chains of M-subobjects of X that start with x0.
Dually, we call co-E-length of an E-quotient x0 : X ↠ X0 the (possibly infinite) quantity
colengthE x0 = lengthEop xop

0 .

▶ Example 15. In Set, X is finite if and only if it is Inj-noetherian iff it is Surj-artinian,
and in that case for Y ⊆ X we have colengthSurj(X ↠ Y) = lengthInj(Y ↣ X) = |X − Y |.

Note that the co-E- and M-lengths need not be equal: see for instance the factorization
system we define for monoidal transducers in Section 3.4, for which the co-E- and M-lengths
are computed in Lemma 33.

CSL 2024

11:8 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

2.3 Learning
In this section, we fix a language L : O → C and a factorization system (E , M) of C that
extends to Auto(L), and we assume that C has countable copowers of L(in) and countable
powers of L(out) so that Theorem 12 applies. Our goal is to compute Min L with the help of
an oracle answering two types of queries: the function EvalL processes membership queries,
and, for a given input word w ∈ A∗, outputs L(▷w◁); while EquivL processes equivalence
queries, and, for a given hypothesis (C, L(in), L(out))-automaton A, decides whether A
recognizes L, and, if not, outputs a counter-example w ∈ A∗ such that L(▷w◁) ̸= (A◦ ι)(▷w◁).

For (Set, 1, 2)-automata, if the language is regular this problem is solved using Angluin’s
L* algorithm [1]. It works by maintaining a set of prefixes Q and of suffixes T and, using
EvalL, incrementally building a table L : Q × (A ∪ {ϵ}) × T → 2 that represents partial
knowledge of L until it can be made into a (minimal) automaton. This automaton is then
submitted to EquivL when some closure and consistency conditions hold: if the automaton
is accepted it must be Min L, otherwise the counter-example is added to Q and the algorithm
loops over. The FunL* algorithm generalizes this to arbitrary (C, L(in), L(out)), and in
particular also encompasses Vilar’s algorithm for learning (non-monoidal) transducers, which
was described in Section 1 [7].

Instead of maintaining a table, the FunL* algorithm maintains a biautomaton: if Q ⊆ A∗

is prefix-closed (wa ∈ Q ⇒ w ∈ Q) and T ⊆ A∗ is suffix-closed (aw ∈ T ⇒ w ∈ T), a
(Q, T)-biautomaton is, similarly to an automaton, a functor A : IQ,T → C, where IQ,T is
now the category freely generated by the graph in st1 st2 out

▷q

ϵ

a t◁ where a, q and t

respectively range in A, Q and T , and where we also require the diagrams below to commute,
the left one whenever qa ∈ Q and the right one whenever at ∈ T .

in st1 st1 st2

st1 st2 st2 out

▷q

▷(qa)
a

a

ϵ

(at)◁

ϵ

t◁

A (Q, T)-biautomaton may thus process a prefix in Q and get in a state in A(st1), follow a
transition along A∪{ϵ} to go in A(st2), and output a value for each suffix in T . The category
of biautomata recognizing LQ,T (L restricted to words in QT ∪QAT) is written AutoQ,T (L).
A result similar to Theorem 12 also holds for biautomata [7, Lemma 18], and the initial
and final biautomata are then made of finite copowers of L(in) and finite powers of L(out)
(when these exist). Writing Q/T for the (E , M)-factorization of the canonical morphism
⟨[L(▷qt◁)]q∈Q⟩t∈T :

∐
Q L(in) →

∏
T L(out), the minimal biautomaton recognizing LQ,T

then has state-spaces (Min LQ,T)(st1) = Q/(T ∪ AT) and (Min LQ,T)(st2) = (Q ∪ QA)/T .
The table, represented by the morphism ⟨[L(▷qt◁)]q∈Q⟩t∈T , may be fully computed using
EvalL, and hence so can be the minimal (Q, T)-biautomaton.

A biautomaton B can then be merged into a hypothesis (C, L(in), L(out))-automaton
precisely when B(ϵ) is an isomorphism, i.e. both an E- and an M-morphism (a factorization
system necessarily satisfies that Iso = E ∩ M): this encompasses respectively the closure and
consistency conditions that need to hold in the L*-algorithm (and its variants) for the table
that is maintained to be merged into a hypothesis automaton.

The FunL* algorithm terminates as soon as (Min L)(st) is finite, which in this framework
is expressed as it being E-artinian and M-noetherian. While Colcombet, Petrişan and Stabile
do not give a bound on the actual running time of their algorithm, it would be straightforward
to extend their proof to show that the number of updates to Q and T (hence in particular of
calls to EquivL) is linear in the size of (Min L)(st), itself defined through Definition 14.

Q. Aristote 11:9

Algorithm 1 The FunL*-algorithm.

Input: EvalL and EquivL
Output: Min(L)

1: Q = T = {ϵ}
2: loop
3: while ϵmin

Q,T is not an isomorphism do
4: if ϵmin

Q,T is not an E-morphism then
5: find qa ∈ QA such that Q/T ↣ (Q ∪ {qa})/T is not an E-morphism; add it to

Q

6: else if ϵmin
Q,T is not an M-morphism then

7: find at ∈ AT such that Q/(T ∪ {at}) ↠ Q/T is not an M-morphism; add it to
T

8: end if
9: end while

10: merge Min LQ,T into HQ,T L
11: if EquivL(HQ,T L) outputs some counter-example w then
12: add w and its prefixes to Q

13: else
14: return HQ,T L
15: end if
16: end loop

3 The category of monoidal transducers

We now study a specific family of transition systems, monoidal transducers, through the
lens of category theory, so as to be able to apply the framework of Colcombet, Petrişan and
Stabile. In Section 3.1, we first rapidly recall the notion of monoid. We then define the
category of monoidal transducers recognizing a language in Section 3.2, and study how it fits
into the framework of Section 2: the initial transducer is given in Corollary 25, conditions
for the final transducer to exist are described in Section 3.3, and factorization systems are
tackled in Section 3.4.

3.1 Monoids
Let us first recall definitions and notations related to monoids. Most of these are standard
in the monoid literature, only coprime-cancellativity (Definition 19) and noetherianity
(Definition 20) are uncommon.

▶ Definition 16 (monoid). A monoid (M, ϵM , ⊗M) is a set M equipped with a binary
operation ⊗M (often called the product) that is associative (∀υ, ν, ω ∈ M, υ ⊗M (ν ⊗M ω) =
(υ ⊗M ν) ⊗M ω) and has ϵM as unit element (∀υ ∈ M, υ ⊗M ϵM = ϵM ⊗M υ = υ). When
non-ambiguous, it is simply written (M, ϵ, ⊗) or even M , and the symbol for the binary
operation may be omitted. The dual of (M, ϵ, ⊗), written (Mop, ϵop, ⊗op), has underlying set
Mop = M and identity ϵop = ϵ, but symmetric binary operation : ∀υ, ν ∈ M, υ ⊗op ν = ν ⊗ υ.

▶ Definition 17 (invertibility). An element χ of a monoid M is right-invertible when there is
a χ′ ∈ M such that χχ′ = ϵ, and χ′ is then called the right-inverse of χ. χ is left-invertible
when it is right-invertible in Mop, and the corresponding right-inverse is called its left-inverse.
When χ is both right- and left-invertible, we say it is invertible. In that case its right- and

CSL 2024

11:10 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

left-inverse are equal: this defines its inverse, written χ−1. The set of invertible elements of M

is written M×. Two families (υi)i∈I and (νi)i∈I indexed by some non-empty set I are equal
up to invertibles on the left when there is some invertible χ ∈ M such that ∀i ∈ I, υi = χνi.

▶ Definition 18 (divisibility). An element υ of a monoid M left-divides a family ω = (ωi)i∈I

of M indexed by some set I when there is a family (νi)i∈I such that ∀i ∈ I, υνi = ωi, and
we say that υ is a left-divisor of ω. υ right-divides ω when it left-divides it in Mop, and
in that case υ is called a right-divisor of ω. A greatest common left-divisor (or left-gcd)
of the family ω is a left-divisor of ω that is left-divided by all others left-divisors of ω. A
family ω is said to be left-coprime if ϵM is one of its left-gcds, that is if all its left-divisors
(or equivalently one of its left-gcds when there is one) are trivial in the sense that they are
right-invertible.

We speak of greatest common left-divisors because, while there may be many such elements
for a fixed family ω, they all left-divide one another and are thus equivalent in some sense.

▶ Definition 19 (cancellativity). A monoid M is said to be left-cancellative when for any
families (υi)i∈I and (νi)i∈I of M indexed by some set I and for any ω ∈ M , υ = ν as soon as
ωυi = ωνi for all i ∈ I. If this only implies υi = χνi for some χ ∈ M× that does not depend
on i ∈ I, we instead say that M is left-cancellative up to invertibles on the left. Similarly, M

is said to be right-coprime-cancellative when for any υ, ν ∈ M and any left-coprime family
(ωi)i∈I indexed by some set I, υ = ν as soon as υωi = νωi for all i ∈ I.

▶ Definition 20 (noetherianity). A monoid M is right-noetherian when for any sequences
(υn)n∈N and (νn)n∈N of M such that νn = νn+1υn for all n ∈ N, there is some n ∈ N such
that υn is invertible. In this case, we write rk ν for the rank of ν, the (possibly infinite)
supremum of the number of non-invertibles in a sequence (υn)n∈N that satisfies νn = νn+1υn

for some sequence (νn)n∈N with ν0 = ν.

In other words, a monoid is right-noetherian when it has no strict infinite chain of
right-divisors (in the definition above, each υn · · · υ0 right-divides ν0). This condition is the
one that will ensure our algorithms terminate (notice the resemblance with Definition 13).

▶ Example 21. The canonical example of a monoid is the free monoid A∗ over an alphabet
A, whose elements are words with letters in A, whose product is the concatenation of words
and whose unit is the empty word. Notice that the alphabet A may be infinite. The
left-divisibility relation is the prefix one, and the left-gcd is the longest common prefix.

The free commutative monoid A⊛ over A has elements the functions A → N with finite
support, product (f ⊗g)(a) = f(a)+g(a) and unit the zero function a 7→ 0. It is commutative
(f ⊗ g = g ⊗ f) hence is its own dual : the divisibility relation is the pointwise order inherited
from N and the greatest common divisor is the pointwise infimum.

These two monoids are examples of trace monoids over some A, defined as quotients
of A∗ by commutativity relations on letters (for A⊛, all the pairs of letters are required to
commute, and for A∗ none are). Trace monoids have no non-trivial right- or left-invertible
elements, are all left-cancellative, right-coprime-cancellative and right-noetherian, and the
rank of a word is simply its number of letters.

Another family of examples is that of groups, monoids where all elements are invertible.
Again, all groups are left-cancellative, right-coprime-cancellative and right-noetherian.

A final family of monoids of interest is given by (E, ∨, ⊥) for E any join-semilattice with
a bottom element ⊥. In these commutative monoids, the divisibility relation is the partial
order on E, and the gcd, when it exists, is the infimum. This example shows that a monoid
can be coprime-cancellative without being cancellative nor noetherian: this is for instance
the case when E = R+.

Q. Aristote 11:11

3.2 Monoidal transducers as functors
In the rest of this paper we fix a countable input alphabet A and an output monoid (M, ϵ, ⊗).
To differentiate between elements of A∗ and elements of M , we write the former with Latin
letters (a, b, c, . . . for letters and u, v, w, . . . for words) and the latter with Greek letters
(α, β, γ, . . . for generating elements and υ, ν, ω, . . . for general elements). In particular the
empty word over A is denoted e while the unit of M is still written ϵ. We now define our
main object of study, M -monoidal transducers.

▶ Definition 22 (monoidal transducer). A monoidal transducer is a tuple (S, (υ0, s0), t, (− ⊙
a)a∈A) where S is a set of states; (υ0, s0) ∈ M × S ⊔ {⊥} is the (possibly undefined) pair
of the initialization value and initial state; t : S → M ⊔ {⊥} is the partial termination
function; s ⊙ a ∈ M × S ⊔ {⊥} for a ∈ A may be undefined, and its two components,
− # a : S → M ⊔ {⊥} and − · a : S → S ⊔ {⊥}, are respectively called the partial production
function and the partial transition function along a.

▶ Example 23. Figure 1a is a graphical representation of a monoidal transducer that takes its
input in the alphabet A = {a, b} and has output in any monoid that is a quotient of Σ∗ with
Σ = {α, β, γ}. Formally, it is given by S = {1, 2, 3}; (υ0, s0) = (ϵ, 1); t(1) = t(2) = t(3) = α;
and finally 1 ⊙ a = (γαβ, 2), 2 ⊙ a = (γβα, 1), 3 ⊙ a = (γαβ, 3), 1 ⊙ b = 2 ⊙ b = (α, 3) and
3 ⊙ b = ⊥.

To apply the framework of Section 2 we first need to model monoidal transducers as
functors. We thus design a tailored output category that in particular matches the one that
instantiates classical transducers when M is a free monoid [16, Section 4]. We write TM for
the monad on Set given by TM X = M × X + 1 = (M × X) ⊔ {⊥} (in Haskell, this monad
is the composite of the Maybe monad and a Writer monad). Its unit η : Id ⇒ TM is given
by ηX(x) = (ϵ, x) and its multiplication µ : T 2

M ⇒ TM is given by µX((υ, (ν, x))) = (νυ, x),
µX((υ, ⊥)) = ⊥ and µX(⊥) = ⊥. Recall that the Kleisli category Kl(TM) for the monad
TM has sets for objects and arrows X Y (notice the different symbol) those functions
f† : TM X → TM Y such that f†(⊥) = ⊥, f†(υ, x) = (υν, y) when f†(ϵ, x) = (ν, y) and
f†(υ, x) = ⊥ when f(ϵ, x) = ⊥: in particular, such an arrow is entirely determined by
its restriction f : X → TM Y , and we will freely switch between these two points of view
for the sake of conciseness. The identity on X is then given by the identity function
idTM X = η†

X : TM X → TM X, and the composition of two arrows X Y Z is given
by the composition of the underlying functions TM X → TM Y → TM Z.

M -transducers are in one-to-one correspondance with (Kl(TM), 1, 1)-automata, i.e. func-
tors A : I → Kl(TM) such that A(in) = A(out) = 1: (S, (υ0, s0), t, (− ⊙ a)a∈A) is modelled
by the functor A : I → Kl(TM) given by A(st) = S, A(▷) = ∗ 7→ (υ0, s0) : 1 → M × S + 1,
A(w) = s 7→ s ⊙ w = (((s ⊙ a1) ⊙† a2) ⊙† · · ·) ⊙† an : S → M × S + 1 for w = a1 · · · an ∈ A∗,
and A(◁) = t : S → M + 1 ∼= M × 1 + 1.

▶ Definition 24. We write TransM for the category of (Kl(TM), 1, 1)-automata: the objects
are M -transducers seen as functors and the morphisms are natural transformations between
them. Given a (Kl(TM), 1, 1)-language L : O → Kl(TM), we write TransM (L) for the
subcategory of M -transducers A : I → Kl(TM) that recognize L, i.e. such that A ◦ ι = L.

Under this correspondance, the language recognized by a transducer (S, (υ0, s0), t, ⊙) is
thus a function L : A∗ → M + 1 given by L(w) = t†((υ0, s0) ⊙† w), and a morphism between
two transducers (S1, (υ1, s1), t1, ⊙1) and (S2, (υ2, s2), t2, ⊙2) is a function f : S1 → M ×S2 +1
such that f†(υ1, s1) = (υ2, s2), t1(s) = t†

2(f(s)) and f†(s ⊙ a) = f†(s) ⊙† a.

CSL 2024

11:12 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

When M = B∗ for some alphabet B, M -transducers coincide with the classical notion of
transducers and the minimal transducer is given by Definition 9 [6, 16]. To study the notion
of minimal monoidal transducer, it is thus natural to try to follow this framework as well.

3.3 The initial and final monoidal transducers recognizing a function
To apply the framework of Section 2 to (Kl(TM), 1, 1)-automata, we need three ingredients
in Kl(TM) : countable copowers of 1, countable powers of 1, and a factorization system.

We start with the first ingredient, countable copowers of 1. Since Set has arbitrary
coproducts, Kl(TM) has arbitrary coproducts as well as any Kleisli category for a monad
over a category with coproducts does [18, Proposition 2.2]. Hence Theorem 12 applies:

▶ Corollary 25 (initial transducer). For any (Kl(TM), 1, 1)-language L, TransM (L) has an
initial object Ainit(L) with state-set Sinit = A∗, initial state sinit

0 = e, initialization value
υinit

0 = ϵ, termination function tinit(w) = L(▷w◁)(∗) and transition function w ⊙init a =
(ϵ, wa). Given any other transducer A = (S, (υ0, s0), t, ⊙) recognizing L, the unique transducer
morphism f : Ainit(L) =⇒ A is given by the function f : A∗ → M × S + 1 such that
f(w) = A(▷w)(∗) = (υ0, s0) ⊙† w.

Similarly, to get a final transducer in TransM (L) for some L, Theorem 12 tells us that it
is enough for Kl(TM) to have all countable powers of 1. This is in particular what happens for
classical transducers, when M is a free monoid [16, Lemma 4.7]. Hence we study conditions
on the monoid M for Kl(TM) to have these powers.

▶ Theorem 26. If M is both left-cancellative up to invertibles on the left and right-coprime-
cancellative, and all non-empty countable subsets of M have a unique left-gcd up to invertibles
on the right, then Kl(TM) has all countable powers of 1. This is moreover a necessary
condition as soon as M is right-noetherian.

In practice, to build the final transducer we need some additional technical tools hidden in
the proof of Theorem 26. Given a countable set I, we consider partial functions Λ : I → M +1.
We write ⊥I for the nowhere defined function i 7→ ⊥ and (M + 1)I

∗ = (M + 1)I − {⊥I} for
the set of partial functions that are defined somewhere. If I ⊆ J , (M + 1)I

∗ may thus be
identified with the subset of partial functions of (M + 1)J

∗ that are undefined on J − I. We
extend the product ⊗ : M2 → M of M to a function M × (M + 1)I

∗ → (M + 1)I
∗ by setting

(υ ⊗ Λ)(i) = υ ⊗ Λ(i) for i ∈ I such that Λ(i) ̸= ⊥ and (υ ⊗ Λ)(i) = ⊥ otherwise.
Kl(TM) has all countable powers of 1 if and only if there are two functions lgcd :

(M + 1)N∗ → M and red : (M + 1)N∗ → (M + 1)N∗ that uniquely decompose a partial function
into its left-gcd and the corresponding left-coprime reduced function: they satisfy that

Λ = lgcd(Λ) red(Λ) for all Λ ∈ (M + 1)N∗ ;
υ red(Γ) = ν red(Λ) implies υ = ν and red Γ = red Λ for all Γ, Λ ∈ (M +1)N∗ and υ, ν ∈ M .

We also write lgcd(⊥N) = ⊥, red(⊥N) = ⊥N = ⊥ and do not distinguish between (⊥, ⊥) and
⊥. For every countable I, lgcd and red can be extended to (M + 1)I

∗ as I may be embedded
into N. We then get

∏
I 1 = Irr(I, M) = {red(Λ) | Λ ∈ (M + 1)I

∗} ⊆ (M + 1)I
∗.

▶ Corollary 27. When the functions lgcd and red satisfying the two conditions above exist,
the final transducer Afinal(L) recognizing a (Kl(TM), 1, 1)-language L exists and has state-set
Sfinal = Irr(A∗, M), initial state sfinal

0 = red L, initialization value υfinal
0 = lgcd L, termin-

ation function tfinal(Λ) = Λ(e) and transition functions Λ⊙final a = (lgcd(a−1Λ), red(a−1Λ))
where we write (a−1Λ)(w) = Λ(aw) for a ∈ A. Given any other transducer A =
(S, (υ0, s0), t, ⊙) recognizing L, the unique transducer morphism f : A =⇒ Afinal(L) is
given by the function f : S → M × Irr(A∗, M) + 1 such that f(s) = (lgcd Ls, red Ls) where
Ls(▷w◁)(∗) = A(w◁)(s) is the function recognized by A from the state s.

Q. Aristote 11:13

▶ Example 28. When M is a group it is cancellative (because every element is invertible)
and all countable families have a unique left-gcd up to invertibles on the right (ϵ itself) hence
Theorem 26 applies and TransM (L) always has a final object. The same is true when M

is a trace monoid (the left-gcd then being the longest common prefix, whose existence is
guaranteed by [9, Proposition 1.3]).

Conversely, the monoids given by join semi-lattices are not left-cancellative up to invertibles
in general. In R+ for instance, there are ways to define the functions lgcd and red but they
may not satisfy that red(υΛ) = red Λ (which should be implied by υ lgcd(Λ) red(Λ) =
υΛ = lgcd(υΛ) red(υΛ)). This is expected, as there may be several non-isomorphic ways
to minimize transducers with outputs in these monoids, which is incompatible with the
framework of Definition 9.

Theorem 26 provides sufficient conditions that are reminiscent of those developed in [12]
for the minimization of monoidal transducers. These conditions are stronger than ours but
still similar: the output monoid is assumed to be both left- and right-cancellative, which in
particular implies the unicity up to invertibles on the right of the left-gcd whose existence
is also assumed. They do only require the existence of left-gcds for finite families (whereas
we ask for left-gcds of countable families), which would not be enough for our sake since
the categorical framework also encompasses the existence of minimal (infinite) automata
for non-regular languages, but in practice our algorithms will only use binary left-gcds as
well. We conjecture that, when only those binary left-gcds exist, the existence of a unique
minimal transducer is explained categorically by the existence of a final transducer in the
category of transducers whose states all recognize functions that are themselves recognized
by finite transducers. Where the two sets of conditions really differ is in the conditions
required for the termination of the algorithms: where we will require right-noetherianity of
M , they require that if some ν left-divides both some ω and υω for some υ, then ν should also
left-divide υν. This last condition leads to better complexity bounds than right-noetherianity,
but misses some otherwise simple monoids that satisfy right-noetherianity, e.g. {α, β}∗ but
where we also let α and β2 commute. Conversely, Gerdjikov’s main non-trivial example, the
tropical monoid (R+, 0, +), is not right-noetherian. It can still be dealt with in our context
by considering submonoids (finitely) generated by the output values of a finite transducer’s
transitions, these monoids themselves being right-noetherian.

3.4 Factorization systems
The last ingredient we need in order to be able to apply the framework of Section 2 is a
factorization system on TransM (L). By Lemma 8, it is enough to find one on Kl(TM).
When M is a free monoid, [16, Section 4.5], provides such a factorization system for which
the minimal (Kl(TM), 1, 1)-automaton recognizing a language is the usual notion of minimal
(non-monoidal) transducer. We thus simply generalize this factorization system to arbitrary
output monoids. Define the classes of Kl(TM)-morphisms Surj, Inj, Inv and Tot as follows:
for f : X → M ×Y +1 and writing f1 : X → M +1 for its projection on M and f2 : X → Y +1
for its projection on Y , we let f ∈ Surj whenever f2 is surjective on Y , and say f is surjective;
let f ∈ Inj whenever f2 is injective when corestricted to Y , and say f is injective; let f ∈ Tot
whenever it is total, i.e. f(x) ̸= ⊥ for all x ∈ X; and let f ∈ Inv whenever it only produces
invertible elements, i.e. whenever f1(X) ⊆ M× + 1. Then,

▶ Lemma 29. (E , M) = (Surj, Inj ∩ Inv ∩ Tot) is a factorization system on Kl(TM).

Theorem 12 and Proposition 10 show that (E , M) indeed gives rise to a useful notion of
minimal transducer.

CSL 2024

11:14 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

▶ Corollary 30. When Kl(TM) has all countable powers of 1, the (E , M)-minimal trans-
ducer recognizing a (Kl(TM), 1, 1)-language L is well-defined and has state-set Smin =
{red(w−1L) | w ∈ A∗} ∩ (M + 1)A∗

∗ , initial state smin
0 = red L, initialization value υmin

0 =
lgcd L, termination function tmin(Λ) = Λ(e) and transition functions red(w−1L) ⊙min a =
(lgcd((wa)−1L), red((wa)−1L)). It is characterized by the property that all its states are
reachable from the initial state and recognize distinct left-coprime functions.

▶ Example 31. When M = {α, β, γ}∗ is the free monoid, the transducer of Figure 1a is
minimal for the function it recognizes. But when we allow α and β to commute in M this
transducer is not minimal anymore because the states 1 and 2 recognize the same left-coprime
function and need to be merged. If we also allow α to commute with γ then the resulting
transducer (where the states 1 and 2 have been merged) is again not minimal, because
the function recognized by the merged state (and previously by the states 1 and 2) is not
left-coprime: it is left-divisible by α.

More interestingly, (Surj ∩ Inj ∩ Tot, Inv) and (Surj ∩ Inj, Tot ∩ Inv) are also factorization
systems on Kl(TM), and since Surj ∩ Inv ∩ Tot ⊂ Surj ∩ Inj ⊂ Surj, together with (E , M)
they thus form what is called a quaternary factorization system. In practice, this means
that the computation of any morphism f in Kl(TM) can be uniquely factored into four
orthogonal parts, as f = f4 ◦ f3 ◦ f2 ◦ f1: f1 is the part that forgets some inputs (it belongs
to Surj ∩ Inj ∩ Inv but need not belong to Tot), f2 the one that produces non-invertible
elements of the output monoid (it belongs to Surj ∩ Inj ∩ Tot but need not belong to Inv),
f3 the one that merges some inputs together (it belongs to Surj ∩ Inv ∩ Tot but need not
belong to Inj) and f4 embeds the result into a bigger set (it belongs to Inv ∩ Inj ∩ Tot but
need not belong to Surj).

In particular, for a (Kl(TM), 1, 1)-automaton A recognizing a language L, the final
arrow Reach A Afinal(L) can be factored in this way into Reach A Total A
Prefix A Min L Afinal(L), and we retrieve the four main steps of every algorithm
that minimizes (monoidal or non-monoidal) transducers [6, 12]. In practice, minimizing
A = (S, (u0, s0), t, ⊙) indeed involves computing Reach A, Total A, Prefix A and Min L one
after the other:

Reach A has state-set the set of states in S that are reachable from s0;
Total A has state-set S′ the set of states in S that recognize a function defined for at
least one input word (in particular if A recognizes ⊥A∗ then (υ0, s0) is set to ⊥);
Prefix A = (S′, (υ0 lgcd(Ls0), s0), t′, ⊙′), where Ls is the function recognized from a
state s ∈ S in A, is obtained from Total A by setting t′(s) = lgcd(Ls)−1

t(s) and
s ⊙′ a = (lgcd(Ls)−1(s # a) lgcd(Ls·a), s · a);
Obs(Reach A) ∼= Min L is obtained from Prefix A by merging two states s1 and s2
whenever they recognize functions that are equal up to invertibles on the left in Prefix A,
that is when red(Ls1) = red(Ls2) in A.

▶ Example 32. Starting from the monoidal transducer A of Figure 1a considered within
the output monoid where we allow α to commute with both β and γ, Reach A = A (every
state is reachable from the initial state), Total A = A (every state produces an output
when following at least one input word, e.g. the empty input word), Prefix A is obtained
from A by pulling the output letter α from the terminal transitions to the initial transition
(because α commutes with every output word hence left-divides the functions recognized
from each state), and Min L is then obtained from Prefix A by merging the states 1 and 2
(they recognize the same function because γαβ = γβα).

Q. Aristote 11:15

4 Active learning of minimal monoidal transducers

Let M be a monoid satisfying the conditions of Theorem 26 and consider now a function
A∗ → M + 1 seen as a (Kl(TM), 1, 1)-language L. Theorem 12 tells us that the minimal
M -transducer recognizing L exists, is unique up to isomorphism and is given by Corollary 30,
but does not tell us whether this minimal transducer is computable. For this to hold we need
that the product in M , the left-gcd of two elements in M – written ∧ – and the function
LeftDivide – that takes as input δ, υ ∈ M and outputs a ν such that υ = δν or fails if
there is none – be all computable, and that equality up to invertibles on the left be decidable
(and that the corresponding invertible be computable as well). We extend these operations
to M + 1 by means of u⊥ = ⊥u = ⊥, u ∧ ⊥ = ⊥ ∧ u = ⊥ and LeftDivide(δ, ⊥) = ⊥. For
the computations to terminate we additionally require that Min L have finite state-set and
M be right-noetherian, so that (Min L)(st) is noetherian for the factorization system (E , M)
of Lemma 29:

▶ Lemma 33. An object X of Kl(TM) is M-noetherian if and only if it is a finite set, in
which case lengthM(m : Y X) = |X| − |Y |, and it is E-artinian if and only if it is a
finite set and either M is right-noetherian or X = ∅, in which case colengthE(e : X

Y) = |X| − |Y | +
∑

e(x)=(υ,y) rk υ.

The categorical framework of Section 2 can be extended with an abstract minimization
algorithm [2]. With the output category described in Section 3 this instantiates in particular
Gerdjikov’s algorithm for minimizing monoidal transducers [12], and even shows that the
latter is still valid under the conditions discussed in Section 3.3 and terminates as soon as
M is right-noetherian. However, we focus here on a second way to compute the minimal
transducer recognizing L, namely learning it through membership and equivalence queries,
that is relying on a function EvalL that outputs the value of L on input words and a function
EquivL that checks whether the hypothesis transducer is Min L or outputs a counterexample
otherwise. The FunL* algorithm described in Section 2.3 instantiates such an algorithm, that
terminates as soon as (Min L)(st) is (E , M)-noetherian. We now give a practical description
of this categorical algorithm: we explain how to keep track of the minimal biautomaton
and how to check whether ϵmin

Q,T is in E and M. This is summarized by Algorithm 2 in the
appendix.

The algorithm for learning the minimal monoidal transducer recognizing L is very similar
to Vilar’s algorithm (described in Section 1), the main difference being that the longest
common prefix is now the left-gcd and that, in some places, testing for equality is now
testing for equality up to invertibles on the left. It maintains two sets Q and T that are
respectively prefix-closed and suffix-closed, and tables Λ : Q × (A ∪ {e}) → M + 1 and R :
Q×(A∪{e})×T → M +1. They satisfy that, for all a ∈ A∪{e}, Λ(q, a)R(q, a, t) = L(▷qat◁)
and R(q, a, ·) is left-coprime, hence Λ(q, a) is a left-gcd of (L(▷qat◁))t∈T . The algorithm then
extends Q and T until some closure and consistency conditions are satisfied, and builds a
hypothesis transducer H(Q, T) using Λ and R: its state-set S can be constructed by, starting
with e ∈ Q, picking as many q ∈ Q such that R(q, e, ·) is not ⊥T and such that, for any
other q′ ∈ S, R(q, e, ·) and R(q′, e, ·) are not equal up to invertibles on the left; it then has
initial state e ∈ Q, initialization value Λ(e, e), termination function t = q ∈ S 7→ R(q, e, e)
and transition functions given by q ⊙ a = (LeftDivide(Λ(q, e), Λ(q, a))χ, q′) for q, q′ ∈ S

such that R(q, a, ·) = χR(q′, e, ·). The algorithm then adds the counter-example given by
EquivL(H(Q, T)) to Q and builds a new hypothesis automaton until no counter-example is
returned and H(Q, T) = Min L.

CSL 2024

11:16 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

Closure issues happen when ϵmin
Q,T is not in E = Surj, that is when there is a qa ∈ QA

such that R(q, a, ·) ̸= χR(q′, e, ·) for every other q′ ∈ Q and χ ∈ M×, and in that case
qa should be added to Q. Consistency issues happen when the E-factor of ϵmin

Q,T is not in
M = Inj ∩ Inv ∩ Tot, i.e. if it is not in Tot, in Tot but not in Inv ∩ Tot, or in Inv ∩ Tot but
not in Inj ∩ Inv ∩ Tot: the quaternary factorization system described in Section 3.4 thus also
explains the different kinds of consistency issues we may face. In practice, there is hence a
consistency issue if there is an at ∈ AT such that respectively: either there is a q ∈ Q such that
R(q, a, t) ̸= ⊥ but R(q, e, T) = ⊥T ; or there is a q ∈ Q such that Λ(q, e) does not left-divide
Λ(q, a)R(q, a, t); or there are some q, q′ ∈ Q and χ ∈ M× such that R(q, e, T) = χR(q′, e, T)
but LeftDivide(Λ(q, e), Λ(q, a)R(q, a, t)) ̸= χLeftDivide(Λ(q′, e), Λ(q′, a)R(q′, a, t)). In
each of these cases at should be added to T .

The number of updates to Q and T , hence in particular of calls to EquivL, is bounded
linearly by the the number of states in Min L and the sum of the ranks of the left-gcds of the
functions recognized by each of these states (although this latter quantity is not necessarily
finite). Our algorithm also differs from Vilar’s original one in a small additional way: the
latter also keeps track of the left-gcds of every Λ(q, ã) where ã ranges over A ∪ {e} and q ∈ Q

is fixed, and checks for consistency issues accordingly. This is a small optimization of the
algorithm that does not follow immediately from the categorical framework. In Section 1
we thus actually provided an example run of our version of the algorithm when the output
monoid is a free monoid. This also provides example runs of our algorithm for non-free
output monoids, as quotienting the output monoid will only remove closure and consistency
issues and make the run simpler. For instance letting α commute with β for the transducer
of Figure 1a would have removed the closure issue and the need to add a to Q while learning
the corresponding monoidal transducer, and letting α also commute with γ would have
removed the first consistency issue to arise and the need to add a to T .

5 Summary and future work

In this work, we instantiated Colcombet, Petrişan and Stabile’s active learning categorical
framework with monoidal transducers. We gave some simple sufficient conditions on the
output monoid for the minimal transducer to exist and be unique, which in particular extend
Gerdjikov’s conditions for minimization to be possible [12]. Finally, we described what the
active learning algorithm of the categorical framework instantiated to in practice under
these conditions, relying in particular on the quaternary factorization system in the output
category.

This work was mainly a theoretical excursion and was not motivated by practical examples
where monoidal transducers are used. One particular application that could be further
explored is the use of transducers with outputs in trace monoids (and their learning) to
programatically schedule jobs, as mentioned in the introduction. We also leave the search for
other interesting examples for future work.

Some intermediate results of this work go beyond what the categorical framework currently
provides and could be generalized. The use of a quaternary factorization system (or any
n-ary factorization system) would split the algorithms into several substeps that should be
easier to work with. Here our factorization systems seemed to arise as the image of the
factorization system on Set through the monad TM ; generalizing this to other monads could
provide meaningful examples of factorization systems in any Kleisli category. Finally, we
mentioned in Section 3.3 that a problem with the current framework is that it may only
account for the minimization of both finite and infinite transition systems at the same time,

Q. Aristote 11:17

and conjectured that we could restrict to only the finite case by working in a subcategory of
well-behaved transducers: this subcategory is perhaps an instance of a general construction
that has its own version of Theorem 12, so as to still have a generic way to build the initial,
final and minimal objects.

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Information and

Computation, 75(2):87–106, November 1987. doi:10.1016/0890-5401(87)90052-6.
2 Quentin Aristote. Functorial approach to minimizing and learning deterministic trans-

ducers with outputs in arbitrary monoids, November 2023. URL: https://ens.hal.science/
hal-04172251v2.

3 Simone Barlocco, Clemens Kupke, and Jurriaan Rot. Coalgebra Learning via Duality. In
Mikołaj Bojańczyk and Alex Simpson, editors, Foundations of Software Science and Com-
putation Structures, Lecture Notes in Computer Science, pages 62–79, Cham, 2019. Springer
International Publishing. doi:10.1007/978-3-030-17127-8_4.

4 F. Bergadano and S. Varricchio. Learning behaviors of automata from multiplicity and
equivalence queries. In M. Bonuccelli, P. Crescenzi, and R. Petreschi, editors, Algorithms
and Complexity, Lecture Notes in Computer Science, pages 54–62, Berlin, Heidelberg, 1994.
Springer. doi:10.1007/3-540-57811-0_6.

5 Francesco Bergadano and Stefano Varricchio. Learning Behaviors of Automata from Multiplicity
and Equivalence Queries. SIAM Journal on Computing, 25(6):1268–1280, December 1996.
doi:10.1137/S009753979326091X.

6 Christian Choffrut. Minimizing subsequential transducers: A survey. Theoretical Computer
Science, 292(1):131–143, January 2003. doi:10.1016/S0304-3975(01)00219-5.

7 Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile. Learning automata and trans-
ducers: A categorical approach, October 2020. doi:10.48550/arXiv.2010.13675.

8 Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile. Learning Automata and Trans-
ducers: A Categorical Approach. In Christel Baier and Jean Goubault-Larrecq, editors, 29th
EACSL Annual Conference on Computer Science Logic (CSL 2021), volume 183 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:17, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2021.15.

9 Robert Cori and Dominique Perrin. Automates et commutations partielles. RAIRO. Inform-
atique théorique, 19(1):21–32, 1985. doi:10.1051/ita/1985190100211.

10 Jason Eisner. Simpler and more general minimization for weighted finite-state automata. In
Proceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology – Volume 1, NAACL ’03, pages
64–71, USA, May 2003. Association for Computational Linguistics. doi:10.3115/1073445.
1073454.

11 Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc. Crafting a Compiler. Crafting a
Compiler with C. Addison-Wesley, Boston, 2010.

12 Stefan Gerdjikov. A General Class of Monoids Supporting Canonisation and Minimisa-
tion of (Sub)sequential Transducers. In Shmuel Tomi Klein, Carlos Martín-Vide, and
Dana Shapira, editors, Language and Automata Theory and Applications, Lecture Notes
in Computer Science, pages 143–155, Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-319-77313-1_11.

13 Ronald M. Kaplan and Martin Kay. Regular Models of Phonological Rule Systems. Computa-
tional Linguistics, 20(3):331–378, 1994. URL: https://aclanthology.org/J94-3001.

14 Kevin Knight and Jonathan May. Applications of Weighted Automata in Natural Language
Processing. In Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted
Automata, Monographs in Theoretical Computer Science. An EATCS Series, pages 571–596.
Springer, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-01492-5_14.

CSL 2024

https://doi.org/10.1016/0890-5401(87)90052-6
https://ens.hal.science/hal-04172251v2
https://ens.hal.science/hal-04172251v2
https://doi.org/10.1007/978-3-030-17127-8_4
https://doi.org/10.1007/3-540-57811-0_6
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/10.48550/arXiv.2010.13675
https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://doi.org/10.1051/ita/1985190100211
https://doi.org/10.3115/1073445.1073454
https://doi.org/10.3115/1073445.1073454
https://doi.org/10.1007/978-3-319-77313-1_11
https://aclanthology.org/J94-3001
https://doi.org/10.1007/978-3-642-01492-5_14

11:18 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

15 Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer, New York, NY, 1978. doi:10.1007/978-1-4757-4721-8.

16 Daniela Petrişan and Thomas Colcombet. Automata Minimization: A Functorial Approach.
Logical Methods in Computer Science, Volume 16, Issue 1, March 2020. doi:10.23638/
LMCS-16(1:32)2020.

17 M. P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2):245–270, September 1961. doi:10.1016/S0019-9958(61)80020-X.

18 Jenö Szigeti. On limits and colimits in the Kleisli category. Cahiers de topologie et géométrie
différentielle, 24(4):381–391, 1983. URL: http://www.numdam.org/item/?id=CTGDC_1983_
_24_4_381_0.

19 Henning Urbat and Lutz Schröder. Automata Learning: An Algebraic Approach. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages
900–914, New York, NY, USA, July 2020. Association for Computing Machinery. doi:
10.1145/3373718.3394775.

20 Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Learning Automata with Side-
Effects. In Daniela Petrişan and Jurriaan Rot, editors, Coalgebraic Methods in Computer
Science, Lecture Notes in Computer Science, pages 68–89, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-57201-3_5.

21 Juan Miguel Vilar. Query learning of subsequential transducers. In Laurent Miclet and
Colin de la Higuera, editors, Grammatical Interference: Learning Syntax from Sentences,
Lecture Notes in Computer Science, pages 72–83, Berlin, Heidelberg, 1996. Springer. doi:
10.1007/BFb0033343.

A Why Vilar’s algorithm is not enough for monoidal transducers

▶ Lemma 34. Let A = {a}, Σ = {α, β, γ}, let Σ∗/∼ be the monoid given by the presentation
⟨Σ | αβ = βα⟩ and let π : Σ∗ → Σ∗/∼ be the corresponding quotient. Consider the function
f : A∗ → Σ∗/∼ that maps an to αnβnγ = (αβ)nγ.

f is recognized by a finite transducer with outputs in Σ∗/∼, yet learning a transducer
that recognizes any function f ′ : A∗ → Σ∗ such that f = f ′ ◦ π with Vilar’s algorithm will
never terminate if the oracle replies to the membership query for an with αnβnγ ∈ Σ∗ (which
differs from (αβ)nγ in Σ∗ but not in Σ∗/∼).

Proof. f is recognized by the (Σ∗/∼)-transducer (Definition 22) with one state s that is
initial, initial value υ0 = ϵ, transition function a ⊙ s = (αβ, s) and termination function
t(s) = γ.

Consider now the run of Vilar’s algorithm (Algorithm 2 with M = Σ∗ and M× = {e})
with the oracle answering the membership query for an with f ′(an) = αnβnγ. We start with
Q = T = {e}, Λ(e) = γ, Λ(a) = αβγ and R(e, e) = R(a, e) = ϵ, where Λ(w) for w ∈ Q ∪ QA

is the longest common prefix of the {f ′(wt) | t ∈ T} and R(w, t) is the suffix such that
f ′(wt) = Λ(w)R(w, t).

Since Λ(e) = γ is not a prefix of Λ(a) = αβγ, there is a consistency issue and we add a

to T . Taking n = 0, we are now in the configuration Cn given by Q = Qn = {ak | k ≤ n},
T = {e, a}, and Λ(ak) = αk, R(ak, e) = βkγ and R(ak, a) = αβk+1γ for every k ≤ n + 1
(since the oracle replies to the membership query for ak with αkβkγ and to that for aka with
αk+1βk+1γ).

Suppose now we are in the configuration Cn for some n ∈ N. Then there is a closure
issue, since for all k ≤ n, R(ak, e) = βkγ ̸= βn+1γ = R(an+1, e). We thus add an+1 to
Q. To compute Λ(an+2), R(an+2, e) and R(an+2, a), we make a membership query for
an+3: the oracle answers with f ′(an+3) = αn+3βn+3γ. The longest common prefix of

https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.1016/S0019-9958(61)80020-X
http://www.numdam.org/item/?id=CTGDC_1983__24_4_381_0
http://www.numdam.org/item/?id=CTGDC_1983__24_4_381_0
https://doi.org/10.1145/3373718.3394775
https://doi.org/10.1145/3373718.3394775
https://doi.org/10.1007/978-3-030-57201-3_5
https://doi.org/10.1007/BFb0033343
https://doi.org/10.1007/BFb0033343

Q. Aristote 11:19

f ′(an+2) = Λ(an+1)R(an+1, a) = αn+2βn+2γ and f ′(an+2a) = αn+3βn+3γ is thus αn+2, and
the corresponding suffixes are R(an+2, e) = βn+2γ and R(an+2, a) = αβn+3γ: we are now in
the configuration Cn+1.

Hence the run of the algorithm never terminates and never even reaches an equivalence
query, as it must first go through all the configurations Cn for n ∈ N. ◀

B The learning algorithm

Algorithm 2 The FunL*-algorithm for monoidal transducers.

Input: EvalL and EquivL
Output: MinM (L)

1: Q = T = {e}
2: for a ∈ A ∪ {e} do
3: Λ(e, a) = EvalL(a)
4: R(e, a, e) = ϵ

5: end for
6: loop
7: if there is a qa ∈ QA such that ∀q′ ∈ Q, χ ∈ M×, R(q, a, ·) ̸= χR(q′, e, ·) then
8: add qa to Q

9: else if there is an at ∈ AT such that
either there is a q ∈ Q such that R(q, a, t) ̸= ⊥ but R(q, e, T) = ⊥T ;
or there is a q ∈ Q such that Λ(q, e) does not left-divide Λ(q, a)R(q, a, t);
or there are q, q′ ∈ Q and χ ∈ M× such that
R(q, e, T) = χR(q′, e, T) but LeftDivide(Λ(q, e), Λ(q, a)R(q, a, t)) ̸=
χLeftDivide(Λ(q′, e), Λ(q′, a)R(q′, a, t))

then
10: add at to T

11: else
12: build H(Q, T) = (S, (υ0, s0), t, ⊙) given by:

S ⊆ Q is built by starting with e ∈ S and adding as many q ∈ Q as long as
R(q, e, ·) ̸= ⊥ and ∀q′ ∈ S, χ ∈ M×, R(q, e, ·) ̸= χR(q′, e, ·);
(υ0, s0) = (Λ(e), e)
q ⊙ a = (LeftDivide(Λ(q, e), Λ(q, a))χ, q′) with q ∈ S, χ ∈ M× given by
R(q, a, ·) = χR(q′, e, ·)
t(q) = R(q, e, e)

13: if EquivL(HQ,T (L)) outputs some counter-example w then
14: add w and its prefixes to Q

15: else
16: return H(Q, T)
17: end if
18: end if
19: update Λ and R using EvalL
20: end loop

If A is a monoidal transducer, write |A|st = |A(st)| and rk(A) =
∑

s∈A(st) rk(lgcd(Ls))
(where Ls is the partial function recognized by A when s ∈ A(st) is chosen to be the initial
state).

CSL 2024

11:20 Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

▶ Theorem 35. Algorithm 2 is correct and terminates as soon as Min L has finite state-set
and M is right-noetherian. It makes at most 3 |Min L|st + rk(Min L) updates to Q (Lines 8
and 14) and at most rk(Min L) + |Min L|st updates to T (Line 10).

Extending the WMSO+U Logic with
Quantification over Tuples
Anita Badyl
Institute of Informatics, University of Warsaw, Poland

Paweł Parys #

Institute of Informatics, University of Warsaw, Poland

Abstract
We study a new extension of the weak MSO logic, talking about boundedness. Instead of a
previously considered quantifier U, expressing the fact that there exist arbitrarily large finite sets
satisfying a given property, we consider a generalized quantifier U, expressing the fact that there
exist tuples of arbitrarily large finite sets satisfying a given property. First, we prove that the new
logic WMSO+Utup is strictly more expressive than WMSO+U. In particular, WMSO+Utup is able
to express the so-called simultaneous unboundedness property, for which we prove that it is not
expressible in WMSO+U. Second, we prove that it is decidable whether the tree generated by a
given higher-order recursion scheme satisfies a given sentence of WMSO+Utup.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking; Theory of computation → Rewrite systems

Keywords and phrases Boundedness, logic, decidability, expressivity, recursion schemes

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.12

Related Version Extended Version: http://arxiv.org/abs/2311.16607

Funding Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

1 Introduction

In the field of logic in computer science, one of the goals is to find logics that, on the one
hand, have decidable properties and, on the other hand, are as expressive as possible. An
important example of such a logic is the monadic second-order logic, MSO, which defines
exactly all regular properties of finite and infinite words [11, 18, 35] and trees [31], and is
decidable over these structures.

A natural question that arises is whether MSO can be extended in a decidable way.
Particular hopes were connected with expressing boundedness properties. Bojańczyk [3]
introduced a logic called MSO+U, which extends MSO with a new quantifier U, with UX.φ
saying that the subformula φ holds for arbitrarily large finite sets X. Originally, it was only
shown that satisfiability over infinite trees is decidable for formulae where the U quantifier is
only used once and not under the scope of set quantification. A significantly more powerful
fragment of the logic, albeit for infinite words, was shown decidable by Bojańczyk and
Colcombet [6] using automata with counters. These automata were further developed into
the theory of cost functions initiated by Colcombet [15].

The difficulty of MSO+U comes from the interaction between the U quantifier and
quantification over possibly infinite sets. This motivated the study of WMSO+U, which is a
variant of MSO+U where set quantification is restricted to finite sets (the “W” in the name
stands for weak). On infinite words, satisfiability of WMSO+U is decidable, and the logic
has an automaton model [4]. Similar results hold for infinite trees [7], and have been used
to decide properties of ctl* [12]. Currently, the strongest decidability result in this line is
about WMSO+U over infinite trees extended with quantification over infinite paths [5]. The

© Anita Badyl and Paweł Parys;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parys@mimuw.edu.pl
https://orcid.org/0000-0001-7247-1408
https://doi.org/10.4230/LIPIcs.CSL.2024.12
http://arxiv.org/abs/2311.16607
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Extending the WMSO+U Logic with Quantification over Tuples

latter result entails decidability of problems such as the realisability problem for prompt
ltl [26], deciding the winner in cost parity games [20], or deciding certain properties of
energy games [8].

The results mentioned so far concern mostly the satisfiability problem (is there a model
in which a given formula is true?), but arguably the problem more relevant in practice is the
model-checking problem: is a given formula satisfied in a given model? In a typical setting,
the model represents (possible computations of) some computer system, and the formula
expresses some desired property of the system, to be verified. The model is thus usually
infinite, although described in a finite way. In this paper, as the class of considered models
we choose trees generated by higher-order recursion schemes, which is a very natural and
highly expressive choice.

Higher-order recursion schemes (recursion schemes in short) are used to faithfully repres-
ent the control flow of programs in languages with higher-order functions [17, 23, 27, 24].
This formalism is equivalent via direct translations to simply-typed λY -calculus [34]. Col-
lapsible pushdown systems [22] and ordered tree-pushdown systems [13] are other equivalent
formalisms. Recursion schemes easily cover finite and pushdown systems, but also some
other models such as indexed grammars [1] and ordered multi-pushdown automata [9].

A classic result, with several proofs and extensions, says that model-checking trees
generated by recursion schemes against MSO formulae is decidable: given a recursion
scheme G and a formula φ ∈ MSO, one can say whether φ holds in the tree generated by
G [27, 22, 25, 32, 10, 33]. When it comes to boundedness properties, one has to first mention
decidability of the simultaneous unboundedness property (a.k.a. diagonal property) [21, 14, 30].
In this problem one asks whether, in the tree generated by a given recursion scheme G, there
exist branches containing arbitrarily many occurrences of each of the labels a1, . . . , ak (i.e.,
whether for every n ∈ N there exists a branch on which every label from {a1, . . . , ak} occurs
at least n times). This result turns out to be interesting, because it entails other decidability
results for recursion schemes, concerning in particular computability of the downward
closure of recognized languages [36], and the problem of separability by piecewise testable
languages [16]. Then, we also have decidability for logics talking about boundedness. Namely,
it was shown recently that model-checking for recursion schemes is decidable against formulae
from WMSO+U [28] (and even from a mixture of MSO and WMSO+U, where quantification
over infinite sets is allowed but cannot be arbitrarily nested with the U quantifier [29]).
Another paper [2] shows decidability of model-checking for a subclass of recursion schemes
against alternating B-automata and against weak cost monadic second-order logic (WCMSO);
these are other formalisms allowing to describe boundedness properties, but in a different
style than the U quantifier.

Interestingly, the decidability of model-checking for WMSO+U is obtained by a reduction
to (a variant of) the simultaneous unboundedness problem. On the other hand, it seems that
the simultaneous unboundedness property cannot be expressed in WMSO+U (except for the
case of a single distinguished letter a1), which is very intriguing.

Our contribution. As a first contribution, we prove the fact that was previously only a
hypothesis: WMSO+U is indeed unable to express the simultaneous unboundedness property.
Then, we define a new logic, WMSO+Utup; it is an extension of WMSO+U, where the U
quantifier can be used with a tuple of set variables, instead of just one variable. A construct
with the extended quantifier, U(X1, . . . , Xk).φ, says that the subformula φ holds for tuples of
sets in which each of X1, . . . , Xk is arbitrarily large. This logic is capable of easily expressing
properties in which multiple quantities are simultaneously required to be unbounded. In
particular, it can express the simultaneous unboundedness property, and thus it is strictly
more expressive than the standard WMSO+U logic:

A. Badyl and P. Parys 12:3

▶ Theorem 1.1. The WMSO+Utup logic can express some properties of trees that are not
expressible in WMSO+U; in particular, this is the case for the simultaneous unboundedness
property.

In fact, to separate the two logics it is enough to consider WMSO+Utup only with U
quantifiers for pairs of variables (i.e., with k = 2). Actually, we are convinced that the proof
of Theorem 1.1 contained in this paper can be modified for showing that, for every k ≥ 2,
WMSO+Utup without U quantifiers for tuples of length at least k is less expressive than
WMSO+Utup with such quantifiers (cf.Remark 5.6).

Our main theorem says that the model-checking procedure for WMSO+U can be extended
to the new logic:

▶ Theorem 1.2. Given an WMSO+Utup sentence φ and a recursion scheme G one can
decide whether φ is true in the tree generated by G.

2 Preliminaries

The powerset of a set X is denoted P(X). For i, j ∈ N we define [i, j] = {k ∈ N | i ≤ k ≤ j}.
The domain of a function f is denoted dom(f). When f is a function, by f [x 7→ y] we mean
the function that maps x to y and every other z ∈ dom(f) to f(z).

Trees. We consider rooted, potentially infinite trees, where children are ordered. For
simplicity of the presentation, we consider only binary trees, where every node has at most
two children. This is not really a restriction. Indeed, it is easy to believe that our proofs
can be generalized to trees of arbitrary bounded finite arity without any problem (except
for notational complications). Alternatively, a tree of arbitrary bounded finite arity can
be converted into a binary tree using the first child / next sibling encoding, and a logical
formula can be translated as well to a formula talking about the encoding; this means that
the WMSO+Utup model-checking problem over trees of arbitrary bounded finite arity can be
reduced to such a problem over binary trees.

Formally, a tree domain (a set of tree nodes) is a set D ⊆ {L,R}∗ that is closed under
taking prefixes (i.e., if uv ∈ D then also u ∈ D). A tree over an alphabet A is a function
T : D → A, for some tree domain D. The set of trees over A is denoted T (A). The subtree
of T starting in a node v is denoted T ↾v and is defined by (T ↾v)(u) = T (vu) (with domain
{u ∈ {L,R}∗ | vu ∈ dom(T)}). For nodes we employ the usual notions of child, parent,
ancestor, descendant, etc. (where we assume that a node is also an ancestor and a descendant
of itself).

For trees T1, T2, and for a ∈ A we write a⟨T1, T2⟩ for the tree T such that T ↾L = T1,
T ↾R = T2, and T (ε) = a. We also write ⊥ for the tree with empty domain.

Recursion schemes. Recursion schemes are grammars used to describe some infinite trees
in a finitary way. We introduce recursion schemes only by giving an example, rather than by
defining them formally. This is enough, because this paper does not work with recursion
schemes directly; it only uses some facts concerning them.

A recursion scheme is given by a set of rules, like this:

S → F G , D g x → g (g x) ,
F g → a⟨g ⊥,F (D g)⟩ , G x → b⟨x,⊥⟩ .

CSL 2024

12:4 Extending the WMSO+U Logic with Quantification over Tuples

b

a
b a

a
a
. . .

. . .

b
b b

b
b

b
b

b
b

b b
. . .

b
b

b
b

b

a

2i

i

Figure 1 The tree generated by the example recursion scheme.

Here S,D, F,G are nonterminals, with S being the starting nonterminal, x, g are variables, and
a, b are letters from A. To generate a tree, we start with S, which reduces to F G using the
first rule. We now use the rule for F, where the parameter g is instantiated to be G; we obtain
a⟨G ⊥,F (D G)⟩. This already defines the root of the tree, which should be a-labeled; its two
subtrees should be generated from G ⊥ and F (D G), respectively. We see that G ⊥ reduces to
b⟨⊥,⊥⟩, which is a tree with a single b-labeled node. On the other hand, F (D G) reduces
to a⟨D G ⊥,F (D (D G))⟩, which means that the right child of the root is a-labeled, and its
left subtree generated from D G ⊥ (which reduces to G (G ⊥), then to b⟨G⊥,⊥⟩, and then to
b⟨b⟨⊥,⊥⟩,⊥⟩) is a path consisting of two b-labeled nodes. Continuing like this, when going
right we always obtain a next a-labeled node (we thus have an infinite a-labeled branch), and
to the left of the i-th such node we have a tree generated from D (D (. . . (D︸ ︷︷ ︸

i−1

G) . . .)) ⊥, which

is a finite branch consisting of 2i−1 b-labeled nodes (note that every D applies its argument
twice, and hence doubles the number of produced b-labeled nodes). The resulting tree is
depicted on Figure 1.

For a formal definition of recursion schemes consult prior work (e.g., [23, 24, 32, 28]).
Some of these papers use a lambda-calculus notation, where our rule for D would be rather
written as D → λg.λx.g (g x). Sometimes it is also allowed to have λ inside a rule, like
S → F (λ x.b⟨x,⊥⟩); this does not make the definition more general, because subterms
starting with λ can be always extracted to separate nonterminals.

3 The WMSO+Utup logic

In this section we introduce the logic under consideration: the WMSO+Utup logic.

Definition. For technical convenience, we use a syntax in which there are no first-order
variables. It is easy to translate a formula from a more standard syntax to ours: first-order
variables may be simulated by set variables for which we check that they contain exactly one
node (i.e., that they are nonempty and that every subset thereof is either empty or equal to
the whole set).

We assume an infinite set V of variables, which can be used to quantify over finite sets of
tree nodes. In order to distinguish variables from sets to which these variables are valuated,
we denote variables using Sans Serif font (e.g., X,Y,Z). In the syntax of WMSO+Utup we
have the following constructions:

φ ::= a(X) | X 'd Y | X ⊆ Y | φ1 ∧ φ2 | ¬φ′ | ∃finX.φ′ | U(X1, . . . ,Xk).φ′ ,

where a ∈ A, d ∈ {L,R}, k ∈ N, and X,Y,X1, . . . ,Xk ∈ V. Free variables of a formula
are defined as usual; in particular U(X1, . . . ,Xk) is a quantifier that bounds the variables
X1, . . . ,Xk.

A. Badyl and P. Parys 12:5

We evaluate formulae of WMSO+Utup in A-labeled trees. In order to evaluate a formula
φ in a tree T , we also need a valuation, that is, a function ν from V to finite sets of nodes
of T (its values are meaningful only for free variables of φ). The semantics of formulae is
defined as follows:

a(X) holds when every node in ν(X) is labeled with a,
X 'd Y holds when both ν(X) and ν(Y) are singletons, and the unique node in ν(Y) is
the left (if d = L) / right (if d = R) child of the unique node in ν(X),
X ⊆ Y holds when ν(X) ⊆ ν(Y),
φ1 ∧ φ2 holds when both φ1 and φ2 hold,
¬φ′ holds when φ′ does not hold,
∃finX.φ′ holds if there exists a finite set X of nodes of T for which φ′ holds under the
valuation ν[X 7→ X], and
U(X1, . . . ,Xk).φ′ holds if for every n ∈ N there exist finite sets X1, . . . , Xk of nodes of T ,
each of cardinality at least n, such that φ′ holds under the valuation ν[X1 7→ X1, . . . ,Xk 7→
Xk].

We write T, ν |= φ to denote that φ holds in T under the valuation ν.

Logical types. In proofs of both our results, Theorem 1.1 and Theorem 1.2, we use logical
types, which we now define.

Let φ be a formula of WMSO+Utup, let T be a tree, and let ν be a valuation. We define
the φ-type of T under valuation ν, denoted JT Kνφ, by induction on the size of φ as follows:

if φ is of the form a(X) (for some letter a ∈ A) or X ⊆ Y then JT Kνφ is the logical value of
φ in T, ν, that is, tt if T, ν |= φ and ff otherwise,
if φ is of the form X 'd Y, then JT Kνφ equals:

tt if T, ν |= φ,
empty if ν(X) = ν(Y) = ∅,
root if ν(X) = ∅ and ν(Y) = {ε}, and
ff otherwise,

if φ = (ψ1 ∧ ψ2), then JT Kνφ = (JT Kνψ1
, JT Kνψ2

),
if φ = (¬ψ), then JT Kνφ = JT Kνψ,
if φ = ∃finX.ψ, then

JT Kνφ = {σ | ∃X. JT Kν[X 7→X]
ψ = σ} ,

where X ranges over finite sets of nodes of T , and
if φ = U(X1, . . . ,Xk).ψ, then

JT Kνφ =
(
{σ | ∀n ∈ N. ∃X1. · · · .∃Xk. JT Kν[X1 7→X1,...,Xk 7→Xk]

ψ = σ

∧ ∀i ∈ I. |Xi| ≥ n}
)
I⊆[1,k] ,

where X1, . . . , Xk range over finite sets of nodes of T (the above φ-type is a tuple of 2k
sets, indexed by subsets I of [1, k]).

For each φ, let Typφ denote the set of all potential φ-types. Namely, Typφ = {tt,ff} if
φ = a(X) or φ = (X ⊆ Y), Typφ = {tt, empty, root,ff} if φ = X 'd Y, Typφ = Typψ1

× Typψ2

if φ = (ψ1 ∧ ψ2), Typφ = Typψ if φ = (¬ψ); Typφ = P(Typψ) if φ = ∃finX.ψ, and
Typφ = (P(Typψ))2k if φ = U(X1, . . . ,Xk).ψ.

The following two facts can be shown by a straightforward induction on the structure of
a considered formula:

CSL 2024

12:6 Extending the WMSO+U Logic with Quantification over Tuples

▶ Fact 3.1. For every WMSO+Utup formula φ the set Typφ is finite.

The second fact says that whether or not φ holds in T, ν is determined by JT Kνφ:

▶ Fact 3.2. For every WMSO+Utup formula φ there is a computable function tvφ : Typφ →
{tt,ff} such that for every tree T ∈ T (A) and every valuation ν in T , it holds that tvφ(JT Kνφ) =
tt if, and only if, T, ν |= φ.

Next, we observe that types behave in a compositional way, as formalized below. Here,
for a node w we write X↾w and ν↾w to denote the restriction of a set X and of a valuation
ν to the subtree starting at w; formally, X↾w = {u | wu ∈ X} and ν↾w maps every variable
X ∈ V to ν(X)↾w.

▶ Proposition 3.3. For every letter a ∈ A and every formula φ, one can compute a function
Compa,φ : P(V) × Typφ × Typφ → Typφ such that for every tree T whose root has label a
and for every valuation ν,

JT Kνφ = Compa,φ({X | ε ∈ ν(X)}, JT ↾LKν↾L
φ , JT ↾RKν↾R

φ) . (1)

We remark that a priori the first argument of Compa,φ is an arbitrary subset of V, but
in fact we only need to know which free variables of φ it contains; in consequence, Compa,φ
can be seen as a finite object.

Proof of Proposition 3.3. We proceed by induction on the size of φ.
When φ is of the form b(X) or X ⊆ Y, then we see that φ holds in T, ν if, and only if,

it holds in the subtrees T ↾L, ν↾L and T ↾R, ν↾R, and in the root of T . Thus for φ = b(X) as
Compa,φ(S, τL, τR) we take tt when τL = τR = tt and either a = b or X ̸∈ S. For φ = (X ⊆ Y)
the last part of the condition is replaced by “if X ∈ S then Y ∈ S”.

Next, suppose that φ = (X 'd Y). Then as Compa,φ(S, τL, τR) we take
tt if X ̸∈ S, Y ̸∈ S, and either τL = tt and τR = empty or τL = empty and τR = tt,
tt also if X ∈ S, Y ̸∈ S, τd = root, and τi = empty for the direction i other than d,
empty if X ̸∈ S, Y ̸∈ S, and τL = τS = empty,
root if X ̸∈ S, Y ∈ S, and τL = τS = empty, and
ff otherwise.

By comparing this definition with the definition of the type we immediately see that Equal-
ity (1) is satisfied.

When φ = (¬ψ), we simply take Compa,φ = Compa,ψ, and when φ = (ψ1 ∧ ψ2), as
Compa,φ(S, (τ1

L , τ
2
L), (τ1

R, τ
2
R)) we take the pair of Compa,ψi(S, τ

i
L, τ

i
R) for i ∈ {1, 2}.

Suppose now that φ = ∃finX.ψ. We define Compa,φ(S, τL, τR) to be

{Compa,ψ(S′, σL, σR) | S \ {X} ⊆ S′ ⊆ S ∪ {X}, σL ∈ τL, σR ∈ τR} .

Let us check Equality (1) in details. Denote S = {Y | ε ∈ ν(Y)}. In order to show the
left-to-right inclusion recall that, by definition, JT Kνφ is a set of ψ-types, whose every element
is of the form JT Kν[X 7→X]

ψ for some finite set of nodes X. For every such X by the induction
hypothesis we have JT Kν[X 7→X]

ψ = Compa,ψ(S′, JT ↾LKν[X 7→X]↾L
φ , JT ↾RKν[X 7→X]↾R

φ), where S′ =
S ∪ {X} if ε ∈ X and S′ = S \ {X} if ε ̸∈ X; moreover JT ↾LKν[X 7→X]↾L

ψ ∈ JT ↾LKν↾L
φ and

JT ↾RKν[X 7→X]↾R
ψ ∈ JT ↾LKν↾R

φ , which implies that JT Kν[X 7→X]
ψ ∈ Compa,φ(S, JT ↾LKν↾L

φ , JT ↾RKν↾R
φ),

as required. For the opposite inclusion take some σ ∈ Compa,φ(S, JT ↾LKν↾L
φ , JT ↾RKν↾R

φ); it
is of the form Compa,ψ(S′, σL, σR) for some σL ∈ JT ↾LKν↾L

φ and σR ∈ JT ↾RKν↾R
φ , where S′ is

either S ∪ {X} or S \ {X}. Then, by definition, σL and σR are of the form JT ↾LK(ν↾L)[X 7→XL]
ψ

A. Badyl and P. Parys 12:7

and JT ↾RK(ν↾R)[X 7→XR]
ψ , respectively, for some finite sets of nodes XL and XR. We now take

X such that X↾L = XL and X↾R = XR, and ε ∈ X if, and only if, S′ = S ∪ {X}; we
have (ν↾L)[X 7→ XL] = ν[X 7→ X]↾L and (ν↾R)[X 7→ XR] = ν[X 7→ X]↾R. By the induction
hypothesis we then have σ = JT Kν[X 7→X]

ψ , which by definition is an element of JT Kνφ, as
required.

Finally, suppose that φ = U(X1, . . . ,Xk).ψ. For τL = (ρL,I)I⊆[1,k] and τR = (ρR,I)I⊆[1,k]
we define Compa,φ(S, τL, τR) to be (ρI)I⊆[1,k], where

ρI = {Compa,ψ(S′, σL, σR) | S \ {X1, . . . ,Xk} ⊆ S′ ⊆ S ∪ {X1, . . . ,Xk},
σL ∈ ρL,IL , σR ∈ ρR,IR , IL ∪ IR = I} .

In order to check Equality (1), denote JT Kνφ = (ρ′
I)I⊆[1,k], JT ↾LKν↾L

φ = (ρL,I)I⊆[1,k], JT ↾RKν↾R
φ =

(ρR,I)I⊆[1,k], and S = {Y | ε ∈ ν(Y)}; we then have to prove that ρ′
I = ρI for all I ⊆ [1, k]

(where ρI is as defined above).
For the left-to-right inclusion, take some σ ∈ ρ′

I . By definition, it is a ψ-type such that
for every n ∈ N there exist finite sets Xn,1, . . . , Xn,k for which JT Kν[X1 7→Xn,1,...,Xk 7→Xn,k]

ψ = σ,
where the cardinality of the sets Xn,i with i ∈ I is at least n. To every n let us assign the
following information, called characteristic, and consisting of 2k bits and 2 ψ-types:

for every i ∈ [1, k], does the root ε belong to Xn,i?
for every i ∈ [1, k], is Xn,i↾L larger than Xn,i↾R?
the ψ-types JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L

ψ and JT ↾RKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾R
ψ .

Because there are only finitely many possible characteristics, by the pigeonhole principle we
may find an infinite set G ⊆ N of indices n such that the same characteristic is assigned to
every n ∈ G. We then take

S′ = S \ {X1, . . . ,Xk} ∪ {Xi | ε ∈ Xn,i for n ∈ G} ,
IL = {i ∈ I | |Xn,i↾L| > |Xn,i↾R| for n ∈ G} , IR = I \ IL ,

σL = JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L
ψ , σR = JT ↾RKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾R

ψ for n ∈ G.

The induction hypothesis (used with the valuation ν[X1 7→ Xn,1, . . . ,Xk 7→ Xn,k] for any
n ∈ G) gives us σ = Compa,ψ(S′, σL, σR). For every m ∈ N we can find n ∈ G such that
n ≥ 2m + 1; then JT ↾LKν[X1 7→Xn,1,...,Xk 7→Xn,k]↾L

ψ = σL and |Xn,i↾L| ≥ m for all i ∈ IL (Xn,i

has at least 2m+ 1 elements because i ∈ I, one of them may be the root, and at least half
of the other elements is in the left subtree by definition of IL). This implies that σL ∈ ρL,I ,
by definition of the φ-type. Likewise σR ∈ ρR,I . By definition of ρI this gives us σ ∈ ρI as
required.

The right-to-left inclusion is completely straightforward. Indeed, take some σ ∈ ρI .
The definition of ρI gives us a set S′ such that S \ {X1, . . . ,Xk} ⊆ S′ ⊆ S ∪ {X1, . . . ,Xk},
sets IL, IR ⊆ [1, k] such that IL ∪ IR = I, and types σL ∈ ρL,IL and σR ∈ ρR,IR such that
σ = Compa,ψ(S′, σL, σR). By definition of the two ψ-types, σL and σR, for every n there
are sets XL,1, . . . , XL,k and XR,1, . . . , XR,k such that JT ↾LK(ν↾L)[X1 7→XL,1,...,Xk 7→XL,k]

ψ = σL, and
JT ↾RK(ν↾R)[X1 7→XR,1,...,Xk 7→XR,k]

ψ = σR, and |XL,i| ≥ n for all i ∈ IL, and |XR,i| ≥ n for all
i ∈ IR. We now take X1, . . . , Xk such that Xi↾L = XL,i, and Xi↾R = XR,i, and ε ∈ Xi

if, and only if, Xi ∈ S′, for all i ∈ [1, k]. By the induction hypothesis we then have
JT Kν[X1 7→X1,...,Xk 7→Xk]

ψ = Compa,ψ(S′, σL, σR) = σ. Because additionally |Xi| ≥ n for all
i ∈ I = IL ∪ IR, we obtain that σ ∈ ρ′

I , as required. ◀

CSL 2024

12:8 Extending the WMSO+U Logic with Quantification over Tuples

a
b

a
a

a
b

(a,ff)
(b, tt)

(a,ff)
(a, tt)

(a,ff)
(b,ff)

Figure 2 An example tree T (left), and the corresponding tree reflφ(T) (right) obtained for an
MSO sentence φ saying “the right child of the root has label a”.

The next fact says that one can find a type of the empty tree. In the empty tree, a
valuation has to map every variable to the empty set; we denote such a valuation by ∅. This
fact is trivial: we simply follow the definition of J⊥K∅φ .

▶ Fact 3.4. For ever formula φ, one can compute J⊥K∅φ .

4 Decidability of model-checking

In this section we show how to evaluate WMSO+Utup formulae over trees generated by
recursion schemes, that is, we prove Theorem 1.2. To this end, we first introduce three kinds
of operations on recursion schemes, known to be computable. Then, we show how a sequence
of these operations can be used to evaluate our formulae.

MSO reflection. The property of logical reflection for recursion schemes comes from
Broadbent, Carayol, Ong, and Serre [10]. They state it for sentences of µ-calculus, but
µ-calculus and MSO are equivalent over infinite trees [19].

Consider a tree T , and an MSO sentence φ (we skip a formal definition of MSO, assuming
that it is standard). We define reflφ(T) to be the tree having the same domain as T , and
such that every node u thereof is labeled by the pair (au, bu), where au is the label of u in T ,
and bu is tt if φ is satisfied in T ↾u and ff otherwise. In other words, reflφ(T) adds, in every
node of T , a mark saying whether φ holds in the subtree starting in that node. Consult
Figure 2 for an example.

▶ Theorem 4.1 (MSO reflection [10, Theorem 7.3(2)]). Given a recursion scheme G generating
a tree T , and an MSO sentence φ, one can construct a recursion scheme Gφ generating the
tree reflφ(T).

SUP reflection. The SUP reflection is the heart of our proof (where “SUP” stands for
simultaneous unboundedness property). In order to talk about this property, we need a few
more definitions. By #a(V) we denote the number of a-labeled nodes in a (finite) tree V . For
a set of (finite) trees L and a set of letters A, we define a predicate SUPA(L), which holds if
for every n ∈ N there is some Vn ∈ L such that for all a ∈ A it holds that #a(Vn) ≥ n.

Originally, in the simultaneous unboundedness property we consider devices recognizing a
set of finite trees, unlike recursion schemes, which generate a single infinite tree. We use here
an equivalent formulation, in which the set of finite trees is encoded in a single infinite tree.
To this end, we use two special letters: nd, denoting a nondeterministic choice (disjunction
between two children), and nd⊥, denoting that there is no choice (empty disjunction). We
write T →nd V if V is obtained from T by choosing some nd-labeled node u and some its
child v, and attaching T ↾v in place of T ↾u. In other words, →nd is the smallest relation
such that nd⟨TL, TR⟩ →nd Td for d ∈ {L,R}, and a⟨TL, TR⟩ →nd a⟨T ′

L, TR⟩ if TL →nd T
′
L, and

a⟨TL, TR⟩ →nd a⟨TL, T
′
R⟩ if TR →nd T

′
R. For a tree T , L(T) is the set of all finite trees V such

A. Badyl and P. Parys 12:9

a
nd

nd⊥

dc

nd

b
nd

hg
nd

e f

a
cb

e g

a
cb

f g

a
cb

e h

a
cb

f h

Figure 3 An example tree T , and four trees in L(T) (right). Additionally, L(T) contains ⊥, the
tree with empty domain, obtained by choosing the right child in the topmost nd-labeled node. Note
that no tree in L(T) contains d, because d in T is followed by nd⊥, which is forbidden in trees in
L(T).

a
nd

nd
ab cb c

b c

nd
nd

. . .

. . .

b c

b c
b c a

b c

nd
ndb c

b c
. . .

. . .
2i

3i nodes

Figure 4 A tree T illustrating SUP reflection.

that #nd(V) = #nd⊥(V) = 0 and T →∗
nd V . See Figure 3 for an example. We then say

that T satisfies the simultaneous unboundedness property with respect to a set of letters A
if SUPA(L(T)) holds, that is, if for every n ∈ N there are trees in L(T) having at least n
occurrences of every letter from A.

Let T be a tree over an alphabet A. We define reflSUP(T) to be the tree having the same
domain as T , and such that every node u thereof, having in T label au, is labeled by

the pair (au, {A ⊆ A | SUPA(L(T ↾u))}), if au ̸∈ {nd, nd⊥}, and
the original letter au, if au ∈ {nd, nd⊥}.

In other words, reflSUP(T) adds, in every node u of T (except for nd- and nd⊥-labeled
nodes) and for every set A of letters, a mark saying whether T ↾u has the simultaneous
unboundedness property with respect to A.

Consider, for example, the tree T from Figure 4. The tree reflSUP(T) has the same
shape as T . Every node u having label a in T gets label (a, {∅, {a}, {b}, {c}, {a, b}, {a, c}}).
Note that the set does not contain {b, c} nor {a, b, c}: in L(T ↾u) there are no trees having
simultaneously many occurrences of b and many occurrences of c. Nodes u having in T label
b or c are simply relabeled to (b, {∅}) or (c, {∅}), respectively, because L(T ↾u) contains only
a single tree, with a fixed number of nodes.

▶ Theorem 4.2 (SUP reflection [30, Theorem 10.1]). Given a recursion scheme G generating
a tree T , one can construct a recursion scheme GSUP generating the tree reflSUP(T).

▶ Remark 4.3. In the introduction we have described an easier variant of the simultaneous
unboundedness property, called a word variant. In this variant, every node with label other
than nd has at most one child; then choosing a tree in L(T) corresponds to choosing a
branch of T (and trees in L(T) consist of single branches, hence they can be seen as words).
Although the word variant of SUP is more commonly known than the tree variant described
in this section, Theorem 4.2 holds also for the more general tree variant, as presented above.

CSL 2024

12:10 Extending the WMSO+U Logic with Quantification over Tuples

Transducers. A (deterministic, top-down) finite tree transducer is a tuple F = (A,B, Q,
q0, δ), where A is a finite input alphabet, B is a finite output alphabet, Q is a finite set of
states, q0 ∈ Q is an initial state, and δ is a transition function mapping Q× (A ∪ {⊥}) to
finite trees over the alphabet B ∪ (Q× {L,R}). Letters from Q× {L,R} are allowed to occur
only in leaves of trees δ(q, a) with a ∈ A (internal nodes of these trees, and all nodes of
trees δ(q,⊥) are labeled by letters from B). Moreover, it is assumed that that there is no
sequence (q1, a1, d1), (q2, a2, d2), . . . , (qn, an, dn) such that δ(qi, ai) = (q(i mod n)+1, di)⟨⊥,⊥⟩
for all i ∈ [1, n].

For an input tree T over A and a state q ∈ Q, we define an output tree Fq(T) over B.
Namely Fq(a⟨TL, TR⟩) is the tree obtained from δ(q, a) by substituting Fr(Td) for every leaf
labeled with (r, d) ∈ Q× {L,R}; additionally, Fq(⊥) simply equals δ(q,⊥) (recall that this
tree has no labels from Q× {L,R}). In other words, while being in state q over an a-labeled
node of the input tree, the transducer produces a tree prefix specified by δ(q, a), where
instead of outputting an (r, L)-labeled (or (r,R)-labeled) leaf, it rather continues by going to
the left (respectively, right) child in the input tree, in state r; when F leaves the domain of
the input tree, it still has a chance to output something, namely δ(q,⊥), and then it stops.
In the root we start from the initial state, that is, we define F(T) = Fq0(T). To make the
above definition formal, we can define Fq(T)(v), the label of Fq(T) in a node v ∈ {L,R}k, by
induction on the depth k, simultaneously for all input trees T and states q ∈ Q. Transitions
δ(q, a) with (r, d) immediately in the root are a bit problematic, because we go down along
the input tree without producing anything in the output tree; we have assumed, however,
that such transitions do not form a cycle, so after a few (at most |Q|) steps we necessarily
advance in the output tree.

Note that transducers need not be linear. For example, we may have δ(q, a) = a⟨a⟨(q, L),
(q, L)⟩, a⟨(q,R), (q,R)⟩⟩, which creates two copies of the tree produced out of the left subtree,
and two copies of the tree produced out of the right subtree.

We have the following theorem:

▶ Theorem 4.4. Given a finite tree transducer F = (A,B, Q, q0, δ) and a recursion scheme G
generating a tree T over the alphabet A, one can construct a recursion scheme GF generating
the tree F(T).

This theorem follows from the equivalence between recursion schemes and collapsible
pushdown systems [22], as it is straightforward to compose a collapsible pushdown system
with F . A formal proof can be found for instance in Parys [30, Appendix A].

Sequences of operations. We consider sequences of operations of the form O1, O2, . . . , On,
where every Oi is either an MSO sentence φ, or the string “SUP”, or a finite tree transducer
F . Having a tree T , we can apply such a sequence of operations to it. Namely, we take
T0 = T , and for every i ∈ [1, n], as Ti we take

reflφ(Ti−1) if Oi = φ is an MSO sentence,
reflSUP(Ti−1) if Oi = SUP, and
F(Ti−1) if Oi = F is a finite tree transducer.

As the result we take Tn. We implicitly assume that whenever we apply a finite tree transducer
to some tree, then the tree is over the input alphabet of the transducer; likewise, we assume
that while computing reflφ(Ti−1), the formula uses letters from the alphabet of Ti−1.

Using the aforementioned closure properties (Theorems 4.1, 4.2, and 4.4) we can apply
the operations on the level of recursion schemes generating our tree:

A. Badyl and P. Parys 12:11

▶ Proposition 4.5. Given a recursion scheme G generating a tree T , and a sequence of
operations O1, O2, . . . , On as above, one can construct a recursion scheme G′ generating the
result of applying O1, O2, . . . , On to T .

Main theorem. Let A be the alphabet used by WMSO+Utup formulae under consideration.
We prove the following theorem:

▶ Theorem 4.6. Given a WMSO+Utup sentence φ, one can compute a sequence of operations
O1, O2, . . . , On, such that for every tree T over A, by applying O1, O2, . . . , On to T we obtain
tt⟨⊥,⊥⟩ if φ is true in T , and ff⟨⊥,⊥⟩ otherwise.

Having a recursion scheme generating either tt⟨⊥,⊥⟩ or ff⟨⊥,⊥⟩, we can easily check
what is generated: we just repeatedly apply rules of the recursion scheme. Thus Theorem 1.2
is an immediate consequence of Theorem 4.6 and Proposition 4.5.

▶ Remark 4.7. Note that in Theorem 4.6 we do not assume that T is generated by a recursion
scheme; the theorem holds for any tree T . Thus our decidability result, Theorem 1.2, can be
immediately generalized from the class of trees generated by recursion schemes to any class
of trees that is effectively closed under the considered three types of operations (i.e., any
class for which Theorems 4.1, 4.2, and 4.4 remain true).

We now formulate a variant of Theorem 4.6 suitable for induction. On the input side,
we have to deal with formulae with free variables (subformulae of our original sentence).
On the output side, it is not enough to produce the truth value; we rather need to produce
trees decorated by logical types. While logical types in general depend on the valuation of
free variables, we consider here only a very special valuation mapping all variables to the
empty set; recall that we denote such a valuation by ∅. Additionally, in the input tree we
have to allow presence of some additional labels (used to store types with respect to other
subformulae): we suppose that we have a tree T over an alphabet A × B, where A is our
fixed alphabet used by WMSO+Utup formulae, and B is some other auxiliary alphabet. Then
by πA(T) we denote the tree over A having the same domain as T , with every node thereof
relabeled from (a, b) ∈ A × B to a.

▶ Lemma 4.8. Given a WMSO+Utup formula φ and an auxiliary alphabet B, one can
compute a sequence of operations O1, O2, . . . , On, such that for every tree T over A × B, by
applying O1, O2, . . . , On to T we obtain a tree having the same domain as T , such that every
node u thereof is labeled by the pair (ℓu, JπA(T)↾uK∅φ), where ℓu ∈ A×B is the label of u in T .

Theorem 4.6 is an immediate consequence of Lemma 4.8. Indeed, let us use Lemma 4.8
with a singleton alphabet B; for such an alphabet we identify A with A × B. By applying
operations O1, . . . , On obtained from Lemma 4.8 we obtain a tree with the root labeled by
(a, τ) for τ = JT K∅φ . Recall that, by Fact 3.2, we have a function tvφ such that tvφ(JT K∅φ) = tt
if, and only if, T,∅ |= φ. Thus, after all the operations O1, . . . , On, we can simply apply a
transducer F that reads the root’s label (a, τ) and returns the tree tt⟨⊥,⊥⟩ if tvφ(τ) = tt,
and the tree ff⟨⊥,⊥⟩ otherwise. There is a small exception if the original tree T has empty
domain: then there is no root at all, in particular no root from which we can read the φ-type
τ . Thus, if the transducer F sees an empty tree, it should rather use τ = J⊥K∅φ , which is
known by Fact 3.4.

Proof of Lemma 4.8. The proof is by induction on the structure of φ. We have several
cases depending on the shape of φ.

CSL 2024

12:12 Extending the WMSO+U Logic with Quantification over Tuples

Recall that in this lemma we only consider the valuation ∅ mapping all variables to the
empty set. Because of that, if φ is of the form a(X) or X ⊆ Y , then the φ-type JπA(T)↾uK∅φ
is tt for every tree T and node u thereof. It is thus enough to return (as the only operation
O1) a transducer that appends tt to the label of every node of T . Similarly, if φ = (X 'd Y),
then the φ-type JπA(T)↾uK∅φ is always empty. For φ = (¬ψ) the situation is also trivial: we
can directly use the induction hypothesis since JπA(T)↾uK∅φ = JπA(T)↾uK∅ψ .

Suppose that φ = (ψ1 ∧ ψ2). The induction hypothesis for ψ1 gives us a sequence of
operations O1, O2, . . . , On that appends JπA(T)↾uK∅ψ1

to the label of every node u of T . The
resulting tree T ′ is over the alphabet A × B × Typψ1

, which can be seen as A × B′ for
B′ = B × Typψ1

; we have πA(T ′) = πA(T). We can thus apply the induction hypothesis for
ψ2 to the resulting tree T ′; it gives us a sequence of operations On+1, On+2, . . . , On+m that
appends JπA(T)↾uK∅ψ2

to the label of every node u of T ′. The tree obtained after applying
all the n + m operations is as needed: in every node thereof we have appended the pair
containing the ψ1-type and the ψ2-type, and such a pair is precisely the φ-type.

The case of φ = ∃finX.ψ is handled by a reduction to the case of φ′ = UX.ψ. Indeed,
recall that the type for U(X1, . . . ,Xk) is a tuple of 2k coordinates indexed by sets I ⊆ [1, k];
in the case of a single variable X1 = X, there are only two coordinates, one for I = ∅, and the
other for I = {1}. The coordinate for I = ∅ in JT ′K∅UX.ψ is simply {σ | ∃X.JT ′Kν[X 7→X]

ψ = σ},
that is, the φ-type JT ′Kν∃finX.ψ. Thus, we can take the sequence of operations O1, O2, . . . , On
from the forthcoming case of φ′ = UX.ψ, which appends the φ′-type, and then add a simple
transducer that removes the second coordinate of this type.

Finally, suppose that φ = U(X1, . . . ,Xk).ψ. By the induction hypothesis we have a
sequence of operations O1, O2, . . . , On that appends the ψ-type JπA(T)↾uK∅ψ to the label of
every node u of T . Let T 1 be the tree obtained from T by applying these operations.

As a first step, to T 1 we apply a transducer F defined as follows. Its input alphabet is
A′ = A×B×Typψ, the alphabet of T 1, its output alphabet is A′ ∪{?,#, nd, nd⊥,X1, . . . ,Xk},
and its set of states is {q0} ∪ Typψ. Having a letter ℓ = (a, b, τ) ∈ A′, let πA(ℓ) = a

and πTypψ(ℓ) = τ . Coming to transitions, first for every triple (S, τL, τR), where S =
{Xi1 , . . . ,Xim} ⊆ {X1, . . . ,Xk} and τL, τR ∈ Typψ we define

sub(S, τL, τR) = Xi1⟨⊥,Xi2⟨⊥, . . .Xim⟨⊥,#⟨(τL, L), (τR,R)⟩⟩ . . . ⟩⟩ .

Moreover, for every ℓ ∈ A′ and τ ∈ Typψ, let here(ℓ, τ) = ⊥ if τ = πTypψ (ℓ) and here(ℓ, τ) =
nd⊥⟨⊥,⊥⟩ otherwise. In order to define δ(τ, ℓ), we consider all triples (S1, τL,1, τR,1), . . . ,
(Ss, τL,s, τR,s) for which CompπA(ℓ),ψ(Si, τL,i, τR,i) = τ (assuming some fixed order in which
these triples are listed). Then, we take

δ(τ, ℓ) = ?⟨⊥, nd⟨sub(S1, τL,1, τR,1), nd⟨sub(S2, τL,2, τR,2), . . .
nd⟨sub(Ss, τL,s, τR,s), here(ℓ, τ)⟩ . . . ⟩⟩⟩ .

Additionally, we consider the list τ1, . . . , τr of all ψ-types from Typψ (listed in some fixed
order), and we define

δ(q0, ℓ) = ℓ⟨(q0, L),#⟨(q0,R),#⟨δ(τ1, ℓ),#⟨δ(τ2, ℓ), . . .#⟨δ(τr, ℓ),⊥⟩ . . . ⟩⟩⟩⟩ .

For the empty tree we define

δ(q0,⊥) = ⊥, δ(J⊥K∅ψ ,⊥) = ⊥, and δ(τ,⊥) = nd⊥ for τ ̸= J⊥K∅ψ .

The “main part” of the result F(T 1), produced using the state q0 is an almost unchanged
copy of T 1; there is only a technical change, that a new #-labeled node is inserted between
every node and its right child, so that the right child is moved to the left child of this new

A. Badyl and P. Parys 12:13

ℓFq0 (T 1↾u) =
Fq0 (T 1↾uL)

Fq0 (T 1↾uR)
#

#
#

. . .

#

Fτ1 (T 1↾u)
Fτ2 (T 1↾u)

Fτr (T 1↾u)

Figure 5 An illustration of Fq0 (T 1↾u). Here, ℓ is the label of u in T 1, and τ1, . . . , τr are all
possible ψ-types.

nd
X1

?Fτ (T 1↾u) =

FτL,1 (T 1↾uL)
FτR,1 (T 1↾uR)

nd
nd

X2

X3

FτL,2 (T 1↾uL)
FτR,2 (T 1↾uR)

#
FτR,3 (T 1↾uR)

FτL,3 (T 1↾uL)

#

if τ = πTypψ (ℓ)
nd

X1

?Fτ (T 1↾u) =

FτL,1 (T 1↾uL)
FτR,1 (T 1↾uR)

nd
nd

nd⊥
X2

X3

FτL,2 (T 1↾uL)
FτR,2 (T 1↾uR)

#
FτR,3 (T 1↾uR)

FτL,3 (T 1↾uL)

#

if τ ̸= πTypψ (ℓ)

Figure 6 An illustration of Fτ (T 1↾u). We assume that there are exactly three triples (S, τL, τR)
such that CompπA(ℓ),ψ(S, τL, τR) = τ , namely ({X1}, τL,1, τR,1), ({X2,X3}, τL,2, τR,2), and (∅, τL,3, τR,3),
for ℓ being the label of u in T 1. We have two cases depending on whether the ψ-type written in ℓ is
τ or not.

right child. But additionally, below the new #-labeled right child of every node u of T 1, there
are |Typψ| modified copies of T 1↾u, attached below a branch of #-labeled nodes (cf. Figure 5).
For each ψ-type τ we have such a copy, namely Fτ (T 1↾u), responsible for checking whether
the type of πA(T)↾u can be τ . The tree Fτ (T 1↾u) is a disjunction (formed by nd-labeled
nodes) of all possible triples (S, τL, τR) such that types τL and τR in children of u, together
with S being the set of those variables among X1, . . . ,Xk that contain u, result in type τ in
u (cf. Figure 6). We output the variables from S in the resulting tree, so that they can be
counted, and then we have subtrees FτL(T 1↾uL) and FτR(T 1↾uR), responsible for checking
whether the type in the children of u can be τL and τR. Additionally, the here subtree allows
to finish immediately if τ is the ψ-type of T 1↾u under the empty valuation. Formally, we
have the following claim:

▷ Claim 4.9. For every ψ-type τ , numbers n1, . . . , nk ∈ N, and node u, the following two
statements are equivalent:

there exist sets X1, . . . , Xk of nodes of T ↾u such that JπA(T)↾uK∅[X1 7→X1,...,Xk 7→Xk]
ψ = τ

and |Xi| = ni for i ∈ [1, k], and
there exists a tree V ∈ L(Fτ (T 1↾u)) such that #Xi(V) = ni for i ∈ [1, k].

Proof. Let us concentrate on the left-to-right implication. The proof is by induction on the
maximal depth of nodes in the Xi sets. We have three cases. First, it is possible that u
is not a node of T . Then, all the sets Xi have to be empty, so we have τ = J⊥K∅ψ , and
hence Fτ (T 1↾u) = δ(τ,⊥) = ⊥ (recall that T and T 1 have the same domain). The set L(⊥)
contains the tree ⊥ which indeed has no Xi labeled nodes, as needed.

Second, it is possible that u is a node of T , but all the sets Xi are empty. Let ℓ be
the label of u in T 1. By construction of T 1, we have πTypψ(ℓ) = JπA(T)↾uK∅ψ = τ . On the
rightmost branch of Fτ (T 1↾u), after a ?-labeled node and a few nd-labeled nodes, we have
the subtree here(ℓ, τ), which is ⊥ by the above equality. We can return the tree ?⟨⊥,⊥⟩,
which belongs to L(Fτ (T 1↾u)).

CSL 2024

12:14 Extending the WMSO+U Logic with Quantification over Tuples

Finally, suppose that our sets are not all empty. Then necessarily u is inside T (and T 1);
let ℓ be the label of u in T 1 (by construction of T 1, the label of u in T consists of the first
two coordinates of ℓ). Consider S = {Xi | ε ∈ Xi} and τd = JπA(T)↾udK∅[X1 7→X1,...,Xk 7→Xk]↾d

ψ

for d ∈ {L,R}. By the induction hypothesis, there are trees Vd ∈ L(Fτd(T 1↾ud)) such that
#Xi(Vd) = |Xi↾d| for i ∈ [1, k]. Due to Equality (1) we have τ = CompπA(ℓ),ψ(S, τL, τR). This
means that δ(τ, ℓ), below a ?-labeled node and a few nd-labeled, produces a subtree using
sub(S, τL, τR). We define V by choosing this subtree. Then, there are some Xi-labeled nodes,
for all Xi ∈ S (that is, for those sets Xi that contain the root of T ↾u). Below them, we have
the tree #⟨FτL(T 1↾uL),FτR(T 1↾uR)⟩; in its left subtree we choose VL, and in its right subtree
we choose VR. This way, we obtain a tree V ∈ L(Fτ (T 1↾u)), where the number of Xi-labeled
nodes is indeed |Xi| = ni, for all i ∈ [1, k].

We skip the proof of the right-to-left implication, as it is analogous (this time, the
induction is on the height of the tree V). ◁

Let T 2 = F(T 1). As the next operation after F , we use SUP. Let T 3 = reflSUP(T 2). The
SUP operation attaches a label to every node of T 3 (except for nd-labeled nodes), but we
are interested in these labels only in nodes originally (i.e., in T2) labeled by “?”. Every such
node is the root of a subtree reflSUP(Fτ (T 1↾u)) for some node u of T 1; it becomes labeled
by (?,U), where U = {A ⊆ A′ | SUPA(L(Fτ (T 1↾u)))}. Recall that φ = U(X1, . . . ,Xk).ψ and
that the φ-type is a tuple of 2k coordinates, indexed by sets I ⊆ [1, k]. Consider such a set I,
and take AI = {Xi | i ∈ I}. By definition of SUPAI , the label U contains AI if, and only if,
for every n ∈ N the language L(Fτ (T 1↾u)) contains trees with at least n occurrences of every
element of AI . By Claim 4.9 this is the case if, and only if, for every n ∈ N there exist sets
X1, . . . , Xk of nodes of T ↾u such that JπA(T)↾uK∅[X1 7→X1,...,Xk 7→Xk]

ψ = τ and |Xi| ≥ n for all
i ∈ I. This, in turn, holds if, and only if, the I-coordinate of the φ-type JπA(T)↾uK∅φ contains
τ . (The case of I = ∅ is a bit delicate, but one can see that the proof works without any
change also in this case.)

The above means that all the φ-types we wished to compute are already present in T 3,
we only have to move them to correct places. To this end, for every ψ-type τi, and for every
set I ⊆ [1, k] we append to our sequence of operations a formula θi,I saying that the node
Ri+1L has label of the form (?,U , . . .) with AI ∈ U (note that this node in Fq0(T 1↾u) is the
?-labeled root of Fτi(T 1↾u); the operation SUP appends a set U to this label, and operations
θi′,I′ applied so far append some additional coordinates that we ignore).

After that, we already have all φ-types in correct nodes, but in a wrong format; we also
have additional nodes not present in the original tree T . To deal with this, at the end we
apply a transduction F ′, which

removes all nodes labeled by (#, . . .) and their right subtrees, hence leaving only nodes
present in the original tree T ;
the remaining nodes have labels of the form (a, b, τ,U , vi1,I1 , . . . , vis,Is); we relabel them
to (a, b, ({τi | vi,I = tt})I⊆[1,k]).

This last transduction produces a tree exactly as needed. ◀

5 Expressivity

In this section we prove our second main result, Theorem 1.1, saying that the simultaneous
unboundedness property can be expressed in WMSO+Utup, but not in WMSO+U. The
positive part of this statement is easy:

▶ Proposition 5.1. For every set of letters A there exists a WMSO+Utup sentence φ which
holds in a tree T if, and only if, SUPA(L(T)) holds.

A. Badyl and P. Parys 12:15

(...)

a
b

b

b

N !−1 copies of S1,1

N !−1 copies of S1,1

S1,1

S2,1

S1,2

S3,1

S1,3

a
a

a
a

b

b

on each interval

on each interval
(...)

(...
)

(...
)

S1,1

S2,2

S3,3

S4,4

S5,5

a
nd

nd

nd

nd

nd

nd

nd

nd

nd

nd

a

a

b

b

b

Figure 7 T1 (left) and T2 (right).

Proof. Let A = {a1, . . . , ak}. We take

φ = U(X1, . . . ,Xk).∃finY.(a1(X1) ∧ · · · ∧ ak(Xk) ∧ X1 ⊆ Y ∧ · · · ∧ Xk ⊆ Y ∧ ψ(Y)),

where ψ(Y) expresses the fact that Y contains nodes of a single tree from L(T), together
with their nd-labeled ancestors, that is, that for every node v of Y,

the parent of v, if exists, belongs to Y;
if v has label nd, then exactly one child of v belongs to Y (strictly speaking: there is a
direction d ∈ {L,R} such that a child in this direction, if exists, belongs to Y, and the
child in the opposite direction, if exists, does not belong to Y);
v does not have label nd⊥; and
if v has label other than nd, then all children of v belong to Y.

It is easy to write the above properties in WMSO+Utup. Then φ expresses that for every
n ∈ N there exist sets X1, . . . , Xk of nodes of some V ∈ L(T) such that |Xi| ≥ n and nodes of
Xi have label ai, for all i ∈ [1, k]; this is precisely the simultaneous unboundedness property
with respect to the set A = {a1, . . . , ak}. ◀

In the remaining part of this section we prove that SUP with respect to {a, b} cannot
be expressed in WMSO+U (i.e., without using the U quantifier for tuples of variables). We
prove this already for the word variant of SUP (cf. Remark 4.3), which is potentially easier
to be expressed than SUP in its full generality.

Our proof is by contradiction. Assume thus that there is a sentence φSUP of WMSO+U
that holds exactly in those trees T for which SUP{a,b}(T) is true. Having φSUP fixed, we
take a number N such that |Typφ| ≤ N and |Typ∃finX.φ| ≤ N for all subformulae φ of φSUP
(recall that Typφ is a set containing all possible φ-types).

Based on N , we now define two trees, T1 and T2, such that SUP{a,b}(T2) but not
SUP{a,b}(T1), and we show that they are indistinguishable by φSUP . We achieve that by
demonstrating their type equality as stated in Lemma 5.5, which by Fact 3.2 gives their
indistinguishability by the WMSO+U sentence φSUP .

▶ Definition 5.2 (T1 and T2). We define T1 as a tree with an infinite rightmost path (that
we call its trunk), containing nd-labeled nodes. For each integer k ≥ 0, there is a leftward
path called vault attached to the (kN ! + 1)-th node of the trunk. If k is even, we denote the

CSL 2024

12:16 Extending the WMSO+U Logic with Quantification over Tuples

vault as S1, k2 +1, and otherwise as S k+1
2 +1,1. Each vault Sm,n consists of two parts: the upper

sub-path of length mN !, where every node has label a, and the lower sub-path of length nN !,
where every node has label b (cf. Figure 7).

To each node of the trunk that does not have a vault attached we attach a copy of S1,1.
Note that we do not call these copies vaults; only the original S1,1 starting at the root of T1
is a vault.

The definition of T2 is similar to that of T1, except that this time the vault associated
with each k is Sk,k, still starting at depth kN ! + 1 and having kN ! nodes with label a followed
by kN ! nodes with label b.

The technical core of our proof lies in the following two lemmata:

▶ Lemma 5.3. Let ψ be such that |Typ∃finX.ψ| ≤ N . If for all k′, ℓ′ ∈ N we have JT1↾Rk
′N !K∅ψ =

JT2↾Rℓ
′N !K∅ψ , then for all k, ℓ ∈ N and τ ∈ Typψ there exists a function f : N → N such that

limn→∞ f(n) = ∞ and for all n ∈ N,

∃X1 ⊆ dom(T1↾RkN !). |X1| = n ∧ JT1↾RkN !K∅[X 7→X1]
ψ = τ

=⇒ ∃X2 ⊆ dom(T2↾RℓN !). f(n) ≤ |X2| < ∞ ∧ JT2↾RℓN !K∅[X 7→X2]
ψ = τ.

▶ Lemma 5.4. Let ψ be such that |Typ∃finX.ψ| ≤ N . If for all k′, ℓ′ ∈ N we have JT1↾Rk
′N !K∅ψ =

JT2↾Rℓ
′N !K∅ψ , then for all k, ℓ ∈ N and τ ∈ Typψ there exists a function f : N → N such that

limn→∞ f(n) = ∞ and for all n ∈ N,

∃X1 ⊆ dom(T1↾RkN !). f(n) ≤ |X1| < ∞ ∧ JT1↾RkN !K∅[X 7→X1]
ψ = τ

⇐= ∃X2 ⊆ dom(T2↾RℓN !). |X2| = n ∧ JT2↾RℓN !K∅[X 7→X2]
ψ = τ.

Note that the function f in Lemmata 5.3 and 5.4 may depend on k and ℓ. We only
sketch here the proof of the above lemmata; a full proof can be found in Appendix A of the
extended version.

Lemma 5.3 is slightly easier. Indeed, suppose first that k = ℓ = 0. By assumption, in T1
we have a finite set of nodes X1 resulting in a ψ-type τ ; based on X1, we have to produce
a finite set of nodes X2 in T2, producing the same ψ-type τ . The non-vault nodes of X1
are transferred to X2 without any change; note that the trees T1, T2 are identical outside
of vaults. When in T1 we have some vault S1,i (or Si,1, handled in the same way), then in
the analogous place of T2 we have a vault Sj,j with j ≥ i. We use a form of pumping to
convert S1,i with some nodes marked as elements of X1 into Sj,j with marked nodes, which
we take to X2; this is done so that the ψ-type does not change. Namely, we concentrate
on ψ-types of subtrees of S1,i starting on different levels. Already in the bottom, b-labeled
part of S1,i we can find two levels in distance at most N , where the ψ-type repeats (by
the pigeonhole principle; recall that the number of possible ψ-types is at most N). We
then repeat the fragment of S1,i between these two places (together with the set elements
marked in it), so that (j − i)N ! new nodes are created, and we obtain S1,j . Note that the
repeated length, being at most N , necessarily divides N !. Because of Proposition 3.3, such a
pumping does not change the ψ-type. In a similar way, we can pump the upper, a-labeled
part of S1,j , and obtain Sj,j . In this way, we convert a finite top part of T1 (with a set
X1) into T2 (with a set X2) without changing the ψ-type; the infinite parts located below
(where the sets X1, X2 do not contain any elements) have the same ψ-type by the assumption
JT1↾Rk

′N !K∅ψ = JT2↾Rℓ
′N !K∅ψ . All nodes originally in X1 remained in X2 (possibly shifted), so

we have |X2| ≥ |X1|; the lemma holds with f(n) = n in this case.

A. Badyl and P. Parys 12:17

When k, ℓ are arbitrary (and we want to change T1↾RkN ! into T2↾RℓN !), we proceed in a
similar way, but there is a potential problem that a vault S1,i (or Si,1) should be mapped to
Sj,j with j < i; then we should not stretch the vault, but rather contract it. But contracting
is also possible: this time we look on ∃finX.ψ-types (instead of ψ-types) on the shorter target
vault S1,j ; we can pump the vault as previously, so S1,i and S1,j have the same ∃finX.ψ-type.
Because ∃finX.ψ-type is a set of all possible ψ-types, we can choose elements of S1,j (and
later of Sj,j) to X2, so that the ψ-type is the same as originally in S1,i, although without any
guarantees on the size of the new set. Anyway, the length of vaults in T2 grows two times
faster than in T1, so the above problem concerns only the first max(0, k − 2ℓ) vaults, where
the number of elements of X1 is bounded by a constant ck,ℓ (depending on k and ℓ). All
further elements of X1 contribute to the size of X2; the lemma holds with f(n) = n− ck,ℓ.

Consider now Lemma 5.4, where we have to create a set X1 in T1 based on a set X2 in
T2. There are two cases. Suppose first that at least half of elements of X2 lie outside of the
vaults. In this case we proceed as previously, appropriately stretching and/or contracting
the vaults. While there is no size guarantee for vault elements, already by counting elements
outside of the vaults we obtain |X2| ≥ |X1|

2 .
In the opposite case, we check which label is more frequent among the (at least |X2|

2)
vault elements of X2. Suppose this is a (the case of b is analogous), and that k = ℓ = 0.
We then map every vault Si,i into Si,1, contracting only the b-labeled part; all the a-labeled
vault elements of X2 remain in X1. Because the distance between Si,i and Si+1,i+1 in T2
is N !, while the distance between Si,1 and Si+1,1 in T1 is 2N !, we also need to stretch the
trunk, which is possible using a similar pumping argument (and we stretch some S1,1 into
the vault S1,i that should be in the middle between Si,1 and Si+1,1).

This is almost the end, except that we need to handle arbitrary k, ℓ. To this end, we
either stretch the initial fragment of the trunk of length N ! into multiple such fragments, or
we contract the initial fragment of appropriate length into a fragment of length N !, so that
the vault lengths become synchronized.

Having Lemmata 5.3 and 5.4 we can conclude that the trees T1 and T2 (cf. Definition 5.2)
have the same types:

▶ Lemma 5.5. Let φ be a subformula of φSUP . Then for all k, ℓ ∈ N we have JT1↾RkN !K∅φ =
JT2↾RℓN !K∅φ .

Proof. We proceed by induction on φ, considering all possible forms of the formula. First,
note that we only consider the valuation ∅, mapping all variables to the empty set, so for
atomic formulae of the form a(X) or X ⊆ Y the φ-type is always tt, and for X 'd Y the
φ-type is always empty. For φ = ψ1 ∧ ψ2 the φ-type is just the pair containing the ψ1-type
and the ψ2-type; for them we have the equality JT1↾RkN !K∅ψi = JT2↾RℓN !K∅ψi by the induction
hypothesis. Likewise, for φ = ¬ψ the φ-type equals the ψ-type, and we immediately conclude
by the induction hypothesis JT1↾RkN !K∅ψ = JT2↾RℓN !K∅ψ .

Suppose now that φ = ∃finX.ψ. Then the φ-type of T1↾RkN ! is the set of ψ-types
JT1↾RkN !K∅[X 7→X1]

ψ over all possible finite sets X1 ⊆ dom(T1↾RkN !), and likewise for T2. By
Lemma 5.3, for every ψ-type of T1↾RkN ! there exists a set X2 giving the same ψ-type for
T2↾RℓN !, and conversely by Lemma 5.4, so the two φ-types are equal (recall that N was chosen
such that |Typ∃finX.ψ| ≤ N whenever ψ is a subformula of φSUP , hence the two lemmata can
indeed be applied).

Finally, suppose that φ = UX.ψ. Then the φ-type consists of two coordinates. On the
first coordinate we simply have the ∃finX.ψ-type – these types are equal for T1↾RkN ! and
T2↾RℓN ! by the previous case. On the second coordinate we have the set of ψ-types τ such

CSL 2024

12:18 Extending the WMSO+U Logic with Quantification over Tuples

that JT1↾RkN !K∅[X 7→X1]
ψ = τ for arbitrarily large finite sets X1, and likewise for X2. But

JT1↾RkN !K∅[X 7→X1]
ψ = τ for arbitrarily large finite sets X1 if and only if JT2↾RℓN !K∅[X 7→X2]

ψ = τ

for arbitrarily large finite sets X2, by Lemmata 5.3 and 5.4. This gives us equality of the
two φ-types.

Recall that by assumption φSUP is a formula of WMSO+U, without quantification over
tuples, so the above exhausts all possible cases. ◀

Lemma 5.5 implies in particular that JT1K∅φSUP
= JT2K∅φSUP

, which by Fact 3.2 means that
φSUP is satisfied in T1 if and only if it is satisfied in T2. This way we reach a contradiction
with the fact that φSUP should be true in T1, but not in T2. Thus, the simultaneous
unboundedness property for two letters cannot be expressed by a formula φSUP not involving
the U quantifiers for tuples of variables; we obtain Theorem 1.1.

▶ Remark 5.6. We have shown that SUP with respect to a two-element set {a, b} cannot be
expressed without quantification over pairs of variables. It is easy to believe that using a very
similar proof one can show that SUP with respect to a k-element set cannot be expressed
without quantification over k-tuples of variables, for every k ≥ 2.

References
1 Alfred V. Aho. Indexed grammars – an extension of context-free grammars. J. ACM,

15(4):647–671, 1968. doi:10.1145/321479.321488.
2 David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys. Cost automata,

safe schemes, and downward closures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 109:1–109:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.109.

3 Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture
Notes in Computer Science, pages 41–55. Springer, 2004. doi:10.1007/978-3-540-30124-0_7.

4 Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554–576, 2011. doi:10.1007/s00224-010-9279-2.

5 Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages
38–49. Springer, 2014. doi:10.1007/978-3-662-43951-7_4.

6 Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings,
pages 285–296. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.17.

7 Mikołaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees. In Christoph
Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th – March 3rd, 2012, Paris, France, volume 14
of LIPIcs, pages 648–660. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.648.

8 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, and Petr Novotný. Efficient controller
synthesis for consumption games with multiple resource types. In P. Madhusudan and Sanjit A.
Seshia, editors, Computer Aided Verification – 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer
Science, pages 23–38. Springer, 2012. doi:10.1007/978-3-642-31424-7_8.

https://doi.org/10.1145/321479.321488
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.1007/s00224-010-9279-2
https://doi.org/10.1007/978-3-662-43951-7_4
https://doi.org/10.1109/LICS.2006.17
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.1007/978-3-642-31424-7_8

A. Badyl and P. Parys 12:19

9 Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-
push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi:
10.1142/S0129054196000191.

10 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Higher-order
recursion schemes and collapsible pushdown automata: Logical properties. ACM Trans.
Comput. Log., 22(2):12:1–12:37, 2021. doi:10.1145/3452917.

11 Julius Richard Büchi. On a decision method in restricted second order arithmetic. In
Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

12 Claudia Carapelle, Alexander Kartzow, and Markus Lohrey. Satisfiability of CTL* with
constraints. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 –
Concurrency Theory – 24th International Conference, CONCUR 2013, Buenos Aires, Argentina,
August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science, pages
455–469. Springer, 2013. doi:10.1007/978-3-642-40184-8_32.

13 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. Ordered tree-pushdown
systems. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 163–177. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.163.

14 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96–105. ACM, 2016. doi:
10.1145/2933575.2934527.

15 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume
5556 of Lecture Notes in Computer Science, pages 139–150. Springer, 2009. doi:10.1007/
978-3-642-02930-1_12.

16 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A characterization for decidable separability by piecewise testable languages. Discret. Math.
Theor. Comput. Sci., 19(4), 2017. doi:10.23638/DMTCS-19-4-1.

17 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi:
10.1016/0304-3975(82)90009-3.

18 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98(1):21–51, 1961. doi:10.2307/1993511.

19 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

20 Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-Streett games. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012,
December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 124–135. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.124.

21 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 – 22, 2016,
pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

CSL 2024

https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1145/3452917
https://doi.org/10.1007/978-3-642-40184-8_32
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.163
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.23638/DMTCS-19-4-1
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.2307/1993511
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.124
https://doi.org/10.1145/2837614.2837627

12:20 Extending the WMSO+U Logic with Quantification over Tuples

22 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. ACM Trans. Comput. Log., 18(3):25:1–25:42,
2017. doi:10.1145/3091122.

23 Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

24 Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62, 2013.
doi:10.1145/2487241.2487246.

25 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, pages 179–188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.

26 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/s10703-009-0067-z.

27 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

28 Paweł Parys. Recursion schemes and the WMSO+U logic. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.53.

29 Paweł Parys. Recursion schemes, the MSO logic, and the U quantifier. Log. Methods Comput.
Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:20)2020.

30 Paweł Parys. A type system describing unboundedness. Discret. Math. Theor. Comput. Sci.,
22(4), 2020. doi:10.23638/DMTCS-22-4-2.

31 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.
Amer. Math. Soc., 141:1–35, 1969. doi:10.2307/1995086.

32 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf.
Comput., 239:340–355, 2014. doi:10.1016/j.ic.2014.07.012.

33 Sylvain Salvati and Igor Walukiewicz. A model for behavioural properties of higher-order
programs. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 229–243.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.
229.

34 Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible
pushdown automata. Math. Struct. Comput. Sci., 26(7):1304–1350, 2016. doi:10.1017/
S0960129514000590.

35 Boris Trakhtenbrot. Finite automata and the logic of monadic predicates. Doklady Akademii
Nauk SSSR, 140:326–329, 1961.

36 Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440–451.
Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

https://doi.org/10.1145/3091122
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.4230/LIPIcs.STACS.2018.53
https://doi.org/10.23638/LMCS-16(1:20)2020
https://doi.org/10.23638/DMTCS-22-4-2
https://doi.org/10.2307/1995086
https://doi.org/10.1016/j.ic.2014.07.012
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1007/978-3-662-47666-6_35

A Natural Intuitionistic Modal Logic:
Axiomatization and Bi-Nested Calculus
Philippe Balbiani #

CNRS-INPT-UT3, IRIT, Toulouse, France

Han Gao #

Aix-Marseille University, CNRS, LIS, Marseille, France

Çiğdem Gencer #

CNRS-INPT-UT3, IRIT, Toulouse, France

Nicola Olivetti #

Aix-Marseille University, CNRS, LIS, Marseille, France

Abstract
We introduce FIK, a natural intuitionistic modal logic specified by Kripke models satisfying the
condition of forward confluence. We give a complete Hilbert-style axiomatization of this logic
and propose a bi-nested calculus for it. The calculus provides a decision procedure as well as a
countermodel extraction: from any failed derivation of a given formula, we obtain by the calculus a
finite countermodel of it directly.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Proof theory

Keywords and phrases Intuitionistic Modal Logic, Axiomatization, Completeness, Sequent Calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.13

Related Version Full Version: https://doi.org/10.48550/arXiv.2309.06309

Acknowledgements This paper is originated from a discussion started by Anupam Das and Sonia
Marin in the proof theory blog (see the link https://prooftheory.blog/2022/08/19/), we are
grateful to them as well as all other contributors to the discussion. In particular, Example 24
was reported in the blog by Alex Simpson, who learnt it in 1996 by Carsten Grefe in a private
communication. Example 55 was suggested first by Anupam Das and Sonia Marin in the blog.
Finally we thank the reviewers for their very helpful criticisms and insightful remarks.

1 Introduction

Intuitionistic modal logic (IML) has a long history, starting from the pioneering work
by Fitch [5] in the late 40’s and Prawitz [12] in the 60’s. Along the time, two traditions
emerged that led to the study of two different families of systems. The first tradition, called
intuitionistic modal logics, has been introduced by Fischer Servi [13, 14, 15], Plotkin and
Stirling [11] and then systematized by Simpson [16]. Its main goal is to define an analogous of
classical modalities justified from an intuitionistic meta-theory. The basic modal logic in this
tradition, IK, is intended to be the intuitionistic counterpart of the minimal normal modal
logic K. The second tradition leads to so-called constructive modal logics that are mainly
motivated by their applications in computer science such as type-theoretic interpretations,
verification and knowledge representation (contextual reasoning). This second tradition has
been developed independently, first by Wijesekera [17] who proposed the system CCDL
(Constructive Concurrent Dynamic logic), and then by Bellin, De Paiva, and Ritter [2], among
others who proposed the logic CK (Constructive K) as the basic system for a constructive
account of modality.

© Philippe Balbiani, Han Gao, Çiğdem Gencer, and Nicola Olivetti;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philippe.balbiani@irit.fr
https://orcid.org/0000-0002-3569-9160
mailto:gao.han@lis-lab.fr
https://orcid.org/0009-0004-1095-3347
mailto:cigdem.gencer@irit.fr
https://orcid.org/0000-0002-2003-9012
mailto:nicola.olivetti@lis-lab.fr
https://orcid.org/0000-0001-6254-3754
https://doi.org/10.4230/LIPIcs.CSL.2024.13
https://doi.org/10.48550/arXiv.2309.06309
https://prooftheory.blog/2022/08/19/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

But putting aside the historical perspective, we can consider naively the following question:
how can we build “from scratch” an IML? Since both modal logic and intuitionistic logic
enjoy Kripke semantics, we can think of combining them together in order to define an
intuitionistic modal logic. The simplest proposal is to consider Kripke models equipped
with two relations, ≤ for intuitionistic implication and R for modalities. Propositional
intuitionistic connectives (in particular implication) have their usual interpretations. We
request that every valid formula or rule scheme of propositional intuitionistic logic IPL is
also valid in IML. To reach this goal, we must ensure the hereditary property, which means
for any formula A, if A is forced by a world, it will also be forced also by all its uppers worlds,
namely:

if x ⊩ A and x ≤ y then also y ⊩ A.

Thus the question becomes how to define modalities in order to ensure this property. The
simplest solution is to build the hereditary property in the forcing conditions for □ and ♢:

(1) x ⊩ □A iff for all x′ with x′ ≥ x, for all y with Rx′y it holds y ⊩ A and
(1’) x ⊩ ♢A iff for all x′ with x′ ≥ x, there exists y with Rx′y s.t. y ⊩ A.

Observe that the definition of □A is reminiscent of the definition of ∀ in intuitionistic
first-order logic. This logic is nothing else than the propositional part of Wijeskera’s CCDL
mentioned above and is non-normal as it does not contain all formulas of the form

(DP) ♢(A ∨ B) ⊃ ♢A ∨ ♢B.

Moreover, the logic does not satisfy the maximality criteria, one of the criteria stated by
Simpson [16, Chapter 3] for a “good” IML since by adding any classical principle to it, we
cannot get the classical normal modal logic K. In addition, CCDL has also been criticized
for being too strong, as it still satisfies the nullary ♢ distribution: ♢⊥ ⊃ ⊥. By removing
this last axiom, the constructive modal logic CK is obtained.

However, the opposite direction is also possible: we can make local the definition of ♢
(pursuing the analogy with ∃ in intuitionistic first-order logic FOIL) exactly as in classical
K, that is:

(2) x ⊩ ♢A iff there exists y with Rxy s.t. y ⊩ A.

In this way we recover ♢(A ∨ B) ⊃ ♢A ∨ ♢B, making the logic normal. But there is a price
to pay: nothing ensures that the hereditary property holds for ♢-formulas. In order to solve
this problem, we need to postulate some frame conditions. The most natural (and maybe
the weakest) condition is simply that if x′ ≥ x and x has an R-accessible y then also x′

must have an R-accessible y′ which refines y, which means y′ ≥ y. This condition is called
Forward Confluence in [1]. It is not new as it is also called (F1) by Simpson [16, Chapter 3]
and together with another frame conditions (F2) characterizes the very well-known system
IK by Fischer-Servi and Simpson. Although from a meta-theoretical point of view IK can
be justified by its standard translation in first-order intuitionistic logic, it does not seem to
be the minimal system allowing the definition of modalities as in (1) and (2) above.

This paper attempts to fill the gap by studying a weaker logic for which the forcing
conditions for modalities are just (1) and (2) above and we assume only Forward Confluence
for the frames. We call this logic FIK for forward confluenced IK. As far as we know, this
logic has never been studied before. And we think it is well worth being studied since it
seems to be the minimal logic defined by bi-relational models with forcing conditions (1) and
(2) which preserves intuitionistic validity.

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:3

In the following sections, we first give a sound and complete Hilbert axiomatization
of FIK. We show that FIK finds its place in the IML/constructive family: it is strictly
stronger than CCDL (whence than CK) and strictly weaker than IK. At the same time
FIK seems acceptable to be regarded as an IML since it satisfies all criteria proposed by
Simpson, including the one about maximality, which means by adding any classical principle
to FIK, we can get the classical normal modal logic K. All in all FIK seems to be a
respectable intuitionistic modal logic and is a kind of “third way” between intuitionistic IK
and constructive CCDL/CK.

We then investigate FIK from a proof-theoretic viewpoint. We propose a nested sequent
calculus CFIK which makes use of two kinds of nestings, one for representing ≥-upper worlds
and the other for R-related worlds. A nested sequent calculus for (first-order) intuitionistic
logic that exploits the first type of nesting has been proposed in [6], so our calculus can
be seen as an extension of the propositional part of it. More recently in [4], the authors
present a sequent calculus with the same kind of nesting to capture the IML logic given by
CCDL + (DP) 1.

As mentioned, our calculus contains a double type of nesting. The use of this double
nesting is somewhat analogous to the labelled calculus proposed in [10] which introduces two
kinds of relations on labels in the syntax. However, the essential ingredient of our calculus
CFIK is the interactive rule between the two kinds of nested sequents that captures the
specific Forward Confluence condition.

We also prove that the calculus CFIK provides a decision procedure for the logic FIK. In
addition, since the rules of CFIK are invertible, we show that from a failed derivation under
a suitable strategy, it is possible to extract a finite countermodel of the formula or sequent at
the root of the derivation. This result allows us to obtain a constructive proof of the finite
model property, which means if a formula is not valid then it has a finite countermodel.

2 A natural intuitionistic modal logic

Firstly, we present the syntax and semantics of forward confluenced intuitionistic modal logic
FIK. Secondly, we present an axiom system and we prove its soundness and completeness.
Thirdly, we discuss whether FIK satisfies the properties that are expected from intuitionistic
modal logics.

▶ Definition 1 (Formulas). The set L of all formulas (denoted as A, B, etc.) is generated
by the following grammar: A ::= p | ⊥ | ⊤ | (A ∧ A) | (A ∨ A) | (A ⊃ A) | □A | ♢A where
p ranges over a countable set of atomic propositions At. We omit parentheses for readability.
For all formulas A, we write ¬A instead of A ⊃ ⊥. For all formulas A, B, we write A ≡ B

instead of (A ⊃ B) ∧ (B ⊃ A). The size of a formula A is denoted |A|.

▶ Definition 2 (Bi-relational model). A bi-relational model is a quadruple M = (W, ≤, R, V)
where W is a nonempty set of worlds, ≤ is a pre-order on W , R is a binary relation on W

and V : W −→ ℘(At) is a valuation on W satisfying the following hereditary condition:

∀x, y ∈ W, (x ≤ y ⇒ V (x) ⊆ V (y)).

The triple (W, ≤, R) is called a frame. For all x, y ∈ W , we write x ≥ y instead of y ≤ x.
Moreover, we say “y is a successor of x” when Rxy.

1 A calculus for IK with the same kind of nesting was also preliminarily considered in [9]

CSL 2024

13:4 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

It is worth mentioning that an upper world of a successor of a world is not necessarily
a successor of an upper world of that world. However, from now on in this paper, we
only consider models M = (W, ≤, R, V) that satisfy the following condition called Forward
Confluence as in [1]:

(FC) ∀x, y ∈ W, (∃z ∈ W, (x ≥ z & Rzy) ⇒ ∃t ∈ W, (Rxt & t ≥ y)).

▶ Definition 3 (Forcing relation). Let M = (W, ≤, R, V) be a bi-relational model and
w ∈ W . The forcing conditions are the usual ones for atomic propositions and for formulas
constructed by means of the connectives ⊥, ⊤, ∧ and ∨. For formulas constructed by means
of the connectives ⊃, □ and ♢, the forcing conditions are as follows:

M, w ⊩ B ⊃ C iff for all w′ ∈ W with w ≤ w′ and M, w′ ⊩ B, M, w′ ⊩ C;
M, w ⊩ □B iff for all w′, v′ ∈ W with w ≤ w′ and Rw′v′, v′ ⊩ B;
M, w ⊩ ♢B iff there exists v ∈ W with Rwv and M, v ⊩ B.

We also abbreviate M, w ⊩ A as w ⊩ A if the model is clear from the context.

▶ Proposition 4. Let (W, ≤, R, V) be a bi-relational model. For all formulas A in L and for
all x, y ∈ W with x ≤ y, x ⊩ A implies y ⊩ A.

Proposition 4 is proved by induction on the size of A using (FC) for the case of A = ♢B.

▶ Definition 5 (Validity). A formula A in L is valid, denoted ⊩ A, if for any bi-relational
model M and any world w in it, M, w ⊩ A. Let FIK be the set of all valid formulas.

Obviously, FIK contains all standard axioms of IPL. Moreover, FIK is closed with respect
to the following inference rules:

p ⊃ q, p (MP)q
p (NEC)
□p

Finally, FIK contains the following formulas:

(K□) □(p ⊃ q) ⊃ (□p ⊃ □q),
(K♢) □(p ⊃ q) ⊃ (♢p ⊃ ♢q),
(N) ¬♢⊥,
(DP) ♢(p ∨ q) ⊃ ♢p ∨ ♢q,
(wCD) □(p ∨ q) ⊃ ((♢p ⊃ □q) ⊃ □q).

We only show the validity of (wCD). Suppose ̸⊩ □(p ∨ q) ⊃ ((♢p ⊃ □q) ⊃ □q). Hence,
there exists a model (W, ≤, R, V) and w ∈ W such that w ⊩ □(p ∨ q), w ⊩ ♢p ⊃ □q and
w ̸⊩ □q. Thus, let u, v ∈ W be such that w ≤ u, Ruv and v ̸⊩ q. Since w ⊩ □(p ∨ q),
v ⊩ p ∨ q. Since v ̸⊩ q, v ⊩ p. Since Ruv, u ⊩ ♢p. Since w ⊩ ♢p ⊃ □q and w ≤ u,
u ⊩ ♢p ⊃ □q. Since u ⊩ ♢p, u ⊩ □q. Since Ruv, v ⊩ q: a contradiction.

▶ Definition 6 (Axiom system). Let DFIK be the Hilbert-style axiom system consisting of
all standard axioms of IPL, the inference rules (MP) and (NEC) and the formulas (K□),
(K♢), (N), (DP) and (wCD) considered as axioms. Derivations are defined as usual. For
all formulas A, we write ⊢ A when A is DFIK-derivable. The set of all DFIK-derivable
formulas will also be denoted DFIK.

The formulas (K□), (K♢), (DP) and (N) are not new, seeing that they have already been
used by many authors as axioms in multifarious variants of IML. As for the formula (wCD),
as far as we are aware, it is used here for the first time as an axiom of an IML variant.
Indeed, (wCD) is derivable in IK. Moreover, it is a weak form of the Constant Domain

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:5

axiom (CD) : □(p ∨ q) ⊃ ♢p ∨ □q used in [1]. In other respect, (wCD) is derivable in IK,
whereas it is not derivable in CCDL/CK. As for the IK axiom (♢p ⊃ □q) ⊃ □(p ⊃ q),
it is not in FIK as it will be also constructively shown by using the calculus presented in
next section. Therefore, we get CK⊂CCDL⊂FIK⊂IK. We can consider also the logic
CCDL + (DP) (= CK + (N) + (DP)) recently studied in [4], according to the results in
that paper, we get that CCDL + (DP) ⊂ FIK.

▶ Theorem 7 (Soundness). DFIK ⊆ FIK, i.e. for all formulas A, if ⊢ A then ⊩ A.

Theorem 7 can be proved by induction on the length of the derivation of A. Later, we will
prove the converse inclusion (Completeness) saying that FIK ⊆ DFIK. At the heart of our
proof of completeness, will be the concept of theory.

▶ Definition 8 (Theories). A theory is a set of formulas containing DFIK and closed with
respect to MP. A theory Γ is proper if ⊥ ̸∈ Γ. A proper theory Γ is prime if for all formulas
A, B, if A ∨ B ∈ Γ then either A ∈ Γ, or B ∈ Γ. For all theories Γ and for all formulas A,
let Γ + A = {B ∈ L : A ⊃ B ∈ Γ} and □Γ = {A ∈ L : □A ∈ Γ}.

Obviously, DFIK is the least theory and L is the greatest theory. Moreover, for all theories
Γ, Γ is proper if and only if Γ ̸= L if and only if ♢⊥ ̸∈ Γ.

▶ Lemma 9. For all theories Γ and for all formulas A, (i) Γ+A is the least theory containing
Γ and A; (ii) Γ + A is proper if and only if ¬A ̸∈ Γ; (iii) □Γ is a theory.

Lemma 9 can be proved by using standard axioms of IPL, inference rules (MP) and (NEC)
and axiom K□.

▶ Lemma 10 (Lindenbaum’s Lemma). Let A be a formula. If A ̸∈ DFIK then there exists a
prime theory Γ such that A ̸∈ Γ.

▶ Definition 11 (Canonical model). Let ▷◁ be the binary relation between sets of formulas
such that for all sets ∆, Λ of formulas, ∆ ▷◁ Λ iff for all formulas B, the following conditions
hold: (i) if □B ∈ ∆ then B ∈ Λ and (ii) if B ∈ Λ then ♢B ∈ ∆.

Let (Wc, ≤c, Rc) be the frame such that Wc is the set of all prime theories, ≤c is the
inclusion relation on Wc and Rc is the restriction of ▷◁ to Wc. For all Γ, ∆ ∈ Wc, we write
“Γ ≥c ∆” instead of “∆ ≤c Γ”. Let Vc : Wc −→ ℘(At) be the valuation on Wc such that for
all Γ in Wc, Vc(Γ) = Γ ∩ At.

By Theorem 7, ⊥ ̸∈ DFIK. Hence, by Lemma 10, Wc is nonempty.

▶ Lemma 12. (Wc, ≤c, Rc, Vc) satisfies the frame condition (FC).

The proof of the completeness will be based on the following lemmas.

▶ Lemma 13 (Existence Lemma). Let Γ be a prime theory and B, C be formulas.
1. If B ⊃ C ̸∈ Γ then there exists a prime theory ∆ such that Γ ⊆ ∆, B ∈ ∆ and C ̸∈ ∆,
2. if □B ̸∈ Γ then there exists prime theories ∆, Λ such that Γ ⊆ ∆, ∆ ▷◁ Λ and B ̸∈ Λ,
3. if ♢B ∈ Γ then there exists a prime theory ∆ such that Γ ▷◁ ∆ and B ∈ ∆.

▶ Lemma 14 (Truth Lemma). For all formulas A and for all Γ ∈ Wc, A ∈ Γ if and only if
Γ ⊩ A.

CSL 2024

13:6 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

The proof of Lemma 14 can be done by induction on the size of A. The case when A is an
atomic proposition is by definition of Vc. The cases when A is of the form ⊥, ⊤, B ∧ C and
B ∨ C are as usual. The cases when A is of the form B ⊃ C, □B and ♢B use the Existence
Lemma.

As for the proof of Theorem 15, it can be done by contraposition. Indeed, if ̸⊢ A then
by Lemma 10, there exists a prime theory Γ such that A ̸∈ Γ. Thus, by Lemma 14, Γ ̸⊩ A.
Consequently, ̸⊩ A.

▶ Theorem 15 (Completeness). FIK ⊆ DFIK, i.e. for all formulas A, if ⊩ A then ⊢ A.

As mentioned above, there exists many variants of IML. Therefore, one may ask how
natural is the variant we consider here. Simpson [16, Chapter 3] discusses the formal features
that might be expected of an IML L:

(C1) L is conservative over IPL,
(C2) L contains all substitution instances of IPL and is closed under (MP),
(C3) for all formulas A, B, if A ∨ B is in L then either A is in L, or B is in L,
(C4) the addition of the law of excluded middle to L yields modal logic K,
(C5) □ and ♢ are independent in L.

The fact that DFIK satisfies features (C1) and (C2) is an immediate consequence of
Theorems 7 and 15. The fact that DFIK satisfies feature (C3) will be proved in Section 3.
Concerning feature (C4), let DFIK

+ be the Hilbert-style axiom system consisting of DFIK plus
the law p ∨ ¬p of excluded middle. The set of all DFIK

+-derivable formulas will also be
denoted DFIK

+. Obviously, DFIK
+ contains all substitution instances of CPL and is closed

under (MP). Moreover, it contains all substitution instances of (K□) and is closed under
(NEC). Therefore, in order to prove that DFIK satisfies feature (C4), it suffices to prove

▶ Lemma 16. ♢p ≡ ¬□¬p is in DFIK
+.

The fact that DFIK satisfies feature (C5) is a consequence of

▶ Lemma 17. Let p be an atomic proposition. There exists no □-free A such that □p ≡ A

is in DFIK and there exists no ♢-free A such that ♢p ≡ A is in DFIK.

Consequently, DFIK can be considered as a natural intuitionistic modal logic. 2

3 A bi-nested sequent calculus

In this section, we present a bi-nested calculus for FIK. The calculus is two-sided and it
makes use of two kinds of nestings, also called blocks ⟨·⟩ and [·]. The former is called an
implication block and the latter a modal block. The intuition is that implication blocks
correspond to upper worlds while modal blocks correspond to R-successors in a bi-relational
model. The calculus we present is a conservative extension (with some notational difference)
of the nested sequent calculus for IPL presented in [6].

2 Simpson considers a further requirement (C6), in our opinion more controversial: “there is an intuition-
istically comprehensible explanation of the meaning of the modalities, relative to which IML is sound
and complete”. He interprets this as the requirement of soundness and completeness with respect to the
obvious (the same as in the classical case) translation of the modalities into first-order intuitionistic
logic. The logic IK is sound and complete with respect to such a translation, whereas evidently no
weaker logic, whence neither CK, CCDL, nor FIK is. However, this does not mean that any other
translation is impossible. A wider discussion will be deferred to further work.

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:7

▶ Definition 18 (Bi-nested sequent). A bi-nested sequent S is defined as follows:
⇒ is a bi-nested sequent (the empty sequent);
Γ ⇒ B1, . . . , Bk, [S1], . . . , [Sm], ⟨T1⟩, . . . , ⟨Tn⟩ is a bi-nested sequent if S1, . . . , Sm, T1, . . . ,

Tn are bi-nested sequents where m, n ≥ 0, and Γ is a finite (possibly empty) multi-set of
formulas and B1, . . . , Bk are formulas.

We use S, T to denote bi-nested sequents and to simplify wording we will call bi-nested
sequents simply by sequents in the rest of this paper. We denote by |S| the size of a sequent
S intended as the length of S as a string of symbols.

As usual with nested calculi, we need the notion of context in order to specify the rules,
as they can be applied to sequents occurring inside other sequents. A context is of the form
G{}, in which G is a part of a sequent, {·} is regarded as a placeholder that needs to be
filled by another sequent in order to complete G. G{S} is the sequent obtained by replacing
the occurrence of the symbol {} in G{} by the sequent S.

▶ Definition 19 (Context). A context G{} is inductively defined as follows:
{} is a context (the empty context).
if Γ ⇒ ∆ is a sequent and G′{} is a context then Γ ⇒ ∆, ⟨G′{}⟩ is a context.
if Γ ⇒ ∆ is a sequent and G′{} is a context then Γ ⇒ ∆, [G′{}] is a context.

For example, given a context G{} = A ∧ B,□C ⇒ ⟨□A ⇒ [⇒ B]⟩, [{}] and a sequent
S = A ⇒ ∆, [C ⇒ B], we have G{S} = A ∧ B,□C ⇒ ⟨□A ⇒ [⇒ B]⟩, [A ⇒ ∆, [C ⇒ B]].

The two types of blocks interact by the (inter) rule. In order to define this rule, we need
the following:

▶ Definition 20 (∗-operator). Let Λ ⇒ Θ be a sequent, we define Θ∗ as follows:
Θ∗ = ∅ if Θ is [·]-free;
Θ∗ = [Φ1 ⇒ Ψ∗

1], . . . , [Φk ⇒ Ψ∗
k] if Θ = Θ0, [Φ1 ⇒ Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.

By definition, given a sequent Λ ⇒ Θ, Θ∗ is a multi-set of modal blocks. Denote the
sequent G{S} in the previous example for context by Λ ⇒ Θ, then by definition, we can see
Λ ⇒ Θ∗ = A ∧ B,□C ⇒ [A ⇒ [C ⇒]].

Now we can give a bi-nested sequent calculus for FIK as follows.

▶ Definition 21. The calculus CFIK is given in Figure 1.

Here is a brief explanation of these rules. As usual, the (id) axiom can be generalized from
atoms to formulas. The logical rules, except (⊃R), are just the standard rules of intuitionistic
logic in their nested version. From a backward direction and a semantic point of view, the
rule (⊃R) introduces an implication block, which corresponds to an upper world (in the
pre-order). The modal rules create new modal blocks or propagate modal formulas into
existing ones, which correspond to R-accessible worlds. The (trans) rule transfers formulas
(forced by) lower worlds to upper worlds following the pre-order. This rule is called (Lift)
in [6]. Finally, the (inter) rule encodes the (FC) frame condition. It partially transfers
“accessible” modal blocks from lower worlds to upper ones and creates new accessible worlds
from upper worlds fulfilling the (FC) condition.

We define the modal degree of a sequent, which will be useful when discussing termination.

▶ Definition 22 (Modal degree). Modal degree for a formula F , denoted as md(F), is defined
as usual:

md(p) = md(⊥) = md(⊤) = 0;
md(A ◦ B) = max(md(A), md(B)), for ◦ ∈ {∧, ∨, ⊃};
md(□A) = md(♢A) = md(A) + 1.

CSL 2024

13:8 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

Axioms:

(⊥L)
G{Γ, ⊥ ⇒ ∆}

(⊤R)
G{Γ ⇒ ⊤, ∆}

(id)
G{Γ, p ⇒ ∆, p}

Logical rules:

G{A, B, Γ ⇒ ∆}
(∧L)

G{A ∧ B, Γ ⇒ ∆}
G{Γ ⇒ ∆, A} G{Γ ⇒ ∆, B}

(∧R)
G{Γ ⇒ ∆, A ∧ B}

G{Γ, A ⇒ ∆} G{Γ, B ⇒ ∆}
(∨L)

G{Γ, A ∨ B ⇒ ∆}
G{Γ ⇒ ∆, A, B}

(∨R)
G{Γ ⇒ ∆, A ∨ B}

G{Γ, A ⊃ B ⇒ A, ∆} G{Γ, B ⇒ ∆}
(⊃L)

G{Γ, A ⊃ B ⇒ ∆}
G{Γ ⇒ ∆, ⟨A ⇒ B⟩}

(⊃R)
G{Γ ⇒ ∆, A ⊃ B}

G{Γ,□A ⇒ ∆, [Σ, A ⇒ Π]}
(□L)

G{Γ,□A ⇒ ∆, [Σ ⇒ Π]}
G{Γ ⇒ ∆, ⟨⇒ [⇒ A]⟩}

(□R)
G{Γ ⇒ ∆,□A}

G{Γ ⇒ ∆, [A ⇒]}
(♢L)

G{Γ,♢A ⇒ ∆}
G{Γ ⇒ ∆,♢A, [Σ ⇒ Π, A]}

(♢R)
G{Γ ⇒ ∆,♢A, [Σ ⇒ Π]}

Transferring and interactive rules:

G{Γ, Γ′ ⇒ ∆, ⟨Γ′, Σ ⇒ Π⟩}
(trans)

G{Γ, Γ′ ⇒ ∆, ⟨Σ ⇒ Π⟩}
G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ∗]⟩, [Λ ⇒ Θ]}

(inter)
G{Γ ⇒ ∆, ⟨Σ ⇒ Π⟩, [Λ ⇒ Θ]}

Figure 1 CFIK.

Further, let Γ be a finite set of formulas, define md(Γ) = md(
∧

Γ). As for a nested sequent
S of the following form

S = Γ ⇒ ∆, [S1], . . . , [Sm], ⟨T1⟩, . . . , ⟨Tn⟩,

we set md(S) = max{md(Γ), md(∆), md(S1) + 1, . . . , md(Sm) + 1, md(T1), . . . , md(Tn)}.

▶ Example 23. Axiom (wCD) in DFIK is provable in CFIK.

Proof. To prove this, it suffices to prove S = ♢p ⊃ □q,□(p ∨ q) ⇒ □q. Let Γ = ♢p ⊃
□q,□(p ∨ q) and then a derivation for S, i.e. Γ ⇒ □q is given as below.

(id)
Γ ⇒ ⟨Γ ⇒ ♢p, [p ⇒ q, p]⟩

(♢R)
Γ ⇒ ⟨Γ ⇒ ♢p, [p ⇒ q]⟩

(id)
Γ ⇒ ⟨□q, □(p ∨ q) ⇒ [q, p ⇒ q]⟩

(□L)
Γ ⇒ ⟨□q, □(p ∨ q) ⇒ [p ⇒ q]⟩

(⊃L)
Γ ⇒ ⟨Γ ⇒ [p ⇒ q]⟩

(id)
Γ ⇒ ⟨Γ ⇒ [q ⇒ q]⟩

(∨L)
Γ ⇒ ⟨Γ ⇒ [p ∨ q ⇒ q]⟩

(□L)
Γ ⇒ ⟨Γ ⇒ [⇒ q]⟩

(trans)
Γ ⇒ ⟨⇒ [⇒ q]⟩

(□R)
Γ ⇒ □q

Then we are done. ◀

▶ Example 24. The formula (¬□⊥ ⊃ □⊥) ⊃ □⊥ is provable in CFIK.3.

3 Note that this ♢-free formula is unprovable in CK (whence the ♢-free fragments of these two logics are
different, see [4]).

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:9

Proof. To prove this, it suffices to prove S = ¬□⊥ ⊃ □⊥ ⇒ □⊥. Let Γ = ¬□⊥ ⊃ □⊥ and
then a derivation for S, i.e. Γ ⇒ □⊥ is given as below.

(⊥L)
Γ ⇒ ⟨Γ ⇒ ⟨□⊥ ⇒ ⊥, [⊥ ⇒]⟩, [⇒ ⊥]⟩

(□L)
Γ ⇒ ⟨Γ ⇒ ⟨□⊥ ⇒ ⊥, [⇒]⟩, [⇒ ⊥]⟩

(inter)
Γ ⇒ ⟨Γ ⇒ ⟨□⊥ ⇒ ⊥⟩, [⇒ ⊥]⟩

(⊃R)
Γ ⇒ ⟨Γ ⇒ ¬□⊥, [⇒ ⊥]⟩

(⊥L)
Γ ⇒ ⟨□⊥ ⇒ [⊥ ⇒ ⊥]⟩

(□L)
Γ ⇒ ⟨□⊥ ⇒ [⇒ ⊥]⟩

(⊃L)
Γ ⇒ ⟨Γ ⇒ [⇒ ⊥]⟩

(trans)
Γ ⇒ ⟨⇒ [⇒ ⊥]⟩

(□R)Γ ⇒ □⊥
Then we are done. ◀

We now show that the calculus CFIK enjoys the disjunctive property, which means if
A ∨ B is provable, then either A or B is provable. This fact is an immediate consequence
of the following lemma. Its general form is due to the fact that backwards expansion of a
sequent with empty antecedent will (only) treat/introduce formulas and implication blocks
in the consequent.

▶ Lemma 25. Suppose that a sequent S = ⇒ A1, . . . , Am, ⟨G1⟩, . . . , ⟨Gn⟩ is provable in
CFIK, where the Ai’s are formulas. Then either for some Ai, sequent ⇒ Ai is provable or
for some Gj, sequent ⇒ ⟨Gj⟩ is provable.

Since ⇒ A ∨ B is provable if and only if ⇒ A, B from the lemma we immediately obtain:

▶ Proposition 26. For any formulas A, B, if ⇒ A ∨ B is provable in CFIK, then either ⇒ A

or ⇒ B is provable.

By the soundness and completeness of CFIK with respect to FIK proved in the following,
we will conclude that the logic FIK enjoys the disjunctive property.

Next, we prove the soundness of the calculus CFIK. To achieve this aim, we need to
define the semantic interpretation of sequents, whence their validity. We first extend the
forcing relation ⊩ to sequents and blocks therein.

▶ Definition 27. Let M = (W, ≤, R, V) be a bi-relational model and x ∈ W . The relation ⊩
is extended to sequents as follows:

M, x ̸⊩ ∅
M, x ⊩ [T] if for every y with Rxy, M, y ⊩ T

M, x ⊩ ⟨T ⟩ if for every x′ with x ≤ x′, M, x′ ⊩ T

M, x ⊩ Γ ⇒ ∆ if either M, x ̸⊩ A for some A ∈ Γ or M, x ⊩ O for some O ∈ ∆

We say S is valid in M iff ∀w ∈ W , we have M, w ⊩ S. S is valid iff it is valid in every
bi-relational model.

Whenever the model M is clear, we omit it and write simply x ⊩ O, where O is either
formula, or a sequent, or a block. Moreover, given a sequent S = Γ ⇒ ∆, we write x ⊩ ∆ if
there is an O ∈ ∆ s.t. x ⊩ O and write x ̸⊩ ∆ if the previous condition does not hold.

The following lemma gives a semantic meaning to the ∗-operation used in (inter).

▶ Lemma 28. Let M = (W, ≤, R, V) be a bi-relational model and x, x′ ∈ W with x ≤ x′.
Let S = Γ ⇒ ∆ be any sequent, if x ̸⊩ ∆ then x′ ̸⊩ ∆∗.

In order to prove soundness we first show that the all rules are forcing-preserving.

CSL 2024

13:10 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

▶ Lemma 29. Given a model M = (W, ≤, R, V) and x ∈ W , for any rule (r) of the form
G{S1} G{S2}

G{S} or G{S1}
G{S} , if x ⊩ G{Si}, then x ⊩ G{S}.

Proof of this lemma proceeds by induction on the structure of the context G{}. The the
base of the induction (that is G = ∅) is the important one, we check rule by rule and in the
case of (inter) we make use of Lemma 28.

By Lemma 29, the soundness of CFIK is proved as usual by a straightforward induction
on the length of derivations.

▶ Theorem 30 (Soundness). If a sequent S is provable in CFIK, then it is valid.

4 Termination and completeness for CFIK

In this section, we provide a terminating proof-search procedure based on CFIK, whence
a decision procedure for FIK; it will then be used to prove that CFIK is complete with
respect to FIK bi-relational semantics. Here is a roadmap. First we introduce a set-based
variant of the calculus where all rules are cumulative (or kleen’ed), in the sense that principal
formulas are kept in the premises. With this variant, we formulate saturation conditions on
a sequent associated to each rule. Saturation conditions are needed for both termination
and completeness in order to prevent “redundant” application of the rules as the source of
non-termination. In the meantime saturation conditions also ensure that a saturated sequent
satisfies the truth conditions specified by the semantics (which will be presented in the truth
lemma), so it can be seen as a countermodel.

The reformulation of the calculus by means of set-based sequents is motivated as usual
by the following consideration: while multisets are the natural data-structure for any proof-
system (at least with commutative ∧, ∨), set-based sequents are needed to bound the size
of sequents occurring in a derivation in terms of subsets of subformulas of the formula or
sequent at the root of the derivation (see for instance [3]).

With this in mind, we first present the following CCFIK, a variant of CFIK where
sequents are set-based rather than multi-set based and the rules are cumulative.

▶ Definition 31. CCFIK acts on set-based sequents, where a set-based sequent S = Γ ⇒ ∆
is defined as in definition 18, but Γ is a set of formulas and ∆ is a set of formulas and/or
blocks (containing set-based sequents). The rules are as follows:

It keeps the rules (⊥L), (⊤R), (id), (□L), (♢R), (trans) and (inter) of CFIK.
(⊃R) is replaced by the two rules dealing with cases of A ∈ Γ and A /∈ Γ respectively,

G{Γ ⇒ ∆, A ⊃ B, B}
(⊃R1)

G{Γ ⇒ ∆, A ⊃ B}
G{Γ ⇒ ∆, A ⊃ B, ⟨A ⇒ B⟩}

(⊃R2)
G{Γ ⇒ ∆, A ⊃ B}

Other rules (∧L), (∧R), (∨L), (∨R), (⊃L), (□R) and (♢L) in CFIK are modified by
keeping the principal formula in the premise(s). For example, the cumulative version of
(⊃L) is

G{Γ, A ⊃ B ⇒ A, ∆} G{Γ, A ⊃ B, B ⇒ ∆}
(⊃L)

G{Γ, A ⊃ B ⇒ ∆}

and the cumulative versions of (∧L) and (□R) are

G{A, B, A ∧ B, Γ ⇒ ∆}
(∧L)

G{A ∧ B, Γ ⇒ ∆}
G{Γ ⇒ ∆,□A, ⟨⇒ [⇒ A]⟩}

(□R)
G{Γ ⇒ ∆,□A}

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:11

The following proposition is a consequence of the admissibility of weakening and contrac-
tion of CFIK which can be done by a standard proof.

▶ Proposition 32. A sequent S is provable in CFIK if and only if S is provable in CCFIK.

From now on we only consider CCFIK. We introduce the notion of structural inclusion
between sequents. It is used in the definition of saturation conditions as well as the model
construction presented at the end of the section.

▶ Definition 33 (Structural inclusion ⊆S). Let Γ1 ⇒ ∆1, Γ2 ⇒ ∆2 be two sequents. Γ1 ⇒ ∆1
is said to be structurally included in Γ2 ⇒ ∆2, denoted as Γ1 ⇒ ∆1 ⊆S Γ2 ⇒ ∆2, if:

Γ1 ⊆ Γ2 and
for each [Λ1 ⇒ Θ1] ∈ ∆1, there exists [Λ2 ⇒ Θ2] ∈ ∆2 such that Λ1 ⇒ Θ1 ⊆S Λ2 ⇒ Θ2.

It is easy to see that ⊆S is reflexive and transitive; moreover if Γ1 ⇒ ∆1 ⊆S Γ2 ⇒ ∆2,
then Γ1 ⊆ Γ2.

We define now the saturation conditions associated to each rule of CCFIK.

▶ Definition 34 (Saturation conditions). Let Γ ⇒ ∆ be a sequent where Γ is a set of formulas
and ∆ is a set of formulas and blocks. Saturation conditions associated to a rule in the
calculus are given as below.
(⊥L) ⊥ /∈ Γ.
(⊤R) ⊤ /∈ ∆.
(id) At ∩ (Γ ∩ ∆) is empty.
(∧R) If A ∧ B ∈ ∆, then A ∈ ∆ or B ∈ ∆.
(∧L) If A ∧ B ∈ Γ, then A ∈ Γ and B ∈ Γ.
(∨R) If A ∨ B ∈ ∆, then A ∈ ∆ and B ∈ ∆.
(∨L) If A ∨ B ∈ Γ, then A ∈ Γ or B ∈ Γ.
(⊃R) If A ⊃ B ∈ ∆, then either A ∈ Γ and B ∈ ∆, or there is ⟨Σ ⇒ Π⟩ ∈ ∆ with A ∈ Σ and

B ∈ Π.
(⊃L) If A ⊃ B ∈ Γ, then A ∈ ∆ or B ∈ Γ.
(□R) If □A ∈ ∆, then either there is [Λ ⇒ Θ] ∈ ∆ with A ∈ Θ, or there is ⟨Σ ⇒ [Λ ⇒ Θ], Π⟩ ∈ ∆

with A ∈ Θ.
(□L) If □A ∈ Γ and [Σ ⇒ Π] ∈ ∆, then A ∈ Σ.
(♢R) If ♢A ∈ ∆ and [Σ ⇒ Π] ∈ ∆, then A ∈ Π.
(♢L) If ♢A ∈ Γ, then there is [Σ ⇒ Π] ∈ ∆ with A ∈ Σ.
(trans) If ∆ is of form ∆′, ⟨Σ ⇒ Π⟩, then Γ ⊆ Σ.
(inter) If ∆ is of form ∆′, ⟨Σ ⇒ Π⟩, [Λ ⇒ Θ], then there is [Φ ⇒ Ψ] ∈ Π with Λ ⇒ Θ ⊆S Φ ⇒ Ψ.

Concerning the (inter)-saturation, observe that in the (inter) rule we have Λ ⇒ Θ ⊆S

Λ ⇒ Θ∗, thus the saturation condition actually generalizes the situation.

▶ Proposition 35. Let Γ ⇒ ∆ be a sequent saturated with respect to both (trans) and (inter).
If ⟨Σ ⇒ Π⟩ ∈ ∆, then Γ ⇒ ∆ ⊆S Σ ⇒ Π.

In order to define a terminating proof-search procedure based on CCFIK (like for any
calculus with cumulative rules), as usual we say that the backward application of a rule (R)
to a sequent S is redundant if S satisfies the corresponding saturation condition for that
application of (R) and we impose the following constraints:

(i) No rule is applied to an axiom and
(ii) No rule is applied redundantly.

However, the restrictions above are not sufficient to ensure the termination of the
procedure.

CSL 2024

13:12 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

▶ Example 36. Let us consider the sequent S = □a ⊃ ⊥,□b ⊃ ⊥ ⇒ p, where we abbreviate
by Γ the antecedent of S. Consider the following derivation, we only show the leftmost
branch (the others succeed), we collapse some steps:

...
(3) Γ ⇒ p,□a,□b, ⟨Γ ⇒ □a,□b, [⇒ a], ⟨Γ ⇒ □a,□b, [⇒ b]⟩⟩, ⟨Γ ⇒ □a,□b, [⇒ b]⟩

...
(2) Γ ⇒ p,□a,□b, ⟨Γ ⇒ □a,□b, [⇒ a], ⟨⇒ [⇒ b]⟩⟩, ⟨Γ ⇒ □a,□b, [⇒ b]⟩

(□R)
(1) Γ ⇒ p,□a,□b, ⟨Γ ⇒ □a,□b, [⇒ a]⟩, ⟨Γ ⇒ □a,□b, [⇒ b]⟩

(⊃L) × 4
Γ ⇒ p,□a,□b, ⟨Γ ⇒ [⇒ a]⟩, ⟨Γ ⇒ [⇒ b]⟩

(trans) × 2
Γ ⇒ p,□a,□b, ⟨⇒ [⇒ a]⟩, ⟨⇒ [⇒ b]⟩

(□R) × 2Γ ⇒ p,□a,□b (⊃L) × 2Γ ⇒ p

Observe that in the first implication block of sequent (1) (□R) can only be applied to
□b, creating the nested block ⟨⇒ [⇒ b]⟩ in (2), as it satisfies the saturation condition for
□a. This block will be further expanded to ⟨Γ ⇒ □a,□b, [⇒ b]⟩ in (3) that satisfies the
saturation condition for □b, but not for □a, whence it will be further expanded, and so on.
Thus the branch does not terminate.

In order to deal with this case of non-termination, intuitively we need to block the
expansion of a sequent that occurs nested in another sequent whenever the former has already
been expanded and the latter is “equivalent” in some sense to the former. To realize this
purpose we first introduce a few notions.

▶ Definition 37 (∈⟨·⟩, ∈[·], ∈+-relation). Let Γ1 ⇒ ∆1, Γ2 ⇒ ∆2 be two sequents. We denote
Γ1 ⇒ ∆1 ∈⟨·⟩

0 Γ2 ⇒ ∆2 if ⟨Γ1 ⇒ ∆1⟩ ∈ ∆2 and let ∈⟨·⟩ be the transitive closure of ∈⟨·⟩
0 .

Relations ∈[·]
0 and ∈[·] for modal blocks are defined similarly. Besides, let ∈+

0 = ∈⟨·⟩
0 ∪ ∈[·]

0
and finally let ∈+ be the reflexive-transitive closure of ∈+

0 .

Observe that when we say S′ ∈+ S, it is equivalent to say that for some context G, S = G{S′}.
We introduce the operator ♯ for the succedent of a sequent, it is used to remove implication

blocks but retain all the other formulas and modal blocks.

▶ Definition 38 (♯-operator). Let Λ ⇒ Θ be a sequent. We define Θ♯ as follows:
(i) Θ♯ = Θ if Θ is block-free;
(ii) Θ♯ = Θ♯

0, [Φ ⇒ Ψ♯] if Θ = Θ0, [Φ ⇒ Ψ];
(iii) Θ♯ = Θ♯

0 if Θ = Θ0, ⟨Φ ⇒ Ψ⟩.

We can compare this ♯-operator with ∗ in Definition 20. For example, let ∆ = b, [c ⇒
d, [e ⇒ f], ⟨g ⇒ h⟩], ⟨t ⇒ [p ⇒ q]⟩, [m ⇒ n], then ∆♯ = b, [c ⇒ d, [e ⇒ f]], [m ⇒ n], while
∆∗ = [c ⇒ [e ⇒]], [m ⇒].

Intuitively speaking, if a sequent S = Λ ⇒ Θ describes a model rooted in S and specifies
formulas forced and not forced in S, then Λ ⇒ Θ♯, describes the chains of R-related worlds
to S by specifying all formulas forced and not forced in each one of them, but ignores upper
worlds in the pre-order, the latter being represented by implication blocks.

We use the ♯-operator to define an equivalence relation between sequents. The equivalence
relation will be used to detect loops in a derivation as in the example above.

▶ Definition 39 (♯-equivalence). Let S1, S2 be two sequents where S1 = Γ1 ⇒ ∆1, S2 = Γ2 ⇒
∆2. We say S1 is ♯-equivalent to S2, denoted as S1 ≃ S2, if Γ1 = Γ2 and ∆♯

1 = ∆♯
2.

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:13

In order to define a proof-search procedure, we divide rules of CCFIK into three groups
and define correspondingly three levels of saturation.
(R1) basic rules: all propositional and modal rules except (⊃R) and (□R);
(R2) rules that transfer formulas and blocks into implication blocks: (trans) and (inter);
(R3) rules that create implication blocks: (□R) and (⊃R).

▶ Definition 40 (Saturation). Let S = Γ ⇒ ∆ be a sequent and not an axiom. S is called:
R1-saturated if Γ ⇒ ∆♯ satisfies all the saturation conditions of R1 rules;
R2-saturated if S is R1-saturated and S satisfies saturation conditions of R2 rules for
blocks S1 ∈⟨·⟩

0 S and S2 ∈[·]
0 S.

R3-saturated if S is R2-saturated and S satisfies saturation conditions of R3 rules for
formulas □A, B ⊃ C ∈ ∆.

We can finally define when a sequent is blocked, the intention is that it will not be
expanded anymore by the proof-search procedure.

▶ Definition 41 (Blocked sequent). Given a sequent S and S1, S2 ∈+ S, with S1 = Γ1 ⇒
∆1, S2 = Γ2 ⇒ ∆2. We say S2 is blocked by S1 in S, if S1 is R3-saturated, S2 ∈⟨·⟩ S1 and
S1 ≃ S2. We say that a sequent S′ is blocked in S if there exists S1 ∈+ S such that S′ is
blocked by S1 in S.

Observe that if S is finite, then for any S′ ∈+ S checking whether S′ is blocked in S can be
effectively decided. We will say just that S′ is blocked when S is clear.

▶ Example 42. We reconsider the example 36. The sequent (3) will be further expanded to

(4) Γ ⇒ p,□a,□b,

⟨Γ ⇒ □a,□b, [⇒ a], ⟨Γ ⇒ □a,□b, [⇒ b], ⟨Γ ⇒ □a,□b, [⇒ a]⟩(ii)⟩⟩(i),

⟨Γ ⇒ □a,□b, [⇒ b]⟩

We have marked by (i) and (ii) the relevant blocks. Observe that the sequent S2 = Γ ⇒
□a,□b, [⇒ a] in the block marked (ii) is blocked by the sequent S1 = Γ ⇒ □a,□b, [⇒
a], ⟨Γ ⇒ □a,□b, [⇒ b], ⟨Γ ⇒ □a,□b, [⇒ a]⟩⟩ marked (i), since S1 is R3-saturated, S2 ∈⟨·⟩ S1
and S1 ≃ S2, as in particular (□a,□b, [⇒ a], ⟨Γ ⇒ □a,□b, [⇒ b], ⟨Γ ⇒ □a,□b, [⇒ a]⟩⟩)♯ =
(Γ ⇒ □a,□b, [⇒ a])♯.

We finally define three global saturation conditions.

▶ Definition 43 (Global saturation). Let S be a sequent and not an axiom. S is called :
global-R1-saturated if for each T ∈+ S, T is either R1-saturated or blocked;
global-R2-saturated if for each T ∈+ S, T is either R2-saturated or blocked;
global-saturated if for each T ∈+ S, T is either R3-saturated or blocked.

In order to specify the proof-search procedure, we make use of three sub-procedures
that extend a given derivation D by expanding a leaf S, each procedure applies rules non-
redundantly to some T := Γ ⇒ ∆ ∈+ S, that we recall it means that S = G{T}, for some
context G . We define :
1. EXP1(D, S, T) = D′ where D′ is the extension of D obtained by applying R1 rules to

every formula in Γ ⇒ ∆♯.
2. EXP2(D, S, T) = D′ where D′ is the extension of D obtained by applying R2-rules to

blocks ⟨Ti⟩, [Tj] ∈ ∆.
3. EXP3(D, S, T) = D′ where D′ is the extension of D obtained by applying R3-rules to

formulas □A, A ⊃ B ∈ ∆.

CSL 2024

13:14 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

The three procedures are used as macro-steps in the proof search procedure defined next.
We are going to prove that the three sub-procedures terminate, this is stated in Proposition
46 below. The claim is obvious for EXP2(D, S, T), EXP3(D, S, T) as only finitely many
blocks or formulas in T are processed. For EXP1(D, S, T), the claim is not so trivial, since
the rules are applied also deeply within Γ ⇒ ∆♯. But notice that EXP1 only applies the
rules (both left and right) for ∧, ∨,♢ and ⊃L,□L while ignores implication blocks, we can see
EXP1(D, S, T) produces exactly the same expansion of D that we would obtain by applying
the same rules of a nested sequent calculus for classical modal logic K and we know that
that procedure terminates (see [3], Lemma 7).

In order to give a proof of the claim for EXP1(D, S, T) precisely we introduce the
following definition.

▶ Definition 44. Given a sequent S, the tree TS is defined as follows: (i) the root of TS is
S; (ii) if S1 ∈[·]

0 S2, then S1 is a child of S2.

We denote the height of TS as h(TS). It is easy to verify that h(TS) ≤ md(S). Moreover
we denote by Sub(A) the set of subformulas of a formula A and for a sequent S = Γ ⇒
∆ we use the corresponding notations Sub(Γ), Sub(∆), Sub(S). Finally, we recall that
Card(Sub(S)) = O(|S|).

By estimating the size of the tree associated to a sequent, we can get the following rough
bound of the size of any sequent occurring in a derivation by R1-rules.

▶ Proposition 45. Let Do be a derivation with root a non-axiomatic sequent T = Γ ⇒ ∆
obtained by applying R1-rules to Γ ⇒ ∆♯, then any T ′ occurring in Do has size O(|T ||T |+1).

We can now prove the following proposition.

▶ Proposition 46. Given a finite derivation D, a finite leaf S of D and T ∈+ S, then each
EXP1(D, S, T), EXP2(D, S, T),EXP3(D, S, T) terminates by producing a finite expansion
of D where all sequents in it are finite.

We present below the proof-search procedure PROCEDURE(A), that given an input
formula A it returns either a proof of A or a finite derivation tree in which all non-axiomatic
leaves are global-saturated.

Note that the proof-search algorithm we give is breadth-first, as we can see in line 8,
we expand all such non-axiomatic leaves in parallel. As a result, in line 5, the output is
a fully-saturated derivation, which means each non-axiomatic leaf in it is global-saturated.
Actually it is also possible to redesign the algorithm in a depth-first way by working with one
leaf exhaustively at each time and then the procedure for a unprovable formulas terminates
once the first global-saturated leaf is constructed.

An important property of the proof-search procedure is that saturation and blocking are
preserved through sequent expansion, in other words, they are invariant of the repeated loop
of the procedure.

▶ Lemma 47 (Invariant). Let S be a leaf of a derivation D with root ⇒ A:
1. Let T ∈+ S, where T = Γ ⇒ ∆, for every rule (R) if T satisfies the R-saturation condition

on some formulas Ai and/or blocks ⟨Tj⟩, [Tk] before the execution of (the body of) the
repeat loop (lines 3-14), then T satisfies the R-condition on the involved Ai, ⟨Tj⟩, [Tk]
after the execution of it.

2. Let T ∈+ S, if T is blocked in S before the execution of (the body of) the repeat loop,
then it is still so after it.

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:15

Algorithm 1 PROCEDURE(A).

Input: D0 = ⇒ A

1 initialization D = D0;
2 repeat
3 if all the leaves of D are axiomatic then
4 return “PROVABLE” and D
5 else if all the non-axiomatic leaves of D are global-saturated then
6 return “UNPROVABLE” and D
7 else
8 for all non-axiomatic leaves S of D that are not global-saturated
9 if S is global-R2-saturated then

10 for all T ∈+ S such that T is a ∈⟨·⟩-minimal and not R3-saturated, check
whether T is blocked in S, if not, let D = EXP3(D, S, T)

11 else if S is global-R1-saturated then
12 for all T ∈+ S such that T is not R2-saturated, let D = EXP2(D, S, T)
13 else
14 for all T ∈+ S such that T is not R1-saturated, let D = EXP1(D, S, T)

15 until FALSE ;

The last ingredient in order to prove termination is that in a derivation of a formula,
there can only be finitely many non-blocked sequents.

▶ Lemma 48. Given a formula A, let Seq(A) be the set of sequents that may occur in any
possible derivation with root ⇒ A. Let Seq(A)/≃ be the quotient of Seq(A) with respect to
♯-equivalence ≃ as defined in Definition 39. Then Seq(A)/≃ is finite.

Intuitively, the termination of the procedure is based on the fact that the procedure
cannot run forever by building an infinite derivation. The reason is that the built derivation
cannot contain any infinite branch, because (i) once that a sequent satisfies a saturation
condition for a rule (R), further expansions of it will still satisfy that condition (whence will
not be reconsidered for the application of (R)); (ii) if a sequent is blocked, further application
or rules cannot “unblock” it; (iii) the number of non-equivalent, whence unblocked sequents
is finite.

▶ Theorem 49 (Termination). Let A be a formula. Proof-search for the sequent ⇒ A

terminates with a finite derivation in which any leaf is either an axiom or global-saturated.

Next, we prove the completeness of CCFIK. Given a finite global-saturated leaf S of the
derivation D produced by PROCEDURE(A), we can define a model MS as follows, which
will be shown as a countermodel for A.

▶ Definition 50. The model MS = (WS , ≤S , RS , VS) determined by S is defined as follows:
WS = {xΦ⇒Ψ | Φ ⇒ Ψ ∈+ S}.
xS1 ≤S xS2 if S1 ⊆S S2.
RSxS1xS2 if S2 ∈[·]

0 S1.
for each xΦ⇒Ψ ∈ WS, let VS(xΦ⇒Ψ) = {p | p ∈ Φ}.

CSL 2024

13:16 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

We give some brief remarks on the model construction. Obviously MS is finite, and each
world in WS corresponds to either a R3-saturated or a blocked sequent, that is nonetheless
saturated with respect to (inter) and (trans). Moreover, by Proposition 35, we can see if
xΓ⇒∆′,⟨Σ⇒Π⟩ ∈ WS then xΣ⇒Π ∈ WS , and xΓ⇒∆′,⟨Σ⇒Π⟩ ≤S xΣ⇒Π. Lastly, by the property
of structural inclusion ⊆S, we have that ≤S is a pre-order.

▶ Proposition 51. MS satisfies the hereditary property (HP) and forward confluence (FC).

▶ Lemma 52 (Truth Lemma). Let S be a global-saturated sequent and MS be defined as
above. (a). If A ∈ Φ, then MS , xΦ⇒Ψ ⊩ A; (b). If A ∈ Ψ, then MS , xΦ⇒Ψ ⊮ A.

From the truth lemma we immediately obtain the completeness of CCFIK.

▶ Theorem 53. For any formula A ∈ L, if ⊩ A, then ⇒ A is provable in CCFIK.

▶ Example 54. We show how to build a countermodel of the formula (♢p ⊃ □q) ⊃ □(p ⊃ q)
by CCFIK (due to space limit, we do not present the full derivation here). By backward
application of the rules, one branch of the derivation ends up with the the saturated
sequent S0:

S0 = ♢p ⊃ □q ⇒ ♢p,□(p ⊃ q), ⟨♢p ⊃ □q ⇒ ♢p, [⇒ p ⊃ q, ⟨p ⇒ q⟩, p]⟩ and let

S1 = ♢p ⊃ □q ⇒ ♢p, [⇒ p ⊃ q, ⟨p ⇒ q⟩, p], S2 = ⇒ p ⊃ q, ⟨p ⇒ q⟩, p, S3 = p ⇒ q

We then get the model MS0 = (W, ≤, R, V) where
W = {xS0 , xS1 , xS2 , xS3},
xS0 ≤ xS1 , xS2 ≤ xS0 , xS2 ≤ xS3 ,
RxS1xS2 ,
V (xS0) = V (xS1) = V (xS2) = ∅ and V (xS3) = {p}.

It is easy to see that xS0 ̸⊩ (♢p ⊃ □q) ⊃ □(p ⊃ q).

▶ Example 55. Consider another example ¬¬□¬p ⊃ □¬p which shows that the ♢-free
fragment of FIK is weaker than the same fragment of IK. The formula is presented in [4] and is
provable in IK. By building a derivation with the root ⇒ ((□(p ⊃ ⊥) ⊃ ⊥) ⊃ ⊥) ⊃ □(p ⊃ ⊥),
we generate a saturated sequent

S0 = F1 ⇒ □(p ⊃ ⊥), F2, ⟨S1⟩, ⟨S6⟩,

where F1 = (□(p ⊃ ⊥) ⊃ ⊥) ⊃ ⊥, F2 = □(p ⊃ ⊥) ⊃ ⊥, and

S1 = F1 ⇒ F2, [⇒ ⟨p ⇒ ⊥⟩], ⟨S4⟩, S4 = F1,□(p ⊃ ⊥) ⇒ ⊥, F2, [p ⊃ ⊥ ⇒ p],
S6 = F1,□(p ⊃ ⊥) ⇒ ⊥, F2,
S2 = ⇒ ⟨p ⇒ ⊥⟩, S3 = p ⇒ ⊥, S5 = p ⊃ ⊥ ⇒ p.

We then get the model MS0 = (W, ≤, R, V) where
W = {xS0 , . . . , xS6},
xS0 ≤ xS1 , xS0 ≤ xS6 , xS1 ≤ xS4 , xS6 ≤ xS4 , xS2 ≤ xS3 , xS2 ≤ xS5 , xS2 ≤ xS0 ,
RxS1xS2 , RxS4xS5 ,
V (xSi) = ∅ if i ̸= 3 and V (xS3) = {p}.

It is easy to see that xS0 ⊮ ((□(p ⊃ ⊥) ⊃ ⊥) ⊃ ⊥) ⊃ □(p ⊃ ⊥).

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:17

5 Conclusion and future work

We have proposed FIK, a natural variant of Intuitionistic modal logic characterized by
forward confluent bi-relational models. FIK is intermediate between constructive modal
logic CK and intuitionistic modal logic IK and it satisfies all the expected criteria for
IML. We have presented a sound and complete axiomatization of it and a bi-nested calculus
CFIK which provides a decision procedure together with a finite countermodel extraction.

There are many topics for further research. First we may study extensions of FIK with
the standard axioms from the modal cube. To obtain decidability and terminating proof
systems for transitive logics (e.g. the 4-extension) might be difficult and it may be worthwhile
to study an embedding of our nested sequent calculus into a labelled calculus and then
adapt the techniques and results in [7]. More generally, we can also explore extensions of
FIK whose accessibility relation is defined by Horn properties and the nested sequent calculi
might be obtained by means of the refinement technique proposed in [8]. Lastly we can
consider other bi-relational frame conditions relating to the pre-order and the accessible
(including the one for IK) and see how they can be captured uniformly in bi-nested calculi
with suitable “interactive rules”.

References
1 Philippe Balbiani, Martín Diéguez, and David Fernández-Duque. Some constructive variants

of S4 with the finite model property. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470643.

2 Gianluigi Bellin, Valeria De Paiva, and Eike Ritter. Extended curry-howard correspondence
for a basic constructive modal logic. In Proceedings of methods for modalities, volume 2, 2001.

3 Kai Brünnler. Deep sequent systems for modal logic. Arch. Math. Log., 48(6):551–577, 2009.
doi:10.1007/S00153-009-0137-3.

4 Anupam Das and Sonia Marin. On intuitionistic diamonds (and lack thereof). In Revantha
Ramanayake and Josef Urban, editors, Automated Reasoning with Analytic Tableaux and
Related Methods – 32nd International Conference, TABLEAUX 2023, volume 14278 of Lecture
Notes in Computer Science, pages 283–301. Springer, 2023. doi:10.1007/978-3-031-43513-3_
16.

5 Frederic B. Fitch. Intuitionistic modal logic with quantifiers. Portugaliae mathematica,
7(2):113–118, 1948. URL: http://eudml.org/doc/114664.

6 Melvin Fitting. Nested sequents for intuitionistic logics. Notre Dame J. Formal Log., 55(1):41–
61, 2014. doi:10.1215/00294527-2377869.

7 Marianna Girlando, Roman Kuznets, Sonia Marin, Marianela Morales, and Lutz Straßburger.
Intuitionistic S4 is decidable. In 2023 38th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, 2023. doi:10.1109/LICS56636.2023.10175684.

8 Tim S. Lyon. Nested sequents for intuitionistic modal logics via structural refinement. In
Anupam Das and Sara Negri, editors, Automated Reasoning with Analytic Tableaux and Related
Methods – 30th International Conference, TABLEAUX 2021, volume 12842 of Lecture Notes
in Computer Science, pages 409–427. Springer, 2021. doi:10.1007/978-3-030-86059-2_24.

9 Sonia Marin and Marianela Morales. Fully structured proof theory for intuitionistic modal logics.
In AiML 2020 – Advances in Modal Logic, 2020. URL: https://hal.science/hal-03048959.

10 Sonia Marin, Marianela Morales, and Lutz Straßburger. A fully labelled proof system for
intuitionistic modal logics. J. Log. Comput., 31(3):998–1022, 2021. doi:10.1093/LOGCOM/
EXAB020.

11 Gordon Plotkin and Colin Stirling. A framework for intuitionistic modal logics. In Proceedings
of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge (TARK), pages
399–406, 1986. doi:10.5555/1029786.1029823.

CSL 2024

https://doi.org/10.1109/LICS52264.2021.9470643
https://doi.org/10.1007/S00153-009-0137-3
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/978-3-031-43513-3_16
http://eudml.org/doc/114664
https://doi.org/10.1215/00294527-2377869
https://doi.org/10.1109/LICS56636.2023.10175684
https://doi.org/10.1007/978-3-030-86059-2_24
https://hal.science/hal-03048959
https://doi.org/10.1093/LOGCOM/EXAB020
https://doi.org/10.1093/LOGCOM/EXAB020
https://doi.org/10.5555/1029786.1029823

13:18 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

12 Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications, Mineola,
N.Y., 1965. doi:10.2307/2271676.

13 Gisèle Fischer Servi. On modal logic with an intuitionistic base. Studia Logica, 36(3):141–149,
1977. doi:10.1007/BF02121259.

14 Gisèle Fischer Servi. Semantics for a Class of Intuitionistic Modal Calculi, pages 59–72.
Springer Netherlands, Dordrecht, 1981. doi:10.1007/978-94-009-8937-5_5.

15 Gisèle Fischer Servi. Axiomatizations for some intuitionistic modal logics. Rendiconti del
Seminario Matematico Università e Politecnico di Torino, 42, 1984. URL: https://cir.nii.
ac.jp/crid/1371132818982119684.

16 Alex K. Simpson. The proof theory and semantics of intuitionistic modal logic. Ph.D.
Thesis, University of Edinburgh, 1994. URL: https://api.semanticscholar.org/CorpusID:
2309858.

17 Duminda Wijesekera. Constructive modal logics I. Ann. Pure Appl. Log., 50(3):271–301, 1990.
doi:10.1016/0168-0072(90)90059-B.

A Appendix

The appendix includes the proofs of some of our results.

Proof of Lemma 12. Let Γ, ∆, Λ ∈ Wc be such that Γ ≥c ∆ and ∆RcΛ. Hence, Γ ⊇ ∆ and
∆ ▷◁ Λ. Let A1, A2, . . . be an enumeration of □Γ and B1, B2, . . . be an enumeration of Λ.
Obviously, for all n ∈ N, □(A1 ∧ . . . ∧ An) ∈ Γ and B1 ∧ . . . ∧ Bn ∈ Λ. Since ∆ ▷◁ Λ, for all
n ∈ N, ♢(B1 ∧ . . . ∧ Bn) ∈ ∆. For all n ∈ N, let Θn = DFIK + A1 ∧ . . . ∧ An ∧ B1 ∧ . . . ∧ Bn.
Obviously, (Θn)n∈N is a chain of theories such that

⋃
{Θn : n ∈ N} ⊇ Λ.

We claim that for all formulas C, if □C ∈ Γ then C ∈
⋃

{Θn : n ∈ N}. If not, there exists
a formula C such that □C ∈ Γ and C ̸∈

⋃
{Θn : n ∈ N}. Thus, C ∈ □Γ. Consequently, let

n ∈ N be such that An = C. Hence, A1 ∧ . . . ∧ An ∧ B1 ∧ . . . ∧ Bn → C is in DFIK. Thus,
C ∈ Θn. Consequently, C ∈

⋃
{Θn : n ∈ N}: a contradiction. Hence, for all formulas C, if

□C ∈ Γ then C ∈
⋃

{Θn : n ∈ N}.
We claim that for all formulas C, if C ∈

⋃
{Θn : n ∈ N} then ♢C ∈ Γ. If not,

there exists n ∈ N and there exists a formula C such that C ∈ Θn and ♢C ̸∈ Γ. Thus,
A1 ∧ . . .∧An ∧B1 ∧ . . .∧Bn → C is in DFIK. Consequently, B1 ∧ . . .∧Bn → (A1 ∧ . . .∧An →
C) is in DFIK. Hence, ♢(B1 ∧ . . . ∧ Bn) ⊃ ♢(A1 ∧ . . . ∧ An ⊃ C) is in DFIK. Since
♢(B1 ∧ . . . ∧ Bn) ∈ ∆, ♢(A1 ∧ . . . ∧ An ⊃ C) ∈ ∆. Since Γ ⊇ ∆, ♢(A1 ∧ . . . ∧ An ⊃ C) ∈ Γ.
Thus, □(A1 ∧ . . . ∧ An) ⊃ ♢C ∈ Γ. Since □(A1 ∧ . . . ∧ An) ∈ Γ, ♢C ∈ Γ: a contradiction.
Consequently, for all formulas C, if C ∈

⋃
{Θn : n ∈ N} then ♢C ∈ Γ.

Let S = {Θ : Θ is a theory such that (1) Γ ▷◁ Θ and (2) Θ ⊇ Λ}. Obviously,⋃
{Θn : n ∈ N} ∈ S. Hence, S is nonempty. Moreover, for all nonempty chains (Πi)i∈I of

elements of S,
⋃

{Πi : i ∈ I} is an element of S. Thus, by Zorn’s Lemma, S possesses a
maximal element Θ. Consequently, Θ is a theory such that Γ ▷◁ Θ and Θ ⊇ Λ. Hence, it
only remains to be proved that Θ is proper and prime.

We claim that Θ is proper. If not, ⊥ ∈ Θ. Since Γ ▷◁ Θ, ♢⊥ ∈ Γ: a contradiction. Thus,
Θ is proper.

We claim that Θ is prime. If not, there exists formulas C, D such that C ∨ D ∈ Θ, C ̸∈ Θ
and D ̸∈ Θ. Consequently, by the maximality of Θ in S, Θ + C ̸∈ S and Θ + D ̸∈ S. Hence,
there exists a formula E such that E ∈ Θ + C and ♢E ̸∈ Γ and there exists a formula F

such that F ∈ Θ + D and ♢F ̸∈ Γ. Thus, C ⊃ E ∈ Θ and D ⊃ F ∈ Θ. Consequently,
C ∨ D ⊃ E ∨ F ∈ Θ. Since C ∨ D ∈ Θ, E ∨ F ∈ Θ. Since Γ ▷◁ Θ, ♢(E ∨ F) ∈ Γ. Hence,
either ♢E ∈ Γ, or ♢F ∈ Γ: a contradiction. Thus, Θ is prime. ◀

https://doi.org/10.2307/2271676
https://doi.org/10.1007/BF02121259
https://doi.org/10.1007/978-94-009-8937-5_5
https://cir.nii.ac.jp/crid/1371132818982119684
https://cir.nii.ac.jp/crid/1371132818982119684
https://api.semanticscholar.org/CorpusID:2309858
https://api.semanticscholar.org/CorpusID:2309858
https://doi.org/10.1016/0168-0072(90)90059-B

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:19

Proof of Lemma 13. We only show the case of □ here. Suppose □B ̸∈ Γ. Let S = {∆ : ∆
is a theory such that (1) Γ ⊆ ∆ and (2) □B ̸∈ ∆}.

Since □B ̸∈ Γ, Γ ∈ S. Hence, S is nonempty. Moreover, for all nonempty chains (∆i)i∈I

of elements of S,
⋃

{∆i : i ∈ I} is an element of S. Thus, by Zorn’s Lemma, S possesses a
maximal element ∆. Consequently, ∆ is a theory such that Γ ⊆ ∆ and □B ̸∈ ∆.

We claim that ∆ is proper. If not, then ∆ = L. Hence, □B ∈ ∆: a contradiction. Thus,
∆ is proper.

We claim that ∆ is prime. If not, there exists formulas C, D such that C ∨ D ∈ ∆, C ̸∈ ∆
and D ̸∈ ∆. Consequently, by the maximality of ∆ in S, ∆ + C ̸∈ S and ∆ + D ̸∈ S. Hence,
□B ∈ ∆ + C and □B ∈ ∆ + D. Thus, C ⊃ □B ∈ ∆ and D ⊃ □B ∈ ∆. Consequently,
C ∨ D ⊃ □B ∈ ∆. Since C ∨ D ∈ ∆, □B ∈ ∆: a contradiction. Hence, ∆ is prime.

We claim that for all formulas C, if C ∨ B ∈ □∆ then ♢C ∈ ∆. If not, there exists
a formula C such that C ∨ B ∈ □∆ and ♢C ̸∈ ∆. Thus, by the maximality of ∆ in S,
∆ + ♢C ̸∈ S. Consequently, □B ∈ ∆ + ♢C. Hence, ♢C ⊃ □B ∈ ∆. Since C ∨ B ∈ □∆,
□(C ∨ B) ∈ ∆. Since ♢C ⊃ □B ∈ ∆, □B ∈ ∆: a contradiction. Thus, for all formulas C, if
C ∨ B ∈ □∆ then ♢C ∈ ∆.

Let T = {Λ : Λ is a theory such that (1) □∆ ⊆ Λ, (2) for all formulas C, if C ∨ B ∈ Λ
then ♢C ∈ ∆ and (3) B ̸∈ Λ}. Since □B ̸∈ ∆, B ̸∈ □∆. Consequently, □∆ ∈ T . Hence, T
is nonempty. Moreover, for all nonempty chains (Λi)i∈I of elements of T ,

⋃
{Λi : i ∈ I} is

an element of T . Thus, by Zorn’s Lemma, T possesses a maximal element Λ. Consequently,
Λ is a theory such that □∆ ⊆ Λ, for all formulas C, if C ∨ B ∈ Λ then ♢C ∈ ∆ and B ̸∈ Λ.
Hence, it only remains to be proved that Λ is proper and prime and ∆ ▷◁ Λ.

We claim that Λ is proper. If not, Λ = L. Thus, B ∈ Λ: a contradiction. Consequently,
Λ is proper.

We claim that Λ is prime. If not, there exists formulas C, D such that C ∨ D ∈ Λ, C ̸∈ Λ
and D ̸∈ Λ. Hence, by the maximality of Λ in T , Λ + C ̸∈ T and Λ + D ̸∈ T . Thus, either
there exists a formula E such that E ∨ B ∈ Λ + C and ♢E ̸∈ ∆, or B ∈ Λ + C and either
there exists a formula F such that F ∨ E ∈ Λ + D and ♢F ̸∈ ∆, or B ∈ Λ + D. Consequently,
we have to consider the following four cases.

(1) Case “there exists a formula E such that E ∨ B ∈ Λ + C and ♢E ̸∈ ∆ and there exists
a formula F such that F ∨ B ∈ Λ + D and ♢F ̸∈ ∆”: Hence, C ⊃ E ∨ B ∈ Λ and
D ⊃ F ∨ B ∈ Λ. Thus, C ∨ D ⊃ E ∨ F ∨ B ∈ Λ. Since C ∨ D ∈ Λ, E ∨ F ∨ B ∈ Λ.
Consequently, ♢(E ∨ F) ∈ ∆. Hence, either ♢E ∈ ∆, or ♢F ∈ ∆: a contradiction.

(2) Case “there exists a formula E such that E ∨ F ∈ Λ + C and ♢E ̸∈ ∆ and B ∈ Λ + D”:
Thus, C ⊃ E ∨ B ∈ Λ and D ⊃ B ∈ Λ. Consequently, C ∨ D ⊃ E ∨ B ∈ Λ. Since
C ∨ D ∈ Λ, E ∨ B ∈ Λ. Hence, ♢E ∈ ∆: a contradiction.

(3) Case “B ∈ Λ + C and there exists a formula F such that F ∨ B ∈ Λ + D and ♢F ̸∈ ∆”:
Thus, C ⊃ B ∈ Λ and D ⊃ F ∨ B ∈ Λ. Consequently, C ∨ D ⊃ F ∨ B ∈ Λ. Since
C ∨ D ∈ Λ, F ∨ B ∈ Λ. Hence, ♢F ∈ ∆: a contradiction.

(4) Case “B ∈ Λ + C and B ∈ Λ + D”: Thus, C ⊃ B ∈ Λ and D ⊃ B ∈ Λ. Consequently,
C ∨ D ⊃ B ∈ Λ. Since C ∨ D ∈ Λ, B ∈ Λ: a contradiction.
Hence, Λ is prime.

Lastly, we claim that ∆ ▷◁ Λ. If not, there exists a formula C such that C ∈ Λ and ♢C ̸∈ ∆.
Thus, C ∨ B ∈ Λ. Consequently ♢C ∈ ∆: a contradiction. Hence, ∆ ▷◁ Λ. ◀

Proof of Lemma 28. By induction on the structure of ∆∗. If ∆∗ = ∅ it follows by definition.
Otherwise ∆∗ = [Φ1 ⇒ Ψ∗

1], . . . , [Φk ⇒ Ψ∗
k] where ∆ = ∆0, [Φ1 ⇒ Ψ1], . . . , [Φk ⇒ Ψk] and

∆0 is [·]-free. By hypothesis x ̸⊩ ∆, thus x ̸⊩ [Φi ⇒ Ψi] for i = 1, . . . , k. Therefore there

CSL 2024

13:20 A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

are y1, . . . , yk with Rxyi for i = 1, . . . , k such that yi ̸⊩ Φi ⇒ Ψi. This means that (a)
yi ⊩ C for every C ∈ Φi and (b) yi ̸⊩ Ψi. By (FC) property there are y′

1, . . . , y′
k such that

Rx′y′
i and y′

i ≥ yi for i = 1, . . . , k. By (a) it follows that (c) y′
i ⊩ C for every C ∈ Φi;

moreover by induction hypothesis it follows that (d) y′
i ̸⊩ Ψ∗

i . Thus from (c) and (d) we have
y′

i ̸⊩ Φi ⇒ Ψ∗
i , whence x′ ̸⊩ [Φi ⇒ Ψ∗

i] for for i = 1, . . . , k, which means that x′ ̸⊩ ∆∗. ◀

Proof of Theorem 49. (Sketch) We prove that PROCEDURE(A) terminates producing a
finite derivation, in this case all leaves are axioms or global-saturated. A non-axiomatic
leaf S is necessarily global-saturated, otherwise S would be further expanded in Step 8 of
PROCEDURE(A) and it would not be a leaf. Thus it suffices to prove that the procedure
produces a finite derivation. Let D built by PROCEDURE(A). First we claim that all
branches of D are finite. Suppose for the sake of a contradiction that D contains an infinite
branch B = S0, . . . , Si, . . . , with S0 =⇒ A. The branch is generated by applying repeatedly
EXP1(·), EXP2(·) and EXP3(·) to each Si (or more precisely to some Ti ∈+ Si) . Since
each one of these sub-procedures terminates, the three of them must infinitely alternate on
the branch. By (invariant) Lemma, if Ti ∈+ Si satisfies a saturation condition for a rule (R)
or is blocked in (Si) it will remain so in all Sj with j > i. That is to say, further steps in
the branch cannot “undo” a fulfilled saturation condition or “unblock” a blocked sequent.
We can conclude that the branch must contain infinitely many phases of EXP3(·) each
time applied to an unblocked sequent in some Si. This entails that B contains infinitely
many sequents that are not ≃-equivalent, but this contradicts previous lemma 48. Thus
each branch of the derivation D built by PROCEDURE(A) is finite. To conclude the proof,
just observe that D is a tree whose branches have a finite length and is finitely branching
(namely each node/sequent has at most 2 successors, as the rules of CCFIK are at most
binary), therefore D is finite. ◀

Proof of Proposition 46. We only prove the claim for EXP1(D, S, T), the other cases being
obvious. To this purpose we show that any derivation Do, with root Γ ⇒ ∆♯ and generated
by R1-rules, is finite. Then the claim follows since EXP1(D, S, T) is obtained simply by
“appending” Do to D, where we replace every sequent T ′ in Do by G{T ′}, as S = G{T}. In
order to prove that Do is finite, notice that (i) all R1-rules are at most binary, (ii) the length
of a branch of Do is bounded by the size of the maximal sequent that can occur in it because
of non-redundancy restriction. But by proposition 45, every sequent T ′ in Do has a bounded
size (namely O(|T ||T |+1)), whence we get a bound on the length of any branch of Do. In
conclusion Do is a finitely-branching tree, whose branches have a finite length, whence it is
finite. ◀

In the following proofs, we abbreviate RS , ≤S as R and ≤ respectively for readability.

Proof of Proposition 51. For (HP), take arbitrary xS1 , xS2 ∈ WS with xS1 ≤ xS2 . Suppose
S1, S2 are of form Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2 respectively, then Γ1 ⇒ ∆1 ⊆S Γ2 ⇒ ∆2. By
definition, it follows Γ1 ⊆ Γ2. As VS(xS1) = {p | p ∈ Γ1} and VS(xS2) = {p | p ∈ Γ2}, we
have VS(xS1) ⊆ VS(xS2).

For (FC), take arbitrary xΓ⇒∆, xΣ⇒Π, xΛ⇒Θ ∈ WS where xΓ⇒∆ ≤ xΣ⇒Π as well as
RxΓ⇒∆xΛ⇒Θ, our goal is to find some x0 ∈ WS s.t. both xΛ⇒Θ ≤ x0 and RxΣ⇒Πx0 hold.
Since RxΓ⇒∆xΛ⇒Θ, by the definition of R, we see that [Λ ⇒ Θ] ∈ ∆ and hence Γ ⇒ ∆ can
be written explicitly as Γ ⇒ ∆′, [Λ ⇒ Θ]. Meanwhile, since xΓ⇒∆ ≤ xΣ⇒Π, by the definition
of ≤, we have Γ ⇒ ∆′, [Λ ⇒ Θ] ⊆S Σ ⇒ Π. By the definition of structural inclusion, there
is a block [Φ ⇒ Ψ] ∈ Π s.t. Λ ⇒ Θ ⊆S Φ ⇒ Ψ. Since Φ ⇒ Ψ ∈+ Σ ⇒ Π ∈+ S and ∈+ is
transitive, we see that xΦ⇒Ψ ∈ WS as well. Take xΦ⇒Ψ to be x0, by the construction of
MS , it follows directly xΛ⇒Θ ≤ x0 and RxΣ⇒Πx0. ◀

P. Balbiani, H. Gao, Ç. Gencer, and N. Olivetti 13:21

Proof of Lemma 52. We prove the lemma by induction on the complexity of A. For con-
venience, we abbreviate xΦ⇒Ψ as x.

We only show the case when A is of the form □B. For (a), let □B ∈ Φ. Φ ⇒ Ψ satisfies
the saturation condition associated with (□R) for □B regardless of whether the sequent
itself is blocked or not. Assume for the sake of a contradiction that x ⊮ □B. Then there
exists xΣ⇒Π, xΛ⇒Θ denoted as x1, x2 s.t. x ≤ x1, Rx1x2 and x2 ⊮ B. By IH, we see that
B /∈ Λ. Meanwhile, according to the model construction, we see that Φ ⇒ Ψ ⊆S Σ ⇒ Π and
[Λ ⇒ Θ] ∈ Π. Moreover we have Φ ⊆ Σ, thus □B ∈ Σ as well. Also, since Σ ⇒ Π is of form
Σ ⇒ Π′, [Λ ⇒ Θ], by the saturation condition associated with (□L), we have B ∈ Λ, which
leads to a contradiction.

For (b), let □B ∈ Ψ. We distinguish whether Φ ⇒ Ψ is blocked or not. Assume that
Φ ⇒ Ψ is not blocked, then it satisfies the one of the two saturation conditions associated
with (□R) for □B:
(1) there is a block [Λ ⇒ Θ] ∈ Ψ with B ∈ Θ. By IH, we have xΛ⇒Θ ⊮ B. By reflexivity

x ≤ x and model construction RxxΛ⇒Θ, so that x ⊮ □B.
(2) there is a block ⟨Ω ⇒ [Λ ⇒ Θ], Ξ⟩ ∈ Ψ with B ∈ Θ. Denote the sequent Ω ⇒ [Λ ⇒ Θ], Ξ

by S0. Since Φ ⇒ Ψ is saturated with (trans) and (inter), by Proposition 35, we have
Φ ⇒ Ψ ⊆S S0. According to the model construction, we see that x ≤ xS0 and RxS0xΛ⇒Θ.
Since B ∈ Θ, by IH we have xΛ⇒Θ ⊮ B and we can conclude x ⊮ □B.

Assume that Φ ⇒ Ψ is blocked and does not satisfy condition (1) for □B, otherwise the
proof proceeds as in case (1) above. Then there is an unblocked sequent Σ ⇒ Π ∈+ S such
that Φ ⇒ Ψ is blocked by it. Then Σ ⇒ Π ≃ Φ ⇒ Ψ, which implies Π♯ = Ψ♯, so □B ∈ Π as
well. Moreover, by definition, we have Φ ⇒ Ψ ⊆S Σ ⇒ Π, whence by model construction (**)
x ≤ xΣ⇒Π. Given that Σ ⇒ Π is R3-saturated, it satisfies the saturation condition associated
with (□R) for □B, but since Σ ⇒ Π ≃ Φ ⇒ Ψ, we have that Σ ⇒ Π does not satisfy condition
(1), thus it must satisfy condition (2). Therefore there is a block ⟨Ω ⇒ [Λ ⇒ Θ], Ξ⟩ ∈ Π,
such that B ∈ Θ. Letting S0 = Ω ⇒ [Λ ⇒ Θ], Ξ, we have xΣ⇒Π ≤ xS0 and RxS0xΛ⇒Θ. By
(**) we have also x ≤ xS0 and we conclude as in case (2) above. ◀

CSL 2024

Tropical Mathematics and the Lambda-Calculus I
Metric and Differential Analysis of Effectful Programs

Davide Barbarossa # Ñ

Università di Bologna, Italy

Paolo Pistone # Ñ

Università di Bologna, Italy

Abstract
We study the interpretation of the lambda-calculus in a framework based on tropical mathematics,
and we show that it provides a unifying framework for two well-developed quantitative approaches to
program semantics: on the one hand program metrics, based on the analysis of program sensitivity
via Lipschitz conditions, on the other hand resource analysis, based on linear logic and higher-order
program differentiation. To do that, we focus on the semantics arising from the relational model
weighted over the tropical semiring, and we discuss its application to the study of “best case” program
behavior for languages with probabilistic and non-deterministic effects. Finally, we show that a
general foundation for this approach is provided by an abstract correspondence between tropical
algebra and Lawvere’s theory of generalized metric spaces.

2012 ACM Subject Classification Theory of computation Ñ Lambda calculus; Theory of computation
Ñ Categorical semantics; Theory of computation Ñ Linear logic

Keywords and phrases Relational semantics, Differential lambda-calculus, Tropical semiring, Pro-
gram metrics, Lawvere quantale

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.14

Related Version Extended Version: https://arxiv.org/abs/2311.15704

Funding This work has been supported by the European Research Council through the project ERC
CoG 818616 DIAPASoN.

1 Introduction

In recent years, more and more interest in the programming language community has been
directed towards the study of quantitative properties of programs like, e.g., the number
of computation steps or the probability of convergence, as opposed to purely qualitative
properties like termination or program equivalence. Notably, a significant effort has been
made to extend, or adapt, well-established qualitative methods, like type systems, relational
logics or denotational semantics, to account for quantitative properties. We can mention,
for example, intersection type systems aimed at capturing time or space resources [3, 28]
or convergence probabilities [9, 19], relational logics to account for probabilistic properties
like, e.g., differential privacy [13] or metric preservation [24, 68], as well as the study of
denotational models for probabilistic [33,46] or differential [36] extensions of the λ-calculus.
The main reason to look for methods relying on (quantitative extensions of) type-theory or
denotational semantics is that these approaches yield modular and compositional techniques,
that is, allow one to deduce properties of complex programs from the properties of their
constituent parts.

Two approaches to quantitative semantics. Among such quantitative approaches, two
have received considerable attention.

© Davide Barbarossa and Paolo Pistone;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.barbarossa@unibo.it
https://lipn.univ-paris13.fr/~barbarossa/index.html
https://orcid.org/0000-0003-4608-8282
mailto:paolo.pistone2@unibo.it
http://logica.uniroma3.it/pistone/
https://orcid.org/0000-0003-4250-9051
https://doi.org/10.4230/LIPIcs.CSL.2024.14
https://arxiv.org/abs/2311.15704
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Tropical Mathematics and the Lambda-Calculus I

On the one hand, there is the approach of program metrics [10,11,68] and quantitative
equational theories [58]: when considering probabilistic or approximate computation, rather
than asking whether two programs compute the same function, it makes more sense to ask
whether they compute functions which do not differ too much. This has motivated the study
of denotational frameworks in which types are endowed with a metric, measuring similarity of
behavior; this approach has found applications in, e.g., differential privacy [68] and coinductive
methods [12], and was recently extended to account for the full λ-calculus [25,42,66].

On the other hand, there is the approach based on differential [36] or resource-aware [18]
extensions of the λ-calculus, which is well-connected to the so-called relational semantics
[30, 50, 56] and has a syntactic counterpart in the study of non-idempotent intersection
types [28, 59]. This family of approaches have been exploited to account for higher-order
program differentiation [36], to establish reasonable cost-models for the λ-calculus [2], and
have also been shown suitable to the probabilistic setting [9, 19,50].

In both approaches the notion of linearity, in the sense of linear logic [43] (i.e. of using
inputs exactly once), plays a crucial role. In metric semantics, linear programs correspond to
non-expansive maps, i.e. to functions that do not increase distances, and the possibility of
duplicating inputs leads to interpret programs with a fixed duplication bound as Lipschitz-
continuous maps [10]. By contrast, in the standard semantics of the differential λ-calculus,
linear programs correspond to linear maps, in the usual algebraic sense, while the possibility
of duplicating inputs leads to consider functions defined as power series.

A natural question, at this point, is whether these two apparently unrelated ways of
interpreting linearity and duplication can be somehow reconciled. At a first glance, there
seems to be a “logarithmic” gap between the two approaches: in metric models a program
duplicating an input n times yields a linear (hence Lipschitz) function nx, whereas in
differential models it would lead to a polynomial function xn, thus not Lipschitz. The
fundamental idea behind this work is the observation that this gap is naturally overcome
once we interpret these functions in the framework of tropical mathematics, where, as we
will see, the monomial xn precisely reads as the linear function nx.

Tropical mathematics and program semantics. Tropical mathematics was introduced in
the seventies by the Brazilian mathematician Imre Simon [72] as an alternative approach
to algebra and geometry where the usual ring structure of numbers based on addition and
multiplication is replaced by the semiring structure given, respectively, by “min” and “`”.
For instance, the polynomial ppx, yq “ x2 ` xy2 ` y3, when interpreted over the tropical
semiring, translates as the piecewise linear function φpx, yq “ mint2x, x ` 2y, 3yu. In the
last decades, tropical geometry evolved into a vast and rich research domain, providing a
combinatorial counterpart of usual algebraic geometry, with important connections with
optimisation theory [55]. Computationally speaking, working with min and ` is generally
easier than working with standard addition and multiplication; for instance, the fundamental
(and generally intractable) problem of finding the roots of a polynomial admits a linear time
algorithm in the tropical case (and, moreover, the tropical roots can be used to approximate
the actual roots [62]). The combinatorial nature of several methods in tropical mathematics
explains why these are so widely applied in computer science, notably for convex analysis
and machine learning (see [57] for a recent survey).

Coming back to our discussion on program semantics, tropical mathematics seems to
be just what we look for, as it turns polynomial functions like xn into Lipschitz maps like
nx. At this point, it is worth mentioning that a tropical variant of the usual relational
semantics of linear logic and the λ-calculus has already been considered [50], and shown

D. Barbarossa and P. Pistone 14:3

capable of capturing best-case quantitative properties, but has not yet been studied in detail.
Furthermore, connections between tropical linear algebra and metric spaces have also been
observed [38] within the abstract setting of quantale-enriched categories [47, 74]. However, a
thorough investigation of the interpretation of the λ-calculus within tropical mathematics
and of the potentialities of its applications has not yet been undertaken.

In this paper we make a first step in such direction, by demonstrating that the relational
interpretation of the λ-calculus based on tropical mathematics does indeed provide the
desired bridge between differential and metric semantics, and suggests new combinatorial
methods to study probabilistic and non-deterministic programs.

Contributions and outline of the paper. Our contributions in this paper are the following:
We first show that tropical polynomials naturally arise in the best-case analysis of
probabilistic and non-deterministic programs, turning the study of quantitative program
behavior into a purely combinatorial problem. This is in Sections 3 and 4.
We study the relational model over the tropical semiring, which provides a semantics of
effectful extensions of the simply typed λ-calculus (STLC in the following) and PCF [67].
Notably, we show that higher-order programs are interpreted by a generalizations of
tropical power series [61], and we show that these functions are locally Lipschitz-continuous,
thus yielding a full-scale metric semantics. This is in Sections 5 and 6.
We exploit the differential structure of the relational model to study the tropical Taylor
expansion of a λ-term, which can be seen as an approximation of the term by way of
Lipschitz-continuous maps, and we show that it can be used to compute approximated
Lipschitz-constants for higher-order programs. This is in Section 7.
We conclude by framing the connection between the tropical, differential and metric
viewpoints at a more abstract level. We recall a well-known correspondence between
Lawvere’s generalized metric spaces [51, 74] and modules over the tropical semi-ring [69]
and we show that it yields a model of the differential λ-calculus which extends the tropical
relational model. This is in Section 8.

2 A Bridge between Metric and Differential Aspects

In this section, we discuss in some more detail the two approaches to quantitative semantics
we mentioned in the Introduction, at the same time providing an overview of how we aim at
bridging them using tropical mathematics.

Metric Approach: Bounded λ-Calculus. In many situations (e.g. when dealing with
computationally difficult problems) one does not look for algorithms to compute a function
exactly, but rather to approximate it (in an efficient way) within some error bound. In
other common situations (e.g. in differential privacy [8, 68]) one needs to verify that an
algorithm is not too sensitive to errors, that is, that a small error in the input will produce a
comparably small error in the output. In all these cases, it is common to consider forms of
denotational semantics in which types are endowed with a behavioral metric, that is, a metric
on programs which accounts for differences in behavior. A fundamental insight coming from
this line of work is that, if one can somehow bound the number of times that a program may
duplicate its input, the resulting program will be Lipschitz-continuous: if M may duplicate
at most L times, then an error ϵ between two inputs will result in an error less or equal
to L ¨ ϵ in the corresponding outputs [10, 68] (yet, this property may fail in a concurrent
setting, see e.g. [41]). For instance, the higher-order program M “ λf.λx.fpfpxqq, which

CSL 2024

14:4 Tropical Mathematics and the Lambda-Calculus I

duplicates the functional input f , yields a 2-Lipschitz map between the metric space R ⊸ R
of non-expansive real functions and itself: if f, g are two non-expansive maps differing by at
most ϵ (i.e. for which |fpxq ´ gpxq| ď ϵ holds for all x P R), then the application of M to f

and g will produce two maps differing by at most 2ϵ.
These observations have led to the study of λ-calculi with graded exponentials, like

Fuzz [68], inspired from Girard’s Bounded Linear Logic [44], which have been applied to the
study of differential privacy [10, 39]. The types of such systems are defined by combining
linear constructors with a graded linear exponential comonad !rp´q [49].

Yet, what about the good old, “unbounded”, simply typed λ-calculus? Actually, by
using unbounded duplications, one might lose the Lipschitz property. For instance, while
the functions Mk “ λx.k ¨ x : R Ñ R are all Lipschitz-continuous, with Lipschitz constant
k, the function M “ λx.x2 obtained by “duplicating” x is not Lipschitz anymore: M is,
so to say, too sensitive to errors. More abstractly, it is well-known that the category Met
of metric spaces and non-expansive maps, is not cartesian closed, so it is not a model of
STLC (yet, several cartesian closed sub-categories of Met do exist, see e.g. [21,25]). Still, one
might observe that the program M above is actually Lipschitz-continuous, if not globally, at
least locally (i.e. over any compact set). Indeed, some cartesian closed categories of locally
Lipschitz maps have been produced in the literature [33, 66], and a new example will be
exhibited in this paper.

Resource Approach: the Differential λ-Calculus. A different family of approaches to lin-
earity and duplication arises from the study of the differential λ-calculus [36] (and differential
linear logic [30]) and its categorical models. The key ingredient is a differential constructor
Dr_, _s, added to the usual syntax of the λ-calculus. The intuition is that, given M of type
A Ñ B and N of type A, the program DrM, N s, still of type A Ñ B, corresponds to the
linear application of M to N : this means that N is passed to M so that the latter may use
it exactly once. This is also why DrM, N s still has type A Ñ B, since M might need other
copies of an input of type A. In particular, the application of DrM, N s to an “error term” 0
ensures that M will use N exactly once (we say linearly).

The reason why D is called a “differential”, is twofold: semantically, its interpretation is
a generalisation of the usual differential form analysis (see Section 5); syntactically, it allows
to define the so-called Taylor expansion T of programs: the idea is that one can expand any
application MN as an infinite formal sum of linear applications DkrM, Nks0, i.e. where N is
linearly passed exactly k times to M ; doing this recursively gives rise to the suggestive Taylor
formula T pMNq :“

ř8

k“0
1
!k ¨ DkrT pMq, T pNqks0. In other words, unbounded duplications

correspond to some sort of limit of bounded, but arbitrarily large, ones.

Tropical Mathematics: Lipschitz Meets Taylor. At this point, as the Taylor formula
decomposes an unbounded application as a limit of bounded ones, one might well ask whether
it could be possible to see this formula as interpreting a λ-term as a limit of Lipschitz maps,
in some sense, thus bridging the metric and differential approaches. Here, a natural direction
to look for is the weighted relational semantics [50], due to its strict relations with the Taylor
expansion of programs. However, in this semantics, arbitrary terms correspond to power
series, and terms with bounded applications correspond to polynomials, hence in any case to
functions which are not Lipschitz.

Yet, what if such polynomials were tropical ones, i.e. piecewise linear functions? This
way, the Taylor formula could really be interpreted as a decomposition of λ-terms via limits
(indeed, infs) of Lipschitz maps. In other words, unbounded term application could be seen
as a limit of more and more sensitive operations.

D. Barbarossa and P. Pistone 14:5

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Figure 1 Tropical polynomials φ0, . . . , φ4 (top to bottom), and their limit tps φ (in violet). The
points where the slope changes are the tropical roots of φ, i.e. the points x “ 2´pi`1q, satisfying
ix ` 2´i

“ pi ` 1qx ` 2´pi`1q.

This viewpoint, that we develop in the following sections, leads to the somehow unexpected
discovery of a bridge between the metric and differential study of higher-order programs.
This connection not only suggests the application of optimization methods based on tropical
mathematics to the study of the λ-calculus and its quantitative extensions, but it scales to
a more abstract level, leading to introduce a differential operator for continuous functors
between generalized metric spaces (in the sense of [51]), as shown in Section 8.

3 Tropical Polynomials and Power Series

At the basis of our approach is the observation that the tropical semiring pr0,8s, min,`q,
which is at the heart of tropical mathematics, coincides with the Lawvere quantale L “

pr0,8s,ě,`q [47, 74], the structure at the heart of the categorical study of metric spaces
initiated by Lawvere himself [51]. Let us recall that a quantale is a complete lattice endowed
with a continuous monoid action. In the case of L, the lattice is defined by the reverse order
ě on R, and the monoid action is provided by addition. Notice that the lattice join operation
of L coincides with the idempotent semiring operation min.

Power series and polynomials over the tropical semiring are defined as follows:

▶ Definition 1. A tropical power series (tps) in k variables is a function f : Lk Ñ L of shape
fpxq “ infiPItix ` f̂piqu, where I Ď Nk, ix is the scalar product and f̂ P LNk is a vector of
coefficients. When I is finite, f is called a tropical polynomial.

Hence, a unary tps is a function f : L Ñ L of the form fpxq “ infiPItix ` aiu, with I Ď N
and the ai P L. In Section 5 we also consider tps in infinitely many variables.

A tropical polynomial is always a piece-wise linear function since, e.g. in one variable, it
has shape fpxq “ min0ďjďntijx`cij

u. For example, the polynomials φnpxq “ min0ďjďntjx`

2´ju are illustrated in Fig. 1 for 0 ď n ď 4.
A tropical root of a tps φ is a point x P L where φ is not differentiable (i.e. where the

slope of φ changes). When φ is a polynomial, the roots of φ coincide with the points where
the minimum defining φ is attained at least twice (see Figure 1). Unlike in standard algebra,
tropical roots of tropical polynomials can be computed in linear time [62].

While tropical polynomials are essentially combinatorial objects, this cannot be said for
tps: since infs are not in general mins, a tps is a “limit” of tropical polynomials of higher
and higher degree, and its behavior is in general way more difficult to study than that of
tropical polynomials [61]. E.g., the tps φpxq :“ infnPNtnx ` 2´nu (see Fig. 1) is the “limit”
of the polynomials φn.

CSL 2024

14:6 Tropical Mathematics and the Lambda-Calculus I

▶ Remark 2. There is a well-known relation between tropical polynomial/power series
and usual polynomials/power series. For a power series fpxq “

ř

iPI aix
i (polynomials

being the case for I finite) defined on r0, 1s and coefficients ai in r0, 1s, one can define the
tropicalisation tf : L Ñ L of f as the tropical polynomial/power series function tfpαq :“
infiPIt´ logpaiq ` iαu.

For instance, the tropicalisation sends the infinite power series
ř

ně2 xn to the tps
φpxq “ infnpn ` 2qx. Yet the latter always coincides with the tropical monomial φpxq “ 2x,
since nx ě 0 for all n P N, which is in turn the tropicalisation of the polynomial x2. This
shows that tropicalisation is not in general an injective operation and in fact, as we show in
Theorem 3 below, tps (in finitely many variables) have a tendency to collapse, if not globally
at least locally, onto tropical polynomials.

For instance, by looking at Fig. 1 it appears that, far from 0, φ behaves like some of the
polynomials φn. In particular, φ coincides on rϵ,8s with φn, for ϵ ě 2´pn`1q (the smallest
tropical root of φn). However, at x “ 0 we have that φpx “ 0q “ infnPN 2´n “ 0, and this is
the only point where the inf is not a min. Also, while the derivative of f is bounded on all
p0,8q, for x Ñ 0` it tends to 8. In fact, this is a general phenomenon, as showed below:

▶ Theorem 3. For all tps fpxq “ infnPNktnx ` f̂pnqu, for all 0 ă ϵ ă 8, there is a finite
Fϵ Ď Nk such that f coincides on all rϵ,8sk with Pϵpxq :“ minnPFϵtnx ` f̂pnqu.

As we’ll see, the potential of collapsing infinitary objects (i.e. tps) into combinatorial ones
(i.e. tropical polynomials), is one of the most intriguing features of tropical semantics.

For the interested reader, we provide the proof of Theorem 3 below. Let us first set the
following:

▶ Definition 4. Let ĺ be the product order on Nk (i.e. for all m, n P NK , m ĺ n iff mi ď ni

for all 1 ď i ď K). Of course m ă n holds exactly when m ĺ n and mi ă ni for at least
one 1 ď i ď K. Finally, we set m ă1 n iff m ă n and

řK
i“1 ni ´ mi “ 1 (i.e. they differ on

exactly one coordinate).

▶ Remark 5. If U Ď NK is infinite, then U contains an infinite ascending chain m0 ă m1 ă

m2 ă This is a consequence of König Lemma (KL): consider the directed acyclic graph
pU, ă1q, indeed a K-branching tree; if there is no infinite ascending chain m0 ă m1 ă m2 ă

. . . , then in particular there is no infinite ascending chain m0 ă1 m1 ă1 m2 ă1 . . . so the
tree U has no infinite ascending chain; then by KL it is finite, contradicting the assumption.

Proof of Theorem 3. We will actually show the existence of Fϵ Ďfin Nk such that:
1. if Fϵ “ H then fpxq “ `8 for all x P Lk;
2. if fpx0q “ `8 for some x0 P rϵ,8qK then Fϵ “ H;
3. the restriction of f on rϵ,8sk coincides with Pϵpxq :“ min

nPFϵ

tnx ` f̂pnqu.
Let Fϵ be the complementary in N of the set:

tn P NK | either f̂pnq “ `8 or there is m ă n s.t. f̂pmq ď f̂pnq ` ϵu.

In other words, n P Fϵ iff f̂pnq ă `8 and for all m ă n, one has f̂pmq ą f̂pnq ` ϵ. Suppose
that Fϵ is infinite; then, using Remark 5, it contains an infinite ascending chain tm0 ă m1 ă

¨ ¨ ¨ u. By definition of Fϵ we have then `8 ą f̂pm0q ą f̂pm1q` ϵ ą f̂pm2q`2ϵ ą ¨ ¨ ¨ , so that
`8 ą f̂pm0q ą f̂pmiq ` iϵ ě iϵ for all i P N. This contradicts the Archimedean property of
R. Hence Fϵ is finite.

D. Barbarossa and P. Pistone 14:7

1. We show that if Fϵ “ H, then f̂pnq “ `8 for all n P NK . This immediately entails the
desired result. We go by induction on the well-founded order ă over n P NK :

if n “ 0K R Fϵ, then f̂pnq “ `8, because there is no m ă n.
if n R Fϵ, with n ‰ 0K then either f̂pnq “ `8 and we are done, or there is m ă n

s.t. f̂pmq ď f̂pnq ` ϵ. By induction f̂pmq “ `8 and, since ϵ ă `8, this entails
f̂pnq “ `8.

2. If fpx0q “ `8 with x0 P rϵ,8qK , then necessarily f̂pnq “ `8 for all n P NK . Therefore,
no n P NK belongs to Fϵ.

3. We have to show that fpxq “ Pϵpxq for all x P rϵ,`8sK . By 1), it suffices to show that
we can compute fpxq by taking the inf, that is therefore a min, only in Fϵ (instead of all
NK). If Fϵ “ H then by 2) we are done (remember that minH :“ `8). If Fϵ ‰ H, we
show that for all n P NK , if n R Fϵ, then there is m P Fϵ s.t. f̂pmq ` mx ď f̂pnq ` nx.
We do it again by induction on ă1:

if n “ 0K , then from n R Fϵ, by definition of Fϵ, we have f̂pnq “ `8 (because there
is no n1 ă n). So any element of Fϵ ‰ H works.
if n ‰ 0K , then we have two cases: either f̂pnq “ `8, in which case we are done as
before by taking any element of Fϵ ‰ H. Or f̂pnq ă `8, in which case (again by
definition of Fϵ) there is n1 ă n such that f̂pn1q ď f̂pnq ` ϵ (‹). Therefore we have
(remark that the following inequalities hold also for the case x “ `8):

f̂pn1q ` n1x ď f̂pnq ` ϵ ` n1x by p‹q

ď f̂pnq ` pn ´ n1qx ` n1x because ϵ ď min x and min x ď pn ´ n1qx

“ f̂pnq ` nx.

Now, if n1 P Fϵ we are done. Otherwise n1 R Fϵ and we can apply the induction
hypothesis on it, obtaining an m P Fϵ s.t. f̂pmq ` mx ď f̂pn1q ` n1x. Therefore this m

works. ◀

4 Tropical Semantics and First Order Effectful Programs

Before discussing how full-scale higher-order programming languages can be interpreted in
terms of tropical power series, we highlight how such functions may naturally arise in the
study of effectful programming languages. We will see that, when considering probabilistic
and non-deterministic programs, tropical tools can be used to describe the behavior of
programs in the best/worst case, and may lead to collapse the description of infinitely many
possible behaviors into a combinatorial account of the optimal ones.

Maximum Likelihood Estimators for Probabilistic Languages. Let us start with a very
basic probabilistic language: the terms are M ::“ True | False | M ‘p M , for p P r0, 1s,
and the operational semantics is M ‘p N Ñ pM and M ‘p N Ñ p1 ´ pqN , so that
M ‘p N plays the role of a probabilistic coin toss of bias p. Consider the program M :“
pTrue‘pFalseq‘pppTrue‘pFalseq‘ppFalse‘pTrueqq. Calling q “ 1´p, to each occurrence
of True or False in M , univocally determined by an address ω P tl, ru˚, is associated a
monomial Pωpp, qq which determines the probability of the event “M ↠ω True{False”, that
is, that M reduces to True{False according to the choices in ω. Thinking of p, q as parameters,
Pωpp, qq can thus be read as the likelihood function of the event “M ↠ω True{False”. For
instance, we have Prllpp, qq :“ qp2, Prrrpp, qq :“ q3, and Prrlpp, qq “ Prlrpp, qq :“ q2p.
The polynomial function QTruepp, qq :“ Pllpp, qq ` Prllpp, qq ` Prrrpp, qq “ p2 ` p2q ` q3

gives instead the probability of the event “M ↠ True”, and analogously for QFalsepp, qq :“
Plrpp, qq ` Prrlpp, qq ` Prlrpp, qq “ pq ` 2pq2.

CSL 2024

14:8 Tropical Mathematics and the Lambda-Calculus I

This way, the probabilistic evaluation of M is presented as a hidden Markov model [14],
a fundamental statistical model, and notably one to which tropical methods are generally
applied [64]. Then, a natural question in this case, for a fixed ω0, is the following: knowing
that M reached a normal form, say True, what is the maximum likelihood estimator for
the event “M ↠ω0 True”? In other words, what is the choice of p, q that maximizes the
conditional probability PpM ↠ω0 True | M ↠ Trueq, i.e. that makes ω0 the most likely path
among those leading to True?

Answering this question amounts at finding a solution to the following constrained
maximization problem in the unknown p P r0, 1s:

Pω0pp, 1 ´ pq “ max
ω

Pωpp, 1 ´ pq

which is related to the polynomial, say, QTruepp, qq. Since ´ log Pωpp, qq “

ptPωqp´ log p,´ log qq, this is equivalent to finding a solution of the following constrained
minimization problem in the unknowns pp, x, yq P r0, 1s ˆ r0,8s ˆ r0,8s:

tPω0px, yq “ tQTruepx, yq, x “ ´ log p, y “ ´ logp1 ´ pq. (‹)

Since the first equation can be solved easily (i.e. in linear time) by computing the tropical
roots of tQTrue, we can obtain an explicit relation between x and y that can be used to solve
the whole system, finally finding our p, as the next example shows.

▶ Example 6. For our running example M , let us suppose that we observed the event
“M ↠ True”, so that our probabilities are conditioned under this observation. We have

tQTruepx, yq “ minttPllpx, yq, tPrllpx, yq, tPrrrpx, yqu “ mint2x, y ` 2x, 3yu.

The tropical roots of tQTruepx, yq are all the points of the form px, 2
3 xq. Recall that these

are the points where (‹) is satisfied for at least two distinct values of ω0 (indeed for ω0 P

tll, rrru). From this it follows that tQTruepx, yq “ tPrrrpx, yq “ 3y holds iff y ď 2
3 x, and

tQTruepx, yq “ 2x “ tPllpx, yq otherwise. In this way can find the maximum likelihood
estimator for ω0 “ rrr: via the substitution x :“ ´ log p, y :“ ´ logp1 ´ pq, the condition
y ď 2

3 x is equivalent to ´ logp1´ pq ď ´ 2
3 log p, i.e. 1´ p ě p

2
3 . This means that, if p P r0, 1s

satisfies 1 ´ p ě p
2
3 (for example, p “ 1

4), then Prrrpp, 1 ´ pq “ maxω“ll,rll,rrr Pωpp, 1 ´ pq.
In other words, knowing that M sampled True in its normal form, the most likely sampled
occurrence of True is the one at the address rrr iff 1 ´ p ě p

2
3 .

As we’ll see in Section 5, this analysis extends to PCF-style programs. For example, the
program M “ Ypλx.True ‘p xq yields the power series QTruepp, qq “

ř8

n“0 pqn “
p

1´q that
sums all infinitely many ways in which M may reduce to True. Notice that the tropicalised
series tQTruep´ log p,´ log qq “ infnPNt´ log p ´ n log qu “ ´ log p collapses onto a single
monomial describing the unique most likely reduction path of M leading to True, namely
the one that passes through a coin toss only once.

Best Case Analysis for Non-Deterministic Languages. This example is inspired from [50].
We consider now a basic non-deterministic language with terms M ::“ True | Gen | M ` M ,
with an operation semantics comprising a non-deterministic reduction rule M1 ` M2

α
Ñ Mi

and a generation rule Gen β
Ñ True ` Gen, where in each case the value α, β P L indicates

a cost associated with the reduction (e.g. the estimated clock value for the simulation of
each reduction on a given machine model). Then, any reduction ω : M ↠ N of a term
to (one of its) normal form is associated with a tropical monomial Pωpα, βq consisting of

D. Barbarossa and P. Pistone 14:9

the sum of the costs of all reductions in ω. For a given normal form N , the reductions
ωi : M ↠ N give rise to a tps infiPI Pωi

pα, βq. For example, consider the non-deterministic
term M :“ Gen ` ppTrue ` Trueq ` Genq. The (infinitely many) reduction paths leading to
True can be grouped as follows:

left, then reduce Gen n ` 1-times, then left;
right, then left and then either left or right;
right twice, then reduce Gen n ` 1-times and then left.

This leads to the tps φM↠Truepαq “ infnPN
␣

pn ` 2qα ` pn ` 1qβ, 3α, pn ` 3qα ` pn ` 1qβ
(

“

mint2α` β, 3αu, which describes all possible behaviors of M . Notice that, since α and β are
always positive, the power series φM↠Truepαq is indeed equivalent to the tropical polynomial
mint2α ` β, 3αu. In other words, of the infinitely many behaviors of M , only finitely many
have chances to be optimal: either left + Gen + left, or right + left + (left,right). Also in
this case, reducing to best-case analysis leads to collapse the infinitary description of all
behaviors to a purely combinatorial description of the finitely many optimal ones.

Once reduced φM↠True to a polynomial, the best behavior among these will depend on
the values of α and β, and by studying the tropical polynomial φM↠True one can thus answer
questions analogous to 2) above, that is, what are the best choices of costs α, β making a
chosen reduction of M to True the cheapest one?

5 Tropical Semantics of Higher-Order Programs

In this section we first recall a general and well-known construction that yields, for any
continuous semiring Q, a model QRel! of effectful extensions of the simply typed λ-calculus
and PCF, and we show how, when Q “ L, it captures optimal program behavior; moreover,
we discuss how this model adapts to graded and differential variants of STLC.

Linear/Non-Linear Algebra on Q-Modules. For any continuous semiring Q (i.e. a cpo
equipped with an order-compatible semiring structure), one can define a category QRel ([50]
calls it QΠ) of “Q-valued matrices” as follows: QRel has sets as objects and set-indexed
matrices with coefficients in Q as morphisms, i.e. QRelpX, Y q :“ QXˆY . The composition
st P QXˆZ of t P QXˆY and s P QY ˆZ is given by pstqa,c :“

ř

bPY sb,cta,b (observe that this
series always converges because Q is continuous). For any set X, QX is a Q-semimodule
and we can identify QRelpX, Y q with the set of linear maps from QX to QY , which have
shape fpxqb :“

ř

aPX f̂a,bxa, for some matrix f̂ P QXˆY . Notice that usual linear algebra
conventions correspond to work in QRelop, e.g. the usual matrix-vector product defines a
map QY Ñ QX . Following [29,47,50], we are instead working with transpose matrices.

QRel admits a comonad ! which acts on objects by taking the finite multisets. Remember
that the coKleisli category C! of a category C w.r.t. a comonad ! is the category whose
objects are the same of C, and C!pX, Y q :“ Cp!X, Y q, with composition ˝! defined via the
co-multiplication of !. Now, although a matrix t P QRel!pX, Y q yields a linear map L!X Ñ LY ,
by exploiting the coKleisli structure we can also “express it in the base X”, which leads to the
non-linear map t! : QX Ñ QY defined by the power series t!pxq “ t ˝! x : b ÞÑ

ř

µP!X tµ,b ¨ xµ,
where xµ “

ś

aPx x
µpaq
a .

When we instantiate Q “ L, we obtain the category LRel of L-valued matrices. As one
might expect, this category is tightly related to Lawvere’s theory of (generalized) metric
spaces. For the moment, let us just observe that a (possibly 8) metric on a set X is nothing
but a “L-valued square matrix” d : X ˆ X Ñ L satisfying axioms like e.g. the triangular law.
We will come back to this viewpoint in Section 8.

CSL 2024

14:10 Tropical Mathematics and the Lambda-Calculus I

Composition in LRel reads as pstqa,c :“ infbPY tsb,c ` ta,bu, and the non-linear maps
t! : LX Ñ LY have shape t!pxqb “ infµP!Xtµx ` tµ,bu, where µx :“

ř

aPX µpaqxa. These
correspond to the generalisation of tps with possibly infinitely many variables (in fact, as
many as the elements of X). By identifying !t˚u » N and Lt˚u » L, the tps generated by
the morphisms in LRel!pt˚u, t˚uq are exactly the usual tps’s of one variable. For example,
the φ of Figure 1 is indeed of shape φ “ t!, for t P L!t˚uˆt˚u, tµ,˚ :“ 2´#µ.
▶ Remark 7. The operation f ÞÑ f ! turning a matrix into a function is reminiscent of
the well-known operation of taking the convex conjugate f˚ of a function f defined over
a vector space (itself a generalization of the Legendre transformation). Indeed, let X,
Y be sets and let x_, _y : X ˆ Y Ñ R. For f : X Ñ R, let f˚ : Y Ñ R be defined by
f˚pyq :“ supxPXtxx, yy´fpxqu. Then for X “!A, Y “ LA, where A is a set, and xµ, yy :“ µy,
we have f !pyq “ p´fq˚p´yq for all f P L!A.

The L-Weighted Relational Model. The categories QRel are well-known to yield a model
of both probabilistic and non-deterministic versions of PCF (see e.g. [34, 50]), which are
called weighted relational models. The interpretation of the simply typed λ-calculus STLC
in LRel relies on the fact that all categories QRel! are cartesian closed [50], with cartesian
product and exponential objects acting on objects X, Y as, respectively, X ` Y and !X ˆ Y .
Hence, any typable term Γ $ M : A gives rise to a morphism JΓ $ M : AK P LRel!pJΓK, JAKq,
and thus to a generalized tps JΓ $ M : AK! : LJΓK Ñ LJAK.

▶ Example 8. The evaluation morphism ev P LRel!pp!X ˆ Y q ` X, Y q yields the tps ev! :
L!XˆY ˆ LX Ñ LY given by b P Y ÞÑ ev!pF, xqb “ infµtFµ,b ` µxu. So, for instance,
supposing the ground type o of STLC is interpreted as the singleton set t˚u, and recalling
the identification !t˚u » N, the interpretation of the term x : o, z : po Ñ o Ñ oq $ zxx : o,
involving two consecutive evaluations, yields the tps φ : L ˆ LMfinpNˆNq Ñ L given by
φpx, zq “ infn,n1tzrpn,n1qs ` pn ` n1qxu.

This interpretation extends to PCF by interpreting the fixpoint combinator Y via the matrices
fixX

“ infn

␣

fixX
n

(

P L!p!XˆXqˆX , where fixX
0 “ 0 and fixX

n`1 “ ev ˝! xfixX
n , idy.

One can easily check, by induction on a typing derivation, that for any program of STLC
or PCF, the associated matrix is discrete, that is, its values are included in t0,8u. Indeed,
as suggested in Section 3, the actual interest of tropical semantics lies in the interpretation of
effectful programs. As the homsets LRel!pX, Y q are L-modules, it is possible to interpret in it
extensions of STLC and PCF comprising L-module operations α¨M and M`N [50], by letting
JΓ $ α ¨M : AK “ JΓ $ M : AK`α and JΓ $ M `N : AK “ mintJΓ $ M : AK, JΓ $ N : AKu.
More precisely, [50] considers a language PCFQ corresponding to PCF extended with Q-
module operations, with an operational semantics given by rules M

1
Ñ M 1 for each rule

M Ñ M 1 of PCF (here 1 is the monoidal unit of Q) as well as M1 ` M2
1
Ñ Mi and

α ¨ M
α
Ñ M . Hence, any reduction ω “ ρ1 . . . ρk : M ↠ N is naturally associated with

a weight wpωq “
řk

i“1 wpρiq P Q. In particular, from [Theorem V.6] [50] we deduce the
following adequation result:

▶ Proposition 9. J$PCFL M : NatKn “ inf
␣

wpωq
ˇ

ˇ ω : M Ñ n
(

for all n P N.

The previous result allows to relate the tropical semantics of a program with its best-case
operational behavior. Observe that the two examples shown in Section 3 can easily be
rephrased in the language PCFL. For instance, for the probabilistic example, one can use the
translation pM ‘p Nq˝ “ mintM˝ ` p, N˝ ` p1´ pqu, so that the reductions : M ‘p N

p
Ñ M

and M ‘p N
1´p
Ñ N translate into a sequence of two reductions pM ‘p Nq˝

0
Ñ M˝ p

Ñ M and

D. Barbarossa and P. Pistone 14:11

x :1 A $ x : A

Γ $ M : A

Γ, x :0 B $ M : A

Γ, x :n A $ M : B

Γ $ λx.M :!nA ⊸ B

Γ, x :n B, y :m B $ M : A

Γ, x :n`m B $ Mtx{yu : A

Γ $ M :!nA ⊸ B ∆ $ N : A

Γ ` n∆ $ MN : B

Figure 2 Typing rules for bSTLC.

pM ‘p Nq˝
0
Ñ N˝ 1´p

Ñ N˝. Let PPCF (for probabilistic PCF [34]) be standard PCF extended
with the constructor M ‘p N (p P r0, 1s) and its associated reduction rules. From the above
discussion we deduce the following:

▶ Corollary 10. Let $PPCF M : Nat and n P N. Considering its interpretation as a function
of p, 1´ p, we have that J$PPCF M˝ : NatKnp´ logppq,´ logp1´ pqq is the minimum negative
log-probability of any reduction from M to n, i.e. the negative log-probability of (any of) the
(equiprobable) most likely reduction path from M to n.

Remark that this implies that all solution p P r0, 1s to the equation ´ log wpωq “ J$PPCFL

M˝ : NatKnp´ logppq,´ logp1 ´ pqq are the values of the probabilistic parameter which make
the reduction ω the most likely.
▶ Remark 11. The function J$PPCF M˝ : NatKnpα, βq is a tps, and Theorem 3 ensures that
this function coincides locally with a tropical polynomial. This means that, for any choice of
p, 1 ´ p, the most likely reduction path of M can be searched for within a finite space.

Finally, [50] obtained a similar result for a non-deterministic version of PCF, by translating
each term into PCFL via pλx.Mq˝ “ λx.M˝ ` 1 and pYMq˝ “ YpM˝ ` 1q ([50] considers
the discrete tropical semiring NY t8u, but the result obviously transports to L), and in that
case [50, Corollary VI.10] gives that J$ M˝ : NatKn computes the minimum number of β-
and fix- redexes reduced in a reduction sequence from M to n.

N-Graded Types. We now show how to interpret in LRel! a graded version of STLC, that
we call bSTLC, indeed a simplified version of the well-studied language Fuzz [68]. This
language is based on a graded exponential !nA, corresponding to the possibility of using an
element of type A at most n times. In particular, if a function λx.M of type !nA ⊸ B, then,
for any N of type A, x is duplicated at most n times in any reduction of pλx.MqN to the
normal form.

Graded simple types are defined by A ::“ o | !nA ⊸ A; the contexts of the typing
judgements are sets of declarations of the form x :n A, with n P N; given two contexts
Γ, ∆, we define Γ ` ∆ recursively as follows: if Γ and ∆ have no variable in common, then
Γ ` ∆ “ Γ Y ∆; otherwise, we let pΓ, x :m Aq ` p∆, x :n Aq “ pΓ ` ∆q, x :m`n A. Moreover,
for any context Γ and m P N, we let mΓ be made all x :mn A for px :n Aq P Γ. The typing
rules of bSTLC are illustrated in Fig. 2,

On the side of LRel, one can check that the comonad ! of LRel can be “decomposed” into
a family of “graded exponentials functors” !n : LRel Ñ LRel (n P N), where !nX is the set
of multisets on X of cardinality at most n. The sequence p!nqnPN gives rise to a so-called
N-graded linear exponential comonad on (the SMC) LRel [49]. As such, pLRel, p!nqnPNq yields
then a model of bSTLC. More details can be found in the extended version of this article.

CSL 2024

14:12 Tropical Mathematics and the Lambda-Calculus I

Γ $ 0 : A

Γ, x : A $ M : B

Γ $ λx.M : A Ñ B

Γ $ M : A Ñ B Γ $ N : A

Γ $ DrM, N s : A Ñ B

Γ, x : A $ x : A

Γ $ M : A Ñ B Γ $ T : A

Γ $ MT : B

Γ $ M1 : A ¨ ¨ ¨ Γ $ Mn : A
pn ě 2q

Γ $ M1 ` ¨ ¨ ¨ ` Mn : A

Figure 3 Typing rules of STBLC.

Notice that arrow types are interpreted via J!nA ⊸ BK :“!nJAKˆ JBK and that, whenever
J˚K is finite, the set JAK is finite for any type A of bSTLC.

The Differential λ-Calculus. We recall the interpretation in LRel! of the simply typed
differential λ-calculus STBLC, an extension of STLC ensuring exact control of duplications.
The syntax of STBLC (see [20, Section 3]) is made of terms M and sums T, mutually
generated by: M ::“ x | λx.M | MT | DrM, M s and T ::“ 0 | M | M ` T, quotiented by
equations that make `, 0 form a commutative monoid on the set of sums, by linearity of
λx.p_q, Dr_, _s and p_qT (but not of Mp_q) and by irrelevance of the order of consecutive
Dr_, _s. We follow the tradition of quotienting also for the idempotency of `. The typing
rules are illustrated in Figure 3, where a context Γ is a list of typed variable declarations.
The main feature of this language is that Dnrλx.M, Nns0 has a non-zero normal form iff x is
duplicated exactly n times during reduction.

The categorical models of STBLC are called cartesian closed differential λ-categories
(CCBλC) [16,17,20]. These are CCCs enriched over commutative monoids (i.e. morphisms
are summable and there is a 0 morphism), with the cartesian closed structure compatible
with the additive structure, and equipped with a certain differential operator D, turning a
morphism f : A Ñ B into a morphism Df : AˆA Ñ B, and generalising the usual notion of
differential, see e.g. [15]. An example is the CCBλC of convenient vector spaces with smooth
maps, where D is the “real” differential of smooth maps.

Applying [52, Theorem 6.1] one can check that LRel! is a CCBλC when equipped with
D : LRelp!X, Y q Ñ LRelp!pX&Xq, Y q defined as pDtqµ‘ρ,b “ tρ`µ,b if #µ “ 1 and as 8

otherwise (using the isomorphism pµ, ρq P!Zˆ!Z 1 ÞÑ µ ‘ ρ P!pZ ` Z 1q). The differential
operator D of LRel! translates into a differential operator D! turing a tps f : LX Ñ LY

into a tps D!f : LX ˆ LX Ñ LY , linear in its first variable, and given by D!fpx, yqb “

infaPX,µP!X

!

f̂µ`a,b ` xa ` µy
)

. One can check that, when f is a tropical polynomial, D!f

coincides with the standard tropical derivative (see e.g. [45]).

6 On Tropical Power Series

As seen in Section 3, tropical polynomials are piecewise-linear functions, hence concave
and Lipschitz-continuous. Moreover, tps in finitely many variables are locally equivalent to
tropical polynomials (except at some singular points), and are thus also concave and locally
Lipschitz-continuous. In this section we show that much of these properties extend also to
tps with infinitely many variables, as those arising from the tropical relational model. The
literature on tropical power series is often recent (e.g. [61]), and several results we prove in
this section are, to our knowledge, new.

D. Barbarossa and P. Pistone 14:13

Notice that, as a set, LX “ r0,8sX , and with the usual ` and ¨ it is a Rě0-semimodule,
let us call it RX

ě0. Together with the usual sup-norm ∥x∥8 :“ supaPX xa, it can be showed
to be a Scott-complete normed cone (see [71] or the extended version). Suitable categories of
cones have been recently investigated as models of probabilistic computation ([23,31,35]).
The cone structure of RX

ě0 also induces a partial order on it, its cone partial-order : x ď y iff
y “ x ` z for some (unique) z P RX

ě0. It actually coincides with the pointwise order on Rě0
(and makes it a Scott-continuous dcpo). In this section we consider tps w.r.t. this structure.

Continuity of tps. Looking at Fig. 1, we see that φ, just like the polynomials φn, is
non-decreasing and concave. This is indeed always the case:

▶ Proposition 12. All tps are non-decreasing and concave, w.r.t. the pointwise order on
RX

ě0.

The tps φ is continuous on Rě0 (w.r.t. the usual norm of real numbers). We can
generalise this property, dropping the case of x having some 0 coordinate. But we have to be
careful, because while in the finite dimensional Rn, every real convex function is continuous
because it is necessarily locally bounded from above (the sup-norm and the euclidean one
are equivalent) [22, Proposition 4.7], in infinite dimensions the former condition is no longer
true [22, Example 4.8]. However, [22, Proposition 4.4.(3)] shows that it is the only requirement
to ask: if a real-valued convex function with domain a convex open subset of a locally convex
topological R-vector space (LCTVS) is, locally around any point, bounded from above by a
finite non-zero constant, then it is continuous on all its domain.

▶ Theorem 13. All tps f : RX

ě0 Ñ Rě0 are continuous on p0,8qX , w.r.t. to the norm ∥¨∥8.

Proof. By Proposition 12, ´f is convex. Since f ě 0 on all RX

ě0, we have e.g. ´f ď 1
on RX

ě0. Now p0,8qX Ď RX is open and convex, so [22, Proposition 4.4.(3)] entails the
continuity of ´f on p0,8qX , hence that of f on it. ◀

In analogy with [27, Proposition 17], we also have:

▶ Theorem 14. All monotone (w.r.t. pointwise order) and ∥¨∥8-continuous functions f :
p0,8qX Ñ p0,8q are Scott-continuous. In particular, all tps f : RX

ě0 Ñ Rě0 are Scott-
continuous on p0,8qX w.r.t. the pointwise orders.

Lipschitz-continuity of tps. Let us first look at what happens with those tps which are
either linear or obtained via bounded exponentials. The result below is in analogy with what
happens in the usual metric semantics of Fuzz, where linear functions are non-expansive and
n-bounded functions are n-Lipschitz [68].

▶ Proposition 15.
1. If a tps f : RX

ě0 Ñ RY

ě0 arises from a matrix f̂ : X ˆ Y Ñ Rě0 (i.e. it is linear), then f

is non-expansive (i.e. 1-Lipschitz).
2. If f : RX

ě0 Ñ RY

ě0 arises from a matrix f̂ : !nX ˆ Y Ñ Rě0, then f is n-Lipschitz-
continuous.

Proof sketch.
1). Using the fact that fpxqb “ infaPXtf̂a,b ` xau, the problem reduces to: |pf̂a,b ´ xaq ´

pf̂a,b ´ yaq| “ |xa ´ ya| ď ∥x ´ y∥8.
2). Follows from 1. and the remark that, for all x P LX , ∥!nx´!ny∥8 ď n ¨ ∥x ´ y∥8, where

!nx is the restriction of !x to MďnpXq. ◀

CSL 2024

14:14 Tropical Mathematics and the Lambda-Calculus I

uv uv

B2δpzq

zy
x

Bδpxq

B3δpxq

Figure 4 Drawing of the proof of Theorem 18.

Observe that on the hom-sets LRel!pX, Y q there are two natural notions of distance:
the metric }f ´ g}8 arising from the norm and the one arising from the usual sup-metric
d8pf, gq :“ supxPLX }f !pxq ´ g!pxq}8. In general one has }f ´ g}8 ě d8pf, gq, the equality
holding when f !, g! are linear (i.e. when they arise from morphisms of LRelpX, Y q).

When a tps is expressed as an inf of finitely many monomials we simply call it a tropical
polynomial. For any such tropical polynomial φ : RX

ě0 Ñ RY

ě0, the associated matrix has
shape !degpφqpXq ˆ Y Ñ Rě0 (as a monomial µix ` ci yields a matrix entry on !#µiX ˆ Y).
Hence, using Proposition 15 2., we have:

▶ Corollary 16. Any tropical polynomial φ : RX

ě0 Ñ Rě0 is degpφq-Lipschitz continuous.

We now show that, if we consider the full exponential !, i.e. arbitrary tps, we can
still prove that a local Lipschitz condition holds. In [22, Theorem 6.4] a locally Lipschitz
property is obtained for locally convex topological vector spaces, under the hypothesis of
continuity. [22, Proposition 6.5] shows that continuity is used in order to have a locally
bounded condition, the crucial ingredient of the proof. Instead of showing how our case
fits into such theorems, we prefer to state the following theorem, basically a particular case
of [22, Theorem 6.9, Lemma 6.10]:

▶ Theorem 17. All tps f : RX

ě0 Ñ Rě0 are locally Lipschitz on p0,8qX . Moreover, the
Lipschitz constant of f on Bδpxq can be chosen to be 1

δ max
B3δpxq

f .

The fundamental ingredient of the proof of this result is the following Theorem 18, from
which Theorem 17 immediately follows, since p0,8qX is open and convex in pRX , ∥¨∥q and
all tps are non-negative.

▶ Theorem 18. Let f : V Ď pRX , ∥¨∥q Ñ pR, |¨|q, with V open and convex and ∥¨∥ any norm.
If f is concave and locally bounded, then f is locally Lipschitz. Moreover, the Lipschitz
constant of f on Bδpxq can be chosen to be 1

δ max
B3δpxq

|f |.

Proof. Call Bδpxq :“ B1, B3δpxq :“ B3. It suffices to show that for all x P V , there is δ ą 0
s.t. B3 Ď interiorpV q, K :“ maxB3 |f | exists and f is K

δ -Lipschitz on B1. A δ satisfying
the first two conditions exists since V is open and because f is locally bounded and B3 is
compact. We show that the third condition holds for all such δ. For that, fix y, z P B1 and
call r :“ dpy,zq

2δ P r0, 1s. We want to show that |fpyq ´ fpzq| ď K
δ dpy, zq “ 2Kr. Wlog y ‰ z,

otherwise there is nothing to prove.
So r ‰ 0 and we can consider u :“ 1`r

r z´ 1
r y, v :“ 1

r y´ r´1
r z. We have u, v P B2δpzq “: B2.

Indeed, dpu, zq “ ∥u ´ z∥ “ ∥ z
r ` z ´

y
r ´ z∥ “

∥z´y∥
r “ 2δ and similarly dpv, zq “ 2δ.

Geometrically, those are actually the intersections between B2 and the line generated by y and

D. Barbarossa and P. Pistone 14:15

z, see Figure 4. Now we have the convex combinations z “ 1
1`r y` r

1`r u and y “ p1´rqz`rv,
so the concavity of f entails on one hand: fpzq ě 1

1`r fpyq ` r
1`r fpuq ě

fpyq
1`r ´ rK

1`r , i.e.
fpyq ´ fpzq ď rpK ` fpzqq ď 2rK, and on the other hand: fpyq ě p1 ´ rqfpzq ` rfpvq ě

fpzq ´ rpfpzq ` Kq, i.e. fpzq ´ fpyq ď rpfpzq ` Kq ď 2rK. In the previous inequalities we
have used that fpuq, fpvq ě ´K. This follows from the fact that u, v P B2 Ď B3, as it can
be immediately checked, thus |fpuq| , |fpvq| ď K. Putting the final inequalities together, we
have |fpyq ´ fpzq| ď 2rK, i.e. the thesis. ◀

7 Lipschitz Meets Taylor

In this section we finally relate the metric and differential analysis of higher-order programs
in the tropical relational model.

The key ingredient is the notion of Taylor expansion T pMq of a λ-term M . This is a
set of terms of the differential λ-calculus defined inductively as: T pxq “ txu, T pλx.Mq “

tλx.t | t P T pMqu and T pMNq “ tt ¨ xu1, . . . , uky | k P N, t P T pMq, ui P T pNqu, where
t ¨ xu1, . . . , uky is an abbreviation for Dkrt, u1, . . . , uks0. Observe that in the terms appearing
in T pMq all applications are bounded: they may use an exact number of copies of their input.
Such terms are usually called resource λ-terms [56, 65]. One can easily check that for all
terms Γ $STLC M : A and t P T pMq, also Γ $STBLC t : A holds.

▶ Example 19. Considering the term M “ zxx from Example 8, all terms tn,m “ z xxny xxmy,
for n, m P N, are in T pMq. Notice that the interpretation of tn,m yields a tropical polynomial
Jtn,mK!pxqpzq “ yrn,ms ` pn ` mqx, rather than a tps. However, this is not a general fact:
consider y : po Ñ oq Ñ po Ñ oq, x : po Ñ oq $ t : po Ñ oq with t “ y ¨ xy ¨ xxyy P T pypyxqq.
Then JtK! : L!NˆN ˆ LN Ñ LN is given by JtK!py, xqi “ infm,nPN

␣

yrms,i ` yrns,m ` xnu, which
is not a polynomial. Yet, JtK! is Lipschitz, more precisely, 1-Lipschitz in x and 2-Lipschitz in
y. This is a general fact, as shown by Theorem 22 below.

We have already shown that the tropical differential makes LRel! a model of the differential
λ-calculus. We now show that it also models the Taylor expansion (this needs not be true
for any CCBλC). First, it can be patiently checked that (see [56, Definition 4.22]):

▶ Theorem 20. Morphisms in pLRel!, Dq can be Taylor-expanded: for all t P LRel!pZ, !X ⊸
Y q, s P LRel!pZ, Xq we have ev ˝! xt, sy “ inf

nPN
tpp. . . ppΛ´tq ‹ sq ‹ . . . q ‹ sq ˝! xid,8yu.

The equation above is a tropical reformulation of the Taylor formula from the Introduction:
u ‹ s “ pDuq ˝! xx8, s ˝! π1y, idy corresponds to the application of the derivative of u on s,
and Λ´ is the uncurry operator. Hence the right-hand term corresponds to the inf of the
n-th derivative of Λ´t applied to “n copies” of s.

Second, since LRel! has countable sums (all countable infs converge), an immediate
adaptation of the proof of [56, Theorem 4.23] shows:

▶ Corollary 21. JΓ $STLC M : AK “ inftPT pMqJΓ $STBLC t : AK.

Using the results of the previous section, as well as the results above, we now deduce the
following properties:

▶ Theorem 22. Let S be one of PCFL, STLC, bSTLC, STBLC. Let Γ $S M : A and a P JAK.
1. For S “ bSTLC, JΓ $S M : AK!

a is a tropical polynomial, and thus Lipschitz;
2. For S “ STBLC, if t P T pMq, then JΓ $S t : AK!

a is Lipschitz;
3. For S “ STLC, PCFL, then JΓ $S M : AK!

a is locally Lipschitz;
4. For S “ STLC, T pMq decomposes JΓ $STLC M : AK!

a as an inftPT pMqJΓ $STBLC t : AK!
a

of Lipschitz functions.

CSL 2024

14:16 Tropical Mathematics and the Lambda-Calculus I

Proof.
1). From Proposition 15 2. and the remark that for any type of bSTLC, JAK is finite.
2). From Proposition 15 2. observing that a resource term tpxq may use a variable x a fixed

number n times, so that its matrix lies in L!nXˆY .
3). From Theorem 17.
4). It follows from Corollary 21 plus the fact that, for pfnqnPN Ď L!XˆY , we have

pinfnPN fnq
!
“ infnPN f !

n. ◀

We conclude our discussion with an application of the Taylor expansion in LRel!: as
proved in the previous section, all tps are locally Lipschitz; now, Theorem 22 can be used to
compute approximations of the Lipschitz constants of an actual higher-order program.

▶ Corollary 23. Suppose x : A $STLC M : B and $STLC N : A. Then for all t P T pMq such
that JtK!pJNKq ‰ 8, and δ ą 0, the tps Jx : A $STLC M : BK! is JtK!

pJNK`3δq
δ -Lipschitz over

the open ball BδpJNKq.

Proof. Thm. 17 yields the estimate max
B3δpJNKqJMK!. As from Thm. 22 4. it follows that

JtK! ě JMK!, we deduce that K “ max
B3δpJNKqJtK

! ě max
B3δpJNKqJMK! is also a local Lipschitz

constant for JMK!. Moreover, since JtK! is concave and non-decreasing, the max of JtK! is
attained at the maximum point of B3δpJNKq, that is, K “ JtK!px ` 3δq. Finally, from
JtK!pJNKq ă 8 and the continuity of JtK! we deduce K ă 8. ◀

▶ Example 24. Consider again the term M “ zxx from Example 8. The (generalized) tps
JMK!pxqpyq “ infn,n1PNtyrpn,n1qs`pn`n1qxu is not (globally) Lipschitz: for any L ą 0, choose
a natural number N ą L, let Y P LMfinpNˆNq be such that Yµ ă 8 only if µ “ rpn, n1qs with
n ` n1 ě N ; then |JMK!pxqpY q ´ JMK!px ` ϵqpY q| ě Nϵ ą Lϵ. Now take the approximant
t “ zxxN´1yxxy P T pMq (chosen so that JtK!pxqpY q ă 8). Its interpretation is the monomial
JtK!pxqpY q “ YrpN´1,1qs ` Nx. We can then compute a Lipschitz-constant for JMK! around
xx, Y y as 1

δ JtK!pxx, Y y ` δq “ 3N ` 3 `
YrpN´1,1qs`Nx

δ .

8 Generalized Metric Spaces and L-Modules

As we have seen, the morphisms of LRel can be seen as continuous functions between
the L-modules LX , when the latter are taken with the metric induced by the 8-norm.
This viewpoint gives a metric flavor to LRel, and allowed us to relate differential and
metric structure. Yet, how far can this correspondence be pushed? In particular, is this
correspondence restricted to L-modules of the form LX (i.e. with a fixed base), or does it
hold in some sense for arbitrary L-modules? Is this correspondence restricted to the 8-norm
metric, or does it hold for other metrics too?

8.1 L-Modules and Cocomplete L-Categories
An answer to the questions above comes from an elegant categorical correspondence between
tropical linear algebra and the theory of generalized metric spaces, initiated by Lawvere’s
pioneering work [51], and at the heart of the emergent field of monoidal topology [47, 74].

On the one hand we have L-modules: these are triples pM, ĺ, ‹q where pM, ĺq is a
sup-lattice, and ‹ : Lˆ M Ñ M is a continuous (left-)action of L on it, where continuous
means that ‹ commutes with both joins in L and in M . A L-module homomorphism is a
map f : M Ñ N commuting with both joins and the L-action. We let LMod indicate the
category of L-modules and their homomorphisms.

D. Barbarossa and P. Pistone 14:17

On the other hand we have Lawvere’s generalized metric spaces [47, 51, 74]: Lawvere
was the first to observe that a metric space can be described as a L-enriched category.
Indeed, spelling out the definition, a L-enriched category (in short, a L-category) is given
by a set X together with a “hom-set” Xp´,´q : X ˆ X Ñ L satisfying 0 ě Xpx, xq and
Xpy, zq ` Xpx, yq ě Xpx, zq. This structure clearly generalizes the usual definition of metric
spaces, which are indeed precisely the L-categories which are skeletal (i.e. Xpx, yq “ 0
implies x “ y) and symmetric (i.e. Xpx, yq “ Xoppx, yq, where Xoppx, yq “ Xpy, xq). A
basic example of L-category is L itself, with the distance Lpx, yq “ y ´ x.

Moreover, a L-enriched functor between L-categories is nothing but a non-expansive
map f : X Ñ Y , since functoriality reads as Y pfpxq, fpyqq ď Xpx, yq. Functors of shape
Φ : Y op ˆ X Ñ L are called distributors and noted Φ : X ÞÑ Y . Two distributors Φ : Y ÞÑ X

and Ψ : Z ÞÑ Y can be composed just like ordinary matrices in LRel: Ψ ˛Φ : Z ÞÑ X is given
by pΨ ˛ Φqx,z “ infyPY tΨpy, zq ` Φpx, yqu.

Lawvere also observed that the usual notion of Cauchy-completeness can be formulated,
in this framework, as the existence of suitable colimits [51]. Let us recall the notion of
weighted colimit in this context:

▶ Definition 25 (weighted colimits). Let X, Y, Z be L-categories, Φ : Z ÞÑ Y be a distributor
and f : Y Ñ X be a functor. A functor g : Z Ñ X is the Φ-weighted colimit of f over X,
noted colimpΦ, fq, if for all z P Z and x P X

Xpgpzq, xq “ sup
yPY

tXpfpyq, xq ´ Φpy, zqu

A functor f : X Ñ Y is said cocontinuous if it commutes with all existing weighted
colimits in X, i.e. fpcolimpΦ, gqq “ colimpΦ, f ˝ gq. A L-enriched category. A L-category X

is said cocomplete if all weighted colimits over X exist. We let LCCat indicate the category
of cocomplete L-categories and cocontinuous L-enriched functors as morphisms.

Observe that cocompleteness for a symmetric L-category X implies the usual Cauchy com-
pleteness. Indeed, a Cauchy sequence pxnqnPN in X yields two adjoint distributors ϕ˚ : 1 ÞÑ X

and ϕ˚ : X ÞÑ 1, where ϕ˚px1q “ limnÑ8 Xpx1, xn, q and ϕ˚px
1q “ limnÑ8 Xpxn, x1q. Hence,

colimpϕ˚, 1Xq : 1 Ñ X must be a point x satisfying 0 “ Xpx, xq “ supyPX limnÑ8pXpy, xq´

Xpy, xnqq, which implies limnÑ8 Xpxn, xq “ 0.
It turns out that the notions of L-module and cocomplete L-category are indeed

equivalent. More precisely, the categories LMod and LCCat are isomorphic [73]. First,
any L-module pM, ĺ, ‹q can be endowed with the structure of a L-category by letting
Mpx, yq “ inf tϵ | ϵ ‹ x ě yu. Moreover, a homomorphism of L-modules induces a cocon-
tinuous functor of the associated L-categories. Conversely, in cocomplete L-categories it is
possible to introduce a continuous L-action via suitable weighted colimits called tensors:

▶ Definition 26 (tensors, cf. [74]). Let X be a L-category, x P X and ϵ P L. The tensor of x

and ϵ, if it exists, is the colimit ϵ b x :“ colimprϵs, ∆xq, where rϵs : 1 ÞÑ 1 is the constantly ϵ

distributor and ∆x : 1 Ñ X is the constant functor.

A cocomplete L-category can thus be endowed with a L-module structure with order
given by x ĺX y iff Xpy, xq “ 0, and action given by tensors ϵbx. Moreover, a cocontinuous
functor between cocomplete L-categories is the same as a homomorphism of the associated
L-modules.

8.2 Exponential and Differential Structure of LMod » LCCat
We now show that the correspondence between L-modules and cocomplete L-categories lifts
to a model of the differential λ-calculus, generalizing the co-Kleisli category LRel!.

CSL 2024

14:18 Tropical Mathematics and the Lambda-Calculus I

In order to define a Lafont exponential ! over LMod, we exploit a well-known recipe
from [50,60]. The first step is to define a symmetric algebra SymnpMq as the equalizer of
all permutative actions on n-tensors M b ¨ ¨ ¨ b M . Notice that each element of !nM can be
described as a join of “multisets” rx1, . . . , xns, where the latter is the equivalence class of the
tensors x1 b ¨ ¨ ¨ b xn P Mbn under the action of permutations σ P Sn. The L-module !nM

is a cocomplete L-category with distance function defined on basic “multisets” as follows:

p!nMqpα, βq “ sup
σPSn

inf
τPSn

n
ÿ

i“1
Xpxσpiq, yτpiqq (1)

where α “ rx1, . . . , xns and β “ ry1, . . . , yns, and extended to arbitrary elements α “
Ž

i αi

and β “
Ž

j βj by p!nMqpα, βq “ supi infjp!nMqpαi, βjq.
Next, we define !M as the infinite biproduct

ś

n!nM , yielding the cofree commutative
comonoid over M (cf. [60, Proposition 1]). Using the fact that biproducts commute with
tensors in LRel, by standard results [60], we obtain that the coKleisli category LMod! is
a CCC. Moreover, the constructions for LMod generalize those of LRel, in the sense that
!pLXq » LMfinpXq and that LMod!pLX ,LY q » LRel!pX, Y q.

Finally, since the coKleisli category of a Lafont category with biproducts is always a
CCBC [53, Theorem 21], we can endow LMod! with a differential operator E, generalizing
D!, given by

Efpαq “
ł

!

fpβ Y rxsq
ˇ

ˇ

ˇ
ιnpβq b ι1pxq ď Spαq

)

(2)

where ιk : Mk Ñ
ś

iPI Mi is the injection morphism given by ιkpxqpkq “ x and ιkpxqpi ‰

kq “ 8, and S :!pM ˆ Nq Ñ!Mb!N is the Seely isomorphism [60], and conclude that:

▶ Theorem 27. (LMod!{LCCat!, E) is a CCBC.

9 Related Work

The applications of tropical mathematics in computer science abound, e.g. in automata
theory [48,72], machine learning [57,64,77], optimization [4, 5], and convex analysis [54].

As we said, the relational semantics over the tropical semiring was quickly explored in [50],
to provide a “best case” resource analysis of a PCF-like language with non-deterministic choice.
The connections between differential λ-calculus (and differential linear logic), relational
semantics, and non-idempotent intersection types are very well-studied (see [28], and more
recently, [59] for a more abstract perspective, and [40,63] for a 2-categorical, or proof-relevant,
extension). Probabilistic coherent spaces [33], a variant of the relational semantics, provide
an interpretation of higher-order probabilistic programs as analytic functions. In [32] it was
observed that such functions satisfy a local Lipschitz condition somehow reminiscent of our
examples in Section 3.

The study of linear or bounded type systems for sensitivity analysis was initiated in [44]
and later developed [26, 68, 70]. Related approaches, although not based on metrics, are
provided by differential logical relations [24] and change action models [7]. More generally,
the literature on program metrics in denotational semantics is vast. Since at least [75]
metric spaces, also in Lawvere’s generalized sense [51], have been exploited as an alternative
framework to standard, domain-theoretic, denotational semantics; notably models of STLC
and PCF based on ultra-metrics and partial metrics have been proposed [25,37,66].

D. Barbarossa and P. Pistone 14:19

Motivated by connections with computer science and fuzzy set-theory, the abstract study
of generalized metric spaces in the framework of quantale- or even quantaloid-enriched
categories has led to a significant literature in recent years (e.g. [47,74]), and connections
with tropical mathematics also have been explored e.g. in [38, 76]. Moreover, applications of
quantale-modules to both logic and computer science have also been studied [1, 69].

Finally, connections between program metrics and the differential λ-calculus have been
already suggested in [66]; moreover, cartesian difference categories [6] have been proposed as
a way to relate derivatives in differential categories with those found in change action models.

10 Conclusion and Future Work

The main goals of this paper are two. Firstly, to demonstrate the existence of a conceptual
bridge between two well-studied quantitative approaches to higher-order programs, and to
highlight the possibility of transferring results and techniques from one approach to the
other. Secondly, to suggest that tropical mathematics, a field which has been largely and
successfully applied in computer science, could be used for the quantitative analysis of
functional programming languages. While the first goal was here developed in detail, and
at different levels of abstraction, for the second goal we only sketched a few interesting
directions, and we leave their development to a second paper of this series.

While the main ideas of this article only use basic concepts from the toolbox of tropical
mathematics, an exciting direction is that of looking at potential applications of more
advanced tools from tropical algebraic and differential geometry (e.g. Newton polytopes,
tropical varieties, tropical differential equations). Another interesting question is how much
of our results on tps and their tropical Taylor expansion can be extended to the abstract
setting of generalized metric spaces and continuous functors.

References
1 Samson Abramsky and Steven Vickers. Quantales, observational logic and process se-

mantics. Mathematical Structures in Computer Science, 3(2):161–227, 1993. doi:10.1017/
S0960129500000189.

2 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The (in)efficiency of interaction. In
Proceedings POPL 2021, volume 5, New York, NY, USA, 2021. Association for Computing
Machinery.

3 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Multi types and reasonable space.
Proceedings ICFP 2022, 6, 2022.

4 Marianne Akian, Stéphane Gaubert, and Alexander Guterman. Tropical polyhedra are equival-
ent to mean payoff games. International Journal of Algebra and Computation, 22(01):1250001,
2023/01/16 2012. doi:10.1142/S0218196711006674.

5 Marianne Akian, Stéphane Gaubert, Viorel Niţică, and Ivan Singer. Best approximation
in max-plus semimodules. Linear Algebra and its Applications, 435(12):3261–3296, 2011.
doi:10.1016/j.laa.2011.06.009.

6 Mario Alvarez-Picallo and Jean-Simon Pacaud Lemay. Cartesian difference categories. In
Jean Goubault-Larrecq and Barbara König, editors, Proceedings FoSSaCS 2020, pages 57–76,
Cham, 2020. Springer International Publishing.

7 Mario Alvarez-Picallo and C.-H. Luke Ong. Change actions: Models of generalised differenti-
ation. In Mikołaj Bojańczyk and Alex Simpson, editors, Proceedings FoSSaCS 2019, pages
45–61, Cham, 2019. Springer International Publishing.

8 Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, Pierpaolo Degano, and
Catuscia Palamidessi. Differential privacy: On the trade-off between utility and information
leakage. In Proceedings FAST 2011, FAST–11, pages 39–54, Berlin, Heidelberg, 2011. Springer-
Verlag. doi:10.1007/978-3-642-29420-4_3.

CSL 2024

https://doi.org/10.1017/S0960129500000189
https://doi.org/10.1017/S0960129500000189
https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1016/j.laa.2011.06.009
https://doi.org/10.1007/978-3-642-29420-4_3

14:20 Tropical Mathematics and the Lambda-Calculus I

9 Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. Curry and Howard Meet Borel. In
Proceedings LICS 2022, pages 1–13,. IEEE Computer Society, 2022.

10 Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram
Cherigui. A semantic account of metric preservation. In Proceedings POPL 2017, pages
545–556, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/
3009837.3009890.

11 Marco Azevedo de Amorim, Gaboardi, Arthur, Justin Hsu, and Shin-ya Katsumata. Probab-
ilistic relational reasoning via metrics. In Proceedings LICS 2019. IEEE Computer Society,
2019.

12 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Logical Methods in Computer Science, 14(3), 2018. doi:10.23638/LMCS-14(3:
20)2018.

13 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. In Proceedings POPL 2012. ACM Press, 2012.
doi:10.1145/2103656.2103670.

14 Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite
state markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 2023/01/17/
1966. URL: http://www.jstor.org/stable/2238772.

15 Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenient differential category.
Cahiers de Topologie et Géométrie DIfférentielle Catégorique, LIII:211–232, 2012. arXiv:
1006.3140.

16 Richard F. Blute, Robin Cockett, J.S.P. Lemay, and R.A.G. Seely. Differential categories
revisited. Applied Categorical Structures, 28:171–235, 2020.

17 Richard F. Blute, Robin Cockett, and R.A.G. Seely. Cartesian Differential Categories. Theory
and Applications of Categories, 22(23):622–672, 2009.

18 Gérard Boudol. The lambda-calculus with multiplicities. In Eike Best, editor, Proceedings
CONCUR’93, pages 1–6, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

19 Flavien Breuvart and Ugo Dal Lago. On intersection types and probabilistic lambda calculi.
In Proceedings PPDP 2018, PPDP ’18, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3236950.3236968.

20 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Categorical models for simply
typed resource calculi. In Proceedings MFPS 2010, volume 265 of Electronic Notes in Theoretical
Computer Science, pages 213–230, 2010. doi:10.1016/j.entcs.2010.08.013.

21 Maria Manuel Clementino and Dirk Hofmann. Exponentiation in V-categories. Topology and
its Applications, 153(16):3113–3128, 2006. doi:10.1016/j.topol.2005.01.038.

22 Stefan Cobzaş. Lipschitz properties of convex functions. Advances in Operator Theory,
2(1):21–49, 2017. doi:10.22034/aot.1610.1022.

23 Raphaëlle Crubillé. Probabilistic stable functions on discrete cones are power series. In
Proceedings LICS 2018, pages 275–284. ACM, 2018. doi:10.1145/3209108.3209198.

24 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential logical relations, part
I: the simply-typed case. In Proceedings ICALP 2019, pages 111:1–111:14, 2019. doi:
10.4230/LIPIcs.ICALP.2019.111.

25 Ugo Dal Lago, Furio Honsell, Marina Lenisa, and Paolo Pistone. On quantitative algebraic
higher-order theories. In Proceedings FSCD 2022, volume 228 of LIPIcs, pages 4:1–4:18, 2022.

26 Ugo Dal Lago and Ulrich Schöpp. Computation by interaction for space-bounded functional
programming. Information and Computation, 248:150–194, June 2016. doi:10.1016/j.ic.
2015.04.006.

27 Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Computation, 209(6):966–991, 2011. doi:
10.1016/j.ic.2011.02.001.

28 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2018.

https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1145/2103656.2103670
http://www.jstor.org/stable/2238772
https://arxiv.org/abs/1006.3140
https://arxiv.org/abs/1006.3140
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1016/j.entcs.2010.08.013
https://doi.org/10.1016/j.topol.2005.01.038
https://doi.org/10.22034/aot.1610.1022
https://doi.org/10.1145/3209108.3209198
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.1016/j.ic.2015.04.006
https://doi.org/10.1016/j.ic.2015.04.006
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1016/j.ic.2011.02.001

D. Barbarossa and P. Pistone 14:21

29 Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–
646, 2005. URL: https://www.cambridge.org/core/article/finiteness-spaces/
E5E9CE1FA4050A56EF25CFB6F6A5754F.

30 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-
tiderivatives. Mathematical Structures in Computer Science, pages 1–66, February 2017.
doi:10.1017/S0960129516000372.

31 Thomas Ehrhard. Cones as a model of intuitionistic linear logic. In Proceedings LICS 2020,
pages 370–383. IEEE Computer Society, 2020. doi:10.1145/3373718.3394758.

32 Thomas Ehrhard. Differentials and distances in probabilistic coherence spaces. Logical Methods
in Computer Science, 18(3):2:1–2:33, 2022.

33 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In Proceedings LICS 2011, pages 87–96. IEEE Computer
Society, 2011. doi:10.1109/LICS.2011.29.

34 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full Abstraction for Probabilistic
PCF. Journal of the ACM, 65(4), 2018.

35 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable,
measurable functions: a model for probabilistic higher-order programming. In Proceedings
POPL 2018, volume 2, pages 59:1–59:28, 2018. doi:10.1145/3158147.

36 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1):1–41, December 2003. doi:10.1016/S0304-3975(03)00392-X.

37 Martín Hötzen Escardó. A metric model of PCF, 1999. Unpublished note presented at the
Workshop on Realizability Semantics and Applications, June 1999. Available at the author’s
webpage.

38 Soichiro Fuji. Enriched categories and tropical mathematics, 2019. arXiv:1909.07620.
39 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.

Linear dependent types for differential privacy. SIGPLAN Not., 48(1):357–370, January 2013.
doi:10.1145/2480359.2429113.

40 Zeinab Galal. A bicategorical model for finite nondeterminism. In Proceedings FSCD 2021,
volume 195 of LIPIcs, pages 10:1–10:17, 2021.

41 D. Gebler and S. Tini. SOS specifications for uniformly continuous operators. Journal of
Computer and System Science, 92:113–151, 2018.

42 Guillaume Geoffroy and Paolo Pistone. A partial metric semantics of higher-order types and
approximate program transformations. In Proceedings CSL 2021, volume 183 of LIPIcs, pages
35:1–35:18, 2021.

43 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

44 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular
approach to polynomial time computability. Theoretical Computer Science, 97:1–66, 1992.
Extended abstract in Feasible Mathematics, S. R. Buss and P. J. Scott editors, Proceedings of
the MCI Workshop, Ithaca, NY, June 1989, Birkhauser, Boston, pp. 195–209.

45 Dima Grigoriev. Tropical differential equations. Advances in Applied Mathematics, 82:120–128,
2017. doi:10.1016/j.aam.2016.08.002.

46 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proceedings LICS 2017. IEEE Computer Society, 2017.

47 Dirk Hofmann, Gavin J Seal, and W Tholen. Monoidal Topology: a Categorical Approach to
Order, Metric and Topology. Cambridge University Press, New York, 2014.

48 C. Kahlert and L.O. Chua. The complete canonical piecewise-linear representation. I. the
geometry of the domain space. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 39(3):222–236, 1992. doi:10.1109/81.128016.

49 Shin-ya Katsumata. A double category-theoretic analysis of graded linear exponential comonads.
In Proceedings FoSSaCS 2018, pages 110–127. Springer International Publishing, 2018.

CSL 2024

https://www.cambridge.org/core/article/finiteness-spaces/E5E9CE1FA4050A56EF25CFB6F6A5754F
https://www.cambridge.org/core/article/finiteness-spaces/E5E9CE1FA4050A56EF25CFB6F6A5754F
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1145/3373718.3394758
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.1145/3158147
https://doi.org/10.1016/S0304-3975(03)00392-X
https://arxiv.org/abs/1909.07620
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/j.aam.2016.08.002
https://doi.org/10.1109/81.128016

14:22 Tropical Mathematics and the Lambda-Calculus I

50 Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational
models of typed lambda-calculi. In Proceedings LICS 2013, pages 301–310. IEEE Computer
Society, 2013. doi:10.1109/LICS.2013.36.

51 F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del
Seminario Matematico e Fisico di Milano, 43(1):135–166, December 1973. doi:10.1007/
BF02924844.

52 Jean-Simon Pacaud Lemay. Convenient antiderivatives for differential linear categories. Math-
ematical Structures in Computer Science, 30(5):545–569, 2020.

53 Jean-Simon Pacaud Lemay. Coderelictions for Free Exponential Modalities. In Proceedings
CALCO 2021, volume 211 of Leibniz International Proceedings in Informatics (LIPIcs), pages
19:1–19:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CALCO.2021.19.

54 Yves Lucet. What shape is your conjugate? a survey of computational convex analysis and its
applications. SIAM Journal on Optimization, 20(1):216–250, 2009. doi:10.1137/080719613.

55 Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161 of
Graduate Studies in Mathematics. American Mathematical Society, 2015.

56 Giulio Manzonetto. What is a categorical model of the differential and the resource λ-
calculi? Mathematical Structures in Computer Science, 22(3):451–520, 2012. doi:10.1017/
S0960129511000594.

57 Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and
machine learning. Proceedings of the IEEE, 109(5):728–755, 2021. doi:10.1109/JPROC.2021.
3065238.

58 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In Proceedings LICS 2016. IEEE Computer Society, 2016.

59 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. In Proceedings POPL 2018. ACM, 2018.

60 Paul-André Melliès, Nicolas Tabareau, and Christine Tasson. An explicit formula for the
free exponential modality of linear logic. Mathematical Structures in Computer Science,
28(7):1253–1286, 2018. doi:10.1017/S0960129516000426.

61 Gian Maria Negri Porzio, Vanni Noferini, and Leonardo Robol. Tropical Laurent series, their
tropical roots, and localization results for the eigenvalues of nonlinear matrix functions, 2021.
arXiv:2107.07982.

62 Vanni Noferini, Meisam Sharify, and Françoise Tisseur. Tropical roots as approximations to
eigenvalues of matrix polynomials. SIAM J. Matrix Anal. Appl., 36(1):138–157, January 2015.
doi:10.1137/14096637X.

63 Federico Olimpieri. Intersection type distributors. In Proceedings LICS 2021. IEEE Computer
Society, 2021. doi:10.1109/LICS52264.2021.9470617.

64 Lior Pachter and Bernd Sturmfels. Tropical geometry of statistical models. Proceedings of the
National Academy of Sciences, 101(46):16132–16137, 2023/01/16 2004. doi:10.1073/pnas.
0406010101.

65 Michele Pagani and Paolo Tranquilli. Parallel reduction in resource λ-calculus. In Proceedings
APLAS 2009, pages 226–242, 2009.

66 Paolo Pistone. On generalized metric spaces for the simply typed λ-calculus. In Proceedings
LICS 2021, pages 1–14. IEEE Computer Society, 2021.

67 Gordon Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5(3):223–255, 1977.

68 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger. Proceedings
ICFP 2010, pages 157–168, 2010.

69 Ciro Russo. Quantale Modules, with Applications to Logic and Image Processing. PhD thesis,
Università degli Studi di Salerno, available at arXiv:0909.4493, 2007.

https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1007/BF02924844
https://doi.org/10.1007/BF02924844
https://doi.org/10.4230/LIPIcs.CALCO.2021.19
https://doi.org/10.1137/080719613
https://doi.org/10.1017/S0960129511000594
https://doi.org/10.1017/S0960129511000594
https://doi.org/10.1109/JPROC.2021.3065238
https://doi.org/10.1109/JPROC.2021.3065238
https://doi.org/10.1017/S0960129516000426
https://arxiv.org/abs/2107.07982
https://doi.org/10.1137/14096637X
https://doi.org/10.1109/LICS52264.2021.9470617
https://doi.org/10.1073/pnas.0406010101
https://doi.org/10.1073/pnas.0406010101
https://arxiv.org/abs/0909.4493

D. Barbarossa and P. Pistone 14:23

70 Ulrich Schöpp. Stratified Bounded Affine Logic for Logarithmic Space. In 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pages 411–420, July 2007.
doi:10.1109/LICS.2007.45.

71 Peter Selinger. Towards a semantics for higher-order quantum computation. In Proceedings
QPL 2004, TUCS General Publication No 33, pages 127–143, 2004.

72 Imre Simon. On semigroups of matrices over the tropical semiring. Informatique Théorique et
Applications, 28:277–294, 1994.

73 Isar Stubbe. Categorical structures enriched in a quantaloid: Tensored and cotensored
categories. Theory and Applications of Categories, 16(14):283–306, 2006.

74 Isar Stubbe. An introduction to quantaloid-enriched categories. Fuzzy Sets and Systems, 256:95–
116, 2014. Special Issue on Enriched Category Theory and Related Topics (Selected papers
from the 33rd Linz Seminar on Fuzzy Set Theory, 2012). doi:10.1016/j.fss.2013.08.009.

75 Franck van Breugel. An introduction to metric semantics: operational and denotational models
for programming and specification languages. Theoretical Computer Science, 258(1):1–98,
2001. doi:10.1016/S0304-3975(00)00403-5.

76 Simon Willerton. Tight spans, Isbell completions and semi-tropical modules. Theory and
Applications of Categories, 28(22):696–732, 2013.

77 Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks.
In Proceedings ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages
5819–5827. PMLR, 2018. URL: http://proceedings.mlr.press/v80/zhang18i.html.

CSL 2024

https://doi.org/10.1109/LICS.2007.45
https://doi.org/10.1016/j.fss.2013.08.009
https://doi.org/10.1016/S0304-3975(00)00403-5
http://proceedings.mlr.press/v80/zhang18i.html

Expressivity Landscape for Logics with Probabilistic
Interventionist Counterfactuals
Fausto Barbero #

University of Helsinki, Finland

Jonni Virtema #

University of Sheffield, UK

Abstract
Causal multiteam semantics is a framework where probabilistic dependencies arising from data
and causation between variables can be together formalized and studied logically. We discover
complete characterizations of expressivity for several logics that can express probabilistic statements,
conditioning and interventionist counterfactuals. The results characterize the languages in terms of
families of linear equations and closure conditions that define the corresponding classes of causal
multiteams. The characterizations yield a strict hierarchy of expressive power. Finally, we present
some undefinability results based on the characterizations.

2012 ACM Subject Classification Computing methodologies → Probabilistic reasoning; Mathematics
of computing → Causal networks

Keywords and phrases Interventionist counterfactuals, Multiteam semantics, Causation, Probability
logic, Linear inequalities, Expressive power

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.15

Related Version Full Version: https://doi.org/10.48550/arXiv.2303.11993

Funding Fausto Barbero: DFG grant VI 1045-1/1; Academy of Finland grants 316460 and 349803
Jonni Virtema: DFG grant VI 1045-1/1; Academy of Finland grant 345634

1 Introduction

The main approach to the study of empirical data in the 20th century has been that of
statistics, which makes use of probabilistic notions such as correlation and conditional
(in)dependence between variables. We follow here another line of study – going back at
least to Sewall Wright [40] – insisting that the analysis should not stop at correlations, but
instead should yield information about causation among variables (conditional on appropriate
scientific assumptions). The methods involved in the analysis of causes and effects have
gained in popularity in the last decades, and their mathematics has been vastly developed
under the label of causal inference (see, e.g., [30, 35]). Today the methods of causal inference
are heavily utilized, e.g., in epidemiology [23], econometrics [22], social sciences [28] and
machine learning [32, 33].

One of the next crucial steps in the development of artificial intelligence will be the
capability of AI systems to represent and reason about causal knowledge (see, e.g., [31]). For
the development of AI applications of causal inference, the clarification of the related formal
logical theory is vital. It turns out that many concepts involved in the analysis of causes can
be reduced to the study of interventionist counterfactuals in causal models. Causal models
represent causation between variables using so-called structural equations, which describe
deterministic causal laws that relate the variables to each other. In their simplest form,
interventionist counterfactuals are expressions of the form

“if variables X1, . . . , Xn were set to values x1, . . . , xn, then Y would take value y”.
© Fausto Barbero and Jonni Virtema;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fausto.barbero@helsinki.fi
https://orcid.org/0000-0002-0959-6977
mailto:j.t.virtema@sheffield.ac.uk
https://orcid.org/0000-0002-1582-3718
https://doi.org/10.4230/LIPIcs.CSL.2024.15
https://doi.org/10.48550/arXiv.2303.11993
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Expressivity of Probabilistic Interventionist Counterfactuals

Such conditionals are counterfactual (contrary to fact) in that their evaluation forces us
to consider an alternative scenario in which the variables X1, . . . , Xn are subtracted to the
laws that currently determine their behaviour, and the (possibly new) values taken by such
variables are fixed by some external intervention. The causal laws encoded in the model
then allow us to find out, computationally, how all the variables in the system are affected in
this alternative scenario. Research on logics encompassing interventionist counterfactuals
has been active in the past two decades. For example, [13, 17, 7, 9] provided complete
axiomatizations for languages of increasing generality. The papers [18, 41] drew precise
connections with the earlier Stalnaker-Lewis theory of counterfactuals [36, 27]. In [1] logics for
causal reasoning were studied via translations to first-order logic, and the articles [17, 16, 29]
discuss the complexity of causal and probabilistic languages.

The classical literature on causal inference does not neatly separate the methods of
probability and of causal analysis; many standard concepts in causal inference are expressed
by mixing probabilistic and causal statements. In other words, causal inference uses an array
of new notational devices that are not entirely reducible to classical probabilistic reasoning;
two significant examples (from [30]) of these new notations are the conditional do expressions
(Pr(y | do(x), z)) and Pearl’s “counterfactuals” (Pr(YX=x | Z = z)). We refer the reader to [8]
for a detailed discussion of the meaning and use of these expressions. Roughly speaking,
they both describe the probability that the variable Y takes value y after intervening to
set X to x, conditional upon the observation that Z takes value z; but the two expressions
differ subtly in that in the former the conditioning is performed in the system modified by
the intervention that sets X to x, while in the latter expression conditioning is relative to
the pre-intervention system. To this regard, we follow the proposal of Barbero and Sandu
[2, 4] to decompose these complex causal-probabilistic expressions in terms of a minimal set
of logical primitives. In particular, probabilistic conditioning and causal interventions will
correspond to two distinct logical conditionals, ⊃ and �.

In order to make this decomposition possible, one needs to move from causal models
to the more general causal multiteam semantics, where all the needed logical operators are
available. Team semantics is the semantical framework of modern logics of dependence and
independence. Introduced by Hodges [24] and adapted to dependence logic by Väänänen [38],
team semantics defines truth in reference to collections of assignments, called teams. Team
semantics is particularly suitable for the formal analysis of dependencies and independencies
in data. Recent developments in the area have broadened the scope of team semantics to
cover probabilistic and quantitative notions of dependence and independence. Durand et
al. [11, 10] introduced multiset and probabilistic variants of team semantics as frameworks
for studying probabilistic dependency notions such as conditional independence logically.
Further analysis has revealed that definability and complexity of logics in these frameworks
are intimately connected to definability and complexity of Presburger ([14, 39]) and real
arithmetic ([21, 20]).

Causal teams, proposed by Barbero and Sandu [3], fuse together teams and causal models,
and model inferences encompassing both functional dependencies arising from data and
causal dependencies arising from structural equations. The logics considered by Barbero
and Sandu use atomic expressions of the form X = x and =(X; Y) to state that the variable
X takes the value x and that (in the data) the value of the variable Y is functionally
determined by the values of the variable X, respectively. Interventionist counterfactuals
(X = x � ψ) and selective implications (α ⊃ ψ) then describe consequences of actions
and consequences of learning from observations. For example, the intended reading of
the formula “Pressure = 300 � Volume = 4” is: If we raise the pressure to 300 kPa, the

F. Barbero and J. Virtema 15:3

P(⊃)

P− P PCO

P(�)

PCO
ωLemma 12 Corollary 10

Prop. 18
Corollary 10

Prop. 18
Cor. 20

Figure 1 Arrows denote strict inclusion of expressivity; P(�) and P(⊃) are incomparable.

volume of the gas will be 4 m3. On the other hand, the intended reading of the formula
“Pressure = 20 ⊃ 10 < Altitude < 30” is: If we read 20 kPa from the barometer, the current
altitude is between 10 and 30 km.

Finally, the causal multiteam semantics coined by Barbero and Sandu [4] fuses together
multiteams and causal models. The shift from teams to multiteams makes it now possible to
study probabilistic conditioning and causal interventions in a unified framework. Barbero
and Sandu study a language called PCO (for Probabilities, Causes and Observations) which
they claim to capture a fair portion of the probabilistic causal reasoning that appears in
the field of causal inference. It does indeed suffice to capture many forms of probabilistic
conditioning, and it suffices to express conditional do expressions, the “Pearl counterfactuals”
mentioned above and more general kinds of statements. For example, the statement “the
probability that a sick untreated patient would be healed when treated is at least 2

3 ” can
be formalised as (Sick = 1 ∧ Treated = 0) ⊃ (Treated = 1� Pr(Sick = 0) ≥ 2

3). The paper [4]
raises however the doubt whether PCO can express, in general, the comparison of conditional
probabilities (e.g., statements of the form Pr(α | β) ≥ Pr(γ | δ)). We show here that it fails
to do so; thus, PCO cannot be used, for instance, to compare the expected efficacy of two
distinct (non-enforced) medical treatments.

The cornerstone of this inexpressibility result is an abstract characterization of the
expressive power of PCO, which in particular shows that the classes of probability distributions
that are consistent with a given PCO formula can be described in terms of a certain class
of linear inequalities. On the other hand, by a geometrical argument we see that there are
statements of comparison of conditional probabilities which unavoidably involve inequalities
of second degree. The quest for an understanding of language PCO naturally proceeds via
an understanding of the expressivity of its key resources: evaluation atoms (Pr(α) ≥ ϵ),
comparison atoms (Pr(α) ≥ Pr(β)), observations (⊃) and interventions (�). This leads us to
the study of four fragments P−, P, P(⊃), and P(�). We characterize the expressive power
of each of these sublogics, as well as the expressivity of PCO, in terms of closure properties
and of an appropriate class of linear inequalities; these results are schematized in Table
1. Together with geometrical reasoning, these characterizations yield a strict hierarchy of
expressive power, as summarized in Figure 1. The table and the figure also include a language
PCO

ω that extends PCO with (countably) infinite disjunctions. The manuscript [4] already
shows that this language is more expressive than PCO; our results yield an alternative proof.

The characterization and hierarchy results can be found in Section 3, after a presentation of
the semantics and syntax of the languages (Section 2). Section 4 presents the inexpressibility
result for conditional comparison atoms, and briefly discusses the related issue of definability
of dependencies and independencies.

CSL 2024

15:4 Expressivity of Probabilistic Interventionist Counterfactuals

Table 1 Characterizations of expressivity of logics. E.g., a class K of causal multiteams is
definable by a P(⊃)-formula iff K is signed binary, closed under change of laws and rescaling, and
has the empty multiteam property. K is a union of signed binary, when K =

⋃
F ∈Fσ K

F , for signed
binary sets of causal multiteams KF of function component F .

Logic Closure properties References

Type of change of rescaling &
inequalities laws empty multiteam

P− monic X X Thm. 11
P signed monic X X Thm. 11

P(⊃) signed binary X X Thm. 16
P(�) union of signed monics X Thm. 14
PCO union of signed binary X Thm. 19
PCO

ω (unrestricted) X [4]

2 Logics with causal multiteam semantics

Capital letters such as X,Y, . . . denote variables (standing for specific magnitudes such
as “temperature” and “volume”) which take values denoted by small letters. The values
of the variable X will be often denoted by x, x′, Sets (and tuples, depending on the
context) of variables and values are denoted by boldface letters such as X and x. We consider
probabilities that arise from the counting measures of finite (multi)sets. For finite sets S ⊆ T ,
we define PT (S) := |S |

|T | .

A signature is a pair (Dom,Ran), where Dom is a finite set of variables and Ran a function
mapping each X ∈ Dom to a finite set Ran(X) of values (the range of X). We stipulate a fixed
ordering on Dom, and write W for the tuple of all the variables of Dom listed in that order.
We write WX for the variables of Dom \ {X} listed according to the fixed order. For a tuple
X = (X1, . . . , Xn) of variables, Ran(X) denotes the Cartesian product Ran(X1)×· · ·×Ran(Xn). An
assignment of signature σ is a mapping s : Dom →

⋃
X∈Dom Ran(X) such that s(X) ∈ Ran(X)

for each X ∈ Dom. The set of all assignments of signature σ is denoted by Bσ. For an
assignment s having the variables of X in its domain, s(X) denotes the tuple (s(X1), . . . , s(Xn)).
For X ⊆ Dom, s↾X is the restriction of s to the variables in X.

A team T of signature σ is a subset of Bσ. Intuitively, a multiteam is just a multiset
analogue of a team. We represent multiteams as (finite) teams with an extra variable Key
(not belonging to the signature) ranging over N, which takes different values over different
assignments of the team, and which is never mentioned in the formal languages. A multiteam
can be then presented as a table; e.g., the following

T :

Key X Y
0 0 0
1 0 0
2 0 1

describes a multiteam containing two “copies” of the assignment s(X,Y) = (0, 0) (first two
rows) plus another assignment t(X,Y) = (0, 1). We will say that the variable domain of this
multiteam T is Dom = {X,Y}, and omit mentioning the Key variable. Multiteams will be used
to encode probability distributions over the underlying team (in this case, the distribution
that assigns probability 2

3 to assignment s, and probability 1
3 to t). The “underlying team”

(i.e., support of a multiteam) is characterized formally later in Definition 6.

F. Barbero and J. Virtema 15:5

Multiteams by themselves do not encode any solid notion of causation; they do not
tell us how a system would be affected by an intervention. We therefore need to enrich
multiteams with additional structure. In particular, we will associate to some of the variables
a deterministic causal law. The law for variable V takes the form of a function, which
describes the way the value of V is generated from the values of other variables in the system.
These laws will be used crucially in order to compute how the model is affected by an
intervention. Furthermore, we will require that each assignment in the multiteam agrees
with these laws.

▶ Definition 1. A causal multiteam of signature (Dom,Ran) with endogenous variables
End(T) ⊆ Dom is a pair T = (T−,F) such that:
1. T− is a multiteam of domain Dom,
2. F is a function {(V,FV) | V ∈ End(T)} that assigns to each endogenous variable V a

non-constant |WV |-ary function FV : Ran(WV) → Ran(V),
3. (T−,F) satisfies the compatibility constraint: FV (s(WV)) = s(V), for all s ∈ T− and

V ∈ End(T).
T− and F will be called, respectively, the multiteam component and the function com-
ponent of T . We write (Dom(T),Ran(T)) to denote the signature of the causal multiteam T .

Notice that, due to the compatibility constraint, not all instances for End(T) and T− give rise
to causal multiteams. The function component F induces a system of structural equations;
an equation V := FV (WV) for each variable V ∈ End(T). Note that some of the variables in WV

may not be necessary for evaluating V. For example, if V is given by the structural equation
V := X + 1, all the variables in WV \ {X} are irrelevant (we call them dummy arguments of
FV). The set of non-dummy arguments of FV is denoted as PAV (the set of parents of V).

We associate to each causal multiteam T a causal graph GT , whose vertices are the
variables in Dom and where an arrow is drawn from each variable in PAV to V, whenever
V ∈ End(T) (see Example 3 and picture 2 for a depiction). The variables in Dom(T) \ End(T)
are called exogenous (written Exo(T)).

In the present paper we restrict attention to systems of variables that are connected by
causal laws that do not form cycles (e.g., we exclude the possibility that X causally affects
Y, Y causally affects Z, and in turn Z affects X); such systems are usually called recursive.
Concretely, we enforce the following convention:

Throughout the paper we will implicitly assume that causal multiteams have an acyclic causal
graph.

While the study of cyclic systems is far from absent from the literature (e.g. [37, 34, 17, 1]),
in a probabilistic context it introduces a number of complications that go well beyond the
scope of the framework considered in this paper.

▶ Definition 2. A causal multiteam S = (S −,FS) is a causal sub-multiteam of T = (T−,FT),
if they have the same signature, S − ⊆ T−, and FS = FT . We then write S ≤ T .

We consider causal multiteams as dynamic models, that can be affected by observations
and interventions. Given a causal multiteam T = (T−,F) and a formula α of some formal
language (evaluated over causal multiteams according to some semantic relation |=), “observing
α” produces the causal sub-multiteam Tα = ((Tα)−,F) of T , where (Tα)− := {s ∈ T− | ({s},F) |=
α}.1 An intervention on T will not, in general, produce a sub-multiteam of T . It will instead

1 Throughout the paper, the semantic relation in terms of which Tα is defined will be the semantic relation
for language CO, which shall be defined below.

CSL 2024

15:6 Expressivity of Probabilistic Interventionist Counterfactuals

T−:

Key X Y Z
0 0 1 1
1 1 2 3
2 1 2 3
3 2 3 5
4 2 3 5
5 2 3 5

{

Key X Y Z
0 0 1 ...
1 1 1 ...
2 1 1 ...
3 2 1 ...
4 2 1 ...
5 2 1 ...

{ T−
Y=1:

Key X Y Z
0 0 1 1
1 1 1 2
2 1 1 2
3 2 1 3
4 2 1 3
5 2 1 3

Figure 2 Causal multiteams for Example 3, showing how the multiteam component T−
Y=1 of a

causal multiteam is computed from T− given an intervention do(Y = 1). The figure also describes the
associated causal graphs.

modify the values that appear in some of the columns of T . We consider interventions
that are described by conjunctions of the form X1 = x1 ∧ · · · ∧ Xn = xn (or, shortly, X = x).
Such a formula is inconsistent if there are two indexes i, j such that Xi and X j denote the
same variable, while xi and x j denote distinct values; it is consistent otherwise. Applying
an intervention do(X = x), where X = x is consistent, to a causal multiteam T = (T−,F)
of endogenous variables V will produce a causal multiteam TX=x = (T−

X=x,FX=x), where the
function component is FX=x := F↾(V\X) (the restriction of F to the set of variables V \ X) and
the multiteam component is T−

X=x := {sFX=x | s ∈ T−}, where each sFX=x is the unique assignment
compatible with FX=x defined (recursively) as

sFX=x(V) =

xi if V = Xi ∈ X
s(V) if V ∈ Exo(T) \ X
FV (sFX=x(WV)) if V ∈ End(T) \ X.

We emphasize that the uniqueness of sFX=x, and thus the correctness of this definition, hinges
on our assumption that the causal graphs are acyclic. For an explanation of how interventions
may be defined in the cyclic (non-probabilistic) case, see [1].

▶ Example 3. Consider the causal multiteam T = (T−,F) depicted in Figure 2, where each
row of the leftmost table depicts an assignment of T− (e.g., the third row represents an
assignment s with s(Key) = 2, s(X) = 1, s(Y) = 2, s(Z) = 3). The rows of the table are
compatible with the laws FZ(X,Y) = X + Y and FY (X) = X + 1, while X is exogenous. T
encodes probabilities for formulas that discuss variables X,Y,Z and their possible values; for
example, PT (Z = 3) = 1

3 .
Suppose we can enforce the variable Y to take the value 1. The effect of such an

intervention, depicted in the right-hand side of Figure 2, is to first set the value of Y to 1
(in all rows) and then to recompute the values of Z using the function FZ . The probability
distribution has changed: now PTY=1 (Z = 3) = 1

2 . Furthermore, the function FY is omitted
from TY=1, and thus the arrow from X to Y has been omitted from the causal graph.

Given two languages L,L′ of signature σ, whose semantics is defined over causal mul-
titeams, and formulae φ ∈ L and φ′ ∈ L′, we write φ ≡σ φ

′ if T |= φ ⇔ T |= φ′ holds for all
causal multiteams T of signature σ. We omit the index σ if it is clear from the context.
Similarly, we may write Lσ to emphasise that the signature of L is σ.

We write L ≤ L′ if for every φ ∈ L there is φ′ ∈ L′ with φ ≡ φ′. We write L < L′ if
L ≤ L′ but L′ ̸≤ L. Finally, we write L ≡ L′ if L ≤ L′ and L′ ≤ L. Kσ

φ is the set of all causal
multiteams of signature σ that satisfy φ. Kσ

φ will be (with the exception of contradictory
formulae) a countably infinite set.

F. Barbero and J. Virtema 15:7

A class K of causal multiteams is definable in Lσ if K = Kσ
φ for some φ ∈ Lσ.

A class K is flat if (T−,F) ∈ K iff ({s},F) ∈ K for every s ∈ T−. A class K of causal
multiteams of signature σ has the empty multiteam property, if K includes all empty
causal multiteams of signature σ (we say that a causal multiteam (T−,F) is empty if the
multiteam T− is). A σ-formula φ has one of the above (or to be defined) properties, if Kσ

φ

has it. A language L is flat (resp. has the empty team property), if every φ ∈ L is flat (resp.
has the empty team property). In general, we say that L has a certain property if and only
if each φ ∈ L has it.

The language CO, introduced in [3], is defined by the following BNF grammar:

α ::= Y = y | Y , y | α ∧ α | α ∨ α | α ⊃ α | X = x� α,

where X∪ {Y} ⊆ Dom, y ∈ Ran(Y), and x ∈ Ran(X). It is a language for the description of facts.
We will later introduce extensions that allow us to talk about the probabilities of the facts
that are expressible in CO. Formulae of the forms Y = y and Y , y are literals. Semantics
for CO is given by the following clauses:

T |= Y = y iff s(Y) = y for all s ∈ T−.

T |= Y , y iff s(Y) , y for all s ∈ T−.

T |= α ∧ β iff T |= α and T |= β.

T |= α ∨ β iff there are T1,T2 ≤ T s.t. T−
1 ∪ T−

2 = T−,

T−
1 ∩ T−

2 = ∅,T1 |= α and T2 |= β.

T |= α ⊃ β iff Tα |= β.

T |= X = x� β iff TX=x |= β or X = x is inconsistent.

where Tα is defined simultaneously with the clauses, as previously explained.
The intuitive readings of the conditional formulas α ⊃ β and X = x� β are, respectively,

“After observing (or learning) α, we know that β holds” and “After setting X to x, we know
that β holds”. Some of the semantic clauses for the other connectives may look unusual to
a reader unaccustomed to team semantics, but they are natural lifts of the usual Tarskian
clauses from a setting in which formulas are evaluated on single assignments to a setting
where they are evaluated on a multiplicity of assignments (for an overview of team semantics,
the reader may consult e.g. [12]). As an example, the clause for a disjunction α ∨ β is just
stating that each assignment in T satisfies either α or β. It says so by saying that T can be
split into two parts, one containing assignments that satisfy α and one containing assignments
that satisfy β. This reading of the clauses is made possible by the fact that language CO is
flat. The proof of the following result is similar to that of the analogous result for causal
teams [3, Thm. 2.10].

▶ Theorem 4. COσ is flat and therefore has the empty multiteam property.

In a sense, flatness tells us that CO behaves as a classical language. The probabilistic
languages that we shall consider later will not be flat; probabilistic statements are meaningful
at the level of teams but not at the level of the single assignments.

We also remark that in [3] the operator ∨ was defined without insisting that T−
1 ∩ T−

2 = ∅.
This was done since the paper considered set-based semantics. As our semantics is based on
multisets, the appropriate definition of ∨ uses a union that is sensitive to multiplicities (i.e.
disjoint union). Theorem 4 entails that this distinction is irrelevant for CO, but it will have
an impact in forthcoming works that apply ∨ to formulae φ that do not have the following
property called downward closure: if T |= φ and S ≤ T , then S |= φ.

CSL 2024

15:8 Expressivity of Probabilistic Interventionist Counterfactuals

If we pick a variable X in the signature and a value x ∈ Ran(X), we can abbreviate the
formulae X = x ∨ X , x and X = x ∧ X , x as ⊤, resp. ⊥ (the former is a valid formula
because it just says that the multiteam can be split in two parts, the assignments where X
takes value x and those where it does not). The so-called dual negation of a formula α,
T |= αd iff ({s},F) ̸|= α for all s ∈ T−, is then definable in CO as α ⊃ ⊥.

Next, we introduce a language with probabilistic atoms Pr(α) ≥ ϵ, Pr(α) > ϵ, Pr(α) ≥
Pr(β), Pr(α) > Pr(β), where α, β ∈ CO and ϵ ∈ [0, 1] ∩ Q. The first two are called evaluation
atoms, and the latter two comparison atoms. Probabilistic atoms together with literals
of CO are called atomic formulae. The probabilistic language PCO is then given by the
following grammar:

φ ::= η | φ ∧ φ | φ ⊔ φ | α ⊃ φ | X = x� φ,

where X ⊆ Dom, x ∈ Ran(X), η is an atomic formula, and α is a CO formula. Note that the
antecedents of ⊃ and the arguments of probability operators are CO formulae. The semantic
clauses for the additional operators are given below:

T |= ψ ⊔ χ iff T |= ψ or T |= χ

T |= Pr(α) ≥ ϵ iff T− = ∅ or PT (α) ≥ ϵ

T |= Pr(α) > ϵ iff T− = ∅ or PT (α) > ϵ

T |= Pr(α) ≥ Pr(β) iff T− = ∅ or PT (α) ≥ PT (β)

T |= Pr(α) > Pr(β) iff T− = ∅ or PT (α) > PT (β),

where PT (α) is a shorthand for PT− ((Tα)−).2 The language PCO still has the empty team
property but it is not flat. The definability of the dual negation in CO allows us to introduce
many useful abbreviations:

Pr(α) ≤ ϵ := Pr(αd) ≥ 1 − ϵ

Pr(α) < ϵ := Pr(αd) > 1 − ϵ

Pr(α) = ϵ := Pr(α) ≥ ϵ ∧ Pr(α) ≤ ϵ

Pr(α) , ϵ := Pr(α) > ϵ ⊔ Pr(α) < ϵ

We will see in Section 4 that the ⊃ operator enables us to express some statements involving
conditional probabilities.

We consider the following syntactic fragments of PCO, which preserve the syntactic
restrictions yielded by its two level syntax – that the antecedents of ⊃ and the arguments
of Pr are always CO formulae. P is the fragment without ⊃ and �. P− is the fragment of
P without comparison atoms. P(�) and P(⊃) are fragments of PCO without ⊃ and �,
respectively. Finally, PCOω is the extension of PCO with countable disjunctions of the form⊔

i∈I ψi, where the ψi are PCO formulae.

▶ Example 5. Let T = (T−,F) be a causal multiteam over variables GroundSpeed,
DescentAngle, StructuralIntegrity, SafeLanding depicting data related to landing an Airbus
A350-900 aircraft. The first three variables are numerical, while the last is Boolean. The
structural equation FSL(GS,DA,SI) outputs a Boolean value “true” when a plane of given
structural integrity is expected to make a safe landing at a given speed and angle. The
formula “SI , 0 ⊃ [(GS = 300 ∧ DA = 4) � Pr(SL = false) < 0.01]” expresses that the

2 We remark that in PCO (but not in CO!) is it also possible to define, inductively, an operator that
behaves as classical negation on nonempty causal multiteams (weak contradictory negation). Details
can be found in [6]; we will not use it here.

F. Barbero and J. Virtema 15:9

probability of landing failure is less than 1% when setting a landing speed of 300km/h and
descent angle of 4 degrees, conditional on the plane not being grounded due to structural
condition (SI = 0).

Since we can assume that SI is exogenous (the assessment of structural integrity is not
affected by the speed and angle set during the flight), this statement can be equivalently
written as “(GS = 300 ∧ DA = 4) � (SI , 0 ⊃ Pr(SL = false) < 0.01)”. This would not be
legitimate if SI was causally affected by GS or DA; the operators � and ⊃ do not in general
commute with each other.

3 Expressive power of fragments of PCO

We start by rephrasing the known characterizations from the literature. A number of results
appear in the literature (e.g. in [7]) that characterize causal languages in the context of
causal team semantics. A causal team (of signature σ) is, essentially, a pair (T−,F), where T−

is a team instead of a multiteam (i.e., a set of assignments on Dom instead of Dom ∪ {Key}),
satisfying the conditions given in Definition 1. Each causal multiteam can be seen as a causal
team enriched with a probability distribution. This correspondence is expressed precisely as
follows:

▶ Definition 6. The support of a causal multiteam T = (T−,F) is the causal team Team(T) =
(Team(T−),F), where Team(T−) := {s↾Dom | s ∈ T−}.

It is immediate to see that a language without probabilistic features (such as CO) cannot tell
apart two causal multiteams that have the same support. From this, it is straightforward but
tedious (see the extended version of the paper, [5]) to show that the characterization of CO
given in [7, Theorem 4.4] in terms of causal teams holds unchanged over causal multiteams:

▶ Theorem 7 (Characterization of CO). Let σ be a finite signature, and K a class of causal
multiteams of signature σ. Then K is definable by a COσ formula (resp. a set of COσ

formulae) if and only if K is flat.

PCO is a purely probabilistic language; it cannot tell apart multiteams representing the
same distribution. Given an assignment t and a causal team T = (T−,F), we write #(t,T) for
the number of copies of t in T− and (provided T is nonempty) ϵT

t := #(t,T)
|T− |

for the probability
of t in T . Two causal teams S = (S −,F) and T = (T−,G) are rescalings of each other (S ∼ T)
if F = G and either S − = T− = ∅ or ϵT

t = ϵS
t for each assignment t. A class K of causal

multiteams of signature σ is closed under rescaling if, whenever S ∈ K and S ∼ T , also
T ∈ K . An ideal language for purely probabilistic reasoning should be characterized just
by this condition. It turns out that PCO is not expressive enough for the task, however its
extension with countable global disjunctions PCO

ω is.

▶ Theorem 8 ([4]). A nonempty class K of multiteams of signature σ is definable in PCO
ω
σ

iff K has the empty multiteam property and is closed under rescaling.

The key to the proof is the fact that for any causal multiteam (T−,F) one can write PCO-
formulae ΘT− and ΦF that characterize the properties of having team component T− (up to
rescaling) and function component F , respectively. A set K of causal multiteams is then
defined by the formula ⊔

(T−,F)∈K (ΘT− ∧ ΦF). Since K can be countably infinite, the proof
crucially depends on the use of infinitary disjunctions and gives us no hints on how to obtain
a finitary logic with such expressivity. Actually, a counting argument given in [4] shows that
such a language must be uncountable, and thus that PCO < PCO

ω. Our characterization of
the expressivity of PCO will provide an alternative proof for the strict inclusion.

CSL 2024

15:10 Expressivity of Probabilistic Interventionist Counterfactuals

In order to characterize the expressivity of PCO and its fragments, we need to introduce
some classes of linear equations and closure properties of classes of causal multiteams. For
the latter, we have already seen closure under rescaling and the empty multiteam property.
A class K of causal multiteams of signature σ is closed under change of laws if, whenever
(T−,F) ∈ K and G is a system of functions of signature σ such that (T−,G) satisfies the
compatibility constraint (point 3. of definition 1), then (T−,G) ∈ K .

It is self-evident that the logics without � are closed under change of laws, while the
logics with � are not. Thus, the following hold.

▶ Lemma 9. P−, P, and P(⊃) are closed under change of laws. PCO, P(�), and CO are
not closed under change of laws.

▶ Corollary 10. P < P(�), P(⊃) < PCO, and P(�) ̸≤ P(⊃).

3.1 Monic and signed monic probability sets: P−, P, and P(�)
We characterize the expressivity of fragments of PCO by investigating the families of subsets
of Qn that are definable in the logics. For a given signature σ, we fix an enumeration s1, . . . , sn

of the assignments of Bσ; every nonempty causal multiteam T can then be associated with
a probability vector pT = (ϵT

s1
, . . . , ϵT

sn
) ∈ Qn. Similarly, a class K of causal multiteams of

signature σ has an associated probability set PK = {pT | T ∈ K ,T nonempty }. Note that
pT and PK are, respectively, a point and a subset of the standard n − 1-simplex ∆n−1 (i.e.
the set of points of [0, 1]n ∩ Qn that satisfy the equation ϵs1 + · · · + ϵsn = 1), respectively. To
each formula φ, we can associate a probability set Pφ := PKφ

. Note that if S ,T are causal
multiteams of the same signature and same function component, such that pS = pT , then S
is a rescaling of T . Similarly, a class K of causal multiteams of signature σ that is closed
under change of laws and rescaling is the largest class of causal multiteams of signature σ
having probability set PK .

A linear inequality is an expression of the form a1ϵ1+ · · ·+anϵn ▷ b, where ▷ ∈ {≥,≤, >, <},
a1, . . . , an, b ∈ Q, and ϵ1, . . . ϵn are variables (in the usual algebraic sense). A linear inequality
is signed monic if each of the ai is in {0, 1,−1}. It is monic if each of the ai is in {0, 1}. A
probability set P is (signed) monic if it is a finite union of subsets of ∆n−1 defined by finite
systems of (signed) monic inequalities. A class K of causal multiteams of a fixed signature is
(signed) monic if PK is a (signed) monic probability set.

We will show that being monic and closed under change of laws and rescaling characterizes
expressibility in P−, whereas being signed monic and closed under change of laws and rescaling
characterizes expressibility in P. The full proofs of the following theorem and the subsequent
lemma can be found in the extended version of the paper ([5]). A crucial role in the proofs is
played by the fact that there are only finitely many assignments of signature σ (say s1, . . . , sn)
and that we can describe each such assignment si with a formula α̂i :=W = si(W), where W
lists all the variables in Dom.

▶ Theorem 11. A class K of multiteams of signature σ is definable in P− if and only if K is
monic, has the empty multiteam property, and is closed under change of laws and rescaling.
K is definable in P if and only if K is signed monic, has the empty multiteam property, and
closed under change of laws and rescaling.

Proof (sketch). The fact that P− and P have the empty multiteam property and are closed
under rescaling follows from Theorem 8. Since T |= Pr(α) ▷ ϵ (resp. T |= Pr(α) ▷ Pr(β)) iff
the monic inequality ∑

s∈Team((Tα)−) ϵ
T
s ▷ ϵ (resp. the signed monic inequality ∑

s∈Team((Tα)−) ϵ
T
s +∑

s∈Team((T β)−)(−1) · ϵT
s ▷ 0) holds, we obtain that P− (resp. P) is monic (resp. signed monic)

by induction on the syntax of formulae.

F. Barbero and J. Virtema 15:11

For P−, the right-to-left entailment is proved via a direct translation from finite unions of
finite systems of signed monic inequalities into P− formulae. The union of systems, which
defines the probability set of K , is expressed via a formula of the form φ :=

⊔
1≤ j≤m

∧
i∈I j

ψi,
where each ψi := Pr(

∨
sk∈Bσ |ai

k=1 α̂k) ◁ bi expresses an inequality of the form ai
1ϵ1 + · · ·+ai

nϵn ◁ bi

(it is easy to see that bi can always be assumed to be in [0, 1] ∩ Q). The fact that K has
the empty team property and closure under rescaling guarantees that K is “maximal”, i.e.
it contains all the causal multiteams whose probability set is defined by this system; thus
K = Kσ

φ .
In contrast, for P, we do not construct any general direct translations of signed monic

inequalities into P formulas. However, the signed monic inequalities with constant coefficient
0, say ∑

i∈I ϵi −
∑

j∈J ϵ j ◁ 0 with I ∩ J = ∅, are easily translated as Pr(
∧

i∈I α̂i) ◁ Pr(
∧

j∈J α̂ j). In
order to extend the argument to inequalities with nonzero constant coefficient, we first use
the simplex equality ϵ1 + · · ·+ ϵn = 1 in order to show that we can assume that such inequality
e has at least one null variable coefficient – say, it is of the form a1ϵ1 + · · · + an−1ϵn−1 ◁ b (one
must be careful to ensure that in this simplified inequality we still have ai ∈ {0, 1,−1} and
b ∈ [0, 1] ∩ Q). But now e is equivalent to a system of three inequalities:

a1ϵ1 + · · · + an−1ϵn−1 − ϵn ◁ 0
ϵn ≤ b
ϵn ≥ b

the first of which is expressible in P (since its constant coefficient is zero), while the second
and third are even expressible in P−. ◀

It is not immediate to see whether P− ≤ P is strict. However, by analyzing the geometry
of ∆n−1 we are able show that there are signed monic classes of causal multiteams that are
not monic. The following lemma establishes that not all signed monic probability sets can
be captured by monic inequalities (more specifically, that this happens for sets defined by
a single signed monic inequality). Together with the previous theorem this implies that
P− < P.

▶ Lemma 12. Consider a nonempty probability set P ⊂ ∆n−1 which is defined by an inequality
a1ϵ1 + · · · + anϵn ≤ b, where there are indexes i, j such that ai is 1 and a j is −1, and b is a
rational number in [0, 1]. Then P is not a monic probability set.

Proof (sketch). The projection of the set described in the statement on the (i, j)-plane has
as its frontier a line that is perpendicular to the segment of extremes (0, 1), (1, 0). On the
other hand, monic equalities describe, in this projection, only lines that are either parallel to
this segment or parallel to one of the axis. ◀

Next we turn to characterize the expressivity of P(�). First note that while P(�) is in
general more expressive than P (Corollary 10), if we restrict attention to causal multiteams
with a fixed function component, all occurrences of � can be eliminated from P(�)
formulae (or even PCO formulae). The following result is proven in the extended version of
the paper ([5]).

▶ Proposition 13. Let φ ∈ P(�)σ (resp. PCOσ), and F a function component of signature
σ. Then there is a formula φF ∈ Pσ (resp. P(⊃)σ) such that, for every causal multiteam T
of signature σ and function component F , T |= φ⇔ T |= φF .

Proof (sketch). Write αs for the formula W = s(W). First, for every subformulae of φ of the
form β ⊃ ψ, replace β with ∨

({s},F)|=β αs (this removes occurrences of � from antecedents of
⊃). Next, we use the fact that � distributes over ∧,⊔,⊃ to guarantee that the consequents

CSL 2024

15:12 Expressivity of Probabilistic Interventionist Counterfactuals

of� are atoms. The atoms can be assumed to be probabilistic (since X = x ≡ Pr(X = x) ≥ 1,
and similarly for X , x). Then, we use the equivalences

X = x� Pr(α) ◁ ϵ ≡ Pr(X = x� α) ◁ ϵ

X = x� Pr(α) ◁ Pr(β) ≡ Pr(X = x� α) ◁ Pr(X = x� β)

to ensure that all the occurences of � are inside arguments of Pr. Finally, we replace each
subformula of the form Pr(α) ◁ ϵ with Pr(

∨
({s},F)|=α αs) ◁ ϵ, and similarly for comparison

atoms. ◀

Notice that, for any fixed finite signature σ, there is only a finite number of distinct function
components. We denote the set they form as Fσ.

▶ Theorem 14. Let K be a class of causal multiteams of signature σ. K is definable by a
P(�)σ formula if and only if 1) K has the empty multiteam property, 2) K is closed under
rescaling, and 3) K =

⋃
F ∈Fσ K

F , where each KF is a signed monic set of causal multiteams
of function component F .

Proof. We have already mentioned that there is a PCO formula ΦF characterizing the
property of having function component F . We can obtain an equivalent formula (call it ΨF)
in P(�) by replacing each subformula of ΦF of the form α ⊃ β with Pr(αd ∨ β) = 1 (the trick
works because no consequent of ⊃ in ΦF contains probabilistic atoms).

⇒) Suppose K = Kφ, where φ ∈ P(�)σ. Now define, for each F ∈ Fσ, KF := Kφ∧ΨF ,
where ΨF is as described above. Clearly φ ≡

⊔
F ∈Fσ (φ ∧ ΨF), so Kφ =

⋃
F ∈Fσ K

F .
Now, by Theorem 8, Kφ is closed under rescaling and has the empty multiteam property.

Next, observe that, by Proposition 13, for every F ∈ Fσ there is a formula of Pσ, call it φF ,
which is satisfied by the same causal multiteams of function component F as φ ∧ ΨF is. In
other words, KF is the restriction of KφF to causal multiteams of function component F .
Thus, since KφF is closed under change of laws (Lemma 9), we have PKF = PK

φF
. Now KφF

is signed monic (Theorem 11), and thus by PKF = PK
φF

we conclude that also KF is signed
monic.

⇐) Suppose K is closed under rescaling, has the empty multiteam property and K =⋃
F ∈Fσ K

F for some sets KF as in the statement. Write K̂F for the set of all causal multiteams
of signature σ whose team component appears in KF . It is straightforward then that also K̂F

is closed under rescaling, has the empty multiteam property and is signed monic; however,
K̂F is also, by definition, closed under change of laws. Thus, by Theorem 11, there is a P

formula φF such that K̂F = KφF . Note that, KF is the set of all causal multiteams of KφF

that have function component F . Thus KF = KφF ∧ΨF . Thus K is defined by the P(�)σ
formula ⊔

F ∈Fσ (φF ∧ ΨF). ◀

Note that the sets KF in the statement of the theorem are themselves closed under rescaling
if K is. This immediately follows from the fact that any two causal multiteams (T,F), (S ,G)
with F , G are not rescalings of each other.

3.2 Signed binary probability sets: P(⊃) and PCO

A subset P of ∆n−1 is signed binary if it is a finite union of sets defined by finite systems of
inequalities of the form

c−
∑
i∈I

ϵi + c+
∑
j∈J

ϵ j ◁ b

where I ∩ J = ∅, c−, c+ ∈ Z, c− ≤ 0, c+ ≥ 0, b ∈ Q. Likewise, a class K of causal multiteams of
signature σ is signed binary if PK is.

F. Barbero and J. Virtema 15:13

▶ Lemma 15. Every formula φ ∈ P(⊃) is signed binary.

Proof. The proof proceeds by induction on φ. We only discuss the most difficult case, when φ

is of the form α ⊃ ψ. Write ◁ for any symbol in {≤,≥, <, >}. Using the distributivity of ⊃ over
∧ and ∨, and the equivalences X = x ≡ Pr(X = x) = 1, X , x ≡ Pr(X , x) = 1,X = x� Pr(α) ◁
ϵ ≡ Pr(X = x� α) ◁ ϵ and X = x� Pr(α) ◁ Pr(β) ≡ Pr(X = x� α) ◁ Pr(X = x� β), we
can assume ψ to be a probabilistic atom. Hence we have two cases.

1) Assume ψ is Pr(β) ◁ b. Now T = (T−,F) ∈ Kφ iff either PT (α) ≤ 0 or PT (β | α) ◁ b. The
latter is equivalent to PT (β ∧ α) ◁ b · PT (α), which can be rewritten as∑

s∈Bσ
{s}|=β∧α

ϵT
s ◁ b ·

∑
s∈Bσ
{s}|=α

ϵT
s

where we write e.g. {s} |= α as a shorthand for ({s},F) |= α.
The above can be rewritten as∑

s∈Bσ
{s}|=β∧α

ϵT
s ◁ b ·

(∑
s∈Bσ

{s}|=β∧α

ϵT
s +

∑
s∈Bσ

{s}|=¬β∧α

ϵT
s
)

which again is equivalent to

(1 − b) ·
∑
s∈Bσ

{s}|=β∧α

ϵT
s + (−b) ·

∑
s∈Bσ

{s}|=¬β∧α

ϵT
s ◁ 0. (1)

Now, since b ∈ [0, 1], we have 1 − b ≥ 0 and −b ≤ 0. Then, by multiplying both sides of (1)
by a common denominator of 1 − b and −b, we obtain a signed binary inequality.

On the other hand, the inequality PT (α) ≤ 0 can be rewitten as ∑
{s}|=α ϵs ≤ 0. Thus Pφ is

the union of two sets defined by signed binary inequalities.
2) Assume ψ is Pr(β) ◁ Pr(γ). Now T ∈ Kφ iff either PT (α) ≤ 0 or PT (β | α) ◁ PT (γ | α).

The proof then proceeds as in the previous case. ◀

▶ Theorem 16. A class K of multiteams of signature σ is definable by a formula of P(⊃) if
and only if K is signed binary, has the empty multiteam property and is closed under change
of laws and rescaling.

Proof (sketch). ⇒) By Theorem 8, K is closed under rescaling. Closure under change of
laws follows from Lemma 9. Lemma 15 shows that PK is signed binary. The empty multiteam
property is given by Theorem 4.

⇐) The proof strategy is analogous to that used for the characterization of P (in
Theorem 11), although it involves more difficult calculations. We need to show that every
constraint of the form

c−
∑
i∈I

ϵi + c+
∑
j∈J

ϵ j ◁ b

where I ∩ J = ∅, c−, c+ ∈ Z, c− ≤ 0, c+ ≥ 0, b ∈ Q, can be expressed in P(⊃).
First of all, let us prove it in the special case when b is 0. Write d for c+ − c−. Notice

that −d ≤ c− ≤ 0 ≤ c+ ≤ d. We can also assume that d > 0 (the case when d = 0 is covered
by Theorem 11). Then − c−

d is a rational number in [0, 1], and thus the following is a P(⊃)
formula (where, as before, α̂ j stands for W = s j(W)):(∨

k∈I∪J

α̂k

)
⊃ Pr(

∨
j∈J

α̂ j) ◁ −
c−

d
.

CSL 2024

15:14 Expressivity of Probabilistic Interventionist Counterfactuals

Now we have

T |=
(∨

k∈I∪J

α̂k

)
⊃ Pr(

∨
j∈J

α̂ j) ◁ −
c−

d

⇐⇒ PT (
∨
j∈J

α̂ j |
∨

k∈I∪J

α̂k) ◁ −
c−

d

⇐⇒ d · PT (
∨
j∈J

α̂ j ∧
∨

k∈I∪J

α̂k) ◁ −c− · PT (
∨

k∈I∪J

α̂k)

⇐⇒ d · PT (
∨
j∈J

α̂ j) ◁ −c− · PT (
∨

k∈I∪J

α̂k)

⇐⇒ d
∑
j∈J

ϵT
j ◁ −c−

∑
k∈I∪J

ϵT
k

⇐⇒ c−
∑
i∈I

ϵT
i + (d + c−)

∑
j∈J

ϵT
j ◁ 0

⇐⇒ c−
∑
i∈I

ϵT
i + c+

∑
j∈J

ϵT
j ◁ 0,

as required.
Now let us consider the case when b , 0. Suppose, first, that we have an inequality of the

form c−
∑

i∈I ϵi + c+
∑

j∈J ϵ j ◁ b that satisfies the additional constraint that I ∪ J = {1, . . . , n}, i.e.
it contains all variables. We show that then it is equivalent to an inequality of the same form,
but with coefficient 0 for at least one variable. Assuming that I is nonempty, let us pick a
variable in I (that we may assume wlog to be ϵn). Thus the inequality can be rewritten as:

c−
∑

i∈I\{n}

ϵi + c+
∑
j∈J

ϵ j + c−ϵn ◁ b.

Using the fact that, in ∆n−1, ϵ1 + · · · + ϵn = 1, we can rewrite the inequality as

c−
∑

i∈I\{n}

ϵi + c+
∑
j∈J

ϵ j + c− − c−ϵ1 − · · · − c−ϵn−1 ◁ b

i.e.,∑
j∈J

(c+ − c−)ϵ j ◁ b − c−,

which is of the correct form. In case I is empty, we can perform analogous transformations
to eliminate a variable indexed in J.

Thus we can always assume that an inequality c−
∑

i∈I ϵi + c+
∑

j∈J ϵ j ◁ b (as above) has
coefficient 0 for ϵn. Let k be a positive integer such that kb ∈ Z. Then, it is easy to see that
our inequality is equivalent to the following system:

(kbc−)
∑

i∈I ϵi + (kbc+)
∑

j∈J ϵ j + (kbc−)ϵn ◁ 0

ϵn ≤ − b
c−

ϵn ≥ − b
c−

The first of these inequalities is expressible with a P(⊃) formula by the discussion above. By
theorem 11 the other two inequalities are expressed by P− formulae. ◀

In order to prove that P(⊃) is strictly more expressive than P , we can follow a similar
strategy as for separating P and P−. In other words, we use Theorem 16 together with the
fact that there are signed binary probability sets that are not signed monic, as established
by the following lemma.

F. Barbero and J. Virtema 15:15

▶ Lemma 17. Let P ⊂ ∆n−1 be a probability set defined by a single inequality a1ϵ1+· · ·+anϵn ≤ b,
where 0 , ai, a j ∈ Z and |ai| , |a j|, for some indices i, j. Then P is not signed monic.

Proof (sketch). The proof is analogous to that of Lemma 12, using the fact that the
projection on the (i, j)-plane of the figure described in the statement is neither parallel to
any axis, nor parallel or orthogonal to the segment of extremes (0, 1), (1, 0). ◀

Actually, the lemma immediately yields multiple separation results.

▶ Proposition 18. 1) P < P(⊃), 2) P(⊃) ̸≤ P(�), 3) P(�) < PCO.

We are finally ready to characterize the expressive power of PCO; the proof is analogous
to that of Theorem 14.

▶ Theorem 19. Let K be a class of causal multiteams of signature σ. K is definable by a
PCOσ formula if and only if 1) it has the empty multiteam property, 2) it is closed under
rescaling, and 3) K =

⋃
F ∈Fσ K

F , where each KF is a signed binary set of causal multiteams
of function component F .

By Theorem 8, PCOω formulae may characterize arbitrary probability sets. By Theorem
19, instead, we know that the probability sets of PCO formulae are all definable in terms of
linear inequalities. A strict inclusion of languages immediately follows. An alternative proof
for this using a counting argument was given in [4].

▶ Corollary 20. PCO < PCO
ω.

4 Definability of probabilistic and dependence atoms

Next we briefly explore the relationships of our logics and the probabilistic atoms studied in
probabilistic and multiteam semantics. We consider the dependence atom by Väänänen [38],
and marginal distribution identity and probabilistic independence atoms by Durand et al. [10].

The dependence atom =(X; Y) expresses that the values of X functionally determine the
values of Y. Dependence atoms can be expressed already in P(⊃):

=(X; Y) :=
∧

x∈Ran(X)

⊔
y∈Ran(Y)

X = x ⊃ Y = y

The marginal distribution identity atom X ≈ Y states that the marginal distributions
induced by X and Y are identical. This can be defined in P by

X ≈ Y :=
∧

x∈Ran(X)∩Ran(Y)

Pr(X = x) = Pr(Y = x)∧∧
x∈Ran(X)\Ran(Y)

Pr(X = x) = 0 ∧
∧

y∈Ran(Y)\Ran(X)

Pr(Y = y) = 0.

The conditional probabilistic atoms inherit their semantics from probability theory:

T |= Pr(α | β) ▷ ϵ iff (T β)− = ∅ or PT β (α) ▷ ϵ.

T |= Pr(α | β) ▷ Pr(γ | δ) iff (T β)− = ∅ or (T δ)− = ∅ or PT β (α) ▷ PT δ (β),

and we may also write e.g. Pr(α | β) ▷ Pr(γ) as an abbreviation for Pr(α | β) ▷ Pr(γ | ⊤).
Related to these, the atom X |= ZY (conditional independence atom) states that for any given
value for the variables in Z the variable sets X and Y are probabilistically independent. Its
special case with Z = ∅ is called marginal independence atom. We can define these atoms in
terms of conditional comparison atoms:

CSL 2024

15:16 Expressivity of Probabilistic Interventionist Counterfactuals

X |=Y :=
∧

x∈Ran(X)
y∈Ran(Y)

Pr(X = x) = Pr(X = x | Y = y)

X |= ZY :=
∧

x∈Ran(X)
y∈Ran(Y)
z∈Ran(Z)

Pr(X = x | Z = z) = Pr(X = x | YZ = yz)

Hence the atoms (and the dependence atom expressed as Y |= XY) are expressible in P

extended with the conditional probability comparison atoms. It is an open question whether
the probabilistic independence atoms are already expressible in PCO.

The above definitions of atoms imply that our languages, if enriched with conditional
probability atoms and arbitrary applications of the disjunction ∨, are strong enough to
the express properties of multiteams that are expressible in the quantifier free fragments
of the logics FO(|=) (probabilistic independence logic) and FO(≈) (probabilistic inclusion
logic), over any fixed finite structure. The expressivity and complexity of these logics
have been thoroughly studied in the probabilistic and multiteam semantics literature (see
[10, 11, 14, 19, 20, 21, 39]).

It was observed in [4] that Pr(α | γ) ▷ ϵ and Pr(α | γ) ▷ Pr(β | γ) can be defined by
γ ⊃ Pr(α) ▷ ϵ and γ ⊃ Pr(α) ▷ Pr(β), respectively. The latter result concerns comparison
atoms in which both probabilities are conditioned over the same formula, γ. We establish
that this restriction is necessary, and that Pr(α | γ) ≥ Pr(β | δ) is not, in general, expressible
in PCO. The full proof of the theorem is given in the extended version of the paper ([5]).

▶ Theorem 21. The comparison atoms Pr(α | β) ◁ Pr(γ | δ) and Pr(α | β) ◁ Pr(γ), (where
◁∈ {≤,≥, <, >,=}) are not, in general, expressible in PCO.

Proof (sketch). Due to the equivalence Pr(α | β) ◁ Pr(γ | ⊤) ≡ Pr(α | β) ◁ Pr(γ), it suffices to
prove the theorem for Pr(α | β) ◁ Pr(γ).

Fix a signature σ, δ ∈ [0, 1] ∩ Q and take four distinct assignments si, s j, sk, sl ∈ Bσ. The
proof proceeds by showing that the conjunction

Ξ := Pr(α̂k ∨ α̂i | α̂l ∨ α̂i) ◁ Pr(α̂l ∨ α̂ j) ∧ Pr(α̂i) = δ ∧ Pr(α̂ j ∨ α̂k ∨ α̂l) = 1 − δ

has a probability set that cannot be characterized in terms of systems of linear inequalities, and
thus is not expressible in P(⊃); extending the result to the whole PCO is then straightforward.
Calculation shows that any T satisfies Ξ if and only if the two-variable inequality

2ϵkϵl + 2δϵk + (2δ − 2)ϵl + 2δ2 ▷ 0

holds. Standard geometric techniques (analysis of the homogeneous discriminant) tell us
that, in the intersection of the (k, l)-plane with ∆3, the frontier of the set defined by this
inequality is a segment of a nondegenerate conic (a hyperbola). But, clearly, no linear set
can have a segment of hyperbola as a subset of its frontier. ◀

5 Conclusion

We embarked for a comprehensive study of the expressive power of logics of probabilistic
reasoning and causal inference in the unified setting of causal multiteam semantics. We focused
on the logic PCO that can express probability comparisons in a dataset, and encompasses
interventionist counterfactuals and selective implications for describing consequences of actions
and consequences of learning from observations, respectively. In addition, we considered

F. Barbero and J. Virtema 15:17

the syntactic fragments P−, P, P(⊃), and P(�) of PCO and proved that they form a strict
expressivity hierarchy (see Figure 1 on page 3). Moreover, we discovered natural complete
characterizations, for each of the aforementioned logics, based on the families of linear
equations needed to define the corresponding classes of causal multiteams (satisfying some
invariances); these results are summarized in Table 1 (on page 4). Finally, we established
that conditional probability statements of the forms Pr(α | β) ≤ Pr(γ | δ) and Pr(α | β) ≤ Pr(γ)
are not in general expressible in PCO, and separated PCO from its extension PCO

ω with
infinitary disjunctions.

Analogous to the folklore result that the logic L∞ω can define all classes of finite structures,
it was shown in [4] that the same holds for PCOω with respect to all classes of causal multiteams
that are closed under rescaling and have the empty multiteam property. While any logic that
is expressively complete in this sense is uncountable, it is an interesting task to identify more
expressive finitary languages. We describe some future directions of research:

In the languages we considered, the usage of the strict tensor ∨ was restricted to CO

formulae. What impact would removing this restriction have on the expressivity of
the languages? We conjecture that liberalizing this operator would allow to capture
probability sets described by any linear inequality.
Can (conditional) probabilistic independence atoms be expressed in PCO? We conjecture
the negative in line with [21, Proposition 26], which establishes that it is not expressible
in FO(≈), the probabilistic inclusion logic of [19] (although the proof in [21] relies on the
use of quantifiers).
How can our results be extended to cover infinite signatures? Here one might need to
extend the languages with quantifiers ranging over data values.
Our characterizations cover only logics that express linear properties of data. Can
we generalize our results if some natural source of multiplication, such as conditional
probabilistic independence or the conditional comparison atoms, are added to the logics?
It was shown by Hannula et al. [20] that the so-called probabilistic independence logic is
equiexpressive with a variant of existential second-order logic that has access to addition
and multiplication of reals.
Finally, a promising direction for future work would be to study temporal aspects of
causal inference (see e.g., [25]) via (probabilistic) temporal logics by generalising temporal
team semantics introduced by Krebs et al. [26] and further developed by Gutsfeld et
al. [15].

We conclude by pointing out the formal similarity of our work with some results obtained
for first-order logics with probabilistic dependencies, such as the aforementioned language
FO(≈). Such languages do not formalize causation, and yet we can conjecture that PCO

might be embeddable in FO(≈) (similarly as the language CO is embedded into first-order
logic in [1]). This idea is supported by a result of Hannula and Virtema ([21]) that establishes
that definability in FO(≈) can be reformulated in linear programming. It is however unknown
which exact fragment of linear programming corresponds (in the sense of our Table 1) to
the language FO(≈); such a characterization would give precise limits to the possibility of
embedding results.

References
1 Fausto Barbero and Pietro Galliani. Embedding causal team languages into predicate logic.

Annals of Pure and Applied Logic, pages 103–159, 2022. doi:10.1016/j.apal.2022.103159.
2 Fausto Barbero and Gabriel Sandu. Interventionist counterfactuals on causal teams. In

CREST 2018 Proceedings – Electronic Proceedings in Theoretical Computer Science, volume
286, pages 16–30. Open Publishing Association, January 2019. doi:10.4204/eptcs.286.2.

CSL 2024

https://doi.org/10.1016/j.apal.2022.103159
https://doi.org/10.4204/eptcs.286.2

15:18 Expressivity of Probabilistic Interventionist Counterfactuals

3 Fausto Barbero and Gabriel Sandu. Team semantics for interventionist counterfactuals:
observations vs. interventions. Journal of Philosophical Logic, 50:471–521, 2021.

4 Fausto Barbero and Gabriel Sandu. Multiteam semantics for interventionist counterfactuals:
probabilities and causation. pre-print, 2023. arXiv:2305.02613.

5 Fausto Barbero and Jonni Virtema. Expressivity landscape for logics with probabilistic
interventionist counterfactuals. CoRR, abs/2303.11993, 2023. doi:10.48550/arXiv.2303.
11993.

6 Fausto Barbero and Jonni Virtema. Strongly complete axiomatization for a logic with
probabilistic interventionist counterfactuals. In Sarah Gaggl, Maria Vanina Martinez, and
Magdalena Ortiz, editors, Logics in Artificial Intelligence, pages 649–664, Cham, 2023. Springer
Nature Switzerland.

7 Fausto Barbero and Fan Yang. Characterizing counterfactuals and dependencies over
(generalized) causal teams. Notre Dame Journal of Formal Logic, 63(3), 2022. doi:
10.1215/00294527-2022-0017.

8 Elias Bareinboim, Juan Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s hierarchy
and the foundations of causal inference (1st edition). In Hector Geffner, Rina Dechter, and
Joseph Y. Halpern, editors, Probabilistic and Causal Inference: the Works of Judea Pearl,
pages 507–556. ACM Books, 2022.

9 Rachael Briggs. Interventionist counterfactuals. Philosophical Studies: An International
Journal for Philosophy in the Analytic Tradition, 160(1):139–166, 2012.

10 Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Approxim-
ation and dependence via multiteam semantics. Ann. Math. Artif. Intell., 83(3-4):297–320,
2018. doi:10.1007/s10472-017-9568-4.

11 Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Probabilistic
team semantics. In Flavio Ferrarotti and Stefan Woltran, editors, Foundations of Information
and Knowledge Systems, pages 186–206, Cham, 2018. Springer International Publishing.

12 Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and complexity of
dependence logic. Dependence Logic: Theory and Applications, pages 5–32, 2016.

13 David Galles and Judea Pearl. An axiomatic characterization of causal counterfactuals.
Foundations of Science, 3(1):151–182, January 1998.

14 Erich Grädel and Richard Wilke. Logics with multiteam semantics. ACM Trans. Comput.
Log., 23(2):13:1–13:30, 2022. doi:10.1145/3487579.

15 Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal team
semantics revisited. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022,
pages 44:1–44:13. ACM, 2022. doi:10.1145/3531130.3533360.

16 Joseph Halpern. Actual causality. MIT Press, 2016.
17 Joseph Y. Halpern. Axiomatizing causal reasoning. J. Artif. Int. Res., 12(1):317–337, May

2000.
18 Joseph Y. Halpern. From causal models to counterfactual structures. Review of Symbolic

Logic, 6(2):305–322, 2013. doi:10.1017/s1755020312000305.
19 Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and Jonni Virtema. Facets of

distribution identities in probabilistic team semantics. In European Conference on Logics in
Artificial Intelligence, pages 304–320. Springer, 2019.

20 Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. Descriptive
complexity of real computation and probabilistic independence logic. In Holger Hermanns,
Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
550–563. ACM, 2020. doi:10.1145/3373718.3394773.

21 Miika Hannula and Jonni Virtema. Tractability frontiers in probabilistic team semantics and
existential second-order logic over the reals. Ann. Pure Appl. Log., 173(10):103108, 2022.
doi:10.1016/j.apal.2022.103108.

https://arxiv.org/abs/2305.02613
https://doi.org/10.48550/arXiv.2303.11993
https://doi.org/10.48550/arXiv.2303.11993
https://doi.org/10.1215/00294527-2022-0017
https://doi.org/10.1215/00294527-2022-0017
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1145/3487579
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1017/s1755020312000305
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1016/j.apal.2022.103108

F. Barbero and J. Virtema 15:19

22 James J Heckman and Edward J Vytlacil. Econometric evaluation of social programs, part i:
Causal models, structural models and econometric policy evaluation. Handbook of econometrics,
6:4779–4874, 2007.

23 MA Hernan and J Robins. Causal Inference: What if. Boca Raton: Chapman & Hill/CRC,
forthcoming.

24 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic
Journal of the IGPL, 5:539–563, 1997.

25 Samantha Kleinberg. A logic for causal inference in time series with discrete and continuous
variables. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
943–950. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-163.

26 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics
for the specification and verification of hyperproperties. In Igor Potapov, Paul G. Spirakis,
and James Worrell, editors, 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs,
pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.MFCS.2018.10.

27 David Lewis. Counterfactuals. Oxford: Blackwell Publishers, 1973.
28 Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge

University Press, 2015.
29 Milan Mossé, Duligur Ibeling, and Thomas Icard. Is causal reasoning harder than probabilistic

reasoning? The Review of Symbolic Logic, pages 1–26, 2022.
30 Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New

York, NY, USA, 2000.
31 Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic

books, 2018.
32 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:

foundations and learning algorithms. MIT Press, 2017.
33 Bernhard Schölkopf. Causality for machine learning. In Probabilistic and Causal Inference:

The Works of Judea Pearl, pages 765–804. Association for Computing Machinery, 2022.
34 Peter Spirtes. Directed cyclic graphical representations of feedback models. In Proceedings of

the Eleventh conference on Uncertainty in artificial intelligence, pages 491–498, 1995.
35 Peter Spirtes, Clark Glymour, and Richard N. Scheines. Causation, Prediction, and Search,

volume 81 of Lecture Notes in Statistics. Springer New York, 1993.
36 Robert C. Stalnaker. A theory of conditionals. Americal Philosophical Quarterly, pages 98–112,

1968.
37 Robert H Strotz and Herman OA Wold. Recursive vs. nonrecursive systems: An attempt

at synthesis (part i of a triptych on causal chain systems). Econometrica: Journal of the
Econometric Society, pages 417–427, 1960.

38 Jouko Väänänen. Dependence Logic: A New Approach to Independence Friendly Logic,
volume 70 of London Mathematical Society Student Texts. Cambridge University Press, 2007.

39 Richard Wilke. On the Presburger fragment of logics with multiteam semantics. Ann. Pure
Appl. Log., 173(10):103120, 2022. doi:10.1016/j.apal.2022.103120.

40 Sewall Wright. Correlation and causation. Journal of agricultural research, 20:557–585, 1921.
41 Jiji Zhang. A Lewisian logic of causal counterfactuals. Minds and Machines, 23(1):77–93,

2013.

CSL 2024

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-163
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1016/j.apal.2022.103120

A General Constructive Form of Higman’s Lemma
Stefano Berardi #

Dipartimento di Informatica, Università di Torino, Italy

Gabriele Buriola #

Dipartimento di Informatica, Università di Verona, Italy

Peter Schuster #

Dipartimento di Informatica, Università di Verona, Italy

Abstract
In logic and computer science one often needs to constructivize a theorem ∀f∃g.P (f, g), stating
that for every infinite sequence f there is an infinite sequence g such that P (f, g). Here P is a
computable predicate but g is not necessarily computable from f . In this paper we propose the
following constructive version of ∀f∃g.P (f, g): for every f there is a “long enough” finite prefix g0

of g such that P (f, g0), where “long enough” is expressed by membership to a bar which is a free
parameter of the constructive version.

Our approach with bars generalises the approaches to Higman’s lemma undertaken by Coquand–
Fridlender, Murthy–Russell and Schwichtenberg–Seisenberger–Wiesnet. As a first test for our
bar technique, we sketch a constructive theory of well-quasi orders. This includes yet another
constructive version of Higman’s lemma: that every infinite sequence of words has an infinite
ascending subsequence. As compared with the previous constructive versions of Higman’s lemma,
our constructive proofs are closer to the original classical proofs.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Proof theory; Mathematics of computing → Discrete mathematics

Keywords and phrases intuitionistic logic, constructive mathematics, formal proof, inductive predic-
ate, bar induction, well quasi-order, Higman’s lemma

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.16

Acknowledgements The present study was started while the third author worked within the project
“Reducing complexity in algebra, logic, combinatorics – REDCOM” belonging to the programme
“Ricerca Scientifica di Eccellenza 2018” of the Fondazione Cariverona. The second and the third
author are members of the “Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro
Applicazioni” (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors
wish to thank Daniel Fridlender for his interest and suggestions, and to express their gratitude to
Thierry Coquand, whose original idea set the basis for this work. Last but not least, the anonymous
reviewers’ meticulous reading and constructive critique have been extremely helpful.

1 Introduction: Higman’s Lemma in Constructive Mathematics

By “Higman’s lemma for sequences” we understand the following statement: “If Σ is a
finite alphabet, then for every infinite sequence σ = a0, a1, a2, . . . of words over Σ, there
exists an infinite subsequenceτ = ai0 , ai1 , ai2 . . . of σ such that ai0 ⊑ ai1 ⊑ ai2 , . . ., where
⊑ denotes the embedding order on words” (see later for more details). Given our focus on
finite alphabet, Σ will always denote such a set. Although Higman’s lemma for sequences
has a well-known classical proof, i.e. with classical logic, one can easily check that it has no
constructive proofs; the selection of the weakly increasing, w.i. for short, subsequence cannot
be made recursively in general.

By simply taking the first two elements of any infinite w.i. subsequence, Higman’s lemma
for sequences entails that every infinite sequence a0, a1, a2, . . . of words over a finite alphabet
has a w.i. subsequence of length 2, i.e. there are i0 < i1 for which ai0 ⊑ ai1 . This is

© Stefano Berardi, Gabriele Buriola, and Peter Schuster;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefano.berardi@unito.it
https://orcid.org/0000-0001-5427-0020
mailto:gabriele.buriola@univr.it
mailto:peter.schuster@univr.it
https://doi.org/10.4230/LIPIcs.CSL.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 A General Constructive Form of Higman’s Lemma

one of the consequences of Higman’s lemma for sequences that are provable already with
intuitionistic logic: Murthy and Russell [15] applied combinatorial techniques over finite
sequences; Richman and Stolzenberg [22] proved it for decidable well quasi-orders using
hereditary (inductive) well-foundedness; Coquand and Fridlender [7] resorted to inductive
definitions for the binary case and Seisenberger [24] extended the same approach to the
general case; Schwichtenberg, Seisenberger and Wiesnet [23] extracted the computational
content of Higman’s lemma; and Powell [19] applied Gödel’s Dialectica interpretation.

There are more examples along the same lines. We can ask for a w.i. subsequence of
length k for any k ∈ N whatsoever, for which we take the first k elements of any w.i. infinite
subsequence. But we do not have to stop here; for example, we can construct a non-empty
w.i. subsequence of length len(ai0)+1. In this case we take the first element of the w.i. infinite
subsequence, compute its length n = len(ai0) as a word, and then take n more elements
from the w.i. infinite subsequence. More generally, for every functional F from infinite
sequences to N there is an infinite sequence σ having an infinite subsequence τ the first F (τ)
elements of which are in weakly increasing order. We will deduce all these statements from
an even stronger theorem, the Higman lemma for bars, which we will state and prove with
intuitionistic logic.

The constructive history of Higman’s lemma

The theory of well quasi-orders has found applications in many different fields, and so has
Higman’s lemma, one of this theory’s milestones. Given the concrete character of Higman’s
lemma especially in the case of a finite alphabet, and its applicability in computer science,
the search for a constructive and more perspicuous proof has started very early: not only to
make possible program extraction from proofs, but also for a better understanding both of
the original non-constructive proof of Higman’s lemma and the short and elegant but still
non-constructive proof by Nash-William [16]. To position the results of this paper in the
literature, we now briefly survey the existing constructive approaches to Higman’s lemma
and related results such as Kruskal’s theorem. For an historical survey of well quasi-order
broadly understood we refer to [13].

The presumably first constructive proof of Higman’s lemma was obtained by Murthy and
Russell [15] using a smart manipulation of finite strings. Richman and Stolzenberg [22] then
proved Higman’s lemma by induction on subsets. Coquand and Fridlender [7] instead used
structural induction over inductive definitions; their results were extended by Seisenberger [24].
Fridlender [9] gave a type-theoretic version of Higman’s lemma, and Veldman [28] an inductive
intuitionistic proof. Worthy of mention is Berger’s constructive proof [3] of the equivalence
between Dickson’s lemma and Higman’s lemma for a two-element alphabet.

The connection between Higman’s lemma and programs has been addressed several
times. Schwichtenberg, Seisenberger, and Wiesnet [23] analyzed the computational content
of Higman’s lemma. Powell has successfully applied Gödel’s Dialectica interpretation to
well quasi-orders [20] and Higman’s lemma [19]. Concerning computer-assisted theorem
proving, Berghofer [4], has formalized a constructive proof of Higman’s lemma in Isabelle,
starting from the article by Coquand and Fridlender; more recently, Sternagel [26] used open
induction to obtain a proof in Isabelle/HOL.

Finally, also Kruskal’s theorem [12], the natural extension of Higman’s lemma from strings
to finite trees, has been put under constructive scrutiny by Veldman [28] and Seisenberger [25],
whereas Goubault-Larrecq [10] gave a topological constructive version of Kruskal’s theorem.

S. Berardi, G. Buriola, and P. Schuster 16:3

A Constructive Form of Higman’s Lemma – Now for Bars

Classically, a bar B for lists is a set of finite lists such that every infinite chain of one-step
extensions meets B, i.e. has an element in B. Within intuitionistic logic we need and have a
more perspicuous definition of bar (see later). Higman’s lemma for bars now says: “for every
bar B, every infinite sequence σ of words on a finite alphabet Σ has an infinite subsequence τ

with a weakly increasing prefix τ0 in B”. Here we interpret τ0 ∈ B as that τ0 is “long enough
for our purposes”, with “our purposes” expressed by the choice of B.

E.g. if B is the set of lists of length 2 or more, then Higman’s lemma for bars entails that
every infinite sequence σ of words on Σ has an infinite subsequence τ with a weakly increasing
prefix τ0 in B, i.e. of two or more elements. This is the first of the desired consequences of
Higman’s lemma, all of which can be deduced from Higman’s lemma for bars.

We will prove Higman’s lemma for bars with intuitionistic logic. In fact, we prove a
stronger version in which the requirement “σ is infinite” is replaced by one about the bar B.
During our proof, we are able to constructively interpret several non-constructive classical
theorems of the following form: for every sequence f there is an infinite sequence g such that
P (f, g). Higman’s lemma for sequences is of course a typical case.

For instance, we rephrase the notion of wqo (well quasi-order), the main ingredient of the
classical proof of Higman’s lemma, by quantification on bars; and call “wqo(bar)” this novel
notion of wqo. We have short proofs with intuitionistic logic that the concept wqo(bar) is
closed by unions (provided that the union is a preorder), by products and by right-invertible
morphisms; these are all properties of wqo typically occurring in a classical proof of Higman’s
lemma. With the notion of wqo(bar) at hand, we consider possible to develop a constructive
version of the theory of wqo close to the classical one.

The structure of the article is as follows. In Section §2 we briefly recall the words and
sequences terminology; Section §3 is devoted to prove several properties of bars used in the
rest of the paper; in Section §4 we state Higman’s lemma for bars and prove the desired
corollaries; in Section §5, after some closure properties of the concept wqo(bar), we prove
Higman’s lemma for bars.

2 Lists, Words and Sequences

We start by recalling some well-known terminology about lists, sublists and labels (§2.1), as
well as notions related to alphabets and words (§2.2). This part is straighforward, and the
reader may want to jump to the subsection about the anticone of a word (§2.3).

2.1 Lists and Operations on Lists
Let N be the set of natural numbers and I a given set. We call a list l on I any map l such
that l : [0, n[→ I for some n ∈ N or l : N → I. We set dom(l) = [0, n[, range(l) = l([0, n[) in
the first case and dom(l) = N, range(l) = l(N) in the second case; moreover, we call dom(l)
the set of indexes of l and range(l) the set of elements of l, abbreviating i ∈ range(l) by
i ∈ l. The length of l, denoted len(l), is n ∈ N in the first case and is ∞ (infinite) in the
second case; in the first case we say that the list l is finite and in the second case that l is
infinite. We call each x ∈ range(l) an element of l and write Fin(I) for the set of finite lists
on I, Inf(I) for the set of infinite lists, and List(I) = Fin(I) ∪ Inf(I) for the set of all lists
on I.

We write a finite list l ∈ Fin(I) of length n = len(l) as ⟨l(0), . . . , l(n − 1)⟩, denoting by
Nil = ⟨⟩ the empty list, the unique list of length 0. For l, m ∈ List(I), we write l ⊑ m, or
“l is a sublist of m” for: there is a finite increasing list f : [0, len(l)[→ [0, len(m)[of natural

CSL 2024

16:4 A General Constructive Form of Higman’s Lemma

numbers such that l(i) = m(f(i)) for all i ∈ [0, len(a)[; we call such an f an embedding of
l in m. For instance, if I is the English alphabet, if l = ⟨w, o, r, d⟩, representing the word
“word”, and m = ⟨w, o, r, l, d⟩, representing the word “world”, then l ⊑ m. An embedding of
l in m is f : [0, 4[→ [0, 5[defined by f(0) = 0,f(1) = 1, f(2) = 2 and f(3) = 4. range(f)
does not include 3, the index of the symbol “l” in “world”. Another example: l : N → N
defined by a(i) = 2i is the list of all even numbers, m : N → N defined by m(i) = i is the list
of all natural numbers, and f(i) = 2i is an embedding from l to m. Roughly speaking, we
have l ⊑ m if and only if we can obtain l by skipping zero or more elements from m, without
changing the order of the elements of b.

If I, J are sets, then I × J = {⟨x, y⟩ | x ∈ I, y ∈ J} denotes their Cartesian product. A
binary relation R on I, J is given by a subset of I × J and we write R−1 for the inverse
binary relation {⟨y, x⟩∈J × I | ⟨x, y⟩ ∈ R}, using the notation R(x, y) or xRy for ⟨x, y⟩ ∈ R.
If X is a set, then the R-upward cone of X, denoted R(X), is the set of y ∈ J such that
∃x ∈ X.R(x, y); often abbreviating “upward cone” by “cone”. If x ∈ I, we write R(x) for
R({x}), and we call R(x) the R-cone of x in J ; moreover, we call J \ R(x) the anticone of x

in J : it is the cone of x with respect to the complement in I × J of the relation R.
We write ⊑I,J for the binary relation {⟨l, m⟩ ∈ Fin(I) × Fin(J) | l ⊑ m} defined by the

sublist predicate restricted to Fin(I) × Fin(J) and we write ⊑I for ⊑I,I and ⊒I,J for the
inverse binary relation {⟨l, m⟩ ∈ Fin(I) × Fin(J) | l ⊒ m}

For i ∈ N, we define the restriction l⌈i ∈ Fin(I) of l to [0, i[by (l⌈i)(j) = l(j) for all
j < len(l), j < i and len(l⌈i) = min(len(l), i). When l is a restriction of some (possibly
infinite) list m, then we say that l is a prefix of m and we write l ⩽ m.

We define the concatenation m = l⋆l′ of two lists l, l′ with l finite by: m(i) = l(i)
for all i < len(l) and m(len(l) + j) = l′(j) for all j < len(l′). By definition we have
⟨l(0), . . . , l(n−1)⟩⋆⟨l′(0), . . . , l′(m−1), . . .⟩ = ⟨l(0), . . . , l(n−1), l′(0), . . . , l′(n′ −1), . . .⟩. The
length of m is len(l) + len(l′) if l′ is finite and ∞ if l′ is infinite. If m = l⋆l′ for some
l, l′ ∈ Fin(I), then we say that l′ is a suffix of m.

Given l, m ∈ Fin(I), we write l <1 m if m = l⋆⟨i⟩ for some i ∈ I, i.e. m is obtained by
adding the element i to the end of l. We write < for the transitive closure of the relation <1.
Remark that the prefix relation ⩽ is the reflexive closure of <.

2.2 Alphabet, Words and Sequences
A finite alphabet Σ is any finite set Σ in bijection with [0, n[for some n and through some
map f . Equality on Σ is provably decidable with intuitionistic logic, because i = j in Σ if and
only if f(i) = f(j) in N. We call the elements of Σ “symbols” of the alphabet, and we denote
them with the letters a, b, c and their variants, a′, a1, . . . the basic example is Σ = {0, 1}. A
word on Σ is given by a finite list on Σ and we write Σ∗ = Fin(Σ) for the set of words on
Σ. We use nil for the empty word in Σ∗, this is just another name for Nil = ⟨⟩, and we
denote words with the letters v, w, z and their variants, v′, v1, . . .; moreover, with a slight and
harmless abuse of notation, we use the expression c∈w and c /∈w to denote respectively that
c is, or is not, one of the letters of w. A “symbol” could be anything, therefore we could use
“finite set” for “alphabet” and “finite list on a finite set” for word, but it is customary to use
“alphabet” and “word” in the context of Higman’s lemma, because the intended application
of the Lemma are the words of an alphabet. If v, w ∈ Σ∗, when v ⊑ w we say that v is a
subword of w and w a superword of v.

We introduce abbreviations used only for words. If c1, . . . , cn ∈ Σ, we abbreviate the
word w = ⟨c1, . . . , cn⟩ with w = c1 . . . cn, written without spaces inside. If v, w ∈ Σ∗, we
abbreviate v⋆w with the juxtaposition vw. If c ∈ Σ and w ∈ Σ∗, we abbreviate ⟨c⟩⋆w by cw,
and w⋆⟨c⟩ by wc.

S. Berardi, G. Buriola, and P. Schuster 16:5

We call a “sequence of words” on Σ, just a “sequence” for short, any list on Σ∗. A
sequence is finite if it is a finite list and it is infinite if it is an infinite list. Again, we could
use “list of words” as well, but it is customary to say “sequence”. Within this terminology,
Fin(Σ∗) and Inf(Σ∗) are the set of finite and infinite sequences on Σ∗. Finally, we adopt
the following notation rule: finite sequences are denoted by Latin letters, whereas infinite
sequences by Greek letters.

2.3 Anticone and Slice of a Word
In this subsection we characterize the words which are superwords of a given word and those
which are not. Let us fix v ∈ Σ∗. We recall that ̸⊑Σ(v) denotes the anticone of v, which is
the set of all w ∈ Σ∗ such that v ̸⊑ w. The first step in our proof of Higman’s lemma is to
characterize the words in the anticone of v. To this aim, we need one preliminary step. We
introduce a smaller set of words SliceΣ(v) ⊆ Σ∗, dubbed the slice of v, consisting of all
words w ∈ Σ∗ for which v is minimal among the words not embeddable in w.

▶ Definition 1 (Slice of v). For each word v ∈ Σ∗ we define SliceΣ(v) as the set of words
in Σ∗ which are superwords of all v′ < v, but are not superwords of v.

We characterize the words in SliceΣ(v). We have SliceΣ(nil) = ∅, because all words
are superlists of nil. Assume that v = c0 . . . ck−1 is not empty, that is, that k ⩾ 1. Then by
definition unfolding we have:

SliceΣ(v) = {w ∈ Σ∗ | (c0 . . . ck−2 ⊑ w) ∧ (c0 . . . ck−1 ̸⊑ w)}

To say otherwise, SliceΣ(v) = ⊑Σ(c0 . . . ck−2) ∩ ̸⊑Σ(c0 . . . ck−1), which is the set of
words in Σ∗ which are superwords of c0 . . . ck−2 but not of c0 . . . ck−1. We provide a detailed
description of words in SliceΣ(v). Let us abbreviate Σi = Σ \ {ci}: then Σ∗

i is the set of
w ∈ Σ∗ such that ci ̸∈ w. We will prove that the words in SliceΣ(v) are exactly all words of
the form w = w0c0w1c1 . . . ck−2wk−1, such that ci ̸∈ wi, that is, such that wi ∈ Σ∗

i , for all
i < k. Such a decomposition will be unique and, for all i < k, it will define a map αi such
that wi = αi(w). We first prove that we have a slightly different decomposition for the words
of the cone of v, then we prove the required decomposition for the words of SliceΣ(v).

▶ Lemma 2 (Characterization of cone and of slice). Let v = c0 . . . ck−1, w ∈ Σ∗.
1. Cone. If v is embedded in w through f , then there is a unique decomposition w =

w0c0w1c1 . . . wk−1ck−1wk, such that ci ̸∈ wi, for all i < k. We have no requirement for
wk. Furthermore, if

g(i) = len(w0c0w1c1 . . . ci−1wi)

for all i < k, then g is the minimum embedding of v in w in the point-wise ordering:
g(i) ⩽ f(i) for all i < k.

2. Slice. If k ⩾ 1, then SliceΣ(v) is the set of all words w such that w =
w0c0 . . . wk−2ck−2wk−1 and ci ̸∈ wi for all i < k. The decomposition of w if it exists it is
unique.

From the uniqueness of the decomposition of w ∈ SliceΣ(v) we define the maps αi(w)
for i < len(v).

▶ Definition 3 (The maps αi). Assume that v = c0 . . . ck−1, k ⩾ 1 and i ∈ N, i < k. Let us
abbreviate Σi = Σ \ {ci}. Assume that w = w0c0 . . . wk−2ck−2wk−1 and ci ̸∈ wi for all i < k.
We define αi : SliceΣ(v) → Σ∗

i by αi(w) = wi.

CSL 2024

16:6 A General Constructive Form of Higman’s Lemma

If X and Y are sets with binary relations R and S, respectively, then by a morphism
f : (X, R) → (Y, S) we understand a map f : X → Y such that if xRx′, then f(x)Sf(x′).

The “product” α of the αi in Def. 3 defines a bijection, whose inverse is a morphism for
⊑; the map α plays a crucial role in the proof of Higman’s lemma.

▶ Lemma 4 (Product map and Slices). The product map α = α1 × . . . × αk : SliceΣ(v) →
Σ∗

0 × . . . × Σ∗
k−1, defined as α(w) = (α0(w), . . . , αk−1(w)), is a bijection. Its inverse α−1 is

a morphism from (Σ∗
0 × . . . × Σ∗

k−1, ⊑ × . . . × ⊑) to (SliceΣ(v), ⊑).

Now we can characterize the anticone ̸⊑Σ(v) as a finite union of slices SliceΣ(v′).

▶ Lemma 5 (Anticone). ̸⊑Σ(v) is the union of all SliceΣ(v′) for v′ ⩽ v.

These are all the properties we need about words, for what concerns bars we refer to the
next section.

3 Bars: Definition and Properties

In this section we define bars and their related notions, proving with intuitionistic logic the
properties required in the rest of the paper. The strongest property says that the Cartesian
product of barred sets is barred by the union of the inverse image of the two projections. It
is worth noticing that if we consider the empty bar, then from each result in this section
about bars (except for “monotonicity”, which only makes sense for bars) we obtain some
well-known result about well-founded sets.

3.1 Quasi-orders, Labels, Well-founded Relations and Bars
A quasi-order (P,⩽) is a set P with a transitive and reflexive relation ⩽; a quasi-order (P,⩽)
is a partial order if ⩽ is antisymmetric. A sequence (pk)k, finite or infinite, over (P,⩽) is
weakly increasing, for short w.i., if, for every indices i ⩽ j, we have pi ⩽ pj .

A labelling of I on P is a map φ : I → P . A length n list l = ⟨l(0), . . . , l(n − 1)⟩ ∈ Fin(I)
can be turned into a list φl = ⟨φl(0), . . . , φl(n − 1)⟩ ∈ Fin(P) on P , by composing with the
labelling φ of I. When I = P , we also consider the identical label φ = id, in which the list
of labels of a list is the list itself. We write Incr(⩽, φ, I) for the set of finite lists l ∈ Fin(I)
such that φl is a weakly increasing list in P with respect to ⩽.

We say that B ⊆ Fin(I) is <1-closed, or closed by one-step extension, if for all l ∈ B,
la <1 m we have m ∈ B. Being closed by one-step extension is the same than being closed
by ⩽ (by extension).

We define now the notions of a (hereditarily) well-founded set (see for instance [14,17,18])
and of a barred set, both given with respect to a given binary relation R. Our definitions are
classically equivalent to the definition “all R-decreasing sequences intersect the bar” but in
intuitionistic logic they allow to derive more results. Our bars generalize Troelstra’s definition
of bar ([27], page 77, Def. 1.9.20).

We notice that the word inductive is often used as a synonimous of hereditary.

▶ Definition 6 (Well-founded and Barred Sets). Let P , X, B be sets and R be a binary
relation.
1. P is X, R-hereditary whenever, for all x ∈ X, if for all x′ ∈ X with x′Rx we have x′ ∈ P ,

then x ∈ P .
2. X is R-well-founded if for all P X, R-hereditary such that P ⊆ X we have P = X.
3. B bars X, R if for all P X, R-hereditary such that B ∩ X ⊆ P ⊆ X we have P = X.
4. B bars x in X, R if for all P X, R-hereditary such that B ∩ X ⊆ P ⊆ X we have x ∈ P .

S. Berardi, G. Buriola, and P. Schuster 16:7

Some comments on these definitions are in order. We already stressed that “X, R-
hereditary” is exactly “X, R-inductive”. This is the word chosen for instance in [2]. Next, we
remark that B bars X, R if and only if B bars x in X, R for every x ∈ X.

In general, the subset consisting of the x ∈ X such that B bars x in X, R is defined as
the intersection of all X, R-hereditary P ⊆ X such that B ∩ X ⊆ P ; and one can easily
check that this intersection itself is X, R-hereditary. Hence “B bars x in X, R” coincides
with the predicate B ∩ X | x from [7,8]: that is, the least X, R-hereditary predicate on X

which contains B ∩ X. B is often called the inductively defined predicate from X, R.
So “B bars x in X, R” can be interpreted as “x is accessible from B in X, R”: for B = ∅

this is nothing but the accessibility predicate from [5]. Accordingly, X is R-well-founded if
and only if X, R is barred by B = ∅, or barred by any B such that B ∩ X = ∅.

In Troelstra ([27], page 77, Def. 1.9.20) the definition of bar is given with X = the set
of all lists of natural numbers and R = the one-step extension; it is also assumed that B is
either decidable or closed by extensions. But the main difference is that the definition of bar
is given as in classical mathematics, B is a bar if all infinite lists of natural numbers have
some prefix in B. Instead, we defined B as the intersection of all X, R-hereditary properties,
since we find this version more suitable for constructive proofs; this is the typical definition
in the context of generalized inductive definitions [1, 21].

In the case we do not mention it, by R we mean >1, the reverse of the one-step extension
relation. In this case we say that B bars l in X, respectively that B bars X, meaning that
B bars l in X, >1, respectively that B bars X, >1.

A subset B of X is said to be R-downward-closed if, for all x ∈ B, if yRx, then y ∈ B.
We have a puzzling point to stress here, if R =>1, then R-downward-closed in fact means
that for all x ∈ B if y >1 x , then y ∈ B. That is, “R-downward-closed” in this case means
“closed by one-step extensions”. The reason is that in the literature, set of lists are often
used to represent trees, and in the case of trees, it is customary to consider “smaller” a
one-step-extension of a node of a tree, i.e. downward trees. We will still use the word
“downward-closed” in this case, because it is a well-established terminology for inductive
reasoning, but we will point out that “downward-closed” in this case means “closed by
one-step extensions”.

A last warning. In our definition, bars for set of lists do not have to be closed by extensions.
For instance, the set B of all finite lists on I having odd length is a bar for the set of all lists
on I and >1, because each list is either odd and barred by B, or has all one-step extensions
odd and barred B, and in this case is barred because being barred is an hereditary predicate.
Yet, each one-step extension of a list in B is some even length list, which is not in B. Closure
of a bar for a set of lists by list extension is an useful feature in some proofs, nevertheless it
is not strictly required in most cases.

3.2 Basic Properties of Bars
In this subsection, we derive some basic properties for bars, requiring little more than
definition unfolding.

An R-descending chain in X is a finite or infinite list x0R−1x1R−1x2R−1 . . . of elements of
X. For instance, a <-descending chain in N is any (necessarily finite) list x0 > x1 > x2 > . . .

of natural numbers. We will prove that if B bars X, R, then every infinite R-descending chain
in X intersects B. Using classical Logic, and some choice, the two properties are equivalent;
but within intuitionistic logic, we only have the implication from the former to the latter.1

1 We sketch a folk-lore proof. There is a model of Intuitionistic Logic in which all chain are recursive, while
some order < on some X has all infinite recursive <-descending chain finite and some non-recursive

CSL 2024

16:8 A General Constructive Form of Higman’s Lemma

▶ Proposition 7 (Infinite R-descending chains). Let X, B be sets and R be a binary relation.
1. X is X, R-hereditary.
2. The intersection ∩F of any inhabited family F of X, R-hereditary sets is X, R-hereditary.
3. the predicate “B bars x in X, R” on x ∈ X is between B ∩ X and X and it is itself

X, R-hereditary.
4. If B bars X, R, then every infinite R-descending chain in X intersects B in an infinite

set of indexes.

If B bars X, R, then we can prove that a property P ⊆ X holds for all x ∈ X by bar-
induction on B, X, R. Bar-induction is the following principle. Assume that P ⊆ X and:
(i. base case) for all x ∈ B ∩ X we have x ∈ P ; (ii. inductive case) if for all yRx, y ∈ X we
have y ∈ P , then x ∈ P . Then we conclude that P = X. As an example, Proposition 7.4 is
proved by bar-induction on B, X, R.

We give an interpretation of a proof by bar-induction of some property P on X. We have
to think of B ∩ X as the set of elements for which we can prove the property P directly.
The one-step extension yRx of a sequence x are all elements “smaller” than x and in the
inductive step of bar-induction, we have proved that if all elements “smaller” than an element
x are in P , then x is in P . Eventually, if B bars X, R, then we conclude that P = X.

A tool for proving that B bars X, R is the notion of “simulation”. We say that x′ is an
R-predecessor of x if x′Rx. Roughly speaking, V ⊆ X × Y is a simulation between X, R and
Y, S if whenever two elements are related by V , then any R-predecessor of the first element
is V -related with some S-predecessor of the second element.

▶ Definition 8. We say that V ⊆ X × Y simulates X, R in Y, S if for all x, x′ ∈ X, y ∈ Y ,
if x′Rx and xV y, then there is some y′ ∈ Y , y′Sy such that x′V y′.

We will prove that a simulation V , when V is everywhere defined, moves bars backwards
from Y to X. By this we mean: if B bars Y, S, then V −1(B) bars X, R. In particular,
simulation moves well-foundedness backwards: if we take B = ∅, we obtain that if Y is
S-well-founded then X is R-well-founded. We will prove the same result for morphisms; that
is, if f : X → Y maps pairs related by R into pairs related by S, then f−1 maps bars for
Y, S into bars for X, R.

▶ Lemma 9 (Simulation Lemma). Let X, Y, B, C be sets and R, S be binary relations.
1. (simulation) Assume that V ⊆ X × Y simulates X, R in Y, S, that V is everywhere

defined, i.e., for every x∈X there exists y ∈Y such that xV y, and that C bars Y, S; then
B = V −1(C) bars X.

2. (morphism) Assume that f : X, R → Y, S is a morphism and C bars Y; then f−1(C)
bars X.

Now we prove that, if we extend a bar and we reduce the barred set and the relation, then
the fact of being a bar is preserved. Choosing the empty bar, we obtain a well-known result
for well-founded relations, namely well-foundedness is preserved by moving to a subrelation.
To say otherwise: if X is R-well-founded, with Y ⊆ X and S ⊆ R, then Y is S-well-founded.

▶ Lemma 10 (Monotonicity and Antimonotonicity). Let X, Y, B, C be sets, and R, S binary
relations.
1. (monotonicity) If B bars X, R and B ∩ X ⊆ C ∩ X, then C bars X, R.
2. (antimonotonicity) If B bars X, R and Y ⊆ X, S ⊆ R, then B bars Y, S.

infinite <-descending chain infinite, with set of elements C. In this model all infinite <-descending
chain in X intersects ∅, because no infinite <-descending chain exists. Yet, the set P = X \ C is
X, <-hereditary while P ̸= X. Thus, it is not true that ∅ bars X, R.

S. Berardi, G. Buriola, and P. Schuster 16:9

For every family of sets Yx indexed by x∈X we write Σx∈XYx for the set of pairs (x, y)
such that x∈X and y ∈Yx.

Now let R be a binary relation, and S = {Sx}x∈X an indexed family of binary relations
on Y . We can think of S as a ternary relation such that S(x, y′, y) ⇔ Sx(y′, y) for all x∈X

and y′, y ∈ Y . The lexicographic product R × S is the relation comparing (x′, y′) with (x, y)
according to xRx′, or, if x = x′, according to ySxy′. Formally:

(x′, y′)(R × S)(x, y) ⇔ x′Rx ∨ (x′ =x ∧ y′Sxy).

R × S is a partial order if R and all Sx are partial orders, in this case R × S is called the
lexicographic order on pairs.

Assume that the dependency on x ∈ X is trivial, that is, for some Z, T and for all x ∈ X

we have Yx = Z, Sx = T . In this case we write R×T for R×S. By definition unfolding, R×T

is a relation on Σx∈XYx = X × Z defined by (x′, y′)(R × T)(x, y) ⇔ x′Rx ∨ (x′ = x ∧ y′Ty).
With the next lemma we define a bar D for Σx∈XYx, R × S. When the dependency on

x ∈ X is trivial, D is a bar for X × Z, R × T . Our result generalises [14, Chapter I, Theorem
6.3], which is, in our terminology, the special case when D is the empty bar.

▶ Lemma 11 (Lexicographic Product). Let X, Y, B and Cx for x ∈ X be sets, R a binary
relation and S a ternary relation. Suppose that B bars X, R, and that Cx bars Yx, Sx for all
x ∈ X. Let D be the set of all pairs (x, y) ∈ Σx∈XYx such that x ∈ B or y ∈ Cx.
1. D bars Σx∈XYx with R × S, the lexicographic product of R, S.
2. If for some Z, T and for all x ∈ X we have Yx = Z, Sx = T , then D bars X × Z, R × T .

4 Higman’s Lemma for Bars

In this section, we state Higman’s lemma for bars, which is a constructive version of Higman’s
lemma for subsequences, and we argue why this version is stronger with intuitionistic logic
than the versions proposed until now.

Let (P,⩽) be a partial order. For a given labelling φ : I → P , we recall that we write
Fin(I) for the set of finite lists in I and Incr(φ, I) for the subset Incr(⩽, φ, I) of Fin(I)
consisting of the finite lists ℓ in I such that φℓ is a weakly increasing list on P for the order ⩽.
We can now introduce the constructive version wqo(bar) of the notion of wqo.2 A quasi-order
(P,⩽) is wqo(bar) if for every set X ⊆ Fin(I), a bar B for the subset of X consisting of
all w.i. lists (those in Incr(φ, I)) is a bar for the whole of X, provided that X is closed by
sublists and B by superlists.

▶ Definition 12 (Well quasi-order with bars). A quasi-order (P,⩽) is called wqo(bar) if

B bars X ∩ Incr(φ, I) =⇒ B bars X (1)

for all labellings φ : I → P of I by P , for every subset X ⊆ Fin(I) closed by I-sublists and
for every subset B ⊆ Fin(I) closed by I-superlists.

As before, “B bars . . . ” is meant for the converse >1 of the one-step extension order <1 on
Fin(I).

Classically, (1) means that every infinite <1-increasing chain σ : N → X meets B if this
is the case already for any such σ for which in addition we have φσ(0) ⊑ φσ(1) ⊑ . . . Within
classical logic, condition (1) is equivalent to the more commonly used notion of wqo(set): for
every infinite list σ : N → Σ∗ there is a an infinite ⊑-weakly increasing sublist τ : N → Σ∗.

2 For a constructive comparison of the customary concepts of wqo we refer to [6].

CSL 2024

16:10 A General Constructive Form of Higman’s Lemma

We focus on partial orders P = Σ∗, given by the set of words for a finite alphabet Σ,
with the subword order ⊑ as ⩽, and we prove that:

▶ Theorem 13 (Higman’s lemma for bars). If Σ is a finite alphabet, then Σ∗ is a wqo(bar).

We postpone the proof of Theorem 13 to §5. In the rest of this section we derive with
intuitionistic logic some corollaries of Theorem 13, in order to show the interest from an
constructive viewpoint of stating the result in this form.

Our corollaries are about functionals. We add a bottom element ⊥ to N, then we consider
partial and total continuous functional F : Inf(Σ∗) → N∪ {⊥} on infinite sequences of words.
We take the canonical topology on Inf(Σ∗) → N∪ {⊥}.3 F maps infinite sequences of words
in N∪ {⊥}. F continuous means that F , when convergent, uses only a finite part of its input.
Informally, a partial functional F explores larger and larger finite prefixes of an infinite
sequence of words, until F finds a prefix long enough to compute some n ∈ N. Formally, we
define F as a map on finite lists, which can return the bottom element ⊥, and if it returns
n ∈ N on a finite list l then returns the same n on all extensions of l. If σ is infinite, then
F (σ) = n if and only if F (l) = n for some finite prefix l of σ. Classically, F is called “total” if
F returns some n ∈ N on all infinite lists. In order to make possible proofs with intuitionistic
logic, we define totality through a bar instead.

▶ Definition 14.
1. The strict order ≺ on N ∪ {⊥} is defined by ⊥ ≺ n for all n ∈ N and no comparison

between two natural numbers. ⪯ is the associated weak order.
2. A partial continuous functional is a map F : Fin(Σ∗) → N ∪ {⊥} which is monotone with

respect to the prefix order ⩽ and ⪯.
3. A partial continuous functional F is (bar-)total if F −1(N) bars Fin(Σ∗).
4. If F is a total continuous functional, then its canonical extension to all σ ∈ Inf(Σ) is

given by F (σ) = n if for some finite prefix l of σ, we have F (l) = n.4

▶ Proposition 15. If F is bar-total and σ ∈ Inf(Σ), then F (σ) exists, it is in N and it is
unique.

Proof. . From F −1(N) bar of Fin(Σ∗) and Lemma 7.4, every infinite list σ has some finite
prefix l in the bar F −1(N), therefore F (σ) = F (l) = n ∈ N for some n ∈ N. The value n is
unique: if F (σ) = F (l′) = n′ ∈ N for another finite prefix of σ, then either l ⩽ l′ or l′ ⩽ l,
therefore F (l) ⪯ F (l′) or F (l′) ⪯ F (l), that is, n ⪯ n′ or n′ ⪯ n. In both cases we conclude
n = n′. ◀

Thus, if F is bar-total, then F is “total” with the usual classical definition: F returns some
n ∈ N on all infinite lists. Classically, the reverse implication holds, but with intuitionistic
logic bar-total is a stronger property.5 From now on, by “total” we will always mean bar-total.

3 For any l ∈ Inf(Σ∗), we define Ol = {m ∈ Inf(Σ∗) | l ⩽ m}; we then take on N the discrete topology,
on Inf(Σ∗) the topology generated by the sets Ol with l ∈ Inf(Σ∗) and the function topology on
Inf(Σ∗) → N ∪ {⊥}.

4 The idea is that we can approximate an element of Inf(Σ) considering all its initial segments which are
elements of Fin(Σ∗).

5 We claim that there is some recursive functional F which is defined on all recursive sequences, but
returning ⊥ on some non-recursive sequence. The proof uses the folk-lore result there is some recursive
tree, whose recursive branches are all finite, but having some infinite non-recursive branch.

S. Berardi, G. Buriola, and P. Schuster 16:11

Let us fix a total functional F and a finite alphabet Σ. Higman’s lemma for subsequences
implies that for every infinite list σ over Σ∗, there is an infinite sublist τ ⊑ σ whose first
F (τ) elements are in w.i. order. Classically, it is enough to take any infinite w.i. sub-list
τ of σ and then a finite prefix l of F (τ) elements. We call “F -long” the prefix of τ with
F (τ)-elements.

Informally speaking, this result means that we can provide infinite sublists τ having a
w.i. prefix of any given length, with the length F (τ) we require described by some bar-total
continuous functional F applied to the very sublist τ we are defining. We can provide a proof
with intuitionistic logic of this result as an immediate corollary of Higman’s lemma for bars.

▶ Corollary 16 (sublists with an F -long w.i. prefix). Let Σ be a finite alphabet and F :
Fin(Σ∗) → N ∪ {⊥} a bar-total continuous functional. Then every infinite sequence of words
σ ∈ Inf(Σ∗) has an infinite subsequence τ with the first F (τ) elements in w.i. order, i.e. such
that τ has an F -long w.i. prefix.

Proof. Let φ = idI where I = Σ∗. Set X0 = Incr(φ, I) and X = Fin(I). Let B0 = {ρ ∈
X |F (ρ) ∈ N}. By the hypotheses on F , this B0 bars X, and is upwards closed in X for the
prefix order ⩽. By the antimonotonicity of bars (Lemma 10.2), B0 also bars X0 ⊆ X.

Let B1 = {ρ ∈ B0 ∩ X0 | len(ρ) ⩾ F (ρ)}. Claim: B1 bars X0. To prove this, set
P = {ρ ∈ X0 | B1 bars ρ}. Then the Claim means P = X0, which we show by bar induction
with the bar B0 for X0. Since P is hereditary (Proposition 7), which is the induction step, we
only need to verify the base case B0 ∩X0 ⊆ P . To this end we show ρ ∈ P for all ρ ∈ B0 ∩X0
by induction on f(ρ) = max(0, F (ρ) − len(ρ)).

Case f(ρ) = 0: Then F (ρ) ⩽ len(ρ) and thus ρ ∈ B1 ⊆ P .
Case f(ρ) = n + 1: For every ρ′ ∈ X0 with ρ <1 ρ′ we have len(ρ′) = len(ρ) + 1, and

F (ρ) = F (ρ′) by continuity, so f(ρ′) = n. In addition, ρ′ ∈ B0 (because ρ ∈ B0 and B0 is
upwards closed for ⩽ ⊇ <1); whence ρ′ ∈ P by induction. As P is hereditary, ρ ∈ P follows.

This ends the proof of the Claim.
Now let B = {ρ ∈ X | ∃η ⊑ ρ (η ∈ B1)}. Then B is upwards closed for ⊑, i.e. closed by

superlists; trivially, X is closed by sublists; and B bars X0 = X ∩ Incr(φ, I). The latter
holds by the monotonicity of bars (Lemma 10.1); in fact B1 bars X0 by the Claim, and
B1 ⊆ B. In all, Higman’s lemma for bars (Theorem 13) applies, and yields that B bars X.

Now let σ ∈ Inf(I). Since B bars X, the infinite list σ has a finite prefix σ0 ∈ B. By
definition of B, there is τ0 ⊑ σ0 such that τ0 ∈ B1, which is to say that τ0 ∈ X0 = Incr(φ, I),
F (τ0) ∈ N and len(τ0) ⩾ F (τ0). We extend τ0 to an infinite sublist τ of σ. From F (τ0) ∈ N
we get F (τ) = F (τ0) ⩽ len(τ0). Hence the first F (τ) entries of τ form a prefix of τ0 and
thus are in w.i. order. ◀

▶ Example 17. Let σ ∈ Inf(Σ∗) be an infinite sequence of words over a finite alphabet Σ.
1. For all k ∈ N there is some w.i. length k subsequence of σ.
2. There are w.i. subsequences τ1, τ2, τ3 of σ which have length len(τ1(0))+1, len(τ2(0))2 +1

and 2len(τ3(0)).

Proof. Apply Corollary 16 to the functionals defined by F0(ρ) = k, F1(ρ) = len(ρ(0)) + 1,
F2(ρ) = len(ρ(0))2 + 1 and F3(ρ) = 2len(ρ(0)) where ρ ∈ Fin(Σ∗), which are bar-total
continuous. In fact, F −1

0 (N) = Fin(Σ∗) and F −1
ν (N) = Fin(Σ∗) \ {nil} for ν ∈ {1, 2, 3};

whence F −1
ν (N) bars Fin(Σ∗) in all cases. ◀

The particular case k = 2 of Example 17 means that there are i < j for which σ(i) ⊑ σ(j).
This is Higman’s lemma in its usual form.

CSL 2024

16:12 A General Constructive Form of Higman’s Lemma

5 A Constructive Proof of Higman’s Lemma for Bars

In this section we first prove some basic properties of wqo(bar): closure under finite product,
finite union and right-invertible morphism. All these properties are classically true for the
classically equivalent notion of wqo, see for example the original article by Higman [11].
Subsequently, we prove Higman’s lemma for bars by induction on the finite alphabet Σ. We
assume that all ∆∗ are wqo(bar), for all ∆ smaller than Σ, in order to prove that Σ∗ is a
wqo(bar). The crucial step will be proving that the anticone of every v ∈ Σ∗ is a wqo(bar).

5.1 Essential Properties of Wqo (bar)
We start by giving two immediate examples, of a quasi-order which is wqo(bar) and a
quasi-order which is no wqo(bar). For every set I, (I, =) is a quasi-order. Assume that Σ is
a finite set, we can prove with intuitionistic logic that (Σ, =) is a wqo(bar); whereas (N, =)
is not.

▶ Proposition 18 (wqo(bar)). Assume that Σ is a finite set. Then
1. (Σ, =) is wqo(bar).
2. (N, =) is not wqo(bar).

Proof.
1. We assume that X ⊆ Fin(I) is closed by I-sublist, that B is closed by I-superlists, and

that B bars X ∩Incr(=, φ, I), in order to prove that B bars X. We argue by induction on
Σ. Assume that Σ = ∅, {x}. Then all labelling (if any) are constantly equal to x, therefore
are weakly increasing. We deduce that X ∩ Incr(=, φ, I) = X and we conclude that B

bars X. Assume that Σ has two or more elements. Then Σ = Σ1 ∪Σ2 for some Σ1, Σ2 ⊂ Σ.
Let I1 = φ−1(Σ1) and I2 = φ−1(Σ2). Then I = I1 ∪ I2, and by antimonotonicity B bars
X ∩ Incr(=, φ, I1) and B bars X ∩ Incr(=, φ, I2). By X ⊆ Fin(I) closed by I-sublist,
B is closed by I-superlists and Lemma 19 we conclude that B bars X.

2. N, = is a partial order. In order to prove that it is not a wqo(bar), we will provide
some X ⊆ Fin(I) closed by I-sublist, some B is closed by I-superlists, such that B bars
X ∩Incr(=, φ, I) and B does not bars X. We choose X = the set of non-repeating lists of
length 1 words. X is closed by I-sublists and all its length ⩾ 2 sublists are not increasing,
because if i ̸= j, then ⟨i⟩ ̸⊑ ⟨j⟩. Then X ∩ Incr(=, φ, I) consists of all lists with 1 word of
length 1. These lists are not comparable by >1, therefore this set is trivially well-founded
by >1, and it is barred by B = ∅. However, B does not bar X, because the infinite list
σ = ⟨0⟩, ⟨1⟩, ⟨2⟩, . . . in N does not intersect ∅. ◀

For comparison, if we use the notion of wqo(set), then point 1 above say that all infinite
lists on a finite set Σ have an infinite constant sublist, while point 2 says there is an infinite
list on N with no infinite constant sublist. Point 1 requires classical logic (this is why we
avoid using the notion of wqo(set)). Point 2 follows by taking the infinite list 0, 1, 2, 3,

In order to derive more basic properties of wqo(bar), we have first to find a constructive
counterpart of the following classical property. In classical logic, given an infinite list σ in
List(I1 ∪ I2), if σ1 is the sublist obtained by restricting σ to the elements in I1, and σ2 is
the sublist obtained by restricting σ to the elements in I2, then either σ1 is infinite or σ2
is infinite. We propose to call this property the Riffling Property for infinite lists, because
if I1, I2 are disjoint, then σ can obtained from σ1, σ2 as when we riffle two decks of card
in order to obtain a single deck of cards, while preserving the order we have in each deck.
Riffling is not provable with intuitionistic logic, because we cannot decide whether we have

S. Berardi, G. Buriola, and P. Schuster 16:13

an infinite sublist in Fin(I1) or in Fin(I2). In order to constructivise riffling, we prove a
kind of contrapositive: if X is a set of lists and we bar with B the infinite I1-lists in X

and the infinite I2-lists in X, then we bar with B the infinite I1 ∪ I2-lists in X. When we
state Riffling, we move from lists in X to sublists in X, and from sublists in the bar B to
lists in the same B. Therefore Riffling requires two new assumptions, that B is closed by
I-superlists and that X is closed by I-sublist. These are the same assumptions we have in
the definition of wqo(bar).

▶ Lemma 19 (Riffling for Bars). Assume that the set X is closed by I1 ∪ I2-sublists and the
set B is closed by I1 ∪ I2-superlists, then:

B bars X ∩ Fin(I1) ∧ B bars X ∩ Fin(I2) =⇒ B bars X ∩ Fin(I1 ∪ I2)

From the Riffling Property for Bars we deduce with intuitionistic logic that wqo(bar) are
closed under binary compatible union.

▶ Lemma 20 (Compatible union of wqo’s). If (P,⩽P) and (Q,⩽Q) are wqo(bar), (P ∪ Q,⩽)
is a quasi-order and ⩽P , ⩽Q ⊆ ⩽, then (P ∪ Q,⩽) is a wqo(bar).

The next step is to prove with intuitionistic logic that wqo(bar) are closed by component-
wise product.

▶ Lemma 21 (Componentwise product of wqo(bar)). Assume that (P,⩽P) and (Q,⩽Q) are
wqo(bar). Then (P ×Q,⩽P ×⩽Q) with the componentwise order is a wqo(bar).

The last preliminary step is to prove with intuitionistic logic that wqo(bar)’s are closed by
right-invertible morphisms. Again, this property is easily proved for the classical definition
of wqo. Assume that we have a morphism f : P → Q with right inverse g : Q → P (i.e.,
fg = idQ) and (P,⩽P) is a wqo, then every infinite list σ : N → Q is mapped by g into an
infinite list gσ : N → P , which has an infinite w.i. sublist τ : N → P , which is mapped by f

into an infinite w.i. list fτ : N → Q. From τ sublist of gσ we deduce that fτ is a sublist of
fgσ. From fgσ = σ we conclude that fτ is an infinite w.i. sublist of σ. If we use the notion
of wqo (bar), we can provide a proof with intuitionistic logic for the same result.

▶ Lemma 22 (right-invertible morphism on a wqo(bar)). Assume that (P,⩽P) is a wqo(bar),
(Q,⩽Q) is a quasi-order and f : P → Q is a morphism with right inverse g.6 Then (Q,⩽Q)
is a wqo(bar).

5.2 The Anticone of a Word is a Wqo (bar)
In this subsection, we fix a labelling φ : I → Σ∗, and we assume that ∆∗ is a wqo(bar) for
all ∆ ⊂ Σ; then we prove that the anticone of every v ∈ Σ∗ is a wqo(bar). This is a crucial
step in the proof of Higman’s lemma for bars.

▶ Lemma 23 (Slices and Anticones of a Word). Assume that Σ is a finite alphabet and for all
∆ ⊂ Σ the partial order ∆∗ a wqo(bar). Let v = c1 . . . ck ∈ Σ∗, then:
1. SliceΣ(v), the slice of v, is a wqo(bar).
2. ̸⊑Σ(v), the anticone of v, is a wqo(bar).

6 Observe that g does not need to be a morphism.

CSL 2024

16:14 A General Constructive Form of Higman’s Lemma

5.3 A Decomposition of Finite Lists of Words over a Finite Language
In this subsection, where φ : I → P = Σ∗ labels an arbitrary set I with words over a finite
alphabet Σ, we introduce the last ingredient needed in the proof of the Higman lemma for
bars. We extract from each finite list l with labels ⟨w0, . . . , wp−1⟩ two disjoint sublists:
1. some φ-w.i.sub-list Lex(l, φ) of l, with labels wi0 ⊑ . . . ⊑ win−1 . Lex(l, φ) is the sub-list

obtained by selecting each time as next element the first element making the sub-list
φ-w.i.;

2. the suffix Suff(l, φ) of l, with labels ⟨wm, . . . , wp−1⟩ of l, such that m = in−1 + 1, and
that win−1 ̸⊑ wm, . . . , wp−1. If this is not possible, then Suff(l, φ) is the empty list.

In our terminology, the elements of Suff(l, φ) are in the anticone of win−1 , where win−1 is
the last element of Lex(l, φ). We will prove the Higman lemma for bars by bar induction on
such pair of lists. The formal definition of the two sub-lists Lex, Suff runs as follows. We
have to define first two integer lists lex, suff, with low case l, s, consisting of the list of
indexes of Lex, Suff in φl.

▶ Definition 24 (Decomposition of a list). Assume l is any finite list on I, labeled by a map
φ : I → P = Σ∗. Suppose φl = ⟨w0, . . . , wp−1⟩ is the list of labels of l. By induction on l, we
define lex(l, φ), suff(l, φ).
1. We define lex(Nil, φ) = suff(Nil, φ) = Nil and lex(⟨i⟩, φ) = ⟨0⟩, suff(⟨i⟩, φ) = Nil.
2. Suppose len(l) = p ⩾ 1, lex(l, φ) = ⟨i0 . . . , in−1⟩ (an integer list) and x ∈ I. We define

the clause for l⋆⟨x⟩ by cases on the condition: “win−1 ⊑ φ(x)”.
a. Assume win−1 ⊑ φ(x). Then we set lex(l⋆⟨x⟩, φ) = lex(l, φ)⋆⟨p⟩ (we add the index p

of x to lex) and suff(l⋆⟨x⟩, φ) = Nil (we reset suff to nil).
b. Assume win−1 ̸⊑ φ(x). Then we set lex(l⋆⟨x⟩, φ) = lex(l, φ) (lex stays the same)

and suff(l⋆⟨x⟩, φ) = suff(l, φ)⋆⟨p⟩ (we add the index p of x to suff).

Finally, we define Lex, Suff, the maps with capital L, S, by: Lex(l, φ) = llex(l, φ) and
Suff(l, φ) = lsuff(l, φ).

A (crucial) example: let I = Σ∗, φ = id (labelling φl and list l coincide), and l =
⟨w0, w1, w2, w3, w4⟩, with

w0 = a, w1 = ab, w2 = abb, and w3 = bb, w4 = bbb

According to Def.24 we obtain:

1. for m = nil: lex(m, φ) = nil.
2. for m = ⟨w0⟩: lex(m, φ) = the index 0 of w0
3. for m = ⟨w0, w1⟩: lex(m, φ) = the indexes 0, 1 of w0, w1
4. for m = ⟨w0, w1, w2⟩: lex(m, φ) = the indexes 0, 1, 2 of w0, w1, w2

When m increases to m = ⟨w0, w1, w2, w3⟩, the new word w3 added to m is discarded in
lex(m, φ). Indeed, we have w2 ̸⊑ w3, w4, therefore if m = ⟨w0, w1, w2, w3⟩ then lex(m, φ)
is again equal to the indexes 0, 1, 2 of w0, w1, w2. The same when m = ⟨w0, w1, w2, w3, w4⟩:
the new word w4 added to m is again discarded, and we still have lex(m, φ) = the integer
list 0, 1, 2.

The indexes of the discarded words are piled up in suff. The first three values of
suff(m, φ) are: nil, nil, nil. From w2 ̸⊑ w3, w4, we deduce the following values for suff:
suff(m, φ) = the integer list whose only element is 3, and suff(m, φ) = the integer list 3, 4.

S. Berardi, G. Buriola, and P. Schuster 16:15

The outputs of Lex(m, φ) and Suff(m, φ) (with capital L, S) are the same, except that
we take words instead of indexes of words. For the same values of m we obtain for Lex(m, φ):
nil, ⟨w0⟩, ⟨w0, w1⟩, ⟨w0, w1, w2⟩, then again ⟨w0, w1, w2⟩ and again ⟨w0, w1, w2⟩.

The words w3, w4 discarded from Lex(m, φ) are piled up in Suff(m, φ). Indeed, according
to Def.24 we obtain for Suff(m, φ): nil, nil, nil, then ⟨w3⟩ and ⟨w3, w4⟩.

A last example. Suppose we add w5 = abb to m. In this case w2 ⊑ w5, then w5 is
added to Lex(l, φ) and we obtain Lex(l⋆⟨w5⟩, φ) = w0w1w2w5. Instead, Suff is reset to nil:
according to Def. 24, we obtain Suff(l⋆⟨w5⟩, φ) = nil.

The name we choose for the map lex comes from the fact that f = lex(l, φ) is the
minimum in the lexicographic ordering of all integer lists such that lf is a φ-w.i. sublist of l.
In this paper, however, we do not need a proof of this feature of f and we do not include
further details.

The following properties of f = lex(l, φ) and g = suff(l, φ) are immediate from the
definition. First, that lf ∈ Incr(φ, I) for all l ∈ Fin(I). Second, if l > Nil, g = suff(l, φ),
then lg is equal to the suffix of l after the last element of lf , and that lg is in the anticone of
the last element of lf . Both properties can be proved by induction on l.

5.4 Proof of the Main Theorem
▶ Theorem 25 (Higman’s lemma for bars). If Σ is a finite alphabet, then Σ∗ is a wqo(bar).

Proof. We argue by principal induction on Σ. If Σ = ∅ then Σ∗ = Nil and Σ∗ is a wqo
by Lemma 18. Assume Σ has some element. We assume that for all ∆ ⊂ Σ the partial
order ∆∗ is a wqo(bar), in order to prove that Σ∗ is a wqo(bar). We assume that I is a set,
φ : I → Σ∗ any labelling of elements of I by words, X ⊆ Fin(I) is a set of finite I-lists closed
by I-sublists, B is a set of finite I-lists closed by I-superlists, and B bars X ∩ Incr(φ, I);
our goal is to prove that B bars X.

Let Lex, Suff as in Def. 24, and σ, l ∈ X. We define a map f(σ) = Lex(σ) × Suff(σ)
proving that f : X → Y is a morphism, where Y := Σl∈X∩Incr(φ,I)Yl, for a family of sets
{Yl | l ∈ X ∩ Incr(φ, I)} we are going to define. We will prove that Y is barred by some D

such that f−1(D) ⊆ B; “B bars X” follows from the Simulation Lemma (9) and monotonicity.
If l = Nil, we set YNil = {Nil}. If l ̸= Nil, we define each set Yl as the set of all I-lists

in X φ-labeled by words which are not super-words of (which are in the anticone of) the last
word of φl. We formally define Yl as follows. Let v be the last element of φl: then we set
Yl := Fin(φ−1(̸⊑Σ(v))) ∩ X.

By definition of Lex, Suff and the closure of X by I-sublists, we have Lex(σ) ∈ X ∩
Incr(φ, I) and Suff(σ) ∈ Yl. Moreover, by definition of Lex and Suff, whenever we add
one element i to l, either we add the same i to Lex(σ, φ), or Lex(σ, φ) stays the same
and we add i to Suff(σ, φ). Thus, f is a morphism from (X, >1) to Σl∈X∩Incr(φ,I)Yl

with relation the lexicographic product >1 × >1. By Lemma 23.2 (Slices and Anticones),
̸⊑Σ(v) is a wqo(bar). B bars X ∩ Incr(φ, I) by assumption. Then B bars the subset
Fin(φ−1(̸⊑Σ(v))) ∩ X ∩ Incr(φ, I) by antimonotonicity. ̸⊑Σ(v) is a wqo(bar), therefore B

bars Fin(φ−1(̸⊑Σ(v))) ∩ X, which is Yl. Let D be the set of pairs (l, m) such that l ∈ B or
m ∈ B. By Lemma 11 (Lexicographic Product), D bars Y = Σl∈X∩Incr(φ,I)Yl, >1 × >1. By
Simulation Lemma (9) we deduce that f−1(D) bars X. In order to prove that B bars X, by
monotonicity it is enough to prove that f−1(D) ⊆ B.

Assume that σ ∈ f−1(D), then f(σ) = Lex(σ) × Suff(σ) ∈ D, and by definition of D,
we deduce that Lex(σ) ∈ B or Suff(σ) ∈ B. From Lex(σ), Suff(σ) ⊑ σ and closure of B by
I-superlists, we conclude that σ ∈ B, as wished. ◀

CSL 2024

16:16 A General Constructive Form of Higman’s Lemma

Conclusion

Higman’s lemma for sequences says that over a finite alphabet every infinite sequence of
words has an infinite weakly increasing subsequence, and is inherently nonconstructive. As a
constructive alternative we now have put forward what we call Higman’s lemma for bars:
over a finite alphabet, every bar for the weakly increasing finite lists of words which is closed
by super-lists is already a bar for all finite lists. In particular, for every total continuous
functional, every infinite sequence of such words has a weakly increasing finite sublist of
length bounded below by the functional. We also proved the common form of Higman’s
lemma: the words over a finite alphabet form a well quasi-order, for our notion of well
quasi-order. As we work as much as possible in settings more abstract than the one of words
over a finite alphabet, we prepare for a constructive theory of well (quasi-)order, and, more
in general, for a constructive version of classical theories dealing with Π1

2-statements.

References
1 P. Aczel. An introduction to inductive definitions, volume 90 of Stud. Logic Found. Math.,

pages 739–782. North-Holland, 1977.
2 S. Berardi and S. Steila. Ramsey’s Theorem for Pairs and k Colors as a sub-Classical Principle

of Arithmetic. J. Symbolic Logic, 82(2):737–753, 2017.
3 J. Berger. Dickson’s Lemma and Higman’s Lemma are Equivalent. South American Journal

of Logic, 2(1):35–39, 2016.
4 S. Berghofer. A Constructive Proof of Higman’s Lemma in Isabelle. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 3085 of Lecture Notes in Computer Science, pages 66–82,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

5 Yves Bertot and Ekaterina Komendantskaya. Inductive and coinductive components of
corecursive functions in coq. Electronic Notes in Theoretical Computer Science, 203(5):25–47,
2008. Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2008). doi:10.1016/j.entcs.2008.05.018.

6 G. Buriola, P. Schuster, and I. Blechschmidt. A Constructive Picture of Noetherian Conditions
and Well Quasi-orders. In Gianluca Della Vedova, Besik Dundua, Steffen Lempp, and Florin
Manea, editors, Unity of Logic and Computation, pages 50–62, Cham, 2023. Springer Nature
Switzerland.

7 T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural induction. Unpub-
lished Manuscript. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.486,
November 1993.

8 Thierry Coquand and Henrik Persson. Gröbner bases in type theory. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs (Irsee, 1998), volume
1657 of Lecture Notes in Comput. Sci., pages 33–46. Springer, Berlin, 1999.

9 D. Fridlender. Higman’s Lemma in Type Theory. PhD thesis, Chalmers University of
Technology, Göteborg, 1997.

10 J. Goubault-Larrecq. A Constructive Proof of the Topological Kruskal Theorem. In Krishnendu
Chatterjee and Jirí Sgall, editors, Mathematical Foundations of Computer Science 2013, pages
22–41, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

11 G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, 1952.

12 J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Amer.
Math. Soc., 95:210–225, 1960.

13 J.B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J. Comb.
Theory A, 13:297–305, 1972.

https://doi.org/10.1016/j.entcs.2008.05.018
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.486

S. Berardi, G. Buriola, and P. Schuster 16:17

14 Ray Mines, Fred Richman, and Wim Ruitenburg. A Course in Constructive Algebra. Springer,
New York, 1988. Universitext.

15 C.R. Murthy and J.R. Russell. A constructive proof of Higman’s lemma. 5th Annual Symposium
on Logic in Computer Science, Philadelphia PA, pages 257–267, 1992.

16 C.St.J.A. Nash-William. On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc.,
59:833–835, 1963.

17 Hervé Perdry. Strongly Noetherian rings and constructive ideal theory. J. Symb. Comput.,
37(4):511–535, 2004.

18 Hervé Perdry and Peter Schuster. Noetherian orders. Math. Structures Comput. Sci., 21:111–
124, 2011.

19 T. Powell. Applying Gödel’s Dialectica interpretation to obtain a constructive proof of
Higman’s lemma. Proceedings of Classical Logic and Computation (CLAC’12), volume 97 of
EPTCS :49–62, 2012.

20 T. Powell. Well Quasi-orders and the Functional Interpretation. In Peter M. Schuster, Monika
Seisenberger, and Andreas Weiermann, editors, Well-Quasi Orders in Computation, Logic,
Language and Reasoning: A Unifying Concept of Proof Theory, Automata Theory, Formal
Languages and Descriptive Set Theory, pages 221–269, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-30229-0_9.

21 Michael Rathjen. Generalized inductive definitions in constructive set theory. In Laura
Crosilla and Peter Schuster, editors, From Sets and Types to Topology and Analysis: Towards
Practicable Foundations for Constructive Mathematics, volume 48 of Oxford Logic Guides,
chapter 16. Clarendon Press, Oxford, 2005.

22 F. Richman and G. Stolzenberg. Well quasi-ordered sets. Advances in Mathematics, 97:145–153,
1993.

23 H. Schwichtenberg, M. Seisenberger, and F. Wiesnet. Higman’s Lemma and Its Computational
Content. In R. Kahle, T. Strahm, and T. Studer, editors, Advances in Proof Theory, pages 353–
375, Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-29198-7_11.

24 M. Seisenberger. An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument
for Higman’s Lemma. Types for Proofs and Programs, LNCS Vol. 2277, 2001.

25 Monika Seisenberger. Kruskal’s tree theorem in a constructive theory of inductive definitions.
In P. Schuster, U. Berger, and H. Osswald, editors, Reuniting the antipodes—constructive and
nonstandard views of the continuum (Venice, 1999), volume 306 of Synthese Library, pages
241–255. Kluwer, Dordrecht, 2001.

26 C. Sternagel. A Mechanized Proof of Higman’s Lemma by Open Induction. In Peter M.
Schuster, Monika Seisenberger, and Andreas Weiermann, editors, Well-Quasi Orders in
Computation, Logic, Language and Reasoning: A Unifying Concept of Proof Theory, Automata
Theory, Formal Languages and Descriptive Set Theory, pages 339–350, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-30229-0_12.

27 A.S. Troelstra. Metamathematica Investigation of Intuitionistic Arithmetic and Analysis.
ILLC pre-publication series, pages X–93–05, 1993.

28 W. Veldman. An Intuitionistic Proof of Kruskal’s Theorem. Archive for Mathematical Logic,
43(2):215–264, 2004.

CSL 2024

https://doi.org/10.1007/978-3-030-30229-0_9
https://doi.org/10.1007/978-3-319-29198-7_11
https://doi.org/10.1007/978-3-030-30229-0_12

Quantifiying the Robustness of Dynamical Systems.
Relating Time and Space to Length and Precision
Manon Blanc #

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France
Université Paris-Saclay, LISN, Orsay, France

Olivier Bournez #

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France

Abstract
Reasoning about dynamical systems evolving over the reals is well-known to lead to undecidability.
In particular, it is known that there cannot be reachability decision procedures for first-order theories
over the reals extended with even very basic functions, or for logical theories that reason about
real-valued functions, or decision procedures for state reachability. This mostly comes from the
fact that reachability for dynamical systems over the reals is fundamentally undecidable, as Turing
machines can be embedded into (even very simple) dynamical systems.

However, various results in the literature have shown that decision procedures exist when
restricting to robust systems, with a suitably-chosen notion of robustness. In particular, it has been
established in the field of verification that if the state reachability is not sensitive to infinitesimal
perturbations, then decision procedures for state reachability exist. In the context of logical theories
over the reals, it has been established that decision procedures exist if we focus on properties not
sensitive to arbitrarily small perturbations. For example by considering properties that are either
true or δ-far from being true, for some δ > 0.

In this article, we first propose a unified theory explaining in a uniform framework these
statements, that were established in different contexts.

More fundamentally, while all these statements are only about computability issues, we also
consider complexity theory aspects. We prove that robustness to some precision is inherently related
to the complexity of the decision procedure. When a system is robust, it makes sense to quantify at
which level of perturbation it is. We prove that assuming robustness to a polynomial perturbation on
precision leads to a characterisation of PSPACE. We prove that assuming robustness to polynomial
perturbation on time or length leads to similar statements for PTIME.

In other words, precision on computations is inherently related to space complexity, while length
or time of trajectories, is intrinsically related to time complexity. These statements can also be
interpreted in relation to several recent results about the computational power of analogue models
of computation.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Computability; Theory of computation → Complexity classes; Theory of computation
→ Complexity theory and logic; Computer systems organization → Analog computers

Keywords and phrases Computability, Complexity theory, Computable analysis, Verification, De-
cision, Robustness, Dynamical Systems, Models of computation, Analogue Computations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.17

Funding This work was partially supported by Labex Digicosme and ANR δIFFERENCE.

1 Introduction

The relations between dynamical systems over the reals and computations have been the
source of many works, with sometimes very different motivations [23, 22, 2, 4, 11]. Let us
focus on some of them.

© Manon Blanc and Olivier Bournez;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manon.blanc@lix.polytechnique.fr
https://orcid.org/0000-0002-6961-089X
mailto:olivier.bournez@lix.polytechnique.fr
https://orcid.org/0000-0002-9218-1130
https://doi.org/10.4230/LIPIcs.CSL.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Quantifiying the Robustness of Dynamical Systems

The context of the verification of continuous and hybrid systems. As many systems in
our world are naturally modelled by dynamical systems over the reals (or by so-called hybrid
systems, mixing continuous and discrete aspects), verification of safety properties on these
systems is inherently related to state reachability for dynamical systems. Roughly speaking,
a system is safe if the subset of “bad states” (i.e. those not satisfying some property) cannot
be reached from the subset of the initial states of the system. Unfortunately, it is well-known
that such questions are undecidable, even for very simple dynamical systems. For example,
even for piecewise affine functions [22, 23] over the compact domain [0, 1]2.

Such a statement is proved by showing that a Turing machine, which is a particular
discrete-time dynamical system, evolving with time over configurations, can be embedded
into such systems. This requires mapping the infinite set of possible configurations of a
Turing machine into a real domain. Hence, it requires infinite precision encoding when the
system is defined over a compact domain. This establishes that verification is undecidable
for systems with infinite precisions. However this does not seem to prove that undecidability
holds for systems that would not be based on infinite precision computations.

In that spirit, while several undecidability results were stated for hybrid systems, such
as Linear Hybrid Automata [18], Piecewise Constant Derivative systems [2], an informal
conjecture (that we will call the “robustness conjecture”) appeared in the field of verification
of hybrid and continuous systems by various authors. It states that undecidability is due to
non-stability, non-robustness and sensitivity to the initial values of the systems. There were
several attempts to formalise and prove this, including [14, 1].

▶ Remark 1. Actually, the “robustness conjecture” is known to be an informal conjecture,
as it is related to the considered mathematical notion of robustness. It holds for some
mathematical concepts of robustness, such as the ones considered in this article. It is
provably false for some other mathematical concepts of robustness: see e.g. [19].

▶ Remark 2. The mathematical formalisation of robustness, or the question of the various
“natural” concepts of robustness, is related to philosophical questions about the limits of
mathematical models, or of computability theory. A Turing machine is an ideal model, as
well as dynamical systems over the reals are often idealisations of models. We do not aim at
going to these kinds of discussions1.

▶ Remark 3. Our point in this article is to understand how various notions of robustness
lead to decidability, namely the ones of [1, 15, 28]. We argue that the “robustness conjecture”
can be unified in a general theory, in these various approaches. Furthermore, we prove that
this holds at the decidability level and also at the complexity level: quantifying the accepted
level of robustness corresponds naturally to the complexity of the associated questions.

Here, we are starting from the approach of [1], where classes of dynamical systems are
considered. A notion of perturbed dynamics by a small ϵ is associated with each of them.
A perturbed reachability relation is defined as the intersection of all reachability relations
obtained by ϵ-perturbations. The authors of [1] showed that, for many models, the perturbed
reachability relation is co-computably enumerable (co-c.e., Π1) and any co-c.e. relation can
be defined as the perturbed reachability relation of such models. Consequently, it follows from
basic computability arguments, namely that a computably enumerable and co-computably
enumerable set is decidable that if robustness is defined as the stability of the reachability
relation under infinitesimal perturbation, then robust systems have a decidable reachability
relation and hence a decidable verification (i.e. the robusness conjecture holds).

1 Even if our results shed some light on these questions, such as the fact that complexity theory is
essentially quantifying the accepted level of robustness.

M. Blanc and O. Bournez 17:3

The context of the decision procedures for logical theories over the reals. In the context
of decision procedures for logic over the reals, the authors of [15] observed that it is well-known
that some logics, such as real arithmetic, are decidable. However, decidability does not hold
for simple extensions of real arithmetic. Indeed, even the set of Σ1-sentences in a language
extending real arithmetic with the sine function is already undecidable. But if a relaxed and
more “robust” notion of correctness is considered (one asks to answer true when a given
formula ϕ is true and to return false when it is δ-robustly wrong) the truth of a formula
becomes algorithmically solvable. In other words, undecidability intrinsically comes from
the fact that the truth of a sentence might depend on infinitesimally small variations of its
interpretation.

Recently, the author of [28] proposed a first-order predicate language for reasoning
about multi-dimensional smooth real-valued functions. They proved the specification of an
algorithm solving formulas robustly satisfiable with respect to some metrics. The proof of
decidability can also be interpreted using an argument similar to [1, 15].

Our contributions

We extend and relate these approaches to very general settings and provide a general
framework for explaining these observations.

Namely, using various arguments from computability and computable analysis, we estab-
lish the following:

We consider various classes of dynamical systems: in turn, Turing machines, then discrete-
time dynamical systems preserving the rationals, then general discrete-time dynamical
systems and eventually continuous-time dynamical systems. For all of them, we define
robustness as non-sensitivity to infinitesimal perturbations of the associated reachability
relation, in the spirit of [1].

We prove that for this natural concept of robustness, the “robustness conjecture”
holds: verification or reachability relation (and hence safety verification) is decidable
(Corollary 14, Corollary 25, Corollary 42, Corollary 49, Corollary 54) .
We characterise and relate robustness to the question of decidability by proving that
the converse holds if some property is added (Corollary 32). This means that there is
a form of completeness of the above statement: when decidability holds, establishing
the robustness of the corresponding system can be done, for a suitable perturbation or
metric.

Furthermore, we relate this approach, inspired by [1], in the context of verification, to the
concept of δ-decision of [15], in the context of decision procedures in logic2. A system is
robust iff its reachability relation is either true or ϵ-far from being true (Proposition 27).
We also prove that robustness can be seen as having a reachability relation that can be
represented as a pixelated image. It is a simple and elegant geometric property (Corollary
51 and 52).
More fundamentally, while the above results are about decidability, we also discuss
complexity issues. Indeed, when a system is robust, it is natural to quantify the allowed
level of perturbation.

2 We mix the notation δ and ϵ when talking about precision. They are indeed the same. Our problem is
that the framework considered in [15] uses the terminology δ-decidability, whereas [1] is in a context of
real-analysis and uses ϵ to quantify error bounds. We decided to keep both δ and ϵ. Otherwise, this
would conflict with their usual meaning in the two contexts.

CSL 2024

17:4 Quantifiying the Robustness of Dynamical Systems

We show that considering a perturbation polynomially small relates to a very intuitive
way to the complexity of the associated verification or decision problem (Theorem 18,
Theorem 36).
More precisely, polynomial space computability is related to precision (Theorem 18,
Theorem 36) while polynomial time computability is related to the time or length of
the trajectory (Theorem 64).

More on related work. The approach of considering dynamical systems with respect to
infinitesimal perturbations of dynamics is an old idea, sometimes with concepts reinvented
later with other names. We can mention the concept of “chain reachability” studied by Conley
in the 1970’s. In the field of verification, the idea of infinitely perturbed dynamics has been
considered to provide alternative semantics of some models: see e.g. [27] for timed automata.
The approaches considered in [1] and [15] belong to the line of investigation considering
general dynamical systems and aiming at studying the frontier between decidability and
undecidability.

Up to our knowledge, such a unifying framework has never been established. For the
computability aspects, with respect to some of the existing works: Compared to [1], we
allow more general discrete-time and continuous-time dynamical systems, such as those
with unbounded domains. Some generalisations have also been obtained in [9], but focusing
on dynamical systems as language recognisers and mainly focusing on generalisations of
[1, Theorem 4]. The logic considered in [15] allows to talk about finite-time reachability
properties, but not reachable sets. As far as we know, complexity aspects have never been
discussed.

Motivation and interpretation related to models of computation. An orthogonal field
of research is about understanding how analogue (possibly continuous-time) models of
computation behave compared to more classical discrete models such as Turing machines.
This includes models based on ordinary differential equations like the GPAC [29], or algebraic
models based on ordinary differential equations inspired from computability theory [10],
or from computer algebra [6]. A long-standing open problem was how to measure time
complexity in continuous time models. It was recently proved [8] that the length of the
solution curves provides a measure equivalent to time for digital models. The question of a
natural measure for space complexity remains open, despite some very recent characterisations
of (F)PSPACE using ODEs [7].
▶ Remark 4. The theory developed in the current article comes from an attempt to get to a
simpler characterisation of (F)PSPACE, with continuous ODEs. We obtained this theory
initially with the idea that getting to (F)PSPACE requires a way to forbid undecidability.
This led us to develop this theory based on these notions of robustness, guaranteeing
computability.
The theory developed here provides arguments to state that, over a compact domain, space
corresponds to the precision of the computations, while it corresponds to the logarithm of the
size of some graphs for systems over more general domains. Meanwhile, this idea has been
used to provide a simple characterisation of FPSPACE with discrete ordinary differential
equations in [3]. The question of whether a simple characterisation with continuous ODEs
can be obtained remains open.

Preliminaries. d(·, ·) is norm-sup (also called uniform) distance. An (open) (resp. close)
rational ball is a subset of real numbers of the form B(x, δ) = {y ∈ Rd : d(x, y) < δ} (resp.
B(x, δ) = {y ∈ Rd : d(x, y) ≤ δ}) for some rational x and δ, and some integer d. We could

M. Blanc and O. Bournez 17:5

use the Euclidean distance, but this distance has the advantage that its balls correspond
directly to rounding at a precision. A set of reals of the form

∏d
i=1[ai, bi], for rational (ai),

(bi), will be called a rational closed box. An open rational box is obtained by considering
open intervals in the previous definition. The least closed set containing X is denoted by
cls(X). We write ℓ(·) for the function that measures the binary size of its argument. We say
that a function f : Qd → Qd or f : Rd → Rd is Lipschitz when there exists some constant K

such that d(f(x), f(y)) ≤ Kd(x, y). We basically have in mind in all this article, dynamical
systems over Rd, even if in some of the subsections we consider that they might preserve
rationals.

2 On graphs reachability and perturbated TMs

Our theory relies on some well-known observations from complexity theory. We start by
recalling some facts and a few basic concepts.

2.1 Some considerations from complexity theory
First, we recall some complexity results about the following decision problem PATH(G, u, v):
Given a directed graph G = (V, →) and some vertices u, v ∈ V , determine whether there is
some path between u and v in G, denoted by u

∗→ v.

▶ Lemma 5 (Reachability for graphs, [30]). PATH(G, u, v) ∈ NLOGSPACE.

▶ Lemma 6 (Immerman–Szelepcsényi’s theorem [20, 31]). NLOGSPACE = coNLOGSPACE.

We mainly focus on its complement:

▶ Corollary 7. Consider the following decision problem NOPATH(G, u, v): given a directed
graph G = (V, →) and some vertices u, v ∈ V , determine whether there is no path between u

and v in G.
Then NOPATH(G, u, v) ∈ NLOGSPACE.

▶ Theorem 8 (Savitch’s theorem, [30]). For any function f : N → N with f(n) ≥ log n, we
have NSPACE(f(n)) ⊆ SPACE(f2(n)).

▶ Corollary 9. PATH(G, u, v) ∈ SPACE(log2(n)) and NOPATH(G, u, v) ∈ SPACE(log2(n)).

▶ Remark 10. Notice that detecting whether there is no path between u and v is equivalent
to determining whether all paths starting from u “loop”, i.e. remain disjoint from v. The
above statement is established using a more subtle method than a simple depth-of-width
search of the graph. One uses the trick of the proof of Savitch’s theorem, i.e. a recursive
procedure (expressing reachability in less than 2t steps, called CANYIELD(C1, C2, t) in [30])
guaranteeing the wanted space complexity.

A (general) discrete-time dynamical system P is given by a set X, called domain and
some (possibly partial) function f from X to X. A trajectory of P is a sequence (xt) evolving
according to f : that is ∀t, xt+1 = f (xt). We say x∗ (or a set X∗) is reachable from x if there
is a trajectory with x0 = x and xt = x∗ (respectively xt ∈ X∗) for some t.

▶ Remark 11. In other words, any discrete-time dynamical system P can be seen as a
particular (deterministic) directed graph G = (V, →), where V is not necessarily finite: G

corresponds to V = X and → to the graph of the function f .

CSL 2024

17:6 Quantifiying the Robustness of Dynamical Systems

In particular, the following is a classical result (not following from the most obvious
algorithm, but from Savitch theorem, i.e. from sometimes so-called arithmetisation tech-
niques).

▶ Lemma 12 (Reachability for finite graphs). Let s(n) ≥ log(n). Assume the vertices of
G = (V, →) can be encoded in binary using words of length s(n). Assume the relation → is
decidable using a space polynomial in s(n). Then, given the encoding of u ∈ V and of v ∈ V ,
we can decide whether there is some path from u to v, in a space polynomial in s(n).

Our theory covers various dynamical systems. In particular, as a Turing machine is
a particular type of discrete-time dynamical system, we think this helps, for pedagogical
reasons, to discuss first the case of Turing machines. We follow, on this aspect, what was
done in [1].

2.2 The case of Turing machines
We focus on the framework of Turing Machines (TMs). Let Σ be a finite alphabet and let
B ̸∈ Σ be the blank symbol. A TM over Σ is a tuple (Q, q0, F, R, Γ) where Q is a finite set
of control states, q0 ∈ Q is the initial control state, F ⊆ Q (respectively R ⊆ Q) is a set of
accepting (respectively rejecting) states, with F ∩ R = ∅ and Γ is a set of transitions of the
form (q, a) → (q′, b, δ) where q, q′ ∈ Q, a, b ∈ Σ ∪ {B} and δ ∈ {−1, 0, 1}. When the machine
has accepted or rejected, the decision remains unchanged: when q ∈ F , then q′ ∈ F and
when q ∈ R then q′ ∈ R.

We write CM for the set of the configurations of a TM and write a configuration as a
triple (q, · · · a−2a−1, a0a1a2 · · ·): q gives the internal state and a0 the position of the head.

Given a transition (q, a) → (q′, b, δ) in Γ, if the control state is q and the symbol pointed
by the head of the machine is equal to a, then the machine can change its configuration C to
the configuration C ′ in the following manner: the control state is now q′, the symbol pointed
by the head is replaced by b and then the head is moved to the left or the right, or it stays at
the same position according to whether δ is −1, 1, or 0, respectively. We write C ⊢ C ′ when
this holds, i.e. C ′ is the one-step next configuration of the configuration C. Then (CM, ⊢)
corresponds to a particular dynamical system.

Word w = a1 · · · an ∈ Σ∗ is accepted by M if, starting from the initial configuration C0 =
C0[w] = (q0, · · · BBB, a1a2 · · · anBBB · · ·) the machine eventually stops in an accepting
control state: that is, if we write F for the configurations where q ∈ F , iff C0⊢∗C∗ for
some C∗ ∈ F . Let L(M) denote the set of such words, i.e., the computably enumerable
(c.e) language semi-recognised by M. We say that w is rejected by M if, starting from the
configuration C0 the machine M eventually stops in a rejecting state. M is said to always
halt if for all w, either w is accepted or w is rejected.

Article [1] introduces the concept of space-perturbed TM: given n > 0, the idea is that the
n-perturbed version of the machine M is unable to remain correct at a distance more than n

from the head of the machine. Formally, the n-perturbed version Mn of M is defined exactly
as M except before any transition, all the symbols at a distance n or more from the head can
be altered at every step. Hence Mn is nondeterministic. A word w is accepted by Mn iff there
exists a run of this machine which stops in an accepting state. Let Ln(M) be the n-perturbed
language of M. From definitions, if a word is accepted by M, then it is also recognised by all
the Mn’s: perturbed machines have more behaviours. Moreover, Ln+1(M) ⊆ Ln(M). Let
Lω(M) =

⋂
n Ln(M): this is the set of words accepted by M when subject to arbitrarily

“small” perturbations. We have L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).

M. Blanc and O. Bournez 17:7

Here is a key observation: The ω-perturbed language of a TM is co-computably enumer-
able:

▶ Theorem 13 (Perturbed reachability is co-c.e. [1]). Lω(M) ∈ Π0
1.

Since a set that is c.e. and co-c.e. is decidable, following [1], if we define robustness
as Lω(M) = L(M), then robust languages are necessarily decidable (i.e. the “robustness
conjecture” holds).

▶ Corollary 14 (Robust ≈ decidable [1]). If Lω(M) = L(M) then L(M) is decidable. If M
always halts, then L(M) is decidable and Lω(M) = L(M).

A simple point, but a key observation for coming discussions, is the following: one can
talk about complexity and not only computability. Indeed, when a language is robust, it
makes sense to measure what level of perturbation s can be tolerated. This is the purpose of
Definition 16.
▶ Remark 15. Assume L = L(M) is robust. By definition, L = L(M) = Lω(M). This means
that for any word w, there must exist some n (depending possibly on w) such that w ∈ L(M)
and w ∈ Ln(w) have the same truth value. This n can be read as the associated tolerated
level of perturbation. It quantifies the tolerated level of robustness. Now, we can always
consider that this function that associates n to w depends only on its length (as there are
finitely many words of a given length, and as we can always replace n by a bigger n).

Formally: assuming a language L = L(M) is robust means L = L(M) = Lω(M). Let us
consider some length ℓ, and reason about words of length ℓ (i.e. about words of Σℓ where Σ is
the alphabet of the Turing machine). We must have L∩Σℓ = L(M)∩Σℓ = Lω(M)∩Σℓ. Now,
by definition of Lω(M), Lω(M) ∩ Σℓ is necessarily Ln(M) ∩ Σℓ for some n. Consequently,
we must have L(M) ∩ Σℓ = Ln(M) ∩ Σℓ for some n = s(ℓ) for a robust language.

In other words, for a robust language, we have necessarily

L = L(M) = L{s}(M)

for some function s, for the coming definition. This function n = s(ℓ) quantifies the tolerated
level of robustness. If one prefers, a robust language is necessarily s-robust for some s,
according to Definition 17.

▶ Definition 16 (Level of robustness n given by s). Given a function s : N → N, we write
L{s}(M) for the set of words accepted by M with space perturbation s: L{s}(M) = {w| w ∈
Ls(ℓ(w))(M)}.

▶ Definition 17 (s-robust language). We say that a robust language is s-robust, when
L = L(M) = L{s}(M).

It is natural to consider the case where the function s is a polynomial. It turns out that
this corresponds to (and is even a characterisation of) PSPACE:

▶ Theorem 18 (Polynomial robustness ⇔ PSPACE). L ∈ PSPACE iff for some M and some
polynomial p, L = L(M) = L{p}(M).

Proof. (⇒) If M always terminates and works in polynomial space, then there exists a
polynomial q(·) that bounds the size of the used part of the tape of M . Considering a
polynomial p ≥ q + 2, we have for n ∈ N Lp(ℓ(w))(M) ⊆ L(M). We always have the other
inclusion.

(⇐) Lp(n)(M) ∈ PSPACE is direct from the definitions. ◀

CSL 2024

17:8 Quantifiying the Robustness of Dynamical Systems

3 Embedding TMs into dynamical systems

Many authors have embedded TMs in various classes of dynamical systems to get undecidab-
ility or various hardness results. We present in this section how this is usually done, to point
out where (intuitive) (non-)robustness issues appear.

Generally speaking, the trick is the following. If we forget about blanks, assuming
alphabet Σ = {0, 1}, we can consider that CM ⊆ C = N × Σ∗ × Σ∗. Fix some encoding
function of configurations into a vector of real numbers: Υ : C → Rd, with d ∈ N. For
example, Υ(q, w1, w2) = (q, γ(w1), γ(w2)) with γ : Σ∗ → R taken as:

the encoding γN mapping the word w = a1 . . . an to the integer whose binary expression
is w,
or γ[0,1] mapping w to the real number of [0, 1] whose binary expansion is w,
or more generally, γk

[0,1] or γk
N, using base k instead of base 2 for k ≥ 2,

or γ
′k
[0,1] mapping w to (γk

[0,1](w), ℓ(w)).

Consider a function f : X ⊆ Rd → X such that for any configuration C, denoting by C ′

the next configuration, f(Υ(C)) = Υ(C ′): one step of the TM corresponds to one step in the
dynamical system (X, f) with respect to γ. Then, the diagram of the execution commutes
for any number of steps:

C

Υ(C)

C ′

Υ(C ′)

C ′′

Υ(C ′′)

C ′′′

Υ(C ′′′)

Υ

⊢

f
Υ

⊢

f
Υ

⊢

f
Υ

⊢

f

The questions related to the existence of trajectories in the dynamical system (X, f)
associated with the TM correspond then to the questions about the existence of trajectories
over (X, f). Specifically, it provides c.e.-hardness of reachability for various classes of
dynamical systems, as it is for TM. Call such a situation a step-by-step emulation. However,
encodings such as γ[0,1], whose image is compact, map intrinsically distinct configurations to
points arbitrarily close to each other (a sequence over a compact must have some accumulation
point). Encodings like γN do not have a compact image but involve emulations with arbitrarily
large integers, which is another issue. These observations led to the already mentioned
(informal) conjecture that undecidabilty/hardness may hold only for non-robustness systems.
This leads to discussing now formally robustness issues for general dynamical systems over
Rd for some d ∈ N.

4 Discrete-Time Dynamical Systems

We now study the case of general discrete-time systems. We aim at focusing on discrete-time
systems of type f : Rd → Rd.

4.1 The case of rational systems
For clarity, as this general case requires to talk about computability issues on the reals (we
do so later in Section 4.2) we first focus on the case of systems of type f : Rd → Rd such that
f(Q) ⊆ Q. In other words, we first focus on the case of rational systems, i.e. f : Qd → Qd

(possibly obtained as the restriction to the rationals of a function over the reals).

M. Blanc and O. Bournez 17:9

A rational discrete-time dynamical system will be called Q-computable when the function
(hence from the rationals to the rationals) is. A rational discrete-time dynamical system
will be called Lipschitz when the function is: there exists some constant K such that
d(f(x), f(y)) ≤ Kd(x, y), for all x, y. It will be called locally Lipschitz when for any z and
ϵ > 0 there exists some constant K such that d(f (x), f(y)) ≤ Kd(x, y), for all x, y in B(z, ϵ).

With each rational discrete-time dynamical system P is associated its reachability relation
RP(·, ·) on Qd × Qd. Namely, for two rational points x and y, RP(x, y) holds iff there exists
a trajectory of P from x to y. The reachability relation of a Q-computable system is
computably enumerable: to enumerate, a Turing machine can just simulate the dynamics.

▶ Remark 19. Article [1] considers only the special case of Piecewise affine (PAM) maps, as
representative of discrete-time systems, which are particular Q-computable Lipschitz systems.

▶ Remark 20. Here is an example of Q-computable Lipschitz systems. Take some recurrent
neural network, with d neurons, with the ReLU activation function, defined as ReLU(x) =
max(0, x). Its dynamic can be written as xt+1 = ReLU(Ax + B) where A is some d × d

matrix with rational entries and B is some vector of dimension d with rational entries, where
the ReLU function is applied componentwise.

Reachability for Q-computable systems is undecidable and c.e.-complete:

▶ Theorem 21 (Computational power of PAMs [23, 22, 1]). Any c.e. language is reducible to
the reachability relation of a PAM.

Let us discuss whether undecidability still holds for “robust systems”.
We apply the paradigm of small perturbations: consider a discrete-time dynamical system

P with a function f . For any ϵ > 0 we consider the ϵ-perturbed system Pϵ. Its trajectories are
defined as sequences xt satisfying d(xt+1, f (xt)) < ϵ for all t. This non-deterministic system
is considered as P submitted to a noise of magnitude ϵ. For convenience, we write y ∈ fϵ(x)
as a synonym for d(f(x), y) < ϵ. We denote reachability in the system Pϵ by RP

ϵ (·, ·).
All trajectories of a non-perturbed system P are also trajectories of the ϵ-perturbed

system Pϵ. If ϵ1 < ϵ2 then any trajectory of the ϵ1-perturbed system is also a trajectory of the
ϵ2-perturbed PAM. Define RP

ω (x, y) iff ∀ϵ > 0 RP
ϵ (x, y): this relation encodes reachability

with arbitrarily small perturbing noise. From definitions:

▶ Lemma 22 ([1]). For any 0 < ϵ2 < ϵ1 and any x and y the following implications hold:
RP(x, y) ⇒ RP

ω (x, y) ⇒ RP
ϵ2

(x, y) ⇒ RP
ϵ1

(x, y).

▶ Theorem 23 (Perturbed reachability is co-c.e.). Consider a locally Lipschitz Q-computable
system whose domain X ⊆ Rd is a closed rational box3. Then the relation RP

ω (x, y) ⊆ Qd×Qd

is in the class Π1.

Proof. This extends [1, Theorem 5], using an alternative proof. As f is locally Lipschitz and
X is compact, we know that f is Lipschitz: there exists some L > 0 so that d(f(x), f(y)) ≤
L · d(x, y). For every δ = 2−m, m ∈ N, we associate some graph Gm = (Vδ, →δ): its vertices,
denoted by (Vi)i, correspond to some finite discretisation and covering of compact X by
rational open balls Vi = B(xi, δi) of radius δi < δ. There is an edge from Vi to Vj in this
graph, that is to say Vi →δ Vj , iff B(f(xi), (L + 1)δ) ∩ Vj ̸= ∅. With our hypothesis on the
domain, such a graph can be effectively obtained from m, considering a suitable discretisation
of the rational box X.

3 Recall that a rational box X is a subset of real numbers, not of rational numbers. Consequently, such
an X is compact.

CSL 2024

17:10 Quantifiying the Robustness of Dynamical Systems

▷ Claim 1. assume RP
ϵ (x, y) with x ∈ Vi for ϵ = 2−n. Then Vi

∗→ϵ Vj for all Vj with y ∈ Vj .
This holds as the graph for δ = ϵ is made to always have more trajectories/behaviours than
RP

ϵ .

▷ Claim 2. for any ϵ = 2−n, there is some δ = 2−m so that if we have Vi
∗→δ Vj then

RP
ϵ (x, y) whenever x ∈ Vi, y ∈ Vj .

Claim 2 says that ¬RP
ϵ (x, y) implies ¬(Vi

∗→δ Vj) whenever x ∈ Vi, y ∈ Vj , for the
corresponding δ.

From the two above items, ¬RP
ω (x, y) holds iff for some δ = 2−m, ¬(Vi

∗→δ Vj) for some
Vi, Vj with x ∈ Vi, y ∈ Vj . This holds iff for some integer m, NOPATH(Gm, Vi, Vj) for some
Vi, Vj with x ∈ Vi, y ∈ Vj . The latter property is c.e., as it is a union of decidable sets
(uniform in m), as NOPATH(Gm, Vi, Vj) is a decidable property over finite graph Gm. ◀

▶ Definition 24 (Robust reachability relation). We say that the reachability relation is robust
when RP = RP

ω .

We get the “robustness conjecture” :

▶ Corollary 25 (Robust ⇒ decidable, [1, Corollary 5]). Assume the hypotheses of Theorem 23.
If the relation RP is robust then it is decidable.

4.1.1 Robustness versus decidability and δ-decidability
We now discuss how far the above statement is to a characterisation of decidability.

There is indeed a converse property if some condition is added. Before stating this
in Corollary 32, we relate robustness to the concept of δ-decidability in [15] and also the
existence of some witness of non-reachability.

Given x, RP(x) denotes the set of the points y reachable from x: RP(x) = {y|RP(x, y)}.

This is also the smallest set such that x ∈ RP(x) and f(RP(x)) ⊆ RP(x).

▶ Definition 26. RP(x, y) is said to be ϵ-far from being true if there is R∗ ⊆ X so that
1. x ∈ R∗,
2. fϵ(R∗) ⊆ R∗,
3. y ̸∈ R∗.
When this holds, we have ¬RP(x, y). Indeed, for all ϵ > 0, RP

ϵ (x) = {y|RP
ϵ (x, y)} is the

smallest set satisfying x ∈ RP
ϵ (x) and fϵ(RP

ϵ (x)) ⊆ RP
ϵ (x). Thus, as R∗ also satisfies these

properties by the first two conditions, RP
ϵ (x) ⊆ R∗ and hence y ̸∈ RP(x) as RP(x) ⊆

RP
ϵ (x) ⊆ R∗. Then y ̸∈ R∗ from the third condition.

In other words, R∗ is a witness of the non-reachability of y from x. We will say that it is
at level ϵ. This provides a relation to δ-decidability considered in [15]:

▶ Proposition 27 (Robust ⇔ Reachability relation is true or ϵ-far from being true). We have
RP

ω = RP if and only if for all x, y ∈ Qd, either
1. RP(x, y) is true
2. or RP(x, y) is false and there exists ϵ > 0 such that it is ϵ-far from being true.

Proof.
(⇒): For all ϵ > 0, RP

ϵ (x) satisfies x ∈ RP
ϵ (x) and fϵ(RP

ϵ (x)) ⊆ RP
ϵ (x) (this is even the

smallest set such that this holds). Let y ∈ Qd, let us assume that RP(x, y) = RP
ω (x, y) is not

true. Then, there exists ϵ such that RP
ϵ (x, y) is false, i.e. y ̸∈ RP

ϵ (x). Consider R∗ = RP
ϵ (x).

Then, x ∈ R∗ and from the first paragraph fϵ(R∗) ⊆ R∗ and y ̸∈ R∗.

M. Blanc and O. Bournez 17:11

(⇐): When RP(x, y) is true, for all ϵ > 0, RP
ϵ (x, y) is true, so RP

ω (x, y) is. When
RP(x, y) is false, by hypothesis, RP(x, y) is ϵ-far from being true for some ϵ > 0: there
exists a set R∗ satisfying x ∈ R∗ and fϵ(R∗) ⊆ R∗. As RP

ϵ (x) is the smallest such set,
RP

ϵ (x) ⊆ R∗. As y ̸∈ R∗, y ̸∈ RP
ϵ (x). Hence RP

ω (x, y) is false. ◀

We say that a subset R∗ of X is ϵ-rejecting (with respect to y) if it satisfies 2. and 3. of
Definition 26: that is to say, fϵ(R∗) ⊆ R∗, and y ̸∈ R∗. A trajectory reaching such a R∗ will
never leave it.

▶ Definition 28. A system is eventually decisional if for all x, y, there is some R∗ ϵ-rejecting
(with respect to y) so that either the trajectory starting from x reaches y or, when not, it
reaches R∗.

We come back to the converse of Corollary 25: from Proposition 27, a robust dynamical
system (i.e. RP

ω = RP) is eventually decisional, by considering R∗ = R∗ for the R∗ given by
item 2) there. Conversely:

▶ Lemma 29. Take x and y with RP
ω (x, y) but not RP(x, y). For f Lipschitz, the trajectory

starting from x ∈ Qd can not reach any ϵ-rejecting subset.

Proof. By contradiction, assume the trajectory starting from x reaches an ϵ-rejecting R∗. By
considering one more step, we can assume that it reaches the interior of R∗ for the first time
at t, since, if it reaches the frontier at x∗, B(f(x∗), ϵ) ⊆ R∗ and f(x∗) is in the interior of
that ball. From x the position at time t remains at a positive distance of y. As f is Lipschitz,
the t-th iteration of f is. So, there exists 0 < ϵ′ < ϵ taken sufficiently small so that RP

ϵ′

intersects the interior of R∗ and remains at a positive distance of y. Once in R∗, ϵ′-perturbed
trajectories stay in it (ϵ′ < ϵ). We get y ̸∈ RP

ϵ′ . Thus ¬RP
ω (x, y): contradiction. ◀

▶ Corollary 30. Consider a Lipschitz rational dynamical system. It is robust iff it is eventually
decisional.

We can even compute the witnesses under the hypotheses of Theorem 23. A dynamical
system is effectively eventually decisional when there is an algorithm such that, given x and
y, it outputs an R∗ in the form of the union of rational balls. We can reinforce Corollary 25:

▶ Proposition 31. Assume the hypotheses of Theorem 23. If RP
ω = RP then RP is computable

and the system is effectively eventually decisional.

Proof. The proof of Theorem 23 shows that when RP
ω (x, y) is false, then RP

ϵ (x, y) is false
for some ϵ = 2−n and there is a δ = 2−m and some graph Gm with vertices Vi and Vj , x ∈ Vi,
y ∈ Vj and ¬(Vi

∗→δ Vj). Denote by RGm the union of the vertices Vk such that Vi
∗→δ Vk,

x ∈ Vi in Gm. Consider R∗ = RGm : this is a witness at level δ = 2−m from the properties of
the construction. Then m can be found by testing increasing m until a proper graph is found.
The corresponding R∗ = RGm of the first graph found will be a witness at level δ = 2−m. ◀

The reachability relation of an effectively eventually decisional system is necessarily
decidable (given x and y, compute the path until it reaches y (then accept), or R∗ (then
reject)):

▶ Corollary 32 (Decidable ⇔ Robust, for eventually decisional systems). Under the hypotheses
of Theorem 23, RP is robust iff RP is decidable and RP is effectively eventually decisional
iff RP

ω is effectively eventually decisional.

CSL 2024

17:12 Quantifiying the Robustness of Dynamical Systems

4.1.2 Complexity issues
Assume the dynamical system is robust. Hence, for all x, y ∈ Q, there exists ϵ (depending
on x, y) such that RP(x, y) and RP

ϵ (x, y) have the same truth value (unchanged by smaller
ϵ). It is then natural to quantify the level of required robustness according to x and y, i.e.
on the value ϵ. As we may always assume ϵ = 2−n for some n ∈ N, we write RP

n for RP
ϵ=2−n

and we introduce:

▶ Definition 33 (Level of robustness ϵ given by s). Given a function s : N → N, we write
RP

{s} for the relation defined as: for any rational points x and y the relation holds iff
RP

s(ℓ(x)+ℓ(y))(x, y).

A robust dynamical system is necessarily s-robust for some function s, according to
the next definition: this follows from exactly the same arguments as the ones we used for
the related concepts for Turing machines. This function s quantifies the tolerated level of
robustness.

▶ Definition 34 (s-robust language). We say that a dynamical system is s-robust, when
RP = RP

{s}.

We can then naturally consider the case where s is a polynomial: considering robustness
to polynomial perturbations corresponds to PSPACE:

▶ Theorem 35. Consider a locally Lipschitz Q-computable system, with f : Q → Q computable
in polynomial time, whose domain X is a closed rational box. Given some polynomial p,
RP

{p} ∈ PSPACE.

Proof. From Theorem 23, for all n there exists some m (depending on n), such that RP
n (x, y)

and RGm(x, y) have the same truth value, where RGm denotes reachability in the graph Gm.
With the hypotheses, given x and y, we can determine whether RP

{p}(x, y), by determining
the truth value of RP

n (x, y), taking n polynomial in ℓ(x) + ℓ(y). From Theorem 23, the
corresponding m is linearly related to n. The analysis of Corollary 12 shows that the truth
value of RGm(x, y) can be determined in space polynomial in m. ◀

▶ Theorem 36 (Polynomially robust to precision ⇒ PSPACE). With the same hypotheses, if
RP = RP

{p} for some polynomial p, then RP ∈ PSPACE.

This is even a characterisation of PSPACE:

▶ Theorem 37 (Polynomially robust to precision ⇔ PSPACE). Any PSPACE language is
reducible to PAM’s reachability relation: RP = RP

{p}, for some polynomial p.

Assuming the hypotheses of Theorem 36, when RP = RP
{p} for some polynomial p, we

also see that we can determine a witness of ¬RP(x, y) in polynomial space (using a suitable
representation of it).

4.2 The case of computable systems
We now consider the case of general discrete-time dynamical systems. Then f may take some
non-rational values and we need the notion of computability of functions over the reals: this
requires the model of computable analysis: see e.g. [32] or [12] for full presentations.

We review the most basic ideas of computable analysis in the next subsection.

M. Blanc and O. Bournez 17:13

4.2.1 Some basics of computable analysis

The idea behind classical computability and complexity is to fix some representations of
objects (such as graphs, integers, etc, . . .) using finite words over some finite alphabet, say
Σ = {0, 1} and to say that such an object is computable when such a representation can be
produced using a Turing machine. The computable analysis is designed to be able to also
talk about objects such as real numbers, functions over the reals, closed subsets, compacts
subsets, . . . , which cannot be represented by finite words over Σ (a clear reason for it is
that such words are countable while the set R, for example, is not). However, they can be
represented by some infinite words over Σ and the idea is to fix such representations for these
various objects, called names, with suitable computable properties. In particular, in all the
following proposed representations, it can be proved that an object is computable iff it has
some computable representation.

▶ Remark 38. Here the notion of computability involved is one of Type 2 Turing machines,
that is to say, computability over possibly infinite words: the idea is that such a machine has
some read-only input tape(s), that contains the input(s), which can correspond to either a
finite or infinite word(s), a read-write working tape and one (or several) write-only output
tape(s). It evolves as a classical Turing machine, the only difference being that we consider
it outputs an infinite word when it writes forever the symbols of that word on its (or one of
its) write-only infinite output tape(s): see [32] for details.

A name for a point x ∈ Rd is a sequence (In) of nested open rational balls with In+1 ⊆ In

for all n ∈ N and {x} =
⋂

n∈N In. Such a name can be encoded as an infinite sequence of
symbols.

We call a real function f :⊆ R → R computable, iff some (Type 2 Turing) machine maps
any name of any x ∈ dom(f) to a name of f(x). For real functions f :⊆ Rn → R we consider
machines reading n names in parallel.

It can be proved that a computable function is necessarily continuous. A name for a
function f is a list of all pairs of open rational balls (I, J) such that f(cls(I)) ⊆ J . Following
the above remark, one can prove that a real function is computable iff it has some computable
name.

A name for a closed set F is a sequence (In) of all open rational balls such that cls(In)∩F =
∅ and a sequence (Jn) of all open rational balls such that Jn ∩ F ̸= ∅.

Given some closed set F , the distance function dF : Rn → R is defined by dF (x) :=
infy∈F d(x, y). Closed subset F ⊆ Rn is computable iff its distance function dA : Rn → R
is ([32, Corollary 5.1.8]). A name for a compact K is a name of F as a closed set and an
integer L such that K ⊆ B(0, L).

A closed set is called computably-enumerable closed if one can effectively enumerate
the rational open balls intersecting it: {(q, ϵ) ∈ Qn × Q+ | B(q, ϵ) ∩ A ̸= ∅} is computably
enumerable ([12, Definition 5.13],[32, Definition 5.1.1]). A closed set is called co-computably-
enumerable closed if one can effectively enumerate the rational closed balls in its complement:
the set

{
(q, ϵ) ∈ Qn × Q+ | B(q, ϵ) ⊆ U

}
is computably enumerable ([12, Definition 5.10],[32,

Definition 5.1.1]).
We need also the concept of polynomial time computable function in computable analysis:

see [21]. In short, a quickly converging name of x ∈ Rd is a name of x, with In of radius
< 2−n. A function f : Rd → Rd′ is said to be computable in polynomial time, if there is some
oracle TM M , such that, for all x, given any fast converging name of x as an oracle, given n,
M produces some open rational ball of radius < 2−n containing f(x), in a time polynomial
in n.

CSL 2024

17:14 Quantifiying the Robustness of Dynamical Systems

4.2.2 Computable systems
A system is said computable if the function f : Rd → Rd is. From the model of computable
analysis, given the name of f , x, y ∈ Q, it is impossible in general to tell effectively if f(x) = y.
Thus, given some rational ball B(y, δ), we have to forbid “frontier reachability”: B(y, δ)
would not be reachable, but its frontier B(y, δ) − B(y, δ) would. A natural question arises:
given some rational ball with the promise that either B(y, δ) is reachable (that case implies
that B(y, δ) is), or that B(y, δ) is not, decide which possibility holds. We call this the
ball (decision) problem. From definitions from CA, when RP(x) is a closed set, RP(x) is a
computable closed set iff its associated ball problem is algorithmically solvable.

For computable systems, the ball decision problem is c.e: we mean, there is a Turing
machine whose halting set intersected with the rational balls satisfying the promise is the
set of positive instances. Indeed, just simulate the system’s evolution, starting from x until
step T , with increasing precision and T , until one finds the guarantee that xT at time T

remains in B(y, δ′) for some δ′ < δ. If the ball is reachable, it will terminate by computing a
sufficient approximation of the corresponding xT . It cannot terminate without guaranteeing
reachability. It is not co-c.e. in general.
▶ Remark 39. Our framework for discussing the computability of sets is similar to the concept
of a maximally partially decidable set, formalised in [24, 25]. Similar ideas have also been
implicitly used in many other articles considering various real problems, using computable
analysis. A similar formalisation is also considered in [5].

To a discrete-time system, we can also associate its reachability relation RP(·, ·, ·) over
Qd × Qd × N. For two points x, y ∈ Q, η = 2−p, encoded by p ∈ N, RP(x, y, p) iff there
exists a trajectory of P from x to B(y, η). We define RP

ϵ similarly and RP
ω =

⋂
ϵ RP

ϵ . This
relation encodes reachability with arbitrarily small perturbing noise to some closed ball.

▶ Lemma 40. For any 0 < ϵ2 < ϵ1 and any x and y, η, the following implications hold:
RP(x, y, p) ⇒ RP

ω (x, y, p) ⇒ RP
ϵ2

(x, y, p) ⇒ RP
ϵ1

(x, y, p).

Given x and 0 < ϵ2 < ϵ1, RP(x) ⊆ RP
ϵ2

(x) ⊆ cls(RP
ϵ2

(x)) ⊆ RP
ϵ1

(x) ⊆ cls(RP
ϵ1

(x)). Hence,
RP

ω (x) =
⋂

ϵ>0 RP
ϵ (x) =

⋂
ϵ>0 cls(RP

ϵ (x)) is a closed set.

▶ Theorem 41 (Perturbed reachability is co-r.e.). Consider a locally Lipschitz computable
system whose domain X is a computable compact. RP

ω (x, y, p) ⊆ Qd × Qd × N is in Π1.

This can be considered as extending [9, Theorem 13], established in a very simpler
framework.

▶ Corollary 42 (Robust ⇒ decidable). Assume Theorem 41’s hypotheses and that for all
rational x, RP(x) is closed and RP(x) = RP

ω (x). Then, the ball decision problem is decidable.

Proof. Given some instance B(y, δ) of the ball problem, run in parallel the c.e. algorithm
for it (and when its termination is detected, accepts) and the c.e. algorithm for

(
RP(x)

)c =(
RP

ω (x)
)c (and when its termination is detected, rejects). ◀

4.2.3 Complexity issues
▶ Definition 43 (Level of robustness ϵ given by s). Given some function s : N → N, we write
RP

{s} as: for two rational points x and y and p, the relation holds iff RP
s(ℓ(x)+ℓ(y)+p)(x, y, p).

As before, a robust dynamical system is necessarily s-robust for some function s, according
to the next definition. The function s quantifies the tolerated level of robustness.

M. Blanc and O. Bournez 17:15

▶ Definition 44 (s-robust language). We say that a dynamical system is s-robust, when
RP = RP

{s}.

▶ Theorem 45. Take a locally Lipschitz system, with f polynomial time computable, whose
domain X is a closed rational box. Then RP

{p} ⊆ Qd × Qd × N ∈ PSPACE, when p is a
polynomial.

Proof. The proof of Theorem 41 (like for Theorem 23) shows that when RP
ω (x, y, p) is false,

then RP
ϵ (x, y, p) is false for some ϵ = 2−n. With the hypotheses, given x, y and p, we take n

polynomial in ℓ(x) + ℓ(y) + p. The corresponding m is polynomially related to n (linear in n).
An analysis similar to Theorem 35, shows the truth value of RGm(x, y, p) can be determined
in space polynomial in m. ◀

Then, once again:

▶ Theorem 46 (Polynomially robust to precision ⇒ PSPACE). Assuming Theorem 45’s
hypotheses, and that for all rational x, RP(x) is closed and RP(x) = RP

{p} for a polynomial
p. Then the ball decision problem is in PSPACE.

5 Relating robustness to drawability

We can go further and prove geometric properties: in the previous sections, we associated
with every discrete-time dynamical system a reachability relation over the rationals. But we
could also see it as a relation over the reals and use the framework of computable analysis,
regarding subsets of Rd × Rd. From the statements of [32], the following holds:

▶ Theorem 47. Consider a computable discrete-time system P whose domain is a computable
compact. For all computable x, cls(RP(x)) ⊆ Rd is a c.e. closed subset.

A closed set is called co-c.e. closed if we can effectively enumerate the rational closed
balls in its complement. Using proofs similar to Theorems 41 and 23:

▶ Theorem 48. Consider a computable locally Lipschitz discrete-time system whose domain
X is a computable compact. For all computable x, cls(RP

ω (x)) ⊆ Rd is a co-c.e. closed
subset.

▶ Corollary 49 (Robust ⇒ computable)). Assume the Theorem 48’s hypotheses. If RP is
robust then for all computable x, cls(RP(x)) ⊆ Rd is computable.

For closed sets, the notion of computability can be interpreted as the possibility of being
plotted with an arbitrarily chosen precision: z/2n corresponds to a pixel at precision 2−n, 1
is black (the pixel is plotted black), 0 is white (the pixel is plotted white).

▶ Theorem 50 ([12]). For a closed set A ⊆ Rk, A is computable iff it can be plotted: there
exists a computable function f : N × Zk → N with range(f) ⊆ {0, 1} and such that for all
n ∈ N and z ∈ Zk

f(n, z) =

1 if B(z

2n , 2−n) ∩ A ̸= ∅,

0 if B(z
2n , 2.2−n) ∩ A = ∅,

0 or 1 otherwise.

▶ Corollary 51 (Robust ⇒ drawable)). Assume Theorem 48’s hypotheses. If RP is robust
then for all computable x, cls(RP(x)) ⊆ Rd can be plotted.

CSL 2024

17:16 Quantifiying the Robustness of Dynamical Systems

This is even effective in the name of x and f . The converse holds with additional
topological properties.

▶ Theorem 52. Assume RP is closed and can be plotted effectively in the name of x and f .
Then the system is robust, i.e. RP

ω = RP .

We prove a stronger statement: if cls(RP) can be plotted effectively in a name of x and
f , then RP

ω (x, y) = RP(x, y) except maybe for (x, y) ∈ cls(RP) − RP .

Proof. By Theorem 50, cls(RP) is computable which is equivalent to the computability
of the distance function d(·, cls(RP)) [32, Corollary 5.1.8]. It means that given a rational
ball, a name for x and y, with ¬RP(x, y), the following procedure terminates when (x, y) ̸∈
cls(RP) − RP : compute a name of d((x, y), cls(RP(x))) until a strictly positive proof is
found: d((x, y), cls(RP(x))) = 0 would mean (x, y) ∈ cls(RP), but not in RP .

It answers by reading m ∈ N cells of the names of x, y and f . It returns the same if the
names are altered after m symbols. Thus, there exists a precision ϵ (related to m, usually
2−m for exponentially fast convergence) so ¬RP(x, y) remains true for an ϵ-neighborhood of
x and y and unchanged by a small variation of f . Hence, for all x, y, when ¬RP(x, y), there
exists some ϵ such that ¬RP

ϵ (x, y) (¬RP
ω (x, y)). When RP(x, y) holds, RP

ω (x, y) holds. ◀

6 Continuous-time systems

The previous ideas can be extended to continuous-time or hybrid systems.

▶ Definition 53. A continuous-time dynamical system P is given by a set X ⊆ Rd and some
Ordinary Differential Equation of the form ẋ = f(x) on X.

The maximal interval of existence of solutions can be non-computable, even for computable
Ordinary Differential Equations (ODEs) [16]. To simplify, we assume the ODEs have
solutions4 defined over all R. A trajectory of P starting at x0 ∈ X is a solution of the
differential equation with initial condition x(0) = x0, defined as a continuous right-derivable
function ξ : R+ → X such that ξ(0) = f(x0) and for every t, f(ξ(t)) is equal to the right-
derivative of ξ(t). To each continuous-time dynamical system P we associate its reachability
relation RP as before.

For any ϵ > 0, the ϵ-perturbed system Pϵ is described by the differential inclusion
d(ẋ, f(x)) < ϵ. This non-deterministic system can be seen as P submitted to a noise of
magnitude ϵ. We denote reachability in the system Pϵ by RP

ϵ . The limit reachability relation
RP

ω is introduced as before.

▶ Theorem 54 (Perturbed reachability is co-r.e.). Consider a continuous-time dynamical
system, with f locally Lipschitz, computable, whose domain is a computable compact, then,
for all computable x, cls(RP

ω (x)) ⊆ Rd is a co-c.e. closed subset.

Proof. Its proof can be considered as the main technical result established in [26]. An
alternative proof is similar to Theorems 41 and 23: adapt the construction of the involved
graph Gm to cover the flow of the trajectory. With our hypotheses, the solutions are
defined over all R. It is proved in [16] that Lipschitz (and even effectively locally Lipschitz)
homogeneous computable ODEs have computable solutions over their maximal domain. ◀

4 A non-total solution must necessarily leave any compact, see e.g. [17], so X is compact is not a
restriction.

M. Blanc and O. Bournez 17:17

▶ Corollary 55 (Robust ⇒ decidable). Assume the hypotheses of Theorem 54. If RP is robust
then for all computable x, cls(RP(x)) ⊆ Rd is computable.

7 Other perturbations

Inspired by analogue computations [8], when time has been related to the length of trajectories,
we can also consider time or length-perturbations.

Time-perturbation. We can start by considering time-perturbed TM . The idea is that
given n > 0, the n-perturbed version of M is unable to remain correct after a time n.
Given n > 0, the n-perturbed version of M, is defined exactly likewise, except after a time
greater than n, its internal state q can change in a non-deterministic manner. The associated
language is Ln(M). From definitions: L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).

▶ Theorem 56 (Length robust ⇒ decidable). Lω(M) is in the class Π1. Consequently,
whenever Lω(M) = L(M), L(M) is decidable.

▶ Theorem 57. When M always stops, Lω(M) = L(M).

▶ Definition 58 (Level of robustness n given by t). Given t : N → N, we write L{t}(M) for
the set of words accepted by M with time perturbation t: L{t}(M) = {w| w ∈ Lt(ℓ(w))(M)}.

A robust dynamical system is necessarily t-robust for some function t, according to the
next definition:

▶ Definition 59 (t-robust to time language). We say that a robust language is t-robust to
time, when L = L(M) = L{t}(M).

▶ Theorem 60 (Polynomially robust to time ⇔ PTIME). A language L is in PTIME iff for
some M and some polynomial p, L = L(M) = L{p}(M).

Furthermore, any PTIME language is reducible to PAM’s reachability: RP = L{p}(P)
for some polynomial p.

Length-perturbation. As we said, inspired by analogue computations [8], we can also
consider length perturbations: Fix a distance δ(·, ·) over the domain X. A finite trajectory
of a discrete-time dynamical system P is a finite sequence (xt)t∈0...T such that xt+1 = f (xt)
for all 0 ≤ t < T . Its associated length is defined as L =

∑T −1
i=0 δ(xi, xi+1). We consider a

length-perturbed discrete-time dynamical system: given L > 0, the L-perturbed version of
the system is unable to remain correct after a length L. We define RP,L(x, y) as there exists
a finite trajectory of P from x to y of length L ≤ L. When considering TMs as dynamical
systems, δ(·, ·) is a distance over configurations of TMs. Word w is said to be accepted in
length d if the trajectory starting from C0[w] to the accepting configuration has length ≤ d.

▶ Definition 61. Distance δ(C, C ′) is called time-metric iff whenever C ′ is the configuration
following configuration C, we have δ(C, C ′) ≤ p(ℓ(C)), and δ(C, C ′) ≥ 1

p(ℓ(C)) for some
polynomial p.

Write L(M, t) for the set of words accepted by M in length less than t.

▶ Definition 62 (Tolerating some level of robustness L given by f). Given f : N → N, we
write L(f)(M) for L(f)(M) = {w| w ∈ L(M, f(ℓ(w))}.

CSL 2024

17:18 Quantifiying the Robustness of Dynamical Systems

▶ Theorem 63 (Length robust for some time-metric distance ⇔ PTIME). Assume δ(·, ·) is
time metric. Then, a language L is in PTIME iff for some TM M and some polynomial
p(n), L = L(M) = L(f)(M).

One way to obtain a distance δ(C, C ′) is to take the Euclidean distance between Υ(C)
and Υ(C ′) for γ = γ[0,1], where γ[0,1] and Υ are the functions considered in Section 3. The
obtained distance is time metric. Given f : N → N, we write RP,(f) for the set of words
accepted by M with length perturbation f : RM,(f) = {w| w ∈ RM,f(ℓ(w)}.

▶ Theorem 64 (Polynomially length robust ⇔ PTIME). Assume distance d is time metric
and RP = RP,(p) for some polynomial p. Then RP ∈ PTIME.

8 Conclusion and future work

In this article, we have proposed a unified theory explaining in a uniform framework various
statements relating robustness, defined as being non-sensitive to infinitesimal perturbations,
to decidability. Most of the statements in the spirit of the “robustness conjecture” have been
established using arguments from computability over the rationals or the reals, playing with
variations on the statement that a semi-computable and co-semi-computable set is decidable.

More importantly, while existing statements of this form were only at the level of
decidability, we showed that it is possible to also talk about complexity: robustness to
polynomial perturbations on precision corresponds to PSPACE, robustness to polynomial
perturbations on time or length corresponds to PTIME.

We also related the approach of [1] to the concept of δ-decidability of [15], as well as the
drawability of the associated dynamics.

Notice that the proposed approach can also cover the so-called hybrid systems without
difficulties. Various models have been considered in the literature for such systems, but one
common point is that they all correspond to continuous-time dynamical systems, where the
dynamics might be discontinuous, so not computable. In a very general view, a hybrid system
P is given by a set X ⊆ Rd, a semi-group T and a flow function ϕ : X × T → X satisfying
ϕ(x, 0) = x and ϕ(ϕ(x, t), t′) = ϕ(x, t + t′). Previous proofs use the fact that reachability
RP is c.e. and perturbed reachability is co-c.e. The former is usually obvious in any of the
considered models, as we expect to be able to simulate the model. The latter is usually
less trivial. If we look at our proof methods, we only need to construct some computable
abstraction satisfying Claims 1 and 2. One key remark is that we need these properties not
about the function f but its graph. Assuming a function such that the closure of its graph is
computable, is more general than assuming computability. For example, the characteristic
function χ[0,∞) is not computable, as it is not continuous. But its graph, as well as its closure,
is easy to draw: see discussions e.g. in [13]. In particular, this allowed us to talk about
discontinuous functions in the current article.

Regarding analogue models of computation, a variation on our concept of robustness
has already been used to provide a characterisation of PSPACE for discrete-time ordinary
differential equations in [3].

We believe that the theory developed here might be used to prove formally that space
complexity corresponds to precision for continuous-time models of computation, over some
compact domains, providing a more natural measure than the conditions considered in [7].

M. Blanc and O. Bournez 17:19

References

1 Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid systems. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS-01),
pages 269–278, Los Alamitos, CA, June 16–19 2001. IEEE Computer Society Press.

2 Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science, 138(1):35–65, February
1995.

3 Manon Blanc and Olivier Bournez. A characterisation of functions computable in polynomial
time and space over the reals with discrete ordinary differential equations: Simulation of Turing
machines with analytic discrete odes. In Mathematical Foundations of Computer Science
(MFCS’2023), 2023.

4 Vincent Blondel and John Tsitsiklis. A survey of computational complexity results in systems
and control. Automatica, 36(9):1249–1274, 2000.

5 Olivier Bournez, Johanne Cohen, and Valentin Dardilhac. On the δ-decidability of decision
problems for neural network questions. In Computability, Continuity, Constructivity - from
Logic to Algorithms CCC’23, 2023.

6 Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion. Computabil-
ity over an arbitrary structure. sequential and parallel polynomial time. In Andrew D. Gordon,
editor, Foundations of Software Science and Computational Structures, 6th International
Conference (FOSSACS’2003), volume 2620 of Lecture Notes in Computer Science, pages
185–199, Warsaw, 2003. Springer.

7 Olivier Bournez, Riccardo Gozzi, Daniel S Graça, and Amaury Pouly. A continuous character-
ization of PSPACE using polynomial ordinary differential equations. Journal of Complexity,
77:101755, August 2023. URL: https://www.sciencedirect.com/science/article/pii/
S0885064X23000249?dgcid)=author.

8 Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time corresponds to
Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the
ACM, 64(6):38:1–38:76, 2017. doi:10.1145/3127496.

9 Olivier Bournez, Daniel S. Graça, and Emmanuel Hainry. Robust computations with dy-
namical systems. In Mathematical Foundations of Computer Science, MFCS’2010, volume
6281 of Lecture Notes in Computer Science, pages 198–208. Springer, 2010. doi:10.1007/
978-3-642-15155-2_19.

10 Olivier Bournez and Emmanuel Hainry. An analog characterization of elementary computable
functions over the real numbers. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and
Donald Sannella, editors, International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 of Lecture Notes in Computer Science, pages 269–280, 2004.

11 Olivier Bournez and Amaury Pouly. A survey on analog models of computation. In Handbook
of Computability and Complexity in Analysis, pages 173–226. Springer, 2021.

12 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In
New computational paradigms, pages 425–491. Springer, 2008.

13 Mark Braverman. Computational complexity of Euclidean sets: Hyperbolic Julia sets are
poly-time computable. Master’s thesis, University of Toronto, 2004.

14 Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of
states. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer Science Logic, 13th
International Workshop, CSL ’99, 8th Annual Conference of the EACSL, Madrid, Spain,
September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer Science, pages
126–140. Springer, 1999.

15 Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over the reals. In Logic
in Computer Science (LICS), 2012 27th Annual IEEE Symposium on, pages 305–314. IEEE,
2012.

CSL 2024

https://www.sciencedirect.com/science/article/pii/S0885064X23000249?dgcid)=author
https://www.sciencedirect.com/science/article/pii/S0885064X23000249?dgcid)=author
https://doi.org/10.1145/3127496
https://doi.org/10.1007/978-3-642-15155-2_19
https://doi.org/10.1007/978-3-642-15155-2_19

17:20 Quantifiying the Robustness of Dynamical Systems

16 Daniel S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and undecidability
of maximal intervals of IVPs. Transactions of the American Mathematical Society, 2006. To
appear.

17 Philip Hartman. Ordinary Differential Equations. John Wiley and Sons, 1964.
18 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable

about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, August
1998.

19 Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of timed and hybrid
systems. In Nancy A. Lynch and Bruce H. Krogh, editors, Hybrid Systems: Computation and
Control, Third International Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000,
Proceedings, volume 1790 of Lecture Notes in Computer Science, pages 145–159. Springer,
2000.

20 N. Immerman. Nondeterministic space is closed under complementation. In Structure in
Complexity Theory Conference, 1988. Proceedings., Third Annual, pages 112–115. IEEE, 1988.

21 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhaüser, Boston, 1991.

22 Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-dimensional
dynamical systems. Theoretical Computer Science, 132(1-2):113–128, September 1994.

23 Cristopher Moore. Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity, 4(3):199–230, 1991.

24 Eike Neumann. Decision problems for linear recurrences involving arbitrary real numbers.
Logical Methods in Computer Science, 17, 2021.

25 Eike Neumann. On the complexity of robust eventual inequality testing for C-finite functions.
In International Conference on Reachability Problems, pages 98–112. Springer, 2023.

26 A. Puri, V. Borkar, and P. Varaiya. Epsilon-approximation of differential inclusions. In
Proceedings of the 34th IEEE Conference on Decision and Control, pages 2892–2897, 1995.

27 Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10:87–113, 2000.

28 Stefan Ratschan. Deciding predicate logical theories of real-valued functions. In Symposium
on Mathematical Foundations of Computer Science (MFCS’2023), 2023.

29 Claude E. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics
and Physics MIT, 20:337–354, 1941.

30 Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
31 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

informatica, 26(3):279–284, November 1988. doi:10.1007/BF00299636.
32 Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

https://doi.org/10.1007/BF00299636

From Local to Global Optimality in Concurrent
Parity Games
Benjamin Bordais
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France
TU Dortmund University, Germany
Center for Trustworthy Data Science and Security, University Alliance Ruhr, Germany

Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Stéphane Le Roux
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Abstract
We study two-player games on finite graphs. Turn-based games have many nice properties, but
concurrent games are harder to tame: e.g. turn-based stochastic parity games have positional optimal
strategies, whereas even basic concurrent reachability games may fail to have optimal strategies.
We study concurrent stochastic parity games, and identify a local structural condition that, when
satisfied at each state, guarantees existence of positional optimal strategies for both players.

2012 ACM Subject Classification Theory of computation → Solution concepts in game theory

Keywords and phrases Game forms, stochastic games, parity games, Blackwell/Martin values

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.18

Related Version Full Version: https://arxiv.org/pdf/2311.14373.pdf

Funding This paper was partially funded by ANR-22-CE48-0012 (BisoUS).

1 Introduction

Two-player games played on finite graphs have been a helpful model in areas of computer
science. In such games, states/vertices of the graph are colored; the actions of the players
induce an infinite path in the graph, thus inducing an infinite sequence of colors. Who wins
depends on the color sequence. These games can be turn-based, i.e. at each state a unique
player chooses an outgoing edge leading to a probability distribution over successor states,
or concurrent, i.e. at each state, the combination of one action per player determines the
probability distribution over successor states. In such stochastic settings, Player A wants to
maximize her probability to win, and Player B to minimize the very same probability.

We study the above games in the case of parity objective: colors are natural numbers,
and a sequence is winning for Player A iff the maximal color seen infinitely often is even.
This objective has been well-studied in connection with model-checking. The turn-based
version of these games has nice properties involving deterministic positional strategies, where
“ positional” means that the played action depends only on the current state: with only
deterministic probability distributions over successor states, either of the players has a
winning such strategy [15]; with arbitrary probability distributions over successor states,
both players have optimal such strategies [16, 7]. Note that in concurrent parity games,
positional optimal strategies for distinct starting states yield one positional strategy optimal
for all states uniformly. So we omit the word “ uniform” in this paper.

The above properties and others break in basic concurrent games except in safety games,
as recorded in Table 1, where safety and reachability are special cases of (co-)Büchi, and
parity subsumes (co-)Büchi. Büchi games may not have optimal strategies but when they

© Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2024.18
https://arxiv.org/pdf/2311.14373.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 From Local to Global Optimality

Table 1 Memory status of (almost-)optimal strategies in concurrent games. The second column
says for each objective whether optimal strategies always exist or not; the third column gives the
nature (positional or infinite memory) of optimal strategies when such optimal strategies exist;
the fourth column gives the nature of ε-optimal strategies; the last column gives the nature of
subgame-optimal strategies, a refinement of optimal strategies. This shows the diversity of memory
requirements for the various objectives listed on the left.

Objectives ∃ opt strat? opt ε-opt SubG-opt
Safety always [9] pos. [9] pos. [9] pos. [9]
Reach. not always [11] pos. [2] pos. [10] pos. [2]
Büchi not always pos. [3] ∞ [8] pos. [3]
Co-B. not always ∞ [3] pos. [6] pos. [5]
Parity not always ∞ [8] ∞ [8] ∞ [8]

do, they have positional ones; co-Büchi games may not have optimal strategies, and they
may have only infinite-memory ones; and the other way around for ε-optimal strategies,
hence incomparable difficulty between Büchi and co-Büchi. This shows that concurrent
parity is strictly harder than (co-)Büchi, since parity games may have only infinite-memory
(ε-)optimal strategies. (See also the column on subgame optimal strategies.)

Nevertheless, concurrent games’ poor behavior in general should not deter us from
studying them, as many complex systems are inherently concurrent. See [12] for further
arguments. Continuing a recent line of research [1, 2, 3] we seek local structural good
behaviors that scale up to the whole game.

The following key property still holds in parity concurrent games, by determinacy of
Blackwell games [13]: each state has a value u ∈ [0, 1], i.e. for all ε > 0, Player A has an
ε-optimal strategy for plays starting in the state, i.e. guaranteeing winning probability at
least u − ε to win, regardless of Player B’s strategy; and likewise Player B can guarantee
that Player A wins with probability at most u + ε. Here we are interested in strategies that
are optimal, i.e. that realize exactly the value u, and that are positional. They do not exist
in general (see [2, Figure 2]), but our main result is a transfer property from local to global
positional optimality, a weak version being the next theorem; the terminology that it uses is
explained afterwards.

▶ Theorem 1. If at every state the induced game form is positionally optimizable, both
players have positional optimal strategies in the game.

A game form is a map from pairs of actions to probability distributions of successor states,
see Fig. 1 to the left, or [1, p. 5] for more examples. So each state induces a game form.
Given a game form F , an F-game has a unique non-trivial state which induces F and the
other player states are of two kinds: first kind, they loop back to the non-trivial state; second
kind, they are not colored, but they have an explicit value in [0, 1], and the game stops there.
Moreover Player A prefers higher explicit values. See Fig. 1 or Fig. 5. Finally, F is called
positionally optimizable if both players have positional optimal strategies in all F-games,
which we show to be decidable.

The proof of Theorem 1 involves an extraction of an environment function, which gives
for each state a summary of some local information sufficient to globally play optimally
in the game; the summary of some state q is a (small) F-game, where F is the original
game form of state q. The extraction of this environment function is made by analyzing
in an appropriate order the immediate neighbors of the states, and propagating gathered
information further away.

B. Bordais, P. Bouyer, and S. Le Roux 18:3

As a corollary of Thm. 1, we among other things recover the known result that positional
strategies are sufficient to play optimally in turn-based stochastic games [16, 7], since turn-
based game forms are positionally optimizable. Let us rephrase and strengthen Thm. 1: if
the induced game forms of a game behave well in all (small) F-games, they behave well in
all larger games; conversely, by definition an arena inducing a poorly-behaved game form
yields at least one poorly-behaved small game. Let us highlight two benefits of Thm. 1: First,
designing a game using only well-behaved components, i.e. game forms, ensures the existence
of positional optimal strategies, which was our main purpose. Second, it provides a local,
structural criterion for games to have positional optimal strategies.

An extended version of this paper with all the technical details can be found in [4].

2 Preliminaries and game forms

If Q is a non-empty set, we denote by Q∗ (resp. Q+, Qω) the set of finite (resp. non-
empty finite, infinite) sequences of Q. A (discrete probability) distribution over a set Q is
a function µ : Q → [0, 1] with a finite support Sp(µ) := {x ∈ Q | µ(x) > 0}, such that∑

x∈Sp(µ) µ(x) = 1. The distribution µ is deterministic if its support is a singleton. For all
S ⊆ Q, we let µ[S] :=

∑
x∈S µ(x). The set of distributions over the set Q is denoted D(Q).

For all i ≤ j ∈ N, we write Ji, jK for the set {k ∈ N | i ≤ k ≤ j}. This set is typed in
the sense that these are seen as integers and not reals numbers, so that we will be able to
consider the disjoint union of [0, 1] with such a set of integers which may include 0 or 1. For
all finite sets S ⊆ N, we let Even(S) (resp. Odd(S)) be the smallest even (resp. odd) integer
that is greater than or equal to all elements in S.

We recall the definition of game forms and of games in normal forms.

▶ Definition 2 (Game form and game in normal form). Let O be a non-empty set of outcomes.
A game form (GF for short) on D is a tuple F = ⟨ActA, ActB, O, ϱ⟩ where ActA (resp. ActB) is
the non-empty finite set of actions available to Player A (resp. B) and ϱ : ActA×ActB → D(O)
maps each pair of actions to a distribution over the outcomes. We denote by Form(O) the
set of game forms on O. A Player-A (resp. Player-B) game form F is such that |ActB| = 1
(resp. |ActA| = 1). A game form is trivial if |ActB| = 1 and |ActA| = 1.

When O = [0, 1], we say that F is a game in normal form. For a valuation v : D→ [0, 1],
⟨F , v⟩ denotes the game in normal form ⟨ActA, ActB, [0, 1], v ◦ ϱ⟩ induced from F by v.

An example of a game form is depicted on the left of Fig. 1 (page 7) where the actions
available to Player A are the rows and the actions available to Player B are the columns.
Strategies available to Player-A (resp. B) are then the probability distributions over their
respective sets of actions. In a game in normal form, Player A tries to maximize the outcome,
whereas Player B tries to minimize it.

▶ Definition 3 (Outcome and value of a game in normal form). Let F = ⟨ActA, ActB, [0, 1], ϱ⟩
be a game in normal form. For C ∈ {A, B}, the set of strategies of Player C is D(ActC) and is
thereafter denoted ΣC(F). For a pair of strategies (σA, σB) ∈ ΣA(F)× ΣB(F), their outcome
in F is outF (σA, σB) :=

∑
a∈ActA

∑
b∈ActB

σA(a) · σB(b) · ϱ(a, b) ∈ [0, 1].
Let σA ∈ ΣA(F) be a Player-A strategy. Its value is valF (σA) := infσB∈ΣB(F) outF (σA, σB);

and dually for Player B. When supσA∈ΣA(F) valF (σA) = infσB∈ΣB(F) valF (σB), it defines the
value of the game F , denoted valF . If valF (σA) = valF , the strategy σA is said to be optimal
for Player A. This is defined analogously for Player B.

Since the sets of actions are finite, Von Neumann’s minimax theorem [14] ensures the existence
of a value and of optimal strategies for both players in any game in normal form.

CSL 2024

18:4 From Local to Global Optimality

In the following, strategies in game forms will be called GF-strategies in order not to
confuse them with strategies in concurrent games (on graphs).

3 Concurrent games

3.1 Concurrent arenas and games
▶ Definition 4 (Finite stochastic concurrent arena). A finite concurrent arena C is a tuple
⟨Q, F⟩ where Q is a non-empty finite set of states and F : Q→ Form(D) maps each state to
its induced game form, which describes the interaction of the players at this state.

In the following, the arena C will refer to a tuple ⟨Q, F⟩, unless otherwise stated. In this
paper, we focus on (max) parity objectives: given a coloring function, the goal of Player A is
that the maximum of the colors visited infinitely often is even.

▶ Definition 5 (Parity game). Let col : Q → N be a coloring function. It induces the
parity objective W (col) ⊆ Qω defined by W (col) := {ρ ∈ Qω | max(col(ρ)∞) is even} where
col(ρ)∞ := {k ∈ N | ∀i ∈ N, ∃j ≥ i, col(ρ)j = k} ̸= ∅ denotes the set of colors seen infinitely
often along ρ. A parity game G = ⟨C, col⟩ is a pair formed of a concurrent arena C and a
coloring function col : Q→ N.

We fix a parity game G = ⟨C, col⟩ for the rest of this section. In such a game, strategies
map the history of the game (i.e. the finite sequence of states visited so far) to a GF-strategy
in the game form corresponding to the current state of the game.

▶ Definition 6 (Strategies). A strategy for Player A is a function sA :
⋃

q∈Q(Q∗ · q →
ΣA(F(q))). It is positional if for all q ∈ Q, there is a GF-strategy σq

A ∈ ΣA(F(q)) such that,
for all π = ρ · q ∈ Q+: sA(π) = σq

A. In that case, the strategy sA is said to be defined
by (σq

A)q∈Q. We denote by SA
C and PSA

C the set of all strategies and positional strategies
respectively in arena C for Player A. A strategy sA is deterministic if for all ρ ∈ Q+, sA(ρ) is
deterministic. The definitions are analogous for Player B.

Unlike deterministic games with deterministic strategies, the outcome of a game, given
two strategies (one for each Player), is not a single play but rather a distribution over plays.
To formalize this, we first define the probability to go from a state q to a state q′ given two
GF-strategies in a game form F(q).

▶ Definition 7 (Probability transition). Given states q, q′ ∈ Q and two strategies (σA, σB) ∈
ΣA(F(q))× ΣB(F(q)) the probability to go from q to q′ if the players play, in q, σA and σB,
is: PσA,σB(q, q′) := out⟨F(q),1q′ ⟩(σA, σB), where 1q′ : Q→ [0, 1] is the indicator function such
that, for all q′′ ∈ Q, we have 1q′(q′′) = 1 if and only if q′′ = q′.

We now define the probability of occurrence of finite paths, and consequently of any Borel
set, given a strategy per player.

▶ Definition 8 (Probability distribution given two strategies). Let (sA, sB) ∈ SA
C × SB

C be two
arbitrary strategies. We denote by PsA,sB : Q+ → D(Q) the function giving the probability
distribution over the next state of the arena given the sequence of states already seen. That is,
for all finite path π = π0 . . . πn ∈ Q+ and q ∈ Q, we have: PsA,sB(π)[q] := PsA(π),sB(π)(πn, q).
The probability of a finite path π = π0 · · ·πn ∈ Q+ from a state q0 ∈ Q with the pair of
strategies (sA, sB) is then equal to PC,q0

sA,sB
(π) := Πn−1

i=0 PsA,sB(π≤i)[πi+1] if π0 = q0 and 0 otherwise.
The probability of a cylinder set Cyl(π) := {π · ρ | ρ ∈ Qω} is PC,q0

sA,sB
[Cyl(π)] := PsA,sB(π) for

any finite path π ∈ Q∗. This induces the probability measure over Borel sets in the usual way.
We denote by PC,q0

sA,sB
this probability measure, mapping each Borel set to a value in [0, 1].

B. Bordais, P. Bouyer, and S. Le Roux 18:5

The values of strategies and of the game follow.

▶ Definition 9 (Value of strategies and of the game). Let sA ∈ SA
C be a Player-A strategy. The

vector χG [sA] : Q→ [0, 1] giving the value of the strategy sA is such that, for all q0 ∈ Q, we
have χG [sA](q0) := infsB∈SB

C
PC,q0

sA,sB
[W (col)]. The vector χG [A] : Q→ [0, 1] giving the value for

Player A is such that, for all q0 ∈ Q, we have χG [A](q0) := supsA∈SA
C

χG [sA](q0). The vector
χG [B] : Q→ [0, 1] giving the value of the game for Player B is defined symmetrically.

By Martin’s result on the determinacy of Blackwell games [13]: χG [A] = χG [B], which
defines the value of the game: χG := χG [A] = χG [B]. A Player-A strategy sA such that
χG := χG [sA] is optimal (and similarly for Player B).

Note that optimal strategies may not exist in general; when they exist they can be arbitrarily
complex; see the table page 2.

Finally, for convenience, we extend our formalism by considering stopping states with
output values, i.e. states that, when visited, immediately stop the game and induce a specific
value in [0, 1]. The fact that the value of a stopping state q is set to be u is denoted val(q)← u.
Stopping states can be encoded by simple gadgets in our formalism, they will be depicted as
dashed states.

3.2 Markov chains and sufficient condition for optimality
In this subsection, we give a condition on positional strategies to be optimal in a parity game.
First, we introduce the notions of Markov chain and bottom strongly connected component.

▶ Definition 10 (Markov chain, BSCC). A Markov chain M is a pair M = ⟨Q,P⟩ where Q is
a finite set of states and P : Q→ D(Q). A bottom strongly connected component (BSCC for
short) H ⊆ Q is a subset of states such that the underlying graph of H is strongly connected
(w.r.t. edges given by positive probability transitions from states to states) and H cannot be
exited: for all q ∈ H and q′ ∈ Q, P(q)(q′) > 0 implies q′ ∈ H.

Two positional strategies (one per player) in a concurrent arena not only induce a probability
measure on infinite sequences of states, but also a Markov chain, whose graph is a subgraph
of the arena. If we only fix a positional strategy for one of the players, we will consider the
set of BSCCs that are compatible with that strategy in the following sense.

▶ Definition 11 (Induced Markov chains and BSCCs compatible with a strategy). Let s be a
positional strategy for one of the players. For every positional and deterministic strategy s′

for the other player, we denote by Ms,s′ = ⟨Q,Ps,s′⟩ the Markov chain induced by s and s′,
and by Hs the set of BSCCs compatible with s, i.e. the BSCCs of some Markov chain Ms,s′ .
A BSCC H ∈ Hs is even-colored if max col[H] is even. Otherwise, it is odd-colored.

We define three properties relating positional strategies and valuations of the states. A
Player-A strategy dominates a valuation v if, regardless of what the other player plays, the
value of every state is at most the expected value of its successors. Further, a Player-A
strategy parity dominates the valuation v if in addition all the BSCCs compatible with it are
even-colored. Finally, a Player-A strategy guarantees the valuation v if, from every state, the
value of the strategy is at least the value of the states w.r.t. v. In particular, if a strategy
guarantees the valuation χG : Q→ [0, 1], then it is optimal (by definition).

▶ Definition 12 ((Parity) Domination, Guarantees). Let v : Q→ [0, 1] be a valuation of the
states. Let sA ∈ PSA

C be a positional Player-A strategy. This strategy sA:
dominates v if for all q ∈ Q, v(q) ≤ val⟨F(q),v⟩(sA(q));

CSL 2024

18:6 From Local to Global Optimality

parity dominates v if it dominates v and all BSCCs H compatible with sAs.t. min v[H] > 0;
guarantees v if for all q ∈ Q, v(q) ≤ χG [sA](q).

The definitions are symmetrical for a Player-B positional strategy sB ∈ PSB
C .

As stated in Proposition 13 below, if a strategy parity dominates a valuation, then it also
guarantees it.

▶ Proposition 13. Let sA ∈ PSA
C be a positional Player-A strategy and v : Q → [0, 1] be a

valuation. If sA dominates v, then for all BSCC H ∈ HsA , there is some vH ∈ [0, 1] such that
v[H] = {vH}. If in addition sA parity dominates v, it also guarantees v.

In the remainder of this paper, we will be interested in showing that a strategy is optimal.
We will do so by establishing that it parity dominates the valuation χG : Q → [0, 1]. The
benefit of parity domination is that, compared to optimality, it specifies more explicitly how
the strategy behaves in a game. It is for instance used in Proposition 28 where optimal
Player-A strategies are obtained by gluing together pieces of strategies that parity dominates
some valuations.

4 Local environment and local game

The goal of this section is to define small parity games with a single non-trivial local
interaction, which will enlighten game forms that should be used in parity games if we require
positional optimal strategies. We first consider what (parity) environments on a given set
of outcomes are. Informally, these environments tell a game form how it should view its
outcomes: either as stopping states, or as colored states. The formal definition is given below.

▶ Definition 14 (Parity environment and its induced parity game). Let O be a non-empty finite
set of outcomes. An environment E on O is a tuple E := ⟨c, e, p⟩ where c, e ∈ N with c ≤ e

and p : O→ {qinit}⊎ J0, eK⊎ [0, 1] maps each outcome to what will be states in small F-games.
The size of E w.r.t. Player A (resp. B) is SzA(E) := Even(e) − c (resp. SzB(E) :=

Odd(e)− c). We denote by Env(O) the set of all environments on D.

We can then consider the games induced by such an environment (along with a game form).
Informally, given a game form F ∈ Form(O) and a parity environment E = ⟨c, e, p⟩ ∈ Env(O),
we consider the small parity arena CY induced by Y := (O,F , E) defined as follows: there
is a single central state qinit whose local interaction is given by F . The outcomes of F lead
in CY to states in {qinit} ⊎ {ki | i ∈ J0, eK} ⊎ [0, 1], as prescribed by p. All states in [0, 1] are
stopping states and all states in {ki | i ∈ J0, eK} are trivial and loop back to qinit. The small
parity game GY that we consider is then obtained from the arena CY by considering a coloring
function col that maps qinit to c and every state ki to i. These small games correspond to
the F -games in the introduction. This is formally defined below.

▶ Definition 15 (Parity game induced by an environment). Consider a non-empty finite set
of outcomes O, a game form F ∈ Form(O) and an environment E = ⟨c, e, p⟩ ∈ Env(O). Let
Y := (O,F , E). The local arena CY = ⟨Q, F⟩ induced by Y is such that:

Q := {qinit} ∪Ke ∪ p[0,1], where Ke := {ki | i ∈ J0, eK} and p[0,1] = p[O] ∩ [0, 1];
for all x ∈ p[0,1], we set the value of the stopping state x to be x itself: val(u)← u;
F(qinit) := F (up to identifying integers in J0, eK and states in {ki | i ∈ J0, eK}), and for
all i ∈ J0, eK, we set F(ki) to be a trivial game form with qinit as only possible outcome.

B. Bordais, P. Bouyer, and S. Le Roux 18:7

F :=
[
y x

x y

]
E := ⟨2, 4, p⟩;
p(x) := 1/2 ∈ [0, 1];
p(y) := 3 ∈ J0, 4K. 2

qinit,

[
k3 1/2

1/2 k3

]

0

k0

1

k1

2

k2

3

k3

4

k4

1/2

Figure 1 On the left, a game form with set of outcomes O := {x, y}. In the middle, the description
of an environment on O. On the right, the parity game G({x,y},F,E). Recall that the dashed state is
a stopping state with value 1/2.

For all u ∈ [0, 1], we denote by vu
Y : Q→ [0, 1] the valuation such that: vu

Y (qinit) = vu
Y (ki) := u

for all i ∈ J0, eK and vu
Y (x) := x for all x ∈ p[0,1].

Furthermore, for all Player-A GF-strategies σA ∈ ΣA(F), we denote by sY
A (σA) the Player-

A positional strategy defined by σA in the arena CY .
The game GY is then equal to GY := ⟨CY , col⟩ where col(qinit) := c and for all i ∈ J0, eK,

we have col(ki) := i.

▶ Example 16. This definition is illustrated in Fig. 1 to the right. The colors of the non-
stopping states are depicted in red next to the states. Furthermore, the edges from all ki, for
i ̸= 3, leading back to qinit are not represented. ⌟

What we are interested in is the existence of positional optimal strategies for both players.
In such games, these strategies are entirely defined by a GF-strategy in a game form F .

▶ Definition 17 (Optimal GF-strategies). Given E = ⟨c, e, p⟩ ∈ Env(O), and Y := (O,F , E),
a Player-A GF-strategy σA ∈ ΣA(F) is said to be optimal w.r.t. Y if the Player-A positional
strategy sY

A (σA) is optimal in GY . The definition is analogous for Player B.

Given a finite set of outcomes O, we can now define the game forms on O ensuring the
existence of optimal strategies w.r.t. all environments.

▶ Definition 18 (Optimizable game forms). Given F ∈ Form(O), n ∈ N, and a player
C ∈ {A, B}, the game form F is said to be positionally maximizable up to n w.r.t. Player
C if, for each environment E ∈ Env(O) with SzC(E) ≤ n, there is an optimal GF-strategy
for Player C w.r.t. (O,F , E). When this holds for both players, F is said to be positionally
optimizable up to n. If this holds for all n ∈ N, F is simply said to be positionally optimizable.

▶ Remark 19. Note first that there are some game forms that are not positionally maximizable
w.r.t. any player up to 1. This is e.g. the case of the game form appearing in [2, Fig. 2].

Moreover, by definition, from a game form F ∈ Form(D) that is not positionally optimiz-
able up to some n ∈ N, there exists an environment E ∈ Env(D) such that one player has
no positional optimal strategy in the parity game G(D,F ,E), where the difference between
col(qinit) and the maximum of the colors appearing in G(D,F ,E) is at most n.

▶ Example 20. In the game G(O,F ,E) on the right of Fig. 1, Player A has positional optimal
strategies: it suffices to play both rows with positive probability. (This is similar for Player B.)
As a side remark, the game form on the left of Fig. 1 is positionally optimizable. ⌟

In Lemma 21 below, we formulate more explicitly (using the notion of parity domination
from Definition 12) what optimal GF-strategies are.

CSL 2024

18:8 From Local to Global Optimality

▶ Lemma 21. Let E = ⟨c, e, p⟩ ∈ Env(O) and Y = (O,F , E). A Player-A GF-strategy
σA ∈ ΣA(F) is optimal w.r.t. Y if and only if, letting u := χGY

(qinit), either (i) u = 0, or
(ii) the positional Player-A strategy sY

A (σA) parity dominates the valuation vu
Y .

Furthermore (ii) is equivalent to:
(1) the Player-A positional strategy sY

A (σA) dominates the valuation vu
Y ; and

(2) for all b ∈ ActB, if the probability under (σA, b) to reach a stopping state is null,
then max(Color(F , p, σA, b) ∪ {c}) is even, where Color(F , p, σA, b) := {i ∈ J0, eK |
ϱ(σA, b)[p−1[{i}]] > 0} is the set of colors that can be seen with positive probability
under (σA, b).

This is symmetrical for Player B.

▶ Remark 22. This proposition states that for a Player-A GF-strategy σA to be optimal in
a local game GY with positive value, it must be the case that for every Player-B action b:
either there is a positive probability (w.r.t. (σA, b)) to exit qinit and the expected value of the
stopping states visited is at least u; or the game loops on qinit with probability 1, and the
maximum of the colors that can be seen with positive probability (w.r.t. (σA, b)) is even. In
particular, if c ≤ max Color(F , p, σA, b) or if c is odd, then max Color(F , p, σA, b) is even.

5 Local environment and global strategy

The goal of this section is to state and prove Theorem 25 below: the main theorem of this
paper. This theorem states that it is possible to extract, for every state of a game and for
each player, a local environment which summarizes the context of the state to the player,
and tells her how to positionally play optimally.

For the remainder of this section, we fix a parity game G = ⟨C, col⟩. In particular, the set
of states Q is fixed. Before going any further, we give useful notations below.

▶ Definition 23 (Value slice). For all subsets of states S ⊆ Q, we denote by VS := {u ∈
[0, 1] | ∃q ∈ S, χG(q) = u} the finite set of values of states in S. Furthermore, for all u ∈ VQ,
we let Qu := {q ∈ Q | χG(q) = u} be the set of states whose value is u: it is the u-slice of G.
Finally, for all u ∈ VQ, we let eu := Even(col[Qu]) and ou := Odd(col[Qu]).

We also introduce the notion of positional strategies generated by an environment function
before stating Theorem 25: these are the positional strategies that play GF-strategies that
are optimal in the (local) parity games induced by the environment function.

▶ Definition 24 (Strategy generated by environment functions). For all environment functions
Ev : Q→ Env(Q), a Player-A positional strategy sA is generated by Ev if for all q ∈ Q, the
GF-strategy sA(q) ∈ ΣA(F(q)) is optimal w.r.t. (O, F(q), Ev(q)) (and similarly for Player B).

▶ Theorem 25. Let G = ⟨C, col⟩ be a parity game. Assume that for all states q ∈ Q, the
game form F(q) is:

positionally maximizable up to eχG(q) − col(q) w.r.t. Player A; and
positionally maximizable up to oχG(q) − col(q) w.r.t. Player B

Then, there is a function EvA : Q→ Env(Q) (resp. EvB : Q→ Env(Q)) such that all Player-A
(resp. Player-B) positional strategies sA (resp. sB) generated by EvA (resp. EvB) are optimal
in G; and such Player-A (resp. B) positional strategies exist.

▶ Remark 26. Given some u ∈ VQ, one can realize that the requirement at states q, q′ ∈ Qu

changes depending on the color of q and q′. More specifically, if col(q) < col(q′), then the
requirement at state q is at least as strong as the requirement at state q′ since the game form

B. Bordais, P. Bouyer, and S. Le Roux 18:9

F(q) should behave well for environments of larger size than the game form F(q′). As we
shall see, by Proposition 50, the requirement at state q is actually strictly stronger than the
requirement at state q′.

The remainder of this section is devoted to an explanation of the construction of the
environment function EvA (the construction being similar for Player B). We first argue that
we can restrict ourselves to a specific u-slice Qu for some u ∈ VQ.

▶ Definition 27 (Game restricted to a u-slice). For all u ∈ VQ, let Gu be the concurrent game
obtained from G by making all states outside of Qu stopping: for every q ∈ Q \Qu, we set
val(q)← χG(q). The states, game forms and coloring function on Qu are left unchanged.

Interestingly, a Player-A positional strategy optimal in G can be obtained by merging
appropriate positional strategies su

A in the games Gu for all u ∈ VQ \ {0}.

▶ Proposition 28. For all u ∈ VQ \ {0}, let su
A be a Player-A strategy that parity dominates

the valuation χG in Gu. Then, the Player-A positional strategy sA s.t. sA(q) := su
A(q) for all

u ∈ VQ \ {0} and q ∈ Qu guarantees the valuation χG in G (i.e. it is optimal).

This justifies that, for the remainder of this section, we focus on a given u-slice Qu for
some positive u ∈ (0, 1]. We also let e := eu and o := ou for the remainder of this section.

5.1 Overview of the proof

In order to give an idea of the steps that we take to prove Theorem 25, let us first consider the
very simple case of finite turn-based deterministic (i.e. where all probability distribution over
successors states are deterministic) reachability games. In this setting, computing the area
LA from which Player A has a winning strategy can be done inductively. That is, initially we
set LA := T where T denotes the target that Player A wants to reach. Then, the inductive
step is handled with a (deterministic) attractor: we add to LA any Player-A state with a
successor in LA and any Player-B state with all successors in LA. After finitely many steps,
there is no more state to add in LA: this exactly corresponds to the states from which Player
A has a winning strategy.

Computing a single attractor is not merely enough to take into account the intricate
behavior of parity objectives and the complexity of concurrent (and stochastic)interactions,
which is what Theorem 25 deals with. Therefore, we are going to iteratively compute several
layers of (virtual) colors, with a local update to change the (virtual) color (and therefore
the layer it belongs to) of a state. This local update can be seen as an attractor except in a
concurrent stochastic setting. Hence, when we update the (virtual) color of a state, we take
into account the concurrent interaction of the players at each state along with the probability
to see stopping states or states with different (virtual) colors. We define this local update in
Subsection 5.3. Let us describe below the steps that we take to capture the behavior of the
parity objective.

We compute layers of successive probabilistic attractors with leaks towards the stopping
states. Although we compute a strategy, e.g., for Player A, we alternate players to build
layers, then move the last non-empty layer into the closest layer with same parity, then
backtrack the attractor computation from this layer downwards, and start over again the full
attractor computation on the new layer structure. In a more concrete way, let us assume
below that the highest color in the u-slice is 6. We proceed as follows:

CSL 2024

18:10 From Local to Global Optimality

1. Add the states colored with 4 to layer L4.
2. Recursively add to L4 (and give them virtual color 4) the states where Player A can

guarantee that with positive probability (pp) either a leak towards stopping states occurs
now with expected explicit value at least u (Leak≥u), or with pp the next state is in L4.

3. Add the remaining states colored with 3 to layer L3.
4. Recursively add to L3 (and give them virtual color 3) the states where Player B can

guarantee that either Leak<u occurs now with pp, or the next state is surely not in L4

and with pp in L3.
5. Add the remaining states colored with 2 to layer L2.
6. Recursively add to L2 (and give them virtual color 2) the states where Player A can

guarantee that either Leak≥u will occur with pp, or the maximal layer index of the next
states seen with pp is 2 or 4.

7. And so on, for colors 1 and 0. The layers so far only give information about what can
happen at finite horizon. For instance, from L2, Player A can guarantee that either
Leak≥u will occur with pp, or the maximal color that will be seen with pp is in {2, 4}.

8. Now, if e.g. L0 ̸= ∅ , we merge L0 into L2 and we reset the states that are in layer L1.
Similarly, if e.g. L0 = ∅ and L1 ̸= ∅, we merge L1 into L3 and we reset the states that
are in layer L2. This is, arguably, the most surprising step, we justify it in Ex. 42.

9. We then repeat the above attractor alternation from step 1. all over again, until all the
states are eventually in L4, which is bound to happen as we shall prove.

The key property (namely faithfulness, defined below in Def. 38) that is growing throughout
the above computation and will hold in the final layer L4 involves layer games: the Ln-game
is derived from the u-slice by abstracting each Li with i ≠ n via one state kn

i from which the
player who dislikes the parity of n chooses any next state in Ln, making it harder for the
other to win. If i > n then kn

i is i-colored, else (n− 1)-colored, also making it harder for the
other to win. And states in Ln bear their true colors. See for instance Fig. 4. The Ln-game
is only seemingly harder to win: it is actually equivalently hard, but its useful properties are
easier to prove.

The key growing property is as follows: between two merges, the attractor computation
from the top layer down to Ln ensures that Player A has a positional strategy of value at
least u in each Li-game for even i ≥ n, and Player B less than u for odd i ≥ n. In the very
end, there is only one even layer with all states bearing their true colors, and no abstract
states: the layer game equals the u-slice game. We have thus computed a positional optimal
strategy.

Let us hint at how to show positional optimality in the Ln-games when it holds: we break
Ln each into one simple parity game built on F(q) per state q in Ln, abstracting the other
states in Ln into one. Our theorem assumption yields an optimal GF-strategy for Player A
or B in the simple parity game. Gluing them does the job.

5.2 Extracting an environment function from a parity game
For the remainder of the section, we illustrate the definitions and lemmas on the game
depicted in Fig. 2 and 3. We give the notations that we use to describe these examples below.

▶ Example 29. We explain the notations used to depict this game (it is in fact the same
arena in both Fig. 2 and 3, with different coloring functions – real or virtual). On the
sides in green are the slices Q0, Q1/4, Q3/4 and Q1 from left to right. We focus on the
central slice Q1/2. In Q1/2, there are seven states, five of which (the square-shaped ones) are

B. Bordais, P. Bouyer, and S. Le Roux 18:11

0

1/4

1/2

3/4

1

0:

1:

2:

3:

4:

q0,
[
q6 q1 1
q5 q1 q6

]
q1 q2

q3

q4 · q5,
[
q6

1
2

1
2 q6

]

q6

Figure 2 The depiction of a game restricted
to the 1/2-slice Q1/2 with the initial coloring
function col.

0

1/4

1/2

3/4

1

0:

1:

2:

3:

4:

q0,
[
q6 q1 1
q5 q1 q6

] 0
q1

0

q2
0

q3
1

q4
·2

q5,
[
q6

1
2

1
2 q6

]2

q6

3

Figure 3 The same game restricted to Q1/2
with a different coloring function vcol.

turn-based for Player B, that is, Player A has only one available action. On the other hand,
the two circled-shaped states q0 and q5 are ‘truly” concurrent in the sense that both players
have several actions available. Furthermore, note that there is only one non-deterministic
distribution function: from q4, Player B may either loop on q4 or go to with equal probability
to q0 and q6. The other arrows lead to a single state and the outcomes of the game forms
in q0 or q5 is a single state or a value: 1 or 1/2. These formally refer to a (distribution
over) stopping states outside of the 1/2-slice Q1/2. The horizontal layers depict the colors
of the states. In Fig. 2, the coloring function considered is the initial one col whereas in
Fig. 3 we have depicted a virtual coloring function vcol. For instance, col(q6) = 3 whereas
col(q5) = 2. Similarly, vcol(q6) = 3 whereas state vcol(q5) = 4. Note that, in Fig. 3, the real
colors (given by col) are reminded next to some states with circled numbers. Finally, note
that e := e1/2 = 4. ⌟

Given a virtual coloring function (defining layers), we need to extract local environments
from the parity game G, which summarize how the Players see their neighboring states via
the virtual coloring function. This is (partly) done in Def. 30 bia a successor function p.

▶ Definition 30 (Successor function extracted from an arena and a virtual coloring function).
Given S ⊆ Qu and a virtual coloring function vcol : Qu → J0, eK. The function pS,vcol : S →
S ⊎ J0, eK ⊎ VQ\Qu

is such that, for all d ∈ D:
for all q ∈ S, pS,vcol(q) := q ∈ Q;
for all q ∈ Q \Qu, pS,vcol(q) := χG(q) ∈ [0, 1];
for all q ∈ Su \ S, pS,vcol(q) := vcol(q).

Given a virtual coloring function vcol : Qu → J0, eK and a color n ∈ J0, eK, we can now
extract a small parity game (the layer-games from Subsection 5.1) from G where the states
with truly concurrent interactions are all in vcol−1[n] (the interactions at these states is the
same as in G), the states in Q \Qu are stopping states and the arena loops back to vcol−1[n]
when a state in Qu \ vcol−1[n] is seen. This is done in the next definition.

▶ Definition 31 (Parity game extracted from the u-slice). Consider a virtual coloring function
vcol : Qu → J0, eK and a color n ∈ J0, eK. Let C ∈ {A, B} be a Player: A if n is odd and B
if n is even. The arena Cn

vcol = ⟨Q′, F′⟩ along with the coloring function vcoln : Q′ → N are
such that, denoting Qn := vcol−1[n]:

CSL 2024

18:12 From Local to Global Optimality

3

k3
3

4

k3
4

q4

2
q6

3

2
k3

0
2

k3
1

2
k3

2

Figure 4 The game L3
vcol. Exiting arrows

from k3
0, k3

1, k3
2, k3

3 and k3
4 are not depicted:

they would all loop back to both q4 and q6.

0

qinit,

[
k3 k0 1
k4 k0 k3

]
0

k0

1

k1

2

k2

3

k3
4

k4

1

Figure 5 The game G0
q0,vcol with vcol the

coloring function depicted in Fig. 3.

Q′ := Qn ∪Kn ∪ VQ\Qu
where all x ∈ VQ\Qu

are stopping states with val(x)← x;
for all q ∈ Qn, F′(q) := ⟨Actq

A, Actq
B, Q′, ϱpn,vcol⟩ where, for all σA ∈ Actq

A, σB ∈ Actq
B, and

q ∈ Q, we have ϱpn,vcol(σA, σB)(q) := ϱ(σA, σB)[p−1
n,vcol[q]];

for all k ∈ Kn, we set F′(k) as a Player-C state whose outcomes are all the states in Qn;
for all q ∈ Qn, we let vcoln(q) := col(q) and for all i ∈ J0, eK, we have vcoln(kn

i) :=
max(i, n− 1).

For t ∈ [0, 1], we define the valuation vt
n,vcol : Q′ → [0, 1]: vt

n,vcol[Qn ∪Kn] := {t} and for all
x ∈ VQ\Qu

, vt
n,vcol(x) := x.

The game Ln
vcol is then equal to Ln

vcol = ⟨Cn
vcol, vcoln⟩.

The notation Ln
vcol comes from the fact that the game is extracted for the n-colored layer

w.r.t. the coloring function vcol. The idea behind Def. 31 is the following: the states of
interest are those of Qn, that is, those for which the virtual color given by vcol is n. Note
however that the colors of these states in Ln

vcol are given by the real coloring function col. On
the other hand, for all i ∈ J0, eK, the state kn

i in Ln
vcol correspond to the states in Gu colored

with i w.r.t. vcol. In the case where n is even, as formally defined later in Def. 37, we will
require that any Player-A positional strategy generated by a given environment has value
at least u, in the game Ln

vcol, from all states in Qn. However, all states kn
i for i ∈ J0, eK are

Player-B’s, who can then choose to loop back to any state in Qn. Therefore, given a Player-A
positional strategy sA, if the game cannot exit to any stopping state, for the strategy sA not
to have value 0, the game may loop on some kn

i only at the condition that the highest color
seen with positive probability is even. In addition, note that the color of the state kn

i for
i ∈ J0, n− 1K is n− 1 (which is odd). Hence, all other things being equal, the game is harder
for Player A when n = 4 than when n = 2 or 0.

▶ Example 32. The game L3
vcol is partly depicted on the left of Fig. 4 (the virtual coloring

function vcol being the one depicted in Fig. 3). The colors of the states in L3
vcol are depicted

in red (for the central states q4 and q6, it is their real color in the original game). Although
the arrows are not depicted, from all states k3

0, k3
1, k3

2, k3
3 and k3

4, Player A can decide to
which state among {q4, q6} to loop back (since n = 3 is odd). In an even-colored layer, it
would have been Player B to decide. The color of states k3

i is i if i ≥ 3 or 2 if i ≤ 2. ⌟

Given a virtual coloring function, we also associate a local environment to each state. This
is crucial since this will allow us to properly define (in Definition 35 below) the probabilistic
attractor with leaks towards the stopping states mentioned in Subsection 5.1.

B. Bordais, P. Bouyer, and S. Le Roux 18:13

▶ Definition 33 (Induced local environment). Given q ∈ Qu, a virtual coloring function
vcol : Qu → J0, eK and n ∈ J0, eK, the environment associated to state q w.r.t. vcol and n is
En

q,vcol := ⟨max(cn, vcol(q)), e, p{q},vcol⟩ where cn = n + 1 if n is odd and cn := n− 1 if n is
even. The corresponding (local) game G(O,F(q),En

q,vcol) is denoted Gn
q,vcol, and for all x ∈ [0, 1],

we set vx
q,vcol := vx

(O,F(q),E0
q,vcol)

(see Def. 14).

▶ Example 34. The game Gn
q5,col is depicted in Fig. 1 (right) for n = 0, 1, 2. However, if

n = 3, the color of qinit would be 4, and if n = 4, it would be 3. The game Gn
q0,vcol is depicted

in Fig. 5 for n = 0. However, if n = 1, the color of qinit would be 2, if n = 2, the color of
would be 1, if n = 3, the color would be 4 and if n = 4 the color would be 3. ⌟

5.3 Local operator
We want to define a way to update a virtual coloring function vcol. This amounts to
computing the probabilistic attractor with leaks towards the stopping states mentioned in
Subsection 5.1. This is done via a local operator mapping a given state q to the best color k

for which Player A can achieve the value u in the local parity game Gk
q,vcol. Note that “best”

is to be understood considering an ordering compatible with the parity objective. Specifically,
taking the point-of-view of Player A, any even number is better than any odd number, and
when they increase, odd numbers get worse whereas even numbers get better. This induces a
new total strict order relation ≺par on N such that, for all m, n ∈ N, we have m ≺par n if: m

is odd and n is even; or m > n and m and n are odd; or m < n and m and n are even.

▶ Definition 35 (Local operator). Let q ∈ Qu, and vcol : Qu → J0, eK a (possibly virtual)
coloring function. The color NewCol(q, vcol) ∈ N induced by vcol at q is defined by:

NewCol(q, vcol) := max
≺par

{
n ∈ J0, eK | χGn

q,vcol
(qinit) ≥ u

}
The meaning of a new virtual color n assigned to a state q via NewCol is the following: in the
game ⟨C, vcol⟩, from state q and in at most one step, the highest color w.r.t. vcol seen with
positive probability when both players play optimally is n (and no stopping state is seen).

Let us explain the choice of cn in Def. 33. In a local environment parameterized by
n, the integer n induces a shifted parity objective for Player A: her objective is that the
maximal color seen infinitely often is at least n w.r.t. ≺par; in particular n = 0 induces the
standard parity objective. The value cn encodes that winning condition. For instance, if
n = 2, assuming vcol(q) = 0 for simplicity, then cn = 1, which implies that seeing 0 infinitely
often is not enough, but seeing 2 infinitely often is enough to win.

▶ Example 36. We first consider Fig. 1 and we compute NewCol(q5, col) on the game on the
right. We realize that, regardless of the color of state qinit, Player A can (positionally) play
both rows with positive probability and ensure reaching (almost-surely) the stopping state
1/2: for all n ∈ J0, 4K, χGn

q5,col
(qinit) = 1/2. Hence, NewCol(q5, col) = 4.

We consider Fig. 5 and we compute NewCol(q0, vcol). As mentioned in Ex. 34, the game
G4

q0,vcol corresponds to the game depicted in Fig. 5 except that qinit is colored with 3. One
can realize that, with this choice (of coloring of the state qinit), if the highest color i ∈ J0, 4K
such that ki is seen infinitely often is such that i ≺par 4, then Player A loses. The value of
this game is 0 as Player B can ensure looping on k0 and qinit (by playing, positionally and
deterministically, the middle column) thus ensuring that the highest color seen infinitely
often is 3. Thus, NewCol(q0, vcol) ≺par 4. In the game G2

q0,vcol, qinit is colored with 1. Again,
with this choice (of coloring of the state qinit), if the highest color i ∈ J0, 4K such that ki is
seen infinitely is such that i ≺par 2, then Player A loses. The value of this game is also 0

CSL 2024

18:14 From Local to Global Optimality

as Player B can still play the middle column ensuring that the highest color seen infinitely
often is 1. Thus, NewCol(q0, vcol) ≺par 2. Consider now the game G0

q0,vcol, the one depicted
in Fig. 5. The value of the state qinit is now 1. Indeed, if Player A plays the two rows with
equal probability, one can see that this strategy parity dominates (see Def. 12) the valuation
v1

q0,vcol (recall Def. 33). Indeed, the BSCCs compatible with this strategy are {qinit, k3, k4}
and {qinit, k0} and they are even-colored. Hence, by Proposition 13, χG0

q1,col
(qinit) = 1 ≥ 1/2

and NewCol(q0, vcol) ⪰par 0. That is, NewCol(q0, vcol) = 0. ⌟

5.4 Faithful coloring function
To prove Theorem 25, we iteratively build a virtual coloring function and a local environment
function. We want to define the desirable property that the pair of coloring and environment
functions should satisfy that will be preserved step by step. First, we need to define the
notion of an environment function witnessing a color.

▶ Definition 37 (Environment witnessing a color). Let vcol : Qu → J0, eK be a virtual coloring
function, n ∈ J0, eK, and Ev : vcol−1[n] → Env(D) be an environment function. Assuming
that n is even (resp. odd), we say that the pair (vcol, Ev) witnesses the color n if for all
q ∈ vcol−1[n], SzA(Ev(q)) ≤ e − col(q) (resp. SzB(Ev(q)) ≤ o − col(q)) and all positional
strategies sA (resp. sB) generated by Ev (recall Def. 24) in the game Ln

vcol parity dominate
the valuation vu

n,vcol (resp. vu′

n,vcol for some u′ < u), recall Def. 31.

It means that, in the virtual games given by vcol, in the even layers, Player A can achieve at
least what she should be able to achieve in this u-slice (i.e. the value of the states is at least
u). Whereas, in the odd-colored layers, Player B can prevent Player A from achieving this.

We can now define the central notion of interest: for a pair of coloring function and
environment function to be faithful (to what really happens in the parity game). We only
give a definition of faitfhfulness that we can use in this paper, but note that in [4], we require
additional properties for faithfulness.

▶ Definition 38 (Faithful pair of coloring and environment functions). Let vcol : Qu → J0, eK
be a virtual coloring function, n ∈ J0, e + 1K, and Ev : Qu → Env(D) a partial environment
function defined on vcol−1[Jn, eK]. We say that (vcol, Ev) is faithful down to n if:

for all k ∈ Jn, eK, the pair (vcol, Ev) witnesses color k;
for all q ∈ Qu, if vcol(q) < n, then col(q) = vcol(q) and NewCol(q, vcol) < n;

If n = 0, we say that the pair (vcol, Ev) is completely faithful.

A benefit of faithful environments and coloring functions lies in the proposition below:
if all states are mapped w.r.t. the coloring function to e, then the environment function
guarantees the value u in the whole u-slice Qu.

▶ Proposition 39. For a coloring function vcol : Qu → J0, eK and an environment function
Ev : Qu → Env(D), assume that (vcol, Ev) is completely faithful and that vcol[Qu] = {e}.
Then, all Player-A positional strategies generated by the environment function Ev parity
dominate the valuation χG in the game Gu.

Proof. This is direct from the definitions. Indeed, as (vcol, Ev) is completely faithful, it
witnesses the color e: all Player-A positional strategies sA generated by Ev in the game
Le

vcol parity dominate the valuation vu
e,vcol. Since vcol[Qu] = {e}, the games Le

vcol and Gu are
identical. Similarly, the valuation vu

e,vcol is equal to the valuation χG in the game Gu. ◀

B. Bordais, P. Bouyer, and S. Le Roux 18:15

5.5 Computing a completely faithful pair
Given Prop. 39, our goal is to come up with a pair of an environment function and a coloring
function completely faithful such that all states are colored with e. We first consider how to
obtain a completely faithful pair from the initial coloring function and the empty environment
function (which is faithful down to e + 1): we proceed by building a new pair that is faithful
down to n− 1, given a pair (vcol, Ev) faithful down to some n ∈ J1, e + 1K.

To do so, let us be guided by the second property of faithfulness: to be faithful down to n−1,
no state q ∈ Qu such that vcol(q) ≤ n−2 should be such that NewCol(q, vcol) = n−1. Hence,
we adopt the following procedure UpdateColEnv: we first associate an environment to all states
whose color is already n− 1. Then, for all states q ∈ Qu such that NewCol(q, vcol) = n− 1,
we change their colors to n − 1 until no state q ∈ Qu with vcol(q) ≤ n − 2 satisfies
NewCol(q, vcol) = n− 1. The environment associated to each such state q newly colored by
n − 1 is given by the coloring function vcol for which NewCol(q, vcol) = n − 1 for the first
time (crucially, this is done before the color of q is updated to n−1). We state as an informal
lemma the property satisfied by the procedure described above.

▶ Lemma 40. Let vcol : Qu → J0, eK, n ∈ J1, e + 1K be a coloring function, and Ev : Qu →
Env(D) be a partial environment function defined on vcol−1[Jn, eK]. Assume that (vcol, Ev) is
faithful down to n. Let (vcol′, Ev′)← UpdateColEnv(n− 1, vcol, Ev) be the pair computed by
the procedure described above. Then (vcol′, Ev′) is faithful down to n− 1.

We illustrate below this lemma on examples.

▶ Example 41. We consider the example depicted in Fig. 2. The first step is to build a pair
that is faithful down to e = 4. As mentioned in Ex. 36, we have NewCol(q5, col) = 4. Hence,
the color of this state is changed to 4 (we obtain a virtual coloring function vcolq5) and we
set Ev(q5) := E4

q5,col. Note that a Player-A GF-strategy σA is optimal in this environment
if and only if it plays both rows with positive probability. Furthermore, note that, in the
extracted game L4

vcolq5 , a Player-A positional strategy playing such a GF-strategy σA in q5

parity dominates the valuation v
1/2
Q4,colq5 . Hence, the pair (vcolq5 , Ev) is faithful down to 4.

Consider now the layer 3. First, the state q6 already has color 3, so it only remains to set
its environment: Ev(q6) := E3

q6,vcolq5 . We then realize that NewCol(q4, vcolq5) = 3. Indeed, q4
is colored with 2 and may go with equal probability to a state colored with 0 and to a state
colored with 3. The color of this state is therefore changed, thus obtaining a new virtual
coloring function vcolq5,q6,q4 . We set its environment: Ev(q4) := E3

q4,vcolq5 . One can realize
that the pair (vcolq5,q6,q4 , Ev) witnesses the color 3: a positional Player-B strategy generated
by this environment would be so that (i) from q6, it goes to q4 with probability 1 (to avoid
k4 that is colored with 4) and (ii) from q5, it goes to q6 with positive probability (to see the
color 3 with positive probability). Such a strategy has value 0 in the game L3

vcolq5 = L3
vcol

from Fig. 4, hence the pair (vcolq5,q6,q4 , Ev) witnesses the color 3.
We illustrate on this step why the environment needs to be set before setting the new color

and not after. That is, we explain why it would not be correct to set Ev(q4) := E3
q4,vcolq5,q6,q4

instead of what we do above. In this environment, the state q4 has color 3. Hence, looping
with probability 1 on q4 is an optimal GF-strategy for Player B w.r.t. (D, F(q4), Ev(q4)).
Then, the corresponding pair of coloring and environment functions would not witness the
color 3. Indeed, a Player B strategy that loops with probability 1 on q4 is generated by this
environment, and it has value 1 ≥ u (because the real color of this state is 2, and not 3).

This process is repeated down to 0. In Fig. 3, the depicted coloring function (with an
appropriate environment function, not shown in Fig. 3) are in fact completely faithful (which
is what the procedure UpdateColEnv would output on the coloring function of Fig. 2). ⌟

CSL 2024

18:16 From Local to Global Optimality

Proof sketch. We want to prove that the pair (vcol′, Ev′) witnesses the color n − 1 (the
other condition for faithfulness is ensured by the construction). We consider the case where
n − 1 is even, the other case is similar (but one needs to take the point-of-view of Player
B). Consider a Player-A positional strategy sA generated by the environment function Ev′ in
the game Ln−1

vcol′ . Let Qn−1 := vcol′−1[n− 1] and let v := vu
n−1,vcol′ . For every q ∈ Qn−1, let

Yq := (D, F(q), Ev′(q)) be the local environment at state q and let Ev′(q) = ⟨cq, e, pq⟩. From
the characterization of Lemma 21 (item (ii.1)), by carefully analyzing the links between the
local games GYq for all q ∈ Qn−1 and the game Ln−1

vcol′ , we can show that the strategy sA
dominates the valuation v.

It remains to show that all BSCCs (that are not reduced to a stopping state and are)
compatible with sA are even-colored. Consider such a BSCC H and a Player-B deterministic
positional strategy sB which induces H. For every state q ∈ H, since no stopping state
appears in H , it must be that the probability to reach a stopping state in GYq

w.r.t. (σA, b) is
0. For every state q ∈ Qn−1, the coloring function vcolq associated with environment Ev′(q) is
such that vcolq(q) ≤ n−1.1 Hence, the color cq is such that cq = max(n−2, vcolq(q)) ≤ n−1.
Now, assume that some state ki is in H for some i > n− 1 ≥ cq. In that case, as explained
in Remark 22, the highest i such that ki is in H must be even. Hence, H is even-colored.
Assume now that no state ki in H is such that i > n−1. In that case, if a state in H has color
n−1 (like the state q6 in Fig. 3 in the case where n−1 = 3), then n−1 is the highest color in
H and H is even-colored. Consider the first state q whose color is now n−1 (w.r.t. vcol′) but
whose previous color was not n−1. In that case, we have cq = max(n−2, vcolq(q)) = n−2 is
odd. Furthermore, the state q has changed its color because NewCol(q, vcolq) = n− 1. With
Remark 19, since sA(q) is optimal w.r.t. Yq, it follows that there is a positive probability
to reach, in the game GYq

the state kn−1. In the game Ln−1
vcol′ , this corresponds to a positive

probability to reach a state q′ ∈ H colored with n− 1 w.r.t. vcolq (recall Def. 30). Since q is
the first state to have changed its color, we can deduce that q′ already had color n− 1 w.r.t.
vcol. Furthermore, one can show that q′ is colored with n− 1 w.r.t. the real coloring function
col. Overall, in the game Ln−1

vcol′ , with the GF-strategy sA(q), there is a positive probability to
reach in one step a state q′ colored with n− 1. Iteratively, we obtain that, considering the
k-th state whose color is now n− 1 (i.e. w.r.t. vcol′) but whose initial color was not n− 1,
there is a positive probability to reach (in at most k steps) a state colored with n− 1. Hence,
the highest color appearing in H is n− 1, which is even. We obtain that sA parity dominates
the valuation v. ◀

Applying iteratively this algorithm on all colors from e down to 0 starting with the initial
coloring function induces a completely faithful pair (vcol, Ev). However, it may be the case
that some states are not mapped to e, which does not allow us to apply Prop. 39. The
question is then: from such a completely faithful configuration, how can one make some
progress towards a situation where Prop. 39 can be applied?

▶ Example 42. Consider the coloring function of Fig. 3. As mentioned in Ex. 41, with an
appropriate environment function (not shown in Fig. 3), we have a completely faithful pair.
To gain some intuition on what should be done next, let us focus only on the states q1, q2, q3.
A simplified version is presented in Fig. 6 (with a slight modification: instead of going to q0,
q1 loops on itself): the initial (and true) colors of the states are in circles next to them and
their color w.r.t. the current virtual coloring function is written in red. In this game, it is

1 This is because all states q ∈ Qn−1 satisfy col(q) ≤ n − 1. This is one of the additional conditions for
faithfulness that we did mention, but that is used in the definition of faithfulness in [4].

B. Bordais, P. Bouyer, and S. Le Roux 18:17

1
0

q2

1
1

q3

0

0
q1

Figure 6 A (deterministic turn-
based) game with only three states.

0

1/4

1/2

3/4

1

0:

1:

2:

3:

4:

q0,
[
q6 q1 1
q5 q1 q6

] 0
q1

0

q2

q3

q4
·2

q5,
[
q6

1
2

1
2 q6

]2

q6

3

Figure 7 The same arena as in Fig. 2,3 but with a
different coloring function.

obvious that Player A wins surely from q2: indeed, either the game stays indefinitely in q2,
or it eventually reaches and settles in q1.

The current virtual color 1 assigned to both q2 and q3 does not properly reflect the fact
that if the game reaches q3, even though Player B plays optimally according to the local
game associated to q2, it will end up looping in q1, which will be losing for Player B. In a
way, we would like to propagate the information that reaching q1 is bad for Player B. Since
0 is the smallest color, there is no harm in increasing it to 2, the game from q1 will be the
same: it will be won by Player A by looping. Player B will now be able to know that going
to q1 is dangerous for her, which will be obtained by applying the previous iterative process.

In a more general concurrent game, the next step of the process when we have a completely
faithful configuration not satisfying the assumptions of Proposition 39 consists in changing
all the states with the least virtual color n to the color n + 2. However, note that there is a
(very important) second step: the colors of all states virtually colored with n + 1 should be
reset to their initial colors. The reason why can be seen again in Fig. 6. After the color of q1
becomes 2, the color of q3 will also become 2. However, if the color of the state q2 is not reset,
then it is not going to change since Player B can choose to loop to q2 and see the color 1 for
ever (in game G0

q2,vcol). That is, from Player B’s perspective, looping on q2 is winning, which
is not what happens in the real game: the coloring function does not faithfully describes
what happens in the game. The changes made to the coloring function vcol from Fig. 3 can
be seen in Fig. 7. Note that the process of increasing the colors of some states by 2 can only
be done with the least color (otherwise faithfulness will not be preserved). ⌟

The process IncLeast described in Ex. 42 can be summed up as follows: we increase
the least virtually-colored layer n by 2 and we reset the environment and colors of the last
but least virtually-colored layer. It ensures faithfulness down to n + 2 if the initial pair is
completely faithful, as informally stated below.

▶ Lemma 43. Let vcol : Qu → J0, eK, Ev : Qu → Env(D) be a coloring and an environment
function. Let n := min vcol[Q]. Assume that n ≤ e− 2 and the pair (vcol, Ev) is completely
faithful. If (vcol′, Ev′)← IncLeast(vcol, Ev) is the result of increasing the least-colored layer
by 2 and resetting the environment of the last but least-colored layer as described above, then
(vcol′, Ev′) is faithful down to n + 2.

CSL 2024

18:18 From Local to Global Optimality

Proof sketch. Let Qn := vcol−1[n] and Qn+2 := vcol−1[n + 2]. Let us argue that the pair
(vcol′′, Ev) obtained after increasing the least color by 2, before resetting the color and
environment of the last but least-colored layer, witnesses the color n + 2.

Consider a Player-A positional strategy sA generated by the environment Ev in the game
Ln+2

vcol′′ . Let v := vu
n+1,vcol′′ . Similarly to the case of Lemma 40, sA dominates the valuation v.

Consider a BSCC H compatible with sA. If H ∩Qn+2 = ∅, then H is even-colored. Indeed,
(vcol, Ev) witnesses the color n and, in addition, the probability to go an (n + 1)-colored
state kn+2

i in the game Ln+2
vcol′′ is exactly the probability to go to an (n + 1)-colored state kn

i

in the game Ln
vcol (since n is the least color). Furthermore, H is also even-colored as soon

as H ∩Qn = ∅ since (vcol, Ev) witnesses the color n + 2. Now, assume that none of these
cases occur. Then, one can show that: either a state ki is seen for some i ≥ n + 2, and H

is even-colored; or, from some states in Qn+2, there is a positive probability to exit Qn+2
and no state ki is seen for i ≥ n + 2. Now, looking at what happens in game Ln+2

vcol , some
states ki are seen for i ≤ n + 1, and such states are colored with n + 1. Hence, since (vcol, Ev)
witnesses the color n + 2, it must be that the highest color in H is n + 2, which is even.
Therefore it is also the case in the game Ln+2

vcol′′ . In all the cases, H is even-colored. ◀

As stated in Lemma 43, the update of colors described in Ex. 42 can be done only if, for
a completely faithful pair, the least virtual color n appearing is at most e − 2. If n = e ,
we are actually in the scope of Lemma 39 since in that case all states have virtual color e.
However, there remains the case where we have n = e− 1. In fact, this case cannot happen.

▶ Lemma 44. Consider a coloring function vcol : Qu → J0, eK, an environment function
Ev : Qu → Env(D). Assume that (vcol, Ev) is completely faithful. Then, for C := vcol[Q], we
have min C ̸= e− 1.

Proof sketch. Let Qe−1 := vcol−1[e − 1]. Towards a contradiction, let sB be a Player-B
positional strategy generated by Ev in the game Le−1

vcol . It parity dominates the valuation
vu′

e−1,vcol for some u′ < u. Hence, all BSCCs compatible with sB are odd-colored: they all
stay in the layer Qe−1. Indeed, since e− 1 = min C, exiting Qe−1 while staying in Qu mean
seeing Qe := vcol−1[e] with e even and the highest color in the game. Hence, either the
game stays indefinitely in Qe−1 and Player B wins almost surely, or there is some positive
probability to visit stopping states, and in that case their expected values is at most u′.
Hence, in the game Gu, the strategy sB has values less than u from the states Qe−1 ⊆ Qu,
which is a contradiction. ◀

Finally, all these pieces are put together by iteratively applying UpdateColEnv until we
obtain a completely faithful pair and applying IncLeast to a completely faithful pair to make
some progress towards the completely faithful pair where all states are colored with e. The
only remaining step is to prove the termination of this procedure. Consider the virtual
coloring functions as vectors in Ne+1 indicating the number of states mapped to each color.
Then, one can realize that applying UpdateColEnv does not decrease these vectors for a
lexicographic order (i.e. we first compare the number of states mapped to e, then the number
of states mapped to e− 1, etc). Furthermore, applying IncLeast increases these vectors for a
lexicographic order. In addition, the maximum for this order is achieved when all states are
colored with e. Hence, the procedure described above terminates in finitely many steps. We
can now finalize the argument for proving Theorem 25.

Proof sketch of Theorem 25 for Player A. Pick u ∈ VG \ {0}. According to the previous
discussion, there is a completely faithful pair of environment and coloring functions (vcolu, Evu

A)
mapping each state in Qu to eu. Hence, by Proposition 39, all Player-A positional strategies

B. Bordais, P. Bouyer, and S. Le Roux 18:19

generated by the environment function Evu
A parity dominate the valuation χG in the game

Gu. Since we assume that all game forms appearing in Qu are positionally maximizable
up to eu − col(q) w.r.t. Player A, such positional strategies generated by Evu

A do exist.
Considering the environment function EvA : Q → Ev(D) that merges all the environment
functions (Evu

A)u∈VG\{0} together (and that is defined arbitrarily on Q0), it follows by
Proposition 28, that all Player-A positional strategies generated by that environment function
Ev are optimal. ◀

6 Discussion on positionally optimizable game forms

As mentioned in the introduction, this work extends previous lines of research [1, 2, 3]. We
discuss the more closely related work [3]. The goal in [3] was to characterize the game forms
ensuring the existence of almost-optimal positional strategies for Büchi objectives (resp.
optimal positional strategies for co-Büchi objectives). In both cases, there is a lift from
local properties to global properties, similarly to what is done in this work. However, the
techniques are quite different: in [3], the proofs involve the use of nested fixed points, as
is done for computing values of graph games [9]. This establishes a link between local and
global behaviors. However, this comes at the cost of having to handle local (i.e. at game
form level) and global (i.e. at graph game level) fixed-points. With Büchi and co-Büchi
objectives, there are only two nested fixed points. (Recall that they can be expressed
as two-color parity objectives.) For general parity objectives, the number of fixed points
would be linear in the number of involved colors. That is why, in this work, we decided to
consider good local behaviors in a more abstract way, without considering how the values
are effectively computed. That way, we handle arbitrarily many colors instead of only two
without prohibitive complexification.

We conclude with a discussion on positionally optimizable game forms. First, we would
like to emphasize that Theorem 25 along with Remark 19 give exactly the game forms that
should be used in parity games to ensure the existence of positional optimal strategies for
both players. Indeed:

By Remark 19, given any game form that is not positionally optimizable, one can build a
small parity game from it, like in Definition 14, where a player has no optimal strategy;
By Theorem 25, if all the local interactions occurring in a concurrent parity game are
positionally optimizable game forms, then both players have positional optimal strategies.

However, it has to be noted that there are concurrent parity games with non-positionally
optimizable local interactions where both players have positional optimal strategies. This is
e.g. the case of parity games without stopping states where all states have the same color.

Let us now give some properties that are ensured by positionally optimizable game forms.
We first give some notations for positionally optimizable game forms (and the corresponding
decision problems).

▶ Definition 45. For n ∈ N, we let ParO(n) be the set of all game forms positionally
optimizable up to n and we let IsO(n) be the problem of deciding whether a game form is in
ParO(n). Furthermore, we let ParO :=

⋂
n∈N ParO(n) and we denote by IsO the problem of

deciding whether a game form is in ParO.

First, let us introduce the notion of relevant environment, i.e. environment E = ⟨c, e, p⟩
such that c ∈ {0, 1} and p takes all values in Jc, eK. They are fomally defined below.

CSL 2024

18:20 From Local to Global Optimality

▶ Definition 46. For a set of outcomes O, an environment E = ⟨c, e, p⟩ ∈ Env is relevant if
p−1[{c− 1}] = p−1[{qinit}] = ∅ and for all i ∈ Jc, eK, there is some o ∈ O such that p(o) = i.
The size of a relevant environment E is equal to Sz(E) := e− c.

The benefit of relevant environments appears below: a game form is positionally op-
timizable if and only if there are optimal GF-strategies w.r.t. all relevant environments.

▶ Proposition 47. Consider a set of outcomes O and a game form F ∈ Form(O). For all
n ∈ N, the game form F is ParO(n) if and only if, for all relevant environments E with
Sz(E) ≤ n− 1, for both players, there is an optimal GF-strategy w.r.t. (O,F , E).

Some positionally optimizable game forms. As mentioned above, given the distance to
the highest color in the game, Theorem 25 and Remark 19 give exactly the game forms that
should be used in parity games to ensure the existence of positional optimal strategies for
both players. The game forms in ParO are the ones that can be used in all parity games,
regardless of the number of colors involved, while ensuring the existence of positional optimal
strategies (for both players). Such game forms do exist, e.g. turn-based game forms are
positionally optimizable (straightforwardly). In fact, all determined [1] game forms are
positionally optimizable. Furthermore, all game forms with at most two outcomes are in
ParO.

▶ Proposition 48. Consider a set of outcomes O and a game form F = ⟨ActA, ActB, O, ϱ⟩ ∈
Form(O). Assume that |O| ≤ 2 or that F is turn-based or that F is determined, i.e. such
that:

for all (a, b) ∈ ActA × ActB, we have ϱ(a, b) deterministic;
for all v : O→ {0, 1}, there is either some a ∈ ActA such that ϱ(a, ActB) ⊆ {1} or there
is either some b ∈ ActB such that ϱ(ActA, b) ⊆ {0}.

Then, F is positionally optimizable.

Decidability. Similarly to “maximizable” game forms designed for reachability games [2]
and to “maximizable” game forms designed (co-)Büchi games [3], it is rather easy to get
convinced that positionally optimizable game forms used in this paper can be defined in the
first-order theory of the reals (FO-R): the characterizations of Lemma 21 and the fact that it
is sufficient to only consider relevant environment, as stated in Proposition 47, even allow us
to place the ParO(n) (for all n) and the ParO problems in the ∀∃-fragment of FO-R.

▶ Proposition 49. For all n ∈ N, the problem IsO(n) is decidable. And so is IsO.

Hierarchy. For all n ∈ N, the game forms in ParO(n) are the ones to be used – to ensure
the existence of positional optimal strategies for both players – in parity games at states
where the gap between the color of the state and the maximum color in the game is at most
n. Straightforwardly, ParO(n) ⊆ ParO(n + 1). In fact, this inclusion is strict for all n ∈ N.
This defines an infinite hierarchy of game forms.

▶ Proposition 50. For all n ∈ N, we have ParO(n) ⊊ ParO(n + 1).

References
1 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global determinacy

in concurrent graph games. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages
41:1–41:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
FSTTCS.2021.41.

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.41
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.41

B. Bordais, P. Bouyer, and S. Le Roux 18:21

2 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in concurrent
reachability games. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Con-
ference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany
(Virtual Conference), volume 216 of LIPIcs, pages 7:1–7:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.7.

3 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Playing (almost-)optimally in
concurrent Büchi and co-Büchi games. In Anuj Dawar and Venkatesan Guruswami, editors,
42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume
250 of LIPIcs, pages 33:1–33:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.FSTTCS.2022.33.

4 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global optimality
in concurrent parity games. CoRR, abs/2311.14373, 2023. doi:10.48550/arXiv.2311.14373.

5 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Subgame optimal strategies in
finite concurrent games with prefix-independent objectives. In Orna Kupferman and Pawel
Sobocinski, editors, Foundations of Software Science and Computation Structures – 26th
International Conference, FoSSaCS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings,
volume 13992 of Lecture Notes in Computer Science, pages 541–560. Springer, 2023. doi:
10.1007/978-3-031-30829-1_26.

6 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity of
quantitative concurrent parity games. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 678–687. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109631.

7 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 121–130.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982808.

8 Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In 15th Annual
IEEE Symposium on Logic in Computer Science, Santa Barbara, California, USA, June 26-29,
2000, pages 141–154. IEEE Computer Society, 2000. doi:10.1109/LICS.2000.855763.

9 Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games. Journal
of Computer and System Sciences, 68:374–397, 2004.

10 Hugh Everett. Recursive games. Annals of Mathematics Studies – Contributions to the Theory
of Games, 3:67–78, 1957.

11 Panganamala R Kumar and Tzong-Huei Shiau. Existence of value and randomized strategies in
zero-sum discrete-time stochastic dynamic games. SIAM Journal on Control and Optimization,
19(5):617–634, 1981.

12 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos, and Rui Yan. Probabilistic
model checking for strategic equilibria-based decision making. In Proc. 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS’22), LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.4.

13 Donald A. Martin. The determinacy of blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

14 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton Univ. Press, Princeton, 1944.

15 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

16 Wiesław Zielonka. Perfect-information stochastic parity games. In Proc. 7th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’04),
volume 2987 of Lecture Notes in Computer Science, pages 499–513. Springer, 2004.

CSL 2024

https://doi.org/10.4230/LIPIcs.CSL.2022.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.33
https://doi.org/10.48550/arXiv.2311.14373
https://doi.org/10.1007/978-3-031-30829-1_26
https://doi.org/10.1007/978-3-031-30829-1_26
http://dl.acm.org/citation.cfm?id=1109557.1109631
http://dl.acm.org/citation.cfm?id=1109557.1109631
http://dl.acm.org/citation.cfm?id=982792.982808
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.4230/LIPIcs.MFCS.2022.4

Ehrenfeucht–Fraïssé Games in Semiring Semantics
Sophie Brinke #

RWTH Aachen University, Germany

Erich Grädel #

RWTH Aachen University, Germany

Lovro Mrkonjić #

RWTH Aachen University, Germany

Abstract
Ehrenfeucht–Fraïssé games provide a fundamental method for proving elementary equivalence (and
equivalence up to a certain quantifier rank) of relational structures. We investigate the soundness
and completeness of this method in the more general context of semiring semantics. Motivated
originally by provenance analysis of database queries, semiring semantics evaluates logical statements
not just by true or false, but by values in some commutative semiring; this can provide much more
detailed information, for instance concerning the combinations of atomic facts that imply the truth
of a statement, or practical information about evaluation costs, confidence scores, access levels or
the number of successful evaluation strategies. There is a wide variety of different semirings that
are relevant for provenance analysis, and the applicability of classical logical methods in semiring
semantics may strongly depend on the algebraic properties of the underlying semiring.

While Ehrenfeucht–Fraïssé games are sound and complete for logical equivalences in classical
semantics, and thus on the Boolean semiring, this is in general not the case for other semirings.
We provide a detailed analysis of the soundness and completeness of model comparison games on
specific semirings, not just for classical Ehrenfeucht–Fraïssé games but also for other variants based
on bijections or counting.

Finally we propose a new kind of games, called homomorphism games, based on the fact that
there exist locally very different semiring interpretations that can be proved to be elementarily
equivalent via separating sets of homomorphisms. We prove that these homomorphism games
provide a sound and complete method for logical equivalences on finite lattice semirings.

2012 ACM Subject Classification Theory of Computation → Finite Model Theory

Keywords and phrases Semiring semantics, elementary equivalence, Ehrenfeucht–Fraïssé games

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.19

Related Version Full Version: https://arxiv.org/abs/2308.04910 [4]

1 Introduction

Semiring provenance was proposed in 2007 in a seminal paper by Green, Karvounarakis, and
Tannen [15]. It is based on the idea to annotate the atomic facts in a database by values
in some commutative semiring, and to propagate these values through a database query,
keeping track whether information is used alternatively (as in disjunctions or existential
quantifications) or jointly (as in conjunctions or universal quantifications). Depending on
the chosen semiring, the provenance valuation then gives practical information about a
query, beyond its truth or falsity, for instance concerning the confidence that we may have
in its truth, the cost of its evaluation, the number of successful evaluation strategies, and
so on. Beyond such provenance evaluations in specific application semirings, more precise
information is obtained by evaluations in provenance semirings of polynomials, which permit
us to track which atomic facts are used (and how often) to compute the answer to the query.

© Sophie Brinke, Erich Grädel, and Lovro Mrkonjić;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brinke@logic.rwth-aachen.de
https://orcid.org/0009-0005-2865-0069
mailto:graedel@logic.rwth-aachen.de
https://orcid.org/0000-0002-8950-9991
mailto:mrkonjic@logic.rwth-aachen.de
https://orcid.org/0000-0001-8812-7185
https://doi.org/10.4230/LIPIcs.CSL.2024.19
https://arxiv.org/abs/2308.04910
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Ehrenfeucht–Fraïssé Games in Semiring Semantics

In databases, semiring provenance has been successfully applied to a number of different
scenarios, such as conjunctive queries, positive relational algebra, datalog, nested relations,
XML, SQL-aggregates, graph databases (see, e.g., the surveys [9, 16]), but for a long time, it
had essentially been restricted to negation-free query languages; there has been no systematic
tracking of negative or absent information, and for quite some time, this has been an obstacle
for extending semiring provenance to other branches of logic in computer science.

A new approach to provenance analysis for languages with negation has been proposed
in 2017 by Grädel and Tannen [13], based on transformations into negation normal form,
quotient semirings of polynomials with dual indeterminates, and a close relationship to
semiring valuations of games [14]. Since then, semiring provenance has been extended to a
systematic investigation of semiring semantics for many logical systems, including first-order
logic, modal logic, description logics, guarded logic and fixed-point logic [3, 5, 6, 7, 13] and
also to a general method for strategy analysis in games [11, 14].

In classical semantics, a model A of a formula assigns a Boolean value to each literal.
S-interpretations π, for a suitable semiring S, generalise this by assigning a semiring value
from S to each literal. We interpret a value of 0 as false and all other semiring values as
nuances of true, or true with additional information. In this context, classical semantics
corresponds to semiring semantics on the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the
Viterbi semiring V = ([0, 1],max, ·, 0, 1) can model confidence scores, the tropical semiring
T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, and min-max-semirings (A,max,min, a, b)
for a totally ordered set (A,<) can model different access levels. Other interesting semirings
are the Łukasiewicz semiring L, used in many-valued logic, and its dual D, which we call the
semiring of doubt. Provenance semirings of polynomials, such as N[X], track certain literals by
mapping them to different indeterminates. The overall value of a formula is then a polynomial
that describes precisely what combinations of literals imply the truth of the formula. There are
other provenance semirings, obtained from N[X] by dropping coefficients and/or exponents
or by absorption, to get semirings B[X],Trio[X],W[X], S[X] and PosBool[X]. They are
less informative than N[X] (which is the free semiring generated by X), but have specific
algebraic properties and admit simpler evaluation procedures. For applications to infinite
universes, and for stronger logics than first-order logic, provenance semirings with more
general objects than polynomials are needed, such as N∞[[X]], the semirings of formal power
series, and S∞[X|, the semirings of generalised absorptive polynomials with potentially
infinite exponents, which are fundamental for semiring semantics of fixed-point logics [7, 14].

The development of semiring semantics raises the question to what extent classical
techniques and results of logic extend to semiring semantics, and how this depends on
the algebraic properties of the underlying semiring, and this paper is part of a general
research programme that explores such questions. In previous investigations, we have studied,
for instance, the relationship between elementary equivalence and isomorphism for finite
semiring interpretations and their definability up to isomorphism [12], 0-1 laws [10], and
locality properties as given by the theorems of Gaifman and Hanf [2]. In all these studies, it
has turned out that classical methods of mathematical logic can be extended to semiring
semantics for certain semirings, but that they fail for others. Further, these questions are
often surprisingly difficult: even quite simple facts of logic in the standard Boolean semantics
become interesting research problems for semirings, and they often require completely new
methods.

The objective of this paper is to study the applicability of Ehrenfeucht–Fraïssé games
– and related model comparison games – as a method for proving elementary equivalence
(i.e. indistinguishability by first-order sentences, denoted ≡) and m-equivalence (i.e. indis-
tinguishability by sentences of quantifier rank up to m, denoted ≡m) in semiring semantics.

S. Brinke, E. Grädel, and L. Mrkonjić 19:3

Let us recall the classical Ehrenfeucht–Fraïssé Theorem1 (see e.g. [8]).

▶ Theorem 1 (Ehrenfeucht–Fraïssé). Let τ be a finite relational vocabulary. For any two
τ -structures A and B, and for all m ∈ N, the following statements are equivalent:
(1) A ≡m B;
(2) Player II (Duplicator) has a winning strategy for the game Gm(A,B);
(3) There exists an m-back-and-forth system (Ij)j≤m for A and B;
(4) B |= χm

A , where χm
A is the characteristic sentence of quantifier rank m for A.

In semiring semantics, the structures A and B are generalised to (model-defining) semiring
interpretations πA and πB mapping instantiated τ -literals into a semiring S. The notions of
m-equivalence, local isomorphisms, Ehrenfeucht–Fraïssé games, and back-and-forth systems
all generalise in a straightforward way to S-interpretations, for any semiring S (see Section 2).
Also the observation that m-back-and-forth systems can be viewed as algebraic descriptions
of winning strategies of Player II in m-turn Ehrenfeucht–Fraïssé games holds for arbitrary
semiring interpretations, i.e. the equivalence (2) ⇔ (3) holds for any semiring. The notion
of characteristic sentences will be discussed later in Section 5. Our main concern is the
relationship between (1) and (2), or equivalently (1) and (3). We shall have to consider both
directions separately.

▶ Definition 2. Let S be an arbitrary commutative semiring. We say that
(1) Gm is sound for ≡m on S if for any pair πA, πB of model-defining S-interpretations, the

existence of a winning strategy of Player II for Gm(πA, πB) implies that πA ≡m πB ;
(2) Gm is complete for ≡m on S if for any pair πA, πB of model-defining S-interpretations

such that πA ≡m πB , Player II has a winning strategy for Gm(πA, πB).

In this terminology, the Ehrenfeucht–Fraïssé Theorem says that for every m, Gm is both
sound and complete for ≡m on the Boolean semiring. However, we shall prove that the
Boolean semiring is the only semiring with this property, and for general semirings, the
games Gm need be neither sound nor complete. But there are also positive results, and the
detailed study of soundness and completeness of Ehrenfeucht–Fraïssé games on semirings
is quite interesting and diverse. For instance, we shall prove that Gm is sound for ≡m

precisely on fully idempotent semirings (where both semiring operations are idempotent).
Examples of fully idempotent semirings include all min-max semirings, lattice semirings, and
the semirings PosBool[X] of irredundant positive Boolean DNF-formulae. We shall then
turn to more powerful games, which are more difficult to win for Duplicator, but if she
wins, stronger results follow. In particular, we study the general Ehrenfeucht–Fraïssé game
G(πA, πB) where Spoiler can choose a number m, and then the game Gm(πA, πB) is played.
If, on a semiring S, Gm is sound for ≡m for all m, then a winning strategy for Duplicator
for G(πA, πB) implies that πA ≡m πB for all m, and hence πA ≡ πB . Thus, soundness of all
games Gm implies soundness of G. The converse is not true; there are semirings on which
G is sound for ≡, although the games Gm are unsound for ≡m. Trivially, G is sound on
semirings that do not admit interpretations with infinite universes due to the impossibility
of infinite sums or products, such as N or the provenance semirings B[X], S[X] and N[X].
More interesting cases include semirings that are not idempotent, but where adding or
multiplying any element repeatedly with itself stabilises after at most n steps, or the semiring
N∞ = N ∪ {∞}. But there also exist a number of semirings on which the unrestricted

1 Detailed definitions of all notions will be given in Section 2.

CSL 2024

19:4 Ehrenfeucht–Fraïssé Games in Semiring Semantics

Ehrenfeucht–Fraïssé game G is unsound for elementary equivalence, including the semirings
T,V,L and D. Further we shall consider bijection and counting games, which are variants of
pebble games for bounded-variable logics with counting from [17, 18]. Actually the m-move
bijection games BGm and counting games CGm are equivalent, and they turn out to be
sound for ≡m on every semiring. However, with few exceptions, such as the semirings N
and N[X], they are not complete. We also study parametrised versions CGn

m of counting
games.

On many semirings S, the methods established in [12] permit us to construct elementarily
equivalent S-interpretations πA ≡ πB, although locally some elements of πA look different
from all elements of πB , so that Spoiler wins Gm(πA, πB) for some small m. The game Gm

is then incomplete for ≡m, and the game G is incomplete for ≡. Since the games CGn
m and

BGm are more difficult to win for Player II than Gm, they are incomplete as well. This
approach successfully works for the semirings V,T,L,D,N∞,W[X], S[X],B[X], and S∞[X].

The soundness and completeness results of these games are summarised in Figure 1.

Application semirings: S ̸∼= B fully
idempotent T ∼= V L ∼= D N N∞

So
un

dn
es

s Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✗ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✗ ✗ ✓ ✓

C
om

pl
et

en
es

s Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗

Provenance semirings: PosBool[X] W[X] S[X],B[X] N[X] S∞[X]

So
un

dn
es

s Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✓ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✓ ✓ ✓ ✓

C
om

pl
et

en
es

s Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗

Figure 1 Due to full idempotence. Due to n-idempotence. Holds for any semiring. Follows from
the finiteness of the universes. Cannot hold since elementary equivalence of finite interpretations
does not imply isomorphism.

The proof that locally different S-interpretations are nevertheless elementarily equivalent
often proceeds via separating sets of homomorphisms. We use this method to propose a
new kind of games, called homomorphism games, involving the selection of a homomorphism
into the Boolean semiring, and a one-sided winning condition, due to the property that
homomorphisms may transfer model-defining S-interpretations into B-interpretations that
are no longer model-defining. We prove that these homomorphism games provide a sound
and complete method for proving logical equivalences on finite lattice semirings.

S. Brinke, E. Grädel, and L. Mrkonjić 19:5

2 Semiring semantics

We briefly summarise semiring semantics for first-order logic, as introduced in [13], and the
resulting generalised notions of isomorphism and equivalence.

▶ Definition 3 (Semiring). A commutative semiring is an algebraic structure S = (S,+, ·, 0, 1)
with 0 ̸= 1, such that (S,+, 0) and (S, ·, 1) are commutative monoids, · distributes over +,
and 0 · s = s · 0 = 0.

A commutative semiring is naturally ordered (by addition) if s ≤ t :⇔ ∃r(s + r = t)
defines a partial order. In particular, this excludes rings. We only consider commutative
and naturally ordered semirings and simply refer to them as semirings. A semiring S is
idempotent if s+ s = s for each s ∈ S and multiplicatively idempotent if s · s = s for all s ∈ S.
If both properties are satisfied, we say that S is fully idempotent. Finally, S is absorptive if
s+ st = s for all s, t ∈ S or, equivalently, if multiplication is decreasing in S, i.e. st ≤ s for
s, t ∈ S (equivalence is shown in [7]). Every absorptive semiring is idempotent.

Application semirings. There are several applications which can be modelled by semirings
and provide useful practical information about the evaluation of a formula.

A totally ordered set (S,≤) with least element s and greatest element t induces the
min-max semiring (S,max,min, s, t). It can be used to reason about access levels.
The tropical semiring T = (R∞

+ ,min,+,∞, 0) provides the opportunity to annotate basic
facts with a cost which has to be paid for accessing them and realise a cost analysis.
The Viterbi semiring V = ([0, 1]R,max, ·, 0, 1), which is in fact isomorphic to T via
y 7→ − ln y, can be used for reasoning about confidence.
An alternative semiring for this is the Łukasiewicz semiring L = ([0, 1]R,max,⊙, 0, 1),
where multiplication is given by s⊙ t = max(s+ t− 1, 0). It is isomorphic to the semiring
of doubt D = ([0, 1]R,min,⊕, 1, 0) with s⊕ t = min(s+ t, 1).
The natural semiring N = (N,+, ·, 0, 1) is used to count the number of evaluation strategies
proving that a sentence is satisfied. It is also important for bag semantics in databases.

Provenance semirings. Provenance semirings of polynomials provide information on which
combinations of literals imply the truth of a formula. The universal provenance semiring is
the semiring N[X] of multivariate polynomials with indeterminates from X and coefficients
from N. Other provenance semirings are obtained as quotient semirings of N[X] induced by
congruences for (full) idempotence and absorption. The resulting provenance values are less
informative, but their computation is more efficient.

By dropping coefficients from N[X], we get the free idempotent semiring B[X] whose
elements are finite sets of monomials. It is the quotient induced by x+ x ∼ x.
If, in addition, exponents are dropped, we obtain the Why-semiring W[X] of finite sums
of monomials that are linear in each argument.
The free absorptive semiring S[X] consists of 0, 1 and all antichains of monomials with
respect to the absorption order ≽. A monomial m1 absorbs m2, denoted m1 ≽ m2, if it
has smaller exponents, i.e. m2 = m ·m1 for some monomial m.
Finally, the lattice semiring PosBool[X] freely generated by the set X arises from S[X]
by collapsing exponents.

For a given finite relational vocabulary τ , we denote by Litn(τ) the set of literals Rx̄ and
¬Rx̄ where R ∈ τ and x̄ is a tuple of variables from {x1, . . . , xn}. The set LitA(τ) refers to
literals Rā and ¬Rā that are instantiated with elements from a universe A.

CSL 2024

19:6 Ehrenfeucht–Fraïssé Games in Semiring Semantics

▶ Definition 4 (S-interpretation). Given a semiring S, a mapping π : LitA(τ) → S is an
S-interpretation (of vocabulary τ and universe A). We say that S is model-defining if exactly
one of the values π(L) and π(L) is zero for any pair of complementary literals L,L ∈ LitA(τ).

An S-interpretation π : LitA(τ) → S inductively extends to valuations πJφ(ā)K of in-
stantiated first-order formulae φ(x̄) in negation normal form. Equalities are interpreted
by their truth value, that is πJa = aK := 1 and πJa = bK := 0 for a ̸= b (and analogously
for inequalities). Based on that, the semantics of disjunctions and existential quantifiers is
defined via sums, while conjunctions and universal quantifiers are interpreted as products.

πJψ(ā) ∨ ϑ(ā)K := πJψ(ā)K + πJϑ(ā)K πJψ(ā) ∧ ϑ(ā)K := πJψ(ā)K · πJϑ(ā)K

πJ∃xψ(ā, x)K :=
∑
a∈A

πJψ(ā, a)K πJ∀xψ(ā, x)K :=
∏
a∈A

πJψ(ā, a)K

▶ Lemma 5 (Fundamental Property). Let π : LitA(τ) → S be an S-interpretation and
h : S → T be a semiring homomorphism. Then, (h ◦ π) is a T -interpretation and it holds
that h(πJφ(ā)K) = (h ◦ π)Jφ(ā)K for all φ(x̄) ∈ FO(τ) and instantiations ā ⊆ A.

Basic model theoretic concepts such as equivalence and isomorphism naturally generalise
to semiring semantics and yield more fine-grained notions. Given a mapping σ : A → B and
some L ∈ LitA(τ), we denote by σ(L) the τ -literal over B which arises from L by replacing
each occurrence of a ∈ A with σ(a) ∈ B.

▶ Definition 6 (Isomorphism). S-interpretations πA : LitA(τ) → S and πB : LitB(τ) → S are
isomorphic, denoted as πA

∼= πB , if there is a bijection σ : A → B such that πA(L) = πB(σ(L))
for all L ∈ LitA(τ). A mapping σ : ā 7→ b̄ is a local isomorphism between πA and πB if it is
an isomorphism between the subinterpretations πA|Litā(τ) and πB |Litb̄(τ).

▶ Definition 7 (Elementary equivalence). Two S-interpretations πA : LitA(τ) → S and
πB : LitB(τ) → S with elements ā ∈ An and b̄ ∈ Bn are elementarily equivalent, denoted
(πA, ā) ≡ (πB , b̄), if πAJφ(ā)K = πBJφ(b̄)K for all φ(x̄) ∈ FO(τ). They are m-equivalent,
denoted (πA, ā) ≡m (πB , b̄), if the above holds for all φ(x̄) with qr(φ(x̄)) ≤ m where qr(φ(x̄))
refers to the quantifier rank of φ(x̄).

As in classical semantics, isomorphic S-interpretations are elementarily equivalent. The
converse concerning finite S-interpretations, however, marks an important difference to
Boolean semantics; it fails for a number of semirings, including all min-max semirings with
at least three elements, while it still holds on other semirings such as T,V,N and N[X]
(see [12]).

3 m-turn Ehrenfeucht–Fraïssé games

Given that the notion of local isomorphisms extends in a straightforward way from structures
to semiring interpretations, we also obtain Ehrenfeucht–Fraïssé games Gm(πA, πB) played
on S-interpretations πA, πB: In the i-th turn, Spoiler chooses some element ai ∈ A or
bi ∈ B, and Duplicator answers with an element in the other S-interpretation; the play
then continues with the subgame Gm−i(πA, a1, . . . , ai, πB , b1, . . . , bi). After m moves, tuples
ā = (a1, . . . , am) in A and b̄ = (b1, . . . , bm) in B have been selected, and Duplicator wins the
play if σ : ā 7→ b̄ is a local isomorphism.

S. Brinke, E. Grädel, and L. Mrkonjić 19:7

However, while classical structures A and B are separated by a formula ∃xψ(x) or ∀xψ(x)
if, and only if, there is some a ∈ A (or b ∈ B) such that for all b ∈ B (or a ∈ A, respectively)
the formula ψ(x) separates (A, a) from (B, b), neither of the implications translates to
semiring semantics. This is illustrated by very simple semiring interpretations2 and causes
both soundness and completeness of Gm(πA, πB) for ≡m to fail in general.

(N, +, ·, 0, 1)

πA :

A R ¬R

a1 1 0
a2 1 0
a3 2 0

πB :

B R ¬R

b1 1 0
b2 2 0
b3 2 0

πAJ∃xRxK = 4 ̸= 5 = πBJ∃xRxK

({0, 1, 2, 3, 4}, max, min, 0, 4)

πA :

A R ¬R

a1 1 0
a2 2 0
a3 4 0

πB :

B R ¬R

b1 1 0
b2 3 0
b3 4 0

πAJ∃xRxK = 4 = πBJ∃xRxK
πAJ∀xRxK = 1 = πBJ∀xRxK

This suggests that the direct adaptation of the game rules poses problems and raises the
question on which semirings the game Gm is sound, and on which it is complete for ≡m. In
particular, we aim to relate this to the algebraic properties of the underlying semiring.

3.1 Soundness of the games and counting in semirings
The fact that quantifiers in classical semantics do not capture counting is one of the central
limitations of the expressive power of first-order logic. However, in semiring semantics, this
is more complicated: Given a formula ψ(x) and some s ∈ S, the number of a ∈ A such that
πJψ(a)K = s may affect both πJ∃xψ(x)K and πJ∀xψ(x)K. Only in fully idempotent semirings
unequal sums or products can be attributed to differing sets of summands or factors, which
causes full idempotence to be a necessary and sufficient condition for the soundness of Gm.

▶ Theorem 8. The games Gm are sound for ≡m on a semiring S and all m ∈ N if, and
only if, S is fully idempotent.

Proof. (⇐): Suppose that S is fully idempotent. Based on a separating formula φ(x̄) ∈ FO(τ)
with πAJφ(ā)K ≠ πBJφ(b̄)K and qr(φ(x̄)) ≤ m where ā ∈ An and b̄ ∈ Bn, we construct a
winning strategy for Spoiler in the game Gm(πA, ā, πB , b̄) by induction. We only consider
the cases φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} where qr(φ(x̄)) ≤ m. It holds that

πAJ∃xψ(ā, x)K =
∑
a∈A

πAJψ(ā, a)K ̸=
∑
b∈B

πBJψ(b̄, b)K = πBJ∃xψ(b̄, x)K or

πAJ∀xψ(ā, x)K =
∏
a∈A

πAJψ(ā, a)K ̸=
∏
b∈B

πBJψ(b̄, b)K = πBJ∀xψ(b̄, x)K.

Both cases imply {πAJψ(ā, a)K : a ∈ A} ̸= {πBJψ(b̄, b)K : b ∈ B} due to full idempotence.
Spoiler wins the game Gm(πA, ā, πB , b̄) by choosing some element a ∈ A or b ∈ B witness-
ing this inequality. For all possible answers b ∈ B or a ∈ A, respectively, it holds that
πAJψ(ā, a)K ̸= πBJψ(b̄, b)K. Applying the induction hypothesis yields that Spoiler has a
winning strategy for the remaining game Gm−1(πA, ā, a, πB , b̄, b) as qr(ψ(x̄, x)) ≤ m− 1.

2 We describe semiring interpretations over a monadic vocabulary by tables, whose rows are indexed by
elements of the universe, and columns by the predicate symbols and their negations, such that the entry
for row a and column P has the semiring value of the literal P a.

CSL 2024

19:8 Ehrenfeucht–Fraïssé Games in Semiring Semantics

(⇒): If S is not fully idempotent, there is some s ∈ S such that s+ s ̸= s or s · s ̸= s.

Clearly, Duplicator wins G1(πA, πB) on the following S-interpretations, while πA ̸≡1 πB due
to πAJ∃xRxK = s+ s ̸= s = πBJ∃xRxK or πAJ∀xRxK = s · s ̸= s = πBJ∀xRxK.

πA :
A R ¬R
a1 s 0
a2 s 0

πB :
B R ¬R
b s 0

◀

This result motivates the consideration of more powerful games such as m-turn bijection
games, a variant of the pebble games which, on finite classical structures, characterise
m-equivalence in FO with counting quantifiers [17].

▶ Definition 9. The game BGm(πA, ā, πB , b̄) uses the same positions and winning condition
as Gm(πA, ā, πB , b̄), but in each round Duplicator has to provide a bijection h : A → B. If
such a bijection does not exist, i.e. |A| ̸= |B|, Spoiler wins immediately. Otherwise, Spoiler
chooses some a ∈ A and the pair (a, h(a)) is added to the current position.

In contrast to the classical Ehrenfeucht–Fraïssé game, this modification ensures soundness
without requiring full idempotence of the underlying semiring.

▶ Theorem 10. For every m ∈ N, the game BGm is sound for ≡m on every semiring S.

Proof. Suppose that φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} and qr(φ(x̄)) = m separates
(πA, ā) from (πB , b̄). For any bijection h : A → B Duplicator may choose in the game
BGm(πA, ā, πB , b̄), there must be some ah ∈ A such that πAJψ(ā, ah)K ̸= πBJψ(b̄, h(ah))K
since otherwise

∑
a∈A πAJψ(ā, a)K =

∑
a∈A πBJψ(b̄, h(a))K =

∑
b∈B πBJψ(b̄, b)K and analog-

ously for products. By choosing ah, Spoiler wins the game by induction. ◀

While demanding a bijection from Duplicator does ensure the soundness of BGm, it is
often at the expense of completeness. This is due to the fact that different multiplicities of a
semiring value in two interpretations do not necessarily imply separability by a first-order
sentence. In particular, this is the case for fully idempotent semirings, on which the games Gm

are already sound, but the resulting issues concern other semirings as well. We illustrate this
on the semiring W[x, y], where the precise numbers of occurrences of single semiring values
may differ in their effect on the separability of the resulting interpretations, as shown below.

A R ¬R
a1 x+ y 0

̸≡1

B R ¬R
b1 x+ y 0
b2 x+ y 0

≡1

C R ¬R
c1 x+ y 0
c2 x+ y 0
c3 x+ y 0

We observe that the semirings W[X], while not being fully idempotent, for instance due
to (x+ y)(x+ y) = x+ xy + y, satisfy a weaker idempotence condition.

▶ Definition 11. Let n ∈ N. A semiring S is n-idempotent if
∑

i∈I s =
∑

j∈J s and∏
i∈I s =

∏
j∈J s for all s ∈ S and all index sets I, J such that |I| ≥ n and |J | ≥ n.

It can easily be verified that W[X] is |X|-idempotent as monomials can be seen as sets
of variables, and multiplication corresponds to their union. For such semirings, we want to
replace the requirement for Duplicator to provide a bijection by a weaker requirement that
still maintains soundness. For this, we use counting games, introduced by Immermann and
Lander [18], which are equivalent to bijection games, but admit a parametrisation by the
size of the sets that are picked in each turn.

S. Brinke, E. Grädel, and L. Mrkonjić 19:9

▶ Definition 12. Let n ∈ N. In each turn of the game CGn
m(πA, ā, πB , b̄), Spoiler chooses

a set X ⊆ A or X ⊆ B with |X| ≤ n and Duplicator has to react with a subset Y of the
other universe such that |X| = |Y |. Afterwards, Spoiler picks some y ∈ Y , Duplicator must
respond with some element x ∈ X and the pair (x, y), or (y, x), is added to the current
position. As before, the winning condition is given by local isomorphism.

Note that the game CG1
m corresponds to the classical Ehrenfeucht–Fraïssé game Gm and

1-idempotence coincides with full idempotence. Theorem 8 can be generalised as follows.

▶ Theorem 13. The game CGn
m is sound for ≡m exactly on n-idempotent semirings S.

3.2 Completeness and incompleteness
As opposed to a Boolean quantifier or a move in an Ehrenfeucht–Fraïssé game, a quantifier in
semiring semantics does not pick out a specific element of the universe. Instead, it induces a
sum or product over all elements. As a consequence, completeness of the m-turn Ehrenfeucht–
Fraïssé game, and thus also completeness of other variants of model comparison games, fail
in general. In particular, this applies to semirings on which elementary equivalence of finite
interpretations does not imply isomorphism. Indeed, on any pair of finite non-isomorphic
semiring interpretations, Spoiler wins Gm for sufficiently large m by picking all elements
in the larger universe, or in any universe if both have the same cardinality. A particular
example, presented in [12], of non-isomorphic but elementarily equivalent S-interpretations
πs,t

A and πs,t
B for arbitrary elements s, t of a fully idempotent semiring S is the following:

πs,t
A :

A R1 R2 ¬R1 ¬R2

a1 0 t s 0
a2 s 0 0 t

a3 t s 0 0
a4 0 0 t s

πs,t
B :

B R1 R2 ¬R1 ¬R2

b1 t 0 0 s

b2 0 s t 0
b3 s t 0 0
b4 0 0 s t

For any s, t ∈ S, we have that πs,t
A ≡ πs,t

B [12, Theorem 13], but obviously, Spoiler even
wins the game G1(πs,t

A , πs,t
B) for distinct and non-zero values s, t ∈ S. Thus, completeness

of Gm for ≡m and full idempotence are mutually exclusive on semirings with at least three
elements, while soundness requires full idempotence, which entails the following result.

▶ Theorem 14. If, for all m ∈ N, the game Gm is sound and complete for ≡m on S, then S
is isomorphic to B.

Several further semirings, such as L,W[X], S[X] or B[X], admit pairs of finite interpret-
ations that are non-isomorphic but elementarily equivalent, which immediately disproves
completeness of Gm for ≡m on those semirings (see Figure 1). Moreover, even on semirings
such as T, N and N[X], where it is known that elementary equivalence does coincide with iso-
morphism on finite interpretations [12], Gm is not necessarily complete. As a counterexample
on the tropical semiring T = (R∞

+ ,min,+,∞, 0), consider the following T-interpretations.

πA :

A R ¬R
a0 0 ∞
a1 1 ∞
a2 1 ∞

πB :
B R ¬R
b0 0 ∞
b1 2 ∞

Clearly, Spoiler already wins G1(πA, πB), but we can show that πA ≡1 πB, thus the
game G1 is incomplete for ≡1 on T. The 1-equivalence immediately follows from the following
criterion.

CSL 2024

19:10 Ehrenfeucht–Fraïssé Games in Semiring Semantics

▶ Proposition 15. Two T-interpretations πA, πB over vocabulary τ = {R} consisting of a
single unary relation symbol are 1-equivalent if
(1) πA(¬Ra) = πB(¬Rb) = ∞ for all a ∈ A and b ∈ B,
(2) mina∈A πA(Ra) = minb∈B πB(Rb) and
(3)

∑
a∈A πA(Ra) =

∑
b∈B πB(Rb).

On the other side, in contrast to the classical m-turn Ehrenfeucht–Fraïssé game, there
are semirings other than B on which the m-turn bijection game is both sound and complete.

▶ Theorem 16. For every m ∈ N, the bijection game BGm is sound and complete for ≡m

on N and N[X].

4 Characterising elementary equivalence

The Ehrenfeucht–Fraïssé theorem also provides a game-theoretic characterisation of element-
ary equivalence via the game G(A,B), where Spoiler chooses the number of turns at the
beginning of each play. We now discuss soundness and completeness of G for ≡ on semirings.
For classical structures, soundness and completeness of G for ≡ is equivalent to soundness
and completeness of Gm for ≡m, for all m, but this is in general not the case on semirings.

For the study of the game G, interpretations on infinite universes are of particular interest.
This especially applies to soundness, which is trivial in the finite case since a winning strategy
for Duplicator already implies isomorphism on finite interpretations. Semiring semantics for
infinite interpretations requires sum and product operators on infinite families (si)i∈I ⊆ S

of semiring elements. There are certain semirings such as N,N[X],B[X] and S[X] which do
not admit a reasonable definition of such infinitary operations, and we thus have to restrict
ourselves to finite universes. Otherwise, we make use of the natural order and interpret
infinite sums according to

∑
i∈I si := sup{

∑
i∈I′ si|I ′ ⊆ I finite}. For infinitary products we

distinguish the case of absorptive semirings, where multiplication is decreasing and we thus
interpret the product as the infimum of the finite subproducts, and the cases, such as N∞

or W[X], where multiplication is increasing and we replace infima by suprema. Previous
results such as the soundness of Gm on fully idempotent semirings straightforwardly extend
to infinite interpretations by transferring semiring properties such as full idempotence to the
infinitary operations.

Soundness of G for ≡ holds whenever Spoiler wins G(πA, πB) for all first-order separable
interpretations πA and πB. Thus, the following question is essential: Given πA, πB and a
separating sentence ψ, is the required number of turns for Spoiler to win G(πA, πB) bounded
in advance? On fully idempotent semirings, m := qr(ψ) turns suffice for Spoiler to win
G(πA, πB) since Gm is sound for ≡m, which immediately implies soundness of G on all fully
idempotent semirings. However, full idempotence is not a necessary condition, soundness
of G is still preserved on many semirings that admit a weaker bound than m. For instance,
on any n-idempotent semiring for some n ∈ N, n ·m turns suffice to ensure Spoiler’s victory.

▶ Proposition 17. Let S be n-idempotent for some n ∈ N. For any S-interpretations πA

and πB it holds that πA ≡m πB if Duplicator wins the game Gnm(πA, πB). In particular, the
game G is sound for ≡ on S.

This follows from soundness of n-counting games as stated in Theorem 13. If πA ̸≡m πB ,
Spoiler wins Gnm(πA, πB) by adapting his winning strategy for CGn

m(πA, πB): Instead of
drawing n-element sets, he draws n elements one by one. Note that the bound n ·m does
not depend on πA and πB at all but only on the quantifier rank m and the semiring.

S. Brinke, E. Grädel, and L. Mrkonjić 19:11

However, other semirings, such as N∞, may not admit an inherent bound t(m) ∈ N
such that a winning strategy of Duplicator for Gt(m)(πA, πB) always implies πA ≡m πB.
To demonstrate this, consider a pair of sets (N∞-interpretations with empty vocabulary)
with t(m) and t(m) + 1 elements, respectively. Clearly, Duplicator wins on those sets for up
to t(m) turns, but the sentence ∃x(x = x) with quantifier rank 1 suffices to separate them.

In order to prove that the game G is still sound for ≡ on N∞, it is crucial to observe that
two separable interpretations πA, πB with πAJψK ̸= πBJψK admit a parameter k that induces
an upper bound on the number of moves required by Spoiler to win G(πA, πB). On N∞, this
parameter is easily obtained by observing that πAJψK or πBJψK is finite (see [4] for a proof).

▶ Theorem 18. Let πA and πB be N∞-interpretations with elements ā ∈ An, b̄ ∈ Bn and
k ≥ 1. If there is a separating formula φ(x̄) with qr(φ(x̄)) ≤ m such that πAJφ(ā)K < k or
πBJφ(b̄)K < k, then Spoiler wins Gkm(πA, ā, πB , b̄).

It turns out that a similar approach is applicable to the semiring S∞[X], which extends
the semiring S[X] of absorptive polynomials to allow infinite exponents (and thus infinite
products), albeit the derivation of a suitable parameter is more involved. Recall that a
monomial m absorbs a monomial m′ if the exponents for all x ∈ X, denoted by m(x)
and m′(x) respectively, satisfy m(x) ≤ m′(x), and that absorptive polynomials only retain
absorption-dominant monomials. We say that a monomial m separates polynomials p and q

if m ∈ p and m is not absorbed by any monomial from q.
These concepts can be extended to any subset Y ⊆ X: m Y -absorbs m′ iff m(x) ≤ m′(x)

for x ∈ Y , and it is Y -separating for p and q if it is contained in one of the polynomials but not
Y -absorbed by any of the monomials from the other polynomial. Finally, we can parametrise
monomials m by adding their exponents eY (m) :=

∑
x∈Y m(x) for all the variables x ∈ Y .

Now, we can extract a finite parameter from any pair of distinct polynomials p, q as follows.

▶ Lemma 19. For any two distinct polynomials p, q ∈ S∞[X], there is a set Y ⊆ X and a
Y -separating monomial m such that the parameter eY (m) is finite.

Proof. It is known that p ≤ q holds if, and only if, every monomial in p is absorbed by some
monomial from q (see [7]). Thus, there is a monomial m in either p or q that is not absorbed
by any monomial from the other polynomial. Otherwise, p and q would absorb each other,
which would imply p = q. Pick Y := {x ∈ X | m(x) ̸= ∞}. It follows that eY (m) is finite
and that m is not Y -absorbed by any monomial from the other polynomial since any m′ that
Y -absorbs m would also absorb m entirely. ◀

For example, xny∞ and x∞y∞ are {x}-separated by m := xny∞ with e{x}(xny∞) = n.
This property can be exploited to limit the number of turns required by Spoiler to win
G(πA, πB) on separable S∞[X]-interpretations.

▶ Theorem 20. Let k ≥ 1 and πA, πB be S∞[X]-interpretations with elements ā = (a1, . . . , an)
and b̄ = (b1, . . . , bn). If there is a separating formula φ(x̄) with qr(φ(x̄)) ≤ m, a set Y ⊆ X

and a Y -separating monomial m for πAJφ(ā)K and πBJφ(b̄)K such that eY (m) < k, then
Spoiler wins Gkm(πA, ā, πB , b̄).

Proof. We show the claim by structural induction on the separating formula φ(x̄). Since πA

and πB are interchangeable, we may assume w.l.o.g. that the Y -separating monomial m is
part of πAJφ(ā)K. If φ(x̄) is a literal, Spoiler wins immediately.

CSL 2024

19:12 Ehrenfeucht–Fraïssé Games in Semiring Semantics

If φ(x̄) = φ1(x̄) ∨ φ2(x̄), the Y -separating monomial m must be part of πAJφi(ā)K for
some i ∈ {1, 2}, but by definition, it cannot be Y -absorbed by any monomial in πBJφi(b̄)K.
Thus, m Y -separates πAJφi(ā)K from πBJφi(b̄)K and the claim follows by induction.
If φ(x̄) = ∃xψ(x̄, x), then πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K, and analogous to the previous

case, we observe that m is part of πAJψ(ā, a)K for some a ∈ A, but not Y -absorbed by
any πBJψ(b̄, b)K for b ∈ B. Thus, Spoiler can pick such an element a ∈ A and win the
remaining subgame by induction hypothesis.
If φ(x̄) = φ1(x̄) ∧ φ2(x̄), the Y -separating monomial m = m1 · m2 is obtained by
multiplying two monomials with mi ∈ πAJφi(ā)K for i ∈ {1, 2}. There is at least one
i ∈ {1, 2} such that mi Y -separates πAJφi(ā)K from πBJφi(b̄)K. Otherwise, each mi

would be Y -absorbed by some m′
i ∈ πBJφi(b̄)K, which would yield a contradiction since

m′ = m′
1 · m′

2 ∈ πBJφ(b̄)K would Y -absorb m. Clearly, eY (mi) ≤ eY (m) < k, hence
Spoiler wins by invoking the induction hypothesis on the suitable subformula.
If φ(x̄) = ∀xψ(x̄, x), then πAJφ(ā)K =

∏
a∈A πAJψ(ā, a)K. Decompose the monomial m

into m =
∏

a∈A ma such that ma ∈ πAJψ(ā, a)K holds for all a ∈ A. It follows that
eY (m) =

∑
a∈A eY (ma) < k, thus eY (ma) is nonzero for ℓ < k elements a1, . . . , aℓ ∈ A

and zero otherwise. Spoiler picks those elements and Duplicator replies with b1, . . . , bℓ.
If there is any 1 ≤ i ≤ ℓ such that mai

is not Y -absorbed by any monomial in
πBJψ(b̄, bi)K, then mai

Y -separates πAJψ(ā, ai)K from πBJψ(b̄, bi)K, and together with
eY (mai

) ≤ eY (m) < k, we can apply the induction hypothesis.
Otherwise, each mai

is Y -absorbed by some mbi
∈ πBJψ(b̄, bi)K. Since

∏ℓ
i=1 mbi

Y -
absorbs m, it is impossible that each πBJψ(b̄, b)K for b ∈ B \ {b1, . . . , bℓ} contains some
monomial m′ with eY (m′) = 0. Otherwise, those monomials would not contribute any-
thing to the exponents of variables x ∈ Y , and their product together with mb1 , . . . ,mbℓ

would result in a monomial m′′ ∈ πBJφ(b̄)K that Y -absorbs m, contradicting the defini-
tion of m. Now, it only remains for Spoiler to pick some b ∈ B \ {b1, . . . , bℓ} such that
πBJψ(b̄, b)K only contains monomials m′ with eY (m′) > 0. Duplicator must answer
a ∈ A \ {a1, . . . , aℓ}, but then eY (ma) = 0, hence ma Y -separates πAJψ(ā, a)K from
πBJψ(b̄, b)K and we can apply the induction hypothesis. ◀

▶ Corollary 21. The game G is sound for ≡ on the semirings W[X],N∞ and S∞[X].

However, G is unsound for some important semirings. We construct a counterexample
for the soundness of G on ≡ in the tropical semiring (which is isomorphic to the Viterbi
semiring V) and transfer it to the isomorphic variant D of L by making sure that the valuations
are in the interval [0, 1], and that the separating formula does not evaluate to a semiring
element greater than 1 in both interpretations. The main idea behind the construction is
that, given a sequence (si)≥1 of edge labels, Spoiler cannot distinguish an infinite star with
exactly i edges labelled with si ∈ T for each i ∈ N from an infinite star where min(i,m)
edges are labelled with si (see Figure 2). However, for an appropriate sequence of edge labels
such star graphs with distinguished centre nodes can be separated in FO by summing up all
edge labels using the formula ψ(x) = ∀y(x = y ∨ Exy).

▶ Lemma 22. There is a sequence (si)i≥1 of real numbers in [0, 1] such that for each m ∈ N>0

1 >
∑
i≥1

i · si >
∑
i≥1

min(i,m) · si.

S. Brinke, E. Grädel, and L. Mrkonjić 19:13

πm:

vm

vm
1,1

vm
2,1 vm

2,2

vm
m,1 vm

m,m

vm
m+1,1 vm

m+1,m

...

...
...

. . .
. . .

. . .

s1

s2

sm

sm+1

πω:

vω

vω
1,1

vω
2,1 vω

2,2

vω
m,1 vω

m,m

vω
m+1,1 vω

m+1,m+1

...

...

. . .

. . .

. . .

. . .

s1

s2

sm

sm+1

Figure 2 Infinite star graphs used to construct a counterexample against the soundness of
the game G with respect to T- and D-interpretations. The grey boxes are meant to indicate
πmJEvmvm

i,jK = πωJEvmvm
i,jK = si for each j. Non-edges are assigned their Boolean truth value.

Proof. We prove the claim for (si)i≥1 where si := 1
i·2i+1 . Due to convergence of the

geometrical series we obtain that
∑

i≥1 i · si = 0.5. Further,∑
i≥1

i · si =
∑
i≥1

min(i,m) · si +
∑
i>m

(m− i) · si︸ ︷︷ ︸
>0

>
∑
i≥1

min(i,m) · si,

which implies the claim. ◀

In order to ensure that Duplicator wins the game Gm for each m ∈ N on single semiring
interpretations π and π′, we combine the star graphs πm for arbitrarily large m. The idea is
to include in both π and π′ the star graphs πm for each m ∈ N as disjoint subgraphs, and
to add an additional copy of πω to π′ only. Using the sequence of edge labels satisfying∑

i≥1 i · si >
∑

i≥1 min(i,m) · si for each m ∈ N>0 yields πωJψ(vω)K > πmJψ(vm)K, so
the additional subgraph πω in π′ would not contribute to the valuation of the sentence
∃xψ(x). Hence, we add additional vertices to the star graphs πm in both π and π′ which
increase the sum over all outgoing edges and cause ∃xψ(x) to separate the resulting semiring
interpretations.

▶ Theorem 23. The game G is not sound for ≡ on T,D,V and L.

Proof. Let S ∈ {T,D} and (si)i≥1 be defined by si := 1
i·2i+1 . Further, let sm

∞ denote∑
i≥1 min(i,m) · si for each m ≥ 1. We inductively define a function f : N \ {0} → N \ {0}

which determines the number of additional nodes that are added to the star graphs. Let f(1)
be the smallest number such that s1

∞ + f(1) · s1 > 0.5. For m > 1, we define f(m) as the
minimum number yielding sm

∞ + f(m) · sm ≥ sm−1
∞ + f(m− 1) · sm−1. Since 0 < si < 1 for all

i ≥ 1, f is well-defined. Hence, we obtain a chain s1
∞ + f(1) · s1 ≤ s2

∞ + f(2) · s2 ≤ . . . which
is strictly upper bounded by 0.5. Based on f and (si)i≥1, we construct S-interpretations π
and π′ over the vocabulary τ = {E} consisting of a binary relation symbol. The universes V
and V ′ are composed as follows.

V = {vm : m ≥ 1} ∪ {vm
i,j : j ≤ min(i,m)} ∪ {vm

m,m+j : j ≤ f(m)}
V ′ = V ∪ {vω} ∪ {vω

i,j : j ≤ i}

The valuations in π and π′ are defined according to the following rules, which apply to all
m,n, i, j ∈ N>0 with m ̸= n such that the respective nodes are contained in V or V ′.

CSL 2024

19:14 Ehrenfeucht–Fraïssé Games in Semiring Semantics

π(Evmvm
i,j) = π′(Evmvm

i,j) = π′(Evωvω
i,j) = si

π(Evmvn
i,j) = π′(Evmvn

i,j) = π′(Evωvm
i,j) = π′(Evmvω

i,j) = 1
π(Evmvn) = π′(Evmvn) = π′(Evωvm) = π′(Evmvω) = 1

Further, the negations of the instantiated τ -literals defined above are valuated with 0. All
remaining unnegated τ -literals over V and V ′ are valuated with 0 and their negations with 1.
In both T and D, we obtain the following valuations of the formula ψ(x) = ∀y(x = y ∨Exy).

πJψ(vm
i,j)K = π′Jψ(vm

i,j)K = π′Jψ(vω
i,j)K = 0

πJψ(vm)K = π′Jψ(vm)K = sm
∞ + f(m) · sm

π′Jψ(vω)K = 0.5
By construction of f , this implies πAJ∃xψ(x)K = s1

∞ + f(1) · s1 > 0.5 = πBJ∃xψ(x)K, hence
πA ̸≡2 πB. In order to construct a winning strategy for Duplicator in the game G(π, π′),
let V n

0 = {vn} and V n
i for i ≥ 1 contain all elements vn

i,j in V . We consider the partition
P := {V n

i : n ≥ 1, i ≥ 0} of V and P ′ := P ∪ {V ω
i : i ≥ 0} of V ′. Based on the number of

turns m Spoiler chooses in the game G(πA, πB), we define a bijection gm : P → P ′ as follows.

gm(V n
i) :=

V n

i , n < m

V ω
i , n = m

V n−1
i , n > m

Duplicator wins the game Gm(π, π′) by responding to any element in V n
i ⊆ V with an

arbitrary element in gm(V n
i) and every element in V n

i ⊆ V ′ with any element in g−1
m (V n

i),
merely making sure that (in)equalities with regard to the elements that have already been
chosen are respected. This is possible because for each V n

i we have that |V n
i | = |gm(V n

i)| or
that |V n

i | ≥ m and |gm(V n
i)| ≥ m. ◀

We now turn to the study of completeness. Analogous to m-turn Ehrenfeucht–Fraïssé
games, the game G cannot be complete for semirings where elementary equivalence and
isomorphism of finite interpretations do not coincide since Duplicator clearly loses G on
non-isomorphic finite interpretations. In the remaining cases, G must be complete with
respect to finite interpretations because Spoiler winning the game implies non-isomorphism,
but on finite interpretations, this already implies separability by a first-order formula.

▶ Proposition 24. Let S ∈ {T,V,N,N[X]}. If Spoiler wins G(πA, πB) and πA, πB are finite
S-interpretations, then πA ̸≡ πB. Thus, G is complete for ≡ on finite S-interpretations.

The question arises whether this completeness result can be lifted to infinite semiring
interpretations. For the tropical semiring T we describe a counterexample which proves that
G is incomplete for ≡ on T (and hence also on V due to V ∼= T).

▶ Theorem 25. There are T-interpretations πA, πB such that Spoiler wins G1(πA, πB)
although πA ≡ πB. In particular, G is incomplete for ≡ on T.

Proof. Let πA and πB be T-interpretations with just one unary predicate R and universes
A := {ai : i ∈ N} and B := {bi : i ∈ N}, whose valuations are πA(Rai) = πB(Rbi) = 0 if i is
even, while πA(Rai) = 1 and πB(Rbi) = 2 for all odd i; since the interpretations are assumed
to be model-defining this implies that πA(¬Rai) = πB(¬Rbi) = ∞ for all i ∈ N.

Clearly, Spoiler wins G1(πA, πB). To prove that πA ≡ πB, we first show that for each
formula φ(x̄) the valuations πAJφ(ā)K and πBJφ(b̄)K can only take the values 0 and ∞ if the
tuples ā and b̄ only consist of even elements a2ℓ and b2ℓ. The reasoning is identical for both
interpretations, so we just consider πA, and proceed by induction on φ(x̄). For literals the
claim holds by definition and for conjunctions and disjunctions it follows since {0,∞} is
closed under the operations min and +.

S. Brinke, E. Grädel, and L. Mrkonjić 19:15

Consider φ(x̄) = ∃yψ(x̄, y). For all a ∈ A with πA(Ra) = 0, it follows by the induction
hypothesis that πAJψ(ā, a)K ∈ {0,∞}. If there is some a ∈ A such that πAJψ(ā, a)K = 0, it
immediately follows that πAJφ(ā)K = infa∈A πAJψ(ā, a)K = 0. Hence, it remains to show the
claim for the case πAJψ(ā, a)K = ∞ for all a ∈ A with πA(Ra) = 0. Fix some c ∈ A that
is not contained in ā such that πA(Rc) = 0. For each a ∈ A with πA(Ra) = 1 it holds, by
monotonicity of the semiring operations, that πAJψ(ā, a)K ≥ πAJψ(ā, c)K with respect to the
usual order on R∞

+ (which is the inverse of the natural order on T) and since πAJψ(ā, c)K = ∞,
we have that πAJφ(ā)K = infa∈A πAJψ(ā, a)K = ∞.

Finally, let φ(x̄) = ∀yψ(x̄, y). Again, for all a ∈ A with πA(Ra) = 0 it holds that
πAJψ(ā, a)K ∈ {0,∞} by induction hypothesis. If there is an a ∈ A such that πAJψ(ā, a)K = ∞,
it immediately follows that πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K = ∞. Therefore it remains to

show the claim for the case that πAJψ(ā, a)K = 0 for all a ∈ A with πA(Ra) = 0. We
observe that for all a, a′ ∈ A that do not occur in ā with πA(Ra) = πA(Ra′), it holds
that (πA, ā, a) ∼= (πA, ā, a

′). Hence, if there was some a ∈ A with πA(Ra) = 1 such that
πAJψ(ā, a)K = s for some s > 0, then πAJψ(ā, a)K = s would hold for all a ∈ A with
πA(Ra) = 1, which implies πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K = ∞. Otherwise, we have that

πAJψ(ā, a)K = 0 for all a ∈ A, thus πAJφ(ā)K = 0, which completes the induction.
In particular we have for every sentence φ ∈ FO({R}) that πAJφK, πBJφK ∈ {0,∞}. We

claim that πAJφK = πBJφK. The function h : T → T defined by s 7→ 2s is an endomorphism
on T that is compatible with the infinitary operations, and obviously, (h ◦ πA) ∼= πB. If
πAJφK = 0, then πBJφK = 2 · 0 = 0 due to the fundamental property. Otherwise, we have
that πAJφK = ∞ = 2 · ∞ = πBJφK. Hence πA ≡ πB . ◀

The natural semiring does not admit infinitary operations, so we consider its extension
N∞ instead. But on N∞, counterexamples disproving completeness also exist, see [4].

▶ Theorem 26. There are N∞-interpretations πA and πB such that Spoiler wins G1(πA, πB)
although πA ≡ πB. In particular, the game G is incomplete for ≡ on N∞.

Consequently, completeness of G for ≡ also fails on any semiring which extends N[X]
and admits infinitary operations if it contains N∞ as a subsemiring.

5 The homomorphism game

Finally, we propose a new kind of model comparison games referred to as homomorphism
games. The idea is to reduce a given pair of S-interpretations to B-interpretations via
homomorphisms. In general, the resulting B-interpretations are no longer model-defining,
which is why their m-equivalence is not captured by Gm. While soundness of Gm for ≡m on
fully idempotent semirings S does not rely on the assumption that the S-interpretations are
model-defining, completeness for ≡m even fails on B because a priori there is no connection
between literals and their negations. This is illustrated by the B-interpretations πA and πB .

πA :

A R1 R2 ¬R1 ¬R2

a0 1 0 0 0
a1 0 0 0 0
a2 1 1 0 0
a3 0 0 0 0
a4 1 1 0 0
...

...
...

...
...

πB :

B R1 R2 ¬R1 ¬R2

b0 0 0 0 0
b1 1 1 0 0
b2 0 0 0 0
b3 1 1 0 0
b4 0 0 0 0
...

...
...

...
...

CSL 2024

19:16 Ehrenfeucht–Fraïssé Games in Semiring Semantics

▶ Proposition 27. On B-interpretations that are not model-defining, the game G is incomplete
for ≡ and the m-turn game Gm is incomplete for ≡m for any m > 0.

Proof. Consider the interpretations πA and πB. We can construct a bijection σ≤ : A → B

such that πB(σ≤(L)) ≤ πA(L) for all L ∈ LitA(τ) by mapping a0 to some bi with even i.
Similarly, we can construct a bijection σ≥ : A → B with πA(L) ≤ πB(σ≥(L)) for all L by
mapping a0 to some bi with odd i.

By structural induction, it follows that πBJφ(σ≤(ā))K ≤ πAJφ(ā)K ≤ πBJφ(σ≥(ā))K holds
for all first-order formulae φ(x̄) with k free variables x̄ and ā ∈ Ak. For sentences ψ, this
yields πAJψK = πBJψK, hence we have πA ≡ πB . However, Spoiler already wins G1(πA, πB)
by picking a0, which proves the claim. ◀

Additionally, finite counterexamples showing the unsoundness of Gm exist as well and
can be constructed based on πA and πB by considering suitable subinterpretations of size
2m or 2m + 1, respectively (see [4]). Due to Proposition 27, we consider a one-sided
variant of the Ehrenfeucht–Fraïssé game which yields a characterisation of m-equivalence for
B-interpretations without requiring them to be model-defining.

Let S be naturally ordered by ≤ and πA, πB be two S-interpretations. We say that
(πA, ā) ≤ (πB , b̄) if for every literal L(x̄) we have that πA(L(ā)) ≤ πB(L(b̄)). Further, we
say that (πA, ā) ⪯m (πB , b̄) if it holds that πAJφ(ā)K ≤ πBJφ(b̄)K for any formula φ(x̄) of
quantifier rank at most m.

▶ Definition 28. The one-sided game G≤
m(πA, πB) is played in the same way as Gm(πA, πB),

but the winning condition for Duplicator, assuming that the tuples ā, b̄ were chosen after m
moves, is (πA, ā) ≤ (πB , b̄) instead of (πA, ā) ≡0 (πB , b̄).

Using monotonicity of both semiring operations with respect to the natural order, we
obtain the following soundness result, which can be proved analogously to Theorem 8.

▶ Proposition 29. Let S be any fully idempotent semiring. Then G≤
m is sound for ⪯m on S.

On B, the one-sided game G≤
m is also complete for ⪯m even for B-interpretations that are

not model-defining. To prove this, we inductively construct characteristic formulae χm
πA,ā(x̄)

analogous to the classical Ehrenfeucht–Fraïssé theorem, but we omit literals ¬Rx̄ in χ0
πA,ā(x̄)

if πA(Rā) = 0. Let φ=
ā (x̄) define the equalities and inequalities of the elements in ā.

χ0
πA,ā(x̄) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ) : πA(L(ā)) = 1}

χm+1
πA,ā(x̄) :=

∧
a∈A

∃x χm
πA,ā,a(x̄, x) ∧ ∀x

∨
a∈A

χm
πA,ā,a(x̄, x)

▶ Theorem 30. For any two B-interpretations πA and πB with elements ā ∈ An and b̄ ∈ Bn

and any m ∈ N, the following are equivalent:
(1) Duplicator wins G≤

m(πA, ā, πB , b̄);
(2) πBJχm

πA,ā(b̄)K = 1;
(3) (πA, ā) ⪯m (πB , b̄).

To construct homomorphism games based on the one-sided games G≤
m on B-interpretations,

we make use of separating sets of homomorphisms, which were introduced in [12].

▶ Definition 31. Given semirings S and S ′, a set H of homomorphisms from S to S ′ is
called separating if for all s, t ∈ S with s ̸= t there is some h ∈ H with h(s) ̸= h(t).

S. Brinke, E. Grädel, and L. Mrkonjić 19:17

For two given S-interpretations πA and πB which are separable by some sentence ψ, we can
think of the valuations s ̸= t of ψ in πA and πB , respectively, as witnesses for the separability
of πA and πB. Further, whenever there is a homomorphism h such that h(s) ̸= h(t) and
(h ◦ πA) ≡m (h ◦ πB), we can exclude the pair (s, t) as a candidate for witnessing πA ̸≡m πB

due to the fundamental property. Thus, separating sets of homomorphisms yield the following
reduction technique.

▶ Lemma 32. Let S and S ′ be semirings and H a separating set of homomorphisms from
S to S ′. Moreover let πA, πB be S-interpretations, ā ∈ An and b̄ ∈ Bn. It holds that
(h ◦ πA, ā) ≡m (h ◦ πB , b̄) for all h ∈ H if, and only if, (πA, ā) ≡m (πB , b̄).

Based on a separating set H of homomorphisms h : S → B, the homomorphism game
HGm(H,πA, πB) can be defined as follows. Spoiler first chooses some h ∈ H and puts either
π0 = h ◦ πA and π1 = h ◦ πB, or the other way around, i.e. π0 = h ◦ πB and π1 = h ◦ πA.
Then the game G≤

m(π0, π1) is played. Using the fact that G≤
m is sound and complete for ⪯m

even on B-interpretations which are not model-defining, soundness and completeness of HGm

for ≡m can be stated as follows.

▶ Theorem 33. Let S be a semiring with a separating set H of homomorphisms into B.
Given S-interpretations πA, πB and ā ∈ An, b̄ ∈ Bn, the following are equivalent for m ∈ N:
(1) Duplicator wins HGm(H,πA, ā, πB , b̄);
(2) h(πBJχm

h◦πA,ā(b̄)K) = h(πAJχm
h◦πB ,b̄

(ā)K) = 1 for each h ∈ H;
(3) (πA, ā) ≡m (πB , b̄).

Motivated by Birkhoff’s representation theorem [1], we can explicitly construct a separating
set of homomorphisms from any finite lattice semiring (i.e. fully idempotent and absorptive
semiring) into B, and embed it into the rules of the homomorphism game. Indeed, every
semiring for which there is a separating set of homomorphisms to B must be a lattice semiring
since for every homomorphism h : S → B and s, t ∈ S, we have h(s · s) = h(s) ∧ h(s) = h(s)
and h(s+ st) = h(s) ∨ (h(s) ∧ h(t)) = h(s). Due to absorption, we assume that the infinitary
operations of a lattice semiring are given by

∑
i∈I si := sup{

∑
i∈I′ si|I ′ ⊆ I finite} and∏

i∈I si := inf{
∏

i∈I′ si|I ′ ⊆ I finite}.

▶ Definition 34. Let S be a finite lattice semiring. A non-zero element s ∈ S is said to be
+-indecomposable if for all r, t ∈ S with r ̸= s and t ̸= s it holds that r + t ̸= s. We denote
the set of non-zero +-indecomposable of elements in S as idc(S).

In a min-max semiring, for instance, every non-zero element is +-indecomposable. By
contrast, the +-indecomposable elements in PosBool[X] correspond to the monomials.

▶ Lemma 35. For each s ∈ idc(S) the mapping hs : S → B defined by

hs(t) =
{

1, t+ s = t

0, otherwise

is a homomorphism from S into B.

Proof. Let s ∈ idc(S) be non-zero and +-indecomposable.
(1) Since 0 + s = s ̸= 0, it holds that hs(0) = 0. Further, we have that 1 + s = 1 + 1 · s = 1

due to absorption, hence hs(1) = 1.

CSL 2024

19:18 Ehrenfeucht–Fraïssé Games in Semiring Semantics

(2) In order to prove that hs(r + t) = hs(r) + hs(t) for all r, t ∈ S, it remains to show that
s+ (r+ t) = r+ t is equivalent to s+ r = r or s+ t = t. If s+ (r+ t) = r+ t, then with
absorption and distributivity sr + st = s(r + t) = s(s+ r + t) = s+ s(r + t) = s. Since
s is +-indecomposable by assumption, this implies sr = s or st = s. Suppose w.l.o.g.
that sr = s which yields r = r + sr = r + s. For the converse implication, assume that
r + s = r or t+ s = t. Clearly, both implications immediately yield s+ (r + t) = r + t.

(3) To prove hs(r · t) = hs(r) · hs(t), we show that s+ rt = rt is equivalent to s+ r = r and
s+ t = t. If s+ rt = rt, we can infer that s+ r = s+ (r+ rt) = (s+ rt) + r = rt+ r = r

and an analogous result for t. Conversely, suppose that s+ r = r and s+ t = t. Then
rt = (s+ r)(s+ t) = s+ (r · t) follows by distributivity.

(4) Pertaining to the compatibility of hs with infinitary operations in S, note that any infinite
sum or product can be transformed into a finite sum or product due to full idempotence
and the assumption that S is finite. Thus, the proof is already complete. ◀

Although we only consider the mappings hs for +-indecomposable s to ensure that hs is
a homomorphism, any two elements in S can be separated by some hs.

▶ Lemma 36. The set {hs : s ∈ idc(S)} is a separating set of homomorphisms from S to B.

Proof. For t ∈ S let St = {s ∈ idc(S) : s + t = t}. Due to idempotence, we have that
t+

∑
s∈St

s = t. Since S is assumed to be finite, there must be a tuple t1, . . . , tn ∈ idc(S)
with t1 + · · · + tn = t. With idempotence, this implies t+ ti = t, which yields ti ∈ St for each
1 ≤ i ≤ n. Hence, we have that t+

∑
s∈St

s =
∑

1≤i≤n ti +
∑

s∈St
s =

∑
s∈St

s. Overall, we
obtain t = t+

∑
s∈St

s =
∑

s∈St
s.

Let r, t ∈ S with r ̸= t. Since r =
∑

s∈Sr
s and t =

∑
s∈St

s, it must hold that Sr ≠ St.
Let s be a witness for the inequality and assume w.l.o.g that s ∈ Sr. By definition of Sr,
it holds that s + r = r, hence hs(r) = 1. By contrast, s ̸∈ St yields s + t ̸= t and thus
hs(t) = 0. ◀

Now that we have an explicit construction a separating set of homomorphisms to B
which applies to any finite lattice semiring, we can reformulate the homomorphism game as
HGm(πA, πB) corresponding to HGm(Hidc, πA, πB) for finite lattice semirings as follows.

▶ Definition 37. At the beginning of each play in HGm(πA, πB), Spoiler chooses either
π0 = πA and π1 = πB or vice versa, and some s ∈ idc(S). In the i-th of m rounds, Spoiler
chooses some ai ∈ A or bi ∈ B and Duplicator has to respond with an element ai or bi in the
other structure. Duplicator wins the play if for the chosen tuples c̄, d̄ and each L(x̄) ∈ Litm(τ)
π0(L(c̄)) + s = π0(L(c̄)) implies π1(L(d̄)) + s = π1(L(d̄)).

The direct construction of the separating set of homomorphisms also allows an explicit
formulation of characteristic formulae χm,s

πA,ā(x̄) for each s ∈ idc(S) corresponding to the
B-interpretations hs ◦ πA. Again φ=

ā (x̄) characterises the equalities and inequalities of the
elements in ā.

χ0,s
πA,ā(x1, . . . , xn) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ) | πA(ā) + s = πA(L(ā))}

χm+1,s
πA,ā (x1, . . . , xn) :=

∧
a∈A

∃x χm,s
πA,ā,a(x̄, x) ∧ ∀x

∨
a∈A

χm,s
πA,ā,a(x̄, x)

In terms of the set Hidc = {hs : s ∈ idc(S)}, the correctness of the game HGm for finite
lattice semirings can be stated as follows.

S. Brinke, E. Grädel, and L. Mrkonjić 19:19

▶ Theorem 38. The game HGm is sound and complete for ≡m on every finite lattice
semiring S. More precisely, given any S-interpretations πA, πB and ā ∈ An, b̄ ∈ Bn the
following are equivalent for each m ∈ N:
(1) Duplicator wins HGm(πA, ā, πB , b̄);
(2) For each s ∈ idc(S), it holds that

πBJχm,s
πA,ā(b̄)K + s = πBJχm,s

πA,ā(b̄)K and πAJχm,s

πB ,b̄
(ā)K + s = πAJχm,s

πB ,b̄
(ā)K;

(3) (πA, ā) ≡m (πB , b̄).

While applying to arbitrary finite lattice semirings, the set Hidc of homomorphisms is
in general not sufficient to separate any two elements of an infinite lattice semiring. As
an example, consider S = (Z,+S , ·S , 0, 1) with s +S t = gcd(s, t) if s ̸= 0 or t ̸= 0, while
0 +S 0 = 0 and s ·S t = lcm(s, t) for s, t ∈ Z. For each s ∈ Z, it holds that gcd(2s, 3s) = s,
so for s ̸= 0 there are distinct r and t such that s = r +S t. By contrast, gcd(s, t) ̸= 0 for
all s, t ∈ Z \ {0}, hence idc(S) = {0}, but {h0} is not a separating set of homomorphisms.
Nevertheless, separating sets of homomorphisms into B also exist for infinite lattice semirings
and can be constructed based on the prime ideals in S. But in general, there does not have
to be a separating set of continuous homomorphisms, which respect infinitary summation
and multiplication in S. Thus, the prime ideals in S yield a homomorphism game on finite
S-interpretations, while S itself might be infinite (see [4] for details).

▶ Example 39. We can use the homomorphism game to show that first-order logic with
semiring semantics cannot express the following property on min-max-semirings with the
monadic signature {Q,R}: “For the majority of elements e in the universe, Qe has a
greater value than Re.” To prove this, we use the following two S4-interpretations on the
min-max-semiring S4 with four elements {0, 1, 2, 3}.

πA :

A Q R ¬Q ¬R
a1 1 3 0 0
a2 2 1 0 0
a3 3 2 0 0

πB :

B Q R ¬Q ¬R
b1 3 1 0 0
b2 1 2 0 0
b3 2 3 0 0

Clearly, πA has the desired property while πB does not. However, we can show with the
homomorphism game HGm(πA, πB) that πA ≡ πB. First, we observe that every non-zero
s ∈ S4 is +-indecomposable. The set idc(S4) induces homomorphisms h≥i : S4 → B for
i ∈ {1, 2, 3} such that h≥i(j) = 1 iff j ≥ i. Hence, we essentially play the homomorphism
game HGm(H,πA, πB) with the separating set of homomorphisms H = {h≥1, h≥2, h≥3}.
Now, it only remains to observe that applying any of these homomorphisms to πA and πB

makes them isomorphic to each other, thus, Duplicator clearly has a winning strategy. This
demonstrates the viability of homomorphism games as a proof method for inexpressibility
results in semiring semantics.

6 Conclusion

We have provided a rather detailed study of soundness and completeness of Ehrenfeucht–
Fraïssé games, and related model comparison games, for proving elementary equivalence
and m-equivalence in semiring semantics. The general picture that emerges is quite diverse.
While the m-move games Gm are sound and complete for ≡m only on the Boolean semiring,
the games still provide a sound method on fully idempotent semirings, such as min-max

CSL 2024

19:20 Ehrenfeucht–Fraïssé Games in Semiring Semantics

semirings, lattice semirings, and the provenance semirings PosBool[X]. This permits to
generalise certain classical results in logic, proved via Ehrenfeucht–Fraïssé games or back-
and-forth systems, from Boolean structures to semiring interpretations in fully idempotent
semirings. A particular example is the proof of a Hanf locality theorem for such semirings in [2].
For proving elementary equivalence, without restriction of the quantifier rank, Ehrenfeucht–
Fraïssé games without a fixed number of moves provide a more powerful method, in the sense
that it is sound on more semirings, including not only N and N∞ but also the provenance
semirings W[X], B[X], S[X], N[X], and S∞[X]. While in classical semantics, a separating
sentence of quantifier rank m leads to a winning strategy of Spoiler in at most m moves,
the situation in semirings may be more complicated, in the sense that a winning strategy
of Spoiler which “simulates” a separating sentence may still exist, but may require a larger
number of moves than given by the quantifier rank; as a consequence the unrestricted game G
may still provide a sound method for proving elementary equivalence, although the m-move
games are unsound for ≡m.

The most straightforward application of Ehrenfeucht–Fraïssé games and other model
comparison games are inexpressibility results, showing that a property P is not expressible
in a logic L. Classically, this is accomplished by constructing two structures, precisely one
of which satisfies the property P , and then providing a winning strategy for Duplicator
in an appropriate model comparison game on the two structures. This method only relies
on the soundness of the model comparison game without requiring completeness. Hence,
our soundness results enable us to lift inexpressibility results to semiring semantics for a
significant class of semirings. Consider, for instance, a min-max-semiring S modelling access
levels and S-interpretations π that annotate every edge of a graph with a required access
level. Then there is no first-order formula φ(x, y) such that πJφ(v, w)K evaluates to the
minimal access level required to go from v to w.

We have also studied bijection and counting games, and we have shown in particular, that
m-move bijection games are sound for ≡m on all semirings. We remark that these games have
originally been invented in the form of k-pebble games for logics with counting. This means
that rather than just selecting, in m turns, two m-tuples, the games proceed by moving a
fixed number of k pairs of pebbles through the two structures in an a priori unrestricted
number of moves. These games capture equivalences for formulae that may use at most
k variables which can, however, be quantified again and again. We have chosen here the
simplified variants of m-move games rather than k-pebble games, to study the relationship
with the classical Ehrenfeucht–Fraïssé games for ≡m. However, also the definition of k-pebble
bijection and counting games extends in a straightforward way from classical structures
to semiring interpretations and their soundness properties for k-variable equivalences are
analogous to those of the m-move variants for m-equivalence. But clearly, the k-pebble
variants of these games deserve further study, and this will be part of our future work on the
subject. We conjecture that by lifting the well-known CFI-construction to semirings one can
show that there is no semiring where first-order logic, and even fixed point logic, is strong
enough to express all properties that are decidable in PTIME.

On the other side, it has turned out that all these model comparison games are incomplete
for elementary equivalence and m-equivalence on most semirings, with the exceptions of N
and N[X]. Most of these incompleteness results rely on the construction of logically equivalent
semiring interpretations on which, however, Spoiler wins the games in few moves. The proof
of elementarily equivalence for such interpretations in general relies on separating sets of
homomorphisms. Based on this technique, we have proposed a new kind of model comparison
games, homomorphism games, which in fact are sound and complete for m-equivalence

S. Brinke, E. Grädel, and L. Mrkonjić 19:21

on finite lattice semirings. This also raises the question whether it is possible to develop
further games that are sound and complete for more, or even all, semirings. An essential
part of the homomorphism game is a one-sided version of the classical Ehrenfeucht–Fraïssé
game, with a winning condition that is based on (weak) local homomorphisms rather than
local isomorphisms, and which capture the notion that one interpretation never evaluates
to strictly larger values than the other. This game itself is interesting also in many other
contexts and will be further studied in future work.

References
1 Garrett Birkhoff. Lattice Theory. American Mathematical Society, Providence, 3rd edition,

1967.
2 Clotilde Bizière, Erich Grädel, and Matthias Naaf. Locality theorems in semiring semantics.

In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS
2023), volume 272 of LIPIcs, pages 20:1–20:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.20.

3 Camille Bourgaux, Ana Ozaki, Rafael Peñaloza, and Livia Predoiu. Provenance for the
description logic ELHr. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence (IJCAI 2020), pages 1862–1869. ijcai.org, 2020. doi:10.24963/IJCAI.
2020/258.

4 Sophie Brinke, Erich Grädel, and Lovro Mrkonjić. Ehrenfeucht–Fraïssé games in semiring
semantics, 2023. Full version of this paper. arXiv:2308.04910.

5 Katrin Dannert and Erich Grädel. Provenance analysis: A perspective for description logics?
In Description Logic, Theory Combination, and All That, volume 11560 of Lecture Notes in
Computer Science, pages 266–285. Springer, 2019. doi:10.1007/978-3-030-22102-7_12.

6 Katrin Dannert and Erich Grädel. Semiring provenance for guarded logics. In Hajnal Andréka
and István Németi on Unity of Science, volume 19 of Outstanding Contributions to Logic,
pages 53–79. Springer, Cham, 2021. doi:10.1007/978-3-030-64187-0_3.

7 Katrin Dannert, Erich Grädel, Matthias Naaf, and Val Tannen. Semiring provenance for
fixed-point logic. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021),
volume 183 of LIPIcs, pages 17:1–17:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CSL.2021.17.

8 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 2nd edition, 1995.
doi:10.1007/3-540-28788-4.

9 Boris Glavic. Data provenance. Foundations and Trends in Databases, 9(3-4):209–441, 2021.
doi:10.1561/1900000068.

10 Erich Grädel, Hayyan Helal, Matthias Naaf, and Richard Wilke. Zero-one laws and almost
sure valuations of first-order logic in semiring semantics. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2022), pages 41:1–41:12. ACM,
2022. doi:10.1145/3531130.3533358.

11 Erich Grädel, Niels Lücking, and Matthias Naaf. Semiring provenance for Büchi games:
Strategy analysis with absorptive polynomials. In Proceedings 12th International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF 2021), volume 346 of EPTCS,
pages 67–82, 2021. doi:10.4204/EPTCS.346.5.

12 Erich Grädel and Lovro Mrkonjić. Elementary equivalence versus isomorphism in semiring
semantics. In 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021), volume 198 of LIPIcs, pages 133:1–133:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.133.

13 Erich Grädel and Val Tannen. Semiring provenance for first-order model checking, 2017.
arXiv:1712.01980.

14 Erich Grädel and Val Tannen. Provenance analysis for logic and games. Moscow Journal of
Combinatorics and Number Theory, 9(3):203–228, 2020. doi:10.2140/moscow.2020.9.203.

CSL 2024

https://doi.org/10.4230/LIPICS.MFCS.2023.20
https://doi.org/10.24963/IJCAI.2020/258
https://doi.org/10.24963/IJCAI.2020/258
https://arxiv.org/abs/2308.04910
https://doi.org/10.1007/978-3-030-22102-7_12
https://doi.org/10.1007/978-3-030-64187-0_3
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.1561/1900000068
https://doi.org/10.1145/3531130.3533358
https://doi.org/10.4204/EPTCS.346.5
https://doi.org/10.4230/LIPIcs.ICALP.2021.133
https://arxiv.org/abs/1712.01980
https://doi.org/10.2140/moscow.2020.9.203

19:22 Ehrenfeucht–Fraïssé Games in Semiring Semantics

15 Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Proceedings
of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2007), pages 31–40. ACM, 2007. doi:10.1145/1265530.1265535.

16 Todd J. Green and Val Tannen. The semiring framework for database provenance. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS 2017), pages 93–99. ACM, 2017. doi:10.1145/3034786.3056125.

17 Lauri Hella. Logical hierarchies in PTIME. In Proceedings of the Seventh Annual Symposium
on Logic in Computer Science (LICS 1992), pages 360–368. IEEE Computer Society, 1992.
doi:10.1109/LICS.1992.185548.

18 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph can-
onization. In Complexity Theory Retrospective, pages 59–81. Springer, New York, 1990.
doi:10.1007/978-1-4612-4478-3_5.

https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/3034786.3056125
https://doi.org/10.1109/LICS.1992.185548
https://doi.org/10.1007/978-1-4612-4478-3_5

Quantum Circuit Completeness: Extensions and
Simplifications
Alexandre Clément # Ñ

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France

Noé Delorme # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Simon Perdrix # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Renaud Vilmart # Ñ

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France

Abstract
Although quantum circuits have been ubiquitous for decades in quantum computing, the first
complete equational theory for quantum circuits has only recently been introduced. Completeness
guarantees that any true equation on quantum circuits can be derived from the equational theory.

We improve this completeness result in two ways: (i) We simplify the equational theory by
proving that several rules can be derived from the remaining ones. In particular, two out of the three
most intricate rules are removed, the third one being slightly simplified. (ii) The complete equational
theory can be extended to quantum circuits with ancillae or qubit discarding, to represent respectively
quantum computations using an additional workspace, and hybrid quantum computations. We show
that the remaining intricate rule can be greatly simplified in these more expressive settings, leading
to equational theories where all equations act on a bounded number of qubits.

The development of simple and complete equational theories for expressive quantum circuit models
opens new avenues for reasoning about quantum circuits. It provides strong formal foundations for
various compiling tasks such as circuit optimisation, hardware constraint satisfaction and verification.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Equational logic and rewriting

Keywords and phrases Quantum Circuits, Completeness, Graphical Language

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.20

Related Version Full Version: https://arxiv.org/abs/2303.03117 [13]

Funding This work is supported by the Plan France 2030 through the PEPR integrated project
EPiQ ANR-22-PETQ-0007 and the HQI initiative ANR-22-PNCQ-0002; it is also supported by the
ANR project SoftQPro ANR-17-CE25-0009-02, by the STIC-AmSud project Qapla’ 21-STIC-10,
and by the European projects NEASQC and HPCQS.

1 Introduction

Introduced in the 80’s by Deutsch [19], the quantum circuit1 model is ubiquitous in quantum
computing. Various quantum computing tasks – circuit optimisation, fault tolerant quantum
computing, hardware constraint satisfaction, and verification – involve quantum circuit
transformations [24, 34, 35, 36, 38]. It is therefore convenient to equip the quantum circuit
formalism with an equational theory providing a way to transform a quantum circuit while

1 Originally called Quantum Computational Networks, the term quantum circuits is nowadays unanimously
used.

© Alexandre Clément, Noé Delorme, Simon Perdrix, and Renaud Vilmart;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexandre.clement@loria.fr
https://members.loria.fr/AClement
https://orcid.org/0000-0002-7958-5712
mailto:noe.delorme@inria.fr
https://noedelor.me/
https://orcid.org/0000-0002-4544-9691
mailto:simon.perdrix@loria.fr
https://members.loria.fr/SPerdrix
https://orcid.org/0000-0002-1808-2409
mailto:renaud.vilmart@inria.fr
https://rvilmart.github.io/
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.CSL.2024.20
https://arxiv.org/abs/2303.03117
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Quantum Circuit Completeness: Extensions and Simplifications

preserving the represented unitary map. When the equational theory is powerful enough to
guarantee that any true property can be derived, it is said to be complete, in other words,
any two circuits representing the same unitary map can be transformed into one another
using the rules of the equational theory.

The first complete equational theory (denoted QCold in the following) for quantum
circuits has been introduced recently [12]. This equational theory has been derived from
the LOv-calculus [11], a language for optical quantum computing. Before that, complete
equational theories were only known for non-universal fragments of quantum circuits, such as
Clifford+T circuits acting on two qubits [6, 16], Clifford+CS circuits acting on three qubits
[7], the stabiliser fragment [33, 42], the CNot-dihedral fragment [1], or fragments of reversible
circuits [25, 15, 14].

The quantum circuit model can naturally be extended to encompass ancillary qubits,
measurements, or qubit discarding, in order to express more general evolutions like isometries
and completely positive trace preserving maps. In a model of quantum circuits with ancillae,
one can use an additional work space by adding fresh qubits, as well as releasing qubits when
they are in a specific state. Even if the vanilla quantum circuits form a universal model
of quantum computation,2 this additional space is useful in many cases. It is for instance
commonly used for the construction of quantum oracles.3 Another important example is
the parallelisation of quantum circuits: ancillae enable a better parallelisation of quantum
gates, leading generally to a tradeoff between space (number of ancillae) and depth (parallel
time) [37]. Notice that ancillae should be carefully used as the computation should leave a
clean work space: one can only get rid of a qubit at the end of the computation if this qubit
is in the |0⟩-state.

We also consider another extension of quantum circuits where arbitrary qubits can
be discarded (or traced out), whatever their states are. This extension allows for the
representation of: (i) quantum measurements and more generally classically controlled
computations; and (ii) arbitrary general quantum computations (CPTP maps4). Such
quantum circuits can be used to deal with fault-tolerant quantum computing and error
correcting codes which, by construction, require an additional workspace, measurements
and corrections. One can also represent measurement-based quantum computation [43, 17]
with this class of circuits. The study of hybrid quantum-classical models is also a subject of
interest in algorithmic and complexity theory [22, 2].

Contributions. We address here the problem of simplifying the complete equational theory
QCold. Obtained through a non-trivial translation from the LOv-calculus, QCold involves non-
trivial equations (see Figure 3), in particular Equation (K∗

old) depicts a family of equations
acting on an unbounded number of qubits, witness of the non-functoriality of the back and
forth translations between quantum circuits and optical circuits, due to the fundamentally
different interpretations of the parallel composition in the two circuit languages.

We show that several rules, including two of the three most intricate ones (Equations (12)
and (13)), can actually be derived from the other rules, the third one (Equation (K∗

old))
being slightly simplified. This leads to a simpler, more compact and easier to use complete
equational theory, which however still involves a family of equations acting on an unbounded
number of qubits.

2 Any n-qubit unitary transformation can be implemented by a n-qubit vanilla quantum circuit.
3 Implementation of the n-qubit unitary transformation Uf : |x, y⟩ 7→ |x, y ⊕ f(x)⟩ given a classical circuit

implementing the boolean function f [39].
4 Completely positive trace-preserving maps.

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:3

We consider the more expressive frameworks of quantum circuits with ancilla and/or
discards. Several constructions for discarding [23, 9], measurements and quantum opera-
tions [45], allow one to turn the complete equational theory for vanilla quantum circuits into
complete equational theories for quantum circuits with ancilla and/or discards, by adding
a few extra equations. We then mainly show that in these more expressive setting, the
unbounded family of equations (K∗

old) can be derived from bounded ones, leading to complete
equational theories acting on a most three qubits.

Related work. The first complete equational theory for a universal quantum computing
model has been introduced in 2017 for the ZX-calculus [26]. Since then, complete equational
theories have been introduced for other universal fragments of the ZX-calculus [27, 21, 28,
47, 29] and its variants ZH-, ZW-calculi [3, 20]. ZX-like languages differ from quantum
circuits mainly in two ways: they are more expressive, allowing the representation of any
matrix5 so in particular those representing post-selected evolutions for instance; the second
major difference – and the most important in our context – is that not all the generators
are unitary, thus even if a ZX-diagram represents an overall unitary evolution, it does not
provide in general a (deterministic) implementation by means of elementary gates contrary
to the quantum circuit model. To circumvent this problem one can consider the so-called
subclass of circuit-like ZX-diagrams which is in one-to-one correspondence with quantum
circuits, however this class is not closed under the known complete equational theories of the
ZX-calculus. In particular, the problem of transforming a ZX-diagram representing a unitary
evolution into a circuit-like one has been studied in the context of circuit optimisation [30],
leading to various heuristics [31, 4, 18]. However, this approach fails so far to lead to a
complete equational theory for quantum circuits.

The paper is structured as follows. In Section 2, we consider vanilla quantum circuits
together with a new equational theory QC. We prove the completeness of QC first for
the fragment of 1-CNot circuits,6 that we then use to derive the remaining equations of
the already known complete equational theory QCold introduced in [12]. In Section 3, we
introduce an extension of vanilla quantum circuits with |0⟩-state initialisation. Universal
for isometries, such quantum circuits with initialisation are introduced as an intermediate
step towards circuits with ancillae and/or discard. We add to the equational theory QC two
basic equations involving qubit-initialisation, and provide a proof of completeness of the
augmented equational theory QCiso using a particular circuit decomposition based on the
so-called cosine-sine decomposition of unitary maps. The completeness of QCiso is extended
to provide complete equational theories for quantum circuits with ancillae (QCancilla in
Section 4) – which additionally allow for the release of qubits when they are in a specific
state – and for quantum circuits with qubit discarding (QCdiscard in Section 5) – which
allows the tracing out of any qubits. Both extensions provide alternative representations
of multi-controlled gates, allowing the simplification of the remaining intricate rule – which
acts on an unbounded number of qubits – into its 2-qubit version.

Due to space constraints, we only sketch the proofs in the present paper. Please refer to
the full version [13] for the detailed proofs together with all the required derivations.

5 the only constraint is on the dimension of the matrices which must be a power of two for the qubit case,
qudit versions also exist [8, 41]

6 The sub-class of quantum circuits made of at most one CNot gate.

CSL 2024

20:4 Quantum Circuit Completeness: Extensions and Simplifications

2 Vanilla quantum circuits

2.1 Graphical languages
We define quantum circuits using the formalism of props [32], which are, in category-theoretic
terms, strict symmetric monoidal categories whose objects are generated by a single object,
or equivalently with (N, +) as a monoid of objects. The prop formalism provides a formal and
rigorous framework to describe graphical languages. The main features of props are recalled
in the following. Circuits C1 : m → n and C2 : p → q in a prop, depicted as C1

...
... nm and

C2
...

...p q can be composed: (1) “in sequence” C2 ◦C1 : m → q if n = p, graphically C2
...

... qC1
...m ;

(2) “in parallel” C1 ⊗ C2 : m + p → n + q, graphically
C2

...
...p q

C1
...

... nm

. The unit for tensor product

⊗ is the empty circuit: : 0 → 0. This means ⊗ C = C = C ⊗ for any circuit C. The
circuit : 1 → 1 depicts the identity, : 2 → 2 is the identity on two wires and more
generally ⊗m := ⊗ ()⊗m−1 : m → m (with ()⊗0 :=) is the identity on m wires.
Graphically, we obviously have ⊗n ◦ C = C = C ◦ ⊗m for any C : m → n. Finally, a
prop is also endowed with a particular circuit : 2 → 2 which satisfies = .
Graphically (and semantically in what follows) swaps places. By compositions, we may
build the following family of circuits

...

n
...

m
...
...

: m + n → n + m

which exchanges m-sized and n-sized registers. In a prop, circuits satisfy a set of identities,
that graphically translate as “being able to deform the circuit”. For instance, the following
identities are valid transformations:

C2
...

...p q

C1
...

... nm

=
C2

...
...p q

C1
...

... nm
...

n
...p

...
... C

...

m

=
C

...

n

...m

...p

...

...

In the following, all the considered theories will be props, and hence will have the empty,
identity and swap circuits as basic generators.

2.2 Vanilla quantum circuits and their equational theory
We first consider the vanilla model of quantum circuits generated by the very standard
gateset: Hadamard, Phase gates, and CNot, together with global phases:

▶ Definition 1. Let QC be the prop generated by H : 1 → 1, P (φ) : 1 → 1, : 2 → 2
and φ : 0 → 0 for any φ ∈ R.

We associate with any quantum circuit its standard interpretation as a unitary map:

▶ Definition 2 (Semantics). For any n-qubit QC-circuit C, let JCK : C{0,1}n → C{0,1}n be
the semantics of C inductively defined as the linear map satisfying JC2 ◦ C1K = JC2K ◦ JC1K;
JC1 ⊗ C2K = JC1K ⊗ JC2K; and

J K = 1 7→ 1 J φ K = 1 7→ eiφ q
H

y
= |x⟩ 7→ |0⟩ + (−1)x |1⟩√

2
q

P (φ)
y

= |x⟩ 7→ eixφ |x⟩

r z
= |x, y⟩ 7→ |x, x ⊕ y⟩ J K = |x⟩ 7→ |x⟩ J K = |x, y⟩ 7→ |y, x⟩

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:5

Note that for any QC-circuit C, JCK is unitary. Conversely, it is well known that any
unitary map acting on a finite number of qubits can be represented by a QC-circuit:

▶ Proposition 3 (Universality). QC is universal, i.e. for any unitary U : C{0,1}n → C{0,1}n

there exists a QC-circuit C such that JCK = U .

Quantum circuits, as defined above, only have four different kinds of generators, however,
it is often convenient to use other gates that can be defined by combining them. For instance,
following [5, 12], Pauli gates, Toffoli, X-rotations, and multi-controlled gates are defined
in Figure 1. Note that while the phase gate P (φ) is 2π-periodic, the X-rotation RX(θ) is
4π-periodic.

We use the standard bullet-based notation for multi-controlled gates. For instance
P (φ)

denotes the application of a phase gate P (φ) on the third qubit controlled by the first two
qubits. With a slight abuse of notations, we use dashed lines for arbitrary number of control

qubits, e.g.
P (φ)

: n + 1 → n + 1 or simply
P (φ)

: n + 1 → n + 1 have n ≥ 0 control

qubits (possibly zero), whereas
P (φ)

: n + 2 → n + 2 and
P (φ)

: 1 + n + 1 → 1 + n + 1

have at least one control qubit.

RX(θ) := H P (θ)
-θ/2

H (1) Z := P (π) (2) X := H Z H (3)

RX(θ)

:=

RX(θ
2) RX(- θ

2)

H H

(4)

P (φ)

:=

RX(φ)

P (φ
2)

H H

(5)

:=

P (π)H H

(6)

P (φ)

= P (φ
2)

P (φ
2) P (- φ

2)

(7)

Figure 1 Shortcut notations for usual gates defined for any φ, θ ∈ R. Equation (1) defines
X-rotations while Equations (2) and (3) define Pauli gates. Equations (4) and (5) are inductive
definitions of multi-controlled gates. Equation (6) is the definition of the well known Toffoli gate.
Equation (7) is a provably equivalent definition of the multi-controlled phase gate.

We equip the vanilla quantum circuits with the equational theory QC defined in Figure 2.
We write QC ⊢ C1 = C2 when C1 can be transformed into C2 using the equations of QC.
More formally, QC ⊢ · = · is the smallest congruence which satisfies the equations of Figure 2
together with the deformation rules that come with the prop formalism. QC is sound, i.e. for
any QC-circuits C1, C2 if QC ⊢ C1 = C2 then JC1K = JC2K. This can be proved by observing
that all equations of QC are sound.

Figure 3 depicts the complete equational theory QCold for vanilla quantum circuits
introduced in [12]. Compared to QCold, Equations (8) and (9) are now subsumed by
Equation (G) in QC, Equation (K∗) is a slight simplification of Equation (K∗

old) with one less
parameter in the RHS circuit, whereas Equations (10) and (11) together with Equations (12)
and (13) have been removed, as we prove in the following that they can be derived in QC.

CSL 2024

20:6 Quantum Circuit Completeness: Extensions and Simplifications

0 = 2π = (A) φ1 φ2 = φ1+φ2 (B) H H = (C) P (0) = (D)

= (E) = (F)
P (φ)

=
P (φ)

(G)

HH
=

P (π
2)

P (π
2)

P (- π
2)

(H) H = P (π
2) RX(π

2) P (π
2) (I)

RX(α1) P (α2) RX(α3) = P (β1)
β0

RX(β2) P (β3) (J)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4) =

P (δ1) P (δ2) RX(δ3)

RX(δ4)

P (δ5) RX(δ6) P (δ7)

P (δ8) (K∗)

Figure 2 Equational theory QC. Equations (B) and (G) are defined for any φ, φ1, φ2 ∈ R. In
Equations (J) and (K∗) the LHS circuit has arbitrary parameters which uniquely determine the
parameters of the RHS circuit. Equation (J) follows from the well-known Euler-decomposition which
states that any unitary can be decomposed, up to a global phase, into basic X- and Z-rotations. Thus
for any αi ∈ R, there exist βj ∈ R such that Equation (J) is sound. We make the angles βj unique
by assuming that β1 ∈ [0, π), β0, β2, β3 ∈ [0, 2π) and if β2 ∈ {0, π} then β1 = 0. Equation (K∗)
reads as follows: the equation is defined for any n ≥ 2 input qubits, in such a way that all gates are
controlled by the first n − 2 qubits. Similarly to Equation (J), for any γi ∈ R, there exist δj ∈ R such
that Equation (K∗) is sound. We ensure that the angles δj are uniquely determined by assuming
that δ1, δ2, δ5 ∈ [0, π), δ3, δ6, δ7, δ8 ∈ [0, 2π), δ4 ∈ [0, 4π), if δ3 = 0 and δ6 ̸= 0 then δ2 = 0, if δ3 = π

then δ1 = 0, if δ4 ∈ {0, 2π} then δ1 = δ3 = 0, if δ4 ∈ {π, 3π} then δ2 = 0, if δ4 ∈ {π, 3π} and δ3 = 0
then δ1 = 0, and if δ6 ∈ {0, π} then δ5 = 0.

2.3 Reasoning on quantum circuits
To derive an equation C1 = C2 over quantum circuits, one can apply some rules of the
equational theory to transform step by step C1 into C2. In the context of vanilla quantum
circuits, we can take advantage of the reversibility of generators to simplify equations. Indeed,
intuitively, proving C1 ◦ H = C2 ◦ H is equivalent to proving C1 = C2 as H is (provably)
reversible. Similarly, proving C1 = C2 should be equivalent to proving C1 ◦ C†

2 = , where
the adjoint of a circuit is defined as follows:

▶ Definition 4. For any QC-circuit C, let C† be the adjoint of C inductively defined
as (C2 ◦ C1)† := C†

1 ◦ C†
2; (C1 ⊗ C2)† := C†

1 ⊗ C†
2; and for any φ ∈ R, (φ)† := -φ ,

(P (φ))† := P (-φ) , and g† := g for any other generator g.

▶ Proposition 5.
q
C†y = JCK† for any QC-circuit C, where JCK† is the usual linear algebra

adjoint of JCK.

Proof. By induction on C. ◀

▶ Proposition 6 (Simplification principle). For any n-qubit QC-circuits C, C1, C2

QC ⊢ C ◦ C1 = C2 ⇔ QC ⊢ C1 = C† ◦ C2

and
QC ⊢ C1 ◦ C = C2 ⇔ QC ⊢ C1 = C2 ◦ C†

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:7

0 = 2π = (A) φ1 φ2 = φ1+φ2 (B) H H = (C) P (0) = (D)

= (E) = (8)
P (φ)

=
P (φ)

(9)

HH
=

P (π
2)

P (π
2)

P (- π
2)

(H)
X

=
XX

(10)

= (F) = (11)

H = P (π
2) RX(π

2) P (π
2) (I) RX(α1) P (α2) RX(α3) = P (β1)

β0
RX(β2) P (β3) (J)

RX(-θ)

RX(θ)

RX(θ′)

RX(θ′)H H
=

RX(-θ)

RX(θ)

RX(θ′)

RX(θ′) HH
(12)

H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

=

H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(13)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4) =

P (δ1) P (δ2) RX(δ3)

RX(δ4)

P (δ5) RX(δ6) P (δ7)

P (δ8)

P (δ9)

(K∗
old)

Figure 3 Equational theory QCold introduced in [12]. Equations (A),(B),(C),(D),(E),(H),(F),(I)
are (J) are aslo in the equational theory QC. Equation (K∗

old) is the old version of Equation (K∗)
with one more parameter, and where the uniqueness of the parameters δj is given by the conditions:
δ1, δ2, δ5 ∈ [0, π), δ3, δ4, δ6, δ7, δ8, δ9 ∈ [0, 2π), if δ3 = 0 then δ2 = 0, if δ3 = π then δ1 = 0, if δ4 = 0
then δ1 = δ3 (= δ2) = 0, if δ4 = π then δ2 = 0, if δ4 = π and δ3 = 0 then δ1 = 0, and if δ6 ∈ {0, π}
then δ5 = 0. Note that these conditions on the δj for 1 ≤ j ≤ 8 are the same as in Equation (K∗)
except for δ4, which is restricted to be in [0, 2π) instead of [0, 4π), and for δ2, which has to be 0
when δ3 = 0 even if δ6 = 0.

Proof. First we show by induction that QC ⊢ C ◦ C† = ⊗n and QC ⊢ C† ◦ C = ⊗n for
any C. Then, w.l.o.g. we show that (QC ⊢ C ◦ C1 = C2) ⇒ (QC ⊢ C1 = C† ◦ C2): assuming
QC ⊢ C ◦ C1 = C2, we have QC ⊢ C1 = C† ◦ C ◦ C1 = C† ◦ C2. ◀

2.4 Completeness
We prove the completeness of QC by showing that every equation of the original complete
equational theory QCold introduced in [12] can be derived in QC. To this end we first show
the completeness of QC for the (modest) fragment of quantum circuits containing at most
one CNot gate.

▶ Lemma 7 (1-CNot completeness). QC is complete for circuits containing at most one ,
i.e. for any QC-circuits C1, C2 with at most one , if JC1K = JC2K then QC ⊢ C1 = C2.

Proof. First we can show that, for semantic reasons, it is enough to prove the statement
for 2-qubit circuits containing no swap gate and exactly one CNot gate. Then, by the
simplification principle (Proposition 6), it is sufficient to prove

A

B

C

D
=

CSL 2024

20:8 Quantum Circuit Completeness: Extensions and Simplifications

whenever the equation is sound. By semantic analysis, we can show that there exist
α, β, γ, φ, θ ∈ R and k, ℓ ∈ {0, 1} such that

J A K = J P (φ) Xkα K J C K = J P (−φ)Xkγ Zℓ K

J B K = J RX(θ)β Zℓ K J D K = J RX(−θ)Xk−α − β − γ Zℓ K

where Xk (resp. Zℓ) denotes X (resp. Z) if k = 1 (resp. ℓ = 1) and if k = 0
(resp. ℓ = 0). Then, using the completeness of QC for one-qubit circuits (which is a direct con-
sequence of the fact that all equations acting on at most one qubit of QCold are also in QC), it
is straightforward to verify that Equations (A),(B),(23),(22),(32),(10),(9),(30),(18),(19),(D),
and (25) capture all the possible cases. ◀

▶ Proposition 8. Equation (12) can be derived in QC.

Proof. Using the simplification principle (Proposition 6), one can turn Equation (12) into
an equivalent equation whose circuits contain only one . We conclude the proof using the
completeness of QC for circuits containing at most one CNot (Lemma 7). The details are
given in Appendix A. ◀

▶ Proposition 9. Equation (13) can be derived in QC.

Proof. It turns out that we can use Equation (12) to derive Equation (13) in QC. The
derivation is given in Appendix A. ◀

▶ Proposition 10. Equation (K∗
old) can be derived in QC.

Proof. We show that for semantic reasons, we have either the angle δ9 in (K∗
old) in {0, π},

or δ2 = δ3 = δ5 = δ6 = 0. When δ9 = 0, Equation (K∗
old) can be trivially derived from

Equation (K∗). Otherwise, Equations (K∗) and (K∗
old) can be transformed into each other

using elementary properties of multi-controlled gates. Moreover, these transformations
induce a bijection between the 8-tuples of angles δj corresponding to the RHS of the
instances of Equation (K∗) and the 9-tuples corresponding to the RHS of the instances
of Equation (K∗

old), so that the uniqueness of the δj in Equation (K∗) follows from the
uniqueness in Equation (K∗

old). ◀

▶ Theorem 11 (Completeness). The equational theory QC, defined in Figure 2, is complete
for QC-circuits, i.e. for any QC-circuits C1, C2, if JC1K = JC2K then QC ⊢ C1 = C2.

Proof. All the rules of the complete equational theory introduced in [12] that are not in QC
are provable in QC: Equations (8), (9), (10), (11) are proved in Appendix A, Equations (12),
(13) and (K∗

old) are proved in Propositions 8, 9 and 10 respectively. ◀

3 Quantum circuits for isometries

In this section we consider a first standard extension of the vanilla quantum circuits which
consists in allowing qubit initialisation in a specific state, namely in the |0⟩-state.

▶ Definition 12. Let QCiso be the prop generated by φ : 0 → 0, H : 1 → 1, P (φ) : 1 → 1,
: 2 → 2 and : 0 → 1 for any φ ∈ R.

▶ Definition 13 (Semantics). We extend the semantics J·K of vanilla quantum circuits
(Definition 2) with J K = |0⟩.

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:9

▶ Proposition 14 (Universality). Any isometry7 V : C{0,1}n → C{0,1}m can be realised by a
QCiso-circuit C : n → m s.t. JCK = V .

P (φ) = (L) = (M)

0 = 2π = (A) φ1 φ2 = φ1+φ2 (B) H H = (C) P (0) = (D)

= (E) = (F)
P (φ)

=
P (φ)

(G)

HH
=

P (π
2)

P (π
2)

P (- π
2)

(H) H = P (π
2) RX(π

2) P (π
2) (I)

RX(α1) P (α2) RX(α3) = P (β1)
β0

RX(β2) P (β3) (J)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4) =

P (δ1) P (δ2) RX(δ3)

RX(δ4)

P (δ5) RX(δ6) P (δ7)

P (δ8) (K∗)

Figure 4 Equational theory QCiso. It contains all the equations of QC together with Equation (L)
(defined for any φ ∈ R) and Equation (M), which are new equations governing the behaviour of the
new generator .

For instance, the so-called copies in the standard basis (|x⟩ 7→ |xx⟩) and in the diagonal
basis can be respectively represented as follows:

H

We consider the equational theory QCiso, given in Figure 4, which is nothing but the
equational theory QC augmented with the following two sound equations:

P (φ) = (L) = (M)

Viewing P (φ) as a control-global-phase gate, Equations (L), (M) can be interpreted as
instances of the following property: a control gate can be removed when one of its control
qubit is initialised in the |0⟩-state. This kind of properties can actually be derived within
QCiso.

▶ Lemma 15. Let C be a QCiso-circuit such that ∀ |φ⟩ ∈ C2n , JCK |φ⟩ = |0⟩ ⊗ |φ⟩. Then:

QCiso ⊢ ...
...

C = ...

Proof. We prove that the above circuit necessarily is a QC-circuit together with a single
qubit initialisation. The semantics of the QC-circuit forces it to be equivalent to a controlled
circuit, which can be shown to be deletable by the qubit initialisation, thanks to Equations
(L) and (M). ◀

7 An isometry is a linear map V s.t. V † ◦ V is the identity.

CSL 2024

20:10 Quantum Circuit Completeness: Extensions and Simplifications

A direct corollary of Lemma 15 is the completeness of QCiso for quantum circuits with at
most one initialisation. Notice that one can then use Lemma 17 of [45] to essentially prove
the completeness of QCiso. However, as the semantics in [45] is based on CPTP maps rather
than isometries (so global phases should be treated carefully), and moreover the proof of this
Lemma 17 is not described, we provide a direct completeness proof of QCiso in the following.

To do so, we may want to generalise Lemma 15 to any number of qubit initialisations.
However, the proof does not generalise. Indeed, it relies on the fact that, semantically, the
vanilla circuit of which we initialize a single qubit is necessarily of the form diag(I, U), with
I and U of the same dimension, so we can start with a circuit implementing U and control
each of its gates to get a circuit implementing diag(I, U) with only controls and phases
on the control wire. To generalise this notion to more than one qubit initialisation, where
semantically we would need to implement diag(I, U) with U of dimensions larger than I’s,
we need a finer-grain decomposition of said matrix. We hence resort to the following unitary
decomposition:

▶ Lemma 16. Let U =

I 0 0
0 U00 U01

0 U10 U11

}k

}n − k}
n

be unitary with U00 and U11 square.

Then, there exist:
A0, A1, B0, B1 unitary,
C = diag(c1, ..., cd) and S = diag(s1, ..., sd) (ci, si ≥ 0 and d ≤ n − k).

such that:
C2 + S2 = I

U =

I 0 0
0 A0 0

0 0 A1

I 0 0 0
0 C 0 −S

0 0 I 0
0 S 0 C

I 0 0
0 B0 0

0 0 B1

The above decomposition is a variation on the Cosine-Sine Decomposition (CSD) [40],

which has already appeared to be useful in quantum circuit synthesis [44].

Proof. The proof itself is a variation of the proof for the usual CSD. It specifically involves
the so-called RQ and SVD decompositions. ◀

It is then possible to show the completeness of QCiso:

▶ Theorem 17 (Completeness). The equational theory QCiso, defined in Figure 4, is complete
for QCiso-circuits.

Proof. The proof goes by showing that deriving equality between two QCiso-circuits amounts
to generalising Lemma 15 to any number of qubit initialisations, which is shown inductively
using the above variation of the CSD. ◀

4 Quantum circuits with ancillae

In this section, we consider quantum circuits which are implementing unitary maps (or
isometries) using ancillary qubits, a.k.a. ancillae, as additional work space. To represent
quantum circuits with ancillae, we not only need to be able to initialise fresh qubits, but
also to release qubits when they become useless. Note that to guarantee that the overall
evolution is an isometry, one can only release a qubit in the |0⟩-state.

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:11

To encompass the notion of ancillary qubits we extend QCiso-circuits (already equipped
with qubit initialisation) with a qubit removal generator denoted . Because of the
constraint that removed qubits must be in the |0⟩-state, we define the language of quantum
circuits with ancillae in two steps.

▶ Definition 18. Let QCpre-ancilla be the prop generated by φ : 0 → 0, H : 1 → 1,
P (φ) : 1 → 1, : 2 → 2, : 0 → 1 and : 1 → 0 for any φ ∈ R.

▶ Definition 19 (Semantics). We extend the semantics J·K of quantum circuits for isometries
(Definition 13) with J K = ⟨0|.

Notice that the semantics of a QCpre-ancilla-circuit is not necessarily an isometry as J K is
not isometric.8 As a consequence, we define QCancilla as the subclass of QCpre-ancilla-circuits
with an isometric semantics:

▶ Definition 20. Let QCancilla be the sub-prop of QCpre-ancilla-circuit C such that JCK is an
isometry.

P (φ) = (L) = (M) = (N)

0 = 2π = (A) φ1 φ2 = φ1+φ2 (B) H H = (C) P (0) = (D)

= (E) = (F)
P (φ)

=
P (φ)

(G)

HH
=

P (π
2)

P (π
2)

P (- π
2)

(H) H = P (π
2) RX(π

2) P (π
2) (I)

RX(α1) P (α2) RX(α3) = P (β1)
β0

RX(β2) P (β3) (J)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4)
=

P (δ1) P (δ2) RX(δ3)

RX(δ4)

P (δ5) RX(δ6) P (δ7)

P (δ8)
(K2)

Figure 5 Equational theory QCancilla. It contains all the equations of QCiso where Equation (K∗)
has been replaced by Equation (K2), together with Equation (N), which is a new equation that
allows one to create ancillae.

Notice in particular that any QCiso-circuit is in QCancilla, which implies the universality
of QCancilla for isometries. We equip QCancilla-circuits with the equational theory QCancilla
given in Figure 5, which is nothing but the equational theory QCiso where Equation (K∗) is
replaced by its 2-qubit version Equation (K2), together with a new elementary equation (N)
governing the behaviour of the qubit removal generator .

= (N)

8 Actually any linear map L s.t. L†L ⊑ I can be implemented by a QCpre-ancilla-circuit, where ⊑ is
the Löwner partial order. Thus QCpre-ancilla can be seen as a language for postselected quantum
computations.

CSL 2024

20:12 Quantum Circuit Completeness: Extensions and Simplifications

Quantum circuits with ancillae form a standard model of quantum computing. They
are for instance used in the context of quantum oracles: given a circuit Cf : n + 1 → n + 1
whose semantics is |x, y⟩ 7→ |x, y ⊕ f(x)⟩ for some boolean function f , one can implement
the corresponding phase oracle C ′

f whose semantics is |x⟩ 7→ (−1)f(x) |x⟩ as follows:

C ′
f :=

H
Cf

H XX

Quantum circuits with ancillae are also extensively used in the context of circuit parallel-
isation, as one can decrease the depth of a quantum circuit by adding ancillary qubits [37].
Finally, ancillary qubits can be used to provide an alternative realisation of multi-controlled
gates, for instance a 3-qubit controlled gate can be implemented using an ancillary qubit,
Toffoli gates, and the 2-qubit version of the gate:

P (φ)

=
P (φ)

(14)

This can be generalised to any multi-controlled gates with at least two control qubits:

▶ Proposition 21. The following two equations can be derived in QCancilla.

P (φ)

=
P (φ)

(15)
RX(θ)

=
RX(θ)

(16)

Proof. By induction on the number of qubits. ◀

Notice that Equations (15) and (16) are actually derivable in QCiso. However, in order
to provide an alternative inductive definition of multi-control gates (like in Equation (14)), it
requires the presence of at least one fresh qubit which can always be created in the context
of quantum circuits with ancillae thanks to Equation (N).

Thanks to the alternative representation of multi-controlled gates, one can derive, in
QCancilla, the equation (K∗) for any arbitrary number of controlled qubits:

▶ Proposition 22. Equation (K∗) can be derived in QCancilla.

Proof. Let (Kn) be Equation (K∗) acting on n qubits for any n ≥ 2. Equation (K2) is in
QCancilla. We first prove that (K3) can be derived from (K2) by defining the Fredkin gate
(or controlled-swap gate) and by pushing the two last wires of the LHS circuit of (K3) into
two fresh ancillae, which allow us to apply (K2) and reverse the construction to get the
RHS circuit of (K3). This technique is not applicable in the general case for any circuit
because if the Fredkin gates are not triggered, it could be the case that the gates pushed
into the ancillae do not release the ancillae into the |0⟩-state. The key observation is that
this is possible for (K3) as every involved gates are either phase gate or uniquely controlled
gate (which both act as identity on the |0⟩-state). Then, we prove that (Kn) is derivable in
QCancilla for any n ≥ 4 by induction on n using the alternative definition of multi-controlled
gates (Proposition 21), which allows us to construct an instance of the LHS circuit of (Kn−1)
from the LHS circuit of (Kn). ◀

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:13

We are now ready to prove the completeness of QCancilla:

▶ Theorem 23 (Completeness). The equational theory QCancilla, defined in Figure 5, is
complete for QCancilla-circuits.

Proof. Proposition 22 implies that for any -free circuits C1, C2, if QCiso ⊢ C1 = C2
then QCancilla ⊢ C1 = C2. Using deformation of circuits, any QCancilla-circuit C : n → m

can be written
C ′

... , where C ′ : n → m + k is a QCiso-circuit. Since both JCK and

JC ′K are isometries and JCK = (Id ⊗
〈
0k

∣∣) JC ′K, we have JC ′K = JCK ⊗
∣∣0k

〉
. Given two

QCancilla-circuits C1, C2 s.t. JC1K = JC2K, let C ′
1 : n → m + k, and C ′

2 : n → m + ℓ be
the corresponding QCiso-circuits. W.l.o.g. assume k ≤ ℓ, and pad C ′

1 with ℓ − k qubit
initialisations: C ′′

1 := C ′
1 ⊗ ()⊗ℓ−k. We have JC ′′

1 K = JC ′
2K, so by completeness of QCiso,

QCancilla ⊢ C ′′
1 = C ′

2, so QCancilla ⊢ C1 ⊗ ()⊗ℓ−k = C2. It suffices to apply Equation (N)

to obtain QCancilla ⊢ C1 = C2. ◀

5 Quantum circuits with discard for completely positive map

The last extension considered in this paper is the addition of a discard operator which consists
in tracing out qubits. Contrary to quantum circuits with ancillae, any qubit can be discarded
whatever its state is. Discarding a qubit is depicted by .

▶ Definition 24. Let QCdiscard be the prop generated by H : 1 → 1, P (φ) : 1 → 1,
: 2 → 2, : 0 → 1 and : 1 → 0 for any φ ∈ R.

The ability to discard qubits implies that the evolution represented by such a circuit is
not pure anymore. As a consequence the semantics is a completely positive trace-preserving
(CPTP) map acting on density matrices (trace 1 positive semi-definite Hermitian matrices).
Formally the new semantics is defined as follows:

▶ Definition 25 (Semantics). For any quantum QCdiscard-circuit C : n → m, let LCM :
M2n,2n(C) → M2m,2m(C) be the semantics of C inductively defined as the linear map
LC2 ◦ C1M = LC2M ◦ LC1M; LC1 ⊗ C2M = LC1M ⊗ LC2M; L M = ρ 7→ tr(ρ) and for any other
generator g, LgM = ρ 7→ JgK ρ JgK†, where tr(M) is the trace of the matrix M and M† its
adjoint.

Notice that the global phase generator φ is not part of the prop anymore. If it were,
its interpretation would be L φ M = ρ 7→ J φ K ρ J φ K† = eiφρe−iφ = ρ, which is the same as
that of the empty circuit. Thus, for this model the X-rotation can simply be defined as

RX(θ) := H P (θ) H (the same definition as Figure 1 but without the global phase).

▶ Proposition 26 (Universality). QCdiscard is universal for CPTP maps.

Proof. According to the Stinespring dilation lemma [46], any CPTP map F : M2n,2n(C) →
M2m,2m(C) can be purified as an isometry V : C2n → C2m+k such that for any ρ, F (ρ) =
trk(V ρV †), where trk(.) is the partial trace of the last k qubits. By universality of QCiso
there exists a circuit C such that JCK = V . Let C ′ be the global-phase-free version of C, thus
JC ′K = eiθV . Seen as a QCdiscard-circuit, C ′ has the semantics LC ′M = ρ 7→ (eiθV)ρ(eiθV)† =
V ρV †. Discarding the last k qubits of C ′ leads to a QCdiscard-circuit implementing F . ◀

CSL 2024

20:14 Quantum Circuit Completeness: Extensions and Simplifications

The new generator and new semantics allow us to model measurements. For instance,
the standard basis measurement can be obtained via:

Indeed we recover the semantics of the standard basis measurement:(∣∣∣∣ ∣∣∣∣) =
(

a c

b d

)
7→

(
a 0
0 d

)
The output wire can be interpreted as a classical bit (encoded in a quantum bit), a (resp. d)
being the probability to be 0 (resp. 1).

One can also encode classical gates, for instance the AND gate using Toffoli:

With the promise that the input is classical, i.e. the input density matrix is
diag(p00, p01, p10, p11) (where pxy is the probability for the input to be in the state
xy ∈ {0, 1}2), the output state is diag(p00 +p01 +p10, p11) which corresponds to the behaviour
of the AND gate.

More generally, one can represent classically controlled computation using the QCdiscard-
circuits, allowing to reason on fault-tolerant computations, error correcting codes and
measurement-based quantum computation for instance.

P (φ) = (L) H = (O) P (φ) = (P) = (Q)

= (M) = (R) H H = (C) P (0) = (D)

= (E) = (F)
P (φ)

=
P (φ)

(G)

HH
=

P (π
2)

P (π
2)

P (- π
2)

(H) H = P (π
2) RX(π

2) P (π
2) (I)

RX(α1) P (α2) RX(α3) = P (β1) RX(β2) P (β3) (J’)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4)
=

P (δ1) P (δ2) RX(δ3)

RX(δ4)

P (δ5) RX(δ6) P (δ7)

P (δ8)
(K2)

Figure 6 Equational theory QCdiscard. It contains all the equations of QCancilla except Equations
(A), (B), (N) and where Equation (J) has been replaced by its global-phase free-version Equation (J’),
together with Equations (O), (P) (defined for any φ ∈ R), (Q) and (R), which are new equations
governing the behaviour of the new generator .

While [45] provides a way to get completeness for quantum circuits with measurements
from a complete one for isometries, we instead use [9] which provides a similar result but for
isometries with discard, as the latter is a little bit more atomic than measurements. This
leads us to equip QCdiscard-circuits with the equational theory QCdiscard defined in Figure 6,
which is a global-phase-free version of QCancilla where replaces ⊣, and with the addition of:

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:15

H = (O) P (φ) = (P) = (Q) = (R)

This observation allows us in particular to transport all the proofs using QCancilla into
the present theory, the only two differences being that plays the role of ⊣ and that the
QCdiscard version of the proofs have no global phase φ .

▶ Theorem 27 (Completeness). The equational theory QCdiscard, defined in Figure 6, is
complete for QCdiscard-circuits.

Proof. We can use the discard construction [9] to build QCiso from QCiso, by adding equation:

⊗m ◦ U = ⊗n (17)

for any QCiso-circuit U : n → m. The discard construction guarantees that QCiso is complete
for CPTP maps (Proposition 2 in [9]). It remains to prove that all equations in QCiso derive
from those of QCdiscard. All equations of the former except Equations (K∗) and (17) appear
in QCdiscard. Those are trivially derivable. As mentioned above, it is possible to prove (K∗)
from QCdiscard exactly as in the case of QCancilla by replacing each occurrence of =
by = . This means all the equations of QCiso are derivable. Finally, all the equations

⊗m ◦ U = ⊗n for different isometries U can be derived from Equations (O), (P), (Q),
and (R). ◀

6 Concluding remarks

We have simplified the complete equational theory for quantum circuits, and provided ones
for standard extensions of quantum circuits, including qubit initialisation, ancillae, and/or
qubit discarding. The equational theory can be simplified in these more general settings,
leading in particular to equations acting on a bounded number of qubits, avoiding the use of
controlled gates on arbitrary number of qubits. It is interesting to notice that increasing the
expressive power of the model makes the equational theory simpler.

This simplification of the equational theory is a step towards a minimal equational
theory (i.e. an equational theory where each equation provably cannot be derived from
the other ones). Notice that based on the present work, a minimal complete equational
theory for vanilla quantum circuits has been introduced recently [10], showing in particular
that equations acting on an unbounded number of qubits are necessary for vanilla quantum
circuits. The question of the minimality in the context of quantum circuits with qubit
initialisation, ancillae, and/or qubit discarding remains open.

Getting rid of Equation (K∗) eases also the practical implementation of the rewriting
rules as it avoids to consider a family of rules acting on an unbounded of qubits. Notice that
regarding practical considerations, various equations presented in this paper have parameters,
e.g. RX(α1) P (α2) RX(α3) = P (β1) RX(β2) P (β3) that should be read as follows: for any
angle αi on the LHS, there exist βj on the RHS so that the equation holds. βj can be
computed using fairly simple trigonometric operations. Notice that even if the equation looks
non-symmetric, one can show conversely that for any βj there exist αi angles such that the
equation holds (see Equation (21)).

CSL 2024

20:16 Quantum Circuit Completeness: Extensions and Simplifications

References
1 Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of CNOT-dihedral

operators. Electronic Proceedings in Theoretical Computer Science, 266:84–97, February 2018.
doi:10.4204/eptcs.266.5.

2 Atul Singh Arora, Andrea Coladangelo, Matthew Coudron, Alexandru Gheorghiu, Uttam
Singh, and Hendrik Waldner. Quantum depth in the random oracle model. In Barna Saha
and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1111–1124. ACM,
2023. doi:10.1145/3564246.3585153.

3 Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering, and Sal
Wolffs. Completeness of the ZH-calculus. Compositionality, 5, July 2023. doi:10.32408/
compositionality-5-5.

4 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de
Wetering. There and back again: A circuit extraction tale. Quantum, 5:421, March 2021.
doi:10.22331/q-2021-03-25-421.

5 Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus,
Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for
quantum computation. Physical Review A, 52(5):3457–3467, November 1995. doi:10.1103/
physreva.52.3457.

6 Xiaoning Bian and Peter Selinger. Generators and relations for 2-qubit Clifford+T operators.
Proceedings of QPL’22, Electronic Proceedings in Theoretical Computer Science, 394:13–28,
November 2023. doi:10.4204/eptcs.394.2.

7 Xiaoning Bian and Peter Selinger. Generators and relations for 3-qubit Clifford+CS operators.
Proceedings QPL’23, Electronic Proceedings in Theoretical Computer Science, 384:114–126,
August 2023. doi:10.4204/eptcs.384.7.

8 Robert I. Booth and Titouan Carette. Complete ZX-Calculi for the Stabiliser Fragment in
Odd Prime Dimensions. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors,
47th International Symposium on Mathematical Foundations of Computer Science (MFCS
2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–
24:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.MFCS.2022.24.

9 Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of
graphical languages for mixed state quantum mechanics. ACM Transactions on Quantum
Computing, 2(4), December 2021. doi:10.1145/3464693.

10 Alexandre Clément, Noé Delorme, and Simon Perdrix. Minimal equational theories for
quantum circuits, 2023. arXiv:2311.07476.

11 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits. In Stefan Szeider,
Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 35:1–35:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.35.

12 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. A
complete equational theory for quantum circuits. In Logic in Computer Science (LICS), 2023.

13 Alexandre Clément, Noé Delorme, Simon Perdrix, and Renaud Vilmart. Quantum circuit
completeness: Extensions and simplifications, 2023. arXiv:2303.03117.

14 Robin Cockett and Cole Comfort. The category TOF. In Peter Selinger and Giulio Chiribella,
editors, Proceedings 15th International Conference on Quantum Physics and Logic, QPL 2018,
volume 287 of EPTCS, pages 67–84, 2019.

15 Robin Cockett, Cole Comfort, and Priyaa Srinivasan. The category CNOT. In Peter Selinger
and Giulio Chiribella, editors, Proceedings 15th International Conference on Quantum Physics
and Logic, QPL 2018, volume 287 of EPTCS, pages 258–293, 2019. doi:10.4204/EPTCS.266.
18.

https://doi.org/10.4204/eptcs.266.5
https://doi.org/10.1145/3564246.3585153
https://doi.org/10.32408/compositionality-5-5
https://doi.org/10.32408/compositionality-5-5
https://doi.org/10.22331/q-2021-03-25-421
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.4204/eptcs.394.2
https://doi.org/10.4204/eptcs.384.7
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.1145/3464693
https://arxiv.org/abs/2311.07476
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://arxiv.org/abs/2303.03117
https://doi.org/10.4204/EPTCS.266.18
https://doi.org/10.4204/EPTCS.266.18

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:17

16 Bob Coecke and Quanlong Wang. ZX-rules for 2-qubit Clifford+T quantum circuits. In
International Conference on Reversible Computation, pages 144–161. Springer, 2018.

17 Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon Perdrix. Extended measure-
ment calculus. Semantic techniques in quantum computation, pages 235–310, 2009.

18 Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and Effective Techniques
for T-Count Reduction via Spider Nest Identities. In Steven T. Flammia, editor, 15th
Conference on the Theory of Quantum Computation, Communication and Cryptography
(TQC 2020), volume 158 of Leibniz International Proceedings in Informatics (LIPIcs), pages
11:1–11:23, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.TQC.2020.11.

19 D. Deutsch. Quantum computational networks. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 425(1868):73–90, 1989.

20 Amar Hadzihasanovic. The algebra of entanglement and the geometry of composition. PhD
thesis, University of Oxford, 2017.

21 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations
of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 502–511, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209128.

22 Atsuya Hasegawa and François Le Gall. An optimal oracle separation of classical and quantum
hybrid schemes. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium
on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume
248 of LIPIcs, pages 6:1–6:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ISAAC.2022.6.

23 Mathieu Huot and Sam Staton. Universal properties in quantum theory. In Peter Selinger
and Giulio Chiribella, editors, Proceedings of the 15th International Conference on Quantum
Physics and Logic, Halifax, Canada, 3-7th June 2018, volume 287 of Electronic Proceedings in
Theoretical Computer Science, pages 213–223, 2019. doi:10.4204/EPTCS.287.12.

24 Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Optimization of
quantum circuit mapping using gate transformation and commutation. Integration, 70:43–50,
2020.

25 Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for design-
ing CNOT-based quantum circuits. In Proceedings of the 39th annual Design Automation
Conference, pages 419–424, 2002.

26 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the
ZX-calculus for Clifford+T quantum mechanics. In Anuj Dawar and Erich Grädel, editors,
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 559–568. ACM, 2018. doi:10.1145/3209108.
3209131.

27 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Diagrammatic reasoning beyond
Clifford+T quantum mechanics. In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 569–578. ACM, 2018. doi:10.1145/3209108.3209139.

28 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A generic normal form for ZX-
diagrams and application to the rational angle completeness. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–10. IEEE, 2019. doi:10.1109/LICS.2019.8785754.

29 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the ZX-Calculus. Lo-
gical Methods in Computer Science, Volume 16, Issue 2, June 2020. doi:10.23638/LMCS-16(2:
11)2020.

30 Aleks Kissinger and John van de Wetering. PyZX, 2018. URL: https://github.com/
Quantomatic/pyzx.

CSL 2024

https://doi.org/10.4230/LIPIcs.TQC.2020.11
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.4230/LIPIcs.ISAAC.2022.6
https://doi.org/10.4204/EPTCS.287.12
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209139
https://doi.org/10.1109/LICS.2019.8785754
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.23638/LMCS-16(2:11)2020
https://github.com/Quantomatic/pyzx
https://github.com/Quantomatic/pyzx

20:18 Quantum Circuit Completeness: Extensions and Simplifications

31 Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford gates
in quantum circuits. Phys. Rev. A, 102:022406, August 2020. doi:10.1103/PhysRevA.102.
022406.

32 Stephen Lack. Composing PROPs. In Theory and Applications of Categories, volume 13(9),
pages 147–163, 2004. URL: http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.

33 Justin Makary, Neil J. Ross, and Peter Selinger. Generators and relations for real stabilizer
operators. In Chris Heunen and Miriam Backens, editors, Proceedings of the 18th International
Conference on Quantum Physics and Logic, QPL 2021, volume 343 of EPTCS, pages 14–36,
2021. doi:10.4204/EPTCS.343.2.

34 Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne. Quantum
circuit simplification and level compaction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(3):436–444, 2008.

35 Dmitri Maslov, Christina Young, D Michael Miller, and Gerhard W Dueck. Quantum circuit
simplification using templates. In Design, Automation and Test in Europe, pages 1208–1213.
IEEE, 2005.

36 D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. A transformation based algorithm
for reversible logic synthesis. In Proceedings of the 40th annual Design Automation Conference,
pages 318–323, 2003.

37 Cristopher Moore and Martin Nilsson. Parallel quantum computation and quantum codes.
SIAM journal on computing, 31(3):799–815, 2001.

38 Yunseong Nam, Neil J Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. Automated
optimization of large quantum circuits with continuous parameters. npj Quantum Information,
4(1):1–12, 2018.

39 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2002.

40 C.C. Paige and M. Wei. History and generality of the CS decomposition. Linear Algebra and
its Applications, 208-209:303–326, 1994. doi:10.1016/0024-3795(94)90446-4.

41 Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, and Bob Coecke.
Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus. In LICS,
pages 1–14, 2023. doi:10.1109/LICS56636.2023.10175672.

42 André Ranchin and Bob Coecke. Complete set of circuit equations for stabilizer quantum
mechanics. Physical Review A, 90(1):012109, 2014.

43 Robert Raussendorf and Hans J Briegel. A one-way quantum computer. Physical review
letters, 86(22):5188, 2001.

44 Vivek Shende, Stephen Bullock, and Igor Markov. Synthesis of quantum logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25, 2006-01-31
00:01:00 2006. URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150894.

45 Sam Staton. Algebraic effects, linearity, and quantum programming languages. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 395–406, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2676726.2676999.

46 W Forrest Stinespring. Positive functions on c∗-algebras. Proceedings of the American
Mathematical Society, 6(2):211–216, 1955.

47 Renaud Vilmart. A near-minimal axiomatisation of ZX-calculus for pure qubit quantum
mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–10, 2019. doi:10.1109/LICS.2019.8785765.

A Derivations of the equations of QCold

In this appendix, we derive the equations of QCold that are not in QC, namely Equa-
tions (8),(9),(10),(11),(12) and (13) (the proof of Equation (K∗

old) can be found in the full
version of the present paper [13]). In addition, we prove some other useful equations (depicted

https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1103/PhysRevA.102.022406
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://doi.org/10.4204/EPTCS.343.2
https://doi.org/10.1016/0024-3795(94)90446-4
https://doi.org/10.1109/LICS56636.2023.10175672
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150894
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1109/LICS.2019.8785765

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:19

in Figure 7) that are used as intermediate steps. Note that QC contains all equations of QCold
acting on at most one qubit, thus QC is complete for one-qubit circuits and all equations of
Figure 7 on one qubit are derivable. The proofs of the remaining equations are given below.

P (φ1) P (φ2) = P (φ1 + φ2) (18) RX(θ1) RX(θ2) = RX(θ1 + θ2) (19)

X XP (φ) = P (-φ)
φ

(20) P (α1) RX(α2) P (α3) = RX(β1) P (β2) RX(β3)
β0

(21)

X X = (22) Z Z = (23) P (2π) = (24) RX(0) = (25)

P (φ)
=

P (φ)
(26)

RX(θ)
=

RX(θ)
(27)

H

H
=

H

H
(28)

= (29)

RX(θ)
=

RX(θ)
(30)

X
=

X
(31)

Z
=

Z

Z
(32)

Figure 7 Useful intermediate equations.

Proof of Equation (8).

(D)=
P (0) (G)=

P (0) (D)=

◀

Proof of Equation (9).

P (φ) (8)=
P (φ) (G)=

P (φ)

◀

Proof of Equation (29).

(8)= (F)= (8)=

◀

Proof of Equation (11).

(8)= (F)= (8)=

◀

Proof of Equation (26).

P (φ)
=

P (φ) (E)(8)=
P (φ) (G)=

P (φ)

◀

CSL 2024

20:20 Quantum Circuit Completeness: Extensions and Simplifications

Proof of Equation (28).

H

H

(C)(H)=
H

P (π
2)H

P (π
2)

P (- π
2)

(26)=
H

P (π
2)H

P (π
2) P (- π

2) (H)=
H

H

HH (C)=
H

H

◀

Proof of Equation (31).

X

(3)(C)=
ZH H

HH (28)=
ZH H

HH (2)(9)=
ZH H

HH (28)=
ZH H

HH (3)(C)=
X

◀

Proof of Equation (30).

RX(θ)

(1)(C)=
P (θ)H H

HH
-θ/2

(28)=
P (θ)H H

HH
-θ/2

(9)=
P (θ)H H

HH
-θ/2

(28)=
P (θ)H H

HH
-θ/2

(1)(C)=
RX(θ)

◀

Proof of Equation (27).

RX(θ) (1)(C)=
P (θ)H H

-θ/2
H H

(28)=
P (θ)H H

H H

-θ/2
(26)=

P (θ)

H H

H H

-θ/2

(28)=
P (θ)

H H

H H

-θ/2
(1)(C)=

RX(θ)

◀

Proof of Equation (10).

X

(C)=
XH HH H

(H)=
XHH P (π

2)

P (π
2)

P (- π
2)

(26)(3)(C)=
P (π) HH P (π

2)

P (π
2) P (- π

2)

(9)=
P (π) HH P (π

2)

P (π
2) P (- π

2) (18)(24)=
HH P (- π

2)

P (π
2) P (- π

2)

(20)=
HH P (- π

2)

P (- π
2) P (π

2) XXXX
- π

2
π
2

(B)(A)=
HH P (- π

2)

P (- π
2) P (π

2) XXXX

(31)(22)=
HH P (- π

2)

P (- π
2) P (π

2) XX (26)=
HH P (- π

2)

P (- π
2)

P (π
2)

XX

(C)(8)=
H P (- π

2)

P (- π
2)

P (π
2)

XX

H H H

(H)=
H P (- π

2)

P (- π
2)

P (π
2)

XX

HP (π
2)

P (π
2)

P (- π
2)

(26)(9)=
H P (- π

2)

P (- π
2)

P (π
2)

XX

HP (π
2)

P (π
2)

P (- π
2)

(18)(D)(8)=
H

XX

H

(C)=
XX

◀

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:21

Proof of Equation (32).

Z

(3)(C)=
X HH

HH (28)=
X HH

HH (22)(10)=
X

HH

HH

X

(28)=
X

HH

HH

X

(3)=
Z

Z

◀

Proof of Equation (12). We first show that any circuits (containing four CNot gates) of the
form

C1 C2 C3 C4 C5
can always be transformed in QC into a circuit (containing

only two CNot gates) of the form
C6 C7 C8

φ where Ci denotes a one-qubit circuit.

This uses the fact (referenced (∗) below) that any one-qubit circuit can be transformed in QC
into a circuit of the form RX(α1) RX(α3)P (α2)

α0 or P (β1) P (β3)RX(β2)
β0 (by the completeness

of QC for one-qubit circuits and the well-know Euler-decomposition). The derivation goes as
follows.

C1 C2 C3 C4 C5

(∗)(B)=
C1 C3 C5P (α1) P (α3)RX(α2) P (β1) P (β3)RX(β2)

α0 + β0

(9)=
C1 C3 C5P (α1) P (α3)RX(α2) P (β1) P (β3)RX(β2)

α0 + β0

(∗)(B)=
C1 C5P (α1) RX(α2) P (β3)RX(β2)

α0 + β0 + γ0
RX(γ1) RX(γ3)P (γ2)

(27)(30)=
C1 C5P (α1) RX(α2) P (β3)RX(β2)

α0 + β0 + γ0
RX(γ1) RX(γ3)P (γ2)

(G)=
C1 C5P (α1) RX(α2) P (β3)RX(β2)

α0 + β0 + γ0
RX(γ1) RX(γ3)P (γ2)

Then, using Equations (30) and (27), Equation (12) becomes

RX(-θ)RX(θ) RX(θ′) RX(θ′)H H
=

RX(-θ) RX(θ)RX(θ′)RX(θ′) HH

We can then use the above derivation to transform both circuits into circuits of the
form

C6 C7 C8

φ . Then, by using the simplification principle (Proposition 6), we

can push the RHS circuit to the end of the LHS circuit, which leads to a circuit of the
form

C1 C2 C3 C4 C5
(up to a global phase) from which we can apply again the

above derivation, leading to a circuit containing only two CNot gates. Then, by using the
simplification principle again, we can turn the equation into an equivalent equation with only
one CNot on both sides. Finally, the completeness of QC for circuits containing at most one
CNot gate (Lemma 7) concludes the proof. ◀

Proof of Equation (13).

H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

CSL 2024

20:22 Quantum Circuit Completeness: Extensions and Simplifications

(F)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(8)(E)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(29)(30)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(28)(8)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

=
H

RX(-θ)

RX(θ) H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H RX(-θ′)

RX(-θ′)

H

(30)(27)=
H

RX(-θ)

RX(θ) H

RX(θ) RX(-θ)

RX(θ′) RX(θ′)

H RX(-θ′)

RX(-θ′)

H

(29)(30)=
H

RX(-θ)

RX(θ) H

RX(θ) RX(-θ)

RX(θ′) RX(θ′)

H RX(-θ′)

RX(-θ′)

H

(27)(30)=
H

RX(-θ)

RX(θ) H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H RX(-θ′)

RX(-θ′)

H

(12)=
H

RX(-θ)

RX(θ)H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

HRX(-θ′)

RX(-θ′)

HH H

H H

(C)(28)=
H

RX(-θ)

RX(θ)H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

HRX(-θ′)

RX(-θ′)

H

(30)(27)=
H RX(-θ) RX(θ)H

RX(θ) RX(-θ)

RX(θ′) RX(θ′)

HRX(-θ′) RX(-θ′) H

(29)=
H RX(-θ) RX(θ)H

RX(θ) RX(-θ)

RX(θ′) RX(θ′)

HRX(-θ′) RX(-θ′) H

A. Clément, N. Delorme, S. Perdrix, and R. Vilmart 20:23

(30)(27)=
H

RX(-θ)

RX(θ)H

RX(θ)RX(-θ)

RX(θ′)RX(θ′)

HRX(-θ′)

RX(-θ′)

H

(29)(30)=
H

RX(-θ)

RX(θ)H

RX(θ)RX(-θ)

RX(θ′)RX(θ′)

HRX(-θ′)

RX(-θ′)

H

(30)(27)=
H

RX(-θ)

RX(θ)H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

HRX(-θ′)

RX(-θ′)

H

=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(8)(28)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(29)(30)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(8)(E)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

(F)=
H

RX(-θ)

RX(θ)

H

RX(θ)

RX(-θ)

RX(θ′)

RX(θ′)

H

RX(-θ′)

RX(-θ′)

H

◀

CSL 2024

Reverse Tangent Categories
Geoffrey Cruttwell # Ñ

Mount Allison University, Sackville, Canada

Jean-Simon Pacaud Lemay1 # Ñ

Macquarie University, Sydney, Australia

Abstract
Previous work has shown that reverse differential categories give an abstract setting for gradient-
based learning of functions between Euclidean spaces. However, reverse differential categories are
not suited to handle gradient-based learning for functions between more general spaces such as
smooth manifolds. In this paper, we propose a setting to handle this, which we call reverse tangent
categories: tangent categories with an involution operation for their differential bundles.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Tangent Categories, Reverse Tangent Categories, Reverse Differential Cat-
egories, Categorical Machine Learning

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.21

Funding Geoffrey Cruttwell: Partially funded by an NSERC Discovery Grant.
Jean-Simon Pacaud Lemay: For this research, this author was funded by an NSERC PDF (456414649),
an ARC DECRA (DE230100303), & an AFOSR Research Grant (FA9550-24-1-0008).

Acknowledgements The authors would like to thank Bryce Clark for pointing out [13], which ties in
nicely with the story of this paper, as well as Geoff Vooys for useful discussions, answering questions,
and helping find references regarding Example 31.

1 Introduction

This paper is a direct follow-up to the paper “Reverse Differential Categories”, published in
CSL 2020 [5], and continues a tradition of developing categorical structures to help understand
and work with ideas from differential calculus in computer science, and specifically here in
relation to machine learning and automatic differentiation [2, 3, 5, 7, 8, 10,22].

Initial work on categorical formulations of differential structures in computer science
focused on the so-called “forward” derivative. Given a map f : A → B, the forward derivative
is an operation that sends tangent vectors in A to tangent vectors in B. While there are
several different (but related) categorical formulations for the forward derivative, the relevant
ones for this paper are Cartesian differential categories [2] and tangent categories [3].

Cartesian differential categories formalize differential calculus over Euclidean spaces. A
Cartesian differential category (Ex 3) comes equipped with a differential combinator D, which
is an operation that for any map f : A → B, produces a map D[f] : A × A → B, called the
derivative of f . Various axioms are then demanded of D which enforce the properties of
ordinary differentiation, such as the chain rule, symmetry of mixed partial derivatives, etc.
Intuitively, one considers an input (a, v) ∈ A × A as a point a and a tangent vector v to a,
and so the derivative D[f] produces a tangent vector to f(a) in B.

However, the definition of a Cartesian differential category assumes that a tangent vector
to a point is of the same type as the point. While this is true for Euclidean spaces, this is
certainly not true for more general spaces such as arbitrary smooth manifolds. To capture

1 Corresponding Author

© Geoffrey Cruttwell and Jean-Simon Pacaud Lemay;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gcruttwell@mta.ca
https://www.reluctantm.com/gcruttw/
https://orcid.org/0000-0001-8742-6263
mailto:js.lemay@mq.edu.au
https://sites.google.com/view/jspl-personal-webpage/
https://orcid.org/0000-0003-4124-3722
https://doi.org/10.4230/LIPIcs.CSL.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Reverse Tangent Categories

the operation of the forward derivative for such spaces, one can instead work with tangent
categories, which formalize differential calculus over smooth manifolds. A tangent category
(Def 1) in particular comes equipped with an endofunctor T, where we think of T(A) as
the collection of all tangent vectors to points of an object A. As such, we may interpret
T(A) as the abstract tangent bundle of A. For a map f : A → B, the associated map
T(f) : T(A) → T(A) is interpreted as an operation which takes a tangent vector in A to a
tangent vector in B. This tangent bundle functor also comes equipped with various additional
structure that captures ordinary properties of differentiation – for example, functoriality of
T corresponds to the chain rule. Tangent categories are a direct generalization of Cartesian
differential categories which allow one to work with the forward derivative in more general
settings.

However, many areas of computer science such as automatic differentiation and gradient-
based learning make much more extensive use of the “reverse” derivative. Given a map
f : A → B, the reverse derivative is an operation which sends tangent vectors in B to tangent
vectors in A. The reverse derivative is much more computationally efficient for maps between
Euclidean spaces in which the domain space is much larger than the codomain space – which is
the typical case in machine learning scenarios. The paper “Reverse Derivative Categories” [5]
introduced Cartesian reverse differential categories, which provide a categorical abstraction
of the reverse derivative operation over Euclidean spaces. This time, a Cartesian reverse
differential category (Ex 28) comes equipped with a reverse differential combinator R which
now takes a map f : A → B and produces a map of type R[f] : A × B → A, called the
reverse derivative of f . Intuitively, one thinks of R[f] as taking a point of the domain and a
tangent vector of the codomain and returning a tangent vector of the domain at the point.

However, Cartesian reverse differential categories suffer from the same problem as their
forward counterpart: they assume that the tangent vectors of a point in the space are in
1-1 correspondence with points of the space itself. The objective of this paper is to do what
tangent categories did for Cartesian differential categories: introduce a setting where one has
a reverse derivative operation, but in such a way that tangent vectors are not assumed to
be the same as points of the space itself. As such, the main contribution of this paper is
the introduction of reverse tangent categories (Sec 3), the reverse differential counterpart of
tangent categories.

Euclidean Spaces Manifolds
Forward derivative Cartesian differential category Tangent category
Reverse derivative Cartesian reverse differential category Reverse tangent category

How does one go about defining a reverse tangent category? Our first attempt at defining
“reverse tangent categories” was similar to a Cartesian reverse differential category, that is,
trying to give a direct description of what this structure should look like in terms of a reverse
differentiation operation. However, this has proven difficult (see Remark 26). So, instead,
here we take a different approach. Usefully, Cartesian reverse differential categories have an
alternative characterization. A Cartesian reverse differential category is precisely a Cartesian
differential category equipped with a “linear dagger”, which is an involution operation on
linear maps. This linear dagger † is an operation which takes a map of type f : C × A → B

which is “linear in A” and transposes the linear argument to produce a map f† : C × B → A

which is now “linear in B”. From this point of view, the reverse differential combinator is the
transpose of the forward differential combinator, that is, R[f] := D[f]†. Using this approach
as a guide, we define a reverse tangent category as a tangent category with a suitable notion
of involution.

G. Cruttwell and J.-S.-P. Lemay 21:3

What form should such an involution for a reverse tangent category take? One way to
look at the dagger operation of a Cartesian reverse differential category is via fibrations.
Indeed, the dagger operation can be viewed as an operation which goes from the canonical
“linear fibration” [5,7] of a Cartesian differential category to its dual fibration. The notion of
a dual fibration [14] is an operation which takes a fibration and returns another fibration in
which the fibre over A is the opposite category of the fibre over A from the original fibration.
The analog of the linear fibration in a tangent category is a fibration of differential bundles [4]
– these abstract the notion of smooth vector bundles from ordinary differential geometry.
Thus, we define a reverse tangent category (Def 24) to consist of a tangent category equipped
with an involution operation which goes from a fibration of differential bundles (Def 16) to
its dual fibration (Prop 21).

With this definition in hand, we then (i) give examples of such structure including smooth
manifolds (Ex 27), but also examples from algebra (Ex 30) and algebraic geometry (Ex 31),
(ii) show precisely how this definition relates to Cartesian reverse differential categories (Ex 28
& Prop 42), and (iii) provide some theoretical results about reverse tangent categories (Sec 4).
Thus, the purpose of this paper is to properly introduce reverse tangent categories; we do
not here consider applications of reverse tangent categories to gradient-based learning on
(smooth) manifolds, or the relationship of these ideas to differential programming languages
(for reverse cartesian differential categories, however, see [8]). That said, just as the original
paper on Cartesian reverse differential categories inspired work on the use of such structures
in gradient-based learning for Euclidean spaces [8, 10, 22], reverse tangent categories should
provide a suitable setting to do the same for smooth manifolds (or any other “differential”
setting).

Conventions. In an arbitrary category, we write objects as capital letters A, B, etc. and maps
with lower letters as f : A → B. We denote identity maps as 1A : A → A, and, following
the conventions of previous differential/tangent category papers, we write composition
diagrammatically, that is, the composite of f : A → B and g : B → C is denoted fg : A → C.

2 Forward Tangent Categories and Differential Bundles

In this section, we review the basics of tangent categories including the definition, some key
examples, and differential bundles, which will play an important role in this paper.

▶ Definition 1 ([3, Def 2.3]). A tangent structure on a category X is a sextuple T :=
(T, p, s, z, ℓ, c) consisting of:

(i) An endofunctor T : X → X, called the tangent bundle functor;
(ii) A natural transformation pA : T(A) → A, called the projection, such that for

each n ∈ N, the n-fold pullback2 of pA exists, denoted as Tn(A) with projections
ρj : Tn(A) → T(A), and such that for all m ∈ N, Tm preserves these pullbacks, that is,
Tm(Tn(A)) is the n-fold pullback of Tm(pA) with projections Tm(ρj);

(iii) A natural transformation3 sA : T2(A) → T(A), called the sum;
(iv) A natural transformation zA : A → T(A), called the zero map;
(v) A natural transformation ℓA : T(A) → T2(A), called the vertical lift;
(vi) A natural transformation cA : T2(A) → T2(A), called the canonical flip;

such that the equalities and universal property in [3, Def 2.3] are satisfied. A tangent
category is a pair (X,T) consisting of a category X equipped with a tangent structure T.

2 By convention, T0(A) = A and T1(A) = T(A)
3 Note that by the universal property of the pullback, we can define functors Tn : X → X.

CSL 2024

21:4 Reverse Tangent Categories

Let us briefly provide some intuition for the definition of a tangent category. Tangent
categories formalize the properties of the tangent bundle on smooth manifolds from classical
differential geometry. As such, an object A in a tangent category can be interpreted as a
base space, and T(A) as its abstract tangent bundle. For maps, T(f) is interpreted as the
differential of f , and the functoriality of T represents the chain rule. The projection pA is the
analogue of the natural projection from the tangent bundle to its base space, making T(A)
an abstract fibre bundle over A. The sum sA and the zero zA make T(A) into an additive
bundle over A; that is, a commutative monoid in the slice category4 over A. To explain the
vertical lift, recall that in differential geometry, the double tangent bundle (i.e. the tangent
bundle of the tangent bundle) admits a canonical sub-bundle called the vertical bundle which
is isomorphic to the tangent bundle. The vertical lift ℓA is an analogue of the embedding of
the tangent bundle into the double tangent bundle via the vertical bundle. The vertical lift
also satisfies a universal property, which is essential to generalize important properties of the
tangent bundle from differential geometry. Lastly, the canonical flip cA is an analogue of
the smooth involution of the same name on the double tangent bundle, and its naturality
captures the symmetry of mixed partial derivatives (∂f

∂x∂y = ∂f
∂y∂x). For more details and

intuition on tangent categories, see [3, Sec 2.5].
We now recall the main examples of tangent categories we will use throughout the paper.

In particular, Ex 2 (which is arguably the canonical example of a tangent category) and Ex 4
directly relate tangent categories to differential geometry and differential calculus, Ex 5 (one
of the main examples in Rosický’s original paper [19, Ex 2]) provides a link to commutative
algebra, and Ex 6 relates tangent categories to algebraic geometry. For other examples of
tangent categories, see [4, Ex 2.2].

▶ Example 2. Let SMAN be the category whose objects are smooth manifolds and whose
maps are smooth functions. For a smooth manifold M and a point x ∈ M , let Tx(M) be the
tangent space to M at x, and recall that the tangent bundle of M is the smooth manifold
T(M) which is the (disjoint) union of each tangent space:

T(M) :=
⊔

x∈M

Tx(M)

So in local coordinates, elements of T(M) can be described as pair (x, v⃗) ∈ T(M) consisting
of a point x ∈ M and a tangent vector v⃗ at x. Now for a smooth function f : M → N and a
point x ∈ M , there is an induced linear map Tx(f) : Tx(M) → Tf(x)(N) called the derivative
of f at x. This induces a functor T : SMAN → SMAN which sends a smooth manifold M to
its tangent bundle T(M), and a map f : M → N to the map T(f) : T(M) → T(N), locally
defined as:

T(f)(x, v⃗) = (f(x), Tx(f)(v⃗))

To describe the rest of the tangent structure, in local coordinates, elements of T2(M) are
triples (x, v⃗, w⃗) ∈ T2(M) where x ∈ M and v⃗, w⃗ ∈ Tx(M), while elements of T2(M) can
be represented as quadruples (x, v⃗, w⃗, u⃗) ∈ T2(M). Thus the natural transformations are
defined as follows in local coordinates:

pM (x, v⃗) = x sM (x, v⃗, w⃗) = (x, v⃗ + w⃗) zM (x) = (x, 0⃗)
ℓM (x, v⃗) = (x, 0⃗, 0⃗, v⃗) cM (x, v⃗, w⃗, u⃗) = (x, w⃗, v⃗, u⃗)

So (SMAN,T) is a tangent category [4, Ex 2.2.i].

4 Commutative monoids in the slice category are also called additive bundles [3, Sec 2.1].

G. Cruttwell and J.-S.-P. Lemay 21:5

▶ Example 3. Every Cartesian differential category is a tangent category [3, Prop 4.7].
Where tangent categories formalize differential calculus over smooth manifolds, Cartesian
differential categories instead formalize differential calculus over Euclidean spaces. Briefly, a
Cartesian differential category [2, Def 2.1.1] is a category X with finite products (where we
denote the binary product by ×, projections πj , and pairing operator ⟨−, −⟩) which comes
equipped with a differential combinator D which associates to every map f : A → B a
map D[f] : A × A → B, called the derivative of f . The differential combinator D satisfies
seven axioms which are analogues of fundamental identities of the derivative, such as the
chain rule, linearity of the derivative, etc. The canonical tangent functor of a Cartesian
differential category is defined as follows:

T(A) := A × A T(f) := ⟨π0f, D[f]⟩

and where the rest of the tangent structure is defined in [3, Prop 4.7]. For more details on
Cartesian differential categories, as well as examples, see [2, 5].

▶ Example 4. As an explicit example of a Cartesian differential category, let SMOOTH be the
category whose objects are the Euclidean real vector spaces Rn, and whose maps are smooth
functions F : Rn → Rm between them. SMOOTH is a Cartesian differential category, where
for a smooth function F = ⟨f1, . . . , fm⟩ : Rn → Rm, its derivative D[F] : Rn × Rn → Rm is
defined as the m-tuple of sums of the partial derivatives:

D[F](x⃗, y⃗) :=
〈

n∑
i=1

∂f1

∂xi
(x⃗)yi, . . . ,

n∑
i=1

∂fn

∂xi
(x⃗)yi

〉
Then by the previous example, SMOOTH is a tangent category; its tangent structure is
precisely the one for smooth manifolds in Ex 2, but restricted to the Euclidean spaces Rn.

▶ Example 5. Let k be a commutative ring, and k-CALG be the category of commutative
k-algebras. For a commutative k-algebra A, we denote its algebra of dual numbers as:

A[ϵ] = {a + bϵ| a, b ∈ A, ϵ2 = 0}

Then, borrowing notation from [9], we have a functor

T

: k-CALG → k-CALG which is defined
on objects as

T

(A) := A[ϵ] and for a map f : A → B,

T

(f) : A[ϵ] → B[ϵ] is defined as:

T

(f)(a + bϵ) = f(a) + f(b)ϵ

This gives us our tangent bundle and so (k-CALG,

T) is a tangent category, where the
remaining tangent structure is defined in [9, Sec 3.1]. We also note that this example can
be generalized: for any symmetric monoidal category with distributive finite biproducts, its
category of commutative monoids is a tangent category by generalizing the dual numbers
construction.

▶ Example 6. For a commutative ring k, the category of affine schemes over k is a tangent
categories [9, Sec 4]. Famously, the category of affine schemes over k is equivalent to
k-CALGop, so we may describe the tangent structure in terms of commutative k-algebras. For
a commutative k-algebra A, we denote its module of Kähler differentials as Ω(A). Then define
the “fibré tangente” (French for tangent bundle) of A, or tangent algebra of A [15, Section
2.6], as the free symmetric A-algebra over its modules of Kähler differentials

T(A) := SymA (Ω(R)) =
∞⊕

n=0
Ω(A)⊗s

A
n

= A ⊕ Ω(A) ⊕ (Ω(A) ⊗s
A Ω(A)) ⊕ . . .

CSL 2024

21:6 Reverse Tangent Categories

where
⊕

is the coproduct of modules, and ⊗s
R is the symmetrized tensor product over A.

Equivalently, T(A) is the A-algebra generated by the set {d(a)| a ∈ R} modulo the equations:

d(1) = 0 d(a + b) = d(a) + d(b) d(ab) = ad(b) + bd(a)

which are the same equations that are modded out to construct the module of Kähler
differentials of A. Thus, an arbitrary element of T(A) is a finite sum of monomials of the form
ad(b1) . . . d(bn), and so the algebra structure of T(A) is essentially the same as polynomials.
This also induces a functor T : k-CALG → k-CALG which maps a commutative k-algebra to
its tangent algebra T(A), and a k-algebra morphism f : A → B to the k-algebra morphism
T(f) : T(A) → T(B) defined on generators as follows:

T(f)(a) = f(a) T(f)(d(a)) = d(f(a))

This gives us our tangent bundle and so (k-CALGop,T) is a tangent category, where the
remaining tangent structure is defined in [9, Sec 4.1].

There are many concepts from differential geometry which one can define in an arbitrary
tangent category. The concept that plays a crucial role in the definition of reverse tangent
categories is that of a differential bundle, which generalizes the idea of a smooth vector
bundle from differential geometry.

▶ Definition 7 ([4, Def 2.3]). In a tangent category (X,T), a differential bundle is a
quadruple E = (q : E → A, σ : E2 → E, ζ : A → E, λ : E → T(E)) consisting of:

(i) Objects A and E of X;
(ii) A map q : E → A of X, called the projection, such that for each n ∈ N, the pullback of

n copies of q exists; we denote this pullback as En with n projection maps πj : En → E,
and for all m ∈ N, Tm preserves these pullbacks;

(iii) A map σ : E2 → E of X, called the sum;
(iv) A map ζ : A → E of X, called the zero;
(v) A map λ : E → T(E) of X, called the lift;

such that the equalities and universal property in [4, Def 2.3] are satisfied. When there is
no confusion, differential bundles will be written as E = (q : E → A, σ, z, λ), and when the
objects are specified simply as E = (q, σ, ζ, λ). If E = (q : E → A, σ, z, λ) is a differential
bundle, we also say that E is a differential bundle over A.

If E = (q : E → A, σ, z, λ) is a differential bundle, the object A is interpreted as a base
space and the object E as the total space. The projection q is the analogue of the bundle
projection from the total space to the base space, making E an “abstract bundle over A”.
The sum σ and the zero ζ make each fibre into a commutative monoid. Lastly, the lift λ is
an analogue of the embedding of the total space into its tangent bundle (sometimes called
the small vertical lift).

There are two possible kinds of morphism between differential bundles: one where the
base objects can vary and one where the base object is fixed. The former is used as the maps
in the category of all differential bundles in the tangent category. In either case, a differential
bundle morphism is asked to preserve the projections and the lifts of the differential bundles.

▶ Definition 8 ([4, Def 2.3]). In a tangent category (X,T),
(i) A linear differential bundle morphism (f, g) : E = (q : E → A, σ, ζ, λ) → E ′ =

(q′ : E′ → A′, σ′, ζ ′, λ′) is a pair of maps f : E → E′ and g : A → A′ such that the
following diagrams commute:

G. Cruttwell and J.-S.-P. Lemay 21:7

E
f //

q
��

E′

q′

��

E

λ

��

f // E′

λ′

��
A

g
// A′ T(E)

T(f)
// T(E′)

(1)

Let DBun [(X,T)] be the category whose objects are differential bundles in (X,T), and
whose maps are linear differential bundle morphisms between them.

(ii) A linear A-differential bundle morphism f : E = (q : E → A, σ, ζ, λ) → E ′ =
(q′ : E′ → A, σ′, ζ ′, λ′) is a map f : E → E′ such that (f, 1A) : E → E ′ is a differential
bundle morphism, that is, the following diagrams commute:

E
f //

q
''

E′

q′

��

E

λ

��

f // E′

λ′

��
A T(E)

T(f)
// T(E′)

(2)

Let DBun [A] denote the subcategory of differential bundles over A and linear A-
differential bundle morphisms between them.

One does not need to assume that linear differential bundle morphisms preserve the
sum and zero since, surprisingly, this follows from preserving the lift [4, Prop 2.16]. Other
properties of differential bundle morphisms can be found in [4, Sec 2.5]. Here are some
examples of differential bundles and morphisms between them:

▶ Example 9. In a tangent category (X,T), for any object A, its tangent bundle is a
differential bundle over A, that is, T (A) := (pA : T(A) → A, sA, zA, ℓA) is a differential
bundle over A, and for every map f : A → B, T (f) := (f, T(f)) : T (A) → T (B) is a linear
differential bundle morphism [4, Ex 2.4]. As such, we obtain a functor T : X → DBun [(X,T)].

▶ Example 10. In (SMAN,T), differential bundles over a smooth manifold M correspond
precisely to smooth vector bundles over M . Briefly, recall that a smooth vector bundle, in
particular, consists of smooth manifolds M , called the base space, and E, called the total
space, and a smooth surjection q : E → M , called the projection, such that for each point
x ∈ M , the fibre Ex = {e ∈ E|q(e) = x} is a finite-dimensional R-vector space. A smooth
vector bundle morphism from q : E → M to q′ : E′ → M ′ consist of two smooth functions
f : M → M ′ and g : E → E′ such that f(q(e)) = q′(g(e)) for all e ∈ E and the induced maps
gx : Ex → E′

f(x) are R-linear maps. Let SVEC be the category of smooth vector bundles and
smooth vector bundle morphisms between them. Every smooth vector bundle over M gives
a differential bundle over M in (SMAN,T), and vice versa. As such, there is an equivalence
DBun [(SMAN,T)] ≃ SVEC. For full details, see [18].

▶ Example 11. In general, for an arbitrary Cartesian differential category, there is not
necessarily a nice full description of all differential bundles. However, there is a nice class of
differential bundles which plays an important role in the story of this paper. Recall that a
Cartesian differential category X is also a Cartesian left additive category [2, Definition
1.2.1], which in particular means that every homset X(A, B) is a commutative monoid, with
binary operation + and zero 0. Then for every pair of objects A and X, their product
(π0 : A × X → A, 1A × (π0 + π1), ⟨1A, 0⟩, ⟨π0, 0, 0, π1⟩) is a differential bundle over A. This

CSL 2024

21:8 Reverse Tangent Categories

generalization the notion of trivial smooth vector bundles from differential geometry. Again
we stress that not all differential bundles in a Cartesian differential category are necessarily
of this form. That said, for SMOOTH, every differential bundle is of this form since smooth
vector bundles over a Euclidean space is a trivial bundle.

▶ Example 12. In (k-CALG,

T), differential bundles over a commutative k-algebra A corres-
pond precisely to A-modules [9, Thm 3.10]. Briefly, let MOD be the category whose objects
are pairs (A, M) consisting of a commutative k-algebra A and an A-module M , and whose
maps (f, g) : (A, M) → (B, N) consist of a k-algebra morphism f : A → B and a k-linear
map g : M → N such that g(am) = f(a)g(m) for all a ∈ A and m ∈ M . Then there is an
equivalence DBun [(k-CALG,

T)] ≃ MOD, which in particular sends an A-module M to its
nilpotent extension:

M [ε] = {a + mε| a ∈ A, m ∈ M, ε2 = 0}

For full details, see [9, Sec 3].

▶ Example 13. In (k-CALGop,Top), differential bundles over a commutative k-algebra A again
correspond precisely to A-modules [9, Thm 4.15]. However this time, there is an equivalence
DBun [(k-CALGop,Top)] ≃ MODop (or in other words DBun [(k-CALGop,Top)]op ≃ MOD),
which in particular sends an A-module M to the free symmetric A-algebra over M :

SymA (M) =
∞⊕

n=0
M⊗s

A
n

= A ⊕ M ⊕ (M ⊗s
A M) ⊕ . . .

For full details, see [9, Sec 4].

We conclude this section with some results about differential bundles which we will need
in the later sections. The first is that the tangent bundle of a differential bundle is also a
differential bundle, and the second is that the pullback along the projection of a differential
bundle is again a differential bundle.

▶ Proposition 14 ([4, Lem 2.5]). In a tangent category (X,T), if E = (q : E → A, σ, ζ, λ) is
a differential bundle, then T(E) := (T(q) : T(E) → T(A), T(σ), T(ζ), T(λ)cE) is a differential
bundle5, which we call the tangent bundle of E. Similarly, if (f, g) : E → E ′ is a linear
differential bundle morphism, then T(f, g) := (T(f), T(g)) : T(E) → T(E ′) is a linear
differential bundle morphism. This induces a functor T : DBun [(X,T)] → DBun [(X,T)].

▶ Proposition 15 ([4, Lem 2.7]). In a tangent category (X,T), let E = (q : E → A, σ, ζ, λ) be
a differential bundle and f : X → A is a map such that for each n ∈ N, the pullback of n copies
of q along f exists, which we denote as X ×M En with projection maps π0 : X ×M En → X

and πn+1 : X ×M En → E, and for all m ∈ N, Tm preserves these pullbacks. Then
X ×M E := (π0 : X ×M En → X, 1X ×M σ, 1X ×M ζ, 0X ×M λ) is a differential bundle and
(π0, π1) : X ×M E → E is a linear differential bundle morphism.

3 Reverse Tangent Categories

In this section, we introduce the main novel concept of this paper: reverse tangent categories.
As explained in the introduction, the way we define reverse tangent categories is by generalizing
the definition of a Cartesian reverse differential category as a Cartesian differential category

5 It is important to note that the canonical flip is used to the define the lift for the tangent bundle of a
differential bundle.

G. Cruttwell and J.-S.-P. Lemay 21:9

with an involution from its linear fibration to its dual fibration (which we review in Ex 28).
For a tangent category, the analogue of the linear fibration is replaced by a suitable fibration
of differential bundles. As such, a reverse tangent category is a tangent category with an
involution from its differential bundle fibration to its dual fibration. For a review of fibrations
and their basic theory, see [14].

We first wish to build a fibration of differential bundles. Unfortunately, for an arbitrary
tangent category, the forgetful functor from its category of differential bundles is not neces-
sarily a fibration (as tangent categories do not assume that the necessary pullbacks exist).
As such, we will need to specify a class of differential bundles that do form a fibration –
which we call a system of differential bundles.

▶ Definition 16. For a tangent category (X,T), a system of differential bundles consists
of a collection of differential bundles, D, such that:

(i) For every object A, T (A) ∈ D;
(ii) If E ∈ D, then so is its tangent bundle T(E) ∈ D (see Prop. 14);
(iii) If E ∈ D, then for any map f : X → A in X, the pullback of E along f exists, and

X ×A E ∈ D (see Prop. 15).
Let DBunD [(X,T)] be the full subcategory of DBun [(X,T)] whose objects are the differential
bundles in D, and let DBunD [A] be the full subcategory of DBun [A] whose objects are the
differential bundles over A in D. We denote the forgetful functor as UD : DBunD [(X,T)] → X
which maps a differential bundles to its base object.

▶ Proposition 17. If D is a system of differential bundles on a tangent category (X,T), then
the forgetful functor UD : DBunD [(X,T)] → X is a fibration, and the fibre over an object A

is DBunD [A].

Proof. This is immediate since D is closed under pullbacks; the Cartesian morphisms are
precisely the pullback squares of differential bundles. ◀

▶ Example 18. For the tangent categories (SMAN,T), (k-CALG,

T), and (k-CALGop,Top),
the class of all differential bundles form a system of differential bundles. These recreate the
previously known results that SVEC is a fibration over SMAN, that MOD is a fibration over
k-CALG, and that MODop is a fibration over k-CALGop (or in other words, that MOD is a
cofibration over k-CALG).

▶ Example 19. For a Cartesian differential category X, the differential bundles of the form
π0 : A × X → A form a system of differential bundles for (X,TD). The resulting fibration
for P corresponds to the canonical linear fibration [7, Def 16] of a Cartesian differential
category, which plays a key role in characterizing Cartesian reverse differential categories.
The linear fibration L [X] has objects pairs (C, A) of objects of X and whose maps are
pairs (f, g) : (C, A) → (D, B) where f : C → D and g : C × A → B is linear in its
second argument [7, Def 15], that is, ⟨π0, 0, 0, π1⟩D[g] = g. Relating this back to P, it is
straightforward to work out that by the two diagrams of (1), a linear differential bundle
morphism of type (π0 : A × X → A) → (π0 : A′ × X ′ → A′) corresponds to a map A → A′

and a map A×X → X ′ which is linear in its second argument. Thus DBunP [(X,TD)] ∼= L [X]
are equivalent as fibrations.

▶ Example 20. As an example of the above, in SMOOTH, the notion of linearity in
the Cartesian differential category sense corresponds precisely to the classical notion of
R-linearity. Explicitly, a smooth function F : Rn × Rm → Rk is linear in its second
argument in the above sense if and only if F is R-linear in its second argument, that is,

CSL 2024

21:10 Reverse Tangent Categories

F (x⃗, ry⃗ + sz⃗) = rF (x⃗, y⃗) + sF (x⃗, z⃗). Now recall that every smooth vector bundle over Rn

is a trivial vector bundle, and thus (up to isomorphism) of the form Rn × Rm. Therefore,
P is precisely the class of all differential bundles of (SMOOTH,TD), and so we have that
DBunP [(SMOOTH,TD)] = DBun [(SMOOTH,TD)] ∼= L [X].

We now turn our attention to the notion of the dual fibration. For a fibration F : E → X,
its dual fibration [14, Def 1.10.11] is the fibration F◦ : E◦ → X where:

(i) The objects of E◦ are the same as the objects of E;
(ii) A map from A to B in E◦ consists of an equivalence class of pairs [(v, c)] where

v : C → A is vertical and c : C → B is Cartesian, and where two pairs (v, c) and (v′, c′)
are equivalent if there is a vertical isomorphism which make the relevant triangles
commute;

(iii) F◦ : E◦ → X is defined on objects as F and on maps as F◦ ([(v, c)]) = F(v).
The dual fibration of F has the key property that its fibre over A is the opposite category of
the fibre of F over A. For more details about the dual of a fibration, see [14, Sec 1.10.11 – 13].
For a system of differential bundles, we can explicitly work out what its dual fibration will
be. As this fibration consists of objects and maps as in the arrow category, this is essentially
a modified version of the dual fibration of the arrow category; this dual fibration is known
in various places as the category of containers [1] or dependent lenses [20], and has a close
relationship to polynomial functors. In our case, the dual fibration of a system of differential
bundles has the following form:

▶ Proposition 21. If D is a system of differential bundles on a tangent category (X,T), then
the dual fibration U◦

D : DBun◦
D [(X,T)] → X consists of:

(i) Objects are differential bundles E ∈ D;
(ii) A map (f, g) : E = (q : E → A, σ, ζ, λ) → E ′ = (q′ : E′ → A′, σ′, ζ ′, λ′) in

DBun◦
D [(X,T)] is a pair consisting of a map f : A → A′ of X and a linear A′-differential

bundle morphism g : A ×A′ E ′ → E, where A ×A′ E ′ is the pullback bundle of E ′ along
f ; that is, a map g : A ×A′ E′ → E in X such that the following diagrams commmute:

A ×A′ E′ g //

π0
((

E

q

��

A ×A′ E′

z×A′ λ

��

g // E

λ

��
A T (A ×A′ E′)

T(g)
// T(E)

(3)

(iii) The identity on E is the pair (1A : A → A, π1 : A ×A E → E);
(iv) The composition of maps (f : A → A′, g : A ×A′ E′ → E) : E → E ′ and

(h : A′ → A′′, k : A′ ×A′′ E′′ → E′) : E ′ → E ′′ is the pair(
fh, A ×A′′ E′′ ⟨1A,(f×A′ 1E′′)k⟩ // A ×A′ E′ g // E

)
: E → E ′′ (4)

(v) U◦
D : DBunD [(X,T)] → X is defined on objects E = (q : E → A, σ, ζ, λ) as U◦

D(E) = A,
and on maps as U◦

D(f, g) = f .
Furthermore, note that when A = A′, for maps in DBun◦

D [(X,T)] of the form (1A, g) : E → E ′,
the domain of the second component is simply E′, so we have that g : E′ → E. As such, the
fibre over an object A is simply the opposite category DBunop

D [A].

It is worth emphasizing the form composition takes in the dual fibration: it is a mixture
of a “forward” composite in the first component, and a “reverse” composite in the second
component (with the k appearing before the g).

G. Cruttwell and J.-S.-P. Lemay 21:11

▶ Example 22. In [13], Higgins and Mackenzie call maps in the dual fibration of SVEC
“comorphisms” of vector bundles [13, Def 1.1], and similarly call maps in the dual fibration
of MODop “comorphisms” of modules [13, Def 2.1] (though the categories of “comorphisms”
they define are the opposites of the ones we define in this paper).

The last ingredient in the definition of a reverse tangent category is an involution on
the differential bundle fibration. Unlike for a Cartesian reverse differential category where
the involution is a “dagger” and is asked to be the identity on objects [5, Def 33], the
involution for a reverse tangent category need not be the identity on objects but is still
required to be reflexive, which is captured by a natural transformation, and be compatible
with the tangent bundle functor. Since a system of differential bundles D is closed under the
tangent bundle, the induced functor T from Prop 14 restricts to the class of D, so we have a
functor TD : DBunD [(X,T)] → DBunD [(X,T)], which is clearly also a fibration morphism.
It follows from [7, Lem 32] that we also have a tangent bundle functor on the dual fibration,
T◦

D : DBun◦
D [(X,T)] → DBun◦

D [(X,T)].

▶ Definition 23. For a tangent category (X,T) with a system of differential bundles D, a
linear involution is a pair (∗, ι) consisting of a fibration morphism (−)∗ : DBunD [(X,T)] →
DBun◦

D [(X,T)] where:
(i) The image of a differential bundle E = (q : E → A, σ, ζ, λ) is the differential bundle

denoted as E∗ = (q∗ : E∗ → A, σ∗, ζ∗, λ∗), and E ′ is called the dual bundle of E;
(ii) The image of a linear differential bundle morphism (f, g) : E = (q : E → A, σ, ζ, λ) →

E ′ = (q′ : E′ → A′, σ′, ζ ′, λ′) is denoted as (f, g)∗ = (f, g∗) where g∗ : A ×A′ E′∗ → E∗.
and a natural isomorphism ιE : E → E∗∗ such that the following diagram should commute:

DBunD [(X,T)]
(−)∗

//

T
��

DBun◦
D [(X,T)]

T◦

��
DBunD [(X,T)]

(−)∗
// DBunD [(X,T)]

(5)

▶ Definition 24. A reverse tangent category is a quintuple (X,T, D, ∗, ι) consisting of a
tangent category (X,T) with a system of differential bundles D and a linear involution (∗, ι).

On the fibers, the involution induces an involutive functor (−)∗ : DBunop
D [A] → DBunD [A].

So for an A-linear differential bundle morphism g : E → E ′, applying the involution will
result in an A-linear bundle morphism of type g∗ : E ′∗ → E∗, so in particular its underlying
map is g∗ : E′∗ → E∗.

Essentially, a reverse tangent category is a tangent category where for every differential
bundle in the specified system there is a chosen “dual” differential bundle. In particular, we
can consider the dual of the tangent bundle of an object, which we call the reverse tangent
bundle of that object.

▶ Definition 25. In a reverse tangent category (X,T, D, ∗, ι), define the reverse tangent
functor T ∗ : X → DBunD [(X,T)]◦ as the following composite:

T ∗ := X T // DBunD [(X,T)]
(−)∗

// DBunD [(X,T)]◦ (6)

where on objects we denote:

T ∗(A) := (p∗
A : T∗(A) → A, s∗

A : T∗
2(A) → T∗(A), z∗

A : A → T∗(A), ℓ∗
A : T∗(A) → TT∗(A))

CSL 2024

21:12 Reverse Tangent Categories

and on maps we denote

T ∗(f) = (f : A → B, T∗(f) : A ×B T∗(B) → T∗(A))

The object T∗(A) is called the reverse tangent bundle of A.

It is worth pointing out what the reverse tangent bundle functor does on maps. Given
a map f : A → B, we have that the second component of its image is a map of type
T∗(f) : A ×B T∗(B) → T∗(A). This is exactly what one wants for gradient-based learning:
given a point x of the domain and a cotangent vector over f(x) in the codomain, T∗(f)
produces a cotangent vector in the domain.
▶ Remark 26. It is also important to note that in general, the reverse tangent bundle does
not induce a functor on the base category, since T∗ is not functorial (either in the covariant
or contravariant sense) with respect to the composition in X. Moreover, the fact that T∗

does not induce a functor on the base category is part of the reason why we have found it
difficult to provide a direct description of a reverse tangent category (as was done for reverse
cartesian differential categories in [5]). A tangent category has as part of its data natural
transformations related to iterates of the tangent bundle functor. Appropriate analogs of
these for reverse tangent categories have thus been difficult to find given that there is no
endofunctor to iterate in the reverse situation. This is why we have instead chosen to define
a reverse tangent as a tangent category with an appropriate involution operation.

We conclude this section with our main examples of reverse tangent categories.

▶ Example 27. Smooth manifolds form a reverse tangent category. Let us first describe
the dual fibration of smooth vector bundles. Observe that if q′ : F → N is a smooth vector
bundle and f : M → N is a smooth function, in local coordinates, elements of the pullback
M ×N F are pairs (x, v) where x ∈ M and v ∈ Ff(x). As such, the dual fibration SVEC◦,
also called the category of star bundles [17, Sec 41.1], has objects smooth vector bundles
q : E → M , and a map q : E → M to q′ : F → N consists of smooth functions f : M → N

and g : M ×N F → E such that for every x ∈ M , q(g(x, v)) = x, and the induced map
gx : Ff(x) → Ex is R-linear, so we may write g(x, v) = (x, gx(v)). There is an involution
which sends a smooth vector bundle q : E → M to the classical dual bundle q∗ : E∗ → M

from differential geometry, where the fibres of E∗ are the R-linear duals of the fibre of E,
that is, E∗

x is the dual vector space of Ex in the classical linear algebra sense:

E∗
x = {ϕ : Ex → R| ϕ R-linear}

The involution sends a smooth vector bundle morphism (f : M → N, g : E → F) to the pair
(f, g∗ : M ×N F ∗ → E∗), where in local coordinates:

g∗(x, ϕ) = (x, ϕ(gx(−))

So (SMAN,T, D, ∗, ι) is a reverse tangent category. The reverse tangent bundle is given by
the classical cotangent bundle T∗(M) from differential geometry, where:

T∗(M) :=
⊔

x∈M

T∗
x(M)

So in local coordinates, elements of the cotangent bundle T∗(M) are pairs (m, ϕ) where
m ∈ M and ϕ ∈ T∗

m(M), so ϕ : Tm(M) → R is an R-linear morphism. For a smooth
function f : M → N , we have that its image via the reverse tangent bundle is of type

G. Cruttwell and J.-S.-P. Lemay 21:13

T∗(f) : M ×N T∗(N) → T∗(M). In local coordinates, elements of M ×N T∗(N) are pairs
(m, ϕ : Tf(m)(N) → R), and so T∗(f) is defined is given as follows:

T∗(f)(m, ϕ) = (m, ϕ (Tm(f)(−)))

▶ Example 28. Every Cartesian reverse differential category is a reverse tangent category.
Briefly, a Cartesian reverse differential category [5, Def 13] can be defined as a category with
finite products which in particular comes equipped with a reverse differential combinator
R which associates every map f : A → B to a map of type R[f] : A×B → A, called the reverse
derivative of f . Alternatively, a Cartesian reverse differential category can be equivalently
characterized as a Cartesian differential category equipped with a linear dagger [5, Thm 42].
Briefly, for a Cartesian differential category X, a linear dagger [5, Def 39] is a fibration
morphism (−)† : L[X]◦ → L[X] which is the identity on objects and involutive, such that
each fibre of the linear fibration has dagger biproducts – the dual of the linear fibration is
described in detail in [7, Ex 34]. In particular, the linear dagger allows one to transpose linear
arguments, that is, for every map g : C × A → B which is linear in its second argument,
the linear dagger gives a map g† : C × B → A which is linear in its second argument. Now
by using the linear dagger † for the linear involution and setting ι = 1 (since the dagger is
the identity on objects), we thus have that (X,TD, P, †, 1) is a reverse tangent category. In
particular, the reverse tangent bundle of an object A is T∗(A) = A × A, while for a map
f : A → B, its image via the reverse tangent bundle is of type T∗(f) : A × B → A × A and
can be nicely expressed using the reverse differential combinator as follows:

T∗(f) = ⟨π0, R[f]⟩

▶ Example 29. SMOOTH is a Cartesian reverse differential category where for a smooth
function F : Rn → Rm, which recall is an m-tuple F = ⟨f1, . . . , fm⟩ of smooth functions
fi : Rn → R, its reverse derivative R[F] : Rn × Rm → Rn is defined as the n-tuple:

R[F](x⃗, z⃗) :=
〈

m∑
i=1

∂fi

∂x1
(x⃗)zi, . . . ,

m∑
i=1

∂fi

∂xn
(x⃗)zi

〉

Thus (SMOOTH,TD, P, †, 1) is a reverse tangent category, where in particular:

T∗(Rn) = Rn × Rn T∗(F)(x⃗, z⃗) = (x⃗, R[F](x⃗, z⃗))

▶ Example 30. All of k-CALG will not form a reverse tangent category; instead, we must
restrict to those algebras which are finitely generated free k-modules. So, let k-CALGf and
MODf be the full subcategories whose objects are finitely generated free k-modules. Clearly we
still have that (k-CALGf ,

T) is a tangent category and DBun [(k-CALGf ,

T)] ≃ MODf is still a
fibration of differential bundles, and thus all differential bundles form a system of differential
bundles. The dual fibration MOD◦

f has objects pairs (A, M) consisting of a commutative
k-algebra A and an A-module M , and where a map is now a pair (f, g) : (A, M) → (B, N)
consisting of a k-algebra morphism f : A → B and a k-linear map g : N → M such that
g(f(a)n) = ag(n). Since an A-module M is also a k-module, it make sense to consider the
k-linear dual of M , which we denote as:

M⊛ = {ϕ : M → k| ϕ k-linear}

Note that M⊛ is also an A-module via the action (a, ϕ) 7→ ϕ(a · −). Since M is a finitely
generated free k-module, it is reflexive so we have the canonical isomorphism M ∼= M⊛⊛.

CSL 2024

21:14 Reverse Tangent Categories

As such, this induces an involution which sends objects (A, M) to (A, M⊛), and maps
(f : A → B, g : M → N) to (f : A → B, g⊛ : N⊛ → M⊛) where:

g⊛(ϕ) = ϕ(g(−))

So (k-CALG,

T

, D,⊛, ι) is a reverse tangent category. For a commutative k-algebra A, its
reverse tangent bundle is:

T⊛(A) = A⊛[ε] = {a + ϕε| a ∈ A, ϕ : A → k| ϕ k-linear and ε2 = 0}

Now consider a k-algebra morphism f : A → B, and note that:

A ×B

T⊛(B) = {a + ϕε| a ∈ A, ϕ : V → k where ϕ k-linear and ε2 = 0}

So T⊛(f) : A ×B

T⊛(B) →

T⊛(A) is defined as:

T⊛(f)(a + ϕε) = a + ϕ (f(−)) ϵ

This example generalizes nicely to the star autonomous setting. Indeed, the category of
commutative monoids of any star autonomous category with distributive finite biproducts is
a reverse tangent category – thus providing a bountiful source of examples of reverse tangent
categories.

▶ Example 31. Similarly, all of k-CALGop will not form a reverse tangent category; instead,
we must restrict to the subcategory of smooth algebras and the display system given by
the finitely generated projective modules. This requires some setup. So briefly, a smooth
k-algebra is a commutative k-algebra A whose associated affine scheme is smooth [21, Def
10.137.1]. Let k-SmALG be the full subcategory of k-CALG whose objects are the smooth
k-algebras. Then to explain why k-SmALG is a tangent category, we need to explain why
tangent algebras of smooth algebras are again smooth. Firstly, for a smooth k-algebra A and
a finitely generated projective module M , SymA(M) is a smooth A-algebra [12, Prop 17.3.8].
Moreover, [21, Lemma 10.137.14] implies that smoothness is preserved via restriction of scalars,
and therefore SymA(M) is also a smooth k-algebra. Now for a smooth k-algebra A, Ω(A) is a
finitely generated projective A-module [21, Sec 10.142.(2)]. Therefore, we have that T(A) is a
smooth k-algebra (and a smooth A-algebra). Furthermore, smoothness is also preserved via
change of basis [21, Lemma 10.137.4], which implies that Tn(A) is also a smooth k-algebra
(and a smooth A-algebra). So we conclude that (k-SmALGop,T) is indeed a tangent category,
and the differential bundles will again correspond to modules. For our system of differential
bundles D, we take the class of differential bundles that correspond to finitely generated
projective modules. That D is indeed a system of differential bundles follows from the fact that
the module of Kähler differentials of a smooth algebra is finitely generated projective, so D is
closed under tangent bundles, and since the extension of scalars preserves finitely generated
projective modules [11, Excercise 8.4], this implies that D is also closed under pullback (since
the pullback in k-CALGop in this case is given by B ⊗A SymA(M) ∼= SymB(B ⊗A M)). We
can give an alternative description of DBun [(k-SmALG,T)]D similar to that of Ex 13. Let
FMOD be the full subcategory of MOD whose objects are the pairs (A, M) consisting of
a smooth k-algebra and a finitely generated projective A-module M6. Then we have that

6 It is important to note the difference between Ex 30 and Ex 31. In the former, we consider modules that
are finitely generated over the base ring, while in the latter we take modules that are finitely generated
over the algebra.

G. Cruttwell and J.-S.-P. Lemay 21:15

DBun [(k-SmALG,T)]D ≃ FMODop. Now the dual fibration (FMODop)◦ is easier understood
via its opposite category (FMODop)◦op. This category has the same objects as FMOD, but
where a map (f, g) : (A, M) → (B, N) consists a k-algebra morphism f : A → B and an
A-linear map g : N → B ⊗A M in the sense that g(f(a)n) = ag(n). For an A-module M ,
consider its A-linear dual, which we denote as:

M∗ = {ϕ : M → A| ϕ A-linear}

Since M is a finitely generated free A-module, it is reflexive as an A-module so we have the
canonical isomorphism M ∼= M∗∗. As such, this induces an involution which sends objects
(A, M) to (A, M∗). To describe what it does on a map, recall that a finitely generated
projective A-module M has a finite generating set {e1, ..., en} and also a finite generating
set {e∗

1, ..., e∗
n} for M∗. Then the involution takes a map (f : A → B, g : M → N) to

(f : A → B, g∗ : N∗ → B ⊗A M∗) where g∗ is defined as follows:

g∗(ϕ) =
n∑

i=1
ϕ(g(ei)) ⊗A e∗

i

So (k-SmALGop,T, D, ∗, ι) is a reverse tangent category. For a commutative k-algebra A, it
is well known that the A-linear dual of Ω(A) is DER(A) the module of derivations on A –
which recall is a k-linear map D : A → A which satisfies the Leibniz rule:

D(ab) = aD(b) + bD(a)

Therefore, for a smooth k-algebra A, we may take its reverse tangent bundle to be given as:

T∗(A) = SymA (DER(A))

To describe what the reverse tangent bundle does on an algebra morphism, we must use the
fact since A is a smooth k-algebra morphism it is, by definition, a finitely presented k-algebra
so A ∼= k[x1, . . . , xn]/I where k[x1, . . . , xn] is the polynomial ring and I is a finitely generated
ideal I = (p1(x⃗), . . . , pm(x⃗)). Abusing notation slightly, let ∂i : A → A be the derivation
on A associated with differentiating polynomials with respect to the xi variable (where we
again abuse notation slightly and take xi ∈ A). Then for a k-algebra morphism f : A → B,
applying T∗ to it gives a k-algebra morphism of type T∗(f) : T∗(B) → B ⊗A T∗(A) defined
as follows on generators b ∈ B and D ∈ DER(B):

T∗(f)(b) = b ⊗A 1 T∗(f) (D) =
n∑

i=1
D (f(xi)) ⊗A ∂i

4 Some Theory of Reverse Tangent Categories

In this section, we provide some basic results that apply in any reverse tangent category. In
particular, these results generalize key concepts about the cotangent bundle from classical
differential geometry.

We begin with the notion of a covector field. In differential geometry, covector fields
correspond to differential 1-forms. A key property of covector fields in differential geometry
is that they can be pulled back; that is, a covector field on the codomain of a map can be
pulled back to a covector field on the domain. The same is true in a reverse tangent category.

CSL 2024

21:16 Reverse Tangent Categories

▶ Definition 32. In a reverse tangent category (X,T, D, ∗, ι), a covector field of an object
A is a section of p∗

A : T∗(A) → A, that is, a map ω : A → T∗(A) such that the following
diagram commutes:

A
ω // T∗(A)

p∗
A

��
A

(7)

▶ Proposition 33 (Pullback of covector fields). In a reverse tangent category (X,T, D, ∗, ι),
if ω : B → T∗(B) is a covector field, then for any map f : A → B, the composite

A
⟨1A,fω⟩ // A ×B T∗(B)

T∗(f) // T∗(A) (8)

is a covector field on A.

Proof. Since (f, T∗(f)) is a map in DBun◦
D [(X,T)], by the left diagram of (3) we easily

compute that ⟨1A, fω⟩ T∗(f)p∗
A = ⟨1A, fω⟩ π0 = 1A, as required. ◀

Our next observation is that there is a canonical isomorphism between the composites
of the tangent bundle and the reverse tangent bundle, generalizing a result for smooth
manifolds [17, Sec 26.11].

▶ Proposition 34. In a reverse tangent category (X,T, D, ∗, ι), for every object A, there is
a natural linear T(A)-differential bundle isomorphism c∗

A : T (T ∗(A)) → T ∗(T(A)), so in
particular the following diagram commutes:

TT∗(A)
c∗

A //

T(p∗
A) ((

T∗T(A)

p∗
T(A)vv

T(A)

(9)

Proof. In any tangent category, the canonical flip is an A-linear differential bundle iso-
morphism cA : T (T(A)) → T (T (A)). So cA is an isomorphism in DBunD [A]. Now by (5),
the dual bundle of T (T(A)) is the tangent bundle of the reverse tangent bundle; that is,
T (T ∗(A)) with projection T(p∗

A), while the dual bundle of T (T(A)) is the reverse tangent
bundle of the tangent bundle T ∗(T(A)) with projection p∗

T(A). As such, applying the in-
duced involution (−)∗ : DBunop

D [A] → DBunD [A] to cA, we obtain an A-linear differential
bundle isomorphism c∗

A : T (T ∗(A)) → T ∗(T(A)). So in particular we have an isomorphism
c∗

A : TT∗(A) → T∗T(A) such that c∗
Ap∗

T(A) = T(p∗
A), as required. ◀

As mentioned in Remark 26, the reverse tangent bundle does not induce a functor on
the base category. However, in differential geometry, while the cotangent bundle is similarly
not functorial on all smooth functions, it is functorial on étale maps [17, pg. 346], which
are useful generalizations of isomorphisms. We will now show that the same is true for the
reverse tangent bundle in any reverse tangent category. A smooth function f : M → N

between smooth manifolds is étale if for any x ∈ M , the tangent space at x is isomorphic
to the tangent space at f(x), that is Tx(M) ∼= Tf(x)(N). However, being étale can also be
characterized in terms of a pullback square, specifically that the naturality square of the
tangent bundle projection is a pullback. As such, the notion of an étale map can be easily
defined in an arbitrary tangent category.

G. Cruttwell and J.-S.-P. Lemay 21:17

▶ Definition 35. In a tangent category (X,T), a map f : A → B is étale if its associated p
naturality square:

T(A)
T(f) //

pA

��

T(B)

pB

��
A

f
// B

(10)

is a pullback. Let (X,T)étale be the subcategory of étale maps of (X,T).

It is straightforward to see that identity maps (and isomorphisms) are étale, and that the
composition of étale maps is again étale. So (X,T)étale is indeed well-defined. A slightly less
obvious result is the following:

▶ Lemma 36. In a tangent category (X,T), if a map f : A → B is étale and the square

X
π1 //

π0

��

A

f

��
C

g
// B

is a pullback diagram which is preserved by T, then π0 : X → C is also étale.

Proof. Consider the diagram

T(X) pX //

T(π0)
��

X
π1 //

π0

��

A

f

��
T(C) pC

// C
g

// B

We need to show that the left square is a pullback. However, the right square is a pullback
by assumption, so by the pullback pasting lemma, it suffices to show that the outer rectangle
is a pullback. However, by naturality of p, the outer rectangle can be rewritten as

T(X)
T(π1) //

T(π0)
��

T(A) pA //

T(f)
��

A

f

��
T(C)

T(g)
// T(B) pB

// B

This is a pullback since the left square is a pullback by assumption and the right square
is a pullback since f is étale. Thus the left square in the first diagram is a pullback, as
required. ◀

In order to show that the reverse tangent bundle gives a functor on the subcategory of
étale maps, we will also need the following useful observation:

▶ Lemma 37. Let D be a system of differential bundles on a tangent category (X,T), and
suppose that (f : A → A′, g : A ×A′ E′ → E) : E → E ′ is a Cartesian map in DBun◦

D [(X,T)].
Then g is an isomorphism, so A ×A′ E′ ∼= E, and (f : A → A′, g−1π1 : E → E′) : E → E ′ is
a Cartesian map in DBunD [(X,T)].

CSL 2024

21:18 Reverse Tangent Categories

Proof. Cartesian maps in the dual fibration correspond to Cartesian maps in the starting
fibration [16, Prop. 3.2]. In general, an equivalence class [(v, c)] is Cartesian in the dual
fibration if and only if the vertical component v is an isomorphism. As such, we have that
[(v, c)] = [(1, v−1c)], where in particular, v−1c is a Cartesian map in the starting fibration.
Thus, the desired result is obtained by translating this in terms of DBunD [(X,T)]. So if (f, g)
is Cartesian in DBun◦

D [(X,T)], then its associated representation as an equivalence class is
[(1A, g), (f, π1)]. This implies that (1A, g) is an isomorphism in DBunD [(X,T)], which in
turn implies that g is an isomorphism. Then [(1A, g), (f, π1)] = [(1A, 1E), (f, g−1π1)], and in
particular (f, g−1π1) is a Cartesian map in DBunD [(X,T)]. ◀

We can now prove our main result about étale maps:

▶ Proposition 38 (Functoriality of T∗ on étale maps). In a reverse tangent category
(X,T, D, ∗, ι), if f : A → B is étale, then T∗(f) : A ×B T∗(B) → T∗(A) is an isomorph-
ism. Furthermore, there is an endofunctor T̂∗ : (X,T)étale → (X,T)étale which maps an
object A to its reverse tangent bundle T∗(A), and an étale map f : A → B to the map
T̂∗(f) : T∗(A) → T∗(B) which is defined as the composite T̂∗(f) := T∗(f)−1π1.

Proof. Since f is étale, (f, T(f)) is a pullback square, and hence Cartesian in DBunD [(X,T)].
Since the involution (−)∗ is a fibration morphism, it sends Cartesian maps to Cartesian
maps. As such, (f, T(f))∗ = (f, T∗(f)) is Cartesian in DBun◦

D [(X,T)]. By Lemma 37, it
follows that T∗(f) is an isomorphism. Thus T∗(f)−1 is also an isomorphism and hence étale,
and by Lemma 36, π1 : A ×B T∗(B) → T∗(B) is also étale since it is a pullback of the étale
map f . Hence T̂∗(f) := T∗(f)−1π1 is itself étale, as it is a composite of étale maps. It is
then easy to check this assignment is functorial. ◀

In Ex 28, we explained how every Cartesian reverse differential category is a reverse
tangent category. We conclude this section by going in the opposite direction. Looking at the
forward side of the story, to do so we must work with Cartesian tangent categories [3, Def
2.8], which are tangent categories with finite products that are preserved by the tangent
bundle functor T. Then to extract a Cartesian differential category from a Cartesian tangent
category, one looks at the differential objects [4, Sec 3], which are the differential bundles
over the terminal object 1. In particular, a differential object A has the property that
T(A) ∼= A × A. Then the full subcategory DO of differential objects and all maps between
them is a Cartesian differential category [3, Thm 4.11], where the differential combinator is
defined on a map f : A → B as follows:

D[f] := A × A ∼= T(A)
T(f) // T(B) ∼= B × B

π1 // B (11)

As differential objects give a Cartesian differential category, to obtain a Cartesian reverse
differential category, we need only give a linear dagger, which will be built using the linear
involution. First note that for a Cartesian tangent category, for every object A, DBun[A]
has finite biproducts. Now one of the axioms of a linear dagger is that the fibres of the
linear fibration have dagger biproducts. Thus, we must ask that the involution preserves this
biproduct structure:

▶ Definition 39. A Cartesian reverse tangent category is a reverse tangent category
(X,T, D, ∗, ι) such that (X,T) is a Cartesian tangent category, D is closed under products,
and for each object A, the induced involution (−)∗ : DBunop

D [A] → DBunD [A] preserves the
biproduct structure.

G. Cruttwell and J.-S.-P. Lemay 21:19

In a Cartesian reverse differential category, since the dagger is the identity on objects, we
have that the differential bundles in our chosen system are in fact self-dual. So to build a
Cartesian reverse differential category from a Cartesian reverse tangent category, we consider
the differential objects which are also self-dual.

▶ Definition 40. In a Cartesian reverse tangent category (X,T, D, ∗, ι), a self-dual differ-
ential object is a differential object A in D which comes equipped with a linear isomorphism
A ∼= A∗. Let DOsd be the full subcategory of self-dual differential objects and all maps between
them.

▶ Lemma 41. In a Cartesian reverse tangent category (X,T, D, ∗, ι), if A is a ∗-self-dual
differential object, then T∗(A) ∼= A × A ∼= T(A).

Proof. Since A is a differential object and thus a differential bundle, by applying (5), we get
that T∗(A) ∼= T(A∗) ∼= T(A) ∼= A × A. ◀

We can now explain how the full subcategory of self-dual differential objects is a Cartesian
reverse differential category.

▶ Proposition 42. For a Cartesian reverse tangent category (X,T, D, ∗, ι), DOsd is a
Cartesian reverse differential category where the reverse differential combinator R is defined
on a map f : A → B as the following composite:

R[f] := A × B ∼= A ×B T∗(B)
T∗(f) // T∗(A) ∼= A × A

π1 // A (12)

Proof. Since DOsd is a full subcategory of DO, it is clear that DOsd is also a Cartesian
differential category with the same structure as DO. So it remains to construct a linear
dagger for DOsd. To do so, given a map f : C × A → B which is linear in A, we must
give a map f† : C × B → A which is linear in B. Now C × A and C × B are differential
bundles over C and ⟨π0, f⟩ : C × A → C × B is a map in DBunD [C]. Applying the involution
(−)∗ : DBunop

D [A] → DBunD [A], we obtain a map (⟨π0, f⟩)∗ : C ×B∗ → C ×A∗. Then define
f† as the following composite:

f† := C × B ∼= C × B∗ (⟨π0,f⟩)∗
// C × A∗ ∼= C × A

π1 // A (13)

This map is linear in B since (⟨π0, f⟩)∗ is a C-linear differential bundle morphism. It is
straightforward to check that this induces a linear dagger † on DOsd. So we conclude that
DOsd is a Cartesian reverse differential combinator, and the reverse differential combinator
defined in (12) is precisely the dagger of the differential combinator defined in (11). ◀

▶ Example 43. (SMAN,T, D, ∗, ι) is a Cartesian reverse tangent category, and its ∗-self-dual
differential objects are precisely the Euclidean spaces Rn. As such, the resulting Cartesian
reverse differential category is precisely SMOOTH.

5 Future Work

One of the next major steps for reverse tangent categories is to apply these ideas to
categorically study gradient-based learning and automatic differentiation on smooth manifolds.
However, there are several other ways this work could be expanded upon:

CSL 2024

21:20 Reverse Tangent Categories

(i) We have chosen to define a reverse tangent category as a tangent category with a
certain kind of involution. However, this was not how Cartesian reverse differential
categories were defined. Cartesian reverse differential categories were defined directly
in terms of a reverse differential combinator R, and then shown to be equivalent to a
Cartesian differential category with a certain kind of involution. It would be useful to
have a direct description of a reverse tangent category in a similar fashion, that is, a
structure involving a “reverse tangent bundle” functor from the base category to an
appropriately defined category of differential bundles.

(ii) There is much more theoretical work that can be explored in an arbitrary reverse
tangent category, especially by taking inspiration from results about the cotangent
bundle in differential geometry. For example, a pseudo-Riemannian structure on a
manifold can be defined as an isomorphism between its tangent bundle and its cotangent
bundle; thus, one could similarly explore what can be done with such objects in an
arbitrary reverse tangent category.

(iii) There are many ways in which tangent categories can be generated from existing ones.
For example, the category of vector fields of a tangent category is again a tangent
category [6, Prop 2.10]. It would be interesting to see how many of these constructions
apply to reverse tangent categories, thus giving many more examples of this structure.

References

1 M. Abbott, T. Altenkirch, and N. Ghani. Categories of Containers. Foundations of Software
Science and Computation Structures, pages 28–28, 2003. doi:10.1007/3-540-36576-1_2.

2 R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Cartesian Differential Categories. Theory
and Applications of Categories, 22(23):622–672, 2009.

3 J. R. B. Cockett and G. S. H. Cruttwell. Differential Structure, Tangent Structure, and SDG.
Applied Categorical Structures, 22(2):331–417, 2014. doi:10.1007/s10485-013-9312-0.

4 J. R. B. Cockett and G. S. H. Cruttwell. Differential Bundles and Fibrations for Tangent
Categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LIX:10–92, 2018.

5 J. R. B. Cockett, G. S. H. Cruttwell, J. D. Gallagher, J.-S. P. Lemay, B. MacAdam, G. Plotkin,
and D. Pronk. Reverse derivative categories. In CSL 2020, volume 152, pages 18:1–18:16,
2020. doi:10.4230/LIPIcs.CSL.2020.18.

6 J. R. B. Cockett, G. S. H. Cruttwell, and J.-S. P. Lemay. Differential Equations in a Tangent
Category I: Complete Vector Fields, Flows, and Exponentials. Applied Categorical Structures,
29:773–825, 2021. doi:10.1007/s10485-021-09629-x.

7 G. Cruttwell, J. Gallagher, J.-S. P. Lemay, and D. Pronk. Monoidal Reverse Differential
Categories. Mathematical Structures in Computer Science, 32(10):1313–1363, 2022.

8 G. Cruttwell, J. Gallagher, and D. Pronk. Categorical Semantics of a Simple Differential
Programming Language. Electronic Proceedings in Theoretical Computer Science, 333:289–310,
2021. doi:10.4204/EPTCS.333.20.

9 G. Cruttwell and J.-S. P. Lemay. Differential Bundles in Commutative Algebra and Algebraic
Geometry. arXiv preprint, 2023. arXiv:2301.05542.

10 G.S.H. Cruttwell, B. Gavranovic, N. Ghani, P. Wilson, and F. Zanasi. Categorical
Foundations of Gradient-Based Learning. ESOP 2022, pages 1–28, 2022. doi:10.1007/
978-3-030-99336-8_1.

11 B. Farb and R. K. Dennis. Noncommutative Algebra, volume 144. Springer Science & Business
Media, 2012. doi:10.1007/978-1-4612-0889-1.

12 A. Grothendieck. Éléments de géométrie algébrique IV. Publications Mathématiques de l’IHÉS,
28:5–255, 1966. doi:10.1007/BF02684778.

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/s10485-013-9312-0
https://doi.org/10.4230/LIPIcs.CSL.2020.18
https://doi.org/10.1007/s10485-021-09629-x
https://doi.org/10.4204/EPTCS.333.20
https://arxiv.org/abs/2301.05542
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/978-1-4612-0889-1
https://doi.org/10.1007/BF02684778

G. Cruttwell and J.-S.-P. Lemay 21:21

13 Philip J. Higgins and Kirril C. H. Mackenzie. Duality for Base-Changing Morphisms of Vector
Bundles, Modules, Lie Algebroids and Poisson Structures. Math. Proc. Camb. Phil. Soc.,
114:471–488, 1993. doi:10.1017/S0305004100071760.

14 B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
15 B. Jubin. The Tangent Functor Monad and Foliations. arXiv preprint, 2014. arXiv:1401.0940.
16 A. Kock. The Dual Fibration in Elementary Terms. arxiv, 2015. arXiv:1501.01947.
17 I. Kolar, J. Slovak, and P. Michor. Natural Operations in Differential Geometry. Springer,

1993. doi:10.1007/978-3-662-02950-3.
18 B. MacAdam. Vector Bundles and Differential Bundles in the Category of Smooth Manifolds.

Applied categorical structures, 29(2):285–310, 2021. doi:10.1007/s10485-020-09617-7.
19 J. Rosickỳ. Abstract Tangent Functors. Diagrammes, 12:JR1–JR11, 1984.
20 D. Spivak. Generalized Lens Categories via Functors Cop → Cat. arxiv:1908.02202, 2019.
21 The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
22 P. Wilson and F. Zanasi. Reverse Derivative Ascent: A Categorical Approach to Learning

Boolean Circuits. In Proceedings of the 3rd Annual International Applied Category Theory
Conference 2020, Cambridge, USA, 6-10th July 2020, volume 333, pages 247–260. Open
Publishing Association, 2021. doi:10.4204/EPTCS.333.17.

CSL 2024

https://doi.org/10.1017/S0305004100071760
https://arxiv.org/abs/1401.0940
https://arxiv.org/abs/1501.01947
https://doi.org/10.1007/978-3-662-02950-3
https://doi.org/10.1007/s10485-020-09617-7
https://stacks.math.columbia.edu
https://doi.org/10.4204/EPTCS.333.17

Intuitionistic Gödel-Löb Logic, à la Simpson:
Labelled Systems and Birelational Semantics
Anupam Das #

University of Birmingham, UK

Iris van der Giessen #

University of Birmingham, UK

Sonia Marin #

University of Birmingham, UK

Abstract
We derive an intuitionistic version of Gödel-Löb modal logic (GL) in the style of Simpson, via
proof theoretic techniques. We recover a labelled system, ℓIGL, by restricting a non-wellfounded
labelled system for GL to have only one formula on the right. The latter is obtained using techniques
from cyclic proof theory, sidestepping the barrier that GL’s usual frame condition (converse well-
foundedness) is not first-order definable. While existing intuitionistic versions of GL are typically
defined over only the box (and not the diamond), our presentation includes both modalities.

Our main result is that ℓIGL coincides with a corresponding semantic condition in birelational
semantics: the composition of the modal relation and the intuitionistic relation is conversely well-
founded. We call the resulting logic IGL. While the soundness direction is proved using standard ideas,
the completeness direction is more complex and necessitates a detour through several intermediate
characterisations of IGL.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases provability logic, proof theory, intuitionistic modal logic, cyclic proofs,
non-wellfounded proofs, proof search, cut-elimination, labelled sequents

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.22

Related Version Full Version: https://arxiv.org/abs/2309.00532

Funding This work was partially supported by a UKRI Future Leaders Fellowship, “Structure vs
Invariants in Proofs”, project reference MR/S035540/1.

Acknowledgements We would like to thank Marianna Girlando and Jan Rooduijn for several valuable
discussions on the topic. We particularly thank Marianna for her input during our reading group on
intuitionistic modal logic which led to the preliminary ideas on which part of this paper is built.

1 Introduction

Gödel-Löb logic (GL) originates in the provability reading of modal logic: ✷ is interpreted
as “it is provable that”, in an arithmetical theory with suitable coding capacity, inducing
its corresponding provability logic. Löb formulated a set of necessary conditions on the
provability logic of Peano Arithmetic (PA), giving rise to GL, extending basic modal logic K
by what we now call Löb’s axiom: ✷(✷A → A) → ✷A. Somewhat astoundingly GL turns
out to be complete for PA’s provability logic, a celebrated result of Solovay [36]: all that
PA can prove about its own provability is already a consequence of a relatively simple (and
indeed decidable) propositional modal logic.

© Anupam Das, Iris van der Giessen, and Sonia Marin;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
mailto:i.vandergiessen@bham.ac.uk
mailto:s.marin@bham.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2024.22
https://arxiv.org/abs/2309.00532
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Intuitionistic Gödel-Löb Logic, à la Simpson

Proof theoretically Löb’s axiom represents a form of induction. Indeed, at the level
of modal logic semantics, GL enjoys a correspondence with transitive relational structures
that are terminating1 [32]. Duly, in computer science, Löb’s axiom has inspired several
variants of modal type theories that extend simply-typed lambda calculus with some form of
recursion. These range, for instance, from the seminal work of Nakano [26], to more recent
explorations into guarded recursion [4] and intensional recursion [21]. Based in type theories,
these developments naturally cast GL in a constructive setting, but little attention was given
to analysing the induced intuitionistic modal logics. Indeed, for this reason, [8] has proposed
a more foundational basis for studying computational interpretations of GL, by way of a
sequent calculus for the logic of the topos of trees.

Returning to the provability reading of modal logic, several constructive variants of GL
have been independently proposed (see [23, 15] for overviews). An important such logic is iGL
(and its variants) which now enjoys a rich mathematical theory, from semantics (e.g., [23]) to
proof theory (e.g., [16, 18]). Interestingly, while iGL is known to be sound for the provability
logic of Heyting Arithmetic (HA), the intuitionistic counterpart of PA, it is not complete.
The provability logic of HA has been recently announced by [25], currently under review.

One shortfall of all the above mentioned approaches is that they do not allow us to
recover a bona fide computational interpretation of classical GL along, say, the Gödel-Gentzen
negative translation (GG), a standard way of lifting interpretations of intuitionistic logics to
their classical counterparts. Indeed it was recently observed that the “i” (or “ constructive”)
traditions of intuitionistic modal logic are too weak to validate the GG translation [10, 11].

On the other hand modal logic’s relational semantics effectively renders it a fragment of
usual first-order predicate logic (FOL), the so-called standard translation. Interpreting this
semantics in an intuitionistic meta-theory defines a logic that does validate GG, for the same
reason that intuitionistic FOL GG-interprets classical FOL. This is the approach taken (and
considerably developed) by Simpson [34], building on earlier work of Fischer Servi [14] and
Plotkin and Stirling [29]. The resulting logic IK (and friends) enjoys a remarkably robust
proof theory by way of labelled systems, which may be duly seen as a fragment of Gentzen’s
systems for intuitionistic FOL by way of the standard translation.

Contribution

In this work we develop an intuitionistic version of GL, following Simpson’s methodology [34].
In particular, while logics such as iGL are defined over only the ✷, our logic is naturally
formulated over both the ✷ and the ✸. A key stumbling block to this end, as noticed already
in the classical setting by Negri in [27], is that GL’s correspondence to terminating relations
cannot seemingly be inlined within a standard labelled system: termination is not even
FOL-definable. To side-step this barrier we draw from a now well-developed proof-theoretic
approach to (co)induction: non-wellfounded proofs (e.g. [28, 7, 35, 2, 12, 9]). Such proofs
allow infinite branches, and so are (typically) equipped with a progress condition that ensures
sound reasoning. Starting from a standard labelled system for transitive relations, K4, we
recover a labelled calculus ℓGL for GL by allowing non-wellfounded derivations under a typical
progress condition. In fact, our progress condition is precisely the one from Simpson’s Cyclic
Arithmetic [35, 9]. Following (the same) Simpson, we duly recover an intuitionistic version
ℓIGL of GL syntactically in a standard way: we restrict ℓGL to one formula on the right. Note
that this presentation, albeit syntactic, does not constitute an axiomatisation, as the system
ℓIGL is infinitary.

1 Other authors refer to this property as Noetherian or conversely well-founded, but we opt for this simpler
nomenclature.

A. Das, I. van der Giessen, and S. Marin 22:3

ℓIGL

mℓIGL PIGL

BIGL

Theorem 8.9
(Section 8)

Theorem 5.5
(Section 5)

Proposition 6.6
(Section 6)Theorem 7.2

(Section 7)

Figure 1 Summary of our main results, where arrows → denote inclusions of modal logics.

At the same time we can recover an intuitionistic version of GL semantically by suitably
adapting the birelational semantics of intuitionistic modal logics, which combine the partial
order ≤ of intuitionistic semantics with the accessibility relation R of modal semantics.
Our semantic formulation BIGL is duly obtained by reading the termination criterion of
classical GL’s semantics intuitionistically: the composition ≤;R must be terminating. Our
main result is that these two characterisations, ℓIGL and BIGL, are indeed equivalent, and
we duly dub the resulting logic IGL. Note that we do not address any provability reading of
IGL in this work, being beyond scope.

The soundness direction is proved via standard techniques from intuitionistic modal logic
and non-wellfounded proof theory. The completeness direction, on the other hand, is more
cumbersome. To this end we exercise an intricate combination of proof theoretic techniques,
necessitating two further (and ultimately equivalent) characterisations of IGL: semantically
PIGL, essentially a class of intuitionistic FOL structures, and syntactically mℓIGL, a multi-
succedent variant of ℓIGL. These formulations facilitate a countermodel construction from
failed proof search, inspired by Takeuti’s for LJ [37]. Due to the non-wellfoundedness of
proofs we employ a determinacy principle to organise the construction, a standard technique
in non-wellfounded and cyclic proof theory (e.g. [28]). For the reduction to ℓIGL we devise a
form of continuous cut-elimination, building on more recent ideas in non-wellfounded proof
theory, cf. [2, 12]. Our “ grand tour” of results is visualised in Figure 1, also indicating the
organisation of this paper. Due to space constraints full proofs are omitted, but may be
found in an associated preprint [13].

Other related work

The proof theory of GL is (in)famously complex. The first sequent calculus of GL was
considered in [22] but its cut-elimination property was only finally settled (positively) in [17]
after several attempts [38, 31, 24]. Intuitionistic versions of sequent calculi for GL are
developed in [16, 18] and provide calculi for iGL. Labelled calculi [27] and nested calculi [30]
have also been proposed. However all of these calculi are arguably unsatisfactory: the
modality introduction rules are non-standard (which is atypical for labelled calculi) and, in
particular, modal rules may change the polarity of formula occurrences, due to the inductive
nature of Löb’s axiom.

It is possible to recover a system for GL by admitting non-wellfounded proofs in a sequent
calculus for K4, as observed by Shamkanov [33]. An intuitionistic version of this system has
been studied by Iemhoff [20]. In these works both the base calculus and the corresponding
correctness criterion are bespoke, rather than “ recovered” from established foundations.

Non-wellfounded proofs originate in the study of modal logics with fixed points, in
particular Niwinski and Walukiewicz’s seminal work on the µ-calculus [28]. These ideas were
later inlined into the proof theory of FOL with certain inductive definitions by Brotherston

CSL 2024

22:4 Intuitionistic Gödel-Löb Logic, à la Simpson

and Simpson (e.g. [7]), a source of inspiration for the present work. As already mentioned,
recent extensions of these ideas to PA [35, 9] and advances on cut-elimination [2, 12] are
quite relevant to our development.

2 Preliminaries on (classical) modal logic

Throughout this work we work with a set Pr of propositional symbols, written p, q, etc.,
which we simultaneously construe as unary predicate symbols when working in predicate
logic. For the latter we also assume a single binary relation symbol R and a countable set
Var of (individual) variables, written x, y, etc.

We recall some preliminaries on classical modal logic in this section, but point the reader
to general references such as [5, 6] for a more comprehensive background.

2.1 Language and semantics
The formulas of modal logic are generated by the following grammar:

A ::= p ∈ Pr | ⊥ | A ∧A | A ∨A | A → A | ✷A | ✸A

As usual we write ¬A := A → ⊥, and employ standard bracketing conventions.
Modal formulas are interpreted over relational frames F = (W,RF) formed of a

non empty set of worlds W equipped with an accessibility relation RF ⊆ W × W .2
A relational model M = (W,RM, V) is a structure where (W,RM) is a frame with a
valuation V : W → P(Pr). Let M = (W,RM, V) be a relational model. For worlds w ∈ W

and formulas A we define the satisfaction judgement M, w ⊨ A as follows:
M, w ⊨ p if p ∈ V (w);
M, w ⊭ ⊥;
M, w ⊨ A ∧B if M, w ⊨ A and M, w ⊨ B;
M, w ⊨ A ∨B if M, w ⊨ A or M, w ⊨ B;
M, w ⊨ A → B if M, w ⊨ A implies M, w ⊨ B;
M, w ⊨ ✷A if for all v such that wRMv we have M, v ⊨ A;
M, w ⊨ ✸A if there exists v such that wRMv and M, v ⊨ A.

If M, w ⊨ A for all w ∈ W we simply write M ⊨ A, and if (W,RM, V) ⊨ A for all valuations
V based on frame F = (W,RM), we simply write F ⊨ A.

2.2 Axiomatisations and Gödel-Löb logic
Turning to syntax, let us now build up the modal logics we are concerned with axiomatically,
before relating them to the semantics just discussed. The modal logic K is axiomatised by
all the theorems of classical propositional logic (CPL) together with axiom (k) and closed
under the rules (mp) (modus ponens) and nec (necessitation) from Figure 2. The logic K4 is
defined in the same way by further including the axiom (4) from Figure 2.

Referring back to the earlier semantics, the following characterisation is well-known [5]:

▶ Theorem 2.1 (K/K4 characterisation). K ⊢ A (resp. K4 ⊢ A) iff A is satisfied in all
relational frames (resp. with transitive accessibility relation).

2 We parameterise the relations by the frame or models to be able distinguish it from the fixed binary
relation symbol R.

A. Das, I. van der Giessen, and S. Marin 22:5

(k) : ✷(A → B) → (✷A → ✷B)
A → B A

(mp)
B

A
(nec)

✷A

(4) : ✷A → ✷✷A (löb) : ✷(✷A → A) → ✷A

Figure 2 Some modal axioms and rules.

The main subject of this work is an extension of K by the Löb axiom (löb), in Figure 2, a
sort of induction principle:

▶ Definition 2.2 (Gödel-Löb logic). GL is defined by extending K4 by the Löb axiom (löb)
and is closed under (mp) and (nec).3

Semantically (löb) says that, as long as worlds satisfy A whenever all its successors (wrt.
the accessibility relation) satisfy A, then A holds universally. This amounts to a “ reverse’
induction principle for the accessibility relation. Indeed we have an associated characterisation
for GL just like that for K4.

We call a frame terminating if its accessibility relation has no infinite path.

▶ Theorem 2.3 (GL characterisation). GL ⊢ A iff all transitive terminating frames satisfy A.

2.3 Labelled calculi and the standard translation
The relational semantics of modal logic may be viewed as a bona fide fragment of predicate
logic. Recalling the predicate language we fixed at the start of the section, the standard
translation is defined as follows: for individual variables x and modal formulas A we define
the predicate formula x : A by:

x : p is p(x);
x : ⊥ is ⊥;
x : A ⋆ B is (x : A) ⋆ (x : B) for ⋆ ∈ {∨,∧,→};
x : ✸A is ∃y(xRy ∧ (y : A)) ;
x : ✷A is ∀y(xRy → (y : A)).

This induces a well-behaved proof theory as a fragment of usual first-order predicate
systems [27], adaptable to many extensions under correspondence theorems such as The-
orem 2.1.

A (labelled) sequent is an expression R,Γ ⇒ ∆, where R is a set of relational atoms,
i.e. formulas of form xRy, and Γ and ∆ are multisets of labelled formulas, i.e. formulas of
form x : A. We sometimes refer to the variable x in x : A as a label. We write Var(S) for
the subset of labels/variables that occur in a given sequent S. Similarly so for Var(R), etc.

Notationally, we have identified labelled formulas with the standard translation at the
beginning of this section. This is entirely suggestive, as we can now easily distil systems
for modal logics of interest by appealing to the sequent calculus LK for first-order predicate
logic. In this vein, the labelled calculus ℓK for modal logic K is given in Figure 3. From
here, under the aforementioned correspondence between K4 and transitive frames, we have a
system ℓK4 for K4 that extends ℓK by the transitivity rule:

R, xRy, yRz, xRz,Γ ⇒ ∆
tr

R, xRy, yRz,Γ ⇒ ∆

3 Alternatively, GL can be axiomatised by adding the (löb) axiom to K, as (4) can be derived from (löb).

CSL 2024

22:6 Intuitionistic Gödel-Löb Logic, à la Simpson

Identity and cut:

id
R, x : p ⇒ x : p

R,Γ ⇒ ∆, x : A R,Γ′, x : A ⇒ ∆′
cut

R,Γ,Γ′ ⇒ ∆,∆′

Structural rules:

R,Γ ⇒ ∆
w-l

R,Γ, x : A ⇒ ∆
R,Γ, x : A, x : A ⇒ ∆

c-l
R,Γ, x : A ⇒ ∆

R,Γ ⇒ ∆
w-r

R,Γ ⇒ ∆, x : A
R,Γ ⇒ ∆, x : A, x : A

c-r
R,Γ ⇒ ∆, x : A

Relational structural rule:

R,Γ ⇒ ∆
th

R,R′,Γ ⇒ ∆

Propositional logical rules:

⊥-l
R, x : ⊥,Γ ⇒ ∆

(no right rule for ⊥)

R,Γ ⇒ ∆, x : A R,Γ′, x : B ⇒ ∆′
→ -l

R,Γ,Γ′, x : A → B ⇒ ∆,∆′

R,Γ, x : A ⇒ ∆, x : B
→ -r

R,Γ ⇒ ∆, x : A → B

R,Γ, x : Ai ⇒ ∆
∧-l i ∈ {0, 1}

R,Γ, x : A0 ∧A1 ⇒ ∆
R,Γ, x : A ⇒ ∆ R,Γ, x : B ⇒ ∆

∨-l
R,Γ, x : A ∨B ⇒ ∆

R,Γ ⇒ ∆, x : Ai∨-r i ∈ {0, 1}
R,Γ ⇒ ∆, x : A0 ∨A1

R,Γ ⇒ ∆, x : A R,Γ ⇒ ∆, x : B
∧-r

R,Γ ⇒ ∆, x : A ∧B

Modal logical rules:

R, xRy,Γ, y : A ⇒ ∆
✸-l y fresh

R,Γ, x : ✸A ⇒ ∆
R, xRy,Γ ⇒ ∆, y : A

✸-r
R, xRy,Γ ⇒ ∆, x : ✸A

R, xRy,Γ ⇒ ∆, y : A
✷-r y fresh

R,Γ ⇒ ∆, x : ✷A
R, xRy,Γ, y : A ⇒ ∆

✷-l
R, xRy,Γ, x : ✷A ⇒ ∆

Figure 3 The standard labelled calculus ℓK for modal logic K.

For a labelled system S we write S ⊢ R,Γ ⇒ ∆, if there is a proof of R,Γ ⇒ ∆ using
the rules from S. We write S ⊢ x : A, or even S ⊢ A, to mean S ⊢ ∅ ⇒ x : A. Almost
immediately from Theorem 2.1 and metatheorems for predicate logic, we have:

▶ Proposition 2.4 (Soundness and completeness). ℓK ⊢ x : A (resp. ℓK4 ⊢ x : A) iff K ⊢ A

(resp. K4 ⊢ A).

Naturally systems for many other modal logics can be readily obtained, when they
correspond to simple frame properties, by adding further relational (structural) rules [27].
Indeed, let us call a labelled calculus standard if it does not extend ℓK by any new logical or
(non-relational) structural rules, nor any new logical axioms. This terminology is suggestive,
since it forces the left and right introduction rules for modalities to coincide with those
induced by the standard translation. As remarked by Negri in [27], typical standard calculi
cannot be complete for GL, as termination of a relation is not even first-order definable. We
shall sidestep this barrier in the next section by making use of non-wellfounded systems.

A. Das, I. van der Giessen, and S. Marin 22:7

3 Recovering a proof theoretic account for GL

In another branch of the proof theory literature, structural treatments of induction and
well-foundedness have been developed in the guise of non-wellfounded and cyclic proofs,
e.g. [28, 7, 2, 3, 35, 9]. Here non-wellfoundedness in proofs allows for inductive reasoning,
and soundness is ensured by some global correctness condition. By incorporating these ideas
into modal proof theory, one can design a non-wellfounded proof system for GL [33]. In this
section we recover a standard labelled calculus for GL, in the sense of the preceding discussion.
Our presentation is based on the correctness condition for Cyclic Arithmetic in [35, 9].

3.1 A standard calculus for GL, via non-wellfounded proofs
In what follows, we consider systems S that will typically be some fragment of the system
ℓK4 given earlier. The definitions we give apply to all “ non-wellfounded” systems of this
work.

▶ Definition 3.1 (Preproofs). A preproof in a system S is a possibly infinite derivation
generated from the rules of S.

As preproofs may, in particular, be non-wellfounded, they may conclude fallacious
theorems, so we require a correctness criterion. Appealing to the correspondence of GL over
transitive terminating relations, we may directly import a “trace” condition first used in [35].

▶ Definition 3.2 (Traces and proofs). Fix a preproof P and an infinite branch (Si)i<ω. A
trace along (Si)i<ω is a sequence of variables (xi)i<ω such that either:

xi+1 = xi; or,
xiRxi+1 appears in Si (then i is a progress point of (xi)i<ω).

A trace is progressing if it is not ultimately constant, i.e. if 3.2 above applies infinitely often.
A branch (Si)i<ω is progressing if it has a progressing trace, and a preproof P is progressing,
or simply is a ∞-proof, if each infinite branch has a progressing trace.
We write S ⊢∞ R,Γ ⇒ ∆ if there is a ∞-proof in S of the sequent R,Γ ⇒ ∆.

▶ Example 3.3 (Löb and contra-Löb). An example of a ∞-proof of (löb) in ℓK4 is given in
Figure 4, left. Here we have used bullets • to identify identical subproofs, up to the indicated
renamings of variables. The preproof is indeed progressing: it has only one infinite branch,
whose progress points are coloured red and trigger at each iteration of the •-loop. Notice
that each sequent has only one formula on the right-hand side (RHS).

Another example of a ∞-proof in ℓK4 is the contraposition of (löb), given in Figure 4,
right. We have merged several steps, and omitted some routine structural steps and initial
sequents, a convention we shall continue to employ throughout this work. Again the preproof
is indeed progressing, by the same argument as before. Notice, this time, that there are two
formulas in the RHS of the premiss of •. Indeed, by basic inspection of proof search, there is
no cut-free ∞-proof avoiding this feature.

▶ Remark 3.4 (On regularity). In non-wellfounded proof theory, special attention is often paid
to the subset of regular preproofs, which may be written as finite (possibly cyclic) graphs, as
in Example 3.3 above. Nonetheless these will play no role in the present work, as we are
purely concerned with logical and proof theoretic investigations, not with effectivity.

The progress condition is invariant under expansion of relational contexts in a preproof:
We may omit consideration of the thinning rule th (Figure 3) when reasoning about ∞-proofs:

▶ Observation 3.5. th is eliminable in ∞-proofs of S.

CSL 2024

22:8 Intuitionistic Gödel-Löb Logic, à la Simpson

...
c-l •[z/y]

xRz, x : ✷(✷p → p) ⇒ z : p
tr

xRy, yRz, x : ✷(✷p → p) ⇒ z : p
✷-r

xRy, x : ✷(✷p → p) ⇒ y : ✷p
→ -l

xRy, x : ✷(✷p → p), y : ✷p → p ⇒ y : p
✷-l

xRy, x : ✷(✷p → p), x : ✷(✷p → p) ⇒ y : p
c-l •

xRy, x : ✷(✷p → p) ⇒ y : p
✷-r

x : ✷(✷p → p) ⇒ x : ✷p
→ -r ⇒ x : ✷(✷p → p) → ✷p

...
✸-r •[z/y]

xRz, z : p ⇒ x : ✸(p ∧ ✷¬p)
tr

xRy, yRz, y : p, z : p ⇒ x : ✸(p ∧ ✷¬p)
¬-r,✷-r

xRy, y : p ⇒ x : ✸(p ∧ ✷¬p), y : ✷¬p
∧-r

xRy, y : p ⇒ x : ✸(p ∧ ✷¬p), y : p ∧ ✷¬p
✸-r •

xRy, y : p ⇒ x : ✸(p ∧ ✷¬p)
✸-l

x : ✸p ⇒ ✸(p ∧ ✷¬p)
→ -r ⇒ x : ✸p → ✸(p ∧ ✷¬p)

Figure 4 An ∞-proof in ℓK4 of Löb’s axiom, left, and its contraposition, right. Identity steps on
y : p above the → -l step, left, and the ∧-r step, right, are omitted for space considerations.

3.2 Soundness and completeness
Let us now argue that our notion of ∞-proof for ℓK4 is sound and complete for GL. The
most interesting part is soundness, comprising a contradiction argument by infinite descent
as is common in non-wellfounded proof theory, relying on the characterisation result of
Theorem 2.3:

▶ Proposition 3.6 (Soundness). If ℓK4 ⊢∞x : A then GL ⊢ A.

On the other hand, thanks to Example 3.3 and the known completeness of ℓK4 for K4,
we can use cut-rules to derive:

▶ Proposition 3.7 (Completeness). If GL ⊢ A then ℓK4 ⊢∞x : A.

These results motivate the following notation:

▶ Definition 3.8. ℓGL is the class of ∞-proofs of ℓK4.

Henceforth for a class of ∞-proofs P we may write simply P ⊢ S if P contains a ∞-proof
of the sequent S. For instance, writing ℓGL ⊢ S is the same as ℓK4 ⊢∞S.

4 Recovering intuitionistic versions of GL from syntax and semantics

In this section we propose two intuitionistic versions of GL, in the style of Simpson, respectively
by consideration of the proof theory and semantics of GL discussed in the previous sections.
Later sections are then devoted to proving the equivalence of these two notions.

4.1 An intuitionistic GL, via syntax
Following Gentzen, it is natural to define intuitionistic calculi based on their classical
counterparts by restricting sequents to one formula on the RHS. However, when implementing
this restriction to different starting calculi for modal logic K (based on sequents, nested
sequents, labelled sequents) one ends up with different intuitionistic variants of K (see
e.g. [10]). The restriction of the ordinary sequent calculus for K defines a logic which is not
compatible with the standard translation in the way we described for K. On the other hand
labelled calculi are well designed for this purpose.

▶ Definition 4.1. The system ℓIK (resp. ℓIK4) is the restriction of ℓK (resp. ℓK4) to sequents
in which exactly one formula occurs on the RHS.

A. Das, I. van der Giessen, and S. Marin 22:9

Note that the rules w-r and c-r cannot be used in ℓIK4, by the singleton restriction on
the RHS of a sequent. In the style of Simpson [34], we can from here duly recover a standard
intuitionistic analogue of GL, by restricting ℓGL to ∞-proofs with only singleton RHSs.

▶ Definition 4.2. We write ℓIGL for the class of ∞-proofs of ℓIK4.

▶ Example 4.3 (Löb, revisited). Recalling Example 3.3 earlier, note that the ∞-proof of Löb’s
axiom in Figure 4, left, indeed satisfies the singleton RHS restriction, and so ℓIGL ⊢ (löb).
On the other hand its contraposition, right, does not satisfy this restriction. We will see
shortly in Example 4.8 that it is indeed not a theorem of ℓIGL.

4.2 An intuitionistic GL, via semantics

To give our semantic version of intuitionistic GL, we must first recall models of intuitionistic
modal logic. Birelational semantics [29, 34] include models B with two relations, the
intuitionistic ≤ and the modal RB (parameterised with B to distinguish from the fixed
predicate symbol R used in this paper), which duly gives it the capacity to model intuitionistic
modal logics.

▶ Definition 4.4 (Birelational semantics). A birelational frame F is a triple (W,≤, RF),
where W is a nonempty set of worlds equipped with a partial order ≤ and an accessibility
relation R

F ⊆ W ×W . We require the following frame conditions:
(F1) If w ≤ w

′ and wRF
v, then there exists v′ such that v ≤ v

′ and w′
R

F
v

′.
(F2) If wRF

v and v ≤ v
′, then there exists w′ such that w ≤ w

′ and w′
R

F
v

′.
A birelational model is a tuple (W,≤, RB

, V), where (W,≤, RB) is a birelational frame
and V is a valuation W → P(Pr) that is monotone in ≤, i.e., w ≤ w

′ implies V (w) ⊆ V (w′).
Let B = (W,≤, RB

, V) be a birelational model. For worlds w ∈ W and formulas A we
define the satisfaction judgement B, w ⊨ A as follows:

B, w ⊨ p if p ∈ V (w);
B, w ⊭ ⊥;
B, w ⊨ A ∧B if B, w ⊨ A and B, w ⊨ B;
B, w ⊨ A ∨B if B, w ⊨ A or B, w ⊨ B;
B, w ⊨ A → B if for all w′ ≥ w, if B, w′ ⊨ A then B, w′ ⊨ B;
B, w ⊨ ✷A if for all w′ ≥ w and for all v such that w′

R
B
v we have B, v ⊨ A;

B, w ⊨ ✸A if there exists v such that wRB
v and B, v ⊨ A.

We write B ⊨ A if B, w ⊨ A for all w ∈ W .

Note that the clauses above are essentially determined by evaluating the standard
translation of modal formulas within intuitionistic predicate models. This is why, say,
evaluating a ✷ requires quantifying over all w′ ≥ w (like ∀), but ✸ does not (like ∃).

▶ Lemma 4.5 (Monotonicity lemma, [34]). Let B = (W,≤, RB
, V) be a birelational model.

For any formula A and w,w′ ∈ W , if w ≤ w
′ and B, w ⊨ A, then B, w′

⊨ A.

A soundness and completeness theorem is recovered in [34], similarly to the classical case
(Proposition 2.4 and Theorem 2.1).

▶ Theorem 4.6 ([34]). ℓIK ⊢ x : A (resp. ℓIK4 ⊢ x : A) iff A is satisfied in all birelational
models (resp. with transitive accessibility relation)

CSL 2024

22:10 Intuitionistic Gödel-Löb Logic, à la Simpson

We want to introduce a birelational counterpart of the transitive and terminating models
of GL. The class of models that we will introduce here is different from the birelational
semantics known for logic iGL [23, 1] which only require termination of the accessibility
relation. Due to the global nature of ✷-evaluation in Definition 4.4, we here require the
composition of ≤ and R

B to be terminating.

▶ Definition 4.7. BIGL is the class of birelational models B = (W,≤, RB
, V) such that:

R
B is transitive; and,

(≤;RB) is terminating, i.e., there are no infinite paths x1 ≤ y1R
B
x2 ≤ y2R

B
x3

For a formula A, we write BIGL ⊨ A to mean that B ⊨ A for all B ∈ BIGL.

Note that the second condition, that (≤;RB) is terminating, implies termination of
R

B too, as ≤ is reflexive. However the converse does not in general hold. For instance if
W = (wij)i<j<ω with:

if j ≤ j
′ then wij ≤ wij′ ;

if i < i
′ then wijR

B
wi′j .

Here certainly R
B is terminating, as R-paths always have j fixed and i increasing and

there are only j worlds of form wij . On the other hand there is an infinite (≤;RB) path:
w01, w12, w23, The frame conditions of Definition 4.4 also hold.

▶ Example 4.8 (Contra-Löb, revisited). Recalling Examples 3.3 and 4.3 we indeed have that
the contraposition of Löb’s axiom, ✸p → ✸(p ∧ ✷¬p), is not valid in BIGL. It is falsified at
world w1 of the following BIGL-model B where we assign p to all worlds. In the picture we
omit transitive (and reflexive) edges of RB (and ≤).

w1 w2

v1 v2 v3

R
B

R
B

R
B

≤ ≤

5 Soundness

The main result of this section is the soundness of ℓIGL with respect to BIGL (Theorem 5.5
and Corollary 5.6). First we must extend the notion of satisfaction in birelational models to
labelled sequents.

Let us fix a sequent S = (R,Γ ⇒ x : A) and a birelational model B = (W,≤, RB
, V) for

the remainder of this section. An interpretation of S into B is a function I : Var(S) → W

such that I(x)RBI(y) whenever xRy ∈ R. We write

B, I ⊨ R,Γ ⇒ x : A if B, I(x) ⊨ A when B, I(y) ⊨ B for all y : B ∈ Γ.

If B, I ⊨ S for all interpretations I of S into B, we simply write B ⊨ S, and if B ⊨ S for all
models B ∈ BIGL, we simply write BIGL ⊨ S. See associated preprint [13] for a complete
proof of the following.

▶ Observation 5.1. B ⊨ ∅, x : B1, . . . , x : Bn ⇒ x : A iff B ⊨ (B1 ∧ . . . ∧Bn) → A.

In order to prove local soundness of ℓIK4 rules, we use a lifting lemma similarly to the
one in [34] whose proof relies on the tree-like structure of R.

A. Das, I. van der Giessen, and S. Marin 22:11

▶ Definition 5.2 ((Quasi-)tree-like). R is a tree if there is x0 ∈ Var(R) such that for each
x ∈ Var(R), x ̸= x0, there is a unique sequence x0Rx1, x1Rx2, . . . , xmRx ∈ R. R is a
quasi-tree if there is some R0 ⊆ R ⊆ R+

0 where R0 is a tree and R+
0 denotes the transitive

closure of R0. Sequent S is (quasi-)tree-like if either R = ∅ and Var(Γ) ⊆ {x}, or R is a
(resp., quasi-)tree and Var(Γ) ∪ {x} ⊆ Var(R).

▶ Lemma 5.3 (Lifting lemma). Suppose S is quasi-tree-like. Let I be interpretation of S into
B, x ∈ Var(S) and w ≥ I(x). There is an interpretation I ′ of S into B such that I ′(x) = w

and for all y ∈ Var(S) we have I ′(y) ≥ I(y).

Let us employ some conventions on ∞-proofs. Note that for every inference rule of ℓIK4,
except for th and cut, the premiss(es) are quasi-tree-like whenever the conclusion is. By
Observation 3.5 we shall duly assume that th is not used. Note that this forces relational
contexts to be growing, bottom-up: the relational context of a sequent always contains those
below it. If a cut-formula z : C has label z that does not occur in the conclusion, we may
safely rename z to a variable that does. Thus we may assume that any ∞-proof in ℓIGL of
x : A has only quasi-tree-like sequents in it.

▶ Proposition 5.4 (Local soundness). Suppose S is quasi-tree-like. Let I be an interpretation
of S into B such that B, I ⊭ S. For any inference step of ℓIK4 \ {th} that S concludes, there
is a premiss S′ and an interpretation I ′ of S′ into B such that B, I ′ ⊭ S′ and I ′(z) ≥ I(z)
for all z ∈ Var(S).

The proof uses some direct calculations in most cases and the lifting lemma (Lemma 5.3)
to handle rules → -r and ✷-r. We refer to the associated preprint [13] for the case analysis.
From here, as in the classical setting for ℓGL, we can employ a contradiction argument by
infinite descent to conclude:

▶ Theorem 5.5 (Soundness). Suppose S is quasi-tree-like. Then ℓIGL ⊢ S implies BIGL ⊨ S.

▶ Corollary 5.6. If ℓIGL ⊢ x : A then BIGL ⊨ A.

The remainder of this work is devoted to proving the converse result. The sections that
follow structure the proof into the three parts according to the arrows indicated in Figure 1.

6 From birelational models to Kripke predicate models

Towards our countermodel construction in the next section we turn to predicate models,
essentially via the standard translation, whose internal structure is richer than that of
birelational models, thus providing useful invariants for the sequel.

▶ Definition 6.1 (Predicate models). A Kripke structure is a tuple

(W,≤, {Dw}w∈W , {Prw}w∈W , {Rw}w∈W), where

W is a non-empty set of worlds partially ordered by ≤;
{Dw}w∈W is a family of non-empty domains, such that Dw ⊆ Dw′ whenever w ≤ w

′;
{Prw}w∈W is a family of mappings Prw : Pr → P(Dw) such that for each p ∈ Pr,
Prw(p) ⊆ Prw′(p) whenever w ≤ w

′;
{Rw}w∈W is a family of relations Rw ⊆ Dw ×Dw such that Rw ⊆ Rw′ whenever w ≤ w

′.

▶ Definition 6.2 (Environment). Let K be a Kripke structure. A w-environment is a
function ρ : Var → Dw.

CSL 2024

22:12 Intuitionistic Gödel-Löb Logic, à la Simpson

Note that a w-environment is also a w′-environment for any w′ ≥ w.

▶ Definition 6.3 (Satisfaction). For modal formula A, structure K and w-environment ρ, we
inductively define the judgement K, w ⊨

ρ
x : A as follows, where ρ[x := d] is the map that

sends variable x to d and agrees with ρ on all other variables:
K, w ⊨

ρ
x : p if ρ(x) ∈ Prw(p);

K, w ⊭ρ ⊥;
K, w ⊨

ρ
x : A ∧B if K, w ⊨

ρ
x : A and K, w ⊨

ρ
x : B;

K, w ⊨ρ
x : A ∨B if K, w ⊨ρ

x : A or K, w ⊨ρ
x : B;

K, w ⊨
ρ
x : A → B if for all w′ ≥ w, if K, w′

⊨
ρ
x : A then K, w′

⊨
ρ
x : B;

K, w ⊨ρ
x : ✷A if for all w′ ≥ w and d ∈ Dw′ , if ρ(x)Rw′d, then K, w′ ⊨ρ[y:=d]

y : A;
K, w ⊨ρ

x : ✸A if there exists d ∈ Dw such that ρ(x)Rwd and K, w ⊨ρ[y:=d]
y : A.

We write K ⊨ x : A if K, w ⊨
ρ
x : A for all worlds w and w-environments ρ.

The monotonicity lemma also holds in Kripke structures.

▶ Lemma 6.4 (Monotonicity lemma). Let K be a Kripke structure. If w ≤ w
′ and K, w ⊨ρ

x :
A, then K, w′

⊨
ρ
x : A.

To capture transitivity in Kripke structures, it is sufficient to require each Rw to be
transitive, which can be considered as a local condition on Kripke structures. However
interpreting termination requires us to consider the interactions between ≤ and Rw similarly
to the previous section.

Let K be a Kripke structure. We write DW for the set of ordered pairs of the form (w, d)
with w ∈ W and d ∈ Dw. We define the two binary relations ≤DW

, RDW
⊆ DW ×DW as:

(w, d) ≤DW
(w′

, d
′) iff w ≤ w

′ and d = d
′;

(w, d)RDW
(w′

, d
′) iff w = w

′ and dRwd
′.

▶ Definition 6.5. Write PIGL for the class of Kripke structures K satisfying the following:
for all w ∈ W , Rw is transitive; and
relation (≤DW

;RDW
) is terminating, i.e., there are no infinite paths (w1, d1) ≤DW

(w2, d1)RDW
(w2, d2) ≤DW

(w3, d2)RDW
(w3, d3)

We write PIGL ⊨ A to mean that K ⊨ x : A for all K ∈ PIGL and any x ∈ Var.

The same construction converting a predicate structure into a birelational model from
[34, Section 8.1.1] can be used to prove the following result.

▶ Proposition 6.6. If BIGL ⊨ A then PIGL ⊨ A.

7 Completeness of a multi-succedent calculus via determinacy

Towards completeness we perform a countermodel construction using a proof search strategy
based on an intuitionistic multi-succedent calculus. This is inspired by analogous arguments
for intuitionistic predicate logic, e.g. in [37], but adapted to a non-wellfounded setting.

▶ Definition 7.1 (Multi-succedent intuitionistic calculus). The system mℓIK4 is the restriction
of ℓK4 where the ✷-right and →-right rules must have exactly one formula on the RHS. We
write mℓIGL for the class of ∞-proofs of mℓIK4.

The remainder of this section is devoted to proving the following completeness result:

▶ Theorem 7.2. If PIGL ⊨ A then mℓIGL ⊢ x : A.

A. Das, I. van der Giessen, and S. Marin 22:13

Here we informally describe the construction of the proof search tree. For a more formal
treatment of parts below we refer to the associated preprint [13]. During bottom-up proof
search we will always proceed according to the three following phases in order of priority:
applications of rule tr, applications of invertible rules (other than tr), and application of
non-invertible rules. The first two together we call the invertible phase, the other the
non-invertible phase. In fact, invertibility of all rules except ✷-r and → -r is guaranteed
by applying suitable contractions at the same time. For instance, we apply the following
derivable “ macro” rules for → on the left and ✸ on the right:

R, Γ, x : A → B ⇒ ∆, x : A R, Γ, x : A → B, x : B ⇒ ∆
→ -l

R, Γ, x : A → B ⇒ ∆
R, xRy, Γ ⇒ ∆, x : ✸A, y : A

✸-r
R, xRy, Γ ⇒ ∆, x : ✸A

By furthermore building weakening into the identity, i.e. allowing initial sequents of form
R,Γ, x : p ⇒ ∆, x : p, structural rules become redundant for proof search. In the invertible
phase we can apply the rules in any order. The non-invertible phase creates predecessor
nodes for each possible rule instance of → -r and ✷-r.

In order to carry out our countermodel construction to show completeness of mℓIGL,
we rely on two features of the proof search space that digress from usual countermodel
constructions in intuitionistic predicate logic [37]. The first important feature of this strategy
is that the invertible phase is always finite and ends in so-called saturated sequents, i.e.,
sequents for which any bottom-up rule application (other than id and ⊥-l) yields a premiss
that is the same sequent, up to multiplicities (see [13] for formal definition). Looking ahead
to the countermodel, worlds w are defined on the basis of invertible phases and will as a
result all have a finite domain Dw.

▶ Lemma 7.3. Following the proof search strategy described above, each invertible phase
constructs a finite subtree that has saturated sequents at its leaves.

Secondly, and perhaps more importantly, we employ a technique from non-wellfounded
proof theory to help us organise the countermodel constructed from a failed proof search:
we appeal to determinacy of a proof search game. To understand the motivation here, a
classical countermodel-from-failed-proof search argument proceeds (very roughly) as follows:
(1) assume a formula is not provable; (2) for each rule instance there must be an unprovable
premiss; (3) continue in this way to construct an (infinite) “ unprovable” branch; (4) extract
a countermodel from this branch. In our setting we will need the branch obtained through
the process above to be not progressing in order to deduce that the structure we extract is
indeed one of PIGL. However the local nature of the process above does not at all guarantee
that this will be the case. For this, we rely on (lightface) analytic determinacy, which is
equivalent to the existence of 0♯ over ZFC [19], of the corresponding proof search game. As
we only use it as a tool and it is not the main focus of our work, we refer to the associated
preprint [13] for more details.

▶ Proposition 7.4. Given an unprovable sequent S there is a subtree T of the proof search
space rooted at S, closed under bottom-up non-invertible rule application4 such that each
infinite branch of T is not progressing.

The properties in Lemma 7.3 and Proposition 7.4 enable us to construct a countermodel:

4 I.e. if S0 ∈ T concludes some non-invertible step with premiss S1, then also S1 ∈ T .

CSL 2024

22:14 Intuitionistic Gödel-Löb Logic, à la Simpson

▶ Theorem 7.5 (Countermodel construction). If mℓIGL ̸⊢ R,Γ ⇒ ∆, then there is a structure
K ∈ PIGL with w-environment ρ such that for labelled formulas x : A we have

if x : A ∈ Γ, then K, w ⊨ρ
x : A, and,

if x : A ∈ ∆, then K, w ⊭ρ
x : A.

From here Theorem 7.2 easily follows. Notice that we did not use rule cut in the proof
search strategy so we can actually conclude a stronger result:

▶ Corollary 7.6. mℓIGL is cut-free complete over PIGL.

8 Completeness of ℓIGL via (partial) cut-elimination

To obtain completeness of ℓIGL for BIGL, we will simulate mℓIGL using cuts in an extension
of ℓIGL that allows reasoning over disjunctions of labelled formulas. We apply a (partial)
cut-elimination procedure to eliminate these disjunctions, and then note that any resulting
proof is already one of ℓIGL.

We shall use metavariables φ,ψ etc. to vary over disjunctions of labelled formulas. I.e.
φ,ψ, . . . ::= (x : A) | φ ∨ ψ.

▶ Definition 8.1. The system ∨ℓIK4 is the extension of ℓIK4 by duly adapting identity, cut,
structural and ∨ rules to allow for φ-formulas. In particular it has the following ∨ rules:

R,Γ, φ0 ⇒ ψ R,Γ, φ1 ⇒ ψ
∨-l

R,Γ, φ0 ∨ φ1 ⇒ ψ

R,Γ ⇒ φi∨-r i ∈ {0, 1}
R,Γ ⇒ φ0 ∨ φ1

The degree of a formula (x1 : A1) ∨ · · · ∨ (xd : Ad) is d. The degree of a cut is the
degree d of its cut-formula, in which case we say it is a d-cut. The degree of a preproof is
the maximum degree of its cuts (when this is well-defined).

▶ Proposition 8.2. If mℓIK4 has a cut-free ∞-proof of x : A, ∨ℓIK4 has one of bounded degree.

Moreover, immediately from definitions, we have:

▶ Observation 8.3. A ∨ℓIK4 ∞-proof containing only labelled formulas is a ℓIK4 ∞-proof.

Thus, to conclude completeness of ℓIGL for BIGL, it suffices to eliminate the use of
disjunctions of labelled formulas in ∨ℓIK4 ∞-proofs. We will prove this by a partial cut-
elimination procedure, reducing cuts over disjunctions of labelled formulas until they are on
labelled formulas.

For the remainder of this section we work only with preproofs without thinning th, by
Observation 3.5. Recall that this means that relational contexts are growing, bottom-up. For
a sequent S write RS for its relational context. I.e. if S is R,Γ ⇒ φ, then RS := R.

▶ Lemma 8.4 (Invertibility). If ∨ℓIK4 has a ∞-proof P of R,Γ, φ0 ∨φ1 ⇒ ψ then it also has
∞-proofs Pi of R,Γ, φi ⇒ ψ, for i ∈ {0, 1}. Moreover, for each branch (Si)i<ω of Pi there
is a branch (S′

i)i<ω of P such that RSi
⊆ RS′

i
for all i < ω.

From here the key cut-reduction for φ-formulas is simply,

P

R, Γ, ⇒ χi
∨-r

R, Γ ⇒ χ0 ∨ χ1

Q

R, Γ′, χ0 ∨ χ1 ⇒ φ
cut

R, Γ, Γ′ ⇒ φ ❀

P

R, Γ ⇒ χi

Qi

R, Γ′, χi ⇒ φ
cut

R, Γ, Γ′ ⇒ φ

A. Das, I. van der Giessen, and S. Marin 22:15

where Qi is obtained by Lemma 8.4 above. Note that this reduction “ produces’ a cut of
lower complexity. Commutative cut-reduction cases, where the cut-formula is not principal
on the left, are standard and always produce. Note that, thanks to invertibility, we do not
consider commutations over the right premiss of a φ-cut. However commutative cases may
increase the heights of progress points; for instance when commuting over a ✷-l step,

P

R, xRy, Γ, y : A ⇒ χ
✷-l

R, xRy, Γ, x : ✷A ⇒ χ

Q

R, xRy, Γ′, χ ⇒ φ
cut

R, xRy, Γ, Γ′, x : ✷A ⇒ φ ❀

P

R, xRy, Γ, y : A ⇒ χ

Q

R, xRy, Γ′, χ ⇒ φ
cut

R, xRy, Γ, Γ′, y : A ⇒ φ
✷-l

R, xRy, Γ, Γ′, x : ✷A ⇒ φ

observe that progress points in Q have been raised. Thus, to show that the limit of cut-
reduction is progressing we will need appropriate invariants, requiring additional notions.

A bar of a preproof is a (necessarily finite, by König’s Lemma) antichain intersecting
each infinite branch. Each bar B induces a (necessarily finite) subtree ⌊B⌋ of nodes beneath
(and including) it. Given a cut-reduction P ❀r P

′ we associate to each bar B of P a bar r(B)
of P ′ in the natural way. In particular we have that r(B) satisfies the following properties:

▶ Lemma 8.5 (Trace preservation). If P ❀r P
′ and B a bar of P , for any sequent S′ ∈ r(B)

there is a sequent S ∈ B such that RS′ ⊇ RS.

This lemma allows us to keep track of a fixed amount of progress information during cut-
elimination, sidestepping the issue that commutative cases raise progress points. Note that
we really need the RS′ ⊇ RS due to the ✸-l commutative case:

P

R, xRy, Γ, y : A ⇒ χ
✸-l

R, Γ, x : ✸A ⇒ χ

Q

R, Γ′, χ ⇒ φ
cut

R, Γ, Γ′, x : ✸A ⇒ φ ❀

P

R, xRy, Γ, y : A ⇒ χ

xRy,Q

xRy, R, Γ′, χ ⇒ φ
cut

R, xRy, Γ, Γ′, y : A ⇒ φ
✸-l

R, Γ, Γ′, x : ✸A ⇒ φ

where the preproof xRy,Q is obtained from Q by prepending xRy to the LHS of each sequent.
From here we can effectively reduce infinitary cut-elimination to finitary cut-elimination, by
eliminating cuts beneath higher and higher bars. The step case is given by:

▶ Lemma 8.6 (Productivity). For any ∞-proof P and bar B there is a sequence of cut-
reductions P = P0 ❀r1 · · · ❀rn

Pn such that rn · · · r1(B) has no d-cuts beneath it in Pn.

The argument proceeds in a relatively standard way: by induction on the number of
d-cuts in ⌊B⌋, with a subinduction on the multiset of the distances of topmost d-cuts in ⌊B⌋
from B, where the distance is the length of the shortest path from the cut to B. Applying
Lemma 8.6 to higher and higher bars allows us to reduce cut-degrees as required:

▶ Proposition 8.7 (Degree-reduction). For each ∞-proof of ∨ℓIK4 of x : A of degree d, there
is one of degree < d.

Importantly here, the preservation of progress in the limit crucially relies on Lemma 8.5,
under König’s Lemma. Finally by induction on degree we have:

▶ Corollary 8.8 (Partial cut-elimination). If ∨ℓIK4 has a bounded-degree ∞-proof of x : A,
then it has one containing only labelled formulas.

CSL 2024

22:16 Intuitionistic Gödel-Löb Logic, à la Simpson

From here we have our desired converse to Theorem 5.5, following from Observation 8.3
and Propositions 6.6 and 8.2, Theorem 7.2 and Corollary 8.8:

▶ Theorem 8.9 (Completeness). If BIGL ⊨ A then ℓIGL ⊢ x : A.

9 Conclusions

We have recovered several intuitionistic formulations of GL, both syntactically and se-
mantically, in the tradition of Simpson, on intuitionistic modal logic [34], and Simpson, on
non-wellfounded proofs [35]. We proved the equivalence of all these formulations, cf. Figure 1,
motivating the following definition:

▶ Definition 9.1. IGL is the modal logic given by any/all of the nodes of Figure 1.

Thanks to the methodology we followed, IGL satisfies Simpson’s requirements from [34]. IGL
also interprets (classical) GL along the Gödel-Gentzen negative translation.

It would be interesting to examine IGL as a logic of provability, returning to the origins
of GL. In particular IGL (even IK) has a normal ✸, distributing over ∨, so let us point out that
it is not sound to interpret ✸ as consistency ¬✷¬. At the same time (effective) model-theoretic
readings of the ✸ stumble on the consequence (already of IK) ✷(A → B) → ✸A → ✸B. We
expect IGL to rather correspond to the provability logic of some model of HA.

To this end it would be pertinent to develop a bona fide axiomatisation of IGL. As far as
we know it is possible that IGL is simply the extension of IK4 by Löb’s axiom but, similarly
to other “ I” logics, we expect that further axioms involving ✸ will be necessary. On a related
note, we believe that a full cut-elimination result holds for ℓIGL, in particular by extending
our argument for ∨ℓIGL. Crucial here is that no cut-reductions delete progress points, since
we do not cut on relational atoms (cf. a key ✷ reduction). A full development of this is
beyond the scope (and allocated space) of this work.

References
1 Mohammad Ardeshir and Motjaba Mojtahedi. The Σ1-provability logic of HA. Annals of

Pure and Applied Logic, 169(10):997–1043, 2018.
2 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative

additive case. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
volume 62 of LIPIcs, pages 42:1–17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

3 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–12. IEEE, 2017.

4 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods
in Computer Science, 8, 2012.

5 Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic, volume 53. Cambridge
University Press, 2001.

6 Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Handbook of Modal Logic,
volume 3 of Studies in logic and practical reasoning. North-Holland, 2007.

7 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011.

8 Ranald Clouston and Rajeev Goré. Sequent calculus in the topos of trees. In Foundations
of Software Science and Computation Structures: 18th International Conference, FOSSACS
2015, pages 133–147. Springer, 2015.

A. Das, I. van der Giessen, and S. Marin 22:17

9 Anupam Das. On the logical complexity of cyclic arithmetic. Logical Methods in Computer
Science, 16, 2020.

10 Anupam Das and Sonia Marin. Brouwer meets Kripke: constructivising modal logic, 2022.
Post on The Proof Theory Blog (accessed 2 August 2023). https://prooftheory.blog/2022/
08/19/brouwer-meets-kripke-constructivising-modal-logic/.

11 Anupam Das and Sonia Marin. On intuitionistic diamonds (and lack thereof). In Automated
Reasoning with Analytic Tableaux and Related Methods, volume 14278 of Lecture Notes in
Computer Science, pages 283–301. Springer, 2023.

12 Anupam Das and Damien Pous. Non-wellfounded proof theory for (Kleene+Action) (Algeb-
ras+Lattices). In 27th EACSL Annual Conference on Computer Science Logic, CSL 2018,
volume 119 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018.

13 Anupam Das, Iris van der Giessen, and Sonia Marin. Intuitionistic gödel-löb logic, à la simpson:
labelled systems and birelational semantics, 2023. arXiv:2309.00532.

14 Gisèle Fischer Servi. On modal logic with an intuitionistic base. Studia Logica, 36:141–149,
1977.

15 Iris van der Giessen. Uniform Interpolation and Admissible Rules: Proof-theoretic investigations
into (intuitionistic) modal logics. PhD thesis, Utrecht University, 2022.

16 Iris van der Giessen and Rosalie Iemhoff. Sequent calculi for intuitionistic Gödel–Löb logic.
Notre Dame Journal of Formal Logic, 62(2):221–246, 2021.

17 Rajeev Goré and Revantha Ramanayake. Valentini’s cut-elimination for provability logic
resolved. In Carlos Areces and Robert Goldblatt, editors, Proceedings of the 7th conference on
Advances in Modal Logic, pages 67–86. College Publications, 2008.

18 Rajeev Goré and Ian Shillito. Direct elimination of additive-cuts in GL4ip: verified and
extracted. In Advances in Modal Logic 14, 2022.

19 Leo Harrington. Analytic determinacy and 0#. The Journal of Symbolic Logic, 43(4):685–693,
1978. doi:10.2307/2273508.

20 Rosalie Iemhoff. Reasoning in circles. In Jan van Eijck, Joost J. Joosten, and Rosalie
Iemhoff, editors, Liber Amicorum Alberti. A Tribute to Albert Visser, pages 165–178. College
Publications, 2016.

21 G. Alex Kavvos. Intensionality, intensional recursion and the Gödel-Löb axiom. FLAP,
8(8):2287–2312, 2021.

22 Daniel Leivant. On the proof theory of the modal logic for arithmetic provability. The Journal
of Symbolic Logic, 46(3):531–538, 1981.

23 Tadeusz Litak. Constructive modalities with provability smack. In Guram Bezhanishvili,
editor, Leo Esakia on Duality in Modal and Intuitionistic Logics, volume 4 of Outstanding
Contributions to Logic, pages 187–216. Springer Netherlands, 2014.

24 Anders Moen. The proposed algorithms for eliminating cuts in the provability calculus GLS
do not terminate. In The 13th Nordic Workshop in Programming Theory, 2001.

25 Mojtaba Mojtahedi. On provability logic of HA, 2022. doi:10.48550/arXiv.2206.00445.
26 Hiroshi Nakano. A modality for recursion. In Proceedings Fifteenth Annual IEEE Symposium

on Logic in Computer Science (Cat. No. 99CB36332), pages 255–266. IEEE, 2000.
27 Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507–544, 2005.
28 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer

Science, 163(1-2):99–116, 1996.
29 Gordon Plotkin and Colin Stirling. A framework for intuitionistic modal logics. In Proceedings

of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge (TARK), pages
399–406, 1986.

30 Francesca Poggiolesi. A purely syntactic and cut-free sequent calculus for the modal logic of
provability. The Review of Symbolic Logic, 2(4):593–611, 2009.

31 Katsumi Sasaki. Löb’s axiom and cut-elimination theorem. Academia Mathematical Sciences
and Information Engineering Nanzan University, 1:91–98, 2001.

CSL 2024

https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://arxiv.org/abs/2309.00532
https://doi.org/10.2307/2273508
https://doi.org/10.48550/arXiv.2206.00445

22:18 Intuitionistic Gödel-Löb Logic, à la Simpson

32 Krister Segerberg. Results in non-classical propositional logic. Uppsala: Filosofiska Föreningen
och Filosofiska Institutionen vid Uppsala Universitet., 1971.

33 Daniyar S. Shamkanov. Circular proofs for the Gödel-Löb provability logic. Mathematical
Notes, 96:575–585, 2014.

34 Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1994.

35 Alex K. Simpson. Cyclic arithmetic is equivalent to Peano arithmetic. In Foundations of
Software Science and Computation Structures Proceedings, volume 10203 of Lecture Notes in
Computer Science, pages 283–300, 2017.

36 Robert M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics,
25:287–304, 1976.

37 Gaisi Takeuti. Proof Theory. New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and
Canada, Elsevier Science Pub. Co., 1975.

38 Silvio Valentini. The modal logic of provability: cut-elimination. Journal of Philosophical
logic, pages 471–476, 1983.

Quantifiers Closed Under Partial Polymorphisms
Anuj Dawar #

Department of Computer Science and Technology, University of Cambridge, UK

Lauri Hella #

Faculty of Information Technology and Communication Sciences, Tampere University, Finland

Abstract
We study Lindström quantifiers that satisfy certain closure properties which are motivated by the
study of polymorphisms in the context of constraint satisfaction problems (CSP). When the algebra
of polymorphisms of a finite structure B satisfies certain equations, this gives rise to a natural
closure condition on the class of structures that map homomorphically to B. The collection of
quantifiers that satisfy closure conditions arising from a fixed set of equations are rather more general
than those arising as CSP. For any such conditions P, we define a pebble game that delimits the
distinguishing power of the infinitary logic with all quantifiers that are P-closed. We use the pebble
game to show that the problem of deciding whether a system of linear equations is solvable in Z /2Z
is not expressible in the infinitary logic with all quantifiers closed under a near-unanimity condition.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases generalized quantifiers, constraint satisfaction problems, pebble games, finite
variable logics, descriptive complexity theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.23

Funding Anuj Dawar : funded by UK Research and Innovation (UKRI) under the UK government’s
Horizon Europe funding guarantee: grant number EP/X028259/1.

1 Introduction

Generalized quantifiers, also known as Lindström quantifiers, have played a significant role in
the development of finite model theory. The subject of finite model theory is the expressive
power of logics in the finite, and Lindström quantifiers provide a very general and abstract
method of constructing logics. We can associate with any isomorphism-closed class of
structures K, a quantifier QK so that the extension L(QK) of a logic L with the quantifier
QK is the minimal extension of L that can express the class K, subject to certain natural
closure conditions. For this reason, comparing the expressive power of logics with Lindström
quantifiers is closely related to comparing the descriptive complexity of the underlying classes
of structures.

Another reason for the significance of Lindström quantifiers is that we have powerful
methods for proving inexpressibility in logics with such quantifiers. In particular, games,
based on Hella’s bijection games [17], are the basis of the most common inexpressivity results
that have been obtained in finite model theory. The k, n-bijection game was introduced
by Hella to characterize equivalence in the logic Lk

∞ω(Qn), which is the extension of the
infinitary logic with k variables by means of all n-ary Lindström quantifiers. A quantifier
QK is n-ary if the class K is defined over a vocabulary σ in which all relation symbols have
arity n or less. In particular, the k, 1-bijection game, often called the k-pebble bijection
game, characterizes equivalence in Lk

∞ω(Q1) which has the same expressive power as Ck
∞ω,

the k-variable infinitary logic with counting. Hella uses the k, n-bijection game to show that,
for each n, there is an (n+ 1)-ary quantifier that is not definable in Lk

∞ω(Qn) for any k.
The k, 1-bijection game has been widely used to establish inexpressibility results for Ck

∞ω.
The k, n-bijection game for n > 1 has received relatively less attention. One reason is that,
while equivalence in Ck

∞ω is a polynomial-time decidable relation, which is in fact a relation
© Anuj Dawar and Lauri Hella;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0003-4014-8248
mailto:lauri.hella@tuni.fi
https://orcid.org/0000-0002-9117-8124
https://doi.org/10.4230/LIPIcs.CSL.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Quantifiers and Polymorphisms

much studied on graphs in the form of the Weisfeiler-Leman algorithm, in contrast the
relation induced by the k, n-bijection game for n > 1 reduces to isomorphism on graphs and
is intractable in general. Nonetheless, there is some interest in studying, for example, the
non-trivial equivalence induced by Lk

∞ω(Q2) on structures with a ternary relation. Grochow
and Levet [16] investigate this relation on finite groups.

A second reason why the logics Lω
∞ω(Qn) have attracted less interest is that in finite

model theory we are often interested in logics that are closed under vectorized first-order
interpretations. This is especially so in descriptive complexity as the complexity classes we
are trying to characterize usually have these closure properties. While Lω

∞ω(Q1) is closed
under first-order interpretations, this is not the case for Lω

∞ω(Qn) for n > 1. Indeed, the
closure of Lω

∞ω(Q2) under interpretations already includes Qn for all n and so can express
all properties of finite structures. So, it seems that beyond Lω

∞ω(Q1), interesting logics from
the point of view of complexity necessarily include quantifiers of all arities.

One way of getting meaningful logics that include quantifiers of unbounded arity is
to consider quantifiers restricted to stronger closure conditions than just closure under
isomorphisms. In recent work, novel game-based methods have established new inexpresibilty
results for such logics, i.e. logics with a wide class of quantifiers of unbounded arity, but
satisfying further restrictions. An important example is the class of linear-algebraic quantifiers,
introduced in [8] which is the closure under interpretations of binary quantifiers invariant under
invertible linear maps over finite fields. Equivalence in the resulting logic is characterized by
the invertible map games introduced in [10]. These games are used in a highly sophisticated
way by Lichter [21] to demonstrate a polynomial-time property that is not definable in
fixed-point logic with rank introduced in [9, 15]. The result is extended to the infinitary logic
with all linear-algebraic quantifiers in [7].

Another example is the recent result of Hella [18] showing a hierarchy theorem for
quantifiers based on constraint satisfaction problems (CSP), using a novel game. Recall
that for a fixed relational structure B, CSP(B) denotes the class of structures that map
homomorphically to B. Hella establishes that, for each n > 1, there is a structure B with
n+ 1 elements that is not definable in Lω

∞ω(Q1,CSPn), where CSPn denotes the collection
of all quantifiers of the form QCSP(B′) where B′ has at most n elements. Note that CSPn

includes quantifiers of all arities.
The interest in CSP quantifiers is inspired by the great progress that has been made in

classifying constraint satisfaction problems in recent years, resulting in the dichotomy theorem
of Bulatov and Zhuk [5, 24] stating that, for any structure B, CSP(B) is either polynomial
time computable, or NP-complete. The so-called algebraic approach to the classification of
CSP has shown that the dividing line between these alternatives is completely determined
by the algebra of polymorphisms of the structure B. More specifically, it is completely
determined by the equational theory of this algebra. As we make explicit in Section 3 below,
equations satisfied by the polymorphisms of B naturally give rise to certain closure properties
for the class of structures CSP(B), which we describe by partial polymorphisms.

The notion of partial polymorphism, as well as that of polymorphism, goes back to
Geiger and Bodnarchuk et al [14, 4], who proved a one-to-one correspondence between
sets of relations that are closed under definability by conjunctions of atomic formulas (i.e.,
positive primitive formulas without existential quantification) and sets of partial functions
that contain all projections and are closed under composition and restriction. Later Romov
[22] formulated this correspondence as a Galois connection: a relation R is definable in a
structure B by a conjunction of atomic formulas if, and only if, every partial function that is
a partial polymorphism of B is also a partial polymorphism of R.

A. Dawar and L. Hella 23:3

Partial polymorphism offer a more fine-grained tool for comparing the complexity of
CSPs and related problems than the method based on total polymorphisms. Schnoor and
Schnoor [23] showed that the above mentioned Galois connection for partial polymorphisms
can be used for analysing the complexity of enumerating the solutions of CSP(B). As an
application, they proved that, for a Boolean CSP(B), there exists an efficient enumeration
algorithm if, and only if, CSP(B) itself is polynomial time computable. Furthermore, Jonsson
et al. [20] proved that, for two structures B and C with the same domain, if all partial
polymorphisms of B are also partial polymorphisms of C, then CSP(C) can be reduced to
CSP(B) by a polynomial time reduction that increases the size of input structures by at
most a constant. As a corollary, they proved a tight result on the relative time complexity of
the corresponding CSPs: if CSP(B) can be solved in time 2(c+ε)n for every ε > 0, then so
can CSP(C).

A central aim of the present paper is to initiate the study of quantifiers closed under
partial polymorphisms. We present a Spoiler-Duplicator pebble game, based on bijection
games, which exactly characterises the expressive power of such quantifiers. More precisely,
there is such a game for any suitable family P of partial polymorphisms. The exact definition
of a quantifier being closed under the family P is given in Section 3; here we just remark that
this notion is not based on the Galois connection between relations and partial polymorphisms.
The definition the game and the proof of the characterization are given in Section 4.

As a case study, we consider the partial polymorphisms described by a near-unanimity
condition. It is known since the seminal work of Feder and Vardi [13] that if a structure B

admits a near-unanimity polymorphism, then CSP(B) has bounded width, i.e. it (or more
precisely, its complement) is definable in Datalog. On the other hand, the problem of
determining the solvability of a system of equations over the two-element field Z /2Z is
the classic example of a tractable CSP that is not of bounded width. Indeed, it is not
even definable in Cω

∞ω [2]. We show that the collection of quantifiers that are closed under
near-unanimity partial polymorphisms is much richer than the classes CSP(B) where B

has a near-unanimity polymorphism. The collection not only includes quantifiers which are
not CSP, but it also includes CSP quantifiers which are not of bounded width, including
intractable ones such as hypergraph colourability. Still, we are able to show that the problem
of solving systems of equations over Z /2Z is not definable in the extension of Cω

∞ω with all
quantifiers closed under near-unanimity partial polymorphisms. This sheds new light on the
inter-definability of constraint satisfaction problems. For instance, while it follows from the
arity hierarchy of [17] that the extension of Cω

∞ω with a quantifier for graph 3-colourability
still cannot define solvability of systems of equations over Z /2Z, our result shows this also
for the extension of Cω

∞ω with all hypergraph colourability quantifiers.

2 Preliminaries

We assume basic familiarity with logic, and in particular the logics commonly used in finite
model theory (see [11], for example). We write Lk

∞ω to denote the infinitary logic (that is,
the closure of first-order logic with infinitary conjunctions and disjunctions) with k variables
and Lω

∞ω for
⋃

k∈ω L
k
∞ω. We are mainly interested in the extensions of these logics with

generalized quantifiers, which we introduce in more detail in Section 2.1 below.
We use Fraktur letters A,B, . . . to denote structures and the corresponding Roman letters

A,B, . . . to denote their universes. Unless otherwise mentioned, all structures are assumed
to be finite. We use function notation, e.g. f : A → B to denote possibly partial functions.
If f : A → B is a function and a⃗ ∈ Am a tuple, we write f (⃗a) for the tuple in Bm obtained

CSL 2024

23:4 Quantifiers and Polymorphisms

by applying f to a⃗ componentwise. This extends to functions of arity greater than 1. Thus,
if f : An → B is a function of arity n and a⃗1, . . . , a⃗m ∈ An is a sequence of n-tuples, then
f (⃗a1, . . . , a⃗m) = (f (⃗a1), . . . , f (⃗am)). It is sometimes convenient to think of the sequence
a⃗1, . . . , a⃗m ∈ An as an m × n matrix M with Mij = (⃗ai)j and we may write f(M) for
f (⃗a1, . . . , am). On the other hand if N is a n×m matrix with entries in A, we write f̂(N) to
denote f(NT). That is, for a⃗1, . . . , a⃗n ∈ Am f̂ (⃗a1, . . . , a⃗n) denotes (f (⃗b1), . . . , f (⃗bm)), where
b⃗i = (NT)i is the tuple of ith components of a⃗1, . . . , a⃗n. For a matrix M , we write Mi to
denote the vector formed by the ith row of M .

For a pair of structures A and B, a partial isomorphism from A to B is a partial function
f : A → B which is an isomorphism between the substructure of A induced by the domain
of f and the substructure of B induced by the image of f . We write PI(A,B) to denote the
collection of all partial isomorphisms from A to B.

We write N or ω to denote the natural numbers, and Z to denote the ring of integers.
For any n ∈ N, we write [n] to denote the set {1, . . . , n}. When mentioned without further
qualification, a graph G = (V,E) is simple and undirected. That is, it is a structure with
universe V and one binary relation E that is irreflexive and symmetric. The girth of a graph
G is the length of the shortest cycle in G.

A hypergraph is a pair (H,E) such that E is a set of subsets of H . (H,E) is n-uniform if
|e| = n for all e ∈ E. As usual, we treat an n-uniform hypergraph (H,E) as the corresponding
relational structure (H,R), where R := {(v1, . . . , vn) ∈ Hn | {v1, . . . , vn} ∈ E}.

2.1 Generalized quantifiers
Let σ, τ be relational vocabularies with τ = {R1, . . . , Rm}, and ar(Ri) = ri for each i ∈ [m].
An interpretation I of τ in σ with parameters z⃗ is a tuple of σ-formulas (ψ1, . . . , ψm) along
with tuples y⃗1, . . . , y⃗m of variables with |y⃗i| = ri for i ∈ [m], such that the free variables
of ψi are among y⃗iz⃗. Such an interpretation defines a mapping that takes a σ-structure
A, along with an interpretation α of the parameters z⃗ in A to a τ -structure B := I(A, α)
as follows. The universe of B is A, and the relations Ri ∈ τ are interpreted in B by
RB

i = {⃗b ∈ Ari | (A, α[⃗b/y⃗i]) |= ψi}.
Let L be a logic and K a class of τ -structures. The extension L(QK) of L by the generalized

quantifier for the class K is obtained by extending the syntax of L by the following formula
formation rule:

For I = (ψ1, . . . , ψm) an interpretation of τ in σ with parameters z⃗, ψ(z⃗) =
QKy⃗1, . . . , y⃗mI is a formula over the signature σ, with free variables z⃗. The semantics
of the formula is given by (A, α) |= ψ(z⃗), if, and only if, I(A, α) ∈ K.

The extension L(Q) of L by a collection Q of generalized quantifiers is defined by adding
the rules above to L for each QK ∈ Q separately.

The type of the quantifier QK is (r1, . . . , rm), and the arity of QK is max{r1, . . . , rm}.
For the sake of simplicity, we assume in the sequel that the type of QK is uniform, i.e.,
ri = rj for all i, j ∈ [m]. This is no loss of generality, since any quantifier QK is definably
equivalent with another quantifier QK′ of uniform type with the same arity. Furthermore,
we restrict the syntactic rule of QK by requiring that y⃗i = y⃗j for all i, j ∈ [m]. Then we can
denote the formula obtained by applying the rule simply by φ = QKy⃗ (ψ1, . . . , ψm).

Let Q = QK and Q′ = QK′ be generalized quantifiers. We say that Q is definable in
L(Q′) if the defining class K is definable in L(Q′), i.e., there is a sentence φ of L(Q′) such
that K = {A | A |= φ}.

A. Dawar and L. Hella 23:5

We write Qn to denote the collection of all quantifiers of arity at most n. Hella [17]
shows that for any n, there is a quantifier of arity n+ 1 that is not definable in Lω

∞ω(Qn).
The logic Lω

∞ω(Q1) is equivalent to Cω
∞ω, the infinitary logic with counting. The notion of

interpretation we have defined is fairly restricted in that it does not allow for relativization or
vectorizations (see, e.g. [11, Def. 12.3.6]. The relativizations and vectorizations of a quantifer
Q can always be seen as a collection of simple quantifiers of unbounded arity.

2.2 CSP and polymorphisms
Given relational structures A and B over the same vocabulary τ , a homomorphism h : A → B

is a function that takes elements of A to elements of B and such that for every R ∈ τ of arity
r and any a⃗ ∈ Ar, a⃗ ∈ RA implies h(⃗a) ∈ RB. For a fixed structure B, we write CSP(B)
to denote the collection of structures A for which there is some homomorphism h : A → B.
By the celebrated theorem of Bulatov and Zhuk, every class CSP(B) is either decidable in
polynomial time or NP-complete.

Given a τ -structure B and m ∈ N, we define a τ -structure Bm. Its universe is Bm

and if R in τ is a relation of arity r, and a⃗1, . . . , a⃗r ∈ Bm, then (⃗a1, . . . , a⃗r) ∈ RBm if, and
only if, (MT)j ∈ RB for all j ∈ [m] where M is the r × m matrix formed by (⃗a1, . . . , a⃗r).
Then, a polymorphism of B is a homomorphism p : Bm → B for some m. The collection
of polymorphisms of B forms an algebraic clone with universe B. It is known that the
equational theory of this algebra completely determines the computational complexity of
CSP(B) (see [3] for an expository account).

A function m : B3 → B is a majority function if it satisfies the equations m(a, a, b) =
m(a, b, a) = m(b, a, a) = a for all a, b ∈ B. More generally, for ℓ ≥ 3, a function n : Bℓ → B

is a near-unanimity function of arity ℓ if for any ℓ-tuple a⃗, we have n(⃗a) = a whenever at
least ℓ− 1 components of a⃗ are a. In particular, a near-unanimity function of arity 3 is a
majority function. A function M : B3 → B is a Maltsev function if it satisfies the identities
M(a, b, b) = M(b, b, a) = a for all a, b ∈ B.

For any structure B which has a near-unanimity polymorphism, the class CSP(B) is
decidable in polynomial time, and definable in Lω

∞ω. If B admits a Maltsev polymorphism,
then CSP(B) is also decidable in polynomial time, but may not be definable in Lω

∞ω or
Lω

∞ω(Q1), its extension with all unary quantifiers. The classic example of a CSP with
a Maltsev polymorphism that is not definable in Lω

∞ω(Q1) is solvability of systems of
equations over Z /2Z with ℓ variables per equation. We can treat this as the class of
structures CSP(Cℓ) where Cℓ is the structure with universe {0, 1} and two ℓ-ary relations
R0 = {(b1, . . . , bℓ) |

∑
i bi ≡ 0 (mod 2)} and R1 = {(b1, . . . , bℓ) |

∑
i bi ≡ 1 (mod 2)}.

If K = CSP(B) for some fixed structure B, we call QK a CSP quantifier. Write CSPn

for the collection of all CSP quantifiers QK where K = CSP(B) for a structure with at most
n elements. Note that there is no restriction on the number or arity of relations in the
signature of B and thus CSPn contains quantifiers of all arities. Hella [18] defines a pebble
game that characterizes equivalence of structures in the logic Lω

∞ω(Q1,CSPn) and shows
that there is a structure B on n+ 1 elements such that CSP(B) is not definable in this logic.

3 Partial polymorphisms

Let τ be a relational vocabulary, and let C be a τ -structure with a polymorphism p : Cn → C.
This gives rise to a closure condition on the class CSP(C). In particular, suppose B ∈ CSP(C)
by a homomorphism h : B → C. We can, in a sense, “close” B under the polymorphism p

CSL 2024

23:6 Quantifiers and Polymorphisms

by including in each relation RB (R ∈ τ) any tuple a⃗ for which h(⃗a) = p(h(⃗a1, . . . , a⃗n)) for
some a⃗1, . . . , a⃗n ∈ RB

i . The resulting structure B′ is still in CSP(C) as is any structure A

with the same universe as B and for which RA ⊆ RB′ for all R ∈ τ .
Our aim is to generalize this type of closure property from CSP quantifiers to a larger

class of generalized quantifiers. To formally define this, it is useful to introduce some notation.
For reasons that will become clear, we use partial functions p.

▶ Definition 1. Let A ̸= ∅ be a set, and let p be a partial function An → A.
(a) If R ⊆ Ar, then p(R) := {p̂(⃗a1, . . . , a⃗n) | a⃗1, . . . , a⃗n ∈ R}.
(b) If A = (A,RA

1 , . . . , R
A
m), then we denote the structure (A, p(RA

1), . . . , p(RA
m)) by p(A).

We say that p is a partial polymorphism of a τ -structure A with domain A if for every
R ∈ τ , the relation RA is closed with respect to p, i.e., p(RA) ⊆ RA.

The reason for considering partial functions is that we are usually interested in poly-
morphisms that satisfy certain equations. The equations specify the polymorphism partially,
but not totally. In other words, any polymorphism that extends the given partial function is
a polymorphism satisfying the required equations. Thus, we can uniformly specify closure
properties on our class of structures for polymorphisms satisfying the equations by only
requiring closure for the partial function. This is illustrated in the examples below.

By a family of partial functions we mean a class P that contains a partial function
pA : An → A for every finite set A, where n is a fixed positive integer. We give next some
important examples of families of partial functions that arise naturally from well-known
classes of polymorphisms.

▶ Example 2.
(a) The Maltsev family M consists of the partial functions MA : A3 → A such that

MA(a, b, b) = MA(b, b, a) = a for all a, b ∈ A, and MA(a, b, c) is undefined unless
a = b or b = c. If a structure A has a Maltsev polymorphism p : A3 → A, then clearly
MA is a restriction of p, whence it is a partial polymorphism of A.

(b) The family MJ of ternary partial majority functions consists of the partial functions
mA : A3 → A such that mA(a, a, b) = mA(a, b, a) = mA(b, a, a) = a for all a, b ∈ A, and
mA(a, b, c) is undefined if a, b and c are all distinct. If A has a majority polymorphism,
then mA is a restriction of it, whence it is a partial polymorphism of A.

(c) More generally, for each ℓ ≥ 3 we define the family Nℓ of ℓ-ary partial near-unanimity
functions nℓ

A : Aℓ → A as follows:
nℓ

A(a1, . . . , aℓ) = a if and only if |{i ∈ [n] | ai = a}| ≥ ℓ− 1.
In particular, MJ = N3.

We next give a formal definition for the closure property of generalized quantifiers that
arises from a family of partial functions. In the definition we use the notation A ≤ B if
A and B are τ -structures such that A = B and RA ⊆ RB for each R ∈ τ . Furthermore,
we define the union A ∪ B of A and B to be the τ -structure C such that C = A ∪ B and
RC = RA ∪RB for each R ∈ τ . Note that we do not assume here that A and B are disjoint.
On the contrary, we use the union A ∪ B specifically for structures A and B that share a
common universe A = B.

▶ Definition 3. Let P be a family of n-ary partial functions, and let QK be a generalized
quantifier of vocabulary τ . We say that QK is P-closed if the following holds for all τ -structures
A and B with A = B:

if B ∈ K and A ≤ pA(B) ∪ B for some pA ∈ P, then A ∈ K.
We denote the class of all P-closed quantifiers by QP .

A. Dawar and L. Hella 23:7

Note that the condition A ≤ pA(B) ∪ B holds if and only if for every R ∈ τ and every
a⃗ ∈ RA \RB there are tuples a⃗1, . . . , a⃗n ∈ RB such that a⃗ = p̂A(⃗a1, . . . , a⃗n).

The quantifier QK is downwards monotone if A ≤ B and B ∈ K implies A ∈ K. It follows
directly from Definition 3 that all P-closed quantifiers are downwards monotone.

▶ Proposition 4. If QK ∈ QP for some family P, then QK is downwards monotone.

▶ Remark 5. As far as we know, the notion of P-closed quantifiers (or classes) has not
been considered earlier. In particular, as we mentioned in Section 1, a quantifier QK being
P-closed is not based on the Galois connection between partial polymorphisms and relations:
by downwards monotonicity of QK, the class K usually contains structures A such that pA

is not a partial polymorphism of A. Note also that the structure D with full relations (i.e.,
RD = Dr for each R ∈ τ of arity r) is usually not in K although pD is a partial polymorphism
of D.

We show next that there are quantifiers that are P-closed for all families P of partial
functions.

▶ Proposition 6. Let K0 be the class of all {R}-structures A such that RA = ∅. Then
QK0 ∈ QP for any family P of partial functions.

Proof. If B ∈ K0, then RB = ∅, whence pB(B) = ∅. Thus, if A ≤ pB(B) ∪ B, then RA = ∅,
and hence A ∈ K0. ◀

Note that in the case ar(R) = 1, the quantifier QK0 of the proposition above is the
negation of the existential quantifier: A |= QK0xφ ⇐⇒ A |= ¬∃xφ. Thus, for any family
P, the first-order quantifiers can be defined from a P-closed quantifier using only negation.

Up to now we have not imposed any restrictions on the family P . It is natural to require
that the partial functions in P are uniformly defined, or at least that (A, pA) and (B, pB)
are isomorphic if |A| = |B|. Such requirements are captured by the notions defined below.

▶ Definition 7. Let P be a family of n-ary partial functions.
(a) P is invariant if it respects bijections: if f : A → B is a bijection and a1, . . . , an ∈ A,

then pB(f(a1), . . . , f(an)) ≃ f(pA(a1, . . . , an)). Here the symbol ≃ says that either both
sides are defined and have the same value, or both sides are undefined.

(b) P is strongly invariant if it respects injections: if f : A → B is an injection and
a1, . . . , an ∈ A, then pB(f(a1), . . . , f(an)) ≃ f(pA(a1, . . . , an)).

(c) P is projective, if it is strongly invariant and it is preserved by all functions: if
f : A → B is a function and a1, . . . , an ∈ A are such that pA(a1, . . . , an) is defined,
then pB(f(a1), . . . , f(an)) = f(pA(a1, . . . , an)).

It is easy to verify that P is invariant if, and only if, it is determined by equality types
on each cardinality: there are quantifier free formulas in the language of equality θm

P (x⃗, y)
such that if |A| = m, then pA(⃗a) = b ⇐⇒ A |= θm

P [⃗a/x⃗, b/y] holds for all a⃗ ∈ An and
b ∈ A. Similarly, P is strongly invariant if, and only if, the same holds with a single formula
θP = θm

P for all m ∈ ω.
Note that if the family P is strongly invariant, then for every finite set A, pA is a

partial choice function, i.e., pA(a1, . . . , an) ∈ {a1, . . . , an}. Indeed, if b := pA(a1, . . . , an) ̸∈
{a1, . . . , an} and B = A∪ {c}, where c /∈ A, then using the identity function f = idA of A in
the condition pB(f(a1), . . . , f(an)) = f(pA(a1, . . . , an)), we get pB(a1, . . . , an) = b. On the
other hand, using the injection f ′ : A → B that agrees with idA on A \ {b} but maps b to c,
we get the contradiction pB(a1, . . . , an) = c ̸= b.

CSL 2024

23:8 Quantifiers and Polymorphisms

▶ Lemma 8. Let P be a family of n-ary partial choice functions. Then QK ∈ QP for any
unary downwards monotone quantifier QK. In particular this holds if P is strongly invariant.

Proof. Let τ be the vocabulary of K, and assume that B ∈ K and A ≤ pA(B) ∪ B. Then
for all R ∈ τ and a ∈ RA \ RB there are a1, . . . , an ∈ A such that pA(a1, . . . , an) = a and
ai ∈ RB for each i ∈ [n]. Since pA is a partial choice function, we have a ∈ {a1, . . . , an}, and
hence a ∈ RB. Thus we see that A ≤ B, and consequently A ∈ K, since QK is downwards
monotone. ◀

It is easy to see that the families M and Nℓ, ℓ ≥ 3, introduced in Example 2, are strongly
invariant. Indeed, the defining formulas θM and θNℓ

are easily obtained from the identities
that define these conditions. Thus, all unary downwards monotone quantifiers are M-closed
and Nℓ-closed. For the families Nℓ we can prove a much stronger result:

▶ Lemma 9. Let ℓ ≥ 3, and let QK be a downwards monotone quantifier of arity r < ℓ.
Then QK ∈ QNℓ

.

Proof. Let τ be the vocabulary of K, and assume that B ∈ K and A ≤ nℓ
A(B) ∪ B. Then

for all R ∈ τ and a⃗ = (a1, . . . , ar) ∈ RA \RB there are a⃗i = (a1
i , . . . , a

r
i) ∈ RB, i ∈ [ℓ], such

that n̂ℓ
A(⃗a1, . . . , a⃗ℓ) = a⃗. Thus, for each j ∈ [r] there is at most one i ∈ [ℓ] such that aj

i ̸= aj ,
and hence there is at least one i ∈ [ℓ] such that a⃗ = a⃗i. This shows that A ≤ B, and since
QK is downwards monotone, we conclude that A ∈ K. ◀

Using a technique originally due to Imhof for (upwards) monotone quantifiers (see [19]),
we can show that any quantifier QK is definable by a downwards monotone quantifier of the
same arity. Indeed, if the vocabulary of K is τ = {R1, . . . , Rm}, where ar(Ri) = r for all
i ∈ [m], we let τ ′ := {S1, . . . , Sm} be a disjoint copy of τ , and τ∗ := τ ∪ τ ′. Furthermore,
we let K∗ be the class of all τ∗-structures A such that RA

i ∩ SA
i = ∅ for all i ∈ [m], and

(A,RA
1 , . . . , R

A
m) ∈ K or RA

i ∪ SA
i ̸= Ar for some i ∈ [m]. Then QK∗ is downwards monotone,

and clearly QKx⃗ (ψ1, . . . , ψm) is equivalent with QK∗ x⃗ (ψ1, . . . , ψm,¬ψ1, . . . ,¬ψm).
Using this observation, we get the following corollary to Lemmas 8 and 9.

▶ Corollary 10.
(a) Let P be as in Lemma 8. Then Lk

∞ω(QP ∪ Q1) ≤ Lk
∞ω(QP).

(b) Lk
∞ω(QNℓ

∪ Qℓ−1) ≤ Lk
∞ω(QNℓ

).

As explained in the beginning of this section, the definition of P-closed quantifiers was
inspired by the closure property of a CSP quantifier QCSP(C) that arises from a polymorphism
of C. Thus, it is natural to look for sufficient conditions on the family P and the target
structure C for QCSP(C) to be P-closed. It turns out that the notions of projectivity and
partial polymorphism lead to such a condition.

▶ Proposition 11. Let P be a projective family of n-ary partial functions, and let C be a
τ -structure. If pC is a partial polymorphism of C, then QCSP(C) ∈ QP .

Proof. Assume that B ∈ CSP(C) and A ≤ pA(B) ∪ B. Then A = B and there is a
homomorphism h : B → C. We show that h is a homomorphism A → C, and hence
A ∈ CSP(C). Thus let R ∈ τ , and let a⃗ ∈ RA. If a⃗ ∈ RB, then h(⃗a) ∈ RC by assumption.
On the other hand, if a⃗ ∈ RA \ RB, then there exist tuples a⃗1, . . . , a⃗n ∈ RB such that
a⃗ = p̂A(⃗a1, . . . , a⃗n). Since h is a homomorphism B → C, we have h(⃗ai) ∈ RC for each
i ∈ [n]. Since pC is a partial polymorphism of C, we have p̂C(h(⃗a1), . . . , h(⃗an)) ∈ RC. Finally,
since P is projective, we have h(⃗a) = h(p̂A(⃗a1, . . . , a⃗n)) = p̂C(h(⃗a1), . . . , h(⃗an)), and hence
h(⃗a) ∈ RC. ◀

A. Dawar and L. Hella 23:9

We can now apply Proposition 11 to the families introduced in Example 2.

▶ Example 12.
(a) Consider a constraint satisfaction problem CSP(C) such that C has a Maltsev polymorph-

ism p : C3 → C. We show that QCSP(C) ∈ QM. As pointed out in Example 2, MC is a
partial polymorphism of C. Thus, by Proposition 11 it suffices to show that the Maltsev
family M is projective.
Thus, assume that f : A → B is a function, and MA(a, b, c) is defined. Then a = b and
MA(a, b, c) = c, or b = c and MA(a, b, c) = a. In the former case we have f(a) = f(b),
whence MB(f(a), f(b), f(c)) = f(c) = f(MA(a, b, c)). In the latter case we have f(b) =
f(c), whence MB(f(a), f(b), f(c)) = f(a) = f(MA(a, b, c)).

(b) The n-uniform hypergraph m-colouring problem is CSP(Hn,m), where Hn,m = ([m], Rn,m)
is the complete n-uniform hypergraph with m vertices, i.e.,

Rn,m := {(v1, . . . , vn) ∈ [m]n | vi ̸= vj for all 1 ≤ i < j ≤ m}.

We show that QCSP(Hn,m) ∈ QMJ for all n ≥ 2 and m ≥ n. By Proposition 11 it suffices
to show that m[m] is a partial polymorphism of Hn,m, and the family MJ is projective.
To see that m[m] is a partial polymorphism of Hn,m, assume that a⃗i = (a1

i , . . . , a
n
i) ∈ Rn,m

for i ∈ [3], and a⃗ = (a1, . . . , an) = m̂[m](⃗a1, a⃗2, a⃗3). By the definition of m[m], for each
j ∈ [n] we have |{i ∈ [3] | aj

i = aj}| ≥ 2. Thus for any two distinct j, k ∈ [n], there is
i ∈ [3] such that aj = aj

i and ak
i = ak, whence aj ̸= ak. Thus we have a⃗ ∈ Rn,m.

To show that MJ is projective, assume that f : A → B is a function, and mA(a, b, c)
is defined. Then a = b = mA(a, b, c), a = c = mA(a, b, c) or b = c = mA(a, b, c). In the
first case we have f(mA(a, b, c)) = f(a) = f(b) = mB(f(a), f(b), f(c)), as desired. The
two other cases are similar.

(c) In the same way we can show that the family Nℓ of partial near-unanimity polymorphisms
is projective for any ℓ ≥ 3. We relax now the notion of hypergraph coloring as follows:
Let H = (H,R) be an n-uniform hypergraph, and let k < n. A k-weak m-coloring
of H is a function f : H → [m] such that for all (u1, . . . , un) ∈ R and all i ∈ [m],
|{u1, . . . , un} ∩ f−1[{i}]| ≤ k. Thus, instead of requiring that all vertices in a hyperedge
(u1, . . . , un) must have different colors, a k-weak m-coloring allows up to k of them to
have the same color. (Note that there are no restrictions on how many at most k-element
subsets can be colored with a single color.) Observe now that there exists a k-weak
m-coloring of H if and only if H ∈ CSP(Hk

n,m), where Hk
n,m = ([m], Rk

n,m) is the structure
such that

Rk
n,m := {(v1, . . . , vn) ∈ [m]n | |{vi | i ∈ I}| ≥ 2 for all I ⊆ [n] with |I| = k + 1}.

Note that H1
n,m = Hn,m, whence m[m] = n3

[m] is a partial polymorphism of H1
n,m. It is

straightforward to generalize this to ℓ > 3: nℓ
[m] is a partial polymorhism of Hℓ−2

n,m. Thus
by Proposition 11, the CSP quantifier QCSP(Hℓ−2

n,m) is QNℓ
-closed.

▶ Remark 13. As shown in Example 12(b), the partial majority function m[m] is a partial
polymorphism of the structure Hn,m. However, there does not exist any polymorphism
p : [m]3 → [m] that extends m[m]. This can be verified directly, but it also follows from the
fact that CSP(C) is of bounded width for any C that has a majority polymorphism ([13]),
but CSP(Hn,m) is not of bounded width. The same holds for the partial functions nℓ

[m] and
the structures Hk

n,m in Example 12(c).

CSL 2024

23:10 Quantifiers and Polymorphisms

4 Pebble game for P-closed quantifiers

In this section we introduce a pebble game that characterizes equivalence of structures with
respect to Lω

∞ω(QP), the extension of the infinitary k-variable logic Lω
∞ω by the class of all

P-closed quantifiers.
We fix a family P of n-ary partial functions for the rest of the section. Given two structures

A and B of the same vocabulary, and assignments α and β on A and B, respectively, such
that dom(α) = dom(β), we write (A, α) ≡k

∞ω,P (B, β) if the equivalence
(A, α) |= φ ⇐⇒ (B, β) |= φ

holds for all formulas φ ∈ Lk
∞ω(QP) with free variables in dom(α). If α = β = ∅, we write

simply A ≡k
∞ω,P B instead of (A, ∅) ≡k

∞ω,P (B, ∅).
The basic idea of our pebble game for a pair (A,B) of structures is the following. In

each round Duplicator gives a bijection f : A → B, just like in the bijection games of [17],
but instead of using b⃗ = f (⃗a) as answer for Spoiler’s move a⃗ ∈ Ar, she is allowed to give a
sequence b⃗1, . . . , b⃗n ∈ Br of alternative answers as long as b⃗ = p̂B (⃗b1, . . . , b⃗n). In particular,
b⃗ need not be among the list b⃗1, . . . , b⃗n. Spoiler completes the round by choosing one of
these alternatives b⃗i. Spoiler wins if a⃗ 7→ b⃗i is not a partial isomorphism; otherwise the game
carries on from the new position. Note that this allows more freedom to Duplicator than
in the ordinary k, n-bijection game. She can simulate a winning strategy in that game by
simply playing at each move the sequence b⃗1, . . . , b⃗n where each b⃗i = b⃗ = f (⃗a).

Observe now that if Duplicator has a winning strategy for the first round of the game,
then f(A) ≤ pB(B) ∪ B. Indeed, if Spoiler chooses a tuple a⃗ ∈ RA, then Duplicator
has to answer by either the tuple f (⃗a), or a sequence b⃗1, . . . , b⃗n ∈ Br of tuples such that
f (⃗a) = p̂B (⃗b1, . . . , b⃗n); in the first case she loses if f (⃗a) ̸∈ RB, and in the second case she
loses if b⃗i ̸∈ RB for some i ∈ [n]. Thus if Duplicator has a winning strategy in the one
round game and B ∈ K for some P-closed quantifier QK, then f(A) ∈ K, and since f is
an isomorphism A → f(A), also A ∈ K. In other words, if B |= QKy⃗ (R1(y⃗), . . . , Rm(y⃗)),
then A |= QKy⃗ (R1(y⃗), . . . , Rm(y⃗)). The reverse implication is obtained by using the move
described above with the structures switched.

By allowing only k variables and repeating rounds indefinitely (unless Spoiler wins at
some round), we obtain a game such that Duplicator having a winning strategy implies
A ≡k

∞ω,P B. However, in order to prove the converse implication we need to modify the
rules explained above. This is because pB(B) ∪ B is not necessarily closed with respect to
the function pB , and in the argument above it would equally well suffice that f(A) ≤ C for
some structure C that is obtained by applying pB repeatedly to B. In the next definition we
formalize the idea of such repeated applications.

▶ Definition 14. Let p : An → A be a partial function, and let R ⊆ Ar. We define a sequence
Γi

p(R), i ∈ ω, of r-ary relations on A by the following recursion:
Γ0

p(R) := R; Γi+1
p (R) := p(Γi

p(R)) ∪ Γi
p(R).

Furthermore, we define Γω
p (R) =

⋃
i∈ω Γi

p(R).
This is generalized to τ -structures in the natural way: for all i ∈ ω ∪ {ω}, Γi

p(A) is the
τ -structure C such that C = A and RC := Γi

p(RA) for each R ∈ τ .

Note that since Γi
p(R) ⊆ Γi+1

p (R) for all i ∈ ω (assuming A is finite) there exists j ≤ |Ar|
such that Γω

p (R) = Γj
p(R). Similarly for any finite structure A, Γω

p (A) = Γj
p(A) for some

j ≤ |Ar|, where r is the maximum arity of relations in A.

A. Dawar and L. Hella 23:11

▶ Lemma 15. Let P be a family of n-ary partial functions. A quantifier is P-closed if and
only if the implication

B ∈ K and A ≤ Γω
pA

(B) =⇒ A ∈ K

holds for all structures A and B with A = B.

Proof. Assume first that QK is P-closed, B ∈ K and A ≤ Γω
pA

(B). We show first by
induction on i that Γi

pA
(B) ∈ K for all i ∈ ω. For i = 0 this holds by assumption. If

Γi
pA

(B) ∈ K, then Γi+1
pA

(B) = pA(C) ∪ C, for C = Γi
pA

(B), and hence Γi+1
pA

(B) ∈ K follows
from the assumption that QK is P-closed.

As noted above, there exists j ∈ ω such that Γω
pA

(B) = Γj
pA

(B). Thus we have A ≤
Γj

pA
(B) ≤ Γj+1

pA
(B) = pA(Γj

pA
(B)) ∪Γj

pA
(B). Since Γj

pA
(B) ∈ K and K is P-closed, it follows

that A ∈ K.
Assume then that the implication

(∗) B ∈ K and A ≤ Γω
pA

(B) =⇒ A ∈ K

holds for all A and B with A = B. Assume further that B ∈ K and A ≤ pA(B) ∪ B. By
definition pA(B) ∪ B = Γ1

pA
(B), and since Γ1

pA
(B) ≤ Γω

pA
(B), we have A ≤ Γω

pA
(B). Thus

A ∈ K follows from the implication (∗). ◀

We are now ready to give the formal definition of our pebble game for P-closed quantifiers.
Let k be a positive integer. Assume that A and B are τ -structures for a relational vocabulary
τ . Furthermore, assume that α and β are assignments on A and B, respectively, such that
dom(α) = dom(β) ⊆ X, where X = {x1, . . . , xk}. The k-pebble P game for (A, α) and (B, β)
is played between Spoiler and Duplicator. We denote the game by PGP

k (A,B, α, β), and we
use the shorthand notation PGP

k (α, β) whenever A and B are clear from the context.

▶ Definition 16. The rules of the game PGP
k (A,B, α, β) are the following:

(1) If α 7→ β /∈ PI(A,B), then the game ends, and Spoiler wins.
(2) If (1) does not hold, there are two types of moves that Spoiler can choose to play:

Left P-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple y⃗ ∈ Xr

of distinct variables. Duplicator responds with a bijection f : B → A. Spoiler answers
by choosing an r-tuple b⃗ ∈ Br. Duplicator answers by choosing P ⊆ Ar such that
f (⃗b) ∈ Γω

pA
(P). Spoiler completes the round by choosing a⃗ ∈ P . The players continue

by playing PGP
k (α′, β′), where α′ := α[⃗a/y⃗] and β′ := β [⃗b/y⃗].

Right P-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple y⃗ ∈ Xr

of distinct variables. Duplicator chooses next a bijection f : A → B. Spoiler answers
by choosing an r-tuple a⃗ ∈ Ar. Duplicator answers by choosing P ⊆ Br such that
f (⃗a) ∈ Γω

pB
(P). Spoiler completes the round by choosing b⃗ ∈ P . The players continue

by playing PGP
k (α′, β′), where α′ := α[⃗a/y⃗] and β′ := β [⃗b/y⃗].

(3) Duplicator wins the game if Spoiler does not win it in a finite number of rounds.

We now prove that the game PGP
k indeed characterizes equivalence of structures with

respect to the infinitary k-variable logic with all P-closed quantifiers.

▶ Theorem 17. Let P be an invariant family of partial functions. Then Duplicator has a
winning strategy in PGP

k (A,B, α, β) if, and only if, (A, α) ≡k
∞ω,P (B, β).

Proof.
⇒: We prove by induction on φ ∈ Lk

∞ω(QP) that (for any assignments α and β) if
Duplicator has a winning strategy in PGP

k (α, β), then (A, α) |= φ ⇐⇒ (B, β) |= φ.

CSL 2024

23:12 Quantifiers and Polymorphisms

If φ is an atomic formula, the claim follows from the fact that Spoiler always wins the
game PGP

k (α, β) immediately if α 7→ β /∈ PI(A,B).
The cases φ = ¬ψ, φ =

∨
Ψ and φ =

∧
Ψ are straightforward.

By Proposition 6, the negation of the existential quantifier is in QP , and hence we do
not need to consider the case φ = ∃xiψ separately.
Consider then the case φ = QKy⃗ I for some r-ary quantifier QK ∈ QP and interpret-
ation I = (ψ1, . . . , ψℓ). We start by assuming that (A, α) |= φ. Thus, I(A, α) :=
(A,R1, . . . , Rℓ) ∈ K. Let Spoiler play in the game PGP

k (α, β) a left P-quantifier move
with r and the tuple y⃗ ∈ Xr, and let f : B → A be the bijection given by the win-
ning strategy of Duplicator. Let I(B, β) := (B,R′

1, . . . , R
′
ℓ), and for each i ∈ [ℓ], let

Si := f(R′
i). We claim that D := (A,S1, . . . , Sℓ) ∈ K. Since f is an isomorphism

I(B, β) → D, it follows then that (B, β) |= φ.
To prove the claim it suffices to show that D ≤ Γω

pA
(I(A, α)), since then D ∈ K by

Lemma 15 and the assumption that QK is P-closed. To show this, let i ∈ [ℓ] and c⃗ ∈ Si.
We let Spoiler choose the tuple b⃗ = f−1(c⃗) as his answer to the bijection f . Thus,
(B, β [⃗b/y⃗]) |= ψi. Let P ⊆ Ar be the answer of Duplicator. Then by the rules of the game
c⃗ ∈ Γω

pA
(P), and Duplicator has a winning strategy in the game PGP

k (α[⃗a/y⃗], β [⃗b/y⃗]) for
all a⃗ ∈ P . Hence by induction hypothesis (A, α[⃗a/y⃗]) |= ψi, i.e., a⃗ ∈ Ri, holds for all
a⃗ ∈ P . This shows that Si ⊆ Γω

pA
(Ri), and since this holds for all i ∈ [ℓ], we see that

D ≤ Γω
pA

(I(A, α)).
By using the right P-quantifier move in place of the left quantifier move, we can prove
that (B, β) |= φ implies (A, α) |= φ. Thus, (A, α) |= φ ⇐⇒ (B, β) |= φ, as desired.

⇐: Assume then that (A, α) ≡k
∞ω,P (B, β). Clearly it suffices to show that Duplicator

can play in the first round of the game PGP
k (α, β) in such a way that (A, α′) ≡k

∞ω,P (B, β′)
holds, where α′ and β′ are the assignments arising from the choices of Spoiler and Duplicator.

Assume first that Spoiler decides to play a left P-quantifier move in the first round of
PGP

k (α, β). Let y⃗ ∈ Xr be the tuple of variables he chooses. Since A and B are finite, for
each a⃗ ∈ Ar there is a formula Ψa⃗ ∈ Lk

∞ω(QP) such that for any τ -structure C of size at
most max{|A|, |B|}, any assignment γ on C, and any tuple c⃗ ∈ Cr we have

(A, α[⃗a/y⃗]) ≡k
∞ω,P (C, γ [⃗c/y⃗]) if and only if (C, γ [⃗c/y⃗]) |= Ψa⃗.

Let c⃗1, . . . , c⃗ℓ be a fixed enumeration of the set Ar, and let I be the interpretation
(Ψ1, . . . ,Ψm), where Ψj := Ψc⃗j

for each j ∈ [m]. We define K to be the closure of the
class {D | D ≤ Γω

pA
(I(A, α))} under isomorphisms. Note that if D ≤ Γω

pA
(I(A, α)) and

E ≤ Γω
pA

(D), then clearly E ≤ Γω
pA

(I(A, α)). Hence by Lemma 15, the quantifier QK is
P-closed. Moreover, since I(A, α) ∈ K, we have (A, α) |= QKy⃗ I, and consequently by
our assumption, (B, β) |= QKy⃗ I. Thus, there is a structure D ≤ Γω

pA
(I(A, α)) and an

isomorphism f : I(B, β) → D. We let Duplicator to use the bijection f : B → A as her
answer to the choice y⃗ of Spoiler.

Let b⃗ ∈ Br be the answer of Spoiler to f , and let c⃗ = f (⃗b). Clearly (A, α) |= ∀y⃗
∨

j∈[ℓ] Ψj ,
whence there exists j ∈ [ℓ] such that (B, β [⃗b/y⃗]) |= Ψj , or in other words, b⃗ ∈ R

I(B,β)
j . Since

f is an isomorphism I(B, β) → D, we have c⃗ ∈ RD
j . We let Duplicator to use P := R

I(A,α)
j

as her answer to the choice b⃗ of Spoiler; this is a legal move since D ≤ Γω
pA

(I(A, α)). Observe
now that since P = R

I(A,α)
j , we have (A, α[⃗a/y⃗]) |= Ψc⃗j

, and consequently (A, α[⃗cj/y⃗]) ≡k
∞ω,P

(A, α[⃗a/y⃗]), for all a⃗ ∈ P . On the other hand we also have (B, β [⃗b/y⃗]) |= Ψc⃗j
, and hence

(A, α[⃗cj/y⃗]) ≡k
∞ω,P (B, β [⃗b/y⃗]). Thus the condition (A, α′) ≡k

∞ω,P (B, β′), where α′ = α[⃗a/y⃗]
and β′ = β [⃗b/y⃗], holds after the first round of PGP

k (α, β) irrespective of the choice a⃗ ∈ P of
Spoiler in the end of the round.

A. Dawar and L. Hella 23:13

The case where Spoiler starts with a right P-quantifier move is handled in the same way
by switching the roles of (A, α) and (B, β). ◀

5 Playing the game

In this section we use the game PGk
P to show inexpressibility of a property of finite structures

in the infinitary finite variable logic Lω
∞ω augmented by all Nℓ-closed quantifiers. More

precisely, we prove that the Boolean constraint satisfaction problem CSP(Cℓ), where Cℓ is the
structure with C = {0, 1} and two ℓ-ary relations R0 = {(b1, . . . , bℓ) |

∑
i∈[ℓ] bi ≡ 0 (mod 2)}

and R1 = {(b1, . . . , bℓ) |
∑

i∈[ℓ] bi ≡ 1 (mod 2)}, is not definable in Lω
∞ω(QNℓ

).
In the proof of the undefinability of CSP(Cℓ) we use a variation of the well-known CFI

construction, due to Cai, Fürer and Immerman [6]. Our construction is a minor modification
of the one that was used in [17] for producing non-isomorphic structures on which Duplicator
wins the k, n-bijection game. We start by explaining the details of the construction.

Let G = (V,E,≤G) be a connected ℓ-regular ordered graph. For each vertex v ∈ V , we
use the notation E(v) for the set of edges adjacent to v and e⃗(v) = (e1, . . . , eℓ) for the tuple
that lists E(v) in the order ≤G. The CFI structures we use have in the universe two elements
(e, 1) and (e, 2) for each e ∈ E, and two ℓ-ary relations that connect such pairs (e, i) for edges
e that are adjacent to some vertex v ∈ V .

▶ Definition 18. Let G = (V,E,≤G) be a connected ℓ-regular ordered graph and let U ⊆ V .
We define a CFI structure Aℓ(G,U) = (Aℓ(G), RAℓ(G,U)

0 , R
Aℓ(G,U)
1), where ar(R0) = ar(R1) =

ℓ, as follows.
Aℓ(G) := E × [2],
R

Aℓ(G,U)
0 :=

⋃
v∈V \U R(v)∪

⋃
v∈U R̃(v) and RAℓ(G,U)

1 :=
⋃

v∈U R(v)∪
⋃

v∈V \U R̃(v), where
R(v) := {((e1, i1), . . . , (eℓ, iℓ)) | (e1, . . . , eℓ) = e⃗(v),

∑
j∈[ℓ] ij = 0 (mod 2)}, and

R̃(v) := {((e1, i1), . . . , (eℓ, iℓ)) | (e1, . . . , eℓ) = e⃗(v),
∑

j∈[ℓ] ij = 1 (mod 2)}.

For each v ∈ V , we denote the set E(v) × [2] by A(v). Furthermore, we define Aℓ(v) :=
(A(v), R(v), R̃(v)) and Ãℓ(v) := (A(v), R̃(v), R(v)).

By a similar argument as in the CFI structures constructed in [17] and [18] it can be
proved that Aℓ(G,U) and Aℓ(G,U ′) are isomorphic if and only if |U | and |U ′| are of the
same parity. We choose Aev

ℓ (G) := Aℓ(G, ∅) and Aod
ℓ (G) := Aℓ(G, {v0}) as representatives of

these two isomorphism classes, where v0 is the least element of V with respect to the linear
order ≤G. We show first that these structures are separated by CSP(Cℓ).

▶ Lemma 19. Aev
ℓ (G) ∈ CSP(Cℓ), but Aod

ℓ (G) ̸∈ CSP(Cℓ).

Proof. Let h : Aℓ(G) → {0, 1} be the function such that h((e, 1)) = 1 and h((e, 2)) = 0 for
all e ∈ E. Then for any tuple ((e1, i1), . . . , (eℓ, iℓ)) the parity of

∑
j∈[ℓ] h((ej , ij)) is the same

as the parity of
∑

j∈[ℓ] ij . Thus, h is a homomorphism Aev
ℓ (G) → Cℓ.

To show that Aod
ℓ (G) ̸∈ CSP(Cℓ), assume towards contradiction that g : Aℓ(G) → {0, 1}

is a homomorphism Aod
ℓ (G) → Cℓ. Then for every e ∈ E necessarily g((e, 1)) ̸= g((e, 2)).

Furthermore, for every v ∈ V \ {v0}, the number nv := |{e ∈ E(v) | g((e, 2)) = 1}| must be
even, while the number nv0 must be odd. Thus,

∑
v∈V nv must be odd. However, this is

impossible, since clearly
∑

v∈V nv = 2|{e ∈ E | g((e, 2)) = 1}|. ◀

Our aim is to prove, for a suitable graph G, that Duplicator has a winning strategy in
PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅). For the winning strategy, Duplicator needs a collection of well-
behaved bijections. We define such a collection GB in Definition 23 below. One requirement
is that the bijections preserve the first component of the elements (e, i) ∈ Aℓ(G).

CSL 2024

23:14 Quantifiers and Polymorphisms

▶ Definition 20. A bijection f : Aℓ(G) → Aℓ(G) is edge preserving if for every e ∈ E and
i ∈ [2], f((e, i)) is either (e, 1) or (e, 2).

For any edge preserving f and any v ∈ V we denote by fv the restriction of f to the
set E(v) × [2]. The switching number swn(fv) of fv is |{e ∈ E(v) | fv((e, 1)) = (e, 2)}|. The
lemma below follows directly from the definitions of Aℓ(v) and Ãℓ(v).

▶ Lemma 21. Let f : Aℓ(G) → Aℓ(G) be an edge preserving bijection, and let v ∈ V .
(a) If swn(fv) is even, then fv is an automorphism of the structures Aℓ(v) and Ãℓ(v).
(b) If swn(fv) is odd, then fv is an isomorphism between the structures Aℓ(v) and Ãℓ(v).

Given an edge preserving bijection f : Aℓ(G) → Aℓ(G) we denote by Odd(f) the set of
all v ∈ V such that swn(fv) is odd. Observe that |Odd(f)| is necessarily even.

▶ Corollary 22. An edge preserving bijection f : Aℓ(G) → Aℓ(G) is an automorphism of the
structures Aev

ℓ (G) and Aod
ℓ (G) if and only if Odd(f) = ∅.

Proof. If Odd(f) = ∅, then by Lemma 21(a) fv is an automorphism of Aℓ(v) and Ãℓ(v)
for all v ∈ V . Clearly this means that f is an automorphism of Aev

ℓ (G) and Aod
ℓ (G). On

the other hand, if v ∈ Odd(f), then by Lemma 21(b), for any tuple a⃗ ∈ A(v)ℓ, we have
a⃗ ∈ R(v) ⇐⇒ f (⃗a) ∈ R̃(v). Since R(v) ∩ R̃(v) = ∅, it follows that f is not an automorphism
of Aev

ℓ (G) and Aod
ℓ (G). ◀

▶ Definition 23. Let f : Aℓ(G) → Aℓ(G) be edge preserving bijection. Then f is a good
bijection if either Odd(f) = ∅ or Odd(f) = {v0, v} for some v ∈ V \ {v0}. We denote the
set of all good bijections by GB.

Note that if f : Aℓ(G) → Aℓ(G) is a good bijection, then there is exactly one vertex
v∗ ∈ V such that fv∗ is not a partial isomorphism Aev

ℓ (G) → Aod
ℓ (G). In case Odd(f) = ∅,

v∗ = v0, while in case Odd(f) = {v0, v} for some v ̸= v0, v∗ = v. We denote this vertex v∗

by tw(f) (the twist of f).
Assume now that Duplicator has played a good bijection f in the game PGNℓ

k on the
structures Aev

ℓ (G) and Aod
ℓ (G). Then it is sure that Spoiler does not win the game in the

next position (α, β) if (e, 1) and (e, 2) are not in the range of α (and β) for any e ∈ E(tw(f)).
This leads us to the following notion.

▶ Definition 24. Let f be a good bijection, and let F ⊆ E. Then f is good for F if
E(tw(f)) ∩ F = ∅. We denote the set of all bijections that are good for F by GB(F).

▶ Lemma 25. If f ∈ GB(F), then f ↾ (F × [2]) is a partial isomorphism Aev
ℓ (G) → Aod

ℓ (G).

Proof. Clearly f ↾ (F × [2]) ⊆
⋃

v∈V \{tw(f)} fv. By Lemma 21, fv is an automorphism of
Aℓ(v) for any v ∈ V \ {tw(f), v0}, and if v0 ≠ tw(f), fv0 is an isomorphism Aℓ(v) → Ãℓ(v).
The claim follows from this. ◀

Given a good bijection f with tw(f) = u and an E-path P = (u0, . . . , um) from u = u0
to u′ = um, we obtain a new edge preserving bijection fP by switching f on the edges
ei := {ui, ui+1}, i < m, of P : fP ((ei, j)) = (ei, 3 − j) for i < m, and fP (c) = f(c) for other
c ∈ Aℓ(G). Clearly fP is also a good bijection, and tw(fP) = u′.

In order to prove that Duplicator has a winning strategy in PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅)
we need to assume that the graph G has a certain largeness property with respect the
number k. We formulate this largeness property in terms of a game, CRGℓ

k(G), that is a
new variation of the Cops&Robber games used for similar purposes in [17] and [18].

A. Dawar and L. Hella 23:15

▶ Definition 26. The game CRGℓ
k(G) is played between two players, Cop and Robber. The

positions of the game are pairs (F, u), where F ⊆ E, |F | ≤ k, and u ∈ V . The rules of the
game are the following:

Assume that the position is (F, u).
If E(u) ∩ F ̸= ∅, the game ends and Cop wins.
Otherwise Cop chooses a set F ′ ⊆ E such that |F ′| ≤ k. Then Robber answers by giving
mutually disjoint E \ (F ∩ F ′)-paths Pi = (u, ui

1, . . . , u
i
ni

), i ∈ [ℓ], from u to vertices
ui := ui

ni
; here mutual disjointness means that Pi and Pi′ do not share edges for i ̸= i′

(i.e., ui
1 ̸= ui′

1 and {ui
j , u

i
j+1} ≠ {ui′

j′ , ui′

j′+1} for all j and j′). Then Cop completes the
round by choosing i ∈ [ℓ]. The next position is (F ′, ui).

The intuition of the game CRGℓ
k(G) is that Cop has k pebbles that he plays on edges of

G forming a set F ⊆ E; these pebbles mark the edges e such that (e, 1) or (e, 2) is in the
range of α or β in a position (α, β) of the game PGNℓ

k on Aev
ℓ (G) and Aod

ℓ (G). Robber has
one pebble that she plays on the vertices of G; this pebble marks the vertex tw(f), where f
is the good bijection played by Duplicator in the previous round of PGNℓ

k .
Cop captures Robber and wins the game if after some round (at least) one of his pebbles

is on an edge that is adjacent to the vertex containing Robber’s pebble. This corresponds to
a position (α, β) in the game PGNℓ

k such that α 7→ β is potentially not a partial isomorphism.
Otherwise Lemma 25 guarantees that α 7→ β is a partial isomorphism. Cop can then move
any number of his pebbles to new positions on G. While the pebbles Cop decides to move
are still on their way to their new positions, Robber is allowed to prepare ℓ mutually disjoint
escape routes along edges of G that do not contain any stationary pebbles of Cop. We show
in the proof of Theorem 29 that these escape routes generate tuples a⃗1, . . . , a⃗ℓ such that
f (⃗b) = q̂(⃗a1, . . . , a⃗ℓ), where q = nℓ

Aℓ(G) and b⃗ is the tuple chosen by Spoiler after Duplicator
played f . This gives Duplicator a legal answer P = {a⃗1, . . . , a⃗ℓ} to b⃗. Then Spoiler completes
the round by choosing one of the tuples in P . Correspondingly, in the end of the round
of CRGℓ

k(G) Cop chooses which escape route Robber has to use by blocking all but one of
them.

▶ Definition 27. Assume that u ∈ V and F ⊆ E is a set of edges such that |F | ≤ k. We say
that u is k-safe for F if Robber has a winning strategy in the game CRGℓ

k(G) starting from
position (F, u).

We prove next the existence of graphs G such that Robber has a winning strategy in the
game CRGℓ

k(G).

▶ Theorem 28. For every ℓ ≥ 3 and every k ≥ 1, there is an ℓ-regular graph G = (V,E)
such that every vertex v ∈ V is k-safe for ∅.

Proof. Clearly if Robber has a winning strategy in CRGℓ
k(G), it also has a winning strategy

in CRGℓ
k′(G) for k′ < k. Thus, it suffices to prove the theorem for k ≥ ℓ.

By a well-known result of Erdös and Sachs [12] (see also [1] for a more accessible
construction), there exist ℓ-regular connected graphs of girth g for arbitrarily large g. Choose
a positive integer d with d > log 2k

log(ℓ−1) + 1 and let G be an ℓ-regular graph of girth g > 6d.
We claim that any vertex v in G is k-safe for ∅.

To prove this, we show inductively that Robber can maintain the following invariant in
any position (F, u) reached during the game:
(∗) for each edge e ∈ F , neither end point of e is within distance d of u in G.
Note that, from the assumption that k ≥ ℓ and d > log 2k

log(ℓ−1) + 1, it follows that d ≥ 2. Thus,
the invariant (∗) guarantees, in particular, that Cop does not win at any point.

CSL 2024

23:16 Quantifiers and Polymorphisms

Clearly the invariant (∗) is satisfied at the initial position, since F is empty. Suppose
now that it is satisfied in some position (F, u) and Cop chooses a set F ′ in the next move.
Let C ⊆ V denote the set of end points of all edges in F ′. Since |F ′| ≤ k, we have |C| ≤ 2k.

Let N ⊆ V denote the collection of vertices which are at distance at most 3d from u. By
the assumption on the girth of G, the induced subgraph G[N] is a tree. We can consider it
as a rooted tree, with root u. Then, u has exactly ℓ children. All vertices in N at distance
less than 3d from u have exactly ℓ− 1 children (and one parent), and all vertices at distance
exactly 3d from u are leaves of the tree. This allows us to speak, for instance, of the subtree
rooted at a vertex u′ meaning the subgraph of G induced by the vertices x in N such that
the unique path from u to x in G[N] goes through u′.

Let u1, . . . , uℓ be the children of u. For each i, let Ui denote the set of descendants of
ui that are at distance exactly d from u (and so at distance d − 1 from ui). Note that
the collection U1, . . . , Uℓ forms a partition of the set of vertices in N that are at distance
exactly d from u. Each x ∈ Ui is the root of a tree of height 2d. Moreover, since the tree
below ui is (ℓ− 1)-regular, Ui contains exactly (ℓ− 1)d−1 vertices. By the assumption that
d > log 2k

log(ℓ−1) + 1, it follows that (ℓ− 1)d−1 > 2k ≥ |C| and therefore each Ui contains at least
one vertex xi such that the subtree rooted at xi contains no vertex in C. Let yi be any
descendant of xi at distance d from xi and let Pi denote the unique path in G[N] from u to
yi. Robber’s move is to play the paths P1, . . . , Pℓ. We now verify that this is a valid move,
and that it maintains the required invariant (∗).

First, note that the paths P1, . . . , Pℓ are paths in the tree G[N] all starting at u and the
second vertex in path Pi is ui. It follows that the paths are pairwise edge disjoint. We next
argue that no path Pi goes through an edge in F ∩ F ′. Indeed, by the inductive assumption,
no endpoint of an edge in F appears within distance d of u and therefore the path from u

to xi does not go through any such vertex. Moreover, by the choice of xi, no endpoint of
an edge in F ′ appears in the subtree rooted at xi and therefore the path from xi to yi does
not go through any such vertex. Together these ensure that the path Pi does not visit any
vertex that is an endpoint of an edge in F ∩ F ′.

Finally, to see that the invariant (∗) is maintained, note that all vertices that are at
distance at most d from yi are in the subtree of G[N] rooted at xi. The choice of xi means
this contains no vertex in C. This is exactly the condition that we wished to maintain. ◀

We are now ready to prove that a winning strategy for Robber in CRGℓ
k(G) generates a

winning strategy for Duplicator in the game PGNℓ

k on the structures Aev
ℓ (G) and Aod

ℓ (G).

▶ Theorem 29. Let G be a connected ℓ-regular ordered graph. If v0 is k-safe for the empty
set, then Duplicator has a winning strategy in the game PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅).

Proof. We show that Duplicator can maintain the following invariant for all positions (α, β)
obtained during the play of the game PGNℓ

k (Aev
ℓ (G),Aod

ℓ (G), ∅, ∅):
(†) There exists a bijection f ∈ GB(Fα) such that p := α 7→ β ⊆ f and tw(f) is k-safe for

Fα, where Fα := {e ∈ E | rng(α) ∩ {e} × [2] ̸= ∅}.
Note that if (†) holds, then p ⊆ f ↾ (Fα × [2]) and, by Lemma 25, f ↾ (Fα × [2]) ∈
PI(Aev

ℓ (G),Aod
ℓ (G)), whence Spoiler does not win the game in position (α, β). Thus, main-

taining the invariant (†) during the play guarantees a win for Duplicator.
Note first that (†) holds in the initial position (α, β) = (∅, ∅) of the game: if f0 ∈ GB is

the bijection with tw(f0) = v0, as ∅ 7→ ∅ = ∅ ⊆ f0 and tw(f0) is k-safe for F∅ = ∅.
Assume then that (†) holds for a position (α, β), and assume that Spoiler plays a left

Nℓ-quantifier move by choosing r ≤ k and y⃗ ∈ Xr. Duplicator answers this by giving the
bijection f−1. Let b⃗ = (b1, . . . , br) ∈ Aℓ(G)r be the second part of Spoiler’s move, and let

A. Dawar and L. Hella 23:17

F ′ be the set {e ∈ E | rng(β [⃗b/y⃗]) ∩ {e} × [2] ̸= ∅}. Since tw(f) is k-safe for Fα, there are
mutually disjoint E \ (Fα ∩ F ′)-paths Pi, i ∈ [ℓ], from tw(f) to some vertices ui that are
k-safe for the set F ′. Let fPi

, i ∈ [ℓ], be the good bijections obtained from f as explained
before Definition 24. Now Duplicator answers the move b⃗ of Spoiler by giving the set
P = {a⃗1, . . . , a⃗ℓ} of r-tuples, where a⃗i := f−1

Pi
(⃗b) for each i ∈ [ℓ].

To see that this is a legal move, observe that since the paths Pi are disjoint, for each j ∈ [r]
there is at most one i ∈ [ℓ] such that f−1

Pi
(bj) ̸= f−1(bj). Thus we have q̂(⃗a1, . . . , a⃗ℓ) = f−1(⃗b),

and hence f−1(⃗b) ∈ q(P) ⊆ Γω
q (P) for q = nℓ

Aℓ(G), as required. Let Spoiler complete the
round of the game by choosing i ∈ [ℓ]; thus, the next position is (α′, β′) := (α[⃗ai/y⃗], β [⃗b/y⃗]).
It suffices now to show that (†) holds for the position (α′, β′) and the bijection f ′ := fPi

.
Note first that Fα′ = F ′, since clearly rng(α[⃗ai/y⃗]) ∩ {e} × [2] ̸= ∅ if, and only if,

rng(β [⃗b/y⃗])∩{e}×[2] ̸= ∅. Thus, tw(f ′) = ui is k-safe for Fα′ . This implies that f ′ ∈ GB(Fα′),
since otherwise by Definition 26, Cop would win the game CRGk(G) immediately in position
(Fα′ , tw(f ′)). It remains to show that p′ := α′ 7→ β′ is contained in f ′. For all components
aj

i of a⃗i we have p′(aj
i) = bj = f ′(aj

i) by definition of a⃗i. On the other hand, for any element
a ∈ dom(p′) \ {a1

i , . . . , a
r
i } we have p′(a) = p(a) = f(a). Furthermore, since the path Pi does

not contain any edges in Fα ∩ Fα′ , we have f ′ ↾ (Fα ∩ Fα′) × [2] = f ↾ (Fα ∩ Fα′) × [2], and
since clearly a ∈ (Fα ∩ Fα′) × [2], we see that f ′(a) = f(a). Thus, p′(a) = f ′(a).

The case where Spoiler plays a right Nℓ-quantifier move is similar. ◀

Note that the vocabulary of the structures Aev
ℓ (G) and Aod

ℓ (G) consists of two ℓ-ary
relation symbols. The presence of at least ℓ-ary relations is actually necessary: Duplicator
cannot have a winning strategy in PGNℓ

ℓ−1 on structures containing only relations of arity less
than ℓ, since by Corollary 10(b), all properties of such structures are definable in Lℓ−1

∞ω(QNℓ
).

From Lemma 19, Theorem 28 and Theorem 29, we immediately obtain the result.

▶ Theorem 30. For any ℓ ≥ 3, CSP(Cℓ) is not definable in Lω
∞ω(QNℓ

).

Note that CSP(Cℓ) corresponds to solving systems of linear equations over Z /2Z with
all equations containing (at most) ℓ variables. Thus, as a corollary we see that solvability of
such systems of equations cannot be expressed in Lω

∞ω(QNℓ
) for any ℓ. Furthermore, since

systems of linear equations over Z /2Z can be solved in polynomial time, we see that the
complexity class PTIME is not contained in Lω

∞ω(QNℓ
) for any ℓ.

Finally, note that since the class CSP(Cℓ) is downwards monotone, by Lemma 9 the
quantifier QCSP(Cℓ) is Nℓ+1-closed. Thus, we get the following hierarchy result for the
near-unanimity families Nℓ with respect to the arity ℓ of the partial functions.

▶ Theorem 31. For every ℓ ≥ 3 there is a quantifier in QNℓ+1 which is not definable in
Lω

∞ω(QNℓ
).

6 Conclusion

We have introduced new methods, in the form of pebble games, for proving inexpressibility in
logics extended with generalized quantifiers. There is special interest in proving inexpressibility
in logics with quantifiers of unbounded arity. We introduced a general method of defining
such collections inspired by the equational theories of polymorphisms arising in the study
of constraint satisfaction problems. Perhaps surprisingly, while the collection of CSP that
have near-unanimity polymorphisms is rather limited (as they all have bounded width), the
collection of quantifiers with the corresponding closure property is much richer, including even
CSP that are intractable. The pebble game gives a general method of proving inexpressibility

CSL 2024

23:18 Quantifiers and Polymorphisms

that works for a wide variety of closure conditions. We were able to deploy it to prove that
solvability of systems of equations over Z /2Z is not definable using only quantifiers closed
under near-unanimity conditions.

It would be interesting to use the pebble games we have defined to show undefinability
with other collections of quantifiers closed under partial polymorphisms. Showing some
class is not definable with quantifiers closed under partial Maltsev polymorphisms would be
especially instructive. It would require using the pebble games with a construction that looks
radically different from the CFI-like constructions most often used. This is because CFI
constructions encode problems of solvability of equations over finite fields (or more generally
finite rings), and all of these problems are Maltsev-closed.

References
1 N. Alon. Tools from higher algebra. In Handbook of Combinatorics (Vol. 2), pages 1749–1783.

MIT Press, 1996.
2 A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary

logic. Theoretical Computer Science, 410(18):1666–1683, 2009.
3 L. Barto, A. A. Krokhin, and R. Willard. Polymorphisms, and how to use them. In

A. A. Krokhin and S. Zivný, editors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/DFU.Vol7.15301.1.

4 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for post
algebras. i. Cybernetics, 5(3):243–252, 1969. doi:10.1007/BF01070906.

5 A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 319–330, 2017. doi:10.1109/FOCS.2017.37.

6 J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

7 A. Dawar, E. Grädel, and M. Lichter. Limitations of the invertible-map equivalences. arXiv,
abs/2109.07218, 2021. arXiv:2109.07218.

8 A. Dawar, E. Grädel, and W. Pakusa. Approximations of isomorphism and logics with
linear-algebraic operators. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019., pages 112:1–112:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.
112.

9 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In Proc. 24th
IEEE Symp. on Logic in Computer Science, pages 113–122, 2009.

10 A. Dawar and B. Holm. Pebble games with algebraic rules. Fundam. Inform., 150(3-4):281–316,
2017.

11 H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
12 P. Erdös and H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl.

Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12(251-257):22, 1963.
13 T. Feder and M.Y. Vardi. Computational structure of monotone monadic SNP and constraint

satisfaction: A study through Datalog and group theory. SIAM Journal of Computing,
28:57–104, 1998.

14 David Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27(1):95–100, 1968.

15 E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! J. Symb. Log., 84:54–87,
2019. doi:10.1017/jsl.2018.33.

16 J. A. Grochow and M. Levet. On the descriptive complexity of groups without abelian normal
subgroups. arXiv, abs/2209.13725, 2022. doi:10.48550/arXiv.2209.13725.

17 L. Hella. Logical hierarchies in PTIME. Information and Computation, 129:1–19, 1996.
18 L. Hella. The expressive power of CSP-quantifiers. In 31st EACSL Annual Conference on

Computer Science Logic, CSL, pages 25:1–25:19, 2023. doi:10.4230/LIPIcs.CSL.2023.25.

https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/BF01070906
https://doi.org/10.1109/FOCS.2017.37
https://arxiv.org/abs/2109.07218
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1017/jsl.2018.33
https://doi.org/10.48550/arXiv.2209.13725
https://doi.org/10.4230/LIPIcs.CSL.2023.25

A. Dawar and L. Hella 23:19

19 L. Hella and H. Imhof. Enhancing fixed point logic with cardinality quantifiers. J. Log.
Comput., 8(1):71–86, 1998. doi:10.1093/logcom/8.1.71.

20 Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial
clones and the time complexity of SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017.
doi:10.1016/J.JCSS.2016.07.008.

21 M. Lichter. Separating rank logic from polynomial time. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS. IEEE, 2021. doi:10.1109/LICS52264.2021.9470598.

22 B. A. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–167,
1981. doi:10.1007/BF01069627.

23 Henning Schnoor and Ilka Schnoor. Partial polymorphisms and constraint satisfaction prob-
lems. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complex-
ity of Constraints – An Overview of Current Research Themes [Result of a Dagstuhl Sem-
inar], volume 5250 of Lecture Notes in Computer Science, pages 229–254. Springer, 2008.
doi:10.1007/978-3-540-92800-3_9.

24 D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67:30:1–30:78, 2020. doi:
10.1145/3402029.

CSL 2024

https://doi.org/10.1093/logcom/8.1.71
https://doi.org/10.1016/J.JCSS.2016.07.008
https://doi.org/10.1109/LICS52264.2021.9470598
https://doi.org/10.1007/BF01069627
https://doi.org/10.1007/978-3-540-92800-3_9
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029

The Worst-Case Complexity of Symmetric Strategy
Improvement
Tom van Dijk # Ñ

Formal Methods and Tools, University of Twente, The Netherlands

Georg Loho # Ñ

Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands

Matthew T. Maat # Ñ

Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands
Abstract

Symmetric strategy improvement is an algorithm introduced by Schewe et al. (ICALP 2015) that can
be used to solve two-player games on directed graphs such as parity games and mean payoff games.
In contrast to the usual well-known strategy improvement algorithm, it iterates over strategies
of both players simultaneously. The symmetric version solves the known worst-case examples for
strategy improvement quickly, however its worst-case complexity remained open.

We present a class of worst-case examples for symmetric strategy improvement on which this
symmetric version also takes exponentially many steps. Remarkably, our examples exhibit this
behaviour for any choice of improvement rule, which is in contrast to classical strategy improvement
where hard instances are usually hand-crafted for a specific improvement rule. We present a
generalized version of symmetric strategy iteration depending less rigidly on the interplay of the
strategies of both players. However, it turns out it has the same shortcomings.

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics of
computing → Discrete mathematics

Keywords and phrases Parity game, Mean payoff game, Symmetric strategy improvement, Strategy
improvement, Worst-case complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.24

Related Version Preprint Version: https://doi.org/10.48550/arXiv.2309.02223

Supplementary Material
Image (Animations): https://github.com/MatthewMaat/SI-animations/tree/master/Example%
20animations, archived at swh:1:dir:7eb5b94153b6d6d05acb741110c1dd902cd3dc8c
Software (Source Code): https://github.com/trolando/oink

archived at swh:1:dir:e20521063a75b985df2eb69595f8f317648fd9de

1 Introduction

We study certain classes of infinite turn-based games on directed graphs between two players,
also called infinitary payoff games, which includes parity games and discounted/mean payoff
games. These games are interesting from an algorithmic perspective and from the viewpoint
of complexity theory.

First, there are various problems that relate to solving these games. Solving parity
games is important for formal verification and synthesis of programs, as many properties
of programs are naturally specified by means of fixed points; parity games capture the
expressive power of nested least and greatest fixed point operators. In particular, there
are linear reductions between parity games and the model checking problem of the modal
µ-calculus [11, 35]. Solving mean payoff games is equivalent to problems like solving energy
games [4], deciding feasibility in tropical linear programming [1], scheduling with AND/OR
precedence constraints [25], and the max-atoms problem [3].

© Tom van Dijk, Georg Loho, and Matthew T. Maat;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.vandijk@utwente.nl
https://www.tvandijk.nl/
https://orcid.org/0000-0002-5366-1051
mailto:g.loho@utwente.nl
https://lohomath.github.io/
https://orcid.org/0000-0001-6500-385X
mailto:m.t.maat@utwente.nl
https://people.utwente.nl/m.t.maat
https://orcid.org/0009-0004-7361-8538
https://doi.org/10.4230/LIPIcs.CSL.2024.24
https://doi.org/10.48550/arXiv.2309.02223
https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations
https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations
https://archive.softwareheritage.org/swh:1:dir:7eb5b94153b6d6d05acb741110c1dd902cd3dc8c;origin=https://github.com/MatthewMaat/SI-animations;visit=swh:1:snp:837037b029abc9431e25fda7a49cc19f742941e0;anchor=swh:1:rev:f47c672dd3a7946bae6aa1b8a2d730cf48d63920
https://github.com/trolando/oink
https://archive.softwareheritage.org/swh:1:dir:e20521063a75b985df2eb69595f8f317648fd9de;origin=https://github.com/trolando/oink;visit=swh:1:snp:0513568a81eb13bf652c98ab38dca899dd5144b1;anchor=swh:1:rev:3982fe109f3ab2580d8ba36c789531beae0b46f5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 The Worst-Case Complexity of Symmetric Strategy Improvement

Another notable aspect of these games is their complexity status. It is known that there
is a polynomial-time reduction from parity games to mean payoff games, and from mean
to discounted payoff games. Many classes of these games are known to be contained in the
intersection of NP and coNP [6, 37], and parity games and mean payoff games have been
shown to even lie in the intersection of UP and coUP [23]. However, the question whether
there exists a polynomial-time algorithm for any of these games has been open for decades.

Related work. Many algorithms have been proposed for solving parity games and mean
payoff games with the main algorithm classes being value iteration [19, 10, 14], strategy
improvement [2, 34] and attractor-based algorithms [31, 36], where we list only a small
part of the many papers. For most of these algorithms there are instances which take
exponentially many steps; these are usually simple for value iteration, while work by Van
Dijk [33] demonstrates an exponential lower bound to many attractor-based algorithms.
Recently, it has been shown that parity games can actually be solved in quasi-polynomial
time: after the breakthrough in [5], several other quasi-polynomial algorithms have been
found, including [8, 13, 20, 27]. However, most of these approaches are likely to be inherently
superpolynomial as demonstrated in [7].

Strategy improvement [2, 12, 26, 28, 29, 34] (also called strategy iteration or policy
iteration) is considered to be a viable candidate for a polynomial-time algorithm for many
classes of infinitary payoff games due to its inherent combinatorial nature. This method
evaluates strategies by means of a function on the nodes in the graph called the valuation. It
then iteratively makes changes to a strategy, improving the valuation, until an optimal strategy
is found. When there are multiple options for improvements, the choice is made by a so-called
improvement rule. There are a few valuations mainly used in the literature [2, 12, 28, 34].
Based on these, many well-known improvement rules have exponential worst-case running
time as demonstrated by sophisticated worst-case constructions, in particular by Friedmann
et al. (see e.g. [9, 15, 16]). The main idea behind the worst-case constructions is that
one player can “trap” the other player repeatedly in different configurations so that the
encountered strategies simulate a binary counter.

While infinitary payoff games are symmetric in the two players by their nature, only some
algorithms explicitly exploit this symmetry. Most attractor-based algorithms for parity games
are inherently symmetric by simultaneously considering the game from the perspective of
both players, while value iteration and strategy improvement algorithms are mostly inherently
asymmetric. Recently, a quasipolynomial symmetric algorithm for parity games was proposed
by Jurdzinski et al. [21].

Our work is mainly motivated by a symmetric version of strategy iteration for infinitary
payoff games established in [30]. This variant maintains two strategies, one for each player.
The players then iteratively improve their strategy, using information from the best response
to their opponent’s strategy. This reduces the number of iterations needed in practice,
and also does not have superpolynomial running time on the type of examples that were
constructed for classic strategy improvement. The worst-case running time of this variant
was unknown so far.

Our contribution. We develop a construction exhibiting exponential running time for
symmetric strategy improvement (SSI). Our main result is the following:

▶ Theorem 1. In the worst case, the number of iterations of symmetric strategy improvement
in parity games, mean payoff games and discounted payoff games is exponential in the number
of nodes and edges in the graph independently of the improvement rule. This holds for any
of the currently used valuations in the literature.

T. van Dijk, G. Loho, and M. T. Maat 24:3

It is remarkable that the result holds for any improvement rule. This is different from
regular strategy improvement, where the existence of a (theoretical) improvement rule for
which the algorithm terminates in a linear number of iterations is guaranteed, see [15,
Lemma 4.2]. By our Theorem 1, this does not exist for symmetric strategy iteration.

Moreover, we present a generalization of SSI which uses the valuation directly and not
only the strategy of the opponent, allowing for more freedom to potentially overcome the
exponential instances. However, we strengthen Theorem 1 with a subtle adapation of the
worst-case instances to hold also for the generalization. This suggests that one needs a
different approach involving more than only local information to benefit from insights in the
interplay of strategies for both players.

Technical overview. To arrive at our main result, we derive a class of games for which SSI
needs exponential running time. It is a careful adaptation (depicted in Figure 5) of the basic
example from [2, 17] in such a way that the two players are both distracted by the other
player’s strategy. The key insight here is that the optimal counterstrategy to a bad strategy
can also be a bad strategy itself. Hence restricting to moves from the optimal counterstrategy
prevents them from making the crucial switches for achieving actual progress.

Our family of games has a self-similar structure. It requires the algorithm to solve a
subgame first, and then after the important switches are made, solve the same subgame
again, leading eventually to the exponential blowup of the number of iterations.

Recall that symmetric strategy iteration picks only edges of the optimal counter strategy.
While this implicitly also uses the valuation, as it is defined via the subgraph arising from
the optimal counterstrategy, the generalization directly compares the valuations of the nodes.
Only those edges are considered, which provide a local improvement over the valuations of
both players.

To derive the lower bound construction for the generalization, we introduce a new gadget
(Figure 7). This replaces each of the iteratively arranged pairs of nodes in the former family.
The gadget then forces the generalization to exhibit a similar behaviour as the original SSI.

Paper organization. We provide the necessary background on parity games and (symmetric)
strategy improvement in Section 2. We introduce generalized symmetric strategy improvement
in Section 3. Then, Section 4 presents the structure and iterations of the basic exponential
instance for SSI. This is refined in Sections 5 and 6 to the generalized version of SSI and
arbitrary improvement rules. We conclude with a discussion of potential extensions and
limitations of our construction.

2 Preliminaries

Parity games. A parity game is a game played between two players, called player 0 and
player 1. It is played on the nodes of a directed graph G = (V, E), where the nodes are
partitioned into V = V0 ∪ V1, and Vi is controlled by player i. We assume every node has
at least one outgoing edge. Associated with the nodes of the graph is a priority function
p : V → Q, where Q ⊂ Z. At the start of the game, a pebble is placed on one of the nodes.
A move is made by the player controlling the node that the pebble is currently on, and it
consists of this player choosing an outgoing edge from this node. The pebble moves along
the edge to the next node. The players keep making moves indefinitely. The winner of the
game is decided by the largest node priority that the pebble encounters infinitely often. If it
is even, player 0 wins, and if it is odd, player 1 wins.

CSL 2024

24:4 The Worst-Case Complexity of Symmetric Strategy Improvement

W0 W1

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 1 Left: A parity game. Priorities are shown in the nodes. Nodes controlled by player
0 are shown as circles, and nodes controlled by player 1 are squares. The sets of winning starting
nodes for player 0 and 1 are W0 and W1, and the winning strategies are marked by dashed lines.
Right: A sink parity game with a strategy σ (dashed) and its optimal counterstrategy σ̄ (dotted).

It is well known that parity games are positionally determined, meaning that there always
is a player that has a positional winning strategy. Positional means here that one only takes
into account on which node the pebble currently is. Therefore, we define a strategy for player
0 as a function σ : V0 → V (with the condition that (v, σ(v)) ∈ E for all nodes v ∈ V0).
Similarly, a player 1 strategy is a function τ : V1 → V (with (v, τ(v)) ∈ E for all nodes
v ∈ V1).

Sink parity games. In this paper, we restrict ourselves to a class of parity games called
sink parity games as it allows to simplify the arguments for valuations. This class has often
been used to show lower bounds for parity game algorithms (see e.g. [15, 18]). Solving sink
parity games is as hard as solving any parity game, see Lemma 4.

▶ Definition 2. A sink parity game is a parity game that fulfills the following conditions:
1. There exists a so-called sink node ⊤ for which p(⊤) < p(v) for all nodes in V \{⊤}, and

whose only outgoing edge is (⊤,⊤).
2. There exists a player 0 strategy σ such that, when it is played, the highest priority

(except ⊤) in any possible cycle is even.
3. There exists a player 1 strategy τ such that, when it is played, the highest priority

(except ⊤) in any possible cycle is odd.

We call player 0 and player 1 strategies that satisfy the above conditions admissible. If
player 0 plays an admissible strategy σ and player 1 plays an admissible strategy τ , then the
pebble must end up at ⊤. Otherwise, it would enter the same node outside ⊤ twice, which
would create a cycle, and the highest priority of the cycle would have to be odd and even
at the same time. This also implies that ⊤ is reachable for the other player when σ or τ is
played. One may say that the result of best play in a sink parity game is a “tie”.

Valuations of strategies. In the remainder of this section, we describe (symmetric) strategy
improvement in parity games. We use the valuation of [12] and [24], adapted to sink parity
games. The advantages of using this framework are that it is simpler to explain, and it focuses
on the crucial second component of the most commonly used valuation by Jurdzinksi and
Vöge [34]. In sink parity games and their related mean/discounted payoff games, the valuation
that we describe here is equivalent to the other used versions of strategy improvement for
parity games and mean payoff games [2, 28, 34].

T. van Dijk, G. Loho, and M. T. Maat 24:5

Now, suppose player 0 and player 1 both fix a strategy σ and τ , respectively. Then, given
a starting node v, the course of the game is fixed. We want to evaluate how “good” this
outcome is for player 0. This is expressed in the play value Θσ,τ (v). If the pebble does not
reach ⊤, then it must eventually follow some cycle. If the highest priority in the cycle is
even, then this is very good for player 0, so we assign ∞ to this play. If the priority is odd,
we assign it value −∞. Otherwise, the pebble follows a path to ⊤. In this case we establish
the play value by counting how often each priority on this path is encountered. The even
player aims to encounter many high even priorities and little high odd priorities on this path.
The following definition formalizes this.

▶ Definition 3. Let σ and τ be a player 0 and player 1 strategy, respectively. Their play
value is a function Θσ,τ : V → ZQ

≥0 ∪ {−∞,∞}, with ZQ
≥0 the set of nonnegative integer

vectors indexed by the priority set Q. It is defined as follows:
Suppose the nodes encountered, starting from node v, are v1(= v), v2, . . . , vk,⊤,⊤, . . .

(with vk ̸= ⊤). Then for any q ∈ Q, the q-element of Θσ,τ (v) (the component of the
vector in ZQ

≥0 indexed by q) is given by (Θσ,τ (v))q = |{j ≤ k : p(vj) = q}|.
If ⊤ is not reached starting from v and player 0 wins, then Θσ,τ (v) =∞.
If ⊤ is not reached starting from v and player 1 wins, then Θσ,τ (v) = −∞.

We can compare play values by how “good” they are for player 0. This is done by a total
order ⊴ on ZQ

≥0 ∪ {−∞,∞}. The smallest element for ⊴ is −∞ and the largest is ∞. The
order ⊴ compares the play values in ZQ

≥0 lexicographically, but different for even and odd
indices. To be precise, suppose we have B and C in ZQ

≥0, and that B ̸= C. Let q′ be the
highest priority q for which Bq′ ≠ Cq′ . We then say that B ◁ C if either Bq′ < Cq′ and q′

is even, or Bq′ > Cq′ and q′ is odd. So if B ◁ C, then B has either less of some high even
priority or more of some high odd priority, so B is “worse” for player 0. Then we use the
concept of play value to evaluate strategies. We evaluate a player 0 admissible strategy σ by
an optimal player 1 response σ̄. To be precise, the valuation of an admissible strategy σ is a
function Ξσ : V → ZQ

≥0 given by: Ξσ(v) = min⊴{Θσ,τ (v) | τ player 1 strategy} = Θσ,σ̄(v)
A strategy τ attaining the minimum in the above equation is an (optimal) counterstrategy.

Note that there exists a player 1 strategy σ̄ that simultaneously attains the minimum for all
nodes in V (equation (11) in [22]). In general, this strategy might not be unique, but we
pick one arbitrarily to be σ̄ if there are multiple options. Moreover, an optimal response σ̄

can be computed efficiently. Because we have a sink parity game and an admissible σ, the
minimum is never ∞ or −∞, so we can regard the range of Ξσ as ZQ

≥0.
The valuation of an admissible player 1 strategy τ is defined similarly using an optimal

response τ̄ from player 0: Ξτ (v) = max⊴{Θσ,τ (v) | σ player 0 strategy} = Θτ̄ ,τ .
Figure 1 shows an example of a sink parity game with a strategy and its counter-

strategy. For example, we have Ξσ(v2) = (0, 1, 0, 0, 0, 1), as the play resulting from σ and
its optimal counterstrategy σ̄ goes through the nodes with priorities 2 and 6. Likewise,
Ξσ(v4) = (0, 0, 0, 1, 0, 0), hence Ξσ(v2) ▷ Ξσ(v4).

Strategy improvement. The core idea behind strategy improvement is to make so-called
improving moves. Improving moves for player 0 are given by the edges (v, v′) with v ∈ V0 for
which Ξσ(v′) ▷ Ξσ(σ(v)). That means that, with a new strategy picking v′ after v, player 0
can send the pebble to a node with higher valuation than it currently does in σ. We denote
the set of improving moves for σ by Iσ. Player 0 creates a new strategy σ′ from σ by making
improving moves, which means σ′(v) = v′ for a number of improving moves (v, v′) ∈ Iσ and
σ′(v) = σ(v) everywhere else. Of course, there may be multiple improving edges per node.

CSL 2024

24:6 The Worst-Case Complexity of Symmetric Strategy Improvement

Algorithm 1 Strategy improvement.

1: Start with some admissible strategy σ

2: Find an optimal counterstrategy σ̄ to σ, compute Ξσ and Iσ

3: if Iσ = ∅ then return σ

4: else
5: Let σ′ be the strategy obtained from σ by applying all improving moves from f(Iσ)
6: σ ← σ′, go to 2
7: end if

The choice which edges to use to improve is decided by an improvement rule, which is a
function f : P(E)→ P(E) that takes as input a set of improving edges, and outputs a set of
improving edges subject to the following conditions:

If |S| > 0, then |f(S)| > 0.
f(S) ⊆ S for all S ∈ P(E).
Every node has at most one outgoing edge in f(S).

By [22, Lemma 5.7], for any choice of improving edges, we have Ξσ′(v) ⊵ Ξσ(v) for every
v ∈ V , and Ξσ′(v) ▷ Ξσ(v) for at least one node v. Hence we increase the valuation
of the strategy. Clearly, the new strategy is also admissible as its valuation is not −∞.
Additionally, if σ has no improving moves, then we know that Ξσ is pointwise maximal in
the space of valuations ([22, Lemma 5.8]). This leads to the strategy improvement algorithm
(Algorithm 1).

We can also define improving moves for player 1, by saying (v, v′) with v ∈ V1 is an
improving move if Ξτ (v′) ◁ Ξτ (τ(v)). We denote the set of improving moves for player 1
by Iτ . Similar to before, if τ ′ is obtained from τ by making improving moves, Ξτ ′(v) ⊴ Ξτ (v)
for every v ∈ V , and Ξτ ′(v) ◁ Ξτ (v) for at least one node v. It is well-known that, if σ is an
optimal player 0 strategy (maximizing Ξσ pointwise) and τ an optimal player 1 strategy
(minimizing Ξτ pointwise), then Ξσ = Ξτ .

Now why are we interested in finding the strategy σ that yields the highest valuation Ξσ

in a sink parity game? The winner of a sink parity game is already known, since the best
both players can do is go to the sink node ⊤. However, even in a sink parity game, finding
the optimal strategy (yielding the ⊴-best Ξσ) is as difficult as solving parity games, as noted
before in [16]. It is similar to the reduction to the longest shortest path problem in [2] and
escape games in [29].

▶ Lemma 4. Deciding the winning starting sets and the winning strategies in a parity game
can be polynomial-time reduced to finding a player 0 strategy σ in a sink parity game that
maximizes Ξσ.

Proof. Suppose we have a parity game G = (V = V0∪V1, E) with priority function p : V → Z.
We may assume that there are no cycles within V0 or within V1. This is because we can
always add nodes with small priorities controlled by player 0 in the middle of cycles in V1
and vice versa without affecting the outcome of the game. Now we construct a parity game
G′ = (V ′, E′) from G, by adding two extra nodes, ⊤ and w. We extend p by choosing p(⊤)
smaller than all other priorities, and taking for p(w) an even number higher than all other
priorities. We add an edge from every node in V0 to ⊤, from every node in V1 to w, from w

to ⊤ and from ⊤ to ⊤.
This is clearly a sink parity game, since player 0 has an admissible strategy by always

going to ⊤, and player 1 has an admissible strategy by going to w. Now let σ be an optimal
player 0 strategy that maximizes Ξσ pointwise, and let σ̄ be player 1’s optimal response.

T. van Dijk, G. Loho, and M. T. Maat 24:7

V0 V1

T w

Figure 2 Reduction to a sink parity game.

Since p(w) is even and very large, if player 1 can avoid entering ⊤ through w, they will do
so. Define the subgraph G′

σ by the graph with the same node set as G′ and with edge set
{(v, σ(v)) : v ∈ V ′

0} ∪ {(v, v′) ∈ E′ : v ∈ V ′
1}. Suppose for a node v that (Ξσ(v))p(w) = 1.

This implies that in G′
σ, the node ⊤ is only reachable from v through w. In particular, this

means that player 1 would always have to end in a cycle in V if they would not have the
option of going to w. Because σ is admissible, this cycle has an even highest priority. This
implies that, in the original game G, player 0 wins the game that starts at v by playing σ.
If, on the other hand, (Ξσ(v))p(w) = 0, this implies that (Ξτ (v))p(w) = 0, and we can argue
in the same way that player 0 can only reach cycles of odd priority in V if player 1 plays τ .
Hence τ wins for player 1 in the parity game G that starts from v. So we found the winning
starting sets and winning strategies for both players in G. (Note that we could also have
made the above construction with p(w) odd and connecting player 0 nodes to w and player 1
nodes with ⊤.) See also Example 6. ◀

Symmetric strategy improvement. The symmetric strategy improvement (SSI) algorithm
was introduced by Schewe et al. in [30] as a symmetric version of strategy improvement.
The algorithm maintains and improves two strategies simultaneously: a player 0 strategy
σ and a player 1 strategy τ . It uses an optimal counterstrategy τ̄ (by player 0) to τ to
select improving moves for σ, and an optimal counterstrategy σ̄ (by player 1) to σ to select
improvements for τ . Note that this could be applied to a broader class of games than just
(sink) parity games, in particular mean and discounted payoff games. It is described in
Algorithm 2 where we expicitly include the choice of an improvement rule f : P(E)→ P(E).

It is clear that the algorithm terminates, since any improving move improves the valuation
for the respective player, and there is only a finite number of strategies (having a fixed
valuation) for both players. The following lemma implies that the algorithm only terminates
when the resulting pair of strategies (σ, τ) is optimal for the players. It is implicitly proven
in [30, Lemma 3].

▶ Lemma 5. Suppose σ is a non-optimal player 0 strategy or τ is a non-optimal player 1
strategy. Let σ̄ and τ̄ be optimal counterstrategies to σ and τ , respectively. Then at least one
of the sets Iσ ∩ {(v, τ̄(v))|v ∈ V0} and Iτ ∩ {(v, σ̄(v))|v ∈ V1} is nonempty.

CSL 2024

24:8 The Worst-Case Complexity of Symmetric Strategy Improvement

Algorithm 2 Symmetric strategy improvement.

1: Start with some pair of admissible strategies σ,τ
2: Find counterstrategies σ̄ and τ̄ and compute Iσ and Iτ

3: I ← f ((Iσ ∩ {(v, τ̄(v))|v ∈ V0}) ∪ (Iτ ∩ {(v, σ̄(v))|v ∈ V1})))
4: Let σ′, τ ′ be result of applying all improving moves from I to σ, τ

5: if σ = σ′ and τ = τ ′ then return σ, τ

6: else
7: σ ← σ′, τ ← τ ′, go to 2
8: end if

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 3 Left: a parity game. Middle: strategy σ (dashed) and counterstrategy σ̄ (dotted) in the
resulting sink parity game. Right: Strategy τ (dashed) and counterstrategy τ̄ (dotted).

▶ Example 6. We illustrate the reduction to a sink parity game and the symmetric strategy
improvement algorithm with an example. Suppose we have a parity game as on the left
in Figure 3. This can be transformed into a sink parity game as in Lemma 4. Two copies
of the resulting sink parity game are shown on the right in Figure 3. One copy shows a
trivial admissible player 0 strategy σ, with its optimal response σ̄. The other one shows an
admissible τ with its optimal response τ̄ .

Now we look at what symmetric strategy improvement does if we start with the pair
of strategies shown in Figure 3. We denote the valuations Ξσ and Ξτ in this game by
(a1, a2, a4, a5, a6), where ai stands for (Ξσ)i or (Ξτ)i. Now we find the improving moves.
Player 0 has two improving moves: the first is (v1, v2), as
Ξσ(v2) = (1, 1, 0, 0, 0) ▷ Ξσ(σ(v1)) = Ξσ(⊤) = (0, 0, 0, 0, 0);
and the other improving move is (v1, v4). Since τ̄(v1) = v2, the symmetric strategy improve-
ment algorithm will switch player 0’s choice in v1 to v2. Player 1 has one improving move,
namely (v5, v4), as Ξτ (v4) = (0, 0, 1, 1, 1) ◁ (0, 0, 0, 0, 1) = Ξτ (v6). However, σ̄(v5) = v2, so
Iτ ∩ {(v, σ̄(v))|v ∈ V0} is empty, and we do not change τ in this iteration. So in the first
iteration, the only switch that is made is changing σ(v1) to v2. The reader can verify that
in the second iteration of the symmetric strategy improvement algorithm, only the switch
(v5, v4) is made for player 1, and that after that, the algorithm terminates. Then, we have a
pair of optimal strategies σ and τ as shown on the left in Figure 4. We can now infer the
winning sets W0 and W1 of the original game from the 6-element of the valuations of the
nodes. Also, the optimal strategies in the sink game form winning strategies in the original
game.

3 Generalized symmetric strategy improvement

It was an intriguing insight by Schewe et al. how the interplay between strategies of both
players can be used to overcome the known hard instances of strategy improvement. Since
the evaluation of the goodness of a strategy relies on the valuation, we go one step further

T. van Dijk, G. Loho, and M. T. Maat 24:9

W0 W1

v1: 1

v5: 5

v4: 4

v2: 2

v1: 1

v5: 5

v4: 4

v2: 2

T

v6: 6

Figure 4 Left: optimal strategies σ (dashed) and τ (dotted), found after performing symmetric
strategy improvement. Right: the resulting winning sets and winning strategies (dashed) in the
original game.

Algorithm 3 Generalized symmetric strategy improvement.

1: Start with some admissible strategies σ and τ

2: Find Iσ, Iτ , Jσ(τ) and Jτ (σ)
3: I ← f ((Iσ ∩ Jσ(τ)) ∪ (Iτ ∩ Jτ (σ)))
4: Let σ′, τ ′ be result of applying all improving moves from I to σ, τ

5: if σ = σ′ and τ = τ ′ then return σ, τ

6: else
7: σ ← σ′, τ ← τ ′, go to 2
8: end if

and directly use the interplay between the valuations arising from the strategies of the two
players to make the improvements. While this can overcome the first basic family of hard
instances presented in Section 4, we show in Section 5 that actually both versions can still
be forced to take exponentially many steps. In this way, we extend the result of Theorem 1.

Our selection of improving edges contains the original set but is bigger in general. Instead
of basing the choices just on optimal counterstrategies, we construct sets Jσ(τ) and Jτ (σ) by
directly comparing locally the valuations of adjacent nodes:

Jσ(τ) = {(v, w) : v ∈ V0 ∧ Ξτ (w) ⊵ Ξτ (σ(v))},
Jτ (σ) = {(v, w) : v ∈ V1 ∧ Ξσ(w) ⊴ Ξσ(τ(v))}.

These notions allow us to state our generalized version in Algorithm 3. They are in some
sense the counterparts of Iσ and Iτ , recall that Iσ = {(v, w) : v ∈ V0 ∧ Ξσ(w) ▷ Ξσ(σ(v))}.
One obtains the original SSI back in this context by choosing only those improvement rules
that select only edges used by σ̄ and τ̄ .

Correctness of generalized symmetric strategy improvement. Like for normal SSI, it is
clear that the algorithm terminates. We are left to show that there is always an improving
move possible if the pair of strategies is not optimal. We do so by showing that all the
improving moves that were possible in SSI are also possible in the generalization. Correctness
of Algorithm 3 then follows from Lemma 5.

▶ Lemma 7. For any pair of strategies σ, τ , we have that any edge (v, σ̄(v)) is in Jτ (σ), and
any edge (v, τ̄(v)) is in Jσ(τ).

Proof. We do so by contradiction. Suppose there is an edge (v, σ̄(v)) that is not in Jτ (σ).
This means by definition of Jτ (σ) that Ξσ(σ̄(v)) ▷ Ξσ(τ(v)). Note that the valuation of
σ, which is Ξσ, is equal to Θσσ̄. Now consider the strategy subgraph Gσ := (V, Eσ) with

CSL 2024

24:10 The Worst-Case Complexity of Symmetric Strategy Improvement

an:2n+1

dn:2n+2

an+1:1

dn+1:2n+4

an-1:2n-1

dn-1:2n

a2:5

d2:6

a1:3

d1:4

a3:7

d3:8

...

...

...

Figure 5 The graph Gn, with the priorities written in the nodes. The initial strategies σ0 and τ0

are dashed.

Eσ := {(v, w) : v ∈ V1} ∪ {(v, σ(v)) : v ∈ V0}). In Gσ, the valuation of σ̄ is equal to
Θσσ̄ = Ξσ, as there is only one player 0 strategy possible. But then Ξσ(σ̄(v)) ▷ Ξσ(τ(v))
implies that (v, τ (v)) is an improving move for player 1 strategy σ̄ in the game Gσ. However,
this is not possible, since σ̄ is defined to be an optimal counterstrategy to σ. We conclude
that (v, σ̄(v)) ∈ Jτ (σ). The proof of (v, τ̄(v)) ∈ Jσ(τ) is analogous. ◀

4 Counterexample for worst-case complexity

We present a family of parity games for which the original SSI needs exponentially many
iterations, where we restrict to the SWITCH-ALL improvement rule at first. This rule selects
one improving edge for every node that has an outgoing improving edge in S. We generalize
this to arbitrary improvement rules in Section 6. Some animations of the iterations of the
examples presented in Sections 4 and 5 can be found at https://github.com/MatthewMaat/
SI-animations/tree/master/Example%20animations

We use a sequence of sink parity games (Gn)n∈N whose nodes and edges of Gn are listed
in Table 1 and Figure 5. The main structure is similar to the mean payoff game from [2] and
[17], with the main difference being that we have backward edges to the “start” of the game.

Initial strategies We define σ0 and τ0 by σ0(ai) = ai+1 and τ0(di) = di+1 for i = 1, 2, . . . , n,
σ0(an+1) = an+1 and τ0(dn+1) = an+1.

Gn is a sink parity game. The node an+1 is the sink node with low priority. Also, σ0 is
an admissible player 0 strategy. If the pebble enters any node ai if σ0 is played, it will end
at the sink. The only way player 1 could try to avoid this is by trying to keep the pebble
within d1, d2, . . . , dn, but then this will create a cycle with even highest priority. Hence σ0 is
admissible. Likewise, τ0 is admissible, so we have a sink parity game.

Table 1 Nodes and edges of Gn.

Node Player Priority Successors
a1 Player 0 3 a2, d2

ai, i = 2, . . . , n Player 0 2i + 1 a1, ai+1, di+1

d1 Player 1 4 a2, d2

di, i = 2, . . . , n Player 1 2i + 2 d1, ai+1, di+1

an+1 Player 0 1 an+1

dn+1 Player 1 2n + 4 an+1

https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations
https://github.com/MatthewMaat/SI-animations/tree/master/Example%20animations

T. van Dijk, G. Loho, and M. T. Maat 24:11

Optimal strategies of the players. Recall that a strategy having a high valuation (for
player 0) corresponds to being able to pass through node with high even priorities and
avoiding nodes with high odd priorities. Therefore, to maximize their valuation, player 0
lets the pebble pass dn+1, which has the largest (and even) priority in the game. Playing
a strategy σ that achieves this when starting from a node v yields (Ξσ(v))2n+4 = 1. This
means the valuation is larger than any strategy that does not achieve this. There is only
one strategy where player 0 can do this from every starting node ai, namely the strategy
with σ(ai) = ai+1 for i < n and σan = dn+1. Ironically, this differs from σ0 in only one edge.
However, as we will see, we avoid making this switch for a long time. Likewise, player 1’s goal
is to avoid dn+1. Their only strategy to avoid it from every node di is to pick τ(di) = di+1
for i < n, and τ(dn) = an+1. Again, player 1 is only one switch from optimal when starting
with τ0.

The remainder of this section is dedicated to the proof of the following proposition, where
we consider iterations in 5 phases. In Section 6, we discuss how our main result follows from
this.

▶ Proposition 8. Suppose SSI with the SWITCH-ALL rule on the game graph Gn starts
with the strategy pair σ0, τ0. Then after 2n+1 − 3 iterations, the optimal strategies σ and τ

are found. The optimal strategies for both players do not appear in any earlier iteration.

Proof. The reader can verify that one needs only one iteration to reach the optimum in G1.
We assume the claim to be true for Gj−1 and show that it holds for Gj to conclude the proof
by induction. We do this by showing that the iterations of SSI are as follows:
1. 2j − 3 iterations with switches from a1, a2, . . . , aj−1 and d1, d2, . . . , dj−1
2. One iteration where the only switch made is (aj , a1)
3. One iteration where the only switch made is (dj , aj+1)
4. One iteration where the only switch made is (aj , dj+1)
5. 2j − 3 iterations with switches from a1, a2, . . . , aj−1 and d1, d2, . . . , dj−1
Then clearly the total number of iterations is 2 · (2j − 3) + 3 = 2j+1 − 3. Now, we elaborate
on these 5 steps, where the first 2j − 3 iterations need extra insights captured in the following
three observations.

▶ Observation 9. As long as σ(aj) = aj+1, we have σ̄(dj) = d1. Likewise, as long as
τ(dj) = dj+1, we have τ̄(aj) = a1

Proof. Suppose σ(aj) = aj+1, and we look at what σ̄ could be. Recall that player 1’s goal is
to reach aj+1 without passing dj+1. Starting from dj , player 1 can do so in two ways: by
picking σ̄(dj) = aj+1, or by picking σ̄(dj) = d1 and then choosing σ̄ for d1, d2, . . . , dj−1 such
that the pebble ends up at aj . The first option gives (Ξσ(dj))2j+1 = 0 while the second one
gives (Ξσ(dj))2j+1 = 1. Hence, the latter gives a lower valuation, and σ̄(dj) = d1. We can
prove similarly that while τ(dj) = dj+1, we have τ̄(aj) = a1. ◀

▶ Observation 10. Suppose σ(aj) = aj+1 and τ(dj) = dj+1. Then Ξσ(aj) ◁ Ξσ(dj) and
Ξτ (aj) ◁ Ξτ (dj). In both cases, the valuation vectors compared differ in their q-position where
q ≥ 2j + 1.

Proof. From the proof of Observation 9 we know that when the pebble starts at dj and
players play σ, σ̄, the pebble goes to d1, then to aj and directly to aj+1. Hence Ξσ(aj) and
Ξσ(dj) differ in their p(dj) = 2j + 2-component, where the latter valuation has a 1. Then it
follows that Ξσ(aj)◁Ξσ(dj), as the values in the vector corresponding to smaller priorities are
insignificant when comparing these two valuations. We can likewise see that Ξτ (aj) ◁ Ξτ (dj)
because they differ in their p(aj) = 2j + 1-component. ◀

CSL 2024

24:12 The Worst-Case Complexity of Symmetric Strategy Improvement

aj:2j+1

dj:2j+2

aj+1:1

dj+1:2j+4

aj-1:2j-1

dj-1:2j

a2:5

d2:6

a1:3

d1:4

a3:7

d3:8

...

...

...

2

3

1

Figure 6 The strategies σ, τ (dashed) after 2j − 3 iterations of SSI. Edges that are switched in
the next 3 iterations are marked with 1,2,3.

▶ Observation 11. Suppose σ(aj) = aj+1 and τ(dj) = dj+1. Then edge (aj , a1) is improving
only if σ(ai) = ai+1 for i < j − 1 and σ(aj−1) = dj. Edge (dj , d1) is never improving.

Proof. Suppose player 0 switches the improving edge (aj , a1) while σ is different than
specified above. The resulting strategy should also be admissible. However, player 1 can
play strategy σ̄(di) = di+1 for i < j − 1 and σ̄(dj−1) = aj , creating a cycle with highest
priority p(aj) = 2j + 1. So the new strategy is not admissible, so (aj , a1) could not have been
improving. Likewise, suppose (dj , d1) is improving for some strategy τ and we switch it. Then
player 0 can play τ̄(ai) = ai+1 for i < j − 1 and τ̄(aj−1) = dj . This either creates a cycle
with highest priority p(dj) = 2n + 2 or player 1 creates another cycle within d1, d2, . . . , dj−1.
In both cases, the resulting player 1 strategy cannot be admissible, so the edge could not
have been improving. ◀

From Observations 9 and 11, we can conclude that the strategies at aj and dj will
not change until σ fulfills the conditon of Observation 11 (σ(ai) = ai+1 for i < j − 1 and
σ(aj−1) = dj). Moreover, from Observation 10, we notice that at this first part of the
algorithm we may as well remove aj+1 and dj+1, and set p(aj) = 1 and add edges (dj , aj),
(aj , aj) without changing any choices of SSI. But now we are left with an exact copy of
Gj−1, so by induction hypothesis, we know that SSI needs 2j − 3 iterations to reach the
optimal pair of strategies there. The optimal player 0 strategy in Gj−1 is σ(ai) = ai+1 for
i < j − 1 and σ(aj−1) = dj , which we only reach after 2j − 3 iterations. So only then do
we need to consider the original graph Gj again and are we able to switch edge (aj , a1) by
Observation 11.

The (2j − 2)-th iteration There are no improving moves in a1, . . . , aj−1 or in d1, . . . , dj−1,
as the strategies are ’optimal’ strategies in Gj−1. However, we do not have optimal strategies
in Gj yet, so by Lemma 5, there must be at least one edge switched by SSI. The only choice
left is edge (aj , a1), so this edge is now switched.

The (2j − 1)-th iteration We have σ = τ̄ (recall τ̄ from Observation 9). Since τ is the
same as in the last iteration, the nodes d1, . . . , dj−1 do not have improving moves. Only the
edge (dj , aj+1) can be switched. Since the strategies are not optimal yet, again Lemma 5
implies that we switch exactly this edge in the (2j − 1)-th iteration.

The 2j-th iteration At the start of the 2j-th iteration, we observe that player 1’s strategy
τ is equal to the counterstrategy σ̄. This is since player 1 can only reach the sink (avoiding
dj+1) by playing σ̄(dj) = aj+1, and only with this current strategy can player 1 additionally

T. van Dijk, G. Loho, and M. T. Maat 24:13

pass node aj on the way there if player 0 plays σ. Hence, SSI does not make any improving
moves for player 1. If player 0 makes any switch in the nodes a1, a2, . . . , aj−1, then this
always allows player 1 to create a cycle with odd highest priority, so this cannot be an
improving move. Therefore, SSI can only make a switch in aj . The only improving move in
aj is (aj , dj+1), so exactly this edge is switched in iteration 2j .

The final 2j − 3 iterations Notice that we will never again make switches in nodes aj and
dj . Moreover, Ξσ(aj) ▷ Ξσ(dj) and Ξτ (aj) ▷ Ξτ (dj). We might as well replace dj by a sink
node of priority 1, and aj by a node with priority 2j + 2 with an edge to the sink (and remove
aj+1, dj+1). This is without changing any future iterations of SSI. But then we have again a
copy of Gj−1 with its respective starting strategies. Using the induction hypothesis again,
SSI takes another 2j − 3 iterations. It reaches the optimal strategies only in the last iteration.
These strategies are also optimal in Gj , and this completes the proof of Proposition 8. ◀

5 Adapted counterexample for generalization of symmetric strategy
improvement

We consider the worst-case performance of the generalized version of SSI, when the SWITCH-
ALL rule is used. The generalized version can solve the games from the previous section
quickly, as it considers more improving moves. However, in this section we show that the
generalized version still has exponential running time on a suitably modified version of the
counterexample.

The overall structure is the same as for the original counterexample, but the nodes ai and
bi are replaced by gadgets as shown in Figure 7. The full construction is described in Table
2. The nodes ai and di (except the sink) have priorities larger than N and the other nodes
have priority smaller than N , so the priorities of ai and di are still the most important ones.

The function of these gadgets is to make it harder for the players to switch. Now for
example, instead of just making a switch at ai, player 0 has to switch their choice at both ci

and mi to significantly change the course of the game. Additionally, the nodes ei, fi, ki, li
make improving moves seem very insignificant with respect to differences in valuation. Similar
to Proposition 8, the following proposition holds:

▶ Proposition 12. Suppose generalized SSI on the game graph Gn starts with σ0, τ0. Then
after 7 · 2n−1 − 5 iterations, the optimal strategies σ and τ are found. The optimal strategies
for both players do not appear in any earlier iteration.

Table 2 Nodes, edges and initial strategies of the adapted counterexample. We have N = 16n+16,
and i ranges from 1 to n. Nodes between brackets mean that they are only a successor if i > 1.

Node Player Priority Successors Node Player Priority Successors
ai Player 0 N + 2i − 1 ci an+1 Player 0 1 an+1

di Player 1 N + 2i hi dn+1 Player 1 N + 2n + 2 an+1

ci Player 0 14i + 1 ei, mi, (a1) ei Player 1 14i + 4 mi, ai+1

mi Player 0 14i + 3 fi, ci, (a1) fi Player 1 14i + 6 ci, di+1

gi Player 1 14i + 8 ki, hi, (d1) ki Player 0 14i + 11 hi, ai+1

hi Player 1 14i + 10 li, gi, (d1) li Player 0 14i + 13 gi, di+1

σ0(ai) = ci τ0(di) = hi σ0(an+1) = an+1 τ0(dn+1) = an+1

σ0(ci) = ei σ0(mi) = ci τ0(gi) = hi τ0(hi) = li

τ0(ei) = ai+1 τ0(fi) = di+1 σ0(ki) = ai+1 σ0(li) = di+1

CSL 2024

24:14 The Worst-Case Complexity of Symmetric Strategy Improvement

ai:N+2i-1

mi:14i+3

ci:14i+1 ei:14i+4

fi:14i+6

di:N+2i

gi:14i+8

hi:14i+10

ki:14i+11

li:14i+13

ai+1a1

d1

ei-1

fi-1

ki-1

li-1

di+1

Figure 7 Subgraph for generalized SSI that replaces ai and bi when i > 1. Initial strategies σ0

and τ0 are dashed. Nodes that do not have all their incident edges shown are small and grey.

Proof. We show this by induction similar to before. For n = 1, the reader can verify that
in the first iteration we switch (m1, f1) and (g1, k1), and in the second iteration we switch
(h1, g1) and (c1, m1) to reach the optimum. For the induction step, we assume the lemma
holds for Gj−1, and show that the iterations of generalized SSI on Gj are as follows:
1. 7 · 2j−1 − 5 iterations with switches in nodes xi with index i < j

2. One iteration where only (cj , a1) and (mj , a1) are switched
3. One iteration where only (gj , kj) is switched
4. One iteration where only (hj , gj) is switched
5. One iteration where only (mj , fj) is switched
6. One iteration where only (cj , mj) is switched
7. 7 · 2j−1 − 5 iterations with switches in nodes xi with index i < j

Similar to the proof of Proposition 8, we can argue about the phase of the algorithm where
no switches are yet made in the nodes cj , mj , gj and lj . We can observe that edges (cj , a1)
and (mj , a1) are part of τ̄ but not yet improving until player 0 plays a specific strategy,
and (gj , d1) and (hj , d1) are part of σ̄ and never improving. So in the first phase, the only
improving moves with index j are (mj , fj) and (gj , kj). But we do not make these moves for
a reason that is similar to Observation 9. If we consider the path of the pebble when τ and
τ̄ are played, then starting from fj , we go immediately to dj+1, while from cj we go back to
a1 and through dj to dj+1. So Ξτ (cj) is much bigger (because of the p(dj) = N + 2i) than
Ξτ (fj). Hence generalized SSI never makes the switch (mj , fj) in the beginning. Likewise,
the move (gj , kj) is postponed by the algorithm. Therefore, we can again pretend that aj is
the sink and dj only has an edge towards the sink and use the induction hypothesis to show
that this first phase takes 7 · 2j−1 − 5 iterations.

Now going back to the induction proof, the next five iterations of the algorithm are
similar to the three iterations in the middle of the counterexample for SSI, except that we
need two switches per module instead of one.

T. van Dijk, G. Loho, and M. T. Maat 24:15

Table 3 Number of iterations of the implementation of symmetric strategy improvement in
Oink [32] for the counterexample of Figure 7.

n 1 2 3 4 5 6 7 8 9 10
number of iterations Gn 4 10 11 16 25 44 81 156 305 604

For the last part, we can again pretend that dj is the sink and aj a node with even
priority with an edge to the sink. This yields a copy of Gj−1, but with nodes like cj−1 and
ej−1 and (fj−1) switched. This, however, does not affect any choices of the algorithm (as the
valuations of ci and ei are always very close). Then using the induction hypothesis, it follows
that this last phase takes 7 · 2j−1 − 5 iterations. This completes the induction proof. ◀

An efficient implementation of SSI and of the worst-case example presented here can be
found in Oink [32]. The implementation of SSI in Oink is slightly different from the original
algorithm, as it contains optimizations that are not present in the original algorithm, but
the worst-case example presented here works nonetheless. See Table 3. It is clear that with
increasing n, the number of iterations roughly doubles. To obtain these numbers, we used
the command line counter_symsi n | oink --ssi. The numbers are the same with the
preprocessor --scc for SCC decomposition.

6 Concluding the proof

We look at the last details to prove Theorem 1. So far, we assumed that the improvement
rule SWITCH-ALL is used. It turns out that in many iterations of (generalized) SSI, there
is only one improving move. This implies the following result.

▶ Lemma 13. The results of Propositions 8 and 12 hold for any improvement rule f .

Proof. We prove this by arguing that if we use SWITCH-ALL on the graphs Gn for both
constructions, then either there is only one switch possible, or every switch but one switch is
irrelevant. Here irrelevant means that whether or not we make the switch, the further course
of the algorithm does not change, hence the number of iterations can only increase if we
decide not to make some improving switches.

First, we consider the class of games Gn that proved Proposition 8 (Figure 5). If we
use the SWITCH-ALL rule, then by following the induction proof we find that we make
two switches per iteration whenever we make switches at a1 and d1 (following from the
induction basis), and we make one switch in every other case (from the induction step).
Note however, that not making a switch in d1 never has any effect on the course of the
algorithm. Observations 9, 10, 11 still hold if no switch is made in d1, and so does the rest
of the induction step. It also follows that if only d1 is switched and a1 not, then in the next
iteration a1 has the only possible switch. In all cases, symmetric strategy improvement takes
at least as many iterations as for SWITCH-ALL.

Next we consider the games Gn from the proof of Proposition 12 (Figure 7). There are
two cases where there are multiple switches when SWITCH-ALL is used. First, the modules
attached to a1 and d1 are switched at the same time. However, for the same reason as above,
we can ignore the second module. Secondly, (ci, a1) and (mi, a1) are switched at the same
time. Note that if (ci, a1) is switched, then any switch in mi becomes irrelevant as mi is not
reachable at that moment for player 0, and we make the switch (mi, fi) three iterations later.
If, on the other hand, only (mi, a1) is switched while σ(ci) = ei, then nothing significant
changes in the game and in the next iteration we will still have to switch (ci, a1). Finally,

CSL 2024

24:16 The Worst-Case Complexity of Symmetric Strategy Improvement

if (mi, a1) is switched while σ(ci) = mi and σ(mi) = fi, then the switch (ci, a1) becomes
irrelevant after the switch as it only removes one 14i + 3-priority from the valuation. So in
all cases, there is only one relevant switch. We conclude that using an improvement rule for
this Gn takes at least as many iterations as for SWITCH-ALL. ◀

Note that the number of nodes and edges of Gn for regular SSI is 2n+2 and 6n, respectively.
Also, the running time of SSI cannot be more than the total number of strategies for both
players, which is exponential in the number of nodes and edges. Hence the worst-case running
time of symmetric strategy improvement for parity games is exponential in the number of
nodes and edges. Moreover, we already noted that in sink parity games, the valuations from
the literature are equivalent. Furthermore, the result for mean and discounted payoff games
can be shown analogously to [15, Theorem 4.19]. This concludes the proof of Theorem 1.

Finally, the number of nodes and edges of our game Gn for generalized SSI is also linear
in n. This yields the following result.

▶ Theorem 14. The results from Theorem 1 also hold for generalized SSI.

Note on further increasing the number of switches
In the adapted counterexample, generalized symmetric strategy improvement still makes
“too few” switches, because it puts off making some good switches. That opens the question
if one could further increase the number of switches that generalized symmetric strategy
improvement makes. A next logical change would be to always make an improving move
in a node if one can, and use the opponent’s strategy only for deciding which improving
move to make. However, in a run of regular strategy improvement on the switch-best
counterexample from [15], there is always exactly one improving move per node. 1 The main
idea behind Friedmann’s example is that the nodes representing significant bits are distracted
by unnecessary switches, resulting in the insignificant bits always being switched first, which
creates a binary counter-like behaviour. It follows that the just mentioned generalization
would behave the same on this game for player 0 as regular strategy improvement with the
SWITCH-ALL rule. Hence there would still be an exponential-time worst-case example.
This time, one could say that it is because the algorithm is switching “too many” edges.

7 Discussion

We showed that both symmetric strategy improvement (SSI) and a generalization have
exponential worst-case time complexity. The reason is that they can make too few crucial
switches, as they are distracted by their opponent’s (bad) strategy. In our example, the
opponent’s valuation always steers the players to make “bad” improving moves. Hence, even
using the local information of the other player’s valuation is not always useful. Remarkably,
no improvement rule can fix this issue. Furthermore, we presented a generalization of SSI
and its worst-case example which allows for more flexibility.

The parity game example presented in Figure 5 occurs to be trivial to solve for various
natural implementations. One could think of preprocessing techniques like SCC decompos-
ition, removing self-loops or choosing an initial strategy with some heuristic (in fact, the

1 There is one exception in the iteration after their so-called deceleration lane resets, here we can choose
to which node in the deceleration lane we go. However, for this generalization, both from the perspective
of Ξσ and Ξτ we get a higher valuation if we switch to the highest even node in the lane like in regular
strategy improvement. Hence it would make sense to assume that this always happens.

T. van Dijk, G. Loho, and M. T. Maat 24:17

construction in the proof of Lemma 4 gives such a heuristic that would solve the parity game
quickly). There are further tweaks like propagating information about which nodes are won
through the graph by attracting towards them. However, we argue that the main principles
of our counterexamples are robust against such tricks. Imagine the parity game of Figure 5
to be part of a larger parity game, where an+1 looks much higher valued than dn+1 at the
beginning. Suppose that in reality dn+1 is winning for player 0 (or player 0 has a strategy
such that it has a large valuation in the version of SSI used here), and an+1 is winning for
player 1 (or player 1 can let it have a low valuation). Then, until SSI discovers the true value
of an+1 and dn+1, the best possible strategies to play from a1, a2, . . . and d1, d2, . . . are in
fact the strategies we use as initial strategies in Section 4. So most likely, the preprocessing
would pick these strategies or we quickly end up with them after some iterations. Secondly,
SCC decomposition can be tricked by adding edges back from the rest of the game to a1, d1
that are bad choices for the player that can choose them, and the propagation trick is stopped
by the modules from Figure 7. It is likely that other optimizations, assuming that they have
a weakness, will be stopped by adding modules that exploit this weakness in a similar way.
Note, however, that structures like those in our hard instances are unlikely to show up in
practice. As observed by the authors of SSI [30], the number of iterations of SSI is low on
randomly generated instances.

Our work leaves open if there is actually any way to use the interplay of strategies of
the two players not ending up with exponential worst-case running time. Our constructions
suggest that the restriction imposed by using local information of the opponent’s strategy
might always be exploited to lure the iterations into an exponential trap.

References
1 Marianne Akian, Stéphane Gaubert, and Alexander E. Guterman. Tropical polyhedra are

equivalent to mean payoff games. Int. J. Algebra Comput., 22(1), 2012. doi:10.1142/
S0218196711006674.

2 Henrik Björklund and Sergei G. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discret. Appl. Math., 155(2):210–229, 2007.
doi:10.1016/j.dam.2006.04.029.

3 Manuel Bodirsky and Marcello Mamino. Tropically convex constraint satisfaction. Theory
Comput. Syst., 62(3):481–509, 2018. doi:10.1007/s00224-017-9762-0.

4 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. F. Raskin. Faster algorithms for
mean-payoff games. Form. Methods Syst. Des., 38(2):97–118, April 2011. doi:10.1007/
s10703-010-0105-x.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 252–263. ACM, 2017. doi:10.1145/3055399.3055409.

6 Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–
224, 1992. doi:10.1016/0890-5401(92)90048-K.

7 Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

8 Daniele Dell’Erba and Sven Schewe. Smaller progress measures and separating automata for
parity games. Frontiers Comput. Sci., 4, 2022. doi:10.3389/fcomp.2022.936903.

9 Yann Disser, Oliver Friedmann, and Alexander V. Hopp. An exponential lower bound for
zadeh’s pivot rule. Math. Program., 199(1):865–936, 2023. doi:10.1007/s10107-022-01848-x.

CSL 2024

https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1007/s00224-017-9762-0
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.3389/fcomp.2022.936903
https://doi.org/10.1007/s10107-022-01848-x

24:18 The Worst-Case Complexity of Symmetric Strategy Improvement

10 Dani Dorfman, Haim Kaplan, and Uri Zwick. A Faster Deterministic Exponential Time
Algorithm for Energy Games and Mean Payoff Games. In 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 114:1–114:14, Dagstuhl, Germany, 2019. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.114.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

12 John Fearnley. Efficient parallel strategy improvement for parity games. In Computer Aided
Verification – 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages 137–154.
Springer, 2017. doi:10.1007/978-3-319-63390-9_8.

13 John Fearnley, Sanjay Jain, Bart de Keijzer, Sven Schewe, Frank Stephan, and Dominik
Wojtczak. An ordered approach to solving parity games in quasi-polynomial time and quasi-
linear space. Int. J. Softw. Tools Technol. Transf., 21(3):325–349, 2019. doi:10.1007/
s10009-019-00509-3.

14 Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann. Value Iteration Using
Universal Graphs and the Complexity of Mean Payoff Games. In 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:15, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.34.

15 Oliver Friedmann. Exponential Lower Bounds for Solving Infinitary Payoff Games and
Linear Programs. PhD thesis, Ludwig Maximilians University Munich, 2011. URL: http:
//edoc.ub.uni-muenchen.de/13294/.

16 Oliver Friedmann. A superpolynomial lower bound for strategy iteration based on snare
memorization. Discret. Appl. Math., 161(10-11):1317–1337, 2013. doi:10.1016/j.dam.2013.
02.007.

17 V. A. Gurvich, A. V. Karzanov, and L. G. Kachivan. Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical
Physics, 28(5):85–91, 1988. URL: http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.
pdf.

18 Thomas Dueholm Hansen. Worst-case analysis of strategy iteration and the simplex method.
PhD thesis, Aarhus University, Denmark, 2012. URL: https://pure.au.dk/portal/files/
52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf.

19 Marcin Jurdzinski. Small progress measures for solving parity games. In STACS 2000, 17th
Annual Symposium on Theoretical Aspects of Computer Science, Lille, France, February 2000,
Proceedings, volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer,
2000. doi:10.1007/3-540-46541-3_24.

20 Marcin Jurdzinski and Ranko Lazic. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

21 Marcin Jurdziński, Rémi Morvan, Pierre Ohlmann, and K. S. Thejaswini. A sym-
metric attractor-decomposition lifting algorithm for parity games. arXiv e-prints, page
arXiv:2010.08288, October 2020. doi:10.48550/arXiv.2010.08288.

22 Marcin Jurdzinski and Jens Vöge. A discrete stratety improvement algorithm for solving
parity games. BRICS Report Series, 7(48), June 2000. doi:10.7146/brics.v7i48.20215.

23 Marcin Jurdziński. Deciding the winner in parity games is in up ∩ co-up. Information
Processing Letters, 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

24 Michael Luttenberger. Strategy iteration using non-deterministic strategies for solving parity
games. CoRR, abs/0806.2923, 2008. arXiv:0806.2923.

https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
http://edoc.ub.uni-muenchen.de/13294/
http://edoc.ub.uni-muenchen.de/13294/
https://doi.org/10.1016/j.dam.2013.02.007
https://doi.org/10.1016/j.dam.2013.02.007
http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.pdf
http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.48550/arXiv.2010.08288
https://doi.org/10.7146/brics.v7i48.20215
https://doi.org/10.1016/S0020-0190(98)00150-1
https://arxiv.org/abs/0806.2923

T. van Dijk, G. Loho, and M. T. Maat 24:19

25 Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with AND/OR precedence
constraints. SIAM J. Comput., 33(2):393–415, 2004. doi:10.1137/S009753970037727X.

26 Pierre Ohlmann. Monotonic Graphs for Parity and Mean-Payoff Games. PhD thesis, University
of Paris, 2021. URL: https://www.irif.fr/~ohlmann/contents/these.pdf.

27 Pawel Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In 44th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August
26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

28 Anuj Puri. Theory of hybrid systems and discrete event systems., 1995. URL: https:
//www.elibrary.ru/item.asp?id=5408583.

29 Sven Schewe. An optimal strategy improvement algorithm for solving parity and payoff
games. In Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual
Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume
5213 of Lecture Notes in Computer Science, pages 369–384. Springer, 2008. doi:10.1007/
978-3-540-87531-4_27.

30 Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. Symmetric strategy improvement.
In Automata, Languages, and Programming – 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 388–400. Springer, 2015. doi:10.1007/978-3-662-47666-6_31.

31 Tom van Dijk. Attracting tangles to solve parity games. In Computer Aided Verification –
30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes
in Computer Science, pages 198–215. Springer, 2018. doi:10.1007/978-3-319-96142-2_14.

32 Tom van Dijk. Oink: An implementation and evaluation of modern parity game solvers.
In Tools and Algorithms for the Construction and Analysis of Systems – 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part I, volume 10805 of Lecture Notes in Computer Science, pages 291–308. Springer, 2018.
doi:10.1007/978-3-319-89960-2_16.

33 Tom van Dijk. A parity game tale of two counters. In Proceedings Tenth International
Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2019, Bordeaux,
France, 2-3rd September 2019, volume 305 of EPTCS, pages 107–122, 2019. doi:10.4204/
EPTCS.305.8.

34 Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm for solving parity
games. In Computer Aided Verification, pages 202–215, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

35 Igor Walukiewicz. Monadic second order logic on tree-like structures. In STACS 96, 13th
Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France, February
22-24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science, pages 401–413.
Springer, 1996. doi:10.1007/3-540-60922-9_33.

36 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

37 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

CSL 2024

https://doi.org/10.1137/S009753970037727X
https://www.irif.fr/~ohlmann/contents/these.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://www.elibrary.ru/item.asp?id=5408583
https://www.elibrary.ru/item.asp?id=5408583
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-662-47666-6_31
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/0304-3975(95)00188-3

The Produoidal Algebra of Process Decomposition
Matt Earnshaw #

Tallinn University of Technology, Estonia

James Hefford #

University of Oxford, UK

Mario Román #

Tallinn University of Technology, Estonia

Abstract
We characterize a universal normal produoidal category of monoidal contexts over an arbitrary
monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal
context represents an incomplete process: a piece of a decomposition, possibly containing missing
parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them
with a novel universal property. We apply this algebraic structure to the analysis of multi-party
protocols in arbitrary theories of processes.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases monoidal categories, profunctors, lenses, duoidal categories

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.25

Related Version Full Version: https://arxiv.org/abs/2301.11867 [20]

Funding Matt Earnshaw and Mario Román were supported by the European Social Fund Estonian
IT Academy research measure (project 2014-2020.4.05.19-0001). James Hefford is supported by
University College London and the EPSRC [grant number EP/L015242/1].

Acknowledgements We thank Pawel Sobocinski, Fosco Loregian, Chad Nester and David Spivak for
discussion. We thank the CSL reviewers for suggestions that lead to considerable improvements.

1 Introduction

Theories of processes, such as stochastic, partial or linear functions, are a foundational tool
in computer science. They help us model interacting systems using a solid mathematical
structure. Any theory of processes involving operations for sequential and parallel composition,
satisfying reasonable axioms, forms a monoidal category. Monoidal categories are versatile:
they can be used in the description of quantum circuits [2], stochastic processes [11, 24],
relational queries [9] and non-terminating processes [13], among other applications [16].

At the same time, monoidal categories have two intuitive, sound and complete calculi: the
first in terms of string diagrams [40], and the second in terms of their linear type theory [63].
String diagrams are a 2-dimensional syntax in which processes are represented by boxes, and
their inputs and outputs are connected by wires. The type theory of symmetric monoidal
categories is the basis of the more specialized arrow do-notation used in functional program-
ming languages [37, 51], which becomes do-notation for Kleisli categories of commutative
monads [46, 28].

This manuscript studies an algebra of context for monoidal categories. Context is of
central importance in computer science: we model not only processes but also the environment
in which they act. While the algebra of 1-dimensional context is commonplace in applications
like parsing [45], the same concept was missing for 2-dimensional syntaxes, which are still
less frequent in computer science [21]. Let us showcase monoidal categories, their string
diagrams and the use of do-notation in the description of a protocol.

© Matt Earnshaw, James Hefford, and Mario Román;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matt@earnshaw.org.uk
https://orcid.org/0000-0001-8236-2811
mailto:james.hefford@hertford.ox.ac.uk
https://orcid.org/0000-0002-6664-8657
mailto:mromang08@gmail.com
https://orcid.org/0000-0003-3158-1226
https://doi.org/10.4230/LIPIcs.CSL.2024.25
https://arxiv.org/abs/2301.11867
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 The Produoidal Algebra of Process Decomposition

Client Server

SYN

NOISE

SYN:10

ACK:00

SYN:11

ACK:20

SYN:11

ACK:21

SYN-ACK

CLI:11

SRV:21

CLI:11

SRV:21

CLI:11

SRV:20

CLI:10

SRV:00

NOISE

NOISE

ACK

RCV

Figure 1 TCP Three way handshake.

1.1 Protocol Description
The Transmission Control Protocol (TCP) is a connection-based communication protocol.
Every connection begins with a three-way handshake: an exchange of messages that synchron-
izes the state of both parties. This handshake is defined in RFC793 to have three steps: SYN,
SYN-ACK and ACK [55]. The client initiates the communication by sending a synchronization
packet (SYN) to the server. The synchronization packet contains a pseudorandom number
associated to the session, the Initial Sequence Number of the client (CLI). The server
acknowledges this packet and sends a message (ACK) containing its own sequence number
(SRV) together with the client’s sequence number plus one (CLI+1). These two form the
SYN-ACK message. Finally, the client sends a final ACK message with the server’s sequence
number plus one, SRV + 1. When the protocol works correctly, both client and server end up
with the pair (CLI + 1, SRV + 1).

This protocol is traditionally described in terms of a communication diagram (Figure 1).
This diagram can be taken seriously as a formal mathematical object: it is a string diagram
describing a morphism in a monoidal category. The implementation of each component
of the protocol is traditionally written as pseudocode. This pseudocode can also be taken
seriously as the expression of a morphism in the same monoidal category, possibly with extra
structure: in this case, a commutative Freyd category (Figure 2a, see the full version [20,
Appendix C.1] [46]). That is, symmetric monoidal categories admit two different internal
languages, and we can use both to interpret formally the traditional description of a protocol
in terms of string diagrams and pseudocode.

1.2 Types for Message Passing
The last part in formalizing a multi-party protocol in terms of monoidal categories is to
actually separate its component parties. For instance, the three-way handshake can be split
into the client, the server and a channel. Here is where the existing literature in monoidal

M. Earnshaw, J. Hefford, and M. Román 25:3

categories seems to fall short: the parts resulting from the decomposition of a monoidal
morphism are not necessarily monoidal morphisms themselves (see the full version [20,
Figure 14] for the diagrammatic representation). We say that these are only monoidal
contexts.

Contrary to monoidal morphisms, which only need to declare their input and output
types, monoidal contexts need behavioural types [54, 38] that specify the order and type of the
exchange of information along their boundary. A monoidal context may declare intermediate
send (!A) and receive (?A) types, separated by a sequencing operator (◁). For instance, the
channel is a monoidal morphism just declaring that it takes an input message (Msg) and
produces another output message; but the client is a monoidal context that transforms its
memory type, Client, at the same time it sends, receives and then sends a message; and the
server transforms its memory type, Server while, dually to the client, it receives, sends and
then receives a message (Figure 2b).

(a)

syn :: (Cli, Srv) ~>
((Cli, Srv), (Syn, Ack))

syn(client, server) = do
client <- random
return ((cli, 0), (cli, 0))

(b)

∈ LC (Client
Client ; !Msg ◁ ?Msg ◁ !Msg) ;

∈ LC (Server
Server ; ?Msg ◁ !Msg ◁ ?Msg) ;

NOISE ∈ C (Msg; Msg) ;

Figure 2 (a) Implementation of SYN. (b) Types for the three parties.

Session types [36], including the send (!A) and receive (?A) polarized types, have been
commonplace in logics of message passing. Cockett and Pastro [14] already proposed a
categorical semantics for message-passing which, however, needs to go beyond monoidal
categories, into linear actegories and polyactegories.

Our claim is that, perhaps surprisingly, monoidal categories already have the necessary
algebraic structure to define monoidal contexts and their send-receive polarized types. Latent
to any monoidal category, there exists a universal category of contexts with polarized types
(!/?) and parallel/sequence operators (⊗/◁).

1.3 Reasoning with Contexts
This manuscript introduces the notion of monoidal context and symmetric monoidal context;
and it explains how dinaturality allows us to reason with them. In the same way that we
reason with monoidal morphisms using string diagrams, we can reason about monoidal
contexts using incomplete string diagrams [4, 59].

For instance, consider the following fact about the TCP three-way handshake: the client
does not need to store a starting SRV number for the server, as it will be overwritten as soon
as the real one arrives. This fact only concerns the actions of the client, and it is independent
of the server and the channel. We would like to reason about it preserving this modularity,
and this is what the incomplete diagrams in Figure 3 achieve.

Here, we define SYN∗ = SYN # PRJ to be the same as the SYN process but projecting out
only the client CLI number. We also define a new ACK∗ that ignores the server SRV number,
so that ACK = PRJ # ACK∗. These two equations are enough to complete our reasoning.

CSL 2024

25:4 The Produoidal Algebra of Process Decomposition

Client

SYN∗

ACK∗

Client

SYN

ACK∗

PRJ
=

Client

SYN

ACK∗

Client

SYN

ACK

=
PRJ

=

Figure 3 Reasoning only with the client.

Monoidal contexts and their incomplete diagrams are defined to be convenient tuples of
morphisms, e.g. (SYN|ACK) in our example; what makes them interesting is the equivalence
relation we impose on them: this equivalence relation makes the pair (SYN # PRJ|ACK∗) equal
to (SYN|PRJ # ACK∗). Dinaturality is the name we give to this relation, and we will see how it
arises canonically from the algebra of profunctors.

1.4 The Produoidal Algebra of Monoidal Context

Despite the relative popularity of string diagrams and other forms of formal 2-dimensional
syntax, the algebra of incomplete monoidal morphisms has remained obscure. This manuscript
elucidates this algebra: we show that, as monoidal morphisms together with their string
diagrams form monoidal categories, monoidal contexts together with their incomplete string
diagrams form normal produoidal categories. Normal produoidal categories were a poorly
understood categorical structure, for which we provide examples. Let us motivate “normal
produoidal categories” by parts.

First, the “duoidal” part. Monoidal contexts can be composed sequentially and in
parallel, but also nested together to fill the missing parts. Nesting is captured by categorical
composition, so we need specific tensors for both sequential (◁) and parallel (⊗) composition.
This is what duoidal categories provide. Duoidal categories are categories with two monoidal
structures, e.g. (◁, N) and (⊗, I). These two monoidal structures are in principle independent
but, whenever they share the same unit (I ∼= N), they become well-suited to express process
dependence [62]: they become “normal”.

Finally, the “pro-” prefix. It is not that we want to impose this structure on top of
the monoidal one, but we want to capture the structure morphisms already form. The two
tensors (◁,⊗) do not necessarily exist in the original category; in technical terms, they
are not representable or functorial, but virtual or profunctorial. This makes us turn to the
produoidal categories of Booker and Street [10, 66].

Not only is all of this algebra present in monoidal contexts. Monoidal contexts are the
canonical such algebra; in a precise sense given by universal properties. The slogan for the
main result of this manuscript (Theorem 5.4) is that

Monoidal contexts are the free normalization of the cofree produoidal category over a
monoidal category.

M. Earnshaw, J. Hefford, and M. Román 25:5

1.5 Related Work
Far from being the proposal of yet another paradigm, monoidal contexts form a novel
algebraic characterization of a widespread paradigm. We argue that the idea of monoidal
contexts has been recurrent in the literature, just never appearing explicitly and formally.
Our main contribution is to universally characterize an algebra of monoidal contexts, in the
form of a normal produoidal category. In fact, recently, there have been multiple implicit
applications of monoidal contexts. Kissinger and Uijlen [41] describe higher order quantum
processes using contexts with holes in compact closed monoidal categories. Ghani, Hedges,
Winschel and Zahn [27] describe economic game theory in terms of lenses and incomplete
processes in cartesian monoidal categories. Bonchi, Piedeleu, Sobociński and Zanasi [8] study
contextual equivalence in their monoidal category of affine signal flow graphs. Di Lavore, de
Felice and Román [19] define monoidal streams by iterating monoidal context coalgebraically.

Category theory. Street already noted that the endoprofunctors of a monoidal category
had a duoidal structure [66]; Pastro and Street described a promonoidal structure on lenses
[50] and Garner and López-Franco contributed a partial normalization procedure for duoidal
categories [25]. We build on top of this literature, putting it together, spelling out existence
proofs, popularizing its produoidal counterpart and providing multiple new results and
constructions that were previously missing (e.g. Theorems 3.8, 4.3, and 5.4).

Language theory. Motivated by language theory and the Chomsky-Schützenberger the-
orem, Melliès and Zeilberger [45] were the first to present the multicategorical splice-contour
adjunction. We are indebted to their exposition, which we extend to the promonoidal and
produoidal cases. Earnshaw and Sobociński [21] described a congruence on formal languages
of string diagrams using monoidal contexts. We prove how monoidal contexts arise from an
extended produoidal splice-contour adjunction; unifying these two threads.

Session types. Session types [35, 36] are the mainstay type formalism for communication
protocols, and they have been extensively applied to the π-calculus [60]. Our approach is not
set up to capture all of the features of a fully fledged session type theory [43]. Arguably, this
makes it more general in what it does: it always provides a universal way of implementing
send (!A) and receive (?A) operations in an arbitrary theory of processes represented by a
monoidal category. For instance, recursion and the internal/external choice duality [26, 54]
are not discussed, although they could be considered as extensions in the same way they are
to monoidal categories: via trace [29] and linear distributivity [15].

Lenses and incomplete diagrams. Lenses are a notion of bidirectional transformation [23]
that can be cast in arbitrary monoidal categories. The first mention of monoidal lenses
separate from their classical database counterparts [39] is due to Pastro and Street [50], who
identify them as an example of a promonoidal category. However, it was with a different
monoidal structure [56] that they became popular in recent years, spawning applications
not only in bidirectional transformations [23] but also in functional programming [53, 12],
open games [27], polynomial functors [49] and quantum combs [31]. Relating this monoidal
category of lenses with the previous promonoidal category of lenses was an open problem;
and the promonoidal structure was mostly ignored in applications. We solve this problem,
proving that lenses are a universal normal symmetric produoidal category (the symmetric
monoidal contexts), which endows them with a novel algebra and a novel universal property.
This also extends work on the relation between incomplete diagrams, comb-shaped diagrams,
and lenses [57, 59].

Finally, Nester et al. have recently proposed a syntax for lenses and message-passing [48, 7]
and lenses themselves have been applied to protocol specification [67]. Spivak [65] also
discusses the multicategory of wiring diagrams, later used for incomplete diagrams [52] and

CSL 2024

25:6 The Produoidal Algebra of Process Decomposition

related to lenses [61]. The promonoidal categories we use can be seen as multicategories with
an extra coherence property. In this sense, we contribute the missing algebraic structure of
the universal multicategory of wiring diagrams relative to a monoidal category.

1.6 Contributions
Our main contribution is the universal characterization of a produoidal category of monoidal
contexts over a monoidal category (Theorem 5.4).

We construct an adjunction between monoidal categories and produoidal categories in
Section 3, and we characterize spliced monoidal arrows as the cofree produoidal category over
a monoidal category (Theorem 3.8); in order to do this, we also introduce a version of the
splice-contour construction that creates an adjunction between categories and promonoidal
categories, the interested reader can follow the full version [20, Appendix B].

We introduce the free normalization of an arbitrary produoidal category (Theorem 4.3).
Normalization had been only described for well-behaved duoidal categories [25]; we show that
any produoidal category can be normalized and we construct an idempotent normalization
monad. We universally characterize the algebra of monoidal contexts as a free normalization
(Theorem 5.4) in Section 5; we universally characterize the algebra of monoidal lenses as a free
symmetric normalization (Theorem 6.2) in Section 6. Finally, we introduce an interpretation
of send/receive types (!/?) (Proposition 6.5) in terms of monoidal lenses.

2 Preliminaries: Profunctors and Dinaturality

Profunctors describe families of processes indexed by the input and output types of a category.
Since they will be our main tool in the following, we give a brief introduction. More details
can be found in the full version of this paper [20, Appendix A].

▶ Definition 2.1. A profunctor P : B0 × ... × Bm � A0 × ... × An is a functor

P : Aop
0 ... × Aop

n × B0 × ... × Bm → Set.

For our purposes, a profunctor P (A0, ..., An;B0, ..., Bm) is a family of processes indexed
by contravariant inputs A0, ..., An and covariant outputs B0, ..., Bm. The profunctor is en-
dowed with jointly functorial left (≻0, ...,≻n) and right (≺0, ...,≺m) actions of the morphisms
of A0, ...,An and B0, ...,Bm, respectively [5, 44].1

Composing profunctors is subtle: the same processes could arise as the composite of
different pairs of processes, so we need to impose an equivalence relation. Imagine we try to
connect two different processes:

p ∈ P (A0, ..., An;B0, . . . , Bm), and q ∈ Q(C0, ..., Ck;D0, . . . , Dh);

and we have some morphism f : Bi → Cj that translates the i-th output port of p to the j-th
input port of q. Let us write (i|j) for this connection operation. Note that we could connect
them in two different ways: we could

change the output of the first process p≺i f before connecting both, (p≺ if) i|j q;
or change the input of the second process f ≻j q before connecting both, p i|j (f ≻j q).

1 We simply use (≺/≻) without any subscript whenever the input/output is unique.

M. Earnshaw, J. Hefford, and M. Román 25:7

These are different descriptions, made up of two different components. However, they
essentially describe the same process [19]: they are dinaturally equal. Indeed, profunctors
are canonically endowed with this notion of equivalence [5, 44], precisely equating these two
descriptions. Profunctors, and their elements, are thus composed up to dinatural equivalence.

▶ Definition 2.2 (Dinatural equivalence). Consider two profunctors P : B0 × ... × Bm �

A0 × ... × An and Q : D0 × ... × Dh � C0 × ... × Ck such that Bi = Cj; and let Si,j
P,Q(A;D)

be the set∑
X∈Bi

P (A0...An;B0...X ...Bm) ×Q(C0...X ...Ck;D0...Dh).

Dinatural equivalence, (∼), on the set Si,j
P,Q(A;D) is the smallest equivalence relation sat-

isfying (p ≺ if i|j q) ∼ (p i|j f ≻j q). The coend is defined as this coproduct quotiented by
dinaturality, Si,j

P,Q(A;D)/(∼), and written as an integral.∫ X∈Cj

P (A0...An;B0...X ...Bm) ×Q(C0...X ...Ck;D0...Dh).

▶ Definition 2.3 (Profunctor composition). Consider two profunctors P : B0×...×Bm � A0×
...×An and Q : D0 × ...×Dh � C0 × ...×Ck such that Bi = Cj ; their composition along ports
i and j is a profunctor P ⋄Q : B0×...×D0×...×Dh×...×Bm � C0×...×A0×...×An×...×Ck;
we write it marking this connection

P (A0...An;B0... • ...Bm) ⋄Q(C0... • ...Ck;D0...Dh),

and it is defined as the coproduct of the product of both profunctors, indexed by the common
variable, and quotiented by dinatural equivalence,∫ X∈C

P (A0...An;B0...X ...Bm) ×Q(C0...X ...Ck;D0...Dh).

3 Parallel-Sequential Context

Monoidal categories are an algebraic structure for sequential and parallel composition: they
contain a “tensoring” operator on morphisms, (⊗), apart from the usual sequencing, (#), and
identities (id).

f0#(□⊗□)#f1f0 f1

g g h#(□⊗□)#idh id

k k l1l0 l0|l1

Figure 4 Example decomposition.

Assume a monoidal morphism factors as follows: f0 # (g ⊗ (h # (k⊗ (l0 # l1)))) # f1. We can
say that this morphism came from dividing everything between f0 and f1 by a tensor. That
is, from a context f0 # (□ ⊗ □) # f1. We filled the first hole of this context with a g, and then
proceeded to split the second part as h # (□ ⊗ □) # id. Finally, we filled the first part with k

and the second one we filled with l0, idI , and l1.

CSL 2024

25:8 The Produoidal Algebra of Process Decomposition

This section studies decomposition of morphisms in a monoidal category, in the same way
we study decomposition of morphisms in a category (see the full version [20, Appendix B]).
We present an algebraic structure for decomposing both sequential and parallel compositions:
produoidal categories.

3.1 Produoidal Categories
Produoidal categories, first defined by Booker and Street [10], provide an algebraic structure
for the interaction of sequential and parallel decomposition. A produoidal category V not
only contains morphisms, V(X;Y), as in a category, but also sequential splits, V(X;Y0 ◁ Y1),
and sequential units, V(X;N), provided by a promonoidal structure; and parallel splits,
V(X;Y0 ⊗ Y1) and parallel units, V(X; I), provided by another promonoidal structure.

These splits must be coherent. For instance, imagine we want to decompose X (sequen-
tially) into Y0, Y1 and Y2. Decomposing X into Y0 and something (•), and then decomposing
that something into Y1 and Y2 should be doable in essentially the same ways as decomposing
X into something (•) and Y2, and then decomposing that something into Y0 and Y1. Formally,
we are saying that,

V(X;Y0 ◁ •) ⋄ V(•;Y1 ◁ Y2) ∼= V(X; • ◁ Y2) ⋄ V(•;Y0 ◁ Y1),

and, in fact, we just write V(X;Y0 ◁ Y1 ◁ Y2) for the set of such decompositions. This is
precisely what we ask for in a promonoidal structure.

▶ Definition 3.1 (Produoidal category). A produoidal category is a category V endowed with
two promonoidal structures,

V(•; • ⊗ •) : V × V� V, and V(•; I) : 1� V,

V(•; • ◁ •) : V × V� V, and V(•;N) : 1� V,

such that one laxly distributes over the other. This is to say that it is endowed with the
following natural laxators: ψ2 : V(•; (X ◁ Y) ⊗ (Z ◁ W)) → V(•; (X ⊗ Z) ◁ (Y ⊗ W)),
ψ0 : V(•; I) → V(•; I ◁ I), φ2 : V(•;N ⊗N) → V(•;N), and φ0 : V(•; I) → V(•;N). Laxators,
together with unitors and associators, must satisfy coherence conditions (see [20, Definition
J.7]). Denote by Produo the category of produoidal categories and produoidal functors.

▶ Remark 3.2 (Nesting profunctorial structures). Notation for nesting functorial structures,
say (◁) and (⊗), is straightforward: we use expressions like (X1 ⊗ Y1)◁ (X2 ⊗ Y2) without a
second thought. Nesting the profunctorial (or virtual) structures (◁) and (⊗) is more subtle:
defining V(•;X ⊗ Y) and V(•;X ◁ Y) for each pair of objects X and Y does not itself define
what something like V(•; (X1 ⊗Y1)◁ (X2 ⊗Y2)) means. Recall that, in the profunctorial case,
X1 ◁ Y1 and X1 ⊗ Y1 are not objects themselves: they are just names for the profunctors
V(•;X1 ◁ Y1) and V(•;X1 ⊗ Y1), which are not representable.

Instead, when we write V(•; (X1 ⊗Y1)◁ (X2 ⊗Y2)), we formally mean the composition of
profunctors V(•; •1◁•2)⋄V(•1;X1 ⊗Y1)⋄V(•2;X2 ⊗Y2). By convention, nesting profunctorial
structures means profunctor composition in this text.

3.2 Monoidal Contour of a Produoidal Category
Any produoidal category freely generates a monoidal category, its monoidal contour. Contours
form a monoidal category of paths around the decomposition trees of the produoidal category.
Contours follow a pleasant geometric pattern, where we follow the shape of the decomposition,
both in the parallel and sequential dimensions, to construct both sequential and parallel
compositions for a monoidal category.

M. Earnshaw, J. Hefford, and M. Román 25:9

▶ Definition 3.3 (Monoidal contour). The contour of a produoidal category B is the monoidal
category DB presented by two objects, XL (left-handed) and XR (right-handed), for each
object X ∈ Bobj; and generated by arrows that arise from contouring both sequential and
parallel decompositions of the promonoidal category.

aaa0 a1 aa0 a1a1a0a

a0

aa0

a1

a2

Figure 5 Generators of the monoidal category of contours.

Specifically, it is presented by the following generators (i) a pair of morphisms a0 ∈
DB(AL;XL), a1 ∈ DB(XR;AR) for each morphism a ∈ B(A;X); (ii) a morphism a0 ∈
DB(AL;AR), for each sequential unit a ∈ C(A;N); (iii) a pair of morphisms a0 ∈ DB(AL; I)
and a0 ∈ DB(I;AR), for each parallel unit a ∈ B(A; I); (iv) a triple of morphisms a0 ∈
DB(AL;XL), a1 ∈ DB(XR;Y L), a2 ∈ DB(Y R;AR) for each sequential split a ∈ B(A;X◁Y);
and (v) a pair of morphisms a0 ∈ DB(AL;XL ⊗ Y L) and a1 ∈ DB(XR ⊗ Y R;AR) for each
parallel split a ∈ B(A;X ⊗ Y), see Figure 5.

We impose some equations that arise naturally from the associator and unitor of the
sequential structure (◁), as done by Melliès and Zeilberger [45]; but moreover, we also impose
some new equations, coming from the parallel structure (⊗), as depicted in Figures 6a and 6b.
We refer the interested reader to the full version [20] for the full list of equations.

aa0 a1

c

c0

c1

c2bb0

b1

b2

ee0

e1

dd0

d1

d2

f

f0

f1

(a)

bb0

b1

aa0 a1

d

d0 d1

cc0 c1

=

(b)

Figure 6 Equations coming from laxators (a) and associators (b).

▶ Proposition 3.4. Monoidal contour extends to a functor D : Produo → Mon.

Proof. See the full version [20, Proposition E.3]. ◀

3.3 Produoidal Category of Spliced Monoidal Arrows
We want to go the other way around: given a monoidal category, what is the produoidal
category that tracks decomposition of arrows in that monoidal category? This subsection
finds a right adjoint to the monoidal contour construction: the produoidal category of spliced
monoidal arrows.

▶ Definition 3.5. Let (C,⊗, I) be a monoidal category. The produoidal category of spliced
monoidal arrows, T C, has as objects pairs of objects of C. It uses the following profunctors
to define

morphisms, T C (A
B; X

Y) = C(A;X) × C(Y,B);
sequential splits, T C(A

B; X
Y ◁ X′

Y ′) = C(A;X) × C(Y ;X ′) × C(Y ′;B);
parallel splits, T C(A

B; X
Y ⊗ X′

Y ′) = C(A;X ⊗X ′) × C(Y ⊗ Y ′;B);
sequential units, T C(A

B;N) = C(A;B);
and parallel units, T C(A

B; I) = C(A; I) × C(I;B).

CSL 2024

25:10 The Produoidal Algebra of Process Decomposition

In other words, morphisms are pairs of arrows written as f #□ # g ∈ T C (A
B; X

Y). Sequential
splits are triples of arrows, written as f #□ #g #□ #h ∈ T C

(
A
B; X

Y ◁ X′

Y ′

)
. Parallel splits are pairs

of arrows, written as f # (□ ⊗ □) # h ∈ T C
(

A
B; X

Y ⊗ X′

Y ′

)
. Sequential units are arrows, written

simply as f ∈ T C (A
B;N). parallel units are pairs of arrows, written as f ∥ g ∈ T C (A

B; I).
Finally, the laxators are defined by plugging the different pieces and reinterpreting the

relative position of the holes. Let us give an example of what this means; we refer the
interested reader to the full version [20, Appendix E.2] for full details.

▶ Example 3.6. For instance, the last laxator takes parallel sequences of holes, f0 # ((h0 #□ #
h1 # □ # h2) ⊗ (k0 # □ # k1 # □ # k2)) # f1 into sequences of parallel holes, f0 # (h0 ⊗ k0) # (□ ⊗
□) # (h1 ⊗ k1) # (□ ⊗ □) # (h2 ⊗ k2) # f1.

▶ Remark 3.7. The produoidal algebra of spliced arrows is a natural construction: abstractly,
we know that there is a duoidal structure on the endomodules of any monoidal category
[18, 66] – this is its explicit produoidal counterpart. What may be more surprising is that
spliced arrows have themselves a universal property as part of an adjunction.

▶ Theorem 3.8. Spliced monoidal arrows form a produoidal category with their sequential
and parallel splits, units, and suitable coherence morphisms and laxators. Spliced monoidal
arrows extend to a functor T : Mon → Produo. The monoidal contour and the produoidal
splice are left and right adjoints to each other, respectively.

Proof. See the full version [20, Propositions E.4 and E.9 and Theorem E.10]. ◀

▶ Remark 3.9. When C is a symmetric monoidal category, then T C is moreover a symmetric
produoidal category with symmetry defined using the symmety of C.

3.4 Representable Parallel Structure
A produoidal category has two tensors, and neither is, in principle, representable. However,
the cofree produoidal category over a category we have just constructed happens also to have
a representable tensor, (⊗). Spliced monoidal arrows form a monoidal category.

▶ Proposition 3.10. Parallel splits and parallel units of spliced monoidal arrows are repres-
entable profunctors. That is, T C

(
A
B; X

Y ⊗ X′

Y ′

) ∼= T C
(

A
B; X⊗X′

Y ⊗Y ′

)
, and T C (A

B; I) ∼= T C (A
B; I

I) .

In fact, these sets are equal by definition. However, we argue that there is a good reason
to work in the full generality of produoidal categories: produoidal categories can always be
normalized.

Normalization is a procedure to mix both tensors of a duoidal category, (⊗) and (◁), but
not every duoidal category has a normalization [25]. It is folklore that one loses nothing
by regarding non-representable produoidal structures as representable duoidal structures on
presheaves, dismissing that they are moreover closed [18]; thus, one would expect only some
produoidal categories to be normalizable. Against folklore, we prove that every produoidal
category, representable or not, has a universal normalization, a normal produoidal category
which may be again representable or not (Theorem 4.3). We use this procedure to universally
characterize monoidal contexts in Section 5, which form a produoidal category without
representable structure.

▶ Remark 3.11. This means T C has the structure of a virtual duoidal category [64] or
monoidal multicategory, defined by Aguiar, Haim and López Franco [3] as a pseudomonoid
in the cartesian monoidal 2-category of multicategories.

M. Earnshaw, J. Hefford, and M. Román 25:11

4 Interlude: Normalization

Produoidal categories seem to contain too much structure: of course, we want to split things
in two different ways, sequentially (◁) and in parallel (⊗); but that does not necessarily mean
that we want to keep track of two different types of units, parallel (I) and sequential (N).
The atomic components of our decomposition algebra should be the same, without having to
care if they are atomic for sequential composition or atomic for parallel composition.

Fortunately, there exists an abstract procedure that, starting from any produoidal category,
constructs a new produoidal category where both units are identified. This procedure is
known as normalization, and the resulting produoidal categories are called normal.

▶ Definition 4.1 (Normal produoidal category). A normal produoidal category is a produoidal
category where the laxator φ0 : V(•; I) → V(•;N) is an isomorphism. Normal produoidal
categories form a category nProduo with produoidal functors between them and endowed
with fully faithful forgetful functor U : nProduo → Produo.

▶ Theorem 4.2 (Normalization construction). Let V⊗,I,◁,N be a produoidal category. The
profunctor NV(•; •) = V(•;N ⊗ • ⊗ N) forms a promonad [33, 58]. Moreover, the Kleisli
category of this promonad is a normal produoidal category with the following splits and units:
NV(A;B⊗N C) = V(A;N ⊗B⊗N ⊗C ⊗N); NV(A;B◁N C) = V(A; (N ⊗B⊗N)◁ (N ⊗
C ⊗N)); NV(A; IN) = V(A;N); and NV(A;NN) = V(A;N).

Proof. See the full version [20, Theorem F.1]. ◀

Garner and López Franco [25] introduced a partial normalization procedure for duoidal
categories. We contribute a general normalization procedure for produoidal categories
and we characterize it universally. Produoidal normalization behaves slightly better than
duoidal normalization: it always succeeds, and we prove that it forms an idempotent monad
(Theorem 4.3). The technical reason for this improvement is that the original duoidal
normalization required the existence of certain coequalizers in V; produoidal normalization
uses coequalizers in Set. See the full version [20, Appendix F.4] for an outline of the relation
between the two procedures.

▶ Theorem 4.3 (Free normal produoidal). Normalization extends to an idempotent monad.
Moreover, normalization determines an adjunction between produoidal categories and nor-
mal produoidal categories, N : Produo ⇌ nProduo : U . That is, NV is the free normal
produoidal category over V.

Proof. See the full version [20, Theorems F.3 and F.5]. ◀

In the previous Section 3, we constructed the produoidal category of spliced monoidal
arrows, which distinguishes between morphisms and morphisms with a hole in the monoidal
unit. This is because the latter hole splits the morphism in two parts. Normalization equates
both; it sews these two parts. In Section 5, we explicitly construct monoidal contexts, the
normalization of spliced monoidal arrows.

▶ Remark 4.4. Normalization is a generic procedure that applies to any produoidal category,
it does not matter if the parallel split (⊗) is symmetric or not. However, when ⊗ happens to
be symmetric, we can also apply a more specialized normalization procedure: symmetric
normalization. See the full version [20, Appendix F.2].

CSL 2024

25:12 The Produoidal Algebra of Process Decomposition

5 Monoidal Context: Mixing ◁ and ⊗ by normalization

Monoidal contexts formalize the notion of an incomplete morphism in a monoidal category.
The category of monoidal contexts will have a rich algebraic structure: we shall be able to
still compose contexts sequentially and in parallel and, at the same time, we shall be able to
fill a context using another monoidal context. Perhaps surprisingly, then, the category of
monoidal contexts is not even monoidal.

We justify this apparent contradiction in terms of profunctorial structure: the category is
not monoidal, but it does have two promonoidal structures that precisely represent sequential
and parallel composition. These structures form a normal produoidal category. In fact, we
show it to be the normalization of the produoidal category of spliced monoidal arrows. This
section constructs explicitly this normal produoidal category of monoidal contexts.

5.1 The Category of Monoidal Contexts
A monoidal context, MC (A

B ; X
Y), represents a process from A to B with a hole admitting

a process from X to Y . In this sense, monoidal contexts are similar to spliced monoidal
arrows. The difference with spliced monoidal arrows is that monoidal contexts allow for
communication to happen to the left and to the right of this hole.

▶ Definition 5.1 (Monoidal context). Let (C,⊗, I) be a monoidal category. Monoidal contexts
are the elements of the profunctor MC (A

B ; X
Y) = C(A; •1 ⊗X ⊗ •2) ⋄ C(•1 ⊗ Y ⊗ •2;B) over

Cop × C.

In other words, a monoidal context from A to B, with a hole from X to Y , is an equivalence
class consisting of a pair of objects M,N ∈ Cobj and a pair of morphisms f ∈ C(A;M⊗X⊗N)
and g ∈ C(M ⊗ Y ⊗ N ;B), quotiented by dinaturality of M and N (Figure 8). We write
monoidal contexts as

(f # (idM ⊗ ■ ⊗ idN) # g) ∈ MC (A
B ; X

Y) .

In this notation, dinaturality explicitly means (f # (m⊗ idX ⊗ n) # (idW ⊗ ■ ⊗ idH) # g) =
(f # (idM ⊗ ■ ⊗ idN) # (m⊗ idY ⊗ n) # g).
▶ Remark 5.2. Even when we introduce (id⊗■⊗ id) as a piece of suggestive notation, we can
still write (g ⊗ ■ ⊗ h) unambiguously, because of dinaturality: (g ⊗ id ⊗ h) # (id ⊗ ■ ⊗ id) =
(id ⊗ ■ ⊗ id) # (g ⊗ id ⊗ h).

5.2 The Normal Produoidal Algebra of Monoidal Contexts
▶ Definition 5.3. Let us endow monoidal contexts with a normal produoidal structure. The
category of monoidal contexts, MC, has as objects pairs of objects of C. Units are defined
by MC (A

B ;N) = C(A;B). We use the following profunctors to define sequential splits and
parallel splits,

MC
(

A
B ; X

Y ◁ X′

Y ′

)
= C(A; •1 ⊗X ⊗ •2) ⋄ C(•1 ⊗ Y ⊗ •2; •3 ⊗X ′ ⊗ •4) ⋄ C(•3 ⊗ Y ′ ⊗ •4;B);

MC
(

A
B ; X

Y ⊗ X′

Y ′

)
= C(A; •1 ⊗X ⊗ •2 ⊗X ′ ⊗ •3) ⋄ C(•1 ⊗ Y ⊗ •2 ⊗ Y ′ ⊗ •3;B).

In other words, sequential splits are triples of arrows quotiented by dinaturality and
written as f # (id ⊗■⊗ id) # g # (id ⊗■⊗ id) # h. Parallel splits are pairs of arrows quotiented
by dinaturality and written as f # (id ⊗ ■ ⊗ id ⊗ ■ ⊗ id) # g. Units are simply arrows
f : A → B. Morphisms are pairs of arrows, written as f # (id ⊗■⊗ id) # g, and also quotiented
by dinaturality. Figure 7 gives the diagrammatic representations of these components.
Dinaturality for sequential splits and parallel splits is depicted in Figure 8.

M. Earnshaw, J. Hefford, and M. Román 25:13

f

g

f

g

h

f

f

g

Figure 7 Morphisms, sequential and parallel splits, and units of the splice monoidal arrow
produoidal category.

f

g

=
m n

f

g

m n
;

f

g

h

f

g

h

m

m′

n

n′

m n

m′ n′

= ;

f

g

f

g

m n o

onm
=

Figure 8 Dinaturality of morphisms, and sequential and parallel splits of monoidal contexts.

▶ Theorem 5.4. The category of monoidal contexts forms a normal produoidal category
with its units, sequential and parallel splits. Monoidal contexts are the free normalization
of the cofree produoidal category over a category. In other words, monoidal contexts are the
normalization of spliced monoidal arrows, N T C ∼= MC.

Proof. See the full version [20, Propositions G.4 and G.5 and Theorem G.13]. ◀

6 Monoidal Lenses

Monoidal lenses are symmetric monoidal contexts. Again, the category of monoidal lenses
has a rich algebraic structure; and again, most of this structure exists only virtually in terms
of profunctors. In this case, though, the monoidal tensor does indeed exist: contrary to
monoidal contexts, monoidal lenses form also a monoidal category. This is perhaps why
applications of monoidal lenses have grown popular in recent years [56], with applications
in decision theory [27], supervised learning [17, 22] and most notably in functional data
accessing [42, 53, 6, 12]. The promonoidal structure of lenses was ignored, even when, after
now identifying for the first time its relation to the monoidal structure of lenses, we argue
that it could be potentially useful in these applications: e.g. in multi-stage decision problems,
or in multi-stage data accessors.

This section explicitly constructs the normal symmetric produoidal category of monoidal
lenses. We describe it for the first time by a universal property: it is the free symmetric
normalization of the cofree produoidal category.

6.1 The Normal Symmetric Produoidal Algebra of Monoidal Lenses
▶ Definition 6.1 (Monoidal Lens). Let (C,⊗, I) be a symmetric monoidal category. A
monoidal lens of type LC(A

B; X
Y) represents a process in a symmetric monoidal category with a

hole admitting a process from X to Y [56]. Explicitly, monoidal lenses are the elements of
the profunctor LC (A

B ; X
Y) = C(A; • ⊗X) ⋄ C(• ⊗ Y ;B) over Cop × C.

CSL 2024

25:14 The Produoidal Algebra of Process Decomposition

In other words, a monoidal lens from A to B, with a hole from X to Y , is an equivalence
class consisting of a pair of objects M,N ∈ Cobj and a pair of morphisms f ∈ C(A;M ⊗X)
and g ∈ C(M ⊗ Y ;B), quotiented by dinaturality of M . We write monoidal lenses as
f # (idM ⊗ ■) # g ∈ LC (A

B ; X
Y) .

▶ Theorem 6.2. Monoidal lenses form a normal symmetric produoidal category with the
units given by LC (A

B ;N) = C(A;B), and the following sequential and parallel splits.

LC
(

A
B ; X

Y ◁ X′

Y ′

)
= C(A; •1 ⊗X) ⋄ C(•1 ⊗ Y ; •2 ⊗X ′) ⋄ C(•2 ⊗ Y ′;B);

LC
(

A
B ; X

Y ⊗ X′

Y ′

)
= C(A; •1 ⊗X ⊗X ′) ⋄ C(•1 ⊗ Y ⊗ Y ′;B).

Monoidal lenses are the free symmetric normalization of the cofree symmetric produoidal
category over a symmetric monoidal category.

Proof. See the full version [20, Proposition H.1 and Theorem H.9]. ◀

▶ Remark 6.3 (Representable parallel structure). The parallel splitting structure of monoidal
lenses is representable, LC

(
A
B ; X

Y ⊗ X′

Y ′

)
= LC

(
A
B ; X⊗X′

Y ⊗Y ′

)
. Lenses over a symmetric monoidal

category are known to be monoidal [56, 30], but it remained unexplained why a similar
structure was not present in non-symmetric lenses. The contradiction can be solved by
noting that both symmetric and non-symmetric lenses are indeed promonoidal, even if only
symmetric lenses provide a representable tensor.
▶ Remark 6.4 (Session notation for lenses). We will write !A = (A

I) and ?B = (I
B) for the

objects of the produoidal category of lenses that have a monoidal unit as one of its objects.
These are enough to express all objects because !A⊗ ?B = (A

B).

▶ Proposition 6.5. Let (C,⊗, I) be a symmetric monoidal category. There exist monoidal
functors (!) : C → LC and (?) : Cop → LC. Moreover, they satisfy the following properties
definitionally: C(•; ?A ◁ ?B) ∼= C(•; ?A ⊗ ?B); !(A⊗B) = !A ⊗ !B; C(•; !A ◁ !B) ∼=
C(•; !A⊗ !B); ?(A⊗B) = ?A⊗ ?B; and C(•; !A ◁ ?B) ∼= C(•; !A⊗ ?B).

Proof. See the full version [20, Proposition H.7]. ◀

6.2 Protocol Analysis
Let us go back to our running example (Figure 1). We can now declare that the client and
server have the following types, representing the order in which they communicate,

∈ LC
(

Client
Client ; !Msg ◁ ?Msg ◁ !Msg

)
; ∈ LC

(
Server
Server ; ?Msg ◁ !Msg ◁ ?Msg

)
.

Moreover, we can use the duoidal algebra to compose them. Indeed, tensoring client and
server, we get the following codomain type: (!Msg◁ ?Msg◁ !Msg) ⊗ (?Msg◁ !Msg◁ ?Msg).
We then apply the laxators to mix inputs and outputs, obtaining (!Msg ⊗ ?Msg) ◁ (?Msg ⊗
!Msg)◁ (!Msg ⊗ ?Msg), and we finally apply the unitors to fill the communication holes with
noisy channels of type Msg → Msg.

ψ2

(
⊗

)
≺3

λ NOISE3 ∈ LC
(

Client⊗Server
Client⊗Server;N

)
.

We end up obtaining the protocol as a single morphism Client ⊗ Server → Client ⊗ Server in
whatever category we are using to program. Assuming the category of finite stochastic maps,
this single morphism represents the distribution over the possible outcomes of the protocol.
Finally, by dinaturality, we can reason over independent parts of the protocol.

M. Earnshaw, J. Hefford, and M. Román 25:15

▶ Remark 6.6. Let () = (SYN # (id ⊗ ■) # ACK # (id ⊗ ■)). The equalities in Figure 1 are
a consequence of dinaturality over PRJ, which acts as the interchange law for incomplete
morphisms.

SYN # (id ⊗ ■) # ACK # (id ⊗ ■) = SYN∗ # (PRJ ⊗ id) # ■ # ACK # (id ⊗ ■) =
SYN∗ # (id ⊗ ■) # (PRJ ⊗ id) # ACK # (id ⊗ ■) = SYN∗ # (id ⊗ ■) # ACK∗ # (id ⊗ ■).

7 Conclusions

Monoidal contexts are an algebra of incomplete processes, commonly generalizing lenses [56]
and spliced arrows [45]. In the same way that the π-calculus allows input/output channels of
an abstract model of computation, monoidal contexts allow input/output communication on
arbitrary theories of processes, such as stochastic or partial functions, quantum processes or
relational queries.

Monoidal contexts form a normal produoidal category: a highly structured and rich
categorical algebra. Moreover, they are the universal such algebra on a monoidal category.
This is good news for applications: the literature on concurrency is rich in frameworks; but
the lack of canonicity may get us confused when trying to choose, design, or compare among
them, as Abramsky [1] has pointed out. Precisely characterizing the universal property of a
model addresses this concern. This is also good news for the category theorist: not only is
this an example shedding light on a relatively obscure structure; it is a paradigmatic such
one.

We rely on two mathematical ideas: monoidal and duoidal categories on one hand, and
dinaturality and profunctorial structures on the other. Monoidal categories, which could
be accidentally dismissed as a toy version of cartesian categories, show that their string
diagrams can bootstrap our conceptual understanding of new fundamental process structures,
while keeping an abstraction over their implementation that cartesian categories cannot
afford. Duoidal categories are such an example: starting to appear insistently in computer
science [62, 34], they capture the posetal structure of process dependency and communication.
Dinaturality, virtual structures and profunctors, even if sometimes judged arcane, show again
that they can canonically model a notion as concrete as process composition.

7.1 Further Work
Dependencies. Shapiro and Spivak [62] prove that normal symmetric duoidal categories
with certain limits additionally have the structure of dependence categories: they can not
only express dependence structures generated by (◁) and (⊗), but arbitrary poset-mediated
dependence structures. Produoidal categories are better behaved: the limits always exist,
and we only require these are preserved by the coend (see the full version for details [20]).
Weakening dependence categories in this way combines the ideas of Shapiro and Spivak [62]
with those of Hefford and Kissinger [32], who employ virtual objects to deal with the
non-existence of tensor products in models of spacetime.

Language theory. Melliès and Zeilberger [45] used a multicategorical form of splice-contour
adjunction to give a novel proof of the Chomsky-Schützenberger representation theorem,
generalized to context-free languages in categories. Our produoidal splice-contour adjunction
(Section 3), combined with recent work on languages of morphisms in monoidal categories [21]
opens the way for a monoidal version of the Chomsky-Schützenberger theorem.

CSL 2024

25:16 The Produoidal Algebra of Process Decomposition

String diagrams for concurrency. Nester et al. [48, 7] have recently introduced an alternative
description of lenses in terms of proarrow equipments, which have a good 2-dimensional
syntax [47] we can use for send/receive types (!/?). We have shown how this structure arises
universally in symmetric monoidal categories. It remains as further work to determine a good
2-dimensional syntax for concurrent programs with iteration and internal/external choice.

References
1 Samson Abramsky. What are the fundamental structures of concurrency?: We still don’t

know! In Luca Aceto and Andrew D. Gordon, editors, Proceedings of the Workshop “Essays
on Algebraic Process Calculi”, APC 25, Bertinoro, Italy, August 1-5, 2005, volume 162
of Electronic Notes in Theoretical Computer Science, pages 37–41. Elsevier, 2005. doi:
10.1016/j.entcs.2005.12.075.

2 Samson Abramsky and Bob Coecke. Categorical quantum mechanics. In Kurt Engesser, Dov M.
Gabbay, and Daniel Lehmann, editors, Handbook of Quantum Logic and Quantum Structures,
pages 261–323. Elsevier, Amsterdam, 2009. doi:10.1016/B978-0-444-52869-8.50010-4.

3 Marcelo Aguiar, Mariana Haim, and Ignacio López Franco. Monads on higher monoi-
dal categories. Applied Categorical Structures, 26(3):413–458, June 2018. doi:10.1007/
s10485-017-9497-8.

4 Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries, and Jamie Vicary.
Modular categories as representations of the 3-dimensional bordism 2-category, 2015. arXiv:
1509.06811.

5 Jean Bénabou. Distributors at work. Lecture notes written by Thomas Streicher, 11, 2000.
6 Guillaume Boisseau and Jeremy Gibbons. What you needa know about yoneda: Profunctor

optics and the yoneda lemma (functional pearl). Proceedings of the ACM on Programming
Languages, 2(ICFP):1–27, 2018.

7 Guillaume Boisseau, Chad Nester, and Mario Román. Cornering optics. In Proceedings Fifth
International Conference on Applied Category Theory, ACT 2022, Glasgow, United Kingdom,
18-22 July 2022, volume abs/2205.00842, 2022. doi:10.48550/arXiv.2205.00842.

8 Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Graphical affine algebra.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785877.

9 Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical conjunctive queries. In Dan R.
Ghica and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic,
CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1–13:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.13.

10 Thomas Booker and Ross Street. Tannaka duality and convolution for duoidal categories.
Theory and Applications of Categories, 28(6):166–205, 2013.

11 Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Dia-
grams. Mathematical Structures in Computer Science, pages 1–34, March 2019. doi:
10.1017/S0960129518000488.

12 Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski, Emily
Pillmore, and Mario Román. Profunctor optics, a categorical update. CoRR, abs/2001.07488,
2020. arXiv:2001.07488.

13 J. Robin B. Cockett and Stephen Lack. Restriction categories I: categories of partial maps.
Theoretical Computer Science, 270(1-2):223–259, 2002. doi:10.1016/S0304-3975(00)00382-0.

14 J. Robin B. Cockett and Craig A. Pastro. The logic of message-passing. Sci. Comput. Program.,
74(8):498–533, 2009. doi:10.1016/j.scico.2007.11.005.

15 J. Robin B. Cockett and Robert A. G. Seely. Weakly distributive categories. Journal of Pure
and Applied Algebra, 114(2):133–173, 1997.

16 Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory of resources. Inf.
Comput., 250:59–86, 2016. doi:10.1016/j.ic.2016.02.008.

https://doi.org/10.1016/j.entcs.2005.12.075
https://doi.org/10.1016/j.entcs.2005.12.075
https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1007/s10485-017-9497-8
https://doi.org/10.1007/s10485-017-9497-8
https://arxiv.org/abs/1509.06811
https://arxiv.org/abs/1509.06811
https://doi.org/10.48550/arXiv.2205.00842
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
https://arxiv.org/abs/2001.07488
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/j.scico.2007.11.005
https://doi.org/10.1016/j.ic.2016.02.008

M. Earnshaw, J. Hefford, and M. Román 25:17

17 Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi.
Categorical foundations of gradient-based learning. In European Symposium on Programming,
pages 1–28. Springer, Cham, 2022.

18 Brian Day. On closed categories of functors. In Reports of the Midwest Category Seminar
IV, volume 137, pages 1–38, Berlin, Heidelberg, 1970. Springer Berlin Heidelberg. doi:
10.1007/BFb0060438.

19 Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal streams for dataflow
programming. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3531130.3533365.

20 Matt Earnshaw, James Hefford, and Mario Román. The produoidal algebra of process
decomposition, 2023. arXiv:2301.11867.

21 Matthew Earnshaw and Pawel Sobociński. Regular Monoidal Languages. In Stefan Szeider,
Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 44:1–44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.44.

22 Brendan Fong and Michael Johnson. Lenses and learners. arXiv preprint, 2019. arXiv:
1903.03671.

23 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
29(3):17–es, 2007.

24 Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, 2020. arXiv:1908.07021.

25 Richard Garner and Ignacio López Franco. Commutativity. Journal of Pure and Applied
Algebra, 220(5):1707–1751, 2016.

26 Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
S. Doaitse Swierstra, editor, Programming Languages and Systems, 8th European Symposium
on Programming, ESOP’99, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, 22-28 March, 1999,
Proceedings, volume 1576 of Lecture Notes in Computer Science, pages 74–90. Springer, 1999.
doi:10.1007/3-540-49099-X_6.

27 Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481.
ACM, 2018. doi:10.1145/3209108.3209165.

28 René Guitart. Tenseurs et machines. Cahiers de topologie et géométrie différentielle
catégoriques, 21(1):5–62, 1980. URL: http://www.numdam.org/item/CTGDC_1980__21_1_5_0/.

29 Masahito Hasegawa. Models of sharing graphs: a categorical semantics of let and letrec. PhD
thesis, University of Edinburgh, UK, 1997. URL: http://hdl.handle.net/1842/15001.

30 Jules Hedges. Coherence for lenses and open games. arXiv preprint, 2017. arXiv:1704.02230.
31 James Hefford and Cole Comfort. Coend optics for quantum combs. arXiv preprint, 2022.

arXiv:2205.09027, doi:10.48550/ARXIV.2205.09027.
32 James Hefford and Aleks Kissinger. On the pre- and promonoidal structure of spacetime.

arXiv preprint, 2022. doi:10.48550/arXiv.2206.09678.
33 Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. In Stephen D. Brookes

and Michael W. Mislove, editors, Proceedings of the 22nd Annual Conference on Mathematical
Foundations of Programming Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, volume
158 of Electronic Notes in Theoretical Computer Science, pages 219–236. Elsevier, 2006.
doi:10.1016/j.entcs.2006.04.012.

CSL 2024

https://doi.org/10.1007/BFb0060438
https://doi.org/10.1007/BFb0060438
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1145/3531130.3533365
https://arxiv.org/abs/2301.11867
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://arxiv.org/abs/1903.03671
https://arxiv.org/abs/1903.03671
https://arxiv.org/abs/1908.07021
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1145/3209108.3209165
http://www.numdam.org/item/CTGDC_1980__21_1_5_0/
http://hdl.handle.net/1842/15001
https://arxiv.org/abs/1704.02230
https://arxiv.org/abs/2205.09027
https://doi.org/10.48550/ARXIV.2205.09027
https://doi.org/10.48550/arXiv.2206.09678
https://doi.org/10.1016/j.entcs.2006.04.012

25:18 The Produoidal Algebra of Process Decomposition

34 Chris Heunen and Jesse Sigal. Duoidally enriched Freyd categories. arXiv preprint, 2023.
arXiv:2301.05162.

35 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

36 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

37 John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-3):67–
111, 2000. doi:10.1016/S0167-6423(99)00023-4.

38 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

39 Michael Johnson, Robert Rosebrugh, and Richard J. Wood. Lenses, fibrations and universal
translations. Mathematical structures in computer science, 22(1):25–42, 2012.

40 André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.

41 Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005095.

42 Edward Kmett. lens library, version 4.16. Hackage https://hackage. haskell. org/package/lens-
4.16, 2018, 2012.

43 Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In
Hans-Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages
358–371. ACM Press, 1996. doi:10.1145/237721.237804.

44 Fosco Loregian. (Co)end Calculus. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2021. doi:10.1017/9781108778657.

45 Paul-André Melliès and Noam Zeilberger. Parsing as a Lifting Problem and the Chomsky-
Schützenberger Representation Theorem. In MFPS 2022-38th conference on Mathematical
Foundations for Programming Semantics, 2022.

46 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
doi:10.1016/0890-5401(91)90052-4.

47 David Jaz Myers. String diagrams for double categories and equipments, 2016. doi:10.48550/
arXiv.1612.02762.

48 Chad Nester. Concurrent Process Histories and Resource Transducers. Logical Methods in
Computer Science, Volume 19, Issue 1, January 2023. doi:10.46298/lmcs-19(1:7)2023.

49 Nelson Niu and David I. Spivak. Polynomial functors: A general theory of interaction. In
preparation, 2022.

50 Craig Pastro and Ross Street. Doubles for Monoidal Categories. arXiv preprint, 2007.
arXiv:0711.1859.

51 Ross Paterson. A new notation for arrows. In Benjamin C. Pierce, editor, Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP ’01),
Firenze (Florence), Italy, September 3-5, 2001, pages 229–240. ACM, 2001. doi:10.1145/
507635.507664.

52 Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams as normal forms for
computing in symmetric monoidal categories. Electronic Proceedings in Theoretical Computer
Science, pages 49–64, February 2021.

https://arxiv.org/abs/2301.05162
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/2873052
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1109/LICS.2017.8005095
https://doi.org/10.1145/237721.237804
https://doi.org/10.1017/9781108778657
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.48550/arXiv.1612.02762
https://doi.org/10.48550/arXiv.1612.02762
https://doi.org/10.46298/lmcs-19(1:7)2023
https://arxiv.org/abs/0711.1859
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664

M. Earnshaw, J. Hefford, and M. Román 25:19

53 Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data
accessors. Art Sci. Eng. Program., 1(2):7, 2017. doi:10.22152/programming-journal.org/
2017/1/7.

54 Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In
Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS ’93),
Montreal, Canada, June 19-23, 1993, pages 376–385. IEEE Computer Society, 1993. doi:
10.1109/LICS.1993.287570.

55 J. Postel. Transmission control protocol. RFC 793, RFC Editor, September 1981. doi:
10.17487/RFC0793.

56 Mitchell Riley. Categories of Optics. arXiv preprint, 2018. arXiv:1809.00738.
57 Mario Román. Comb Diagrams for Discrete-Time Feedback. CoRR, abs/2003.06214, 2020.

arXiv:2003.06214.
58 Mario Román. Promonads and string diagrams for effectful categories. In ACT ’22: Applied

Category Theory, Glasgow, United Kingdom, 18–22 July, 2022, volume abs/2205.07664, 2022.
doi:10.48550/arXiv.2205.07664.

59 Mario Román. Open diagrams via coend calculus. Electronic Proceedings in Theoretical
Computer Science, 333:65–78, February 2021. doi:10.4204/eptcs.333.5.

60 Davide Sangiorgi and David Walker. The Pi-Calculus – A theory of mobile processes. Cambridge
University Press, 2001.

61 Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dynamical systems and
sheaves. Applied Categorical Structures, 28(1):1–57, 2020.

62 Brandon T. Shapiro and David I. Spivak. Duoidal structures for compositional dependence.
arXiv preprint, 2022. arXiv:2210.01962.

63 Michael Shulman. Categorical logic from a categorical point of view. Available on the web,
2016. URL: https://mikeshulman.github.io/catlog/catlog.pdf.

64 Michael Shulman. Duoidal category (nlab entry), section 2, 2017. , Last accessed on 2022-12-14.
URL: https://ncatlab.org/nlab/show/duoidal+category.

65 David I. Spivak. The operad of wiring diagrams: formalizing a graphical language for databases,
recursion, and plug-and-play circuits. CoRR, abs/1305.0297, 2013. arXiv:1305.0297.

66 Ross Street. Monoidal categories in, and linking, geometry and algebra. Bulletin of the Belgian
Mathematical Society-Simon Stevin, 19(5):769–820, 2012.

67 André Videla and Matteo Capucci. Lenses for composable servers. CoRR, abs/2203.15633,
2022. doi:10.48550/arXiv.2203.15633.

CSL 2024

https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://arxiv.org/abs/1809.00738
https://arxiv.org/abs/2003.06214
https://doi.org/10.48550/arXiv.2205.07664
https://doi.org/10.4204/eptcs.333.5
https://arxiv.org/abs/2210.01962
https://mikeshulman.github.io/catlog/catlog.pdf
https://ncatlab.org/nlab/show/duoidal+category
https://arxiv.org/abs/1305.0297
https://doi.org/10.48550/arXiv.2203.15633

Extensions and Limits of the
Specker-Blatter Theorem
Eldar Fischer #

Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel

Johann A. Makowsky #

Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel

Abstract
The original Specker-Blatter Theorem (1983) was formulated for classes of structures C of one or
several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of
such structures on the set [n] is modularly C-finite (MC-finite). In previous work we extended this to
structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author
also showed that the Specker-Blatter Theorem does not hold for one quaternary relation (2003).

If the vocabulary allows a constant symbol c, there are n possible interpretations on [n] for c.
We say that a constant c is hard-wired if c is always interpreted by the same element j ∈ [n]. In this
paper we show:

(i) The Specker-Blatter Theorem also holds for CMSOL when hard-wired constants are allowed.
The proof method of Specker and Blatter does not work in this case.

(ii) The Specker-Blatter Theorem does not hold already for C with one ternary relation definable
in First Order Logic FOL. This was left open since 1983.

Using hard-wired constants allows us to show MC-finiteness of counting functions of various
restricted partition functions which were not known to be MC-finite till now. Among them we
have the restricted Bell numbers Br,A, restricted Stirling numbers of the second kind Sr,A or
restricted Lah-numbers Lr,A. Here r is an non-negative integer and A is an ultimately periodic set
of non-negative integers.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Enumeration

Keywords and phrases Specker-Blatter Theorem, Monadic Second Order Logic, MC-finiteness

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.26

Related Version Full Version: https://arxiv.org/abs/2206.12135

Funding Eldar Fischer : Israel Science Foundation ISF 879/22

1 Introduction

A sequence of natural numbers s(n) is C-finite if it satisfies a linear recurrence relation with
constant coefficients. s(n) is MC-finite if it satisfies a linear recurrence relation with constant
coefficients modulo m for each m separately. A C-finite sequence s(n) must have limited
growth: s(n) ≤ 2cn for some constant c. No such bound exists for MC-finite sequences: for
every monotone increasing sequence s(n) the sequence s′(n) = n!s(n) is MC-finite.

A typical example of a C-finite sequence is the sequence f(n) of Fibonacci numbers. A
typical example of an MC-finite sequence which is not C-finite is the sequence B(n) of Bell
numbers. The Bell number B(n) counts the number of partitions of the set [n] of the numbers
{1, 2, . . . , n}. Let Eq(n) be number of equivalence relations over [n]. Clearly, B(n) = Eq(n).
Let Eq2(n) be the number of equivalence relations on [n] with exactly two equivalence classes
of the same size. Eq2(n) is not MC-finite since the value of Eq2(n) is odd iff n is an even
power of 2, see [3].

© Eldar Fischer and Johann A. Makowsky;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eldar@cs.technion.ac.il
mailto:janos@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.CSL.2024.26
https://arxiv.org/abs/2206.12135
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Extensions and Limits

In [23] G. Pfeiffer discusses counting other transitive relations besides Eq(n), in particular,
partial orders PO(n), quasi-orders (aka preorders) QO(n) and just transitive relations Tr(n).
Using a growth argument one can see that none of these functions is C-finite. It follows
directly from the Specker-Blatter Theorem stated below, see Corollary 2, that PO(n), QO(n)
and Tr(n) are MC-finite. However, to the best of our knowledge, this has not been stated
in the literature. This may be due to the fact that no explicit formulas for these functions
are known. The Specker-Blatter Theorem establishes MC-finiteness even in the absence of
explicit formulas. It derives MC-finiteness solely from the assumption that C is definable
in Monadic Second Order Logic (MSOL), or in MSOL augmented by modular counting
quantifiers (CMSOL).

The present paper grew out of our study of modular recurrence relations for restricted
partition functions, [11]. We provide a short review of the Specker-Blatter Theorem, and show
how to extend its applicability by extending the allowed vocabulary to include constants with
a fixed interpretation (“hard-wired”). The reduction allowing this extension can be made
to work in the other direction. Using it we also close the gap between the Specker-Blatter
Theorem and its known limits, left open in [12], by constructing am FOL statement over a
single ternary relation for which the theorem does not hold.

Formal definitions with more examples and details about C-finite and MC-finite sequences
are given in Section 6.

2 Background in logic

We generally follow the notation of [8], and assume basic knowledge of model theory.
Standard texts for Finite Model Theory are [8, 21]. In the following, we always refer to a
set R̄ = {R1, . . . , RℓR̄

} of distinct binary relation symbols, a set ā = {a1, . . . , aℓā} of distinct
constant symbols, and so on. By a ∈ ā we mean that there exists 1 ≤ i ≤ ℓā for which a = ai.
We also use the shorthand [n] = {1, . . . , n}.

Let τ = R̄ ∪ ā be a vocabulary, i.e., a set of non-logical constants. We denote by FOL(τ)
the set of first order formulas with its non-logical constants in τ . If τ is clear from the context,
we omit it. We denote by MSOL(τ) the set of Monadic Second Order Logic, obtained from
FOL by allowing unary relation variables and quantification over them. The logic CMSOL
is obtained from MSOL by allowing also quantification of the form Cm,axϕ(x), which are
interpreted by

A |= Cm,axϕ(x) iff |{a ∈ A : ϕ(a)}| ≡ a mod m.

In the following we will be interested in the set of models of a logic sentence ϕ over a
vocabulary τ whose universe is [n] for any natural number n. We denote this set by

Cϕ = {M = ([n], A1, . . . , Am) : n ∈ N, Ai ∈ [n]ρi ,M |= ϕ}.

3 The original Specker-Blatter Theorem

Let ϕE be the formula in First Order Logic (FOL) which says that E(x, y) is an equivalence
relation. Eq(n) can be written as

Eq(n) = |{E ⊆ [n]2 : ([n], E) |= ϕE}|.

PO(n), QO(n) and Tr(n) can be written in a similar way.

E. Fischer and J. A. Makowsky 26:3

The original Specker-Blatter Theorem from 1981, [1, 2, 3, 26], gives a general criterion for
certain integer sequences to be MC-finite. Let R̄ = {R1, . . . , RℓR̄

} be a finite set of relation
symbols of arities ρ1, . . . , ρℓR̄

respectively, and ϕ be a formula of Monadic Second Order
Logic (MSOL) using relation symbols from R without free variables.

Let Spϕ(n) be the number of ways we can interpret the relation symbols in R on [n] such
that the resulting structures where Ai is the interpretation of Ri satisfies ϕ. Formally

Spϕ(n) = |{Ai ⊆ [n]ρi , i ≤ m : ([n], A1. . . . , Am) |= ϕ}|.

▶ Theorem 1 (Specker-Blatter). Let R̄ be a finite set of binary relations and ϕ be a formula
of MSOL(R̄) using relation symbols in R̄. Then the sequence Spϕ(n) is MC-finite.

▶ Corollary 2. The sequences counting the number of partial orders PO(n), quasi-orders
QO(n), and transitive relations Tr(n) on [n], are MC-finite.

The idea behind the proof of the Specker-Blatter theorem consists of two parts, both of
which use the assertion that τ = R̄ contains only binary relation symbols. Unary symbols
can also be incorporated, since these can be simulated with binary symbols in a way that
preserves the number of satisfying models.

The first part is combinatorial and applies to any family C of structures over the vocabulary
τ satisfying a property that we outline below. For such a family, we let SpC(n) be the number
of members of C whose universe is [n]. In particular, Spϕ(n) is just a shorthand for SpCϕ

(n).
A pointed R̄-structure is an R̄-structure A = ([n], A1, . . . , Aµ, a) with an additional

distinguished point a ∈ [n]. Given a pointed R̄-structure A1 with universe [n1] and an
R̄-structure A2 with universe [n2] we define A = Subst(A1, a,A2) as follows:

(i) The universe A of A is the disjoint union of A1 and A2 with the point a removed. It
can be assumed to be the set [n1 + n2 − 1].

(ii) The binary relations are defined such that A2 is a module in A, i.e., for u ∈ A1 \ {a}
and v ∈ A2 and R ∈ R̄, the relation R(u, v) holds in A = Subst(A1, a,A2) iff R(u, a)
holds in A1. For u, v ∈ A1 \ {a} (respectively u, v ∈ A2), R(u, v) holds in A iff it holds
in A1 (respectively A2).

By using an arbitrary enumeration of all possible pointed R̄-structures and all possible
(non-pointed) R̄-structures, we construct an N × N matrix MC over {0, 1}, by setting for
every i and j the value MC(i, j) to be the indicator as to whether the substitution of the j’th
structure in the i’th pointed structure results in a member of C. The main combinatorial
part is the following.

▶ Theorem 3 (Specker-Blatter, combinatorial version). Let R̄ be a finite set of binary relations
and C be a class of finite R̄-structures whose substitution rank is finite under Zpq for any
prime number p and q ∈ N. Then the sequence SpC(n) is MC-finite.

The above applies to an uncountable number of families C. Theorem 1 follows from it by
the following lemma, which forms the second part of the original proof:

▶ Lemma 4. Let R̄ be a finite set of binary relations and C be a finite class of R-structures
defined by an R-sentences ϕ in MSOL. Then the substitution rank of C is finite.

In [15] it is shown that the lemma still holds if MSOL is replaced by CMSOL. On the
other hand, when considering relations of arity higher than 2, the substitution operation
is no longer well-defined as it is written here. As it later turned out, this is not a merely
technical limitation, but an essential one.

CSL 2024

26:4 Extensions and Limits

Also, it is not clear how to handle hard-wired constant in the definition of the substitution
operation. In this paper, instead of incorporating the hard-wired constants directly into the
original mechanism, we show a reduction from the question of the original count to a sum of
counts over other sentences that do not involve the constants. This approach turns out to be
useful also in the other direction, of proving a new limit on the Specker-Blatter theorem.

4 Previous limitations and extensions

Limitations and extensions of the Specker-Blatter Theorem have been previously discussed
in [15, 14].

It is well known that Eulerian graphs and regular graphs of even degree are not definable
in MSOL, but they are definable in CMSOL. In [15], the Specker-Blatter Theorem was shown
to hold also for CMSOL. It follows in particular that Eul(n), which counts the number
of Eulerian graphs over [n] (i.e. connected graphs all of whose degrees are even), is also
MC-finite.

In [13] the first author showed that the Specker-Blatter Theorem does not hold for
quaternary relations:

▶ Theorem 5 (E. Fischer, 2002). There is an FOL-sentence with only one quaternary relation
symbol ϕ, such that Spϕ(n) is not an MC-sequence.

The question of whether Specker-Blatter Theorem holds in the presence of ternary relation
symbols remained open.

5 Main new results

Due to space constraints, some proofs are deferred to the full version of this paper1 [17].
The Bell numbers B(n) and the Stirling numbers of the second kind Sk(n) for fixed k

can be shown to be MC-finite using the Specker-Blatter Theorem. A. Broder in 1984, [4],
introduced the restricted Bell numbers Br(n) and the restricted Stirling numbers of the
second kind Sk,r(n). Let r ∈ N+. Sk,r(n) is defined as the number of set partitions of [r+ n]
into k+ r blocks with the additional condition that the first r elements are in distinct blocks.
Br(n) is defined as

Br(n) =
∑

k

Sk,r(n).

The class of equivalence relations on [r + n] where the first r elements are in different
equivalence classes is definable in FOL with one binary relation and r hard-wired constants.
The Specker-Blatter Theorem does not directly apply to this case. In [11] it is shown how to
circumvent this obstacle in the case of one equivalence relation. It followed that both Sk,r(n)
and Br(n) are MC-finite.

In this paper we prove a more general theorem:

▶ Theorem 6 (Elimination of hard-wired constants).
(i) Let τ consist of a finite set of (hard-wired) constant symbols ā, unary relations symbols

Ū , and binary relation symbols R̄. For every class C of τ -structures there exist classes
C1, . . . , Cr of τ ′-structures, where τ ′-contains only a finite number r(ā, Ū , R̄) of binary
relation symbols, such that

1 The full version can be downloaded at https://arxiv.org/abs/2206.12135.

https://arxiv.org/abs/2206.12135

E. Fischer and J. A. Makowsky 26:5

SpC(n) =
r∑

i=1
SpCi

(n).

Equality here is not modular.
(ii) Furthermore, if C is FOL-definable (MSOL-definable, CMSOL-definable), so are the Ci.

▶ Corollary 7. Let τ consist of a finite set of (hard-wired) constant symbols ā, unary relations
symbols Ū , and binary relation symbols R̄, and let C be class of finite τ -structures definable
in CMSOL. Then the sequence SpC(n) is MC-finite.

The proof of Theorem 6 is given in Section 7. In Section 8 we state Theorem 19, which is an
extension of Theorem 6 that works for higher arities and other logics, and sketch its proof.
The full proof details of Theorem 19 are deferred to [17]. The extension to higher arities is
needed for proving Theorem 8 below.

We have seen in Theorem 5 that the Specker-Blatter Theorem does not hold for a single
quaternary relation. The question of whether Specker-Blatter Theorem holds in the presence
of a single ternary relation symbol remained open. Our second main result here answers this.

▶ Theorem 8 (Ternary Counter-Example). There is a FOL-sentence ϕ with only one ternary
relation symbol (and some lower arity relations), such that Spϕ(n) is not an MC-sequence.

The proof of Theorem 8 first produces a sentence ψ which also uses one symbol for a
hard-wired constant. This will be shown in Section 9. To construct ϕ without the hard-wired
constants, we deploy the aforementioned Theorem 19, which provides a sentence with one
ternary relation and several lower arity relations. We can then also eliminate all relations
except the ternary one, to arrive at Theorem 31 stated at Section 9, whose proof is deferred
to the full version [17]. A sketch thereof is still provided.

We conclude this paper with Section 10, containing a summary and open problems.

6 More details about C-finite and MC-finite sequences of integers

A sequence of integers s(n) is C-finite2 if there are constants p, q ∈ N and ci ∈ Z, 0 ≤ i ≤ p−1
such that for all n ≥ q the linear recurrence relation below holds for s(n).

s(n+ p) =
p−1∑
i=0

cis(n+ i).

A sequence of integers s(n) is modular C-finite, abbreviated as MC-finite, if for every
m ∈ N there are constants pm, qm ∈ N+ such that for every n ≥ qm there is a linear recurrence
relation

s(n+ pm) ≡
pm−1∑

i=0
ci,ms(n+ i) mod m

with constant coefficients ci,m ∈ Z.
We denote by sm(n) the sequence s(n) mod m. Note that the coefficients ci,m and both

pm and qm generally do depend on m.

2 These are also called constant-recursive sequences or linear-recursive sequences in the literature.

CSL 2024

26:6 Extensions and Limits

▶ Proposition 9. The sequence s(n) is MC-finite iff sm(n) is ultimately periodic for every m.

Proof. MC-finiteness implies periodicity. The converse is from [24]. ◀

Clearly, if a sequence s(n) is C-finite then it is also MC-finite with rm = r and ci,m = ci

for all m. The converse is not true as there are uncountably many MC-finite sequences, but
only countably many C-finite sequences with integer coefficients, see Proposition 11 below.

▶ Example 10.
(i) The Fibonacci sequence is C-finite.
(ii) If s(n) is C-finite then it has at most simple exponential growth. There is c ∈ N+ such

that s(n) ≤ 2cn for all n ∈ N, see e.g. [9, 19].
(iii) The Bell numbers B(n) are not C-finite, but are MC-finite.
(iv) Let f(n) be any integer sequence. The sequence s1(n) = 2 · f(n) is ultimately periodic

modulo 2, but not necessarily MC-finite.
(v) Let g(n) be any integer sequence which is not almost everywhere zero. The sequence

s2(n) = n! · g(n) is MC-finite but not C-finite due to its growth.
(vi) The sequence s3(n) = 1

2
(2n

n

)
is not MC-finite: s3(n) is odd if and only if n is a power

of 2 (Lucas, 1878). A proof may be found in [18, Exercise 5.61] or in [26].
(vii) The Catalan numbers C(n) = 1

n+1
(2n

n

)
are not MC-finite, since C(n) is odd iff n is a

Mersenne number, i.e., n = 2m − 1 for some m, see [20, Chapter 13].
(viii) Let p be a prime and f(n) monotone increasing. The sequence s(n) = p · f(n) + z(n),

where z(n) is defined to equal 1 if n is a power of p and to equal 0 for any other n, is
monotone increasing but not ultimately periodic modulo p, hence not MC-finite.

▶ Proposition 11.
(i) There are uncountably many monotone increasing sequences which are MC-finite, and

uncountably many which are not MC-finite.
(ii) Almost all integer sequences (under a suitable measure) are not MC-finite.

Proof. (i) follows from Example 10 (v) and (viii). (ii) follows from almost all integer sequences
being being absolutely normal (see [9]); the full proof is deferred to [17]. ◀

7 Proving the reduction

7.1 Introduction
In the following we consider extending the language with “hard-wired” constants. Specifically,
assume that we have a class C that is defined by a sentence ϕ involving a set of constant
symbols ā, unary symbols Ū and binary symbols R̄. The function fC(n) is defined as the
number of models over the universe [n+ ℓā] which satisfy ϕ, for which ai is interpreted as
n+ i for all i ∈ [ℓā]. Note the distinction from the non-hard-wired setting, where we would
have had to also count the possible interpretations of the constants.

Our main result is an expression for the function fC(n) (when constants are allowed) that
is based on counting functions for classes that do not utilize constants. We first show this
reduction for languages using only unary and binary relations. The reduction preserves many
of the common logics, in particular an FOL expression would be reduced to functions involving
FOL expressions, and so on. This extends the Specker-Blatter theorem to languages involving
hard-wired constants, allowing modular ultimate periodicity proofs of new functions.

In this section we prove Theorem 6. For convenience we state it again as Theorem 12.

E. Fischer and J. A. Makowsky 26:7

▶ Theorem 12 (Reducing model counts to the case without constants). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā, unary
symbols Ū and binary symbols R̄, there exist classes C1, . . . , Cr (where r depends on the
original language), definable by FOL (resp. MSOL, CMSOL) sentences involving Ū ′ (which
contains Ū), R̄ and no constants, satisfying fC(n) =

∑r
i=1 fCi

(n) for all n ∈ N.

The following is the immediate corollary it produces for the Specker-Blatter Theorem,
which is a restatement of Corollary 2.

▶ Corollary 13 (Extended Specker-Blatter Theorem). For a class C definable in CMSOL with
(hard-wired) constants, unary and binary relation symbols only, the function fC is MC-finite.

Theorem 12 is proved by induction over the number of constants. The basis, ℓā = 0, is
trivial (with Ū ′ = Ū , r = 1 and C1 = C). The induction step is provided by the following.

▶ Lemma 14 (Removing a single constant). For any class C defined by an FOL (resp. MSOL,
CMSOL) sentence involving a set of constant symbols ā with ℓā > 0, unary symbols Ū and
binary symbols R̄, there exist classes C1, . . . , Cr (where r depends on the original language),
definable by FOL (resp. MSOL, CMSOL) sentences over the language (ā′, Ū ′, R̄′), where
ā′ = ā\{aℓā

}, Ū ′ = Ū∪Ī∪Ō where ℓĪ = ℓŌ = ℓR̄, and R̄′ = R̄, satisfying fC(n) =
∑r

i=1 fCi
(n)

for all n ∈ N.

The main idea in the proof of this lemma is to encode the “interaction” of the constant
aℓā with the rest of the universe using the additional unary relations. For every i ∈ [ℓR̄], we
will use the new relation Ii to hold every x ̸= aℓā

for which (x, a) was in Ri, and the relation
Oi to hold every x ̸= aℓā for which (a, x) was in Ri.

We cannot directly keep track whether (a, a) was in Ri, or whether a was in Ui for i ∈ [ℓŪ],
so we count the number of models for each of these options separately. This sets r = 2ℓŪ +ℓR̄ .
Instead of a running index, we index each such option with a set U ⊆ [ℓŪ] denoting which of
the relations in Ū include the constant to be removed a = aℓā

, and a set R ⊆ [ℓR̄] denoting
which of the relations in R̄ include (a, a). Using these we can define the case where a model
N over the language (ā′, Ū ′, R̄) with universe [n+ ℓā − 1] corresponds (along with U and R)
to an “original model” M with universe [n+ ℓā] over the original language.

▶ Definition 15. Given a model M over the language (ā, Ū , R̄) with universe [n + ℓā], a
model N over the language (ā′, Ū ′, R̄) with universe [n + ℓā − 1], and sets U ⊆ [ℓŪ] and
R ⊆ [ℓR̄], where (as always) in both models every constant ai is interpreted to be n+ i, we
say that (N,U,R) correspond to M if the following hold.

For every U ∈ Ū and x ∈ [n+ ℓā − 1], we have N |= U(x) if and only if M |= U(x).
For every i ∈ [ℓŪ], we have i ∈ U if and only if M |= Ui(a).
For every R ∈ R̄ and x, y ∈ [n+ ℓā − 1], we have N |= R(x, y) if and only if M |= R(x, y).
For every i ∈ [ℓR̄] and x ∈ [n+ ℓā − 1], we have N |= Ii(x) if and only if M |= Ri(x, a).
For every i ∈ [ℓR̄] and x ∈ [n+ ℓā − 1], we have N |= Oi(x) if and only if M |= Ri(a, x).
For every i ∈ [ℓR̄], we have i ∈ R if and only if M |= Ri(a, a).

It is important to note, for the purpose of counting, the following observation.

▶ Observation 16. Definition 15 provides a bijection between the set of possible models M

over the universe [n+ ℓā] (where the constants are interpreted as in Definition 15), and the
set of possible triples (N,U,R) where N is a model over [n+ ℓā − 1] (where the constants are
interpreted as in Definition 15) and U ⊆ [ℓŪ] and R ⊆ [ℓR̄].

CSL 2024

26:8 Extensions and Limits

Suppose we are given an expression ϕ(x̄) where x̄ = {x1, . . . , xℓx̄} is a set of variable
symbols over the language (ā, Ū , R̄), as well as a set U ⊆ [ℓŪ] and a set R ⊆ [ℓR̄]. We will
construct, by induction over the structure of ϕ, several expressions, where one of which is an
expression ϕ′

U,R(x̄) over the language (ā′, Ū ′, R̄). It will be constructed so that for any M over
the language (ā, Ū , R̄) with universe [n+ℓā] and N over the language (ā′, Ū ′, R̄) with universe
[n+ ℓā − 1], where (N,U,R) correspond to M, and any fixing of x1, . . . , xℓx̄ ∈ [n+ ℓā − 1],
we will have M |= ϕ(x̄) if and only if N |= ϕ′

U,R(x̄).
Lemma 14 then immediately follows from the case ℓx̄ = 0 (i.e. where ϕ is a sentence).

To be precise, for a class C defined by a sentence ϕ over the language (ā, Ū , R̄), we obtain
fC(n) =

∑
U⊆[ℓŪ],R⊆[ℓR̄] fCU,R

(n), where CU,R is the class respectively defined by ϕ′
U,R(x̄)

over the language (ā′, Ū ′, R̄).
To sustain the induction, the above will not be enough. This is because we need to account

under the model N also for the case where some variables are “assigned the value a = aℓā”,
a value which does not exist in its universe (it exists only in that of M). We henceforth
consider also a set X ⊆ [ℓx̄], and denote the set of variable symbols xX = {xi : i ∈ X}. In
our induction we will construct the expressions ϕ′

X,U,R(x̄ \ xX), where ϕ′
U,R(x̄) is just the

special case ϕ′
∅,U,R(x̄). With models M and N as above and a fixing of the variables in x̄\xX,

denote by x̄X→a the completion of this fixing to all of x̄ that is obtained by fixing xi to be
equal to a for all i ∈ X. We will then have M |= ϕ(x̄X→a) if and only if N |= ϕ′

X,U,R(x̄ \ xX).
The rest of this section is concerned with the recursive definition of ϕ′

X,U,R(x̄\xX). There
is a subsection for the base cases, a subsection for Boolean connectives, and a subsection for
each class of quantifiers (first order quantifiers, counting quantifiers, and monadic second
order quantifiers). In every construction we argue (at times trivially) that we keep the
correspondence invariant, namely that M |= ϕ(x̄X→a) if and only if N |= ϕ′

X,U,R(x̄ \ xX)
whenever M and (N,U,R) satisfy the correspondence condition of Definition 15.

7.2 The base constructions

We use the Boolean “true” and “false” statements in the following, so for formality’s sake they
are also considered as atomic statements here. Clearly, if ϕ(x̄) is simply the “true” statement
⊤ (respectively the “false” statement ⊥), then setting ϕ′

X,U,R(x̄ \ xX) to ⊤ (respectively ⊥)
gives us the equivalent statement satisfying the correspondence invariant.

For i ∈ [ℓŪ] and j ∈ [ℓx̄], let us now consider the expression ϕ(x̄) = Ui(xj). To produce
ϕ′
X,U,R(x̄\xX), we partition to cases according to whether j ∈ X. In the case where j /∈ X, we

simply set ϕ′
X,U,R(x̄ \ xX) = Ui(xj) as well, which clearly satisfies the invariant for (N,U,R)

correlated with M (recall that the “if and only if” condition in this case should hold when
the value of xi is in [n+ ℓā − 1]).

Similarly, for i ∈ [ℓŪ] and j ∈ [ℓā − 1], for the expression ϕ(x̄) = Ui(aj), we produce
ϕ′
X,U,R(x̄ \ xX) = Ui(aj), noting that in our setting the value of aj is guaranteed to be equal

to n+ j ∈ [n+ ℓā − 1].
Now consider the expression ϕ(x̄) = Ui(xj) for the case where xj ∈ X. Recall that in

this case ϕ′
X,U,R(x̄ \ xX) should not depend on xj . Moreover, to preserve the invariant for

corresponding sets and models, ϕ′
X,U,R(x̄ \ xX) should hold if and only if Uj(a) holds (recall

that we use the shorthand a = aℓā
throughout). We hence define ϕ′

X,U,R(x̄ \ xX) to be ⊤
(“true”) if i ∈ U, and define it to be ⊥ (“false”) if i /∈ U.

The remaining case for a unary relation is the expression ϕ(x̄) = Ui(a). Again, we define
ϕ′
X,U,R(x̄ \ xX) to be ⊤ if i ∈ U, and define it to be ⊥ if i /∈ U.

E. Fischer and J. A. Makowsky 26:9

We now move on to handle the atomic expressions involving a binary relation Ri where
i ∈ [ℓR̄]. The first case here is the one analogous to the first case we discussed involving a
unary relation. Namely, it is the case where ϕ(x̄) = Ri(xj , xk) where both j /∈ X and k /∈ X.
In this case we set ϕ′

X,U,R(x̄\xX) = Ri(xj , xk), and argue the same argument as above about
satisfying the correspondence invariant.

The next four cases we discuss resemble the last two cases we discussed about a unary
relation. Namely, these are the cases where ϕ(x̄) = Ri(xj , xk) with j, k ∈ X, ϕ(x̄) = Ri(xj , a)
or ϕ(x̄) = Ri(a, xj) with j ∈ X, and ϕ(x̄) = Ri(a, a). In all these cases the resulting
expression should reflect on whether M |= Ri(a, a), which for the corresponding (N,U,R) is
handled by the set R. We hence set ϕ′

X,U,R(x̄ \xX) = ⊤ if i ∈ R, and set ϕ′
X,U,R(x̄ \xX) = ⊥

if i /∈ R.
Next we handle the cases where ϕ(x̄) = Ri(xj , xk) with j /∈ X and k ∈ X, and ϕ(x̄) =

Ri(xj , a) with j /∈ X. For both this cases, for the correspondence invariant to follow we
need to look at whether M |= Ri(xj , a), where the value of xj is in [n + ℓā − 1]. For the
corresponding (N,U,R) this occurs if and only if N |= Ii(xj), where we recall that Ii is
a relation from Ū ′ \ Ū . We therefor set ϕ′

X,U,R(x̄ \ xX) = Ii(xj) in these cases. Similarly,
for the cases ϕ(x̄) = Ri(aj , xk) and ϕ(x̄) = Ri(aj , a), where j ∈ [ℓā − 1] and k ∈ X, we set
ϕ′
X,U,R(x̄ \ xX) = Ii(aj).

Moving on to the remaining cases for a binary relation, we consider ϕ(x̄) = Ri(xk, xj) with
j /∈ X and k ∈ X, and ϕ(x̄) = Ri(a, xj) with j /∈ X. These are analogous to the cases handled
in the last paragraph, only here we use Oi instead of Ii. We set ϕ′

X,U,R(x̄ \ xX) = Oi(xj)
in these two cases. Finally, for the cases ϕ(x̄) = Ri(xk, aj) and ϕ(x̄) = Ri(a, aj), where
j ∈ [ℓā − 1] and k ∈ X, we set ϕ′

X,U,R(x̄ \ xX) = Oi(aj).
The final atomic formula to consider is the “builtin relation” of equality. We skip all cases

involving only constants (e.g. ai = aj), since these are equivalent to ⊤ or ⊥. We also skip
cases that are equivalent by the symmetry of the equality relation to those that we discuss.

First, if ϕ(x̄) is xi = xj or xi = ak for i, j /∈ X and k ∈ [ℓā − 1], then since we are dealing
with values that are guaranteed to be in [n+ ℓā −1] (the universe of N), we set ϕ′

X,U,R(x̄\xX)
respectively to xi = xj or xi = ak as well (so it is “unaltered” from ϕ(x̄)).

On the other hand, if ϕ(x̄) is xi = xj or xi = a for i, j ∈ X, then for the correspondence
principle to hold, we need N |= ϕ′

X,U,R(x̄ \ xX) to hold if M |= (a = a). In other words, we
have to set ϕ′

X,U,R(x̄ \ xX) = ⊤ here.
The final cases are those where ϕ(x̄) is xi = xj or xi = a for i /∈ X and j ∈ X. For

the correspondence principle to hold, we need N |= ϕ′
X,U,R(x̄ \ xX) to hold if and only if

M |= (xi = a). However, we make here the subtle yet important observation that this
should occur for any value that xi can take from the universe of N, which does not include a.
Therefor, we can (and should) set ϕ′

X,U,R(x̄ \ xX) = ⊥ in these cases.

7.3 Boolean connectives

Handling Boolean connectives is the most straightforward part of this construction. For
example, suppose that we have ϕ(x̄) = ¬ψ(x̄) for some expression ψ(x̄), for which we
have already established (by the induction hypothesis) that M |= ψ(x̄X→a) if and only
if N |= ψ′

X,U,R(x̄ \ xX) whenever M and (N,U,R) correspond. Here we can clearly set
ϕ′
X,U,R(x̄ \ xX) = ¬ψ′

X,U,R(x̄ \ xX), and obtain that M |= ϕ(x̄X→a) if and only if N |=
ϕ′
X,U,R(x̄ \ xX) whenever M and (N,U,R) correspond.

The same idea and analysis follow for all other Boolean connectives. For example, for the
expression ϕ(x̄) = ψ1(x̄) ∧ψ2(x̄), we set ϕ′

X,U,R(x̄ \xX) = ψ′
1,X,U,R(x̄ \xX) ∧ψ′

2,X,U,R(x̄ \xX).

CSL 2024

26:10 Extensions and Limits

7.4 First order quantifiers
To deal with quantifiers over variables, we make some assumptions on the structure of our
expressions that can easily be justified by the appropriate variable substitutions. Namely, we
require that every quantified variable is quantified only once in the expression, and is not
used at all outside the scope of the quantification. In particular, this means that the set X

that appears in the subscript of our expression cannot contain a reference to the quantified
variable.

For notational convenience, when ϕ(x̄) is our formula, we denote by x = xℓx̄+1 the
quantified variable. So the two cases that we consider in this subsection are the existential
quantification ϕ(x̄) = ∃xψ(x̄∪{x}) and the universal quantification ϕ(x̄) = ∀xψ(x̄∪{x}), and
for both of them we would like to construct a corresponding ϕ′

X,U,R(x̄ \ xX) where X ⊆ [ℓx̄].
In the existential case, we want N |= ϕ′

X,U,R(x̄\xX) to occur whenever there is at least one
value of x for which M |= ψ(x̄∪ {x}). For the values of x within [n+ ℓā − 1], by the induction
hypothesis, this is covered by the expression ∃xψ

′
X,U,R(x̄ ∪ {x} \ xX). However, there is one

possible value of x not covered in this way, and that is the value n+ ℓā, which we identify
with the constant a. But by the induction hypothesis, M |= ψ(x̄ ∪ {x}) for x = a if and only
if N |= ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX). The combined expression that satisfies the correspondence
invariant is hence ϕ′

X,U,R(x̄ \ xX) = ∃xψ
′
X,U,R(x̄ ∪ {x} \ xX) ∨ ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX).
The universal case follows an analogous argument, only here M |= ψ(x̄ ∪ {x}) needs

to hold for all values of x, those in [n + ℓā − 1] as well as the value of a. The combined
expression is ϕ′

X,U,R(x̄ \ xX) = ∀xψ
′
X,U,R(x̄ ∪ {x} \ xX) ∧ ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX).

7.5 Modular counting quantifiers
We briefly recall the definition of a modular counting quantifier. Given ϕ(x̄) = Cr,m

x ψ(x̄∪{x}),
this expression is said to hold in M for a specific assignment to the variable of x̄, if the size of
the set {x : M |= ψ(x̄ ∪ {x})} is congruent to r modulo m. As with the previous subsection,
we assume that the quantified variable is not used outside the quantification scope, and that
no variable is quantified more than once. We again denote for notational convenience the
quantified variable by x = xℓx̄+1, and note that X ⊆ [ℓx̄] cannot include a reference to x.

When working with (N,U,R) that corresponds to M, to obtain the original modular count,
we have to count the set (satisfying the induction hypothesis) {x : N |= ψ′

X,U,R(x̄∪{x}\xX)},
as well as check whether N |= ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX) (which if true adds 1 to the count).
This gives (Cr−1,m

x ψ′
X,U,R(x̄∪ {x}\xX) ∧ψ′

X∪{ℓx̄+1},U,R(x̄ \xX)) ∨ (Cr,m
x ψ′

X,U,R(x̄∪ {x}\xX) ∧
¬ψ′

X∪{ℓx̄+1},U,R(x̄ \xX)) as the combined expression for ϕ′
X,U,R(x̄ \ xX).

7.6 Monadic second order quantifiers
Here we deal with quantifiers over unary relations. The cases we cover are the existential
quantification ϕ(x̄) = ∃Uψ(x̄) and the universal quantification ϕ(x̄) = ∀Uψ(x̄), where U is
a new unary relation that does not appear in the language (ā, Ū , R̄) of ϕ(x̄), while being
part of the language of ψ(x̄). As before, we assume that the quantified relation symbol U
appears only in the scope of this quantification, and is not quantified anywhere else, and
again denote for convenience U = UℓŪ +1. In particular, when analyzing expressions of the
type ψ′

X,U′,R(x̄ \ xX), we may allow U′ to contain [ℓŪ + 1] (the same is not allowed for the
expression ϕ′

X,U,R(x̄ \ xX), whose language does not contain U).
Consider now the family of possible models M′ that extend M with an interpretation of

the relation U . Now consider (N′,U′,R′) which correspond to M′, in relation to (N,U,R)
which correspond to M. Referring to Definition 15, every relation already appearing in Ū will

E. Fischer and J. A. Makowsky 26:11

have the same interpretation in N and N′. Also, R′ = R, since the binary relations are the
same in the languages of both models. Additionally, from the definition, the interpretation
of U = UℓŪ +1 in N′ is the restriction of its interpretation in M′ to [n+ ℓā − 1]. As for the
final ingredient U′, for every i ∈ [ℓŪ], the condition on whether it is in U or in U′ is the same.
However, U′ may also include ℓŪ + 1 according to whether M′ |= U(a). So considering all
possible models M′, we have two possibilities. Either U′ = U, or U′ = U ∪ {ℓŪ + 1}.

We can now construct our expression that corresponds to all models extending M. For the
existential case we have ϕ′

X,U,R(x̄ \ xX) = ∃Uψ
′
X,U,R(x̄ \ xX) ∨ ∃Uψ

′
X,U∪{ℓŪ +1},R(x̄ \ xX), and

for the universal one we have ϕ′
X,U,R(x̄ \ xX) = ∀Uψ

′
X,U,R(x̄ \ xX) ∧ ∀Uψ

′
X,U∪{ℓŪ +1},R(x̄ \ xX).

8 Handling relations of other arities

8.1 Nullary relations and a many-one version of the reduction
Before we consider relations of higher arities, let us show how incorporating nullary (“arity
zero”) relations can replace the reduction of Theorem 6 into a many-one reduction. That is,
instead of a reduction into of the original Spϕ(n) into a finite sum

∑r
i=1 Spϕi

(n), we will
have a reduction into a single Spϕ′(n) where ϕ′ may also involve nullary relations. Later,
when we consider higher arity relations, nullary relations add much needed consistency to
the notation.

Formally, for a nullary relation Z, the corresponding atomic formula is Z(), and a model
M over a language that includes Z interprets this formula as either true or false, that is,
either M |= Z() or M |= ¬Z().

Note that nullary relations can be simulated using higher arity relations. To replace a
nullary relation Z in the language with a unary relation U (while preserving the model count),
the logical expression under discussion should be conjuncted with “∀x∀y(U(x) ↔ U(y))”,
and then every instance of “Z()” in the formula should be replaced with “∃xU(x)”.

The corresponding reduction theorem is the following.

▶ Theorem 17 (Many-one reduction to the case without constants). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā, nullary
symbols Z̄, unary symbols Ū and binary symbols R̄, there exists a class C′ definable by an
FOL (resp. MSOL, CMSOL) sentence involving Z̄ ′, Ū ′ (which contain Z̄ and Ū respectively),
R̄ and no constants, satisfying fC(n) = fC′(n) for all n ∈ N.

Also here, the theorem follows from a single constant removal lemma, which is used for
an inductive argument over ℓā.

▶ Lemma 18 (Removing a single constant in a many-one manner). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā with
ℓā > 0, nullary symbols Z̄, unary symbols Ū and binary symbols R̄, there exists a class
C′, definable by an FOL (resp. MSOL, CMSOL) sentence over the language (ā′, Z̄ ′, Ū ′, R̄′),
where ā′ = ā \ {aℓā

}, Z̄ ′ = Z̄ ∪ S̄ ∪ D̄ where ℓS = ℓU and ℓD = ℓR, Ū ′ = Ū ∪ Ī ∪ Ō where
ℓĪ = ℓŌ = ℓR̄, and R̄′ = R̄, satisfying fC(n) = fC′(n) for all n ∈ N.

The proofs are deferred to the full version of this paper [17]. We provide here a “sketch
by example” on how this is done.

Adding nullary relations essentially allows us to get rid of the role of U and R, so we will
only inductively construct the expressions ϕ′

X and let nullary relations “hold the information”
as to whether some relations hold with a substituted to all their variables.

CSL 2024

26:12 Extensions and Limits

If for instance we consider a binary relation R(x, y) in the original vocabulary of ϕ, then
the new vocabulary will include R(x, y) (holding the information about the contents of R
that does not involve the constant a), the unary relations I(x) (holding the information
about R(x, a) for all x ̸= a) and O(y) (holding the information about R(y, a)), and the
nullary relation Z() that holds the information whether R(a, a) holds.

In the inductive construction, ϕ′
X(x̄ \ xX) will tell us whether ϕ holds where all variables

enumerated by X are assigned the constant a, while all other variables are guaranteed to be
different from a.

As an example, for the expression ϕ(x) = ∃yR(x, y), we will have ϕ′
∅(x) = (∃yR(x, y)) ∨

I(x), which goes over the two options for the existence of y for which R(x, y) holds: the
first option being y ̸= a, and the second one being y = a. Similarly we will have ϕ′

{1}() =
(∃yO(y)) ∨Z(), which goes over the two options for the existence of y for which R(a, y) holds.

For a universal quantifier the reduction would similarly go over the two cases, but use a
conjunction this time. Thus for ψ(x) = ∀yR(x, y) we will have ψ′

∅(x) = (∀yR(x, y)) ∧ I(x),
and ψ′

{1}() = (∀yO(y)) ∧ Z().

8.2 Handling higher arity relations and extended logics
The mechanism behind the proof of Theorem 17 can be extended higher arity relations, as
well as more expressive logics, such as Second Order Logic (SOL) and Guarded Second Order
Logic (GSOL)3.

▶ Theorem 19 (Many-one reduction allowing higher arity). For any class C defined by an
FOL (resp. MSOL, CMSOL, GSOL, SOL) sentence involving a set of constant symbols
ā, and relation symbols R̄ of arbitrary arities, there exists a class C′ definable by an FOL
(resp. MSOL, CMSOL, GSOL, SOL) sentence involving R̄′, which contains R̄, has the same
maximum arity as R̄, and has no new relations of maximum arity, satisfying fC(n) = fC′(n)
for all n ∈ N.

Also here, this follows by induction using a corresponding extension of Lemma 18, which
allows us to eliminate hard-wired constants one at a time. As a way of demonstrating the
proof of this theorem (deferred to [17]), we explain how the single elimination lemma works
when considering a ternary relation R(x, y, z).

As before, for eliminating a hard-wired constant a we need to add lower arity relations to
R. Namely, since after the reduction R(x, y, z) itself would refer only to values different from
a, we add a lower arity relation for every option of substituting the value a in any of these
variables. This would add

(3
1
)

= 3 binary relations which we will denote here by R1(y, z),
R2(x, z) and R3(x, y), in addition to

(3
2
)

= 3 unary relations which we will denote by R12(z),
R13(y) and R23(x), and a single nullary relation which we will denote by R123().

Thus, given for example the expression ϕ(x, y) = ∃zR(x, y, z), we would have for example
ϕ′

∅(x, y) = (∃zR(x, y, z))∨R3(x, y), ϕ′
{1}(y) = (∃zR1(y, z))∨R13(y), ϕ′

{2}(x) = (∃zR2(x, z))∨
R23(x) and ϕ′

{1,2}() = (∃zR12(z)) ∨R123().
Going another recursion level, for ψ(x) = ∃y,zR(x, y, z) = ∃yϕ(x), we would cor-

respondingly have ψ′
∅(x) = (∃y,zR(x, y, z)) ∨ (∃zR2(x, z)) ∨ (∃yR3(x, y)) ∨ R23(x), and

ψ′
{1}() = (∃y,zR1(y, z)) ∨ (∃zR12(z)) ∨ (∃yR13(y)) ∨R123().

3 All discussion of these logics is deferred to [17], since the limit to the Specker-Blatter theorem discussed
here only uses FOL.

E. Fischer and J. A. Makowsky 26:13

9 An FOL-definable class C where fC(n) is not MC-finite

In this section we negatively settle the question of whether the Specker-Blatter theorem
holds for classes whose language contains only ternary and lower-arity relations.

9.1 Using one hard-wired constant
We first construct a class whose language includes a single ternary relation and a single
hard-wired constant. Our counterexample builds on ideas used in [13].

▶ Theorem 20 (Ternary relation counterexample with a constant). There exists an FOL
sentence ϕM over the language (a,R), where a is a single (hard-wired) constant and R is a
single relation of arity 3, so that the corresponding class C satisfies fC(n− 1) = 0 for any
n that is not a power of 2, and fC(n − 1) ≡ 1 (mod 2) for n = 2m for every m ∈ N. In
particular, fC is not ultimately periodic modulo 2.

The statement uses fC(n − 1) instead of fC(n), but recalling the definition of fC , this
refers to the universe [n− 1] ∪ {a} whose size is n. We explain later how to modify this class
to produce a counterexample modulo other prime numbers p instead of 2.

By Theorem 19, we have the following immediate corollary that does away with the
constant, at the price of adding some additional smaller arity relations. This corollary is
effectively a restatement of Theorem 8.

▶ Corollary 21 (Ternary counterexample without constants). There exists an FOL sentence
ϕ′

M over the language (R̄), where R̄ includes one relation of arity 3 and other relations of
lower arities, so that the corresponding class C satisfies fC(n) = 0 for every n for which n+ 1
is not a power of 2, and fC(n) ≡ 1 (mod 2) for n = 2m − 1 for every m ∈ N. In particular,
fC is not ultimately periodic modulo 2.

At the end of this section we sketch how to further reduce the language so that it includes
only one ternary relation and no lower arity relations. The full details are deferred to [17].

9.2 The first construction
The starting point of the construction is a structure that is defined over a non-constant
length sequence (and hence not yet expressible in FOL) of unordered graphs. This definition
follows the streamlining by Specker [25] of the original construction from [13].

▶ Definition 22 (Iterated matching sequence). Given a set V of vertices, An iterated matching
sequence is a sequence of graphs over V , identified by their edge sets Ē = E1, . . . , EℓĒ

,
satisfying the following for every 1 ≤ i ≤ ℓĒ.

The connected components of Ei are (vertex-disjoint) complete bipartite graphs.
The two vertex classes of every complete bipartite graph in Ei as above are two connected
components of

⋃i−1
j=1 Ej (for i = 1 this means that E1 is a matching).

Every connected component of
⋃i−1

j=1 Ej is a vertex class of some bipartite graph of Ei (so
in particular E1 is a perfect matching).

An iterated matching sequence Ē is full if every vertex pair u, v ∈ V (where u ̸= v) appears
in some Ei.

The following properties of iterated matching sequences are easily provable by induction.

CSL 2024

26:14 Extensions and Limits

▶ Observation 23. For an iterated matching Ē, every Ei corresponds to a perfect matching
over the set of connected components of

⋃i−1
j=1 Ej. Additionally, every connected component

of
⋃i

j=1 Ej is a clique with exactly 2i vertices.

The above implies that there can be a full iterated matching sequence over [n] if and
only if n is a power of 2, in which case ℓĒ = log2(n). Denoting the number of possible full
iterated matching sequences over [n] by fM(n), note the following lemma.

▶ Lemma 24 (see [25]). For every n which is not a power of 2 we have fM(n) = 0, while
fM(n) ≡ 1 (mod 2) for n = 2m for every m ∈ N.

The rest of this section concerns the construction of a sentence ϕM over a language
with one constant and one ternary relation, so that the corresponding class C satisfies
fC(n− 1) = fM(n). In the original construction utilizing a quaternary relation Q, essentially
we had (u, v, x, y) ∈ Q if (u, v) ∈ Ei and (x, y) ∈ Ei−1 for some 1 < i ≤ ℓĒ , or (u, v) ∈ E1
and x = y. For the construction here, we only have a ternary relation R, and we encode
the placement of (u, v) within Ē by the set {w : (u, v, w) ∈ R}. We will have to utilize the
hard-wired constant a to make sure that there is exactly one way to encode every full iterated
matching sequence.

9.3 Setting up and referring to an order over the vertex pairs
We simulate the structure of a full iterated matching sequence over [n] (where n ∈ [n] is
identified with the constant a) by assigning “ranks” to pairs of members of [n], which we
consider as vertices, where each pair (x, y) is assigned the set rx,y = {z : (x, y, z) ∈ R}. First
we need to make sure that “graphness” is satisfied, which means that rx,y is symmetric and
is empty for loops.

ϕgraph = ∀x,y,z(R(x, y, z) → (x ̸= y ∧R(y, x, z)))

Next we make sure that every two vertex pairs have ranks that are comparable by containment.
This means that for every (x1, y1) and (x2, y2) either rx1,y1 ⊆ rx2,y2 or rx2,y2 ⊆ rx1,y1 .

ϕcomp = ∀x1,y1,x2,y2¬∃z1,z2(R(x1, y1, z1) ∧ ¬R(x2, y2, z1) ∧R(x2, y2, z2) ∧ ¬R(x1, y1, z2))

Finally, we want every non-loop vertex pair to have a non-empty rank, and moreover for
it to include the constant a. This is crucial, because a will eventually serve as an “anchor”
making sure that there is only one way to assign ranks when encoding a full iterated matching
sequence using the ternary relation R.

ϕfull = ∀x,y((x ̸= y) → R(x, y, a))

It is a good time to sum up the full statement that sets up our pair ranks.

ϕrank = ϕgraph ∧ ϕcomp ∧ ϕfull

Whenever this statement is satisfied, we can use it to construct expressions that compare
ranks. We will use the following expressions, which compare the ranks of (x1, y1) and (x2, y2),
when we formulate further conditions on R that will eventually force it to conform to a full
iterated matching sequence. Note that conveniently, these comparison expression also work
against loops (whose “rank”, the empty set, is considered to be the lowest).

ϕ=(x1, y1, x2, y2) = ∀z(R(x1, y1, z) ↔ R(x2, y2, z))
ϕ≤(x1, y1, x2, y2) = ∀z(R(x1, y1, z) → R(x2, y2, z))
ϕ<(x1, y1, x2, y2) = ϕ≤(x1, y1, x2, y2) ∧ ¬ϕ=(x1, y1, x2, y2)

E. Fischer and J. A. Makowsky 26:15

9.4 Making the ordered pairs correspond to an iterated matching
In this subsection we consider a ternary relation R that is known to satisfy ϕrank as defined in
Subsection 9.3, and impose further conditions that will force it to correspond to an iterated
matching sequence (which will also be full by virtue of every pair having a rank).

For every rank appearing in R, that is for every set A which is equal to rx,y for some
x, y ∈ [n], we refer to the set of vertex pairs having this rank as Ei, where i is the number
of ranks that appear in R (including the empty set, which is the “rank” of loops) and are
strictly contained in A. So in particular E0 = {(x, x) : x ∈ [n]}, and E1 for example would
be the set of vertex pairs that have the smallest non-empty set as their ranks.

We first impose the restriction that for any i, the graph defined by
⋃i

j=1 Ej is a transitive
graph, that is a disjoint union of cliques. By Observation 23 this is a necessary condition for
Ē to be an iterated matching sequence (note that allowing also the 0-ranked loops does not
change the condition). This is the same as saying that for any three vertices x, y, z, it cannot
be the case that the rank of (x, z) is larger than the maximum ranks of (x, y) and (y, z).

ϕtrans = ∀x,y,z(ϕ≤(x, z, x, y) ∨ ϕ≤(x, z, y, z))

Whenever R satisfies the above, it is not hard to add the restriction that Ei consists of
disjoint complete bipartite graphs such that each of them connects exactly two components
of

⋃i−1
j=1 Ej , with all such components being covered. First we state that if some rank A

exists, that is, there exists some (x, y) for which A = rx,y, then every vertex z is a part of an
edge with such rank.

ϕcover = ∀x,y∀z∃wϕ=(x, y, z, w)

Then, using the prior knowledge that all connected components of both
⋃i−1

j=1 Ej and
⋃i

j=1 Ej

are cliques, to make sure that every connected component of Ei is exactly a bipartite graph
encompassing two components of

⋃i−1
j=1 Ej , it is enough to state that it contains no triangles,

excluding of course “triangles” of the type (x, x, x).

ϕpart = ∀x,y,z((x ̸= y) → ¬(ϕ=(x, y, y, z) ∧ ϕ=(x, y, x, z)))

All of the above is sufficient to guarantee that the relation R corresponds to a full iterated
matching sequence. However, as things stand now there can be many relations that correspond
to the same iterated matching. This occurs because we still have unwanted freedom in choosing
the sets that correspond to the possible ranks. To remove this freedom, we now require that
the rank of every pair (x, y) for x ̸= y consists of exactly one connected component of the
union of the lower ranked pairs. This will be sufficient, because by ϕfull the only option for
the rank would be the connected component that contains the constant a.

Noting that by ϕtrans these components are cliques, it is enough to require that every
member of rx,y is connected via a lower rank edge to a, while every vertex that is connected
to a member of rx,y via a lower rank edge is also a member of rx,y. We obtain the following
statement.

ϕanchor = ∀x,y,z(R(x, y, z) → (ϕ<(z, a, x, y) ∧ ∀w(ϕ<(z, w, x, y) → R(x, y, w))))

The final statement that counts the number of full iterated matching sequences, and hence
provides the example proving Theorem 20 is the following.

ϕM = ϕrank ∧ ϕtrans ∧ ϕcover ∧ ϕpart ∧ ϕanchor

CSL 2024

26:16 Extensions and Limits

9.5 Adapting the example to other primes
We show here how to adapt the FOL sentence from Theorem 20 to provide a sequence that
is not ultimately periodic modulo p for any prime number p ≥ 2. The analogous corollary
about removing the constant also follows.

▶ Theorem 25 (Ternary relation counterexample for p ≥ 2). For any prime number p, there
exists an FOL sentence ϕMp

over the language (a,R), where a is a (hard-wired) constant
and R is a relation of arity 3, so that the corresponding class Cp satisfies fCp(n− 1) = 0 for
every n that is not a power of p, and fCp

(n− 1) ≡ 1 (mod p) for n = pm for every m ∈ N.
In particular, fCp is not ultimately periodic modulo p.

The construction follows the same lines as the extension from p = 2 to p ≥ 2 in previous
works. For completeness we give some details on how it works with respect to the version
of [25]. The basic idea is to use a “matching” of p-tuples instead of pairs.

▶ Definition 26. A p-matching over the vertex set [n] is a spanning graph, each of whose
connected components is either a clique with p vertices or a single vertex. A perfect p-
matching is a p-matching in which there are no single vertex components (in other words, it
is a partition of [n] into sets of size p).

The following is not hard to prove.

▶ Lemma 27. There are no perfect p-matchings over [n] unless n is a multiple of p, in which
case their number is congruent to 1 modulo p.

Proof. The case where n is not a multiple of p is trivial. Otherwise, consider the number of
possible partitions of the set [p] to a sequence of subsets of sizes i1, . . . , ir, where

∑r
k=1 ik = p.

Note that unless i1 = p (and hence r = 1), the number of such partitions is divisible by
(

p
i1

)
,

which is divisible by p (since p is a prime).
Denoting by fMp(n) the number of perfect p-matchings over [n], We consider for any

p-matching its restriction to [p] (which corresponds to a partition of [p] – the reason we
need to consider the partitions as sequences rather than as unordered families of sets is that
we need to consider which sets in the restriction of the p-matching over [n] \ [p] they are
“attached” to). This implies that fMp

(n) ≡ fMp
(n− p) (mod p) for every n > p, allowing us

to prove by induction that fMp(n) ≡ 1 (mod p) if p divides n. ◀

The definition of an iterated p-matching sequence is what one would expect.

▶ Definition 28 (Iterated p-matching sequence). Given a set V of vertices, An iterated p-
matching sequence is a sequence graphs over V , identified by their edge sets Ē = E1, . . . , EℓĒ

,
satisfying the following for every 1 ≤ i ≤ ℓĒ.

The connected components of Ei are (vertex-disjoint) complete p-partite graphs.
The p vertex classes of every complete p-partite graph in Ei as above are p connected
components of

⋃i−1
j=1 Ej (for i = 1 this means that E1 is a p-matching).

Every connected component of
⋃i−1

j=1 Ej is a vertex class of some p-partite graph of Ei

(so in particular E1 is a perfect p-matching).
An iterated matching sequence Ē is full if every vertex pair u, v ∈ V (where u ≠ v) appears
in some Ei.

Again we have the following properties, analogous to those of iterated matching sequences.

E. Fischer and J. A. Makowsky 26:17

▶ Observation 29. For an iterated p-matching Ē, every Ei corresponds to a perfect p-
matching over the set of connected components of

⋃i−1
j=1 Ej. Additionally, every connected

component of
⋃i

j=1 Ej is a clique with exactly pi vertices.

The above implies that there can be a full iterated matching sequence over [n] if and
only if n is a power of p, in which case ℓĒ = logp(n). Denoting the number of possible full
iterated matching sequences over [n] by fMp

(n), note the following lemma.

▶ Lemma 30. For every n that is not a power of p we have fM(n) = 0, while for n = pm

for every m ∈ N we have fMp(n) ≡ 1 (mod p).

Proof. The case where n is not a power of p was already discussed above. The case n = pm

is proved by induction over m using Lemma 27. ◀

From here on the construction of ϕMp
is identical to that of ϕM in Subsection 9.3 and

Subsection 9.4, with the only exceptions being the replacements for ϕcover and ϕpart.
To construct ϕcoverp , we need to state that for every existing rank, each vertex is a part

of a size p clique consisting of edges from this rank.

ϕcoverp = ∀x,y∀z1∃z2,...,zp

∧
1≤i<j≤p

ϕ=(x, y, zi, zj)

To construct ϕpartp
, we need to state that no Ei may contain a clique with p+ 1 vertices.

ϕpartp
= ∀z1,...,zp+1((z1 ̸= z2) → ¬(

∧
1≤i<j≤p+1

ϕ=(z1, z2, zi, zj))

The final expression is the following.

ϕMp = ϕrank ∧ ϕtrans ∧ ϕcoverp ∧ ϕpartp
∧ ϕanchor

9.6 Reducing the example further to have a single relation
We provide here a sketch on how to produce, starting with Theorem 8, a sentence with a
single relation that provides a class that is not MC-finite.

▶ Theorem 31 (A sentence with a single relation). For every prime number p ≥ 1 there exists
an FOL-sentence ϕp over a language consisting of a single relation of arity 3, so that for the
class C corresponding to ϕp, its counting function fC(n) is not ultimately periodic modulo p.

Starting with an expression ϕ that results from invoking Theorem 25 over ϕMp
, we

explain how to reduce it further to an expression that involves a single ternary relation.
This transformation is ad-hoc and uses certain specific features and symmetries of models
satisfying ϕMp , and their reflection in the corresponding models satisfying ϕ. The full details
require delving into the specifics of the proof of Theorem 19, and are deferred to [17].

As ϕMp
involves a single ternary relation R and a single constant a, the resulting ϕ involves

a corresponding ternary relation, as well as three binary relations, three unary relations,
and a single nullary relation. Since the lower order relations result from substituting the
constant at some of the places of the relation R (while restricting the other places to hold
values different from a), looking at the working of ϕMp

allows us to immediately rule out
most options for the lower arity relations.

For example, the nullary relation would correspond to whether R(a, a, a) holds, so it must
evaluate to ⊥ (“false”) for all models of ϕ (since ϕMp

implies ¬R(x, x, y) for all x and y,
equal or unequal to a). Thus we may just remove it and replace its occurrences in ϕ with
the ⊥ symbol.

CSL 2024

26:18 Extensions and Limits

Similar considerations allow us to eliminate the unary relation corresponding to R(a, a, x)
for x ̸= a (always false), and the unary relations corresponding to R(a, x, a) and R(x, a, a)
(always true by ϕfull since x ̸= a).

Next, the binary relation corresponding to R(x, y, a) for x, y ≠ a, while not constant, can
be “fully deduced” and replaced with x ̸= y by ϕfull and ϕgraph.

This leaves us with the two relations corresponding to R(x, a, y) and R(a, x, y). By first
noting that for satisfying models they are equal to each other (by ϕgraph), we can reduce
them to a single relation. In the final step, we “fold” this relation into the ternary relation,
after noting that R has to satisfy ¬R(x, x, y) for all x, y. The last operation requires first
replacing the occurrences of R(x, y, z) in the sentence with “(x ̸= y) ∧R(x, y, z)”, which now
“frees” this part of R to be used instead of the binary relation. This does not change the
number of satisfying models, since we make sure that this “region” of R is completely used
through a bijection for the role of the binary relation that it replaces.

10 Conclusions and open problems

In this work we have extended the Specker-Blatter Theorem to classes of τ -structures definable
in CMSOL for vocabularies τ which contain a finite number of hard-wired constants, unary
and binary relation symbols, Corollary 7. We have also shown that it does not hold already
when τ consists of only one ternary relation symbol, Theorem 31. We note that in [15, 16]
we have shown that for C definable in CMSOL such that all structures have degree bounded
by a constant d, SC(n) is always MC-finite. The degree of a structure A is defined via the
Gaifman graph of A. With this the MC-finiteness of SC(n) for CMSOL-definable classes of
τ -structures as a function of τ is completely understood. Applications of our results in this
paper to restricted Bell numbers and various restricted partition functions are given in [11].

A sequence of integers s(n) is MC-finite if for every m ∈ N+ there are constants
r(m), p(m) ∈ N+ and coefficients α1(m), . . . , αp(m) ∈ N+, such that for all n ≥ r(m)
we have

s(n+ p(m) + 1) ≡
p(m)∑
i=0

αis(i) mod m.

The Specker-Blatter Theorem gives little information on the constants r(m), p(m) or the
coefficients α1(m), . . . , αp(m). These in particular depend on the substitution rank of the class
C. In fact Theorem 3 gives a very bad estimate of the substitution rank in the case of binary
relation symbols. The constants are computable, but it is not known whether they are always
computable in feasible time or whether their size is bounded by an elementary function. In
the presence of constants the substitution rank is not defined. Our main Theorem 12 allows
to eliminate the constants, and therefore gives a formula for which the substitution rank is
defined. However, due to the increased complexity of the resulting formula, the estimate of
the substitution rank will be even worse.

▶ Problem 32. Given a sentence ϕ in CMSOL(τ) where τ consists only of constants, unary
and binary relation symbols,

(i) what is the time complexity of computing the constants r(m), p(m) and the coefficients
α1(m), . . . , αp(m)?

(ii) what can we say about the size of these constants?

The proof of Theorem 3 depends on the Feferman-Vaught Theorem which also holds for
CMSOL(τ) for any finite relational τ , [10, 22]. In our context, the Feferman-Vaught Theorem
allows to check whether a formula of CMSOL(τ) holds in Subst(A1, a,A2) by checking a

E. Fischer and J. A. Makowsky 26:19

sequence of CMSOL(τ)-formulas in A1 and A2 independently. This sequence is called a
reduction sequence, cf. [14]. In [6] it is shown that even for FOL(τ) the size of the reduction
sequences for the Feferman-Vaught Theorem cannot, in general, be bounded by an elementary
function.

▶ Problem 33. Does there exist an elementary function f(k), so that for any sentence ϕ in
CMSOL(τ) where τ consists only of constants, unary and binary relation symbols, the size
of the constants r(m) and p(m) is bounded by f(max{|ϕ|,m})?

The Specker-Blatter Theorem also applies to hereditary, monotone and minor-closed
graph classes, provided they are definable using a finite set of forbidden (induced) subgraphs
or minors. In the first two cases such a class is FOL-definable. In the case of a minor-closed
class, B. Courcelle showed that it is MSOL-definable, see [5]. By the celebrated theorem of
N. Robertson and P. Seymour, [7], every minor-closed class of graphs is definable by a finite
set of forbidden minors. However, there are monotone (hereditary) classes of graphs where a
finite set of forbidden (induced) subgraphs does not suffice.

▶ Problem 34. Are there hereditary or monotone classes of graphs C such that SpC(n) is
not MC-finite?

An analogue question arises when we replace graphs by finite relational τ -structures. In
this case one speaks of classes of τ -structures closed under substructures. Every class of
finite τ -structures C closed under substructures can be characterized by a set of forbidden
substructures. If this set is finite, C is again FOL-definable, and the Specker-Blatter Theorem
applies.

▶ Problem 35.
(i) Let τ be a relational vocabulary. Are there substructure closed classes C of τ -structures

such that SpC(n) is not MC-finite?
(ii) Same question when all the relations are at most binary?

References
1 C. Blatter and E. Specker. Le nombre de structures finies d’une théorie à charactère fini.

Sciences Mathématiques, Fonds Nationale de la recherche Scientifique, Bruxelles, pages 41–44,
1981.

2 C. Blatter and E. Specker. Modular periodicity of combinatorial sequences. Abstracts of the
AMS, 4:313, 1983.

3 C. Blatter and E. Specker. Recurrence relations for the number of labeled structures on a
finite set. In E. Börger, G. Hasenjaeger, and D. Rödding, editors, In Logic and Machines:
Decision Problems and Complexity, volume 171 of Lecture Notes in Computer Science, pages
43–61. Springer, 1984.

4 Andrei Z Broder. The r-stirling numbers. Discrete Mathematics, 49(3):241–259, 1984.
5 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-order Logic, a Language

Theoretic Approach. Cambridge University Press, 2012.
6 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model theory makes

formulas large. In International Colloquium on Automata, Languages, and Programming, pages
913–924. Springer, 2007.

7 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 3 edition, 2005.
8 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
9 Graham Everest, Alfred J van der Poorten, Igor Shparlinski, Thomas Ward, et al. Recurrence

sequences, volume 104. American Mathematical Society Providence, RI, 2003.

CSL 2024

26:20 Extensions and Limits

10 S. Feferman and R. Vaught. The first order properties of algebraic systems. Fundamenta
Mathematicae, 47:57–103, 1959.

11 Yuval Filmus, Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita. MC-finiteness of
restricted set partitions, 2023. arXiv:2302.08265.

12 E. Fischer. The Specker-Blatter theorem does not hold for quaternary relations. Journal of
Combinatorial Theory, Series A, 103:121–136, 2003.

13 E. Fischer. The Specker-Blatter theorem does not hold for quaternary relations. Journal of
Combinatorial Theory, Series A, 103:121–136, 2003.

14 E. Fischer, T. Kotek, and J.A. Makowsky. Application of logic to combinatorial sequences and
their recurrence relations. In M. Grohe and J.A. Makowsky, editors, Model Theoretic Methods
in Finite Combinatorics, volume 558 of Contemporary Mathematics, pages 1–42. American
Mathematical Society, 2011.

15 E. Fischer and J. A. Makowsky. The Specker-Blatter theorem revisited. In COCOON, volume
2697 of Lecture Notes in Computer Science, pages 90–101. Springer, 2003.

16 Eldar Fischer, Tomer Kotek, and Johann A Makowsky. Application of logic to combinatorial
sequences and their recurrence relations. Model Theoretic Methods in Finite Combinatorics,
558:1–42, 2011.

17 Eldar Fischer and Johann A. Makowsky. Extensions and limits of the specker-blatter theorem,
2022. arXiv:2206.12135.

18 Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete mathematics: a foundation
for computer science. Addison-Wesley, 1989.

19 Manuel Kauers and Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations,
Generating Functions, Asymptotic Estimates. Springer, 2011.

20 Thomas Koshy. Catalan numbers with applications. Oxford University Press, 2008.
21 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
22 J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and

Applied Logic, 126.1-3:159–213, 2004.
23 Götz Pfeiffer. Counting transitive relations. Journal of Integer Sequences, 7(2):3, 2004.
24 James A Reeds and Neil JA Sloane. Shift register synthesis (modulo m). SIAM Journal on

Computing, 14(3):505–513, 1985.
25 E. Specker. Modular counting and substitution of structures. Combinatorics, Probability and

Computing, 14:203–210, 2005.
26 Ernst Specker. Application of logic and combinatorics to enumeration problems. In Ernst

Specker Selecta, pages 324–350. Springer, 1990.

https://arxiv.org/abs/2302.08265
https://arxiv.org/abs/2206.12135

Going Deep and Going Wide: Counting Logic and
Homomorphism Indistinguishability over Graphs of
Bounded Treedepth and Treewidth
Eva Fluck #

RWTH Aachen University, Germany

Tim Seppelt #

RWTH Aachen University, Germany

Gian Luca Spitzer #

RWTH Aachen University, Germany
Abstract

We study the expressive power of first-order logic with counting quantifiers, especially the k-variable
and quantifier-rank-q fragment Ck

q , using homomorphism indistinguishability. Recently, Dawar,
Jakl, and Reggio (2021) proved that two graphs satisfy the same Ck

q -sentences if and only if they
are homomorphism indistinguishable over the class T k

q of graphs admitting a k-pebble forest cover
of depth q. Their proof builds on the categorical framework of game comonads developed by
Abramsky, Dawar, and Wang (2017). We reprove their result using elementary techniques inspired
by Dvořák (2010). Using these techniques we also give a characterisation of guarded counting
logic. Our main focus, however, is to provide a graph theoretic analysis of the graph class T k

q .
This allows us to separate T k

q from the intersection of the graph class T Wk−1, that is graphs of
treewidth less or equal k − 1, and T Dq, that is graphs of treedepth at most q if q is sufficiently
larger than k. We are able to lift this separation to the semantic separation of the respective
homomorphism indistinguishability relations. A part of this separation is to prove that the class
T Dq is homomorphism distinguishing closed, which was already conjectured by Roberson (2022).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Finite Model Theory

Keywords and phrases Treewidth, treedepth, homomorphism indistinguishability, counting first-order
logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.27

Related Version Full Version: https://arxiv.org/abs/2308.06044 [9]

Funding Tim Seppelt: German Research Foundation (DFG) via RTG 2236/2 (UnRAVeL), European
Union (ERC, SymSim, 101054974)
Gian Luca Spitzer : German Research Foundation (DFG) via RTG 2236/2 (UnRAVeL)

Acknowledgements We would like to thank Martin Grohe and Daniel Neuen for fruitful discussions.

1 Introduction

Since the 1980s, first-order logic with counting quantifiers C plays a decisive role in finite
model theory. In this extension of first-order logic with quantifiers ∃≥tx (“there exists at
least t many x”), properties which can be expressed in first-order logic only with formulae
of length depending on t can be expressed succinctly. Of particular interest are the k-
variable and quantifier-depth-q fragments Ck and Cq of C, which enjoy rich connections
to graph algorithms [8], algebraic graph theory [7, 16], optimisation [16, 27], graph neural
networks [21, 30, 15], and category theory [5, 1].

The intersection of these fragments, the fragment Ckq := Ck ∩ Cq of all C-formulae with
k-variables and quantifier-depth q, has received much less attention [25]. In this work, we
study the expressivity of Ckq using homomorphism indistinguishability.

© Eva Fluck, Tim Seppelt, and Gian Luca Spitzer;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fluck@cs.rwth-aachen.de
https://orcid.org/0000-0002-9643-6081
mailto:seppelt@cs.rwth-aachen.de
https://orcid.org/0000-0002-6447-0568
mailto:gian.luca.spitzer@rwth-aachen.de
https://orcid.org/0009-0008-0270-506X
https://doi.org/10.4230/LIPIcs.CSL.2024.27
https://arxiv.org/abs/2308.06044
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Going Deep and Going Wide

Homomorphism indistinguishability is an emerging framework for measuring the expressiv-
ity of equivalence relations comparing graphs. Two graphs G and H are homomorphism
indistinguishable over a graph class F if for all F ∈ F the number of homomorphisms from
F to G is equal to the number of homomorphisms from F to H. Many natural equivalence
relations between graphs including isomorphism [19], quantum isomorphism [20], cospectrality
[7], and feasibility of integer programming relaxations for graph isomorphism [16, 27] can
be characterised as homomorphism indistinguishability relations over certain graph classes.
Establishing such characterisations is intriguing since it allows to use tools from structural
graph theory to study equivalence relations between graphs [26, 28]. Furthermore, the
expressivity of homomorphism counts themselves is of practical interest [23, 14].

Equivalence with respect to Ck and Cq has been characterised by Dvořák [8] and Grohe [13]
as homomorphism indistinguishability over the classes T Wk−1 of graphs of treewidth ≤ k− 1
and T Dq of graphs of treedepth ≤ q, respectively. Recently, Dawar, Jakl, and Reggio [5]
proved that two graphs satisfy the same Ckq -sentences if and only if they are homomorphism
indistinguishable over the class T k

q of graphs admitting a k-pebble forest cover of depth q.
Their proof builds on the categorical framework of game comonads developed in [1].

As a first step, we reprove their result using elementary techniques inspired by Dvořák [8].
The general idea is to translate between sentences in C and graphs from which homomorphism
are counted in an inductive fashion. By carefully imposing structural constraints, we are
able to extend the original correspondence from [8] between Ck and graphs of treewidth at
most k − 1 to Cq and graphs of treedepth at most q, reproducing a result of [13], and finally
to Ckq and T k

q . This simple and uniform proof strategy also yields the following result on
guarded counting logic GCkq . Guarded counting logic plays a crucial role in the theory of
properties of higher arity expressible by graph neural networks [15]. Towards this goal we
introduce a new graph class called GT k

q , which is closely related to T k
q .

▶ Theorem 1. Let k, q ≥ 1. Two graphs G and H are GCkq -equivalent if and only if they are
homomorphism indistinguishable over GT k

q .

The main contribution of this work, however, concerns the relationship between the
graph classes T k

q and the class T Wk−1 ∩ T Dq of graphs which have treewidth at most k − 1
and treedepth at most q. Given the results of [8, 13], one might think that elementary
equivalence with respect to sentences in Ckq = Ck ∩ Cq is characterised by homomorphism
indistinguishability with respect to T Wk−1 ∩ T Dq. The central result of this paper asserts
that this intuition is wrong. As a fist step towards this, we prove that the graph class T k

q

and T Wk−1 ∩ T Dq are distinct if q is sufficiently larger than k. All logarithms in this work
are to the base 2.

▶ Theorem 2. For q ≥ 3, T 2
q ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , T k
q ⊊

T Wk−1 ∩ T Dq.

Towards Theorem 2, we give an equivalent characterisation of T k
q via a monotone cops-

and-robber game, which is essentially the standard game for treewidth where one additionally
counts the number of rounds the cops need to capture the robber. Here, “monotone” refers to
a restriction of Cops, who is only allowed to move cops that are not adjacent to the current
escape-space of the Robber. Building on [10], we then prove that T k

q is a proper subclass
of T Wk−1 ∩ T Dq, for q sufficiently larger than k. Additionally, we provide an analysis of
various notions designed to restrict both width and depth of a decomposition and show that
all of them are equivalent. Adding to the original definition of T k

q via k-pebble forest covers
of depth q, which can be interpreted as treedepth decompositions augmented by a width

E. Fluck, T. Seppelt, and G. L. Spitzer 27:3

measure, we introduce a way to measure the depth of tree decompositions. Finally, we define
k-construction trees of elimination depth q, another equivalent notion, which relates to the
machinery used by Dvořák [8].

However, the, let us say syntactical, separation of the graph classes T k
q and T Wk−1 ∩

T Dq from Theorem 2 does not suffice to separate their homomorphism indistinguishability
relations semantically. In fact, it could well be that all graphs which are homomorphism
indistinguishable over T k

q are also homomorphism indistinguishable over T Wk−1 ∩ T Dq.
That such phenomena do not arise under certain mild assumptions was recently con-

jectured by Roberson [26]. His conjecture asserts that every graph class which is closed
under taking minors and disjoint unions is homomorphism distinguishing closed. Here, a
graph class F is homomorphism distinguishing closed if it satisfies the following maximality
condition: For every graph F ̸∈ F , there exists two graphs G and H which are homomorphism
indistinguishable over F but have different numbers of homomorphism from F .

Since T k
q , T Wk−1, and T Dq are closed under disjoint unions and minors, the confirmation

of Roberson’s conjecture would readily imply the semantic counterpart of Theorem 2.
Unfortunately, Roberson’s conjecture is wide open and has been confirmed only for the class
of all planar graphs [26], T Wk−1 [22], and for graph classes which are essentially finite [28].
Guided by [22], we add to this short list of examples:

▶ Theorem 3. For q ≥ 1, the class T Dq is homomorphism distinguishing closed.

Combining this with the results of [22], we get that T Wk−1 ∩ T Dq is homomorphism
distinguishing closed as well. We then set out to separate homomorphism indistinguishability
over T k

q and T Wk−1 ∩ T Dq. Despite not being able to prove that T k
q is homomorphism

distinguishing closed, we prove that the homomorphism distinguishing closure of T k
q , i.e.

the smallest homomorphism distinguishing closed superclass of T k
q , is a proper subclass

of T Wk−1 ∩ T Dq, for q sufficiently larger than k. Written out, Theorem 4 asserts that
whenever q is sufficiently large in terms of k, then there exist graphs which are homomorphism
indistinguishable over T k

q but not over T Wk−1 ∩ T Dq.

▶ Theorem 4. For q ≥ 3, cl(T 2
q) ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , cl(T k
q) ⊊

T Wk−1 ∩ T Dq.

Besides obtaining Theorem 4, we distil the challenge of proving that T k
q is homomorphism

distinguishing closed to the question whether the monotone variant of the cops-and-robber
game is equivalent to the non-monotone variant. In general this equivalence between the
monotone and non-monotone variant of a graph searching game is a non-trivial property.
There are games where the two variants are equivalent, such as the games corresponding
to treewidth [29] and treedepth [11], as well as games where they are not, such as games
corresponding to directed treewidth [18] or hypertreewidth [12].

2 Preliminaries

Notation. By [k] we denote the set {1, . . . , k}. For a finite set X, we write 2X for the
power set of X. For a function f , we denote the domain of f by dom(f). The image of f is
the set img(f) := {f(x) | x ∈ dom(f)}. The restriction of a function f : A → C to some set
B ⊆ A is the function f |B : B → C with f |B(x) = f(x) for x ∈ B. For functions f : A → C,
g : B → C that agree on A∩B, we write f ⊔ g for the union of f and g, that is, the function
mapping x to f(x) if x ∈ A and to g(x) if x ∈ B.

We use bold letters to denote tuples. The tuple elements are denoted by the corresponding
regular letter together with an index. For example, a stands for the tuple (a1, . . . , an).

CSL 2024

27:4 Going Deep and Going Wide

Graphs and Labels. A graph G is a tuple (V (G), E(G)), where V (G) is a finite set of
vertices and E(G) ⊆

(
V (G)

2
)

is the set of edges. We usually write uv or vu to denote the edge
{u, v} ∈ E(G). Unless otherwise specified, all graphs are assumed to be simple: They are
undirected, unweighted and contain neither loops nor parallel edges. We denote the class of
all graphs by G.

A k-labelled graph G is a graph together with a partial function νG : [k] ⇀ V (G) that
assigns labels from the finite set [k] = {1, . . . , k} to vertices of G. A label thus occurs at
most once in a graph, a single vertex can have multiple labels, and not all labels have to be
assigned. By LG = img(νG) we denote the set of labelled vertices of G. A graph where every
vertex has at least one label is called fully labelled. We denote the class of all k-labelled
graphs by Gk.

For ℓ ∈ [k] and v ∈ V (G), we write G(ℓ → v) to denote the graph obtained from G by
setting νG(ℓ→v)(ℓ) = v. We can remove a label ℓ from a graph G, which yields a copy G′ of
G where νG′(ℓ) = ⊥ and νG′(ℓ′) = νG(ℓ′) for all ℓ′ ̸= ℓ. The product1 G1G2 of two labelled
graphs is the graph obtained by taking the disjoint union of G1 and G2, identifying vertices
with the same label, and suppressing any parallel edges that might be created.

We call H a subgraph of G if H can be obtained from G by removing vertices and edges.
H is a minor of G if it can be obtained from G by removing vertices, removing edges, and
contracting edges. We contract an edge uv by removing it and identifying u and v. For
labelled graphs, the new vertex is labelled by the union of labels of u and v.

A graph is connected if there exists a path between any two vertices. A tree is a graph
where any two vertices are connected by exactly one path. The disjoint union of one or
more trees is called a forest. A rooted tree (T, r) is a tree T together with some designated
vertex r ∈ V (T), the root of T . A rooted forest (F, r) is a disjoint union of rooted trees. The
height of a rooted tree is equal to the number of vertices on the longest path from the root
to the leaves. The height of a rooted forest is the maximum height over all its connected
components.

At times, the following alternative definition is more convenient. We can view a rooted
forest (F, r) as a pair (V (F),⪯), where ⪯ is a partial order on V (F) and for every v ∈ V (F)
the elements of the set {u ∈ V (F) | u ⪯ v} are pairwise comparable: The minimal elements
of ⪯ are precisely the roots of F , and for any rooted tree (T, r) that is part of F we let v ⪯ w

if v is on the unique path from r to w.
The height of a rooted forest (F, r) is then given by the length of the longest ⪯-chain. A

rooted tree (T ′, r′) is a subtree of a tree (T, r) if V (T ′) ⊆ V (T) and ⪯T ′ is the restriction of
⪯T to V (T ′). Note that the subgraph of T induced by V (T ′) might not be a tree, since the
vertices of T ′ can be interleaved with vertices that do not belong to T ′. We call a subtree T ′

of T connected if its induced subgraph on T is connected.

Homomorphisms. A homomorphism from a graph F to a graph G is a map h : V (F) → V (G)
satisfying uv ∈ E(F) =⇒ h(u)h(v) ∈ E(G). For k-labelled graphs, we additionally
require that h(νF (ℓ)) = νG(ℓ) for all ℓ ∈ dom(νF). We denote the set of homomorphisms
from F to G by Hom(F,G). The number of homomorphisms from F to G we denote by
hom(F,G) := |Hom(F,G)|. We write Hom(F,G; a1 7→ b1, . . . , an 7→ bn) to denote the set
of homomorphism h : F → G satisfying h(ai) = bi for i ∈ [n]. Two graphs G and H are
homomorphism indistinguishable over a graph class F if hom(F,G) = hom(F,H) for all
F ∈ F .

1 Categorically speaking, this is a coproduct of labelled graphs or a pushout of graphs.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:5

Logic of Graphs. We will mainly consider counting first-order logic C. C extends regular
first-order logic FO by quantifiers ∃≥t, for t ∈ N. Consequently, we can build a C-formula in
the usual way from atomic formulae; variables x1, x2, . . . ; logical operators ∧,∨,→,¬; and
quantifiers ∀, ∃, ∃≥t. The atomic formulae in the language of graphs are Eαβ and α = β for
arbitrary variables α, β.

An occurrence of a variable x is called free if it is not in the scope of any quantifier.
The free variables free(φ) of a formula φ are precisely those that have a free occurrence
in φ. A formula without free variables is called a sentence. We often write φ(x1, . . . , xn)
to denote that the free variables of φ are among x1, . . . , xn. For a graph G, it usually
depends on the interpretation of the free variables whether G |= φ(x1, . . . , xn). We write
G, v1, . . . , vn |= φ(x1, . . . , xn) or G |= φ(v1, . . . , vn) if G satisfies φ when xi is interpreted
by vi. We might also give an explicit interpretation function I : free(φ) → V (G), writing
G, I |= φ.

We generalise the notion of C-equivalence, writing G, v1, . . . , vn ≡C H,w1, . . . , wn to
denote that for all formulae φ(x1, . . . , xn) ∈ C it holds that G |= φ(v1, . . . , vn) ⇔ H |=
φ(w1, . . . , wn). Note that for labelled graphs, such an interpretation function is implicit: If
the indices of free(φ) are a subset of the labels of G, then we can interpret the variables xi
by the vertex with the label i, that is, I(xi) = ν(i). The semantics of C can then be stated
succinctly in terms of label assignments.

▶ Definition 5 (C semantics of labelled graphs). Let φ ∈ C and let G be a labelled graph, such
that ν(i) ∈ V (G) for all xi ∈ free(φ). Then G |= φ if

φ = (xi = xj) and ν(i) = ν(j),
φ = Exixj and ν(i)ν(j) ∈ E(G),
φ = ¬ψ and G ̸|= ψ,
φ = ψ ∨ ϑ and G |= ψ or G |= ϑ, or
φ = ∃≥txℓψ(xℓ) and there exist distinct v1, . . . , vt, such that G(ℓ → vi) |= ψ for all i ∈ [t].

Note that for labelled graphs this is equivalent to extending the standard semantics of
FO by the following rule: It is G, v1, . . . , vn |= ∃≥tyψ(x1, . . . , xn, y) if there exist distinct
elements u1, . . . , ut ∈ V (G) such that G |= ψ(v1, . . . , vn, ui) for all i ∈ [t].

We sometimes write ∃=txφ(x) for ∃≥txφ(x)∧¬∃≥t+1xφ(x). We also write ⊤ for ∀x(x = x)
and ⊥ for ¬⊤. As we already did above, we will often restrict ourselves to the connectives
¬,∨ and the quantifier ∃≥t. This set of symbols is indeed equally expressive by De Morgan’s
laws and observing that ∃xφ(x) ≡ ∃≥1xφ(x) and ∀xφ(x) ≡ ¬∃x¬φ(x).

The quantifier rank qr(·) of a formula is defined inductively as follows. It is qr(φ) = 0
for atomic formulae φ, qr(¬φ) = qr(φ), qr(φ ∨ ψ) = max{qr(φ), qr(ψ)} and qr(∃≥txφ) =
1 + qr(φ). The quantifier-rank-q fragment Cq of counting first order logic consists of all
formulae of quantifier rank at most q.

Instead of restricting the quantifer rank, we can also restrict the number of distinct
variables that are allowed to occur in a formula. By Ck we denote the k-variable fragment
of C, consisting of all formulae using at most k different variables. Similarly, the k-variable
quantifier-rank-q fragment is defined as Ckq := Ck ∩ Cq. Note that these are purely syntactic
definitions.

Treewidth and Treedepth. Treewidth is a structural graph parameter that measures how
close a graph is to being a tree. It is usually defined in terms of tree decompositions.

CSL 2024

27:6 Going Deep and Going Wide

(1, 3)
(2, 3)

(1, 3)
(2, 3)(2, 2)

(1, 3)
(2, 3)(2, 4)

(1, 3)(1, 2)
(2, 2)

(1, 3)(1, 4)
(2, 4)

(1, 2)
(2, 2)(2, 1)

(1, 4)
(2, 4)(2, 5)

(1, 2)(1, 1)
(2, 1)

(1, 4)(1, 5)
(2, 5)

(a) Tree decomposition of the grid G2×5 of width 3. (b) A forest cover of the grid G2×7 of height 6.
The edges of the original grid are dashed.

Figure 1 Tree decomposition and forest cover of grids.

▶ Definition 6. A tree decomposition (T, β) of a graph G is a tree T together with a function
β : V (T) → 2V (G) satisfying⋃

t∈V (T) β(t) = V (G),
for all uv ∈ E(G) there is a t ∈ V (T) with u, v ∈ β(t),
for all v ∈ V (G) the set β−1(v) = {t ∈ V (T) | v ∈ β(t)} is connected in T .

The sets β(t) are called bags. The width of a tree decomposition is maxt∈V (T) |β(t)| − 1.
The treewidth tw(G) of a graph G is the minimum width over all tree decompositions of G.
We denote the class of graphs of treewidth at most k by T Wk. For an example of a tree
decomposition, see Figure 1a.

Treedepth, on the other hand, can be thought of as measuring how close a graph is to
being a star. Alternatively, we may think of it as extending the notion of height beyond
rooted forests. It is defined for a graph G as the minimum height of a forest F over the
vertices of G, such that all edges in G have an ancestor-descendant relationship in F .

▶ Definition 7. A forest cover of a graph G is a rooted forest (F, r) with V (F) = V (G),
such that for every edge uv ∈ E(G) it holds that either u ⪯ v or v ⪯ u.

The treedepth td(G) of G is the minimum height of a forest cover of G. We denote the
class of all graphs of treedepth at most q by T Dq. For an example of a forest cover, see
Figure 1b.

It is possible to construct a tree decomposition from a forest cover (F, r). This is achieved
by considering a path of bags, each containing the vertices on a path from r to the leaves
of F . It is not hard to see that there is an ordering of these bags that satisfies the conditions
of Definition 6. This yields the following relation between treedepth and treewidth.

▶ Fact 8. For every graph G, it holds that tw(G) ≤ td(G) − 1.

Both treewidth and treedepth enjoy characterisations in terms of node searching games,
the so called cops-and-robber games. The general cops-and-robber game is played on a
graph G by Cops, controlling a number of cops; and Robber, controlling a single robber. The
cops and the robber are positioned on vertices of G. The goal of Cops is to place a cop on
the robber’s position, while the robber tries to avoid capture by moving along paths free
from cops. The players play in rounds where first Cops announces the next position(s) of
the cops (with possible restriction on how many cops may be moved and where they may
be positioned) and then Robber moves the robber along some path avoiding all vertices
where before and after his move there is a cop. Treewidth can be characterised by the
minimum number of cops needed to capture the robber where neither the movement of Cops
nor Robber is restricted (see e.g. [29]). A well-known characterisation of treedepth is the
minimum number of cops needed if Cops is not allowed to move a cop after it is positioned
on the graph (see e.g. [11]). It is equivalent to count the number of rounds the game is
played, without restricting the number of cops that can be used by Cops, as long as only one
cop can be moved per round. Therefore we use the following unified definition.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:7

▶ Definition 9 (q-round k-cops-and-robber game). Let G be a graph and let k, q ≥ 1. The
monotone q-round k-cops-and-robber game mon-CRk

q (G) is defined as follows:
We play the game on G′ which is constructed from G by adding a disjoint k-vertex

clique K. The cop positions are sets X ∈
(
V (G′)
k

)
, the robber position is a vertex v ∈ G. The

game is initiated with all cops positioned on K and the robber on any vertex in V (G) of his
choice. If the cops are at positions X and robber at vertex v we write (X, v) for the position
of the game. For X ⊆ V (G′) and v ∈ G, we call the connected component γXv of the graph
G \X, with v ∈ γXv , the robber escape space. If the cop strategy only depends on γXv and
not the precise vertex that the robber occupies, we write (X, γXv) for the position of the game.

In round i ≤ q,
Cops can move from the set Xi to a set Xi+1 if |Xi ∩Xi+1| = k− 1 and γXi

v ⊇ γ
Xi∩Xi+1
v ,

Robber moves along some (possibly empty) path viPvi+1, where no (inner) vertex is in
Xi ∩Xi+1.
Cops wins if vi+1 ∈ Xi+1.

Robber wins if Cops has not won after q rounds.
If we drop the condition γXi

v ⊇ γ
Xi∩Xi+1
v in the movement of the cop, we call this the

non-monotone variant of the game and write CRk
q (G).

We write CRq(G) instead of CRq
q(G) and CRk(G) instead of CRk

|V (G)|(G). Treewidth
and treedepth can be characterised in terms of winning strategies for these games.

▶ Lemma 10 ([29, Theorem 1.4] and [11, Theorem 4]). Let G be a graph. Let k, q ≥ 1.
1. G has treewidth at most k iff Cops has a winning strategy for CRk+1(G) iff Cops has a

winning strategy for mon-CRk+1(G).
2. G has treedepth at most q iff Cops player has a winning strategy for CRq(G) iff Cops has

a winning strategy for mon-CRq(G).

3 Graph Decompositions Accounting for Treewidth and Treedepth
Simultaneously

In this section, we reconcile treewidth and treedepth by introducing graph decompositions
which account simultaneously for depth and width. These efforts yield various equivalent
characterisations of the graph class T k

q , a subclass both of T Wk−1 and T Dq, the classes of
graphs of treewidth ≤ k − 1 and treedepth ≤ q, respectively. By introducing a variant of the
standard cops-and-robber game which captures T k

q and adapting a result from [10], we show
that T k

q is a proper subclass of T Wk−1 ∩ T Dq if q is sufficiently larger than k.

3.1 Four Characterisations for T k
q

We start with the original definition of the class T k
q , which incorporates width into forest

covers from treedepth. This definition has first been introduced as k-traversal in [1].

▶ Definition 11. Let G be graph and k ≥ 1. A k-pebble forest cover of G is a tuple (F, r, p),
where (F, r) is a rooted forest over the vertices V (G) and a pebbling function p : V (G) → [k]
such that:

If uv ∈ E(G), then u ⪯ v or v ⪯ u in (F, r).
If uv ∈ E(G) and u ≺ v in (F, r), then for every w ∈ V (G) with u ≺ w ⪯ v in (F, r) it
holds that p(u) ̸= p(w).

(F, r, p) has depth q ≥ 1 if (F, r) has height q. We write T k
q for the class of all graphs G

admitting a k-pebble forest cover of depth q.

CSL 2024

27:8 Going Deep and Going Wide

1 1

2

1

2

3
1

3

1

2

1

2

3

2

1

3

1

3

2

1

2

3

4

2

3

3

2

2

3

1

3

1

2

2

3

1

3

2

1

2

3

1

4

3

1

2

4

2

1

3

1

3

1

2

2

3

1

2

14

3

14

3

1

2

4

2

3

1

4

Figure 2 A 4-construction tree for the grid G2×7 of elimination depth 6. Edges entering elimination
nodes are dashed.

The class T k
q can also be defined by measuring the depth of a tree decomposition (T, β).

Crucially, it does not suffice to take the height of T into account since this notion is not
robust. For example, it is well known that one can alter a tree decomposition by subdividing
any edge multiple times and copying the bag of the child node. This transformation does
neither change the width of the decomposition, nor does it affect the information how to
decompose the graph. However, the height of the tree will change drastically under this
transformation. It turns out that the following is the right definition:

▶ Definition 12. Let G be a graph. A tuple (T, r, β) is a rooted tree decomposition of G if
(T, β) is a tree decomposition of G and r ∈ V (T). The depth of (T, β) is

dp(T, β) := min
r∈V (T)

dp(T, r, β) where dp(T, r, β) := max
v∈V (T)

∣∣∣∣∣∣
⋃
t⪯v

β(t)

∣∣∣∣∣∣ .
Lastly we define a construction inspired by Dvořák [8], that enables us to use their proof

technique to study the expressive power of first-order logic with counting quantifiers using
homomorphism indistinguishability (see Figure 2).

▶ Definition 13. Let G be a (possibly labelled) graph. A k-construction tree for G is a tuple
(T, λ, r), where T is a tree rooted at r and λ : V (T) → Gk is a function assigning k-labelled
graphs to the nodes of T such that:
1. λ(r) = G,
2. all leaves ℓ ∈ V (T) are assigned fully labelled graphs,
3. all internal nodes t ∈ V (T) with exactly one child t′ are elimination nodes, that is λ(t)

can be obtained from λ(t′) by removing one label, and
4. all internal nodes t ∈ V (T) with more than one child are product nodes, that is λ(t) is

the product of its children.
The elimination depth of a construction tree (T, λ, r) is the maximum number of elimination
nodes on any path from the root r to a leaf. If G has a k-construction tree of elimination
depth ≤ q, we say that G is (k, q)-constructible. We write Lkq for the class of all k-labelled
(k, q)-constructible graphs.

It turns out that all three notions coincide.

▶ Theorem 14. Let k, q ≥ 1. For every graph G, the following are equivalent:
1. G is (k, q)-constructible,
2. G has a tree decomposition of width k − 1 and depth q,
3. G ∈ T k

q , that is G admits a k-pebble forest cover of depth q.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:9

The equivalence of Items 1 and 2 is proven by a carefully choosing a tree decomposition
such tha the bags are identified with the labelled vertices of the construction tree. For the
equivalence of Items 2 and 3, we follow the proof of [3, Theorem 19] and observe that their
construction preserves depth. Details can be found in the full version [9].

▶ Corollary 15. Let k, q ≥ 1. The class T k
q is minor-closed, closed under taking disjoint

unions, and a subclass of T Wk−1 ∩ T Dq.

Given Theorem 14, Corollary 15 is immediate. Dawar, Jakl, and Reggio reduced the
proofs of the results of Grohe and Dvořák [13, 8] to a “combinatorial core” [5, Remark 17],
which amounts to showing that the classes T Wk and T Dq are closed under contracting
edges. To that end, Corollary 15 illustrates the benefits of characterising T k

q in terms of tree
decompositions (Definition 12): Proving that pebble forest covers are preserved under edge
contractions requires a non-trivial amount of bookkeeping while the analogous statement for
tree decomposition is straightforward.

We conclude with a characterisation of T k
q in terms of a cops-and-robber game.

▶ Lemma 16. The Cops win the game mon-CRk
q (G) if and only if G ∈ T k

q .

The proof of this lemma follows the same strategies as the proof for the monotone version
of the cops-and-robber game for treewidth (see for example [24]). Details can be found in
the full version [9].

3.2 Separating T k
q from T Wk ∩ T Dq Syntactically

We aim to show that the graph class T k
q is a proper subclass of T Wk ∩ T Dq. Since

T q
q = T Dq = T Wq−1 ∩ T Dq, one can only hope to separate the classes if q is larger than k.

Using the characterisations of T k
q via a cops-and-robber game, we show that there are indeed

graphs which do not admit a decomposition where the width is bounded by the treewidth and
simultaneously the depth bounded by the treedepth. The graph we consider is the (h× ℓ)-
grid Gh×ℓ with h < ℓ. It is well known that tw(Gh×ℓ) = h and td(Gh×ℓ) ≤ h⌈log(ℓ+ 1)⌉, cf.
Figure 1. We give a lower bound to the number of rounds q that the robber can survive in a,
possibly non-monotone, game CRh+1

q (Gh×ℓ), which is linear in both ℓ and h.

▶ Lemma 17. For 1 < h < ℓ− 2 and q ≤ h(ℓ−h+2)
4 , Robber wins the game CRh+1

q (Gh×ℓ).

The proof of Lemma 17 builds upon [10]. The winning strategy of Robber is to always
stay in the component with the most vertices. We find a lower bound on the size of this
component in terms of the number of rounds played and prove that Cops can only force this
bound to shrink by two vertices each round, for the majority of the rounds. We additionally
show that for h > 3 Cops can indeed force the component to shrink by two vertices each
round and thus in this case the bound given in Lemma 17 is tight up to an additive term
depending only on h.

For h = 1, the proof idea of Lemma 17 is not applicable as on a path there are separators
of size two that separate the path into three components of roughly equal size. Despite that,
one may observe that such a separator does not benefit Cops as from such a position he
would always have to combine two of these components into a larger one. Thus Cops can
only move along the path and shrink the escape space of Robber by one vertex. This case is
covered in the original proof of [10].

▶ Lemma 18 ([10, Theorems 5 and 7]). Let ℓ ≥ 1. Robber wins the game CR2
q(G1×ℓ) if and

only if q ≤ ⌈ ℓ−1
2 ⌉.

CSL 2024

27:10 Going Deep and Going Wide

With an appropriate choice of ℓ and a small alteration to the graph Gk−1×ℓ that ensures
that the treedepth of the graph is exactly q, we can prove the following:

▶ Theorem 2. For q ≥ 3, T 2
q ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , T k
q ⊊

T Wk−1 ∩ T Dq.

Detailed proofs can be found in the full version [9]. The reader should note that the proof
of the lower bound on the number of rounds even holds for the non-monotone game, which in
turn allows us to lift this result to the semantic level of homomorphism indistinguishability.

4 Homomorphism Indistinguishability

In this section, we turn to investigating T k
q in terms of homomorphism indistinguishability. It

turns out that the representation of T k
q in terms of construction trees offers a great framework

for obtaining characterisations of logical equivalence. The general idea will be to use these
trees to inductively construct C-formulae that capture homomorphism counts. Not only does
this approach generalise results from [8, 13], it also yields an intuitive characterisation of
Ckq -equivalence. This provides a more elementary proof of a result from [5].

Moreover, the constructive nature of our proof strategy proves fruitful in obtaining
additional characterisations of fragments of C. The general idea is to impose natural
restrictions on the construction trees, such that a fragment L ⊊ C already suffices to capture
homomorphism counts. By choosing these restrictions carefully, the resulting subclass of
T k
q is then still large enough to capture L-equivalence. We illustrate this point by giving a

characterisation of guarded counting logic GC.
We conclude by semantically separating T k

q and T Wk−1 ∩ T Dq. More formally, we show
that, for q sufficiently larger than k, there exist graphs G and H which are homomorphism
indistinguishable over T k

q but have different numbers of homomorphisms from some graph in
T Wk−1 ∩ T Dq.

4.1 Homomorphism Indistinguishability over T k
q is Ck

q-Equivalence

In his 2010 paper [8], Dvořák showed that Ck-equivalence is equivalent to homomorphism
indistinguishability over T Wk. It turns out that his techniques generalise remarkably well
to construction trees. To begin with, we make a few observations on how the operations that
make up construction trees interact with homomorphism counts.

First, observe that when a graph F is fully labelled there can be at most one homomorph-
ism h : F → G, which is entirely determined by the label positions in G.

▶ Observation 19. Let F be a fully labelled graph and let LF denote the set of labels. Then
there exists a unique homomorphism h : F → G if for all labels i, j ∈ LF

νF (i) = νF (j) =⇒ νG(i) = νG(j),
νF (i)νF (j) ∈ E(F) =⇒ νG(i)νG(j) ∈ E(G).

Further, for h ∈ Hom(F1F2, G) the restrictions h|V (F1) and h|V (F2) are homomorphisms,
and since two homomorphisms g : F1 → G and h : F2 → G must agree on vertices with the
same label, g ⊔ h is well-defined and a homomorphism from F1F2 to G. This implies the
following for products.

▶ Observation 20. For labelled graphs F1, F2, G, it holds that hom(F1F2, G) = hom(F1, G) ·
hom(F2, G).

E. Fluck, T. Seppelt, and G. L. Spitzer 27:11

Finally, we can also relate the homomorphism counts from graphs F and F ′, whenever F ′

is obtained from F by removing some label ℓ. Then in any homomorphism h : F ′ → G the
image of νF (ℓ) is no longer necessarily νG(ℓ). Hence, we can obtain hom(F,G) by moving
the label ℓ to different vertices in G and tallying up the homomorphisms from F to those
graphs. We may write this succinctly as

hom(F ′, G) =
∑

v∈V (G)

hom(F,G(ℓ → v)),

or slightly more verbose as follows.

▶ Observation 21. Let F ′ be the graph obtained from F by removing a single label ℓ. Then
hom(F ′, G) = m if and only if there exists a decomposition m =

∑
i cimi with ci,mi ∈ N,

such that:
There exist exactly ci vertices v with hom(F,G(ℓ → v)) = mi.
There exist exactly c :=

∑
i ci vertices v with hom(F,G(ℓ → v)) ̸= 0.

The crucial insight is that the conditions above are all definable in C. In particular, the
condition for fully labelled graphs can be expressed as a conjunction of atomic formulae using
at most |LF | different variables. This allows us to prove the following lemma by induction
over a construction tree. The proofs of the lemmas in this section can be found in the full
version [9].

▶ Lemma 22. Let F ∈ Lkq be a k-labelled graph, and let m ≥ 0. Then there exists a formula
φm ∈ Ckq such that for each k-labelled graph G with LF ⊆ LG, G |= φm if and only if
hom(F,G) = m.

Ideally, we would like to prove the converse in a similar manner. Given some Ckq -formula ψ
that distinguishes two graphs G and H, construct a graph F ∈ Lkq with hom(F,G) ̸=
hom(F,H) by induction over the structure of ψ. While graphs are too rigid in this regard,
such a construction will be possible using linear combinations of graphs.2

For a class of (labelled) graphs F , we let RF be the class of finite formal linear combinations
with real coefficients of graphs F ∈ F . We linearly extend the function hom to RG by defining

hom(F, G) = hom(
∑
i

ciFi, G) :=
∑
i

ci · hom(Fi, G),

for F =
∑
i ciFi.

The following observation shows that homomorphism indistinguishability over F and
over RF is essentially the same. This allows us to reason about linear combinations instead
of graphs.

▶ Observation 23. Let G,H be graphs and let F ∈ RF . If hom(F, G) ̸= hom(F, H), then
there is already an F ∈ F with hom(F,G) ̸= hom(F,H).

The product of two linear combinations is defined in the natural way, where the graph
products distribute over the sum. We also remove any graphs with loops that might have
been created from the resulting linear combination. This definition preserves the property
that hom(F1F2, H) = hom(F1, H) hom(F2, H) and admits the following interpolation lemma.

2 These linear combinations are called “quantum graphs” in [8].

CSL 2024

27:12 Going Deep and Going Wide

▶ Lemma 24 ([8, Lemma 5]). Let F be a class of graphs and let F ∈ RF . If S−, S+ are
disjoint finite sets of real numbers, then there exists a linear combination F[S−;S+] ∈ RG,
such that for any graph G

hom(F[S−;S+], G) = 1 if hom(F, G) ∈ S+, and
hom(F[S−;S+], G) = 0 if hom(F, G) ∈ S−.

Moreover, if F is closed under taking products then F[S−;S+] ∈ RF .

With this result, we may construct for a formula ψ ∈ Ckq and n ∈ N a linear combina-
tion Fψ,n such that for all graphs G of size n it holds that hom(Fψ,n, G) = 1 if G |= ψ and
hom(Fψ,n, G) = 0 otherwise. We say that Fψ,n models ψ for graphs of size n.

▶ Lemma 25. Let k, q ≥ 1 and let φ be a Ckq -formula. Then for every n ≥ 1 there exists an
F ∈ RLkq modelling φ for graphs of size n.

The proof is by structural induction on φ and exploits how homomorphism counts change
under label deletions and taking products. Interpolation is used to define negation and to
renormalise homomorphism counts to 0 or 1. The construction has the property that labels
in the components of F correspond to free variables of φ. This correspondence yields the
following corollary.

▶ Corollary 26. Let k, q ≥ 1 and let φ be a Ckq -sentence. Then for every n ≥ 1 there exists
an F ∈ RT k

q modelling φ for graphs of size n.

We can now prove the main result of this section.

▶ Theorem 27. Let k, q ≥ 1. Two graphs G and H are Ckq -equivalent if and only if they are
homomorphism indistinguishable over T k

q .

Proof. Suppose there exists a graph F ∈ T k
q ⊆ Lkq with hom(F,G) ̸= hom(F,H). Then by

Lemma 22 there exist Ckq -sentences φFm for m ≥ 0 such that G |= φFm iff hom(F,G) = m.
Consequently, there exists an m with G |= φFm and H ̸|= φFm, so G and H cannot satisfy the
same Ckq -sentences.

Suppose now that there exists a sentence φ ∈ Ckq with G |= φ and H ̸|= φ. Without loss
of generality, we may assume |G| = |H| =: n. Then, by Corollary 26, there is an F ∈ RT k

q

that models φ for graphs of size n, that is, hom(F, G) ̸= hom(F, H). By Observation 23, this
already implies the existence of an F ∈ T k

q with hom(F,G) ̸= hom(F,H). ◀

By dropping the restriction on one of the two parameters in Theorem 27, we recover the
original results of Dvořák [8] and Grohe [13]:

▶ Corollary 28. Let k, q ≥ 1. Let G and H be graphs.
1. G and H are Ck-equivalent iff they are homomorphism indistinguishable over T Wk−1.
2. G and H are Cq-equivalent iff they are homomorphism indistinguishable over T Dq.

4.2 Guarded Fragments
Given the constructive nature of the arguments in Section 4.1, it is interesting to investigate
whether the same strategy can be used to obtain results for different fragments of C by
restricting construction trees in some way. An example where this works well is guarded
counting logic GC.

In the guarded fragment GC, quantifiers are restricted to range over the neighbours
of a vertex. Formally, we require that quantifiers only occur in the form ∃≥ty(Exy ∧
ψ(z1, . . . , zn, y)), where x and y are distinct variables.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:13

1 1 2

1 2

1 2

1 2

3

1 2

3

1

3

1 2 3

1 2 3

1

3

1

2 3

1

2 3

2 3

1 2 3

1 2 3

2 3

1

2 3

1

2 3

1 2

3

1 2

3

1 2 3

1 2 3

1 3

1 3

1 2 3

1 2 3

. . .

. . .

Figure 3 A guarded 3-construction tree of elimination depth 7 for the grid G2×7 with one labelled
vertex. Edges entering elimination nodes are dashed. At every labelled graph, those labels that may
be removed are marked blue, those that may not be removed are marked red. The dotted omitted
part of the construction tree follows the same pattern.

Since GC-formulae necessarily have a free variable, it is not immediately obvious how to
define GC-equivalence on graphs. One option is to consider GC-equivalence of graphs together
with a distinguished vertex. This works, and we will, in fact, obtain a characterisation for
precisely this relation. However, we would prefer to study the landscape of homomorphism
indistinguishability relations on graphs without additional structure. The following natural
definition of GC-equivalence allows us to lift our result to graphs without a dinstinguished
vertex.

▶ Definition 29 (GC-equivalence). Let G and H be unlabelled graphs. We say that G and H
are GC-equivalent, in symbols G ≡GC H, if there exists a bijection f : V (G) → V (H) such
that G, v |= φ(x) ⇐⇒ H, f(v) |= φ(x) for all v ∈ V (G) and φ ∈ GC.

To apply our proof strategy to GC, we need to restrict the construction trees such that
guarded quantifiers suffice to express homomorphism counts. Observe that the quantifiers
are only needed to describe how the number of homomorphisms F → G changes by removing
a label from F . More precisely, we make use of the fact that removing a label ℓ from F is
the same as moving it around in G and tallying up the resulting homomorphisms. Now if ℓ
is adjacent to some other label ℓ′, then the only positions of ℓ in G that contribute to the
final homomorphism count are adjacent to ℓ′. Consequently, it will suffice to quantify over
the neighbours of ℓ′.

▶ Definition 30. Let k, q ≥ 1. By GLkq we denote the class of k-labelled graphs that admit a
k-construction tree of elimination-depth q with the additional restriction that labels can only
be removed if they have a labelled neighbour.

We observe that in Figure 2 there are nodes where labels without labelled neighbors are
removed. In Figure 3, we depict a construction tree without such nodes of the same graph.
We remark that all graphs in GLkq are labelled, as a single label can never be removed. Under
these restrictions, the argument from Lemma 22 goes through using only guarded quantifiers.

▶ Lemma 31. Let F ∈ GLkq . Then for each m ≥ 0 there is a formula φm ∈ GCkq such that
for appropriately labelled graphs G it holds that hom(F,G) = m iff G |= φm.

The proof of the converse – showing that there exists for each ψ ∈ GCkq an F ∈ RGLkq
modelling ψ – also goes through nearly unchanged.

▶ Lemma 32. Let φ ∈ GCkq . Then there is an F ∈ RGLkq modelling φ for graphs of size n.

CSL 2024

27:14 Going Deep and Going Wide

The analogues of these two lemmas already sufficed to prove Theorem 27. Here, however,
we still need to be mindful of any remaining labels. Concretely, Lemma 31 and Lemma 32
imply the following for GC sentences.

▶ Corollary 33. Let G, v and H,w be graphs together with a single labelled vertex. Then the
following are equivalent.
1. For all ψ(x) ∈ GCkq , it holds G, v |= ψ(x) ⇐⇒ H,w |= ψ(x).
2. hom(F,G) = hom(F,H) for all F ∈ GLkq .

While this is already a nice result, ideally we would like to make a statement about
general, unlabelled, graphs. Fortunately, simply removing all labels from F ∈ GLkq turns out
to induce the equivalence relation described in Definition 29.

Let us denote by GT k
q the class of graphs in GLkq with all labels removed. Then we

can state the following theorem, characterising GCkq -equivalence in terms of homomorphism
indistinguishability. The details can be found in the full version [9].

▶ Theorem 1. Let k, q ≥ 1. Two graphs G and H are GCkq -equivalent if and only if they are
homomorphism indistinguishable over GT k

q .

We remark that in [2] the logic GC was studied with comonadic means. In this work,
winning strategies for Duplicator in guarded bisimulation games were characterised as coKleisli
morphisms with respect to a suitably defined comonad. This is in contrast to the comonadic
Lovász-type theorem of [5] which applies to logical equivalences which can be characterised
as coKleisli isomorphisms. Thus, Theorem 1 does not seem to be immediate from [2, 5].

4.3 Separating T k
q from T Wk−1 ∩ T Dq Semantically

By Theorem 2, the graph class T k
q is a proper subclass of T Wk−1 ∩ T Dq. Despite that,

it could well be that the homomorphism indistinguishability relations of the two graph
classes (and via Theorem 27 also Ckq -equivalence) coincide, i.e. G ≡T k

q
H if and only if

G ≡T Wk−1∩T Dq
H for all graphs G and H. It turns out that this is not the case.

In general, establishing that the homomorphism indistinguishability relations ≡F1 and
≡F2 of two graph classes F1 ≠ F2 are distinct is a notoriously hard task. Pivotal tools
for accomplishing this were introduced by Roberson in [26]. He defines the homomorphism
distinguishing closure cl(F) of a graph class F as the graph class

cl(F) := {F graph | ∀G,H. G ≡F H =⇒ hom(F,G) = hom(F,H)}.

A graph class F is homomorphism distinguishing closed if F = cl(F). This is the case
if and only if for every F ̸∈ F there exist two graphs G and H homomorphism indistin-
guishable over F and satisfying that hom(F,G) ̸= hom(F,H). Therefore, homomorphism
distinguishing closed graph classes may be thought of as maximal in terms of homomorphism
indistinguishability.

Roberson conjectures that every graph class which is closed under taking minors and
disjoint unions is homomorphism distinguishing closed. A confirmation of this conjecture
would aid separating homomorphism indistinguishability relations and in turn all equivalence
relations between graphs which have such characterisations, cf. [27]. In particular, it would
readily imply that ≡T k

q
and ≡T Wk−1∩T Dq

are distinct, cf. Corollary 15. Unfortunately,
the conjecture’s assertion is only known to be true for the class of planar graphs [26],
T Wk [22] and graph classes arising from finite graph classes [28]. Towards separating ≡T k

q

and ≡T Wk−1∩T Dq
, we first add to this list by proving the following:

E. Fluck, T. Seppelt, and G. L. Spitzer 27:15

▶ Theorem 3. For q ≥ 1, the class T Dq is homomorphism distinguishing closed.
The proof of Theorem 3 follows the proof in [22] of the assertion that the class T Wk

is homomorphism distinguishing closed for all k ≥ 0. Central to it is a construction of
highly similar graphs from [26] which is reminiscent of the CFI-construction [4]. With
these ingredients, it suffices to prove that Duplicator wins the model comparison game
characterising Cq-equivalence on these CFI-like graphs constructed over a graph of high
treedepth. To that end, we build a Duplicator strategy from a Robber strategy for the game
from Definition 9. The connection between model comparison and node searching games via
CFI-constructions is well-known [17, 6].

Crucial for the aforementioned argument is that Robber wins the non-monotone node
searching game characterising bounded treedepth. Indeed, it cannot be assumed that Cops
plays monotonously since he must shadow Spoiler’s moves. Since we are unable to establish
a non-monotone node searching game characterising T k

q , we cannot conclude along the same
lines that T k

q is homomorphism distinguishing closed. Nevertheless, we separate ≡T k
q

and
≡T Wk−1∩T Dq . The details are deferred to the full version [9].
▶ Theorem 4. For q ≥ 3, cl(T 2

q) ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q
3+log q , cl(T k

q) ⊊
T Wk−1 ∩ T Dq.

Proving that T k
q is characterised by Robber winning the (non-monotone) game CRk

q , c.f.
Lemma 16, would immediately imply that T k

q is homomorphism distinguishing closed.
In the introduction, we mentioned that it is tempting to assume that Ckq -equivalence

coincides with homomorphism indistinguishability over T Wk−1 ∩ T Dq because Ckq = Ck ∩ Cq.
However, our results imply that there are properties definable in both Ck and Cq that are
not definable in Ckq .
▶ Corollary 34. For 2 ≤ k − 1 ≤ q

3+log q , there exist sentences φ ∈ Ck and ψ ∈ Cq such that
φ ≡ ψ, but for all sentences ϑ ∈ Ckq it holds that ϑ ̸≡ φ.
Proof. By Theorem 4, for suitable k, q, there exist graphs G and H such that G ≡T k

q
H

and there exists F ∈ T Wk−1 ∩ T Dq such that m := hom(F,G) ̸= hom(F,H). By Lemma 22
and Theorem 14, there exist sentences φ ∈ Ck and ψ ∈ Cq such that hom(F,K) = m ⇐⇒
K |= φ ⇐⇒ K |= ψ for every graph K. However, this property cannot be defined in Ckq
since G and H satisfy the same Ckq -sentences by Theorem 27. ◀

5 Outlook

We studied the expressive power of the counting logic fragment Ckq with tools from homo-
morphism indistinguishability. After giving an elementary and uniform proof of theorems
from [8, 13, 5], we showed that the graph class T k

q , whose homomorphism indistinguishability
relation characterises Ckq -equivalence, is a proper subclass of T Wk−1 ∩ T Dq. Finally, we
showed that homomorphism indistinguishability over T k

q is not the same as homomorphism
indistinguishability over T Wk−1 ∩ T Dq.

The main problem remaining open is to tighten Theorem 4 by proving that the graph
class T k

q is homomorphism distinguishing closed, as predicted by Roberson’s conjecture. Our
contribution in this direction is a reduction to a purely graph theoretic problem: Proving
that the class T k

q is characterised by a non-monotone cops-and-robber game, cf. Lemma 16,
would be sufficient to yield this claim. Exploring whether intertwining node searching and
model comparison games can help to verify Roberson’s conjecture in other cases seems a
tempting direction for future research.

With slight reformulations, our results might yield insights into the ability of the Weisfeiler–
Leman algorithm to determine subgraph counts after a fixed number of rounds [25, 22].

CSL 2024

27:16 Going Deep and Going Wide

References
1 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in Finite

Model Theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavík, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005129.

2 Samson Abramsky and Dan Marsden. Comonadic Semantics for Guarded Fragments. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’21. IEEE Press, 2021. doi:10.1109/LICS52264.2021.9470594.

3 Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. Journal of Logic and Computation, 31(6):1390–1428, September
2021. doi:10.1093/logcom/exab048.

4 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/BF01305232.

5 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13,
June 2021. doi:10.1109/LICS52264.2021.9470609.

6 Anuj Dawar and David Richerby. The power of counting logics on restricted classes of finite
structures. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic,
pages 84–98. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-74915-8_10.

7 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages
40:1–40:14, 2018. doi:10.4230/LIPICS.ICALP.2018.40.

8 Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, August 2010. doi:10.1002/jgt.20461.

9 Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going Deep and Going Wide: Counting Logic
and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth,
2023. doi:10.48550/arXiv.2308.06044.

10 Martin Fürer. Weisfeiler-Lehman Refinement Requires at Least a Linear Number of Iterations.
In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages
and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,
2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer,
2001. doi:10.1007/3-540-48224-5_27.

11 Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. LIFO-search: A min–max
theorem and a searching game for cycle-rank and tree-depth. Discrete Applied Mathematics,
160(15):2089–2097, October 2012. doi:10.1016/j.dam.2012.03.015.

12 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. Journal of Computer and System
Sciences, 66(4):775–808, 2003. Special Issue on PODS 2001. doi:10.1016/S0022-0000(03)
00030-8.

13 Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages 507–520,
New York, NY, USA, 2020. Association for Computing Machinery. event-place: Saarbrücken,
Germany. doi:10.1145/3373718.3394739.

14 Martin Grohe. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2020, Portland, OR, USA, June 14-19, 2020, pages 1–16. ACM, 2020. doi:10.1145/3375395.
3387641.

15 Martin Grohe. The Logic of Graph Neural Networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470677.

https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.1109/LICS52264.2021.9470594
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.4230/LIPICS.ICALP.2018.40
https://doi.org/10.1002/jgt.20461
https://doi.org/10.48550/arXiv.2308.06044
https://doi.org/10.1007/3-540-48224-5_27
https://doi.org/10.1016/j.dam.2012.03.015
https://doi.org/10.1016/S0022-0000(03)00030-8
https://doi.org/10.1016/S0022-0000(03)00030-8
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1109/LICS52264.2021.9470677

E. Fluck, T. Seppelt, and G. L. Spitzer 27:17

16 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.70.

17 Lauri Hella. Logical Hierarchies in PTIME. Information and Computation, 129(1):1–19,
August 1996. doi:10.1006/inco.1996.0070.

18 Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity in
digraph searching. Theor. Comput. Sci., 412(35):4688–4703, 2011. doi:10.1016/j.tcs.2011.
05.003.

19 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3):321–328, September 1967. doi:10.1007/BF02280291.

20 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.
2020.00067.

21 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. AAAI, 33:4602–4609, July 2019. doi:10.1609/aaai.v33i01.33014602.

22 Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width,
April 2023. doi:10.48550/arXiv.2304.07011.

23 Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 7306–7316. PMLR,
13–18 July 2020. URL: https://proceedings.mlr.press/v119/nguyen20c.html.

24 Roman Rabinovich. Graph complexity measures and monotonicity. PhD thesis, RWTH Aachen
University, 2013. URL: https://publications.rwth-aachen.de/record/230227.

25 Gaurav Rattan and Tim Seppelt. Weisfeiler–Leman and Graph Spectra. In Proceedings of
the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268–2285.
Society for Industrial and Applied Mathematics, 2023. doi:10.1137/1.9781611977554.ch87.

26 David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree, June 2022. doi:10.48550/arXiv.2206.10321.

27 David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Ho-
momorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming (IC-
ALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages
101:1–101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2023.101.

28 Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2023.82.

29 Paul D. Seymour and Robin Thomas. Graph Searching and a Min-Max Theorem for Tree-
Width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

30 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph
Neural Networks? In International Conference on Learning Representations, 2019. URL:
https://openreview.net/forum?id=ryGs6iA5Km.

CSL 2024

https://doi.org/10.4230/LIPIcs.ICALP.2022.70
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/j.tcs.2011.05.003
https://doi.org/10.1016/j.tcs.2011.05.003
https://doi.org/10.1007/BF02280291
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.48550/arXiv.2304.07011
https://proceedings.mlr.press/v119/nguyen20c.html
https://publications.rwth-aachen.de/record/230227
https://doi.org/10.1137/1.9781611977554.ch87
https://doi.org/10.48550/arXiv.2206.10321
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://doi.org/10.4230/LIPIcs.MFCS.2023.82
https://doi.org/10.1006/jctb.1993.1027
https://openreview.net/forum?id=ryGs6iA5Km

Realizability Models for Large Cardinals
Laura Fontanella # Ñ

Univ. Paris Est Créteil, LACL, F-94010, France

Guillaume Geoffroy # Ñ

Université Paris Cité, laboratoire IRIF, France

Richard Matthews #

Univ. Paris Est Créteil, LACL, F-94010, France

Abstract
Realizabilty is a branch of logic that aims at extracting the computational content of mathematical
proofs by establishing a correspondence between proofs and programs. Invented by S.C. Kleene in
the 1945 to develop a connection between intuitionism and Turing computable functions, realizability
has evolved to include not only classical logic but even set theory, thanks to the work of J-L. Krivine.
Krivine’s work made possible to build realizability models for Zermelo-Frænkel set theory, ZF,
assuming its consistency. Nevertheless, a large part of set theoretic research involves investigating
further axioms that are known as large cardinals axioms; in this paper we focus on four large cardinals
axioms: the axioms of (strongly) inaccessible cardinal, Mahlo cardinals, measurable cardinals and
Reinhardt cardinals. We show how to build realizability models for each of these four axioms
assuming their consistency relative to ZFC or ZF.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Proof
theory; Theory of computation → Type theory

Keywords and phrases Logic, Classical Realizability, Set Theory, Large Cardinals

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.28

Funding Richard Matthews: DIM RFSI 21R03101S.

Acknowledgements We would like to thank Jean-Louis Krivine for many fruitful discussions that
set the main ideas for this work.

1 Introduction

Realizability is an extension of the proofs-as-programs correspondence also known as the
Curry-Howard isomorphism. In realizability, a theory (or a logical system) is interpreted in a
model of computation by establishing a correspondence between formulae and programs in a
way that is compatible with the rules of deduction. For instance, a realizer of an implication
A → B is a program which, whenever applied to a realizer of A, returns a realizer of B.
The origins of realizability date back to S.C. Kleene’s work in constructive mathematics in
1945 [11]: Kleene’s realizability formalized the intuitionistic view that proofs are algorithms
(computable functions) by interpreting proofs in Heyting arithmetic as recursive functions.
In the 90’s, the work of T. Griffin [6] led to pass the barrier of intuitionistic logic and to
extend the Curry-Howard correspondence to classical logic by using the λc-calculus, an
extension of λ-calculus that formalizes computation in the programming language Scheme
(for a presentation of the λ-calculus we refer to Barendregt’s book [1], for a presentation
of the λc-calculus we refer to [3]). J.-L. Krivine developed a method for realizing not only
classical logic, but even Zermelo-Frænkel set theory, ZF (see [12] and [13]) using realizability
algebras which are generalizations of the notion of Boolean algebra involving programs and
stacks (realizability algebras will be presented in Section 2). Krivine’s technique combines

© Laura Fontanella, Guillaume Geoffroy, and Richard Matthews;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laura.fontanella@u-pec.fr
https://lacl.fr/~lfontanella/
https://orcid.org/0000-0003-1588-7524
mailto:guillaume.geoffroy@irif.fr
https://geoffroy.re
mailto:richard.matthews@u-pec.fr
https://doi.org/10.4230/LIPIcs.CSL.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Realizability Models for Large Cardinals

intuitionistic set theory, IZF, with a double negation translation of formulas. In this matter
the work of H. Friedman [4] on IZF was crucial as it showed that IZF is equiconsistent with
ZF and gave a natural way to interpret the classical theory within the intuitionistic one.

The method can also be seen as a generalization of the method of forcing in set theory.
This is because every Boolean-valued model can be naturally interpreted as a realizability
algebra; moreover, this interpretation is done in such a way that the two resulting models
prove the same statements in some precise sense (we refer to section 19 of [19] for the details
of this translation). Nevertheless, from a computational point of view, forcing models are not
very informative since all realizers are interpreted as the same element (the bottom element
of the boolean algebra).

For a long time it remained an open problem whether or not it was possible to realize the
Axiom of Choice, AC; recent work of Krivine [16] shows that it is indeed possible to build a
realizability model for AC (although, it remains unclear what would be an explicit realizer
for AC in this model). Research in contemporary set theory is not limited to the axioms
of ZF or ZFC (i.e. ZF plus AC), with an active area of research being the study of large
cardinals axioms. These are strong axioms of infinity that assert the existence of uncountable
cardinals with various closure properties. Large cardinals axioms can be ordered by their
consistency strength and they all entail the existence of a set which satisfies all of the axioms
of ZF. It follows by K. Gödel’s second incompleteness theorem that the existence of large
cardinals cannot be proven within ZF. Nevertheless, these axioms have many applications to
various areas of mathematics and computer science (for a more detailed presentation of large
cardinals we refer to A. Kanamori’s book [10])

We address the problem of whether or not large cardinals axioms can be realized, and we
focus on four major large cardinals notions: (strongly) inaccessible cardinals, Mahlo cardinals,
measurable cardinals and Reinhardt cardinals. Inaccessible cardinals are uncountable cardinals
that imply the existence of uncountable Grothendieck universes (see [24]). Mahlo cardinals
imply strong reflection properties which have been used in type theories, such as Agda, to
produce type universes which contain inductive-recursive types. The strongest known version
of type theory for which there exists a constructive justification is a system of Martin-Löf
type theory with a Mahlo universe, MLM, which was introduced by A. Setzer (see [22]).
M. Rathjen showed that constructive set theory plus the axiom that asserts the existence
of Mahlo cardinals has a canonical interpretation in Setzer’s type theory (see [21]). A
measurable cardinal is a cardinal κ for which there exists a non-trivial κ-additive, 0-1-valued
measure on the power set of κ. As proved by A. Blass in [2], the existence of measurable
cardinals is equivalent to the existence of an exact functor F : Set → Set that is not naturally
isomorphic to the identity. Reinhardt cardinals generalize the notion of measurable cardinal
and imply the existence of a non-trivial elementary embedding of the universe of sets into
itself. The existence of Reinhardt cardinals is inconsistent with ZFC by Kunen’s inconsistency
theorem [17], so they are defined only in the context of ZF.

In this paper we show that these four large cardinals axioms can be realized within
Krivine’s framework. We consider for each of these large cardinal axioms φ an equivalent
large cardinal axiom φ∗ in the context of ZF, then we build realizability models for the
theory “ZF plus φ∗” assuming its consistency. The work of H. Friedman and A. Ščedrov [5]
provided a suitable formulation of large cardinals in intuitionistic set theory which made it
possible to integrate these large cardinals notions into Krivine’s machinery. We shall point
out that not only do we build realizaiblity models for these large cardinals notions assuming
their consistency with ZFC or ZF, but we prove that any realizability algebra of size less
than the large cardinals considered preserves these large cardinals axioms.

L. Fontanella, G. Geoffroy, and R. Matthews 28:3

The paper is structured as follows. We first introduce the technique for building realizab-
ility models for ZF in Sections 2–4. In Section 5 we illustrate the method of reish names, or
recursive names, for transferring properties of sets and functions to realizability algebras. In
Section 6 we discuss some useful relativization properties for transitive sets. In Section 7
we show how to preserve the axiom of inaccessible cardinals by realizability algebras. In
Section 8, we show how to preserve the axiom of Mahlo cardinals by realizability algebras.
Section 9 is devoted to realizability models for the second ordered set theory, GB. Finally, in
Section 10 we show how to preserve by realizability algebras the axioms of measurable and
Reinhardt cardinals.

2 Realizability algebras

In this section, we present Realizability Algebras, which are the main building blocks for the
construction of realizability models for set theory. We shall being by briefly explaining the
main intuition behind this construction. We start with a model of set theory and we will
use programs and stacks to evaluate the potential truth and falsity values of set theoretic
statements. For computational reasons we work with a non extensional version of set theory,
called ZFε, that involve two membership relations: the usual one and a strict non-extensional
relation. We will use the terms of the λc-calculus (a variant of λ-calculus that include as a
term the operator call-with-current-continuation) to evaluate the truth value of formulas in
the language of ZFε. On the other hand, we will use stacks, namely sequences of λc-terms,
to evaluate the falsity values of such formulas. Truth values and falsity values will be related
to each other, so that a λc-term is in the truth value of a formula (we say that it “realizes
the formula”), if it is somehow “incompatible” with every stack in the falsity value of that
formula. These definitions will respect certain logical constraints such as no stack can be
in the falsity value of ⊤, and every stack is in the falsity value of ⊥. Then we choose some
privileged collection of λc-terms that we call realizers and we will show that the set of
formulas that are realized by some realizer forms a consistent theory which includes ZFε and
is closed under the rules of derivation of classical natural deduction. Finally, a realizability
model will be a model of such a theory. Since ZFε is a conservative extension of ZF, such a
model will induce a model of ZF.

The main ingredients of realizability algebras are λc-terms, stacks and processes which we
define next. We will give the definition in full generality, in particular allowing for non-empty
sets of special instructions and stack bottoms. These are customisable constants which can
be added to our realizability algebras to ensure the models satisfies additional principles. For
example, if the algebra is countable and contains the special instruction quote then one can
prove Dependent Choice holds in the model. However, all the statements in this paper will
be realized by terms of the λc-calculus. Therefore we will not need any special instructions
but the arguments will still go through if they are present.

▶ Definition 1. Let V be a model of ZF and let A,B be two sets in V:
We let Λopen

A,B and ΠA,B denote the elements of V defined by the following grammars,
modulo α-equivalence. Their elements are called respectively λc-terms and stacks:

Λopen
A,B (λc-terms) :
t, u ::= x (variable; we choose a set of variables that is countable in V)

| tu (application)
| λx.t (abstraction; x is a variable and t is a λc-term)
| cc (call-with-current-continuation)
| kπ (continuation constants; π is a stack)
| ξα (special instructions; α ∈ A)

CSL 2024

28:4 Realizability Models for Large Cardinals

ΠA,B (Stacks) :
π ::= ωβ (stack bottoms; β ∈ B)

| t.π (t is a closed λc-term and π is a stack)
ΛA,B ∈ V denotes the set of all closed λc-terms,
RA,B ∈ V denotes the set of all closed λc-terms that contain no occurrence of a continu-
ation constant. Such terms are called realizers.
ΛA,B ⋆ ΠA,B ∈ V denotes the cartesian product ΛA,B × ΠA,B. Its elements are called
processes. We will write t ⋆ π for (t, π) ∈ ΛA,B ⋆ΠA,B.

Application on λc-terms is left associative (tu1u2 · · ·un means (· · · ((tu1)u2) · · ·)un) and
has higher priority than abstraction (λx.tu means λx.(tu)). We define some rules of reduction
on the set of processes through the notion of evaluation.

▶ Definition 2. Let V be a model of ZF and let A,B be two sets in V.
≺A,B ∈ V is called the evaluation preorder and denotes the smallest preorder on
ΛA,B ⋆ΠA,B such that:

tu ⋆ π ≻A,B t ⋆ u.π (push)
λx.t ⋆ u.π ≻A,B t[x := u] ⋆ π (grab)

cc ⋆ t.π ≻A,B t ⋆ kπ.π (save)
kπ′ ⋆ t.π ≻A,B t ⋆ π′ (restore).

Note that there is no evaluation rule for the special instructions, thus ≺A,B treats
the special instructions as inert constants; depending on the context we may define other
evaluation relations with specific evaluation rules for the special instructions. If A and B

can be well-ordered (which is always the case if V satisfies the Axiom of Choice), then the
cardinality (from the point of view of V) of ΛA,B, ΠA,B, RA,B and ΛA,B ⋆ ΠA,B is the
maximum of the cardinality of A, the cardinality of B and ℵ0.

▶ Definition 3. Let V be a model of ZF. A realizability algebra in V is a tuple A = (A,B,⊥⊥)
such that:

A ∈ V (i.e. A ∈ V, B ∈ V and ⊥⊥ ∈ V);
⊥⊥ is a subset of ΛA,B ⋆ΠA,B that is a final segment for ≻A,B, i.e. if t ⋆ π ≻A,B t′ ⋆ π′

and t′ ⋆ π′ ∈ ⊥⊥, then t ⋆ π ∈ ⊥⊥. It is called the pole of the realizability algebra.

Given a model V of ZF, recall that the Von Neumann hierarchy is a collection of sets
Vα indexed by ordinals and defined by transfinite recursion as follows: Vα =

⋃
β<α P(Vβ).

The Axiom of Foundation implies that V =
⋃

α∈Ord Vα; thus every set belongs to some Vα

and the rank ordinal of a set a, denoted rk(a), is the least ordinal α such that a ∈ Vα. We
call the footprint of A the ordinal fp(A) := rkV(A) + ωV

1 where ωV
1 is the least uncountable

ordinal in V. We assume that the sets Λopen
A,B and ΠA,B were constructed in such a way that

their ranks are strictly less than fp(A). When there is no ambiguity, we will drop the indices
A,B and simply write Λ, Π, R, etc.

3 The theory ZFε

In order to define a realizability model for classical set theory, we consider a non-extensional
conservative extension of the usual set theory. This theory was originally formulated by
Friedman in [4] in his proof that ZF is equiconsistent with IZF and notably contains two
distinct membership relations: ∈ which behaves like the standard membership relation, and
ε which is a form of “strong membership”.

L. Fontanella, G. Geoffroy, and R. Matthews 28:5

Throughout this paper, we will work in first-order logic without equality: individuals
languages may contain a symbol that happens to be written “=”, but such a symbol has no
special status. In particular, models are not required to interpret it by “meta” equality. In
addition, we will assume that the only primitive logical constructions are →, ⊤, ⊥, and ∀;
for ∨, ∧, and ∃, we will use De Morgan’s encoding. Thus:

φ ∧ ψ means (φ → ψ →⊥) →⊥,
φ ∨ ψ means (φ →⊥) → (ψ →⊥) →⊥,
∃x φ(x) means (∀x (φ(x) →⊥)) →⊥.

We will denote by L∈ the first-order language over the signature {∈,≃} where ∈ and
≃ are binary relation symbols. The language of ZFε requires two distinct symbols for the
membership relation, ∈ and ε (the former will refer to the usual extensional membership
relation, the latter will correspond to a strict non-extensional membership relation); however,
for computational reasons it is better to take as primitives the negative versions of those
symbols, thus the language of ZFε which is denoted Lε, is the first-order language over the
signature {/∈,⊆, ε/, ≠}, where all 4 symbols are binary relation symbols. It can be proven
that ̸= is definable from ε/ via the Leibniz equality and is therefore not necessary in the
signature, however we include it here for practical purposes. Fml∈ and Fmlε denote the
collection of all formulas in L∈ and Lε respectively. In the language Lε, we will use the
following abbreviations:

Abreviation Meaning Abreviation Meaning
a ε b a ε/ b →⊥ a ≃ b (a ⊆ b) ∧ (b ⊆ a)

a ∈ b a ̸∈ b →⊥ ∀x ε a φ(x) ∀x (x ε a → φ(x))
a = b a ̸= b →⊥ ∃x ε a φ(x) (∀x (φ(x) → x ε/ a)) → ⊥

In particular, by a slight abuse of notation, we will consider Fml∈ to be a subset of Fmlε.
ZF denotes the usual set theory, written in the language L∈, i.e. ZF is a subset of Fml∈,
while ZFε denotes non-extensional set theory, as defined by Krivine, written in the language
Lε (i.e. ZFε is a subset of Fmlε). In a nutshell, the axioms of ZFε state that:

An equivalent presentation of the axioms of ZF minus the Axiom of Extensionality
(essentially the double negation) are satisfied over the signature {ε/, ̸=} (rather than
{∈,≃}).
∈ is the extensional collapse of ε: x ∈ y iff there is x′ ε y such that x ≃ x′;
⊆ is the extensional inclusion: x ⊆ y iff for every z ε x, we have z ∈ y;
≃ is extensional equivalence: two sets are ≃-equal iff they have the same ∈-elements.

For full details, including the list of the axioms of Lε, we refer the reader to [14]; see also
Friedman’s earlier account in [4]. As proven in [4], ZFε is a conservative extension of ZF:

▶ Theorem 4. Let φ be a closed formula in L∈: φ is a consequence of ZF if and only if it
is a consequence of ZFε.

A proof of this fact can be found in [12]. For further details we refer to [19].
Whenever L is a first-order language that contains Lε, we will denote by ZFL

ε the theory
obtained by taking ZFε and enriching all the axiom schemas to include the formulas of L.

4 Construction of realizability models

Our construction of realizability models follows the presentation in [19]. Let V be a model
of Zermelo-Frænkel set theory, ZF, and let A = (Λ,Π,⊥⊥) be a realizability algebra in V.

CSL 2024

28:6 Realizability Models for Large Cardinals

We define NA,V ⊆ V as follows: for any ordinal α ∈ V, let NA,V
α :=

⋃
β<α P(NA,V

β × Π),
then let NA,V :=

⋃
α∈Ord NA,V

α , where Ord denotes the class of ordinals in V. The elements
of NA,V are called (A,V)-names. Note that for all α, NA,V

α ∈ V, but NA,V /∈ V (NA,V is a
proper class in V). We will generally drop the exponents and simply write Nα and N. Given
an element a ∈ N we let dom(a) := {b | ∃π ∈ Π (b, π) ∈ a} ∈ V.

A function f : Nn → N is said to be A-definable if there is a formula φ(z, x1, . . . , xn, y) ∈
Fmlε and c ∈ Vfp(A) such that, for any a1, . . . , an ∈ N and b ∈ V, V |= φ(c, a1, . . . , an, b) if
and only if b = f(a1, . . . , an). Let LA

ε be the language obtained from Lε by adding for each
A-definable function f : Nn → N an n-ary function symbol “f”.

The realizability interpretation of LA
ε in A consists of the following.

▶ Definition 5. To each closed formula φ in LA
ε with parameters in N, we associate a truth

value |φ| ⊆ Λ and a falsity value ∥φ∥ ⊆ Π, they are defined jointly by induction on the
complexity of φ:

|φ| := {t ∈ Λ | ∀π ∈ ∥φ∥, t ⋆ π ∈ ⊥⊥};
∥⊤∥ := ∅ and ∥⊥∥ := Π;
∥a ε/ b∥ := {π ∈ Π | (a, π) ∈ b};
∥a ̸= b∥ := ∥⊤∥ if a ̸= b, ∥⊥∥ otherwise;
∥a ̸∈ b∥ :=

⋃
c∈dom(b)

{t.t′.π | (c, π) ∈ b, t ∈ |a ⊆ c|, t′ ∈ |c ⊆ a|};

∥a ⊆ b∥ :=
⋃

c∈dom(a)
{t.π | (c, π) ∈ a, t ∈ |c ̸∈ b|};

∥ψ → θ∥ := {t.π | t ∈ |ψ|, π ∈ ∥θ∥};
∥∀x φ(x)∥ :=

⋃
a∈N

∥φ[a/x]∥.

For atomic formulas, we identify the closed terms a and b with their valuations in N.
Formally, ∥a ̸∈ b∥ and ∥a ⊆ b∥ are defined by induction on the pair (max(rkN(a), rkN(b)),
min(rkN(a), rkN(b))) under the product order, where rkN(c) := min {α | c ∈ Nα+1}.

We say that a closed λc-term t realizes a closed formula φ with parameters in N and
write t ⊩ φ, whenever t ∈ |φ|.

By standard set-theoretic arguments, for each formula φ(x⃗) in LA
ε (without parameters),

there exist formulas φΠ(p, x⃗) and φΛ(p, x⃗) in L∈ with parameters in Vfp(A) such that for all
sequences of sets a⃗ ∈ V, for all π ∈ Π and t ∈ Λ,

π ∈ ∥φ(⃗a)∥ ⇔ V |= φΠ(π, a⃗), and t ∈ |φ(⃗a)| ⇔ V |= φΛ(t, a⃗).

Now, we would like to associate to A a “realizability theory” consisting of all closed
formulas which are realized. However, for all t ⋆ π ∈ ⊥⊥, the λc-term kπ t realizes the formula
⊥. Therefore, in order to obtain a realizability theory that is not automatically inconsistent,
we will need to exclude terms of this shape; this is where the set R of realizers comes into
play (i.e. the closed λc terms containing no continuation constant):

▶ Definition 6. The realizability theory of (A,V), denoted by TA,V, is the set of all closed
formulas, φ, of LA

ε with parameters in N such that there exists t ∈ R such that t realizes φ.

The following facts are standard (see e.g. [14]):
the realizability theory of (A,V) is closed under classical deduction, (i.e. if φ ∈ TA,V and
φ entails ψ in classical logic, then ψ ∈ TA,V);
this theory is consistent if and only if for every t ∈ R there is a stack π such that t⋆π ̸∈ ⊥⊥;
this theory is generally not complete.

L. Fontanella, G. Geoffroy, and R. Matthews 28:7

▶ Theorem 7. Let V be a model of ZF and A a realizability algebra in V. The realizability
theory of (A,V) contains ZFLA

ε
ε . In particular, it contains ZFε, and therefore ZF).

We refer to [14] for a proof of this, or [19] for an alternative proof using the setup given.
This justifies the following definition:

▶ Definition 8. A realizability model of ZFε is a pair N = (V,A), with V a model of ZF
and A a realizability algebra in V. We write N ⊩ φ for “TA,V contains φ”.

Sometimes, we will argue within models of the realizability theory TA,V and by abuse of
language we will call realizability model any model of TA,V.

5 Reish Names and Pairing

In this section we present the method of reish names, or recursive names, which is used for
transferring properties of sets of the ground model to sets in a realizability model. Given a
ground model set a, the gimel of a, ,(a)ג! is defined as (a)ג! := a× Π, but (a)ר! shall instead
apply this process recursively to all elements of a. This will have the benefit that ,(a)ר! and
each one of its elements, is always an element of N.

▶ Definition 9. For x ∈ V we define (x)ר! := ,(y)ר!)} π) | y ∈ x, π ∈ Π}.

This method will not in general give a straightforward interpretation of the ground model
elements. For example, it is unclear if (ω)ר! is an extensional name for the first limit ordinal
in the ZF structure. However, it is a useful tool to transfer certain properties of sets of the
ground model into the realizability model.

▶ Proposition 10. If a ⊆ b then N ⊩ (a)ר! ⊆ .(b)ר!

Proof. Let v0 be a realizer such that v0 ⊩ ∀x(x ⊆ x) and set v1 := λf .(f(v0))(v0). It is easy
to see that v1 ⊩ (a)ר! ⊆ .(b)ר! ◀

▶ Observation 11. If a ∈ b then I ⊩ (a)ר! ε ,(b)ר! where I = λf .f is the identity term. Thus,
if a ∈ b then N ⊩ (a)ר! ̸≃ .(b)ר!

This construction then allows us to define a proper class of ordinals in a realizability
model. For this we use the definition of ordinals as transitive sets of transitive sets, which
can easily be seen to be equivalent to a transitive set well-ordered by the ∈-relation.

▶ Definition 12. (ZFε) We say that a set a is a ε-ordinal if it is a ε-transitive set of
ε-transitive sets. That is, ∀x ε a ∀y ε x (y ε a) and ∀z ε a ∀x ε z ∀y ε x (y ε z).

Note that, over ZFε, this definition is not equivalent to the definition of ordinals as
transitive sets well-ordered by the ε-relation. As an example, consider the realizability model
constructed at the end of [15] in which (2)ר! has size 4. In this case there are two ordinals,
a, b ε ,(2)ר! such that a ε/ b, b ε/ a. However, (a ∪ {a}) ∪ (b ∪ {b}) is an ε-ordinal on which the
ε-relation does not linearly order the set.

▶ Proposition 13. Suppose that N = (N, ε/, ̸∈,⊆) is a model of ZFε. Then for any a ∈ N:
1. If a is a ε-transitive set, then it is a ∈-transitive set,
2. If a is a ε-ordinal, then it is a ∈-ordinal.

CSL 2024

28:8 Realizability Models for Large Cardinals

Proof. Suppose that a is a ε-transitive set and take c ∈ b ∈ a. Then there exists some
x ε a such that x ≃ b and there exists some y ε x such that y ≃ c. Since a is assumed to be
ε-transitive, y ε a. Therefore x ∈ a by definition of ∈.

Next, suppose that a is a ε-ordinal. We have already shown that a is ∈-transitive so it
suffices to prove that every b ∈ a is ∈-transitive. So let d ∈ c ∈ b ∈ a. Then we can find
z ε y ε x ε a such that x ≃ b, y ≃ c and z ≃ d. Since a is a ε-ordinal, z ε x and therefore d ∈ x.
Finally, d ∈ x and x ≃ b gives us d ∈ b, as required. ◀

▶ Proposition 14. If δ is an ordinal in V then N ⊩ (δ)ר! is a ε -ordinal.

Proof. Let δ be an ordinal in V. We show that (δ)ר! is a ε-transitive set; the fact that it
consists of ε-transitive sets will follow by a similar argument. To do this, we show that
I ⊩ ∀x y(y∀(δ)ר! ε/ (δ)ר! → y ε/ x). Fix β ∈ δ, c ∈ N, t ⊩ c ε/ (δ)ר! and π ∈ ∥c ε/ .∥(β)ר! Now
∥c ε/ ∥(β)ר! = {σ | (c, σ) ∈ .{(β)ר! Since this set is non-empty, it must be the case that
∥c ε/ ∥(β)ר! = Π and c = (γ)ר! for some γ ∈ β. Therefore, ∥c ε/ ∥(δ)ר! = (γ)ר!∥ ε/ ∥(δ)ר! = Π
hence t ⋆ π ∈ ⊥⊥, from which the result follows. ◀

We need a method to encode ordered pairs in the realizability structure; for this we
introduce a function op satisfying N ⊩ “op(a, b) is the ordered pair of a and b” for any a, b ∈
N. This definition is based on the Wiener pairing function which is (a, b) = {{{a}, ∅}, {{b}}}.
Here 0 denotes the λ-term λx.λy.y and 1 the λ-term λx.λy.xy.

▶ Definition 15. For a, b ∈ N, we define
the singleton of a as the set sng(a) := {a} × Π,
the unordered pair of a and b as the set up(a, b) := {(a, 0.π) | π ∈ Π} ∪ {(b, 1.π) | π ∈ Π},
the ordered pair of a and b as the set op(a, b) := up(up(sng(a), ,((0)ר! sng(sng(b))).

Note that the three functions sng : N → N, up, op : N2 → N are A-definable.

▶ Theorem 16 ([19]). The following are realizable in N :
∀x1∀x2∀y1∀y2 (op(x1, y1) ≃ op(x2, y2) → (x1 ≃ x2 ∧ y1 ≃ y2)).
∀x1∀x2∀y1∀y2 (x1 ≃ x2 → (y1 ≃ y2 → op(x1, y1) ≃ op(x2, y2))).

While we do not include a proof of this fact, we refer to [19] for all necessary details.

6 Relativization over transitive sets

In this setion we introduce a method to relativize formulas to certain objects in a realizability
model. Relativization is a simple, but power, technique which provides a way to interpret
a formula internally in a given transitive set or class. Given a formula φ and set M , the
relativised formula φM is essentially constructed by replacing all unbounded quantifiers with
quantifiers bounded by M , that is ∀x becomes ∀x ∈ M .

Let A be a realizability algebra and construct the class of names, N. Given a transitive
set M containing A, we set MA := {(a, π) | a ∈ M ∩ N, π ∈ Π}. Namely, MA is a name for
the set of names that are in M and dom(MA) = M ∩ N. We can then relativize to M any
formula φ in the language of LA

ε , which we denote by φM, by replacing universal quantifiers
∀x by bounded quantifiers ∀xMA defined in the usual way.

▶ Definition 17. Suppose that M is a transitive set containing A and φ is a formula in
Fmlε. We define ∥∀xMA

φ(x)∥ =
⋃

c∈dom(MA)∥φ(c)∥.

It is easy to see that this restricted quantifier ∀xMA corresponds to ∀x εMA.

L. Fontanella, G. Geoffroy, and R. Matthews 28:9

▶ Proposition 18. Suppose that M is a transitive set which contains A. Then
1. λf .λg.gf ⊩ ∀xMA

φ(x) → ∀x(¬φ(x) → x ε/ MA),
2. λf .cc(λk.fk) ⊩ ∀x(¬φ(x) → x ε/ MA) → ∀xMA

φ(x).

Proof. First, suppose that t ⊩ ∀xMA
φ(x), s ⊩ ¬φ(b) for some b ∈ N and π ∈ ∥b ε/ MA∥.

Since (π, b) ∈ MA and M is transitive, we must have b ∈ M ∩ N and therefore t ⋆ σ ∈ ⊥⊥ for
any σ ∈ ∥φ(b)∥. It follows that t ⊩ φ(b), hence λf .λg.gf ⋆ t.s.π ≻ s ⋆ t.π ∈ ⊥⊥, as required.

For the second claim, suppose that t ⊩ ∀x(¬φ(x) → x ε/ a) and π ∈ ∥∀xMA
φ(x)∥. Fix

b ∈ M ∩ N such that π ∈ ∥φ(b)∥. We have

∥∀x(¬φ(x) → x ε/ MA)∥ =
⋃
c∈N

∥¬φ(c) → c ε/ MA∥ =
⋃
c∈N

{s.σ | s ⊩ ¬φ(c), σ ∈ ∥c ε/ MA∥}.

Since π ∈ ∥φ(b)∥, kπ ⊩ ¬φ(b). Moreover, (b, π) ∈ MA thus kπ.π ∈ ∥∀x(¬φ(x) → x ε/ MA)∥.
It follows that λf .cc(λk.fk) ⋆ t.π ≻ cc ⋆ (λk.tk).π ≻ λk.tk ⋆ kπ.π ≻ t ⋆ kπ.π ∈ ⊥⊥. ◀

One can easily observe that if M is a transitive set containing A, then MA is realized to
be a ε-transitive set, and thus also a transitive set by Proposition 13.

▶ Proposition 19. For every transitive set M which contains A, I ⊩ ∀xMA∀y(y ε/ MA →
y ε/ x). Thus N realizes that MA is a ε-transitive set.

▶ Theorem 20. Let M be a transitive class which contains A, then for all sets a1, . . . , an in
M ∩ N, and for every formula φ ∈ Fmlε, ∥φMA(a1, . . . , an)∥ = ∥φ(a1, . . . , an)∥M.

Proof. We procede by induction on the formula, ignoring the parameters to simplify notation.
Let φ(x, y) ≡ x ε/ y and fix a, b ∈ M ∩ N. Then we have ∥(a ε/ b)MA∥ = ∥a ε/ b∥V =

{π ∈ Π | (a, π) ∈ b} = ∥a ε/ b∥M, since M is a transitive class containing Π.
We will prove the cases φ(x, y) ≡ x /∈ y and φ(x, y) ≡ x ⊆ y by simultaneous induction

on the lexicographical order of the pair of ranks of a and b. So, fix a, b ∈ M ∩ N. Then
we have ∥(a /∈ b)MA∥ = ∥a /∈ b∥V =

⋃
c∈dom(b){t.t′.π | (c, π) ∈ b, t ⊩ a ⊆ c, t′ ⊩ c ⊆ a}.

Now, t ⊩ c ⊆ a means ∀σ ∈ ∥c ⊆ a∥(t ⋆ σ ∈ ⊥⊥), by the induction hypothesis this is
equivalent to ∀σ ∈ ∥c ⊆ a∥M(t ⋆ σ ∈ ⊥⊥) which corresponds to (t ⊩ c ⊆ a)M. Thus we have
∥(a /∈ b)MA∥ =

⋃
c∈dom(b){t.t′.π | (c, π) ∈ b, (t ⊩ a ⊆ c)M, (t′ ⊩ c ⊆ a)M} = ∥a /∈ b∥M.

Similarly for the second case, by applying the induction hypothesis we have ∥(a ⊆ b)MA∥ =⋃
c∈dom(a){t.π | (c, π) ∈ a, (t ⊩ c ̸∈ b)M} = ∥a ⊆ b∥M.

The cases φ ≡ ψ → χ and φ ≡ ∀xψ(x) follow easily from the induction hypothesis. ◀

We will apply these results in particular to the transitive sets of the Von Neumann
hierarchy. We end this section by showing that if A is an element of Vγ then VA

γ is simply
the construction of the names internally in Vγ .

▶ Lemma 21. Let γ be a limit ordinal such that A ∈ Vγ . Then VA
γ =

⋃
Nγ and Nγ = (N)Vγ .

Proof. First, observe that for every a ∈ N, rkN(a) ≤ rkV(a) ≤ max{rkN(a), rkV(Π)} + 2
where rkN(a) is the minimal α for which a ∈ Nα and rkV(a), the minimal α for which a ∈ Vα,
is the standard rank of a in V. From this it follows that Vγ ∩ N = Nγ since γ is a limit
ordinal and A ∈ Vγ , therefore VA

γ = {(a, π) | a ∈ Nγ , π ∈ Π} =
⋃

Nγ .
We now prove inductively that Nα = (Nα)Vγ for all α ≤ γ, starting with N0 = ∅ = (N0)Vγ .

So fix α ≤ γ and suppose that the claim holds for all β < α. Then

Nα =
⋃

β<α

P(Nβ × Π) =
⋃

β<α

PVγ ((Nβ)Vγ × Π) = (Nα)Vγ . ◀

CSL 2024

28:10 Realizability Models for Large Cardinals

7 Realizing Inaccessibles

In this section, we assume the consistency of the theory “ZFC plus there is an inaccessible
cardinal” and, from that, we show how to build a realizability model for the equiconsistent
theory “ZF plus there is an inaccessible set”.

We recall that over ZFC an uncountable cardinal κ is (strongly) inaccessible if it is a
regular cardinal which is a strong limit, namely whenever α < κ, 2α < κ. However, in models
where the Axiom of Choice fails this is no longer a satisfactory definition, for example if 2ω

is not well-ordered then no such (well-orderable) cardinals can possibly exist. Therefore, it is
preferable to take an alternative definition.

From a structural point of view, the defining property of an inaccessible cardinal is that
it provides a very robust model of set theory. Namely, if κ is inaccessible then Vκ is a
Grothendieck Universe which contains ω. For our purposes we will take a slightly different,
but equivalent, definition which is that a set will be inaccessible if it is a transitive model of
full second-order ZF; this definition is motivated by [5, Definition 1].

▶ Definition 22. We call a set z inaccessible if it satisfies the following:
Transitivity: ∀u ∈ z ∀v ∈ u(v ∈ z).
Empty Set: ∃u ∈ z ∀v(v /∈ u).
Pairing: ∀u ∈ z ∀v ∈ z ∃w ∈ z (u ∈ w ∧ v ∈ w).
Unions: ∀u ∈ z ∃v ∈ z ∀w (w ∈ v ↔ ∃x ∈ u(w ∈ x)).
Infinity: ∀a ∈ z ∃u ∈ z (a ∈ u ∧ ∀v ∈ u∃w ∈ u(v ∈ w)).
Weak Power Set: ∀u ∈ z ∃v ∈ z ∀w ∃x ∈ v ∀y (y ∈ x ↔ (y ∈ u ∧ y ∈ w)).
Second-order Collection:

∀a ∈ z∀f(∀x ∈ a ∃y ∈ z ((x, y) ∈ f) → ∃b ∈ z ∀x ∈ a ∃y ∈ b ((x, y) ∈ f)).

The proof of the following proposition is standard and justifies calling such sets inaccessible.

▶ Proposition 23. Over ZFC the following are equivalent:
z is inaccessible,
z is a Grothendieck Universe containing ω,
z = Vκ for some inaccessible cardinal κ.

Moreover, it is known that if V is a model of ZF with an inaccessible set z, then z ∩ L
is an inaccessible set in the constructible universe L, which is a model of ZFC. In fact,
z ∩ L = Lκ where κ is an inaccessible cardinal in L. Therefore ZF with an inaccessible set is
equiconsistent with ZFC plus an inaccessible cardinal.

We now consider any realizability algebra A in a model V of ZF (the ground model) with
an inaccessible set z such that A ∈ z. We shall give an appropriate translation of inaccessible
sets to the language of ZFε, which we call ε-inaccessible sets. We shall then show that in
any realizability model N , zA is a ε-inaccessible set and in the corresponding ZF structure
(N,∈,≃), zA is an inaccessible set.

▶ Definition 24. In a model of TA,V, we call a set z ε-inaccessible if it satisfies the following:
ε-Transitivity: ∀u ε z ∀v ε u(v ε z).
ε-Empty Set: ∃u ε z ∀v(v ε/ u).
ε-Pairing: ∀u ε z ∀v ε z ∃w ε z (u εw ∧ v εw).
ε-Unions: ∀u ε z ∃v ε z ∀w (w ε v ↔ ∃x ε u(w εx)).

L. Fontanella, G. Geoffroy, and R. Matthews 28:11

ε-Infinity: ∀a ε z ∃u ε z (a ε u ∧ ∀v ε u∃w εu(v εw)).
ε-Weak Power Set: ∀u ε z ∃v ε z ∀w ∃x ε v ∀y (y ε x ↔ (y ε u ∧ y εw)).
ε-Second-order Collection:

∀a ε z∀f(∀x ε a ∃y ε z (op(x, y) ε f) → ∃b ε z ∀x ε a ∃y ε b (op(x, y) ε f)).

▶ Lemma 25. If z is an inaccessible set in V and A ∈ z is a realizability algebra, then for
the corresponding realizability model N = (V,A) we have N ⊩ zA is a ε-inaccessible set.

Proof. Firstly, by Proposition 19 we have that zA is a ε-transitive set. For all of the axioms
except for Second-order Collection it suffices to verify that dom(zA) is closed by certain
relevant names. For this, we observe that since z is a transitive set which is closed under
Weak Power Set and Second-order Collection, we have that z = Vrank(z). Therefore, z is also
closed under Separation and, by Lemma 21, zA = (N)z.

For Empty Set the relevant name is ∅ which is in z ∩ N be definition. Given a, b ∈ z ∩ N
the name for the pair is {a, b} × Π ∈ z ∩ N. Given a ∈ z ∩ N the name for the union is
{(c, σ) | ∃(x, π) ∈ a (c, σ) ∈ x} ∈ z ∩ N. Given a ∈ z ∩ N the name for the infinite set
containing a is {(an, π) | n ∈ ω, π ∈ Π} where a0 := a and an+1 := {an} × Π. It is clear that
all of these names are in z ∩ N. Finally, given a ∈ z ∩ N the name for the Weak Power Set of
a is P(dom(a) × Π) × Π.

It remains to prove the axiom of Second-order Collection. Fix a ∈ z∩N and f ∈ N. Since
z is an inaccessible set, by Second-order Collection in z we can find a set Y ∈ z such that

∀(x, π) ∈ a∀t ∈ Λ∃y ∈ z∩N(t ⊩ op(x, y) ε f) → ∀(x, π) ∈ a∀t ∈ Λ∃y ∈ Y (t ⊩ op(x, y) ε f).

Let b := {(y, π) | ∃t ∈ Λ ∃x ((x, π) ∈ a, t ⊩ op(x, y) ε f, y ∈ Y)} ∈ z ∩ N. It will suffice
to prove that for any x ∈ N, ∥∀y(op(x, y) ε f → x ε/ a)∥ ⊆ ∥∀y(op(x, y) ε f → x ε/ b)∥.
For this, fix t.π ∈ ∥∀y(op(x, y) ε f → x ε/ a)∥. Then we can fix some c ∈ N such that
t ⊩ op(x, c) ε f and (x, π) ∈ a. By the definition of Y , this means that there exists a
c′ ∈ Y such that t ⊩ op(x, c′) ε f and (x, π) ∈ a from which it follows that (c′, π) ∈ b. Thus
t.π ∈ ∥∀y(op(x, y) ε f → x ε/ b)∥. ◀

▶ Theorem 26. Let N = (V,A) be a realizability model, then
N ⊩ ∀z(z is an ε-inaccessible set → z is an inaccessible set)

Proof. We argue within a realizability model N = (N, ε/, /∈,⊆). Suppose that z is a ε-
inaccessible set. We want to show that z is an inaccessible set in (N,∈,≃). It is easy to see
that z satisfies every condition except for possibly Second-order Collection. In order to prove
this axiom, note that Second-order Collection is equivalent to the statement

∀a ∈ z ∀f ∃b ∈ z ∀x ∈ a (∃y ∈ z ((x, y) ∈ f) → ∃y ∈ b ((x, y) ∈ f)).

So fix a ε z and f , we define f ′ = {op(x, y) | x ε a, y ε z, op(x, y) ∈ f}. Since z satisfies
ε-Second-order Collection, we can find some b ε z such that ∀x ε a(∃y ε z op(x, y) ε f ′ →
∃y ε b op(x, y) ε f ′). We shall show that this same set b witnesses Second-order Collection for f
in ZF. By Theorem 16, we know that for every x, y in the realizability model, op(x, y) ≃ (x, y).
Fix x ∈ a and suppose that ∃y ∈ z((x, y) ∈ f). Then, we can find x′ ε a and y′ ε z such
that x ≃ x′ and y ≃ y′. Therefore (x, y) ≃ op(x′, y′), hence op(x′, y′) ε f ′. By definition of b,
we can find some y′′ ε b such that op(x′, y′′) ε f ′, thus (x′, y′′) ∈ f by definition of f ′. Since
x ≃ x′, we have (x, y′′) ≃ (x′, y′′), thus (x, y′′) ∈ f as required. ◀

▶ Corollary 27. Let N = (V,A) be a realizability model. Assume that there is an inaccessible
set z in V such that A ∈ z. Then N ⊩ ZF + there exists an inaccessible set.

CSL 2024

28:12 Realizability Models for Large Cardinals

▶ Remark 28. One should observe that the statement zA is a ε-inaccessible set can be expressed
by a single sentence. Therefore, given a realizability algebra A, there exists a single realizer
θ such that whenever z is an inaccessible set with A ∈ z, θ ⊩ “zA is a ε -inaccessible set”.

8 Realizing Mahlo cardinals

In this section, we show that from the consistency of the theory “ZFC plus there is a Mahlo
cardinal” we can build a realizability model for the equiconsistent theory “ZF plus there
is a Mahlo set”. Recall that κ is a Mahlo cardinal if {α ∈ κ | α is strongly inaccessible} is
stationary in κ. However, as in the inaccessible case, it is beneficial to use the following, more
structural, definition which was first formulated by Lévy in [18] and which is the version
used by Friedman and Ščedrov [5, Definition 2].

▶ Definition 29. A Mahlo set is an inaccessible set z such that for every u ∈ z and for every
binary relation R, there is an inaccessible set v ∈ z such that
1. u ∈ v,
2. R reflects to v, which means that ∀x ∈ v(∃y ∈ z (x, y) ∈ R → ∃y ∈ v (x, y) ∈ R).

The proof of the following proposition is standard and justifies calling such sets Mahlo.

▶ Proposition 30 (Lévy, [18, Theorem 3]). Over ZFC, z is a Mahlo set iff z = Vκ for some
Mahlo cardinal κ.

Moreover, as with the inaccessible case, if V is a model of ZF with a Mahlo set z, then
z ∩ L remains a Mahlo set in L. Therefore ZF with a Mahlo set is equiconsistent with ZFC
plus a Mahlo cardinal.

▶ Definition 31. In a model of TA,V, we say that z is a ε-Mahlo set if z is a ε-inaccessible
set and for every u ε z and every binary relation R, there is a ε-inaccessible set v ε z such that
1. u ε v,
2. ∀x ε v(∃y ε z op(x, y) εR → ∃y ε v op(x, y) εR).

▶ Lemma 32. Let N = (V,A) be a realizability model and suppose that z is a Mahlo set in
V such that A ∈ z, then N ⊩ zA is a ε -Mahlo set.

Proof. By Remark 28 we know that whenever v is an inaccessible set such that A ∈ v, vA is
realized to be a ε-inaccessible set by a realizer that does not depend on v. In particular, this
means that zA is realized to be a ε-inaccessible set. To realize that zA is a ε-Mahlo set, we
fix a ∈ z ∩ N and R ∈ N. First, we define R′ := {((x, π), y) | (op(x, y), π) ∈ R, y ∈ N}. Since
z is a Mahlo set in the ground model, we can find an inaccessible set v such that a,A ∈ v

and R′ reflects to v. The following hold:
1. I ⊩ vA ε zA and I ⊩ a ε vA,
2. vA is realized to be a ε-inaccessible set by a realizer that does not depend on v.
We want to realize that, in N , R reflects to vA. To do this, it suffices to show that

I ⊩ ∀xvA
(∀yvA

op(x, y) ε/ R → ∀yzA
op(x, y) ε/ R).

Fix t, π such that t ⊩ ∀yvA
op(x, y) ε/ R and π ∈ ∥∀yzA

op(x, y) ε/ R∥. There is y ∈ z ∩ N
such that (op(x, y), π) ∈ R, thus ((x, π), y) ∈ R′. Since R′ reflects to v there is y′ ∈ v such
that (op(x, π), y′) ∈ R′. This means that (op(x, y′), π) ∈ R and y′ ∈ N. So y′ ∈ v ∩ N, hence
π ∈ ∥∀yvA

op(x, y) ε/ R∥ and t ⋆ π ∈ ⊥⊥. ◀

L. Fontanella, G. Geoffroy, and R. Matthews 28:13

▶ Theorem 33. Let N = (V,A) be a realizability model, then
N ⊩ ∀z(z is a ε-Mahlo set → z is a Mahlo set)

Proof. We work within a realizability model. Suppose that z is a ε-Mahlo set. By Theorem 26
we know that z is an inaccessible set. Fix u ∈ z and let R be a binary relation. Let
Rε := {op(x, y) | x, y ε z, op(x, y) ∈ R}. Since z is a ε-Mahlo set we can fix a ε-inaccessible
(and hence inaccessible) set v ε z such that u ε v and Rε reflects to v. By Theorem 16, we
know that for every x, y in the realizability model, op(x, y) ≃ (x, y). Since u ε v ε z we have
u ∈ v ∈ z. For the final property, fix x ∈ v and suppose that (x, y) ∈ R for some y ∈ z.
Next, take x′ ε v and y′ ε z such that x ≃ x′ and y ≃ y′. Then, by definition, op(x′, y′) εRε

so, since Rε reflects to v, we can find some y′′ ε v for which op(x′, y′′) εRε. Unpacking the
definition of Rε this means that (x′, y′′) ∈ R. Therefore, since x ≃ x′ we have that there
exists some y′′ ∈ v for which (x, y′′) ∈ R, as required. ◀

▶ Corollary 34. Let N = (V,A) be a realizability model. Assume that there is a Mahlo set z
in V such that A ∈ z. Then N ⊩ ZF + there exists a Mahlo set.

9 Extending Realizability to Classes

Gödel-Bernays set theory (GB) is an extension of Zermelo-Frænkel set theory (ZF) with
a built-in notion of classes – arbitrary collections of sets that may be too big to be sets
themselves. In the section, we will show how to similarly extend ZFε to a theory GBε that
supports classes, and we will show how to construct realizability models of GBε.

We will work in two-sorted first-order logic (without equality): one sort will represent
sets, and the other, classes. We will use lowercase letters for set variables, and uppercase
letters for class variables. Quantification over sets will be denoted by “∀0” and “∃0”, and
quantification over classes by “∀1” and “∃1” (though we may drop the exponents when there
is no ambiguity).

Let L2
∈ denote the first-order language over the signature {∈0,∈1,≃}, where ∈0 and ≃

are relation symbols of arity Set × Set, and ∈1 is a relation symbol of arity Set × Class. The
reason why we need two versions of ∈ is that both sets and classes can contain sets. Likewise,
let L2

ε denote the first-order language over the signature {/∈0
, /∈1

,⊆, ε/0, ε/1, ̸=0, ̸=1}, where /∈0,
⊆, ε/0 and ̸=0 are relation symbols of arity Set × Set, ε/1 and ̸∈1 are relation symbols of arity
Set × Class, and ̸=1 is a relation symbol of arity Class × Class. Since the context always
makes it clear which “version” of a given relation symbol is being used, we will systematically
drop these exponents and simply write ̸∈ and ε/.

The theory GBε is the theory over L2
ε generated by the following axioms:

1. The axioms of ZFε, with the axioms schemas extended to all formulas of the language
L2

ε that contain no quantifications over classes.
2. Class Separation: ∀1A ∀0b ∃0a ∀0x (x ε a ↔ x εA ∧ x ε b).
3. Class Induction: ∀1A

(
(∀0x ((∀0y ε x y εA) → x εA)) → ∀0z (z εA)

)
.

4. Elementary Class Comprehension: ∀1A ∀0u ∃1B ∀0x (x εB ↔ φ(x, u,A)) for every
formula φ(x, u,A) with no quantifications over classes.

5. Class Collection: ∀1A ∀0u ∀0a ∃0b ∀0x ε a
(

(∃0y φ(x, y, u,A)) → (∃0y ε b φ(x, y, u,A))
)
,

for every formula φ(x, y, u,A) with no quantifications over classes.
6. Definition of ∈1: ∀1A ∀0x

(
x ∈ A ↔ ∃0y (y εA ∧ y ≃ x)

)
.

CSL 2024

28:14 Realizability Models for Large Cardinals

We refer the read to the end of Chapter 6 of [9] and Chapter 4 of [20] for more details on
GB and second-order set theories in general. By a simple generalisation of the ZF case, we
can see that the theory GBε is a conservative extension of the standard theory GB.

▶ Theorem 35. Let φ be a closed formula in L2
∈, then GB ⊢ φ if and only if GBε ⊢ φ.

Whenever L2 is a first-order language that contains L2
ε, we will denote by GBL2

ε the
theory obtained by taking GBε and enriching all the axiom schemas to include all the
formulas of L2 with no quantifications over classes.

Realizability Models with Classes
Let (V, C) be a model of GB and let A = (Λ,Π,⊥⊥) be a realizability algebra in V. Let:

N :=
⋃

α∈Ord Nα ∈ C, where Nα :=
⋃

β<α P(Nβ × Π) ∈ V as before,
D := {X ∈ C | X ⊆ N} ⊆ C.

As in Section 4, we let LA,2
ε denote the language obtained by adding a function symbol f

for each A-definable function f : Nn → N.

▶ Definition 36. We extend Definition 5 to all formulas in LA,2
ε with parameters in (N,D):

∥a ε/1 B∥ := {π ∈ Π | (a, π) ∈1 B};
∥A ̸=1 B∥ := ∥⊤∥ if A ̸= B, ∥⊥∥ otherwise;
∥a ̸∈1 B∥ :=

⋃
c∈dom(B)

{t.t′.π | (c, π) ∈1 B, t ∈ |a ⊆ c|, t′ ∈ |c ⊆ a|};

∥∀1X φ(X)∥ :=
⋃

A∈D
∥φ[A/X]∥.

▶ Remark 37. By standard set-theoretic arguments, for each formula φ(x1, . . . , xm, Y1, . . . Yn)
in L2

ε, there are formulas φΠ(p, x1, . . . , xm, Y1, . . . Yn) and φΛ(p, x1, . . . , xm, Y1, . . . Yn) in L2
∈

with parameters in Vfp(A) such that for all a1, . . . , am ∈ V, all B1, . . . , Bn ∈ D, all π ∈ Π,
and all t ∈ Λ, we have

π ∈ ∥φ(a1, . . . , am, B1, . . . , Bn)∥ iff V |= φΠ(π, a1, . . . , am, B1, . . . , Bn)
and t ∈ |φ(a1, . . . , am, B1, . . . , Bn)| iff V |= φΛ(t, a1, . . . , am, B1, . . . , Bn).

▶ Definition 38. The realizability theory of (A,V, C), denoted by TA,V,C, is the set of all
closed formulas φ of LA,2

ε with parameters in (N,D) such that there exists t ∈ R such that t
realizes φ.

▶ Proposition 39. Let (V, C) be a model of GB and let A ∈ V be a realizability algebra.
The realizability theory of (A,V, C) is closed under classical deduction and contains GBε.

This justifies the following definition:

▶ Definition 40. A realizability model of GBε is a tuple N = (V, C,A), with (V, C) a model
of GB and A a realizability algebra in V. We write N ⊩ φ for “TA,V,C contains φ”.

10 Realizing measurable and Reinhardt cardinals

In this section, we work with the theory GB and we build realizability models for measurable
and Reinhardt cardinals. First, we will consider a model V of GB with Choice that contains
a measurable cardinal and show how to realize the existence of a measurable cardinal. A
cardinal κ is said to be measurable if there exists a non-principal, κ-complete ultrafilter over

L. Fontanella, G. Geoffroy, and R. Matthews 28:15

κ. The reason we work with Choice in the ground model is to use the Łoś Theorem to define
from the ultrafilter a class function j : V → M where M is a transitive inner model of ZFC,
j is not the identity and for every formula φ(x1, . . . , xn) and sets a1, . . . , an one has

φ(a1, . . . , an) if and only if M |= φ(j(a1), . . . , j(an)).

We call δ the critical point of an embedding j if ∀α ∈ δ, j(α) = α and j(δ) > δ, that is to
say δ is the first ordinal moved by j. It is well-known that κ is a measurable cardinal if and
only if it is the critical point of such an elementary embedding.

What we shall realize is that the existence of such an embedding transfers nicely to
realizability models and their corresponding extensional models of GB. The reason we work
in a second-order theory is that formally the embedding j : V → M is a class function over our
model. It is known that without Choice the Łoś Theorem need no longer hold and therefore
the existence of an embedding might not be definable in a first-order way. On the other hand,
it is easy to see that under ZF, if j is a non-trivial elementary embedding with critical point
κ then there is a non-trivial κ-complete ultrafilter on κ defined by U = {X ⊆ κ | κ ∈ j(X)}.
We refer the reader to [8] for more details on measurable cardinals without Choice.

When we are working in GBε it no longer needs to be the case that there is a unique
critical point because we may have sets a, b ∈ N such that N believes a and b are ordinals
with a ≃ b, the embedding will fix every element of both a and b while being non-trivial on
them and yet a ̸= b. Therefore, we shall instead refer to a critical point of some embedding.
We shall show that there exists an embedding j⋆ and see that (κ)ר! is a critical point of j⋆.
Then, when we restrict ourselves to the model of GB, the extensionality of ∈ will give us the
required uniqueness.

So let us fix such an embedding j : V → M and denote its critical point by κ. Let A be
any realizability algebra such that A ∈ Vκ (which implies fp(A) < κ). Then j will induce a
non-trivial elementary embedding j∗ of the realizability model into a transitive subclass of
the realizability model that satisfies GBε where j∗ is defined as

j∗ = {(op(x, j(x)), π) | π ∈ Π}. (⋆)

▶ Definition 41. In a model of TA,V,C, we say that an ordinal a is a critical point of j∗ if
∀x ε a(op(x, x) ε j⋆) and there exists some set b such that op(a, b) ε j⋆ and a ε b.

An important fact we will use is that the elementarity of j implies that t ⊩ φ(a) if and
only if t ⊩ φ(j(a)) (by Remark 37). In addition, since A ∈ Vκ, we have P(Π) ∈ M so
∥φ∥M = ∥φ∥.

▶ Proposition 42. For all formulas φ in LA
ε and all a1, . . . , an ∈ N, ∥φ(a1, . . . , an)∥ =

∥φ(j(a1), . . . , j(an))∥. Hence N ⊩ φ(a1, . . . , an) ↔ φ(j(a1), . . . , j(an)).

From this it is easy to see that j⋆ is realized to be a class elementary embedding.

▶ Theorem 43. Suppose that (V, C) is a model of GB and A ∈ Vκ where κ is the critical
point of a non-trivial elementary embedding j : V → M for some class function j and
transitive class M. Then N realizes every axiom of GBε plus:
1. N ⊩ j⋆ is a class function compatible with ≃, namely

N ⊩ ∀x1∀x2∀y1∀y2((x1 ≃ x2 ∧ op(x1, y1) ε j⋆ ∧ op(x2, y2) ε j⋆) → y1 ≃ y2).

2. N ⊩ ∀x∀y(op(x, y) ε j⋆ → y εMA,
3. N ⊩ ∀α ,op(α(κ)ר! α) ε j⋆ ∧ ∃b((κ)ר! ε b ∧ op(,(κ)ר! b) ε j⋆ (i.e. (κ)ר! is a critical point of j⋆),
4. For every formula φ(x1, . . . , xn) in Fmlε we have

N ⊩ ∀a1, . . . , an∃b1, . . . , bn(op(a1, b1) ε j⋆ ∧ · · · ∧ op(a1, b1) ε j⋆ ∧ (φ(⃗a) ↔ φMA
(⃗b))).

CSL 2024

28:16 Realizability Models for Large Cardinals

▶ Theorem 44. Suppose that (V, C) is a model of GB plus Choice with a measurable cardinal
κ, and A ∈ Vκ is a realizability algebra. Let N = (V,A) be the corresponding realizability
model. Then, N ⊩ GB + there exists a measurable cardinal.

Proof. Let j : V → M be an elementary embedding with critical point κ witnessing that κ is
a measurable cardinal and define j⋆ as in (⋆). By Theorem 35 and Proposition 39, we have
N ⊩ GB. Theorem 43(1) proves that j⋆ is a function compatible with the extensional equality.
Theorem 43(3) implies that j⋆ is non-trivial and (κ)ר! is a critical point. Theorem 43(4)
implies that j⋆ is elementary for formulas in the language of Lε (and hence L∈). Therefore,
we can realize that there is an elementary embedding j⋆ : N → MA with critical point .(κ)ר!
Finally, from this it follows that there is a non-principal complete-(κ)ר! ultrafilter on (κ)ר! so
(κ)ר! is indeed a measurable cardinal. ◀

We end this section by showing that the above analysis naturally generalizes to larger
cardinal notions involving the notion of elementary embedding, in particular Reinhardt
cardinals. So suppose that (V, C) is a model of GB that contains a Reinhardt cardinal κ,
this means that κ is the critical point of a non-trivial elementary embedding j of the universe
into itself. It is important here that we work over GB because if we only consider Reinhardt
cardinals in a purely first-order setting then any proper class must be definable by some
formula. It is then possible to show that there are no definable elementary embedding of
the universe into itself by work of Suzuki [23] or see [7] for an extended discussion on the
metamathematics of dealing with Reinhardt cardinals.

▶ Theorem 45. Suppose that (V, C) is a model of GB with a Reinhardt cardinal κ, and
A ∈ Vκ is a realizability algebra. Let N = (V,A) be the corresponding realizability model,
then N |= GB + there exists a Reinhardt cardinal.

Proof. Let j : V → V be an elementary embedding witnessing that κ is a Reinhardt cardinal,
with j∗ defined as in (⋆). By Theorem 35 and Proposition 39, we have N ⊩ GB. As before,
from Theorem 43 one can realize that j⋆ is a non trivial function which is compatible with the
extensional equality and has (κ)ר! as a critical point. An easy generalization of Theorem 43(4)
implies that j∗ is elementary for GB formulas. Therefore, the existence of a Reinhardt
cardinal is realized. ◀

11 Conclusion

We have shown how to realize the axioms of inaccessible, Mahlo, measurable and Reinhardt
cardinals assuming their consistency relative to ZFC or ZF. We have reformulated each of
these axioms in the context of ZF or GB and we have proven that the corresponding notions
are preserved by any realizability algebra whose size is smaller than the large cardinals
considered, in particular by any countable realizability algebra. Note that in each one of
these four scenarios, no special instructions were needed, the axioms considered are realized
by pure terms of the λc-calculus. This may be counterintuitive since large cardinals axioms
are very strong axioms which entail the consistency of ZFC, yet our results show that despite
their strength, large cardinals axioms do not add a computational content to the realizability
machinery whenever the algebra is small enough (namely countable or of size smaller than
the large cardinal considered). On the other hand, it remains an open problem to determine
what would happen for a larger realizability algebra (equipotent with the large cardinal
considered or larger). For example, in the case of forcing, if the forcing has size κ then it
may collapse κ to be bijective with a smaller cardinal. Hence special instructions may be
needed in order to prevent the large cardinal from collapsing and to preserve its properties.

L. Fontanella, G. Geoffroy, and R. Matthews 28:17

There is opportunity for future work involving realizability models for large cardinals.
The method presented to realize measurable and Reinhardt cardinals focused on preservation
of non trivial elementary embeddings; this could be easily adapted to realize rank-into-rank
embeddings, which correspond to some of the strongest known large cardinals axioms not
known to be inconsistent in ZFC. Preservation of other large cardinal notions could be
investigated such as Ramsey cardinals, weakly compact, strongly compact, supercompact
cardinals and many others. Clearly, assuming larger cardinals we can get realizability models
for those large cardinals notions: for instance if we assume the consistency of ZFC with a
measurable cardinal, we can realize the existence of a measurable cardinal and in particular
of a Ramsey cardinal, but it remains an open problem whether Ramsey cardinals can be
preserved by realizability algebras, namely whether starting from a model of ZFC with a
Ramsey cardinal κ such that |A| < κ, one can realize the existence of a Ramsey cardinal in
the corresponding realizability model.

References
1 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of

Studies in logic and the foundations of mathematics. North-Holland, 1985.
2 Andreas Blass. Exact functors and measurable cardinals. Pacific journal of mathematics,

63(2):335–346, 1976.
3 Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. A

syntactic theory of sequential control. Theor. Comput. Sci., 52:205–237, 1987. doi:10.1016/
0304-3975(87)90109-5.

4 Harvey Friedman. The consistency of classical set theory relative to a set theory with
intu1tionistic logic. The Journal of Symbolic Logic, 38(2):315–319, 1973.

5 Harvey Friedman and Andrej Ščedrov. Large sets in intuitionistic set theory. Annals of pure
and applied logic, 27(1):1–24, 1984.

6 Timothy G. Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 47 , 58, 1989.

7 Joel David Hamkins, Greg Kirmayer, and Norman Lewis Perlmutter. Generalizations of the
Kunen inconsistency. Annals of Pure and Applied Logic, 163(12):1872–1890, 2012.

8 Yair Hayut and Asaf Karagila. Critical cardinals. Israel journal of mathematics, 236(1):449–472,
2020.

9 Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer Berlin, Heidelberg,
2003.

10 Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings.
Springer Science & Business Media, 2008.

11 Stephen Cole Kleene. On the interpretation of intuitionistic number theory. The Journal of
Symbolic Logic, 10(4):109–124, 1945.

12 Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archive
of Mathematical Logic, 40(3):189–205, 2001.

13 Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthéses, Sociètè Math-
ématique de France, 27:197–229, 2009.

14 Jean-Louis Krivine. Realizability algebras II: new models of ZF+ DC. Logical Methods in
Computer Science, 8:1–28, 2012.

15 Jean-Louis Krivine. Realizability algebras III: some examples. Mathematical Structures in
Computer Science, 28(1):45–76, 2018.

16 Jean-Louis Krivine. A program for the full axiom of choice. Logical Methods in Computer
Science, 17(3):1–22, 2021.

17 Kenneth Kunen. Elementary embeddings and infinitary combinatorics. The Journal of
Symbolic Logic, 36(3):407–413, 1971.

CSL 2024

https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/0304-3975(87)90109-5

28:18 Realizability Models for Large Cardinals

18 Azriel Lévy. Axiom schemata of strong infinity in axiomatic set theory. Pacific journal of
mathematics, 10(1):223–238, 1960.

19 Richard Matthews. A Guide to Krivine Realizability for Set Theory. arxiv preprint, 2023.
arXiv:2307.13563.

20 Elliott Mendelson. Introduction to Mathematical Logic. CRC Press, 5 edition, 2009.
21 Michael Rathjen. Realizing Mahlo set theory in type theory. Archive for Mathematical Logic,

42:89–101, 2003.
22 Anton Setzer. Extending Martin-Löf type theory by one Mahlo universe. Archive for Mathem-

atical Logic, 39(3):155–181, 2000.
23 Akira Suzuki. No elementary embedding from V into V is definable from parameters. The

Journal of Symbolic Logic, 64(4):1591–1594, 1999.
24 Neil H. Williams. On Grothendieck universes. Compositio Mathematicae, 21(1):1–3, 1969.

https://arxiv.org/abs/2307.13563

The Kleene-Post and Post’s Theorem in the
Calculus of Inductive Constructions
Yannick Forster #

Inria, Nantes Université, LS2N, Nantes, France

Dominik Kirst #

Ben-Gurion University of the Negev, Beer-Sheva, Israel
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Niklas Mück #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
MPI-SWS, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
The Kleene-Post theorem and Post’s theorem are two central and historically important results in the
development of oracle computability theory, clarifying the structure of Turing reducibility degrees.
They state, respectively, that there are incomparable Turing degrees and that the arithmetical
hierarchy is connected to the relativised form of the halting problem defined via Turing jumps.

We study these two results in the calculus of inductive constructions (CIC), the constructive type
theory underlying the Coq proof assistant. CIC constitutes an ideal foundation for the formalisation
of computability theory for two reasons: First, like in other constructive foundations, computable
functions can be treated via axioms as a purely synthetic notion rather than being defined in terms
of a concrete analytic model of computation such as Turing machines. Furthermore and uniquely,
CIC allows consistently assuming classical logic via the law of excluded middle or weaker variants
on top of axioms for synthetic computability, enabling both fully classical developments and taking
the perspective of constructive reverse mathematics on computability theory.

In the present paper, we give a fully constructive construction of two Turing-incomparable
degrees à la Kleene-Post and observe that the classical content of Post’s theorem seems to be related
to the arithmetical hierarchy of the law of excluded middle due to Akama et. al. Technically, we base
our investigation on a previously studied notion of synthetic oracle computability and contribute
the first consistency proof of a suitable enumeration axiom. All results discussed in the paper are
mechanised and contributed to the Coq library of synthetic computability.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases Constructive mathematics, Computability theory, Logical foundations,
Constructive type theory, Interactive theorem proving, Coq proof assistant

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.29

Supplementary Material Software (Source Code): https://github.com/uds-psl/coq-synthetic-
computability/tree/code-paper-kleene-post-post

archived at swh:1:dir:f11ba122d0e1aa97b47e89dd70353fa42a88c7f9

Funding Yannick Forster : received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101024493.
Dominik Kirst: is supported by a Minerva Fellowship of the Minerva Stiftung Gesellschaft für die
Forschung mbH.

Acknowledgements We want to thank Felix Jahn, Gert Smolka, Dominique Larchey-Wendling, and
the participants of the TYPES ’22 conference for many fruitful discussions about Turing reducibility,
Ian Shillito and the anonymous reviewers of this paper for helpful feedback, as well as Martin Baillon,
Yann Leray, Assia Mahboubi, Pierre-Marie Pédrot, and Matthieu Piquerez for discussions about
notions of continuity. The central inspiration to start working on Turing reducibility in type theory

© Yannick Forster, Dominik Kirst, and Niklas Mück;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannick.forster@inria.fr
https://orcid.org/0000-0002-8676-9819
mailto:kirst@cs.bgu.ac.il
https://orcid.org/0000-0003-4126-6975
mailto:mueck@mpi-sws.org
https://orcid.org/0009-0006-9622-0762
https://doi.org/10.4230/LIPIcs.CSL.2024.29
https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-kleene-post-post
https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-kleene-post-post
https://archive.softwareheritage.org/swh:1:dir:f11ba122d0e1aa97b47e89dd70353fa42a88c7f9;origin=https://github.com/uds-psl/coq-synthetic-computability;visit=swh:1:snp:280eec2ac220ad374aea7607b3113310ffce1dc5;anchor=swh:1:rev:af2bab89c3a57d20570978ef08bc51f5c5c06972
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

is due to Andrej Bauer’s talk at the Wisconsin logic seminar in February 2021. Furthermore, the
first two authors want to thank Benjamin Kaminski, his research group, and the royals of the castle
for hosting their nostalgic stay in Saarbrücken to finish writing this paper.

1 Introduction

We study two well-known results in computability theory from the perspective of synthetic
mathematics: the Kleene-Post theorem [31], stating that there are incomparable Turing
degrees,1 and Post’s theorem [41], establishing a close link between Turing jumps and the
arithmetical hierarchy due to Kleene [30] and Mostowski [35]. Both have been historically
important: The former clarifies that Turing degrees are not linearly ordered, whereas the
latter links a purely logical characterisation of sets of numbers with oracle computations.

Although still covered in the standard canon of computability textbooks [43, 38, 45],
these theorems pose an interesting benchmark for the synthetic approach since they involve
higher-order notions like Turing reductions and relative semi-decidability, that are not obvious
to represent synthetically, see e.g. the discussion in the PhD thesis of the first author [12, §9.2].
Furthermore, both results also crucially rely on an enumeration of oracle machines, which
has not been established as a consistent axiom in synthetic computability yet. Therefore in
previous work [15], we have first suggested a careful definition of oracle computability and
conjectured that it allows to derive the consistency of such an enumeration. In the present
paper, we confirm this conjecture by constructing an enumeration from the well-known axiom
Church’s thesis (CT) [33] and then use this enumeration to prove and analyse the Kleene-Post
and Post’s theorem.

Synthetic computability exploits the fact that in a constructive foundation of mathematics
only computable functions are definable a priori. Non-computable functions arise a posteriori
when combining function existence principles such as countable choice or unique choice with
classical axioms like the law of excluded middle (LEM) or weaker counter-parts such as
the limited principle of omniscience (LPO) or the weak limited principle of omniscience
(WLPO). In constructive settings, where such classical principles would have to be explicitly
assumed, the theory of computable functions can thus be studied by considering the whole
function space as computable: a so-called synthetic approach allowing for a concise but
precise mathematical development. In contrast, in classical settings such as ZFC set theory
one has to resort to an analytic model of computability like Turing machines or one of its
equivalents, cluttering formal definitions and proofs with computability conditions.

Synthetic approaches to computability have been expressed in several dialects of construct-
ive mathematics: Markov’s work in the Russian school of constructivism relies explicitly on a
computational background theory [34]. Kreisel’s formulation of the axiom CT internalises the
fact that every (definable) function is computable in a model of computation [33], e.g. working
over intuitionistic Heyting arithmetic. Working in Bishop-style constructive mathematics,
Richman [42] suggests an axiom stating that the partial function space is enumerable, which
can be stated without even defining models of computation. Bauer [2, 3] works in the effective
topos [23] where the set of enumerable sets is enumerable, formulated as the axiom EA, and
Swan and Uemura [46] establish the consistency of CT for univalent type theory.

1 The seminal 1954 paper by Kleene and Post establishes various other results besides this one. In
particular, it also proves that both constructed degrees Turing reduce to the halting problem. We
follow the terminology to only use the incomparability part of the result used e.g. in the textbooks
by Odifreddi [38] and Cooper [6] as well as more recent work on (classical) reverse mathematics by
Sanders [44] and Brattka et. al [5].

Y. Forster, D. Kirst, and N. Mück 29:3

For the specific case of Turing reductions, Bauer [4] characterises an oracle computation by
a higher-order functional with certain continuity and computability conditions. However, due
to countable choice being present, his setting based on the effective topos is inherently anti-
classical, i.e. no axioms like LPO or even WLPO can be assumed consistently on top of EA,
so one is bound to fully constructive reasoning. Recently proposing an alternative definition,
Swan [47] works around the incompatibility of univalent mathematics with classical axioms
in synthetic computability due to the presence of unique choice [11] by characterising oracle
computations via 0-truncated ¬¬-sheafification. As this implements a negative translation
making constructive distinctions invisible, one is bound to fully classical reasoning. Thus, both
settings are unusable for a sub-classical logical analysis of computability theory in the style of
constructive reverse mathematics [24, 10]. Offering a solution, such an analysis is possible in
our setting since the calculus of inductive constructions (CIC) [7, 8, 39] provides a universe of
(possibly classical) propositions mostly disconnected from the (possibly computable) function
spaces, so we can freely assume and distinguish classical axioms together with the base axiom
for synthetic computability.

In the case of the Kleene-Post theorem, we report on a fully constructive proof that can
be obtained by standard techniques of modelling mathematics in a constructive foundation.
In the case of Post’s theorem, we localise the use of classical logic: Based on Akama et. al’s
arithmetical hierarchy of the law of excluded middle [1] we derive that Σn-LEM is sufficient to
obtain Post’s theorem up to the same level n. This remains a preliminary analysis, however,
since we do not prove that Post’s theorem at level n in turn implies Σn-LEM. For many
auxiliary results, e.g. for closure properties of the arithmetical hierarchy, we conjecture
that weaker axioms would suffice. In particular, we observe a seemingly weaker variant of
Markov’s principle at play that appears not to have been treated in the literature before.

A preliminary proof of the Kleene-Post theorem with an assumed enumerator for a weaker
definition of Turing reductions has been discussed in an extended abstract at TYPES ’22 [26].
The same abstract discusses a proof of Post’s theorem with a similar assumption and using
the full law of excluded middle, based on the Bachelor’s thesis of the third author [37].

Contributions. We contribute a consistency proof of an enumeration axiom for oracle
computable functionals, derived from the well-known axiom CT and its fully synthetic variant
EPF [13, 12]. Based on this axiom, we give a fully constructive synthetic proof of the
Kleene-Post theorem [31] following Odifreddi [38] and a synthetic definition of the Turing
jump. We then give the first formal definition of the arithmetical hierarchy in constructive
type theory and mechanise several proofs due to Akama et. al [1] about the arithmetical
hierarchy of classical axioms. We use axioms from the Σn-level of this hierarchy to prove
Post’s theorem [41] and discuss perspectives regarding a reverse analysis. Lastly, we give a
more traditional definition of the arithmetical hierarchy via a syntactic modeling of first-order
logic and prove that these hierarchies are equivalent if and only if CT holds. All proofs
are machine-checked using the Coq proof assistant [48] and all statements in this PDF are
hyperlinked with the HTML version of the proofs.

Outline. After collecting some preliminary definitions and notations in Section 2, we recall
the concept and basic properties of synthetic oracle computability of [15] in Section 3. We
next derive an enumerator of oracle computations from established axioms for synthetic
computability (Section 4), followed by a first application of the enumerator to derive the
Kleene-Post theorem (Section 5). To prepare the second application regarding Post’s theorem
(Section 9), we first study Turing jumps (Section 6), the arithmetical hierarchy (Section 7),

CSL 2024

29:4 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

and classical assumptions characterising the structure of arithmetical sets (Section 8). We
complement the technical development with a purely syntactic definition of the arithmetical
hierarchy in Section 10 and conclude in Section 11.

2 Preliminaries

We use inductive types of natural numbers N and booleans B with constructors true and
false, lists X∗ with constructors [] and x :: l and concatenation operation l1 ++ l2, the sum
type X + Y with constructors inl x and inr x, and vectors Xn with same notations as for lists.

We use a type of partial functions X ⇀ Y , and write fx ▷ y if fx is defined with value
y. The concrete implementation of partial functions is not important. Mathematically, we
abstract away from details, whereas in the Coq formalisation we work against an abstract
interface of partial functions, that can for instance be instantiated using step-indexing.

Two crucial properties are that the graph of partial functions should be testable via
step-indexing and that one can perform unbounded search:

Lemma 1. Partial functions have the following properties:
1. There is a function ϵ: (X⇀Y)→N→X→Y →B with fx ▷ y ↔ ∃n. ϵ f n x y = true.

2. There is a function µ: (N⇀B)⇀N with µf ▷ n ↔ fn ▷ true ∧ ∀m < n. fm ▷ false.

As is common in type theory we work with predicates instead of sets, a formality that does
not introduce any mathematical overhead or relevant change of presentation. Predicates are
defined as functions into the universe of propositions, i.e. p: X→P. We define the complement
of a predicate as px := ¬px. The universe of propositions is impredicative in CIC, which
plays no essential role. More relevantly, propositions in CIC cannot in general be analysed in
computations, meaning that e.g. projection functions of type (∃n : N. px) → N can only be
defined in special circumstances, not in general.

We now define basic notions of synthetic computability theory [16, 2]: decidability, semi-
decidability, and many-one reducibility.
A predicate p: X→P is decidable if it is reflected by a boolean function:

D(p) := ∃f : X→B. ∀x: X. px ↔ fx = true

We define semi-decidability using partial functions into the type 1 with only element ⋆:

S(p) := ∃g: X⇀1. ∀x: X. px ↔ gx ▷ ⋆

Lastly, a predicate p: X→P is many-one reducible to q: Y →P if p can be encoded into q:

p ⪯m q := ∃f : X→Y . ∀x. px ↔ q(fx)

The biggest deviation from paper presentations of computability theory is that we do not
consider equivalences classes w.r.t. any reducibility, which are notoriously hard to treat in
formalised approaches, but rather talk about concrete representatives of equivalence classes.

3 Oracle Computability and Turing Reducibility

We use the synthetic definition of oracle computability introduced in prior work [15]. It is
based on a notion of computability of functionals F : (Q→A→P)→I→O→P. The argument
R: Q→A→P is to be read as the oracle relating questions q : Q to answers a : A, i: I is the
input to the computation, and o: O is the output. Technically, synthetic oracle computability

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Shared.partial.html#mu_hasvalue
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Shared.partial.html#mu_hasvalue

Y. Forster, D. Kirst, and N. Mück 29:5

of such functionals is based on a notion of continuity via a partial and more extensional
variant of dialogue trees [49]. Conceptually, considering oracle computations via continuous
functionals was introduced by Kleene [29] and Kreisel [32]. Kleene calls such functionals
countable, since they can analytically be represented in a model of computation. Synthetically,
they become countable using axioms for synthetic computability as discussed in Section 4.

A functional F : (Q→A→P)→I→O→P. is considered (oracle)-computable if there is an
underlying computation tree τ : I→A∗⇀Q + O capturing the extensional behaviour of F by

∀Rxb. FRxb ↔ ∃qs as. τx ; R ⊢ qs ; as ∧ τ x as ▷ out b

where the interrogation relation σ; R ⊢ qs; as is inductively defined for σ: A∗⇀Q + O as

σ ; R ⊢ [] ; []
σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

and where we write ask q and out o for the respective injections into the sum type Q + O.
Intuitively, a computation tree takes as input a list of answers given already by the oracle.

It can then (1) ask another question to the oracle, (2) return an output, or (3) compute
forever while neither asking a question or returning an output. The computation on an input
then is described by a sequence of runs of the tree, first given the empty list [] as input, and
then subsequently the list of all answers produced by the oracle. We use τ as letter for trees
that take input and σ for trees that do not.

We now define Turing reducibility from p to q as computable functionals that map the
characteristic relation of q to the characteristic relation of p. To this end, given r: Z→P, we
define its characteristic relation r̂: Z→B→P as

r̂zb := if b then rz else ¬rz

Then a Turing reduction from p: X→P to q: Y →P is an oracle-computable functional
F : (Y →B→P)→X→B→P such that ∀xb. p̂xb ↔ F q̂xb and we write p ⪯T q if such F exists.

Technically we do not work explicitly with trees in this paper, but rely on the following
properties [15], establishing essentially the closure under a certain function algebra, containing
variants of applications, constants, identity, branching, composition, and unbounded search.

Lemma 2. The following functionals are computable provided the given functionals are:
1. λRio. F (gi)o of type (Q→A→P)→I→O→P given g: I→I ′ and F : (Q→A→P)→I→O→P,
2. λRio. ⊥ of type (Q→A→P)→I→O→P,
3. λRio. fi ▷ o of type (Q→A→P)→I→O→P given f : I⇀O,
4. λRio. fi = o of type (Q→A→P)→I→O→P given f : I→O,
5. λRio. o = v of type (Q→A→P)→I→O→P given v: O,
6. λRio. Rio of type (I→O→P)→I→O→P,
7. λRio. if fi then F1Rio else F2Rio of type (Q→A→P)→I→O→P given F1, F2 of the

same type and f : I → B,
8. λRio. ∃o′: O′. F1 R i o′ ∧ F2 R (i, o′) o of type (Q→A→P)→I→O→P given

F1: (Q→A→P)→(I→O′→P) and F2: (Q→A→P)→((I × O′)→O→P),
9. λRin. R (i, n) true ∧ ∀m < n. R (i, m) false of type ((I × N)→B→P)→I→N→P.

Lemma 3. If p ⪯m q, then p ⪯T q.

Proof. Let f be given such that ∀x. px ↔ q(fx). Define FRxb := R(fx)b, which is
computable with Lemma 2 (1) and (6). We have that p̂xb ↔ F q̂xb by case analysis on b. ◀

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_precompose
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_precompose
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red_m_impl_red_T
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red_m_impl_red_T

29:6 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

Turing reducibility can be seen as decidability of p relative to q. Similarly, we also define
the central notion of relative semi-decidability. A predicate p: X→P is semi-decidable in
q: Y →P if there is an oracle-computable functional F : (Y →B→P)→(X→1→P) such that
∀x. px ↔ F q̂x⋆ and we write Sq(p) if such F exists.

Lemma 4. If p ⪯T q, then Sq(p) and Sq(p) for the complement p x := ¬p x.

Proof. See Lemma 3 in [15]. ◀

4 Enumeration Axiom for Synthetic Oracle Computability

Non-relative synthetic computability uses an axiomatic assumption of an enumerator of all
partial functions [17], or equivalently of all enumerable predicates [14, 2], or equivalently a
step-indexed interpreter enumerating all total functions [13]. All are consequences of the
well-known axiom CT [33] stating that all total functions of type N→N are computable,
which is consistent in type theory [46, 13].

For relative synthetic computability, we introduce a novel axiom and derive its consistency
from the consistency of CT by constructing an enumerator of computable functionals based
on an enumerator of partial functions.

The axiom EPF, itself a consequence of CT [13] and thus consistent, states that there is
an enumerator θ:N→(N⇀N) universal for partial functions.

EPF := ∃θ:N→(N⇀N). ∀f :N⇀N.∃c:N. ∀xv. θcx ▷ v ↔ fx ▷ v

Note that EPF implies the existence and undecidability of a synthetic variant of the
self-halting problem Kx := ∃v. θxx ▷ v [12], and thus in particular we have e.g. K ̸⪯T ∅.

For various results we will need a version working with families of functions f :N→(N⇀N)
and consequently coding functions γ:N→N such that fn and θγn agree, in line with the
parametric version of the axiom EA used by Forster and Jahn [14]. Intuitively, this is related
to having an s-m-n operator for θ. We can construct such a stronger form of θ directly by
using a bijection between N and N × N. This pairing function is written as ⟨x, y⟩ and we use
the notation f⟨x, y⟩ := . . . to define a function which takes as argument one single natural
number, and uses the inverse of the pairing function to decompose it into x and y implicitly.

Lemma 5. EPF is equivalent to the following parametric form:

∃θ:N→(N⇀N). ∀f :N→(N⇀N).∃γ:N→N. ∀nxv. θγnx ▷ v ↔ fnx ▷ v

Proof. The direction from right to left is immediate. From left to right, take θ′ which enu-
merates all partial functions and define θ⟨c,n⟩x := θ′

c⟨n, x⟩. Now given a family f :N→(N⇀N),
use universality of θ′ on the function g⟨n, x⟩ := fnx to obtain c with ∗ : ∀av. θ′

ca ▷ v ↔ ga ▷ v.
Then for γn := ⟨c, n⟩ we have θγnx▷v

γ↔ θ⟨c,n⟩x▷v
θ↔ θ′

c⟨n, x⟩▷v
∗↔ g⟨n, x⟩▷v

g↔ fnx▷v. ◀

We now explicitly explain the construction for an enumeration of all relative semi-deciders,
but the same construction works for arbitrary computable functionals based on retracts
of N. To define an enumeration of all semi-deciders, we use retractions ι1,2: X1,2→N and
ρ1,2:N→X1,2 with ∀n. ι1,2(ρ1,2n) = n for X1 := N × B∗ and X2 := N + 1.

We define ξ:N→(N→B∗⇀N + 1) which then consequently parametrically enumerates
every family of trees τ by:

ξcxl := θc(ι1(x, l)) >>= λv. ret (ρ2v) with ∀τ. ∃γ. ∀n x l v. ξγnxl ▷ v ↔ τnxl ▷ v

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_to_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_to_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Axioms.EPF.html#EPF_iff_nonparametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Axioms.EPF.html#EPF_iff_nonparametric

Y. Forster, D. Kirst, and N. Mück 29:7

The bind notation >>= evaluates the left hand side to a value if possible, and then passes
its value to the function on the right hand side. Given a tree τ :N→B∗⇀N + 1 we define
τ̂Rx := ∃qs as. σ ; R ⊢ qs ; as ∧ τ x as ▷ out ⋆ and finally ΞcRx := ξ̂cRx.

Lemma 6. The relation λR(c, x)o. ΞcRx is computable.

Proof. Use λ(c, x)l. ξcxl. ◀

Lemma 7. Given a family of trees, i.e. τi:N→B∗⇀N + 1, there exists a function γ:N→N
such that ∀iRx. ΞγiRx ↔ τ̂iRx.

Corollary 8. Given a computable F there exists a code c such that ∀Rx. FRx⋆ ↔ ΞcRx.

We can give a similar enumerator for Turing reductions, which will be necessary for the
Kleene-Post theorem. Note that we do not require the enumerator there to be parametric.

Theorem 9. There is an enumerator of functionals χ:N→(N→B→P)→N→B→P such that
1. χc is computable and
2. given a computable F there exists a code c such that ∀Rxb. FRxb ↔ χcRxb.

In the remainder of this paper, we just need to assume the enumerators Ξ and χ without
any knowledge of their implementation. So their availability can be treated as an axiom for
synthetic oracle computability and the construction provided in this section amounts to a
consistency proof. In fact, this axiom likewise implies EPF:

Lemma 10. The statement of Theorem 9 implies EPF.

Proof. Instead of proving EPF, we prove the following version, which is equivalent [12]:

EPFB := ∃θ:N→(N⇀B). ∀f :N⇀B.∃c:N. ∀xv. θcx ▷ v ↔ fx ▷ v

The proof is straightforwad by using that one can turn any function f :N⇀B into an oracle-
computable F , such that F (λxv.⊥) agrees with f . ◀

5 The Kleene-Post Theorem

To establish incomparable Turing degrees, we adapt the proof given in Odifreddi’s text-
book [38] to our synthetic setting. Compared to the next sections, we here focus more on the
intuition of the synthetic and constructive setting and omit some formal details. The usual
strategy is to obtain said degrees as the unions A :=

⋃
n:N sn and B :=

⋃
n:N tn of cumulative

increasing sequences sn and tn of boolean strings (interpreted implicitly as the relation
arising from relating i to b for a string b0, . . . bi . . . bk) such that the former take care that no
χn induces a reduction B ⪯T A and the latter conversely rule out A ⪯T B. Naturally, in
our synthetic setting we are not able to define these sequences as functions N → B∗, as this
would force A and B decidable. Instead, we characterise both sequences simultaneously with
an inductive predicate ⇝: N → B∗ → B∗ → P such that n⇝ (s, t) represents sn as s and tn

as t, by adding to the base case 0⇝ ([], []) the following inductive rules:

2n⇝ (s, t)
s′ ⊒ s χn s′ |t| b ∀u < s′. ¬χn u |t| b

2n + 1⇝ (s′, t ++ [¬b])
E1

2n⇝ (s, t)
¬(∃s′b. s′ ⊒ s ∧ χn s′ |t| b)
2n + 1⇝ (s, t ++ [false])

E2

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#parametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#parametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#surjective
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#surjective
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable_b
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable_b
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#Reverse.EPF_bool
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#Reverse.EPF_bool

29:8 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

2n + 1⇝ (s, t)
t′ ⊒ t χn t′ |s| b ∀u < t′. ¬χn u |s| b

2n + 2⇝ (s ++ [¬b], t′)
O1

2n + 1⇝ (s, t)
¬(∃t′b. t′ ⊒ t ∧ χn t′ |s| b)
2n + 2⇝ (s ++ [false], t)

O2

In every even step with 2n⇝ (s, t) the sequences are extended such that χn applied to
any prefix of A differs from any prefix of B at position |t|, either by flipping the result if
χn already converges on some extension s′ ⊒ s least with respect to some ordering u < u′

of strings (E1) or by setting a dummy value if χn diverges on all extensions (E2). Dually,
in every odd step with 2n + 1⇝ (s′, t′) it is taken care that χe applied to any prefix of B

differs from any prefix of A.
We first show that the relation n⇝ (s, t) indeed captures a (classically total) cumulative

increasing sequence of boolean strings:

Lemma 11. The following properties of n⇝ (s, t) hold.
1. For every n there not not exist s and t with n⇝ (s, t).
2. If n⇝ (s, t) and n′ ⇝ (s′, t′) for n ≤ n′, then s ⊑ s′ and t ⊑ t′.
3. If 2n⇝ (s, t) then n ≤ |s| and n ≤ |t|.

Proof. We give a detailed proof of (1) since it relies on careful constructive reasoning, the
proofs of (2) and (3) are by routine arguments. The proof of (1) is by induction on n, in
the case of 0 we just choose s := [] and t := [] and conclude with 0⇝ ([], []). In the case of
n + 1, we assume that there are no s′ and t′ with n + 1⇝ (s′, t′) and, given that we then
want to derive a contradiction, may use the inductive hypothesis to assume positively that
there are s and t with n⇝ (s, t). Since we still derive a contradiction, we can perform a case
analysis whether or not there are s′ ⊒ s and b with χn s′ |t| b, given that ¬¬(P ∨ ¬P) holds
constructively for every P : P. If not, we just set s′ := s and t′ := t ++ [false] and conclude
n + 1⇝ (s′, t′) with (E2). If so, given the negative goal we can actually find a least such s′,
given that

(∃n. p n) → ¬¬∃n. p n ∧ ∀n′ < n. p n

holds constructively for every p : N → P. So for the least s′, we set t′ := t ++ [¬b] and
conclude n + 1⇝ (s′, t′) with (E1). ◀

We next formally define the incomparable degrees A and B by

A x := ∃n s t. n⇝ (s, t) ∧ sx = true B x := ∃n s t. n⇝ (s, t) ∧ tx = true

where sx denotes the x-th element in s and is false other otherwise and state the central
lemma used to show B ̸⪯T A, a dual version yields A ̸⪯T B.

Lemma 12. If 2n⇝ (s, t) and 2n + 1⇝ (s′, t′), then B̂ |t| b implies ¬χn Â |t| b.

Proof. We analyse how 2n + 1⇝ (s′, t′) could have been derived from 2n⇝ (s, t).
In the case (E1), we have that t′ = t ++ [¬b′] and χn s′ |t| b′ for s′ being the least such
extension of s. By the former and the assumption B̂ |t| b we derive b = ¬b′ using t′ ⊆ B̂

and t′
|t| = ¬b′. But then the further assumption χn Â |t| ¬b′ is in conflict with χn s′ |t| b′

via monotonicity of oracle computations [15, Lemma 41], using s′ ⊆ Â.
In the case (E2), we have that t′ = t ++ [false] and there is no extension s′ ⊒ s with
χn s′ |t| b′. However, if we now assume that χn Â |t| b, then by modulus-continuity of
oracle computations [15, Lemma 1] there is a finite prefix of Â determining the outcome
of χn Â, in fact there is N such that χn sN |t| b for all N ⇝ (sN , tN). Now given the

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#sigtau_tot
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#sigtau_tot
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#B_disc
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#B_disc

Y. Forster, D. Kirst, and N. Mück 29:9

negative goal, we can use (1) of Lemma 11 to actually obtain such sN and tN . Then by
comparing 2n with N we either obtain s ⊑ sN or sN ⊑ s by (2) of Lemma 11, so in either
case we find an extension s′ ⊒ s with χn s′ |t| b′, in contradiction to the assumption. ◀

From this lemma the Kleene-Post theorem then follows immediately.

Theorem 13. There are predicates A and B such that neither A ⪯T B nor B ⪯T A.

Proof. Suppose that B ⪯T A, so χc Â x b ↔ B̂xb for some c. Given that we have to derive a
contradiction, we can argue classically enough to obtain 2n⇝ (s, t), 2n + 1⇝ (s′, t′), and
B̂ |t| b. Then by Lemma 12 we obtain ¬χc Â |t| b, contradicting χc Â |t| b ↔ B̂|t|b. That also
A ̸⪯T B follows similarly. ◀

6 The Turing Jump

The Turing jump is the relativised equivalent to the self-halting problem: a number c is
contained in the Turing jump of a predicate q if the c-th oracle machine halts on input c

while given q as oracle. Formally, we define the Turing jump q′ of a predicate q:N→P as

q′c := Ξc q̂ c ⋆ .

Crucially, the jump is semi-decidable in the predicate, but its complement is not.

Lemma 14. Sq(q′) and ¬Sq(q′).

Proof. Take λRco. ΞcRc for Sq(q′). For ¬Sq(q′), let F be computable and ∀x. ¬q′x ↔ F q̂x⋆.
By definition, ∀x. ¬q′x ↔ ¬Ξxq̂x. Using Corollary 8 we have c such that ∀x. F q̂x⋆ ↔ Ξcq̂x

and thus in particular ¬Ξcq̂c ↔ Ξcq̂c – a contradiction. ◀

We now prove two standard results: First, that the Turing jump of a predicate is strictly
higher in the order of Turing reducibility than the predicate itself, and secondly, that semi-
decidability of p in q can be expressed as many-one reducibility of p to q′. To do so, we
define an alternative Turing jump q◦ given q:N→P corresponding to a relativised halting
problem, rather than a relativised self-halting problem q′, as q◦⟨c, x⟩ := Ξc q̂ x.

Lemma 15. q′ ⪯m q◦ and q◦ ⪯m q′.

Proof. The first is by λc.⟨c, c⟩. For the second, use Lemma 7 for τ⟨c,x⟩nl := ξcxl. ◀

Lemma 16. q ⪯m q◦

Proof. Note that λRxo. R x true is computable. Via Corollary 8 this means we have c with
∀Rxo. ΞcRx ↔ Rxtrue. Now λx. ⟨c, x⟩ is the wanted many-one reduction. ◀

Lemma 17. q ⪯T q′ and q′ ̸⪯T q.

Proof. The first part is straightforward with the last two lemmas. For the second part, if
q′ ⪯T q we have with Lemma 4 that q′ is semi-decidable in q, contradicting Lemma 14. ◀

This lemma summarises the mentioned fact Turing jumps are strictly higher in terms
of Turing reducibility. We next establish the announced connection between relative semi-
decidability, (many-one) reducibility, and Turing jumps.

Lemma 18. If Sq(p), then p ⪯m q◦.

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#KleenePost
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.KleenePostTheorem.html#KleenePost
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#semidecidable_J
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#semidecidable_J
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#J_self_J_m_red
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#J_self_J_m_red
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#6615e92e5884b49d61e727d1e63bacd6
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#6615e92e5884b49d61e727d1e63bacd6
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#jump_gt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#jump_gt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump

29:10 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

Proof. Let F be computable and ∀x. px ↔ F q̂x⋆. Using Corollary 8, we have c such that
Ξcq̂x ↔ F q̂x⋆. Now take λx. ⟨c, x⟩ as reduction. ◀

Lemma 19. If p ⪯m q′, then Sq(p).

Proof. Let f be the many-one reduction. It then suffices to prove that λx. q′(fx) is
semi-decidable in q. Take λRco. Ξfc R (fc). ◀

Corollary 20. Sq(p) if and only if p ⪯m q′.

Corollary 21. If p ⪯T q, then p′ ⪯m q′.

We now define iterated Turing jumps from a predicate q:

q(0) := q q(n+1) := (q(n))′

In textbooks, one usually uses the empty predicate ∅ as basis, since it is Turing equivalent
to any other decidable predicate. In the context of many-one reductions, however not all
decidable predicates are equivalent: only non-trivial ones are. To obtain a more uniform
treatment that does not have to consider special cases for decidable predicates, we use as
basis the predicate that has sole element 0:

0 := λx. x = 0

We also remark that, working explicitly with the previously discussed axiom EPF would
allow us to prove that K is many-one equivalent to 0(1).

7 The Arithmetical Hierarchy

The arithmetical hierarchy was developed independently by Kleene [30] and Mostowski [35],
using models of computation to define the 0 level. In line with the rest of this paper, we here
define a synthetic variant relying on type-theoretic functions. In Section 10 we discuss the
connection to an alternative definition where the 0 level uses quantifier-free logical formulas
of a formal first-order syntax. Informally, a predicate p:Nk→P is in Σn if

∀v. pv ↔ ∃x1.∀x2.Qxn. f([xn, . . . , x2, x1] ++ v) = true

where Qn is either ∃ or ∀ depending on n being odd or even, i.e. if p can be characterised by
a first-order formula with n quantifier alternations before a boolean function application,
starting with an existential quantification. The definition of Πn is dual. Formally, we use
mutually defined inductive predicates:

∀v : Nk. pv ↔ fv = true
Σk

0p

Πk+1
n q ∀v : Nk. pv ↔ ∃x. q(x :: v)

Σk
n+1p

∀v : Nk. pv ↔ fv = true
Πk

0p

Σk+1
n q ∀v : Nk. pv ↔ ∀x. q(x :: v)

Πk
n+1p

One usually defines ∆k
np := Σk

np ∧ Πk
np, but we do not use this notion technically. From

now on, we leave out the arity k since it is always clear from context. In the remainder of
this section we collect closure properties that hold constructively, in the next section we
continue with some non-constructive closure properties.

The hierarchy treats predicates extensionally:

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump'
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump'
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump_vec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump_vec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_T_imp_red_m_jumps
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#red_T_imp_red_m_jumps
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#dcce78e25b1a71bddb5c80acf6e5da10

Y. Forster, D. Kirst, and N. Mück 29:11

Lemma 22. Whenever ∀v. p1v ↔ p2v, then Σnp1 implies Σnp2 and Πnp1 implies Πnp2.

The 1 level of the hierarchy can be characterised using semi-decidability:

Lemma 23. A predicate p is semi-decidable if and only if Σ1p.

Proof. From left to right, let p be semi-decidable, i.e. ∀v : Nk. pv ↔ fv ▷ ⋆. The result
follows using Lemma 1 (1), because fv ▷ ⋆ ↔ ∃n. ϵ f n v ⋆ = true. From right to left, we use
unbounded search µ from Lemma 1 (2). ◀

By straightforward induction, we also obtain that the hierarchy is cumulative:

Lemma 24. If n ≤ m then Σn ⊆ Σm as well as Πn ⊆ Πm.

Furthermore, it is closed under many-one reductions:

Lemma 25. If p1 ⪯m p2 then Σnp2 implies Σnp1 and Πnp2 implies Πnp1.

Proof. By mutual induction. The base cases are immediate. We prove that if p1 ⪯m p2 via
f , ∀v. p2v ↔ ∃x. q(x :: v), and Πnq, then Σn+1p1, the other case is similar.

We have that ∀v. p1v ↔ ∃x. q(x :: fv). By the induction hypothesis, it thus suffices to
prove (λ(x :: v). q(x :: fv)) ⪯m q, which is trivial. ◀

Note that in this proof, we use the notation λ(x :: v) . . . , which defines a function taking
as argument a non-empty vector, i.e. an argument of type Xn+1. We now show further
closure properties of the levels, crucially making use of Lemma 25 and pairing ⟨·, ·⟩.

Lemma 26. Σn(λv. ∃xy. p(x :: y :: v)) if Πnp, and Πn(λv. ∀xy. q(x :: y :: v)) if Σnq.

Corollary 27. Σnp implies Σn(λv. ∃x. p(x :: v)) and Πnq implies Πn(λv. ∀x. q(x :: v)).

By induction we then have:

Lemma 28. Σn ⊆ Πn+1 and Πn ⊆ Σn+1.

Lemma 29. If Σnp1and Σnp2 then Σn(λv.p1v∧p2v). If Πnq1 and Πnq2 then Πn(λv.q1v∧q2v).

Proof. By mutual induction. The base cases are easy.
We just show one inductive case, the other one is dual. Let ∀v. p1v ↔ ∃x. q′

1(x :: v),
∀v. p2v ↔ ∃y. q′

2(y :: v), and Πnq′
1 as well as Πnq′

2, then Σn+1(λv. p1v ∧ p2v).
Note that we have that λv. p1v ∧ p2v ↔ ∃xy. q′

1(x :: v) ∧ q′
2(y :: v). Using Lemma 26

and the induction hypothesis, it suffices to prove that Πnλ(x :: y :: v). q′
1(x :: v) and

Πnλ(x :: y :: v). q′
2(x :: v), which follows from Πnq′

1, Πnq′
2, and Lemma 25. ◀

The following two lemmas have similarly technical proofs, we omit the details.

Lemma 30. Let f :N→B. If Σnp1 and Σnp2, then Σn(λ(x :: v).if fx then p1v else p2v).
If Πnq1 and Πnq2 then Πn(λ(x :: v).if fx then q1v else q2v).

Lemma 31. If Σnp, then Σn(λ(N :: v). ∀x < N. p(x :: v)). Moreover, if Πnq, then
Πn(λ(N :: v). ∀x < N. q(x :: v)).

We prove closure under disjunction for Σn now:

Lemma 32. If Σnp1 and Σnp2 then Σn(λv.p1v ∨ p2v).

Proof. With p1v ∨ p2v ↔ ∃n. if n = 0 then p1v else p2v from Lemma 30 and corollary 27.
◀

The proof for Πn requires classical logic. We thus only give it in the next section, where
we introduce a fine-grained characterisation of classical logic for the arithmetical hierarchy,
allowing to state a stronger theorem for closure of Πn under disjunction.

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#PredExt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#PredExt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#semi_dec_iff_Sigma1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#semi_dec_iff_Sigma1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigman_In_SigmaSn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigman_In_SigmaSn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_m_red_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_m_red_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasemTwoEx
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasemTwoEx
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasemE
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasemE
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigman_In_PiSn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigman_In_PiSn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_and_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_and_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_if_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_if_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmaPiball
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmaPiball
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_or_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isSigmasem_or_closed

29:12 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

8 An Arithmetical Hierarchy of Classical Axioms

The most common axiom to enable classical logical reasoning in constructive foundations
is the law of excluded middle (LEM), or, equivalently, double negation elimination (DNE).
Both LEM and DNE can be weakened to apply to certain propositions only. If restricted to
apply to Σ1 propositions only, one obtains the limited principles of omniscience (LPO) and
Markov’s principle (MP), respectively.

LEM := ∀P :P. P ∨ ¬P LPO := ∀f :N→B. (∃n. fn = true) ∨ ¬(∃n. fn = true)

DNE := ∀P : P. ¬¬P → P MP := ∀f :N→B. ¬¬(∃n. fn = true) → (∃n. fn = true)

LPO implies MP, but the converse is well-known to not be provable [9].
Akama, Berardi, Hayashi, and Kohlenbach [1] introduce relativisations of the law of

excluded middle and double negation elimination to the arithmetical hierarchy, and prove
that they are in relation as displayed in Figure 1. We prove these implications formally in
CIC and using Coq, with the following definitions:

Σn-LEM := ∀k.∀p:Nk. Σnp → ∀v.pv ∨ ¬pv Σn-DNE := ∀k.∀p:Nk. Σnp → ∀v.¬¬pv → pv

Πn-LEM := ∀k.∀p:Nk. Πnp → ∀v.pv ∨ ¬pv Πn-DNE := ∀k.∀p:Nk. Πnp → ∀v.¬¬pv → pv

On the 0 and 1 levels these axioms have well-known connections to LPO and LEM:

Lemma 33. The following hold
1. Σ0-LEM holds constructively, and thus all 0 levels of the axioms,
2. Σ1-LEM ↔ LPO,
3. Σ1-DNE ↔ MP,
4. Π1-LEM ↔ WLPO with WLPO := ∀f :N→B. (∀n. fn = false) ∨ ¬(∀n. fn = false),
5. Π1-DNE holds constructively.

Σn-LEM

Πn-LEM Σn−1-LEM Σn-DNE

Πn−1-LEM Πn-DNE Σn−1-DNE,

Πn−1-DNE

Figure 1 Arithmetical hierarchy of the law of excluded middle and related principles [1].

To prove the implications from Figure 1, we need that the arithmetical hierarchy is closed
under complements and that Πn is closed under disjunction (which holds constructively for
Σn, see Lemma 32). We begin with the closures under complement:

Lemma 34. If Σnp and Πn-DNE, then Πnp, and if Πnp and Σn-DNE, then Σnp.

Proof. By mutual induction. The base cases hold constructively.
For the first inductive case, we prove that if ∀v. pv ↔ ∃x. p′(x :: v), Σnp′, and Σn+1-DNE,

then Σn+1p. By the inductive hypothesis we have Πnp provided Πn-DNE, which is a
consequence of Σn+1-DNE. It thus suffices to prove that ∀v. ¬pv ↔ ∀x. ¬p′(x :: v), which
holds constructively.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#level1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#level1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DN_implies_ArithmeticHierarchyNegation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DN_implies_ArithmeticHierarchyNegation

Y. Forster, D. Kirst, and N. Mück 29:13

For the other case, we prove that if ∀v. pv ↔ ∀x. p′(x :: v), Σnp′, and Σn+1-DNE, then
Σn+1p. By the induction hypothesis we have Πnp provided Πn-DNE, which is a consequence
of Σn+1-DNE. It thus suffices to prove that ∀v. ¬pv ↔ ∃x. ¬p′(x :: v). The direction from
right to left holds constructively. For the direction from left to right, assume ¬pv and prove
∃x. ¬p(x :: v). Since by the inductive hypothesis we have that Σn+1(λv. ∃x. ¬p′(x :: v) we
can use Σn+1-DNE and it suffices to prove ¬¬∃x. ¬p(x :: v), which follows constructively
from ¬pv. ◀

It is straightforward to prove that Πn is closed under disjunction assuming Πn-LEM:

Lemma 35. If Πn-LEM, Πnp, and Πnq then Πn(λv.pv ∨ qv).

We now prove the implications from Figure 1.

Lemma 36. 1. Σn-LEM → Σn-DNE
2. Πn-LEM → Πn-DNE
3. Σn-DNE ↔ Πn+1-DNE
4. Πn+1-LEM → Σn-LEM
5. Σn-LEM → Πn-LEM
6. Σn+1-DNE → Σn-LEM

Proof. (1) and (2) are immediate, because in general P ∨ ¬P → ¬¬P → P . (3) is by
induction. (4) follows by Σn ⊆ Πn+1.

(5) has a more interesting proof: Assume Σn-LEM. By the previous implications, we
can then use Σn-DNE and Πn-DNE. Let Πnp and v:Nk. We have to prove pv ∨ ¬pv. By
Lemma 34 and Σn-DNE, we have Σnp. Using Σn-LEM we have ¬pv ∨ ¬¬pv. Using Πn-DNE,
we have pv ∨ ¬pv.

For (6), assume Σn+1-DNE and Σnp. We prove pv ∨¬pv by applying Σn+1-DNE. Because
Σn+1 is closed under disjunction by Lemma 32, it suffices to prove that p is in Σn+1, which
is trivial, and that p is, which follows from Lemma 34. ◀

Note that the converses of the implications are not provable: For (1), MP does not imply
LPO (see e.g. [21]). For (2), Π1-LEM is WLPO, which is not provable, and Π1-DNE is provable.
For (4), since Σ0-LEM is provable, but Π1-LEM is WLPO. For (5), since (at level 1) WLPO is
strictly weaker than LPO [21]. We furthermore cannot prove that Σ1-DNE implies Π1-LEM,
because MP does not imply WLPO. For (6), since Σ0-LEM is provable, but Σ1-DNE is MP.

It seems that for both closure properties we proved the assumptions are stronger than
necessary. To prove closure under disjunction, it would suffice to assume DNE for disjunctions
where both sides of the disjunct are Πn formulas [1], but we avoid introducing this axiom.

We conjecture that for the purpose of proving that the arithmetical hierarchy is closed
under negation, Σn-DNE is also strictly stronger than necessary. This is because at level 1,
the theorem is equivalent to an axiom which seems to be weaker than MP (i.e. Σ1-DNE).

Lemma 37. Π1p → Σ1p iff ∀f :N→B.∃g:N→B. ¬¬(∃n. fn = true) ↔ (∃n. gn = true).

This principle can be seen as an “anonymised” Markov’s principle. It is an obvious
consequence of MP (with g := f), but it seems to be strictly weaker. We are not aware of
this axiom appearing in the literature, and we conjecture it to be non-provable. It can also
be seen as the level 1 instance of closure under double negation for the hierarchy.

We say that the arithmetical hierarchy is closed under double negations at level n if Σnp,
then Σnp, and if Πnp, then Πnp. And, as before, it is closed under complements at level n if
Σnp, then Πnp, and if Πnp, then Σnp.

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isPisem_or_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#isPisem_or_closed
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DNEimpl
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DNEimpl
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#anonymisedMPiff
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#anonymisedMPiff

29:14 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

Lemma 38. If the arithmetical hierarchy is closed under complements at level n, it is
closed under double negations at level n.

For the converse, we need to assume that the hierarchy is closed under double negations
for all levels m ≤ n, because closure at level n + 1 seems not to imply closure at level n.
Furthermore, the proof seems to require Πn-DNE – a principle strictly weaker than Σn-DNE
which we used to prove closure under negation.

Lemma 39. Given Πn-DNE, if the arithmetical hierarchy is closed under double negation
at all levels m ≤ n, it is closed under complements at level n.

We conjecture that above level 1, this is not an equivalence, i.e. that some axiom potentially
weaker than Πn-DNE is needed.

9 Post’s Theorem

By composition of previous results, we now derive the statements comprising Post’s theorem.
We first explicitly capture the connection of relative semi-decidability and the arithmetical
hierarchy in the next two lemmas.

Lemma 40. Assume Πn-LEM. If Σn+1p, then p is semi-decidable relative to some q in Πn.

Proof. Let Σn+1, i.e. there is q in Πn such that pv ↔ ∃x.q(x :: v). We show that p is
semi-decidable in q by linearly searching for x, i.e. pick

FRvo := ∃x.R (x :: v) true ∧ ∀x′ < x.R (x′ :: v) false

which is oracle-computable by Lemma 2 (9). We need to prove that (∃x.q(x :: v)) ↔ F q̂v⋆.
The direction from right to left is immediate. For the direction from left to right we have to
prove that given x with q(x :: v), i.e. q̂(x :: v)true, there is a least x such that q̂(x :: v)true.
This follows from Πn-LEM and Πnq. ◀

Lemma 41. Assume Σn-DNE. If p is semi-decidable relative to some q in Πn, then Σn+1p.

Proof. Let ∀v. pv ↔ F q̂v⋆ for an oracle-computable F . This means we have τ such that

∀v. pv ↔ ∃qs as. τv ; q̂ ⊢ qs ; as ∧ τ v as ▷ out ⋆ .

Note that λ(as :: v). τ v as ▷ out ⋆ is in Σ1 ⊆ Σn+1, because it is trivially semi-decidable,
which makes Lemma 23 applicable. Using Corollary 27, it then suffices to prove that
λ(qs :: as :: v). τv ; q̂ ⊢ qs ; as is in Σn+1.

To do so, we prove that

τv ; q̂ ⊢ qs ; as ↔ ∀n < |as|. τ v (as ⇂n) ▷ ask qsn ∧ q̂(qsn)(asn)

where as ⇂n is the list with the first n elements of as, and qsn and asn are the n-th element of
qs and as, respectively. The direction from left to right is by induction on the interrogation,
from right to left by induction on as.

Using Lemma 31 and once again that ▷ is semi-decidable, it suffices to prove that
λ(y :: b :: []). q̂yb is in Σn+1. Using Lemma 30, we have to prove that both q and its
complement are in Σn+1. The former holds because q is in Πn and Lemma 28. The latter
holds because q is in Πn, and thus its complement is in Σn using Σn-DNE and Lemma 34,
and thus in Σn+1 using Lemma 24. ◀

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#Negation_to_DoubleNegation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#Negation_to_DoubleNegation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DoubleNegation_to_Negation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DoubleNegation_to_Negation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#Sigma_semi_decidable_in_Pi1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#Sigma_semi_decidable_in_Pi1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#Sigma_semi_decidable_in_Pi2
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#Sigma_semi_decidable_in_Pi2

Y. Forster, D. Kirst, and N. Mück 29:15

Incidentally, apart from the 0 case, the inductive structure of all remaining proofs for
Theorem 43 is unchanged as long as the following holds:

Lemma 42. Σ00

Then finally, Post’s theorem can be stated as follows:

Theorem 43. The following hold assuming Σn-LEM:
1. Σn+1p if and only if Sq(p) for some q in Πn,
2. Σn+1p if and only if Sq(p) for some q in Σn,
3. Σn0

(n),
4. if Σnp then p ⪯m 0(n), so in particular p ⪯T 0(n),
5. Σn+1p if and only if S0(n)(p).

Note that, in light of Lemma 42, by further relativising the 0 level of the arithmetical
hierarchy to relative decidability one can obtain a relativised form of Post’s theorem from an
arbitrary base predicate, that does not even necessarily have to be arithmetical.

10 The Syntactic Arithmetical Hierarchy

We have defined the arithmetical hierarchy in a synthetic way, by defining the 0 level using
boolean functions rather than predicates decidable in a model of computation. Another
natural definition is syntactic, purely in terms of first-order logic, where the 0 level is
characterised by quantifier-free formulas, and where the ∆1 class can alternatively be
characterised by predicates that are decidable in a model of computation.

We define this syntactic arithmetical hierarchy now, show that it is included in the
previously defined synthetic arithmetical hierarchy, and show that the converse inclusion is
equivalent to the well-known constructive axiom CT, a strengthening of the axiom EPF.

As a basis, we employ the Coq library of first-order logic [27, 25] and recall the basic
framework. We use a de-Bruijn representation of first-order formulas φ over the term language
of arithmetic (i.e. with constant 0, unary successor function S, and binary operation symbols
for addition and multiplication). We use a type of variables V on paper, which we implement
using de Bruijn indices as V := N in Coq.

t : term ::= x | n | t1 +̇ t2 | t1 ×̇ t2 x: V , n:N

φ : form ::= ⊥̇ | t1=̇t2 | φ1∧̇φ2 | φ1∨̇φ2 | φ1→̇φ2 | ∀̇φ | ∃̇φ

A formula is quantifier-free if it does not use the constructors ∃̇ and ∀̇.
We furthermore use a Tarski-style satisfaction predicate ρ ⊨ φ for ρ < : V →N being

an assignment from de Bruijn indices to natural numbers which maps the terms to their
respective interpretation of natural numbers, and formulas to their respective interpretations
in the meta-logic.

JxKρ := ρx JnKρ := n Jt1 +̇ t2Kρ := Jt1Kρ + Jt2Kρ Jt1 ×̇ t2Kρ := Jt1Kρ · Jt2Kρ

ρ ⊨ ⊥̇ := ⊥ ρ ⊨ t1=̇t2 := Jt1Kρ = Jt2Kρ ρ ⊨ φ1∧̇φ2 := (ρ ⊨ φ1) ∧ (ρ ⊨ φ2)

ρ ⊨ φ1∨̇φ2 := (ρ ⊨ φ1) ∧ (ρ ⊨ φ2) ρ ⊨ φ1→̇φ2 := (ρ ⊨ φ1) → (ρ ⊨ φ2)

ρ ⊨ ∀̇φ := ∀d.(d; ρ) ⊨ φ ρ ⊨ ∃̇φ := ∃d.(d; ρ) ⊨ φ

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#jumpNK0
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#jumpNK0
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#PostsTheorem
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.PostsTheorem.html#PostsTheorem

29:16 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

We then define when a formula φ is Σ̇n or respectively Π̇n.2

φ is quantifier-free
Σ̇nφ

Π̇nφ

Σ̇n+1∃̇φ

Σ̇n+1φ

Σ̇n+1∃̇φ

φ is quantifier-free
Π̇nφ

Σ̇nφ

Π̇n+1∀̇φ

Π̇n+1φ

Π̇n+1∀̇φ

Based on this, we define

Σ̇k
np := ∃φ. Σ̇nφ ∧ ∀v:Nk. pv ↔ ρv ⊨ φ Π̇k

np := ∃φ. Π̇nφ ∧ ∀v:Nk. pv ↔ ρv ⊨ φ

where ρv is a function mapping i to the i-th value in v (and 0 if v is not long enough).
As before, we leave out k from here on.

Lemma 44. Satisfaction of quantifier-free formulas is decidable.

Lemma 45. The syntactic arithmetical hierarchy is included in the synthetic arithmetical
hierarchy.

Proof. We prove by mutual induction that

(Σ̇nφ → Σn(λv. ρv ⊨ φ)) ∧ (Π̇nφ → Πn(λv. ρv ⊨ φ)).

The base cases follows by the last lemma. The cases of adding ∃̇ to a Π̇n formula, or ∀̇
to a Σ̇n formula follow by definition of Σ and Π. The cases of adding ∃̇ to a Σ̇n formula, or
∀̇ to a Π̇n formula follow by Corollary 27. ◀

The reverse direction is not provable without axioms. In fact, it is equivalent to the axiom
Church’s thesis (CT), stating that all functions are computable in a model of computation.
The axiom EPF we have used is a direct consequence of CT [11].

Let ϕn
c x be the execution of the c-th µ-recursive function according to an enumeration,

on input x for n steps.

CT := ∀f :N→N.∃c:N. ∀x.∃n. ϕn
c x = 1 + (fx)

Lemma 46. Assuming CT, Σ̇1(λv. fv = true).

Proof. See Hermes and Kirst [22] and Kirst and Peters [28]. ◀

Lemma 47. Assuming CT, Π̇1(λv. gv = true).

Proof. Let g be given. Using the last lemma with fv := ¬Bgv we have that Σ̇1(λv.¬Bgv =
true). The claim follows by proving that Σ̇1p → Π̇n(λv. ¬pv) in general, which holds

constructively without axioms. ◀

Corollary 48. Assuming CT, Σ1 ⊆ Σ̇1 and Π1 ⊆ Π̇1.

2 We use boldface fonts with a dot here to distinguish from the synthetic arithmetical hierarchy as
clearly as possible. Note that there is no connection to the so-called boldface and lightface pointclasses
from descriptive set theory, which are also based on hierarchies of formulas classified via quantifier
alternations.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#noQuant_dec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#noQuant_dec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#isSigmasyn_in_isSigmasem
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#isSigmasyn_in_isSigmasem
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn_decDelta1syn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn_decDelta1syn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn_incl_1
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#decSigma1syn_incl_1

Y. Forster, D. Kirst, and N. Mück 29:17

Note that for n = 0, the hiearchies are not equivalent, because not every decidable
predicate can be presented as quantifier-free formula.3 This however does not affect Post’s
theorem, since it only talks about n > 0.

Lemma 49. Assuming CT, the synthetic arithmetical hierarchy is included in the syntactic
arithmetical hierarchy on every level n > 0.

Proof. By induction, using the last lemma. ◀

To avoid reintroducing classical axioms for the syntactic arithmetical hierarchy, we re-state
Post’s theorem by using classical logic in general:

▶ Theorem 50. The following hold assuming the law of excluded middle and CT:
1. Σ̇n+1p if and only if Sq(p) for a q in Π̇n,
2. Σ̇n+1p if and only if Sq(p) for a q in Σ̇n,
3. Σ̇n0

(n),
4. if Σ̇np then p ⪯m 0(n), so in particular p ⪯T 0(n),
5. Σ̇n+1p if and only if S0(n)(p).

▶ Lemma 51. If the synthetic arithmetical hierarchy is included in the syntactic arithmetical
hierarchy on level 1 > 0, then CT holds.

Proof. Assume Σ1 ⊆ Σ̇1. The axiom that semi-decidable predicates are semi-decided by a
µ-recursive function is equivalent to CT [12]. Let p:N→P be semi-decidable. Then it is in Σ1.
By assumption, it then is in Σ̇1. Thus, it can be semi-decided by a µ-recursive function. ◀

Lemma 52. Given LEM, whenever a predicate p is definable via a first-order formula φ

one can compute n and either a proof of Σ̇np or Π̇np.

Note that the assumption of LEM could be weakened to Σ̇n-LEM [20, 19].

11 Conclusion

In this paper, we use the definition of oracle computability of [15] mostly abstractly, i.e.
through the closure properties in Lemma 2 as interface. While the invariants for the
constructions underlying these properties are intricate and often tedious, utilising the
properties themselves is straightforward. The only explicit uses of the underlying computation
trees are Lemma 41 and the construction of the enumerators Ξ and χ from EPF. The proof
of Post’s theorem can then be seen as a sanity check for our synthetic definition of Turing
reducibility: It agrees with analytic Turing reducibility on arithmetical predicates.

The Coq mechanisation, contributing roughly 3k lines of code (2k for the Kleene-Post and
Post’s theorem, 1k for the syntactic arithmetical hierarchy) to the Coq library of synthetic
computability, has proven beneficial besides the goals of formalising the foundations of
theoretical computer science and a constructive reverse analysis: Having a mechanisation
allows for quickly changing definitions without the need for extensive manual re-checking.
We have utilised this e.g. when changing the base of the hierarchy to 0 instead of ∅, which
was almost automatic. Furthermore, identifying and tracking classical assumptions manually
would be cumbersome, and is almost for free using a proof assistant.

3 The situation would be different if we would allow for bounded quantification on the 0 level of the
hierarchy, but we syntactically disallow any quantification to appear.

CSL 2024

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#isSigmasem_in_isSigmasyn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html#isSigmasem_in_isSigmasyn
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.ArithmeticalHierarchyEquiv.html
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.PrenexNormalForm.html#PNF_equiv
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.ArithmeticHierarchy.PrenexNormalForm.html#PNF_equiv

29:18 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

Bauer [4] and Swan [47] suggest definitions of oracle computability and Turing reducibility
in unpublished work. Our definition of oracle computability is stronger than Bauer’s [15,
Lemmas 2 and 42]. However, the resulting notion of Turing reducibility might still be the
same – it hinges on the constructability of an enumerator for Bauer’s notion. Additionally,
our definition can be adapted to Swan’s setting in univalent type theory, potentially implying
his definition of Turing computability. Vice versa we expect the implication to be unprovable
because it would require a form of double negation elimination stronger than MP, which
seemingly implies LPO and thus is inconsistent in univalent synthetic computability. Swan’s
definition cannot be exactly reproduced in our setting, since it requires higher inductive
types. A version of CIC with higher inductives but without univalence could be suitable.

For future work, it first would be interesting to frame more results from the 1954 Kleene-
Post paper, e.g. that there are countably many incomparable Turing degrees with the order
structure of the rationals, in our setting of synthetic computability. Secondly, we would like
to carry out the full analysis of what classical axioms are implied by, and thus equivalent
to, Post’s theorem. Lastly, it would be intriguing to give a synthetic solution to Post’s
problem [40], e.g. via the Friedberg-Muchnik theorem and the priority method [18, 36].

References
1 Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An arithmetical

hierarchy of the law of excluded middle and related principles. In 19th IEEE Symposium on
Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages
192–201. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.1319613.

2 Andrej Bauer. First steps in synthetic computability theory. Electronic Notes in Theoretical
Computer Science, 155:5–31, 2006. doi:10.1016/j.entcs.2005.11.049.

3 Andrej Bauer. On fixed-point theorems in synthetic computability. Tbilisi Mathematical
Journal, 10(3):167–181, 2017. doi:10.1515/tmj-2017-0107.

4 Andrej Bauer. Synthetic mathematics with an excursion into computability theory (slide set).
University of Wisconsin Logic seminar, 2020. URL: http://math.andrej.com/asset/data/
madison-synthetic-computability-talk.pdf.

5 Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform computational
content of computability theory. Theory of Computing Systems, 61(4):1376–1426, August 2017.
doi:10.1007/s00224-017-9798-1.

6 S Barry Cooper. Computability theory. CRC Press, 2003. doi:10.1201/9781315275789.
7 Thierry Coquand. Metamathematical investigations of a calculus of constructions. Technical

Report RR-1088, INRIA, 1989. URL: https://hal.inria.fr/inria-00075471.
8 Thierry Coquand and Gérard P Huet. The calculus of constructions. Information and

Computation, 76(2/3):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.
9 Hannes Diener. Constructive Reverse Mathematics. arXiv:1804.05495 [math], 2020. arXiv:

1804.05495.
10 Hannes Diener and Hajime Ishihara. Bishop-style constructive reverse mathematics. In Theory

and Applications of Computability, pages 347–365. Springer International Publishing, 2021.
doi:10.1007/978-3-030-59234-9_10.

11 Yannick Forster. Church’s Thesis and Related Axioms in Coq’s Type Theory. In Christel
Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2021.21.

12 Yannick Forster. Computability in Constructive Type Theory. PhD thesis, Saarland University,
2021. doi:10.22028/D291-35758.

https://doi.org/10.1109/LICS.2004.1319613
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1515/tmj-2017-0107
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
https://doi.org/10.1007/s00224-017-9798-1
https://doi.org/10.1201/9781315275789
https://hal.inria.fr/inria-00075471
https://doi.org/10.1016/0890-5401(88)90005-3
https://arxiv.org/abs/1804.05495
https://arxiv.org/abs/1804.05495
https://doi.org/10.1007/978-3-030-59234-9_10
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.22028/D291-35758

Y. Forster, D. Kirst, and N. Mück 29:19

13 Yannick Forster. Parametric Church’s Thesis: Synthetic computability without choice. In
International Symposium on Logical Foundations of Computer Science, pages 70–89. Springer,
2022. doi:10.1007/978-3-030-93100-1_6.

14 Yannick Forster and Felix Jahn. Constructive and Synthetic Reducibility Degrees: Post’s
Problem for Many-One and Truth-Table Reducibility in Coq. In Bartek Klin and Elaine
Pimentel, editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023),
volume 252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:21,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.CSL.2023.21.

15 Yannick Forster, Dominik Kirst, and Niklas Mück. Oracle computability and turing reducibility
in the calculus of inductive constructions, 2023. arXiv:2307.15543.

16 Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in Coq, with
an application to the Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs – CPP 2019. ACM Press, 2019.
doi:10.1145/3293880.3294091.

17 Yannick Forster, Fabian Kunze, and Nils Lauermann. Synthetic Kolmogorov Complexity in
Coq. In June Andronick and Leonardo de Moura, editors, 13th International Conference on
Interactive Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2022.12.

18 R. M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsovlability
(solution of Post’s problem), 1944. Proceedings of the National Academy of Sciences, 43(2):236–
238, February 1957. doi:10.1073/pnas.43.2.236.

19 Makoto Fujiwara and Taishi Kurahashi. Prenex normal form theorems in semi-classical
arithmetic. The Journal of Symbolic Logic, 86(3):1124–1153, 2021. doi:10.1017/jsl.2021.47.

20 Makoto Fujiwara and Taishi Kurahashi. Prenex normalization and the hierarchical classification
of formulas, 2023. arXiv:2302.11808.

21 Matt Hendtlass and Robert Lubarsky. Separating fragments of WLEM, LPO, and MP. The
Journal of Symbolic Logic, 81(4):1315–1343, 2016. doi:10.1017/jsl.2016.38.

22 Marc Hermes and Dominik Kirst. An analysis of Tennenbaum’s theorem in constructive
type theory. In Amy P. Felty, editor, 7th International Conference on Formal Structures
for Computation and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel, volume 228
of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.FSCD.2022.9.

23 J. Martin E. Hyland. The effective topos. In The L. E. J. Brouwer Centenary Symposium,
Proceedings of the Conference held in Noordwijkerhout, pages 165–216. Elsevier, 1982. doi:
10.1016/s0049-237x(09)70129-6.

24 Hajime Ishihara. Reverse mathematics in Bishop’s constructive mathematics. Philosophia
Scientae, CS 6:43–59, September 2006. doi:10.4000/philosophiascientiae.406.

25 Dominik Kirst. Mechanised Metamathematics: An Investigation of First-Order Logic and
Set Theory in Constructive Type Theory. PhD thesis, Saarland University, 2022. doi:
10.22028/D291-39150.

26 Dominik Kirst, Yannick Forster, and Niklas Mück. Synthetic Versions of the Kleene-Post and
Post’s Theorem. 28th International Conference on Types for Proofs and Programs (TYPES
2022), 2022. URL: https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf.

27 Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc Hermes, Mark
Koch, Dominique Larchey-Wendling, Niklas Mück, Benjamin Peters, Gert Smolka, and Dominik
Wehr. A Coq library for mechanised first-order logic. In Coq Workshop, 2022. URL: https:
//coq-workshop.gitlab.io/2022/abstracts/Coq2022-01-01-first-order-logic.pdf.

28 Dominik Kirst and Benjamin Peters. Gödel’s theorem without tears – Essential incompleteness
in synthetic computability. In Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual
Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland,
volume 252 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CSL.2023.30.

CSL 2024

https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://arxiv.org/abs/2307.15543
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1017/jsl.2021.47
https://arxiv.org/abs/2302.11808
https://doi.org/10.1017/jsl.2016.38
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://doi.org/10.1016/s0049-237x(09)70129-6
https://doi.org/10.1016/s0049-237x(09)70129-6
https://doi.org/10.4000/philosophiascientiae.406
https://doi.org/10.22028/D291-39150
https://doi.org/10.22028/D291-39150
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://coq-workshop.gitlab.io/2022/abstracts/Coq2022-01-01-first-order-logic.pdf
https://coq-workshop.gitlab.io/2022/abstracts/Coq2022-01-01-first-order-logic.pdf
https://doi.org/10.4230/LIPIcs.CSL.2023.30

29:20 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

29 S. C. Kleene. Countable functionals. Journal of Symbolic Logic, 27(3):81–100, 1959. doi:
10.2307/2964658.

30 Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of the American
Mathematical Society, 53(1):41–73, 1943. doi:10.1090/S0002-9947-1943-0007371-8.

31 Steven C. Kleene and Emil L. Post. The upper semi-lattice of degrees of recursive unsolvability.
The Annals of Mathematics, 59(3):379, May 1954. doi:10.2307/1969708.

32 Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types.
In A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North-Holland Pub. Co.,
1959.

33 Georg Kreisel. Mathematical logic. Lectures in modern mathematics, 3:95–195, 1965. doi:
10.2307/2315573.

34 Andrei A. Markov. The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA
Steklova, 42:3–375, 1954. doi:10.1007/978-94-017-3477-6.

35 Andrzej Mostowski. On definable sets of positive integers. Fundamenta Mathematicae,
34:81–112, 1947. doi:10.4064/fm-34-1-81-112.

36 Albert Abramovich Muchnik. On strong and weak reducibility of algorithmic problems.
Sibirskii Matematicheskii Zhurnal, 4(6):1328–1341, 1963.

37 Niklas Mück. The Arithmetical Hierarchy, Oracle Computability, and Post’s Theorem in
Synthetic Computability. Bachelor’s thesis, Saarland University, 2022. URL: https://ps.
uni-saarland.de/~mueck/bachelor.php.

38 Piergiorgio Odifreddi. Classical recursion theory: The theory of functions and sets of natural
numbers. Elsevier, 1992.

39 Christine Paulin-Mohring. Inductive definitions in the system Coq rules and properties. In
International Conference on Typed Lambda Calculi and Applications, pages 328–345. Springer,
1993. doi:10.1007/BFb0037116.

40 Emil L. Post. Recursively enumerable sets of positive integers and their decision prob-
lems. bulletin of the American Mathematical Society, 50(5):284–316, 1944. doi:10.1090/
S0002-9904-1944-08111-1.

41 Emil L. Post. Degrees of recursive unsolvability – Preliminary report. In Bulletin of the
American Mathematical Society, volume 54:7, pages 641–642. American Mathematical Society
(AMS), 1948.

42 Fred Richman. Church’s thesis without tears. The Journal of symbolic logic, 48(3):797–803,
1983. doi:10.2307/2273473.

43 Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

44 Sam Sanders. Refining the taming of the reverse mathematics zoo. Notre Dame Journal of
Formal Logic, 59(4), January 2018. doi:10.1215/00294527-2018-0015.

45 Robert I. Soare. Recursively enumerable sets and degrees: A study of computable functions
and computably generated sets. Springer Science & Business Media, 1999.

46 Andrew Swan and Taichi Uemura. On Church’s thesis in cubical assemblies. arXiv preprint,
2019. arXiv:1905.03014.

47 Andrew W Swan. Oracle modalities. Second International Conference on Homotopy Type The-
ory (HoTT 2023), 2023. URL: https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_
abstract_35.pdf.

48 The Coq Development Team. The Coq proof assistant, June 2023. doi:10.5281/zenodo.
8161141.

49 Jaap van Oosten. Partial combinatory algebras of functions. Notre Dame Journal of Formal
Logic, 52(4):431–448, 2011. doi:10.1215/00294527-1499381.

https://doi.org/10.2307/2964658
https://doi.org/10.2307/2964658
https://doi.org/10.1090/S0002-9947-1943-0007371-8
https://doi.org/10.2307/1969708
https://doi.org/10.2307/2315573
https://doi.org/10.2307/2315573
https://doi.org/10.1007/978-94-017-3477-6
https://doi.org/10.4064/fm-34-1-81-112
https://ps.uni-saarland.de/~mueck/bachelor.php
https://ps.uni-saarland.de/~mueck/bachelor.php
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.2307/2273473
https://doi.org/10.1215/00294527-2018-0015
https://arxiv.org/abs/1905.03014
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1215/00294527-1499381

A Many-Sorted Epistemic Logic for Chromatic
Hypergraphs
Éric Goubault # Ñ

LIX, CNRS, École Polytechnique, IP-Paris, Palaiseau Cedex, France

Roman Kniazev # Ñ

LIX, CNRS, École Polytechnique, IP-Paris, Palaiseau Cedex, France
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-Sur-Yvette, France
Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Jérémy Ledent # Ñ

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our
logic introduces a clear distinction between participating agents and the environment. This allows
to express local properties of agents and global properties of worlds in a uniform way, as well as to
talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic
logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a
generalization of chromatic simplicial complexes, which were recently used to model knowledge in
distributed systems. We show that the logic is sound and complete with respect to the intended
semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Modal logics, epistemic logics, multi-agent systems, hypergraphs

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.30

Funding Éric Goubault: The author was partially supported by Agence de l’Innovation de Défense –
AID – via Centre Interdisciplinaire d’Etudes pour la Défense et la Sécurité – CIEDS – (project 2021
– FARO).

Acknowledgements This work benefited from various discussions during Dagstuhl Seminar 23272.

1 Introduction

Epistemic logic is a modal logic that allows formal reasoning about knowledge and belief in
multi-agent systems. At its core lies the knowledge operator denoted Kaφ, which means that
“agent a knows that the formula φ holds”, or simply “a knows φ” for short. Since the work
of [16], epistemic logic has expanded in many directions, studying various operators such as
common knowledge [11], distributed knowledge [6], as well as studying how knowledge evolves
over time, as in public announcement logics [7], temporal epistemic logics [12], or dynamic
epistemic logics [5]. A common feature of those approaches is that they rely on the classic
“possible worlds” semantics of normal modal logics, based of Kripke structures. Indeed, a
model for multi-agent epistemic logic S5n usually consists of a set of possible worlds W ,
and for each agent a, an equivalence relation ∼a ⊆ W × W called the indistinguishability
relation of agent a. The intended semantics of such a model is that an agent a knows that a
formula φ is true, then φ is true in every possible world that is indistinguishable from the
real world for that agent. Formally, this means that the satisfaction relation is defined as
follows, given a model M and a world w ∈ W (thought of as the “real world”):

M,w |= Kaφ iff M,w′ |= φ for every world w′ ∈ W such that w ∼a w
′ (1)

© Éric Goubault, Roman Kniazev, and Jérémy Ledent;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:goubault@lix.polytechnique.fr
https://www.lix.polytechnique.fr/~goubault/
https://orcid.org/0000-0002-3198-1863
mailto:roman@kameronton.com
https://www.irif.fr/~kniazev/
https://orcid.org/0009-0006-7495-9793
mailto:jeremy.ledent@irif.fr
https://www.irif.fr/~ledent/
https://orcid.org/0000-0001-7375-4725
https://doi.org/10.4230/LIPIcs.CSL.2024.30
https://www.dagstuhl.de/23272
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

A recent line of work [9, 4, 3, 10, 18, 8] has been developing a new notion of model for
epistemic logic called simplicial models. This approach was closely inspired by connections
with distributed computing, where simplicial complexes have been very successful in modeling
various models of computation [13]. Compared to Hintikka’s possible worlds semantics, this
new approach represents a shift in perspective. Rather than focusing on the worlds (a.k.a.
global states, in distributed computing terms) as the primary object of study, we instead
focus on the agents’ points of view about the world (a.k.a. local states). A possible world
can then be defined as a set of compatible points of view, one for each agent.

Worlds and views. To illustrate the distinction between possible worlds, and local views
about the possible worlds, we use a classic example originally from distributed computing [14].
Since this paper is not concerned with distributed computing, we instead tell a story about a
card game. Assume there are three agents, A = {a, b, c}, and a deck of four cards, {1, 2, 3, 4}.
We deal one card to each agent, and keep the remaining card hidden, so that each agent only
knows its own card. Our goal is to model this (static) epistemic situation.

In the standard Kripke model semantics, the main step is to identify the possible worlds:
each possible distribution of the cards constitutes a possible world. There are 24 such
distributions, which we can denote by W = {123, 124, 132, 134, 142, 143, 213, 214, . . .}, where
for example the world “123” denotes the situation where agent a (resp. b, c) has received card
number 1 (resp. 2, 3). To get a Kripke model, one must also define the indistinguishability
relations for each agent. For instance, we have 123 ∼a 132. Indeed, from the point of view
of agent a, who holds the same card number 1 in both of those worlds, these two worlds
are indistinguishable. One can check that ∼a defined in this way is indeed an equivalence
relation, with four equivalence classes, and similarly for ∼b and ∼c.

In simplicial models, however, the central notion is that of local view. From the point of
view of agent a, who sees only his own card, there are four possible situations: he can be given
cards 1, 2, 3 or 4. We call these the views of a, denoted by Va = {1a, 2a, 3a, 4a}. Similarly for
the other two agents, we have Vb = {1b, 2b, 3b, 4b} and Vc = {1c, 2c, 3c, 4c}. In order to get a
model, one must moreover define which of those views are compatible. Indeed, a possible
world can now be seen as a set of views, one for each agent. But not every combination is
allowed: in our example, {1a, 1b, 1c} is not a compatible set of views, because at most one
agent can be given the card number 1. As before, there are 24 sets of compatible views,
corresponding to the 24 possible worlds: {1a, 2b, 3c}, {1a, 2b, 4c}, etc.

Surprisingly, shifting our focus from worlds to local views reveals an underlying geometric
structure in this model. Indeed, the structure described above, with a set of views and a
n-ary compatibility relations between those views, is known in mathematics as an abstract
simplicial complex1. Simplicial complexes provide a combinatorial description of topological
spaces. In the picture below, each local view is represented as a vertex, and each set of
compatible views is represented as a triangle between the corresponding three vertices. The
resulting shape is that of a triangulated torus, represented on the right in 3D view, and on
the left as a flattened view with some repeated vertices. Notice that we use colors to indicate
agent names, as we will do in the rest of the paper.

1 Technically, we did not explicitly require the downward-closure property of a simplicial complex. We
will come back to this later when we move on to hypergraph models.

É. Goubault, R. Kniazev, and J. Ledent 30:3

1a 4b 1c 4a 1b 4c 1a

3c 2a 3b 2c 3a 2b 3c

1b 4c 1a 4b 1c 4a 1b

A

A

B

B

This idea led to the definition of a pure simplicial model in [9]. Readers unfamiliar with
simplicial complexes need not worry about technical details, as we will be using hypergraphs
instead in this paper. In the following, we assume the number of agents is |A| = n+ 1.

▶ Definition 1 ([9]). A pure simplicial model M = (V, S, χ, ℓ) is given by:
(V, S) is a pure simplicial complex of dimension n.
χ : V → A assigns agents to vertices, s.t. every simplex has vertices of different colors.
ℓ : V → 2Ap assigns sets of atomic propositions to vertices.

For this notion of model, the satisfaction relation M,w |= φ is defined below, by induction
on the structure of the formula φ. Note that now, the worlds w,w′ are facets of the simplicial
model, i.e., sets of compatible vertices. With that in mind, the previous condition (1) defining
the knowledge operator in Kripke models, is replaced by condition (2). There, the condition
a ∈ χ(w ∩ w′) can be read as “w and w′ share an a-colored vertex”, that is, agent a has the
same local point of view in both worlds. Another discrepancy with respect to Kripke models
is the case of atomic propositions: since the labelling ℓ decorates vertices, not worlds, with
truth values of atomic propositions, we say that a proposition is true in a world when it is
true in one of the vertices.

M,w |= p iff p ∈
⋃

v∈w ℓ(v)
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= ¬φ iff M,w ̸|= φ

M,w |= Kaφ iff M,w′ |= φ for every world w′ such that a ∈ χ(w ∩ w′) (2)

In Definition 1, the requirement to be “pure of dimension n” ensures that every agent is
present in every world of the model. While this is a standard assumption in the epistemic
logic literature, it is often not the case in distributed computing. Indeed, when we study
computational models where processes may crash, one usually ends up with an impure
simplicial model (see e.g. [15]).

Impure simplicial models. The idea of having a different set of agents (processes) in different
possible worlds (executions) is ubiquitous in distributed computing. This situation might
occur when a process crashes during the execution of a protocol; or simply when the set of
participating agents is not known in advance (say, a server concurrently answering requests
from various clients). In reference to the idea of crashed processes, and to be consistent with
previous work on the topic [3, 10, 18, 8], we will say that an agent can be “alive” or “dead”
in a given world. But note that for the time being, we only model static situations, so we
could also say that agents can be “present” or “absent”.

In the epistemic logic literature, the topic of non-participating agents has not been
thoroughly studied. It was briefly considered, e.g. in [6], where it is called a “nonrigid set of
agents”. This formalism is not very handy to work with, as it simply consists of extra data

CSL 2024

30:4 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

on top of the model indicating which agents are alive; and it is easy to circumvent the issue
entirely by considering a special local state for crashed processes. However, in simplicial
models, it is quite natural and straightforward to model worlds with non-participating agents:
we simply remove from Definition 1 the requirement that the model must be pure. This
simple idea led to a line of research on impure simplicial models [3, 10, 18, 8].

While it is clear which class of models we want to consider, we quickly run into issues
when we try to define the semantics of epistemic logic formulas on these models. The crux of
the matter is that we have to decide how to define the satisfaction relation w |= Kaφ, in a
world w where agent a is dead. Two ways of dealing with this have been proposed.

The first approach, called the three-valued semantics [3, 18], claims that such a formula
should be undefined in world w. Formulas can then be either true, false or undefined, hence
the name “three-valued”. Defining when formulas are well-defined is not trivial, as knowledge
operators can be nested and evaluating the satisfaction relation will explore the various
possible worlds of the model. So one first needs to inductively define a judgment w ▷◁ φ,
meaning that the formula φ is well-defined in world w; and then we can define the satisfaction
relation w |= φ on top of it. The resulting logic called S5▷◁

n is fully axiomatized in [18]. It is
a non-normal modal logic, where axiom K : Ka(φ → ψ) → (Kaφ → Kaψ), and even modus
ponens, do not always hold. However, it retains the axiom of truth, T : Kaφ → φ.

The second approach, called the two-valued semantics [10, 8], is obtained by closely
following the correspondence with Kripke models. As such, it yields a normal modal logic,
where axiom K holds. However, the axiom of truth is lost, and only a weaker version remains,
saying that alive agents are truthful: alive(a) ⇒ (Kaφ ⇒ φ). The reason for this is that
dead agents know every formula: when agent a is dead in world w, the judgment w |= Kaφ

is vacuously true, because there is no world w′ satisfying the condition in (2). The resulting
logic is called KB4n; however, small design choices in how we define the models can result in
additional axioms, as has been thoroughly investigated in [8].

This situation is quite unsatisfactory, as both approaches seem to have pros and cons,
and there is no obvious way to tell which one might turn out to be more useful in practice.
In this paper, we introduce a many-sorted logic that avoids entirely the problem of undefined
formulas. Rather than being a third proposal, it subsumes and unifies the previous two
approaches. But before we present the syntax of our logic, let us argue in favor of moving
from simplicial complexes to hypergraphs.

From simplicial complexes to hypergraphs. In pure simplicial models (Definition 1), the
vertices represent points of view of individual agents, and the facets (a.k.a. maximal simplexes)
represent the possible worlds. There are also simplexes of lower dimension, but they do not
seem to have a meaning. They are only here to preserve the geometric structure of the model:
in order to have a triangle, we must also have the three edges of the triangle.

When we move on to impure simplicial models, we are now allowing worlds of different
dimensions. So there is no good reason why only the facets of the model should represent
worlds. In fact, as was shown in [10], having only facets as worlds results in some dubious
axioms. The idea that all simplexes, not only the facets, could represent worlds was briefly
discussed in [4], and later studied in [3, 18]. The idea was further generalized in [8], where
models are equipped with additional data (called a covering) allowing to explicitly say which
simplexes are worlds or not. Thus, models can be minimal (only the facets are worlds),
maximal (all simplexes are worlds), or anything in-between. For instance in Figure 1 (left),
the model has only one facet (the blue triangle) but three worlds: w1 is the triangle itself,
where three agents are alive; w2 is an edge, where only two agents are alive; and w3 is a
vertex, where only one agent is alive.

É. Goubault, R. Kniazev, and J. Ledent 30:5

w1

w2

w3

Figure 1 A simplicial model with three worlds, and the equivalent hypergraph representation.

Still, the simplicial model depicted on the left has some simplexes that play no epistemic
role (the two edges and two vertices with no label). This introduces a strange discrepancy
between simplexes that represent worlds, and simplexes that do not. Our proposal, which is
quite mild from a technical standpoint, is to simply get rid of those extra simplexes. The
resulting structure is called a hypergraph.

▶ Definition 2. A (simple) hypergraph H is given by a pair (V,E), where V is a set of
vertices, and E ⊆ 2V is a set of hyperedges (or just “edges”, when clear from context).

Note that the only difference between a hypergraph and a simplicial complex, is that
the set E of hyperedges does not have to be downward-closed. A hypergraph is depicted in
Figure 1 (right). It consists of three vertices V = {x, y, z} (named from left to right), and three
hyperedges E = {{x}, {x, y}, {x, y, z}}. Hyperedges are represented by a closed curve around
the corresponding vertices, not unlike a Venn diagram. By moving from simplicial complexes
to hypergraphs, we seem to lose the geometric intuition behind simplicial complexes. But it
can be easily recovered by computing the downward closure of E: if (V,E) is a hypergraph,
then (V, ↓E) is a simplicial complex.
▶ Remark 3. For readers familiar with the hierarchy of models introduced in [8], hypergraph
models fit nicely within that picture, as a strict subclass of epistemic covering models.
They are not as general as simplicial sets, as there cannot be complex connectivity between
hyperedges. They can be either minimal, or maximal, or in-between. Simple hypergraphs
as in Definition 2 give rise to proper models, but as we will see later, we can also model
non-proper behavior by allowing several hyperedges with the same sets of vertices.

Many-sorted epistemic logic. We now describe the main contribution of the paper. We
propose a new syntax for epistemic logic formulas where agents can be dead or alive. The
central idea is to introduce several sorts of formulas2: world formulas are to be interpreted
in a world of the model, and agent formulas are interpreted in a point of view of a particular
agent (i.e. in a vertex, for hypergraph models). We usually denote world formulas in capital
letters Φ,Ψ, and agent formulas in lowercase, with a subscript indicating the name of an
agent φa, ψa. Thus, our logic has |A| + 1 sorts, one for each agent a ∈ A, and an extra one
for the world formulas.

A key observation is the following. Let us look again at the semantics of the knowledge
operator for simplicial models, condition (2). It says that an agent a knows φ in a world w,
precisely when φ holds in every world w′ in which a has the same point of view. In fact, this
definition does not refer to the “real world” w; it only refers to the point of view of a in this

2 A familiar example of a many-sorted modal logic is CTL*, where the syntax is divided between state
formulas and path formulas.

CSL 2024

30:6 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

world! This suggests that the knowledge operator Ka should really be interpreted not in
a world, but in a point of view of agent a. This gives us the following syntax for agent a’s
formulas, where pa ranges over atomic propositions concerning agent a:

φa ::= pa | ¬φ | φ ∧ ψ | KaΦ

This gives us the first |A| sorts of our logic, with one sort of agent formulas for each a ∈ A.
Note that agent formulas can only talk about one particular agent. For instance, the
expression KaΦ ∧ KbΨ is not a syntactically valid formula. Also note that Φ is a world
formula. We now explain the syntax of world formulas.

Since agents can be alive or dead, we cannot talk about the knowledge of a specific agent
in world formulas, or we will run into the issue of how to define the knowledge of a dead
agent. Instead, we introduce two new modal operators, Ea and Aa, that can test whether an
agent exists in this world. As the names indicate, Ea has an existential flavor, while Aa is its
universal counterpart. However, note that they are not binders: Ea should not be read as
“there exists an agent a such that”. Rather, the intuitive meaning of those operators is the
following:

Eaφa: “there exists a point of view for agent a such that φa holds”.
Aaφa: “for every point of view of agent a, φa holds”.

The syntax of world formulas is as follows, where pe denotes atomic propositions that do
not talk about specific agents (‘e’ stands for environment here).

Φ ::= pe | ¬Φ | Φ ∧ Ψ | Eaφa | Aaφa where a ∈ A

Note that, unlike with agent formulas, we have |A|-many modal operators to choose from.
So, for example, the following world formula is syntactically valid: EaKaΦ ∧ AbKbΨ. It is
read “there exists a point of view of agent a where a knows Ψ, and for every point of view
of agent b, b knows Ψ”. Observe how whenever we want to talk about the knowledge of an
agent, we are forced to explicitly quantify over the points of view of that agent. This avoids
entirely the question of “undefined formulas”, where we had to make an arbitrary decision
about the meaning of knowledge for dead agents.

▶ Remark 4. It might seem strange to have a modality Aa quantifying over “all points of
view of agent a”, when there can be at most one point of view per agent in a given world.
First, note that when agent a is absent in a world, the operator Aa is vacuously true, while
Ea is false. So these two operators do behave differently in hypergraph models. Secondly,
one could consider an extension of hypergraph models where an agent can have multiple
points of view about the world. We briefly explore this idea in Section 4.3, where we relate
it to the neighborhood semantics of epistemic logic [17].

In some sense, our logic can be viewed as a refinement of the usual knowledge operator Ka

into two distinct operators: AaKaΦ is the 2-valued semantics of [10, 8], which is vacuously
true when agent a is dead; while EaKaΦ is closer to the 3-valued semantics of [3, 18]

Related work. As we already explained, this work is directly related to the line of work on
simplicial models [9], especially those that deal with impure simplicial complexes [3, 10, 18, 8].
Recently, a single-sorted epistemic logic on hypergraphs was considered in [2] to study weakly
aggregative logics. There, vertices of hypergraphs are not colored as they are interpreted
as worlds, so these models lie in-between epistemic frames and neighborhood frames. A
framework that uses adjoint modalities was studied in [19] in the context of epistemic

É. Goubault, R. Kniazev, and J. Ledent 30:7

modalities “agent is uncertain about” and “agent has information that”. In interpreted
systems [6], epistemic frames are generated by explicitly modeling the local states of agents
and global states of the environment. However, at the level of syntax, no difference is made
between local properties of the agents, and global properties of the environment.

Plan of the paper. In Section 2, we start by describing the syntax of the logic 2CH and its
semantics in chromatic hypergraphs. We give an axiomatization of the logic in Section 3,
where we prove the completeness result in Theorem 23. In Section 4, we relate hypergraph
models with partial epistemic models by showing an isomorphism of categories (Theorem 26).
We use this equivalence to formulate a translation from KB4n-formulas into 2CH-formulas,
showing that the latter is a conservative extension of the former (Theorem 30).

2 Two-level chromatic hypergraph logic 2CH

We introduce a many-sorted refinement of multi-agent epistemic logic KB4n studied in [10].
Our logic has |A| + 1 sorts of formulas: |A| sorts of agent formulas, one per agent, and
one sort of world formulas. Since this logic is intended to be interpreted on chromatic
hypergraphs (see Section 2.2), we name it the 2-level Chromatic Hypergraph Logic, 2CH. The
intended interpretation of agent formulas is to describe local information that belongs to a
point of view of a specific agent. On the other hand, world formulas talk about properties of
the environment, or world. As we will see in Section 3, this many-sorted logic, or two-level
logic, embeds faithfully the logic KB4n; but it also makes explicit (and not up to model
interpretation as in [10]) the various choices about how much agents can observe each other’s
presence or absence.

2.1 Syntax
Fix a finite set A of agents. For each a ∈ A, we have a set Apa of atomic propositions
about agent a. We also have a set Ape of atomic propositions for the environment. We use
lowercase letters with subscripts φa, ψa, . . . to denote agent formulas, and uppercase letters
Φ,Ψ, . . . for world formulas.

▶ Definition 5. The language of the logic 2CH is defined as follows. For each agent a ∈ A,
there is a sort of agent formulas generated by the following grammar:

φa ::= pa | ¬φ | φ ∧ ψ | K̂aΦ where pa ∈ Apa

The sort of world formulas is generated by the following grammar:

Φ ::= pe | ¬Φ | Φ ∧ Ψ | Eaφa where a ∈ A and pe ∈ Ape

▶ Remark 6. We emphasize that this is truly an (|A| + 1)-sorted logic, not a 2-sorted one. In
particular, it is important to notice that the indexes in the operators K̂a and Ea play a very
different role. To illustrate that, let us fix two distinct agents a, b ∈ A. To write an a-sorted
agent formula φa, we are only allowed to refer to agent a’s atomic propositions; and we are
only allowed to use the modal operator K̂a, with index a. No reference to agent b is allowed.
Similarly, an agent formula φb of sort b is not allowed to refer to agent a. Crucially, the
following formula is ill-formed: K̂aΦ ∧ K̂bΨ. It cannot be generated by the grammar φa of
a-sorted formulas, nor by the grammar φb of b-sorted formulas. Thus, it is not a valid formula
in our logic. On the other hand, the sort of world formulas behaves much closer to the usual
language of multi-agent epistemic logic. In a world formula, we are allowed to choose between
|A|-many modal operators Ea. Thus, a world formula of the form Eaφa ∧ Ebφb is allowed.

CSL 2024

30:8 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

We will use standard propositional connectives like true, ∨, ⇒, defined as usual. There
are also dual modalities: KaΦ := ¬K̂a¬Φ, and Aaφa := ¬Ea¬φa. Modalities are read as
follows: K̂a means “agent a considers possible that”, Ka means “agent a knows that”, Ea

means “there exists a point of view of agent a such that”, and Aa means “for all points of view
of agent a”. We call K̂a and Ea existential modalities and Ka and Aa universal modalities.

2.2 Semantics
A hypergraph is a generalization of a graph, where instead of just edges between pairs of
vertices, one has hyperedges that can connect multiple vertices at once. In the introduction, we
defined simple hypergraphs (Definition 2), to explain the proximity with simplicial complexes.
In fact, we will be slightly more general than that, and allow multiple hyperedges to have the
same set of vertices; this will allow us to model non-proper behavior. Namely, a (non-simple)
hypergraph H is a triple (V,E, P), where V is the set of vertices, E is the set of hyperedges,
and P : E → 2V assigns to each hyperedge a set of vertices.

In the context of multi-agent systems, we need moreover to consider chromatic hyper-
graphs, where each vertex is assigned an agent name. This could be done by adding an extra
piece of data χ : V → A, as in chromatic simplicial complexes [9]. Instead, we tweak the
definition a little bit in order to make explicit the set of vertices assigned to each individual
agent. This is similar to the definition of chromatic semi-simplicial sets in [8].

▶ Definition 7. A chromatic hypergraph H is a tuple (E, {Va}a∈A, {pra}a∈A), where:
E is a set of hyperedges,
for all a ∈ A, Va is the set of views of agent a,
for each agent a ∈ A, pra : E → Va is a surjective partial function. Additionally, we
require that for each e ∈ E, pra(e) is defined for at least one a ∈ A.

Indeed, defining V =
⋃

a∈A Va as the total set of vertices of a chromatic hypergraph, and
P (e) = {pra(e) | a ∈ A} ⊆ 2V , we can view H as a regular hypergraph. We will use the
words view and vertex interchangeably, as well as world and hyperedge. Given a world e ∈ E,
when pra(e) is undefined, we say that agent a is dead in e. Otherwise, a is alive in e, and we
call pra(e) the view of a in e. Moreover, when pra(e) = v, we say that v belongs to e, or that
e contains v, and occasionally write v ∈a e. If a hyperedge consists of views v0, . . . vn−1 then
we say that these views are compatible. Let us explain each condition imposed on pra.

pra is surjective: every view belongs to at least one world.
pra is partial: not all agents are required to be alive in a world.
pra is functional: every world contains at most one view of each agent.
pra(e) is defined for at least one a ∈ A: every world contains at least one alive agent.

▶ Remark 8. In chromatic hypergraphs, views and worlds are of equal importance: they are
both described explicitly in the sets E and (Va)a∈A. This contrasts with Kripke structures,
where the set of worlds is explicit, but the views are implicit in the indistinguishability
relations. Recent work on simplicial models has highlighted the importance of considering
the views as a first-class notion. Here, we take this idea one step further with our two-level
syntax, where world formulas talk about properties of the world, and agent formulas talk
about properties of an agent’s point of view. We also avoid choosing between local vs. global
atomic propositions (in the sense of [9]): agent formulas can talk about (local) properties of
agent a ∈ A using atoms in Apa, and world formulas can talk about (global) properties of
the world using atoms in Ape.

É. Goubault, R. Kniazev, and J. Ledent 30:9

▶ Example 9. Three examples of chromatic hypergraphs are depicted in Figure 2. The three
agents a, b, c are represented as colored shapes , , , respectively. In all three hypergraphs,
there is only one view per agent.

On the leftmost figure, all possible combinations of views are compatible, giving 7
hyperedges. Intuitively, in this situation, the agents do not know whether other agents exist.
A scenario like this is standard in distributed computing, where agents are processes, and
they do not know whether other processes are concurrently running.

The hypergraph depicted in the middle has a single hyperedge containing the three views.
In this situation, all agents know that everyone is alive, as it is the only possible world. This
represents a scenario where every agent has guarantees that the other two agents are running.

The rightmost figure is a hypergraph with three hyperedges, each of which contains two
views. It represents a situation where the points of views are pairwise compatible, but not
all three of them are compatible. That is, there is no possible world that realizes all three of
them at once. This could model a scenario where each agent receives a message from one of
the other two agents, but they do not know who sent the message. Another interpretation
might be in a quantum setting, as an example of contextuality [1].

H1 H2 H3

Figure 2 Three examples of chromatic hypergraphs H1, H2, H3.

▶ Definition 10. A chromatic hypergraph model is a tuple (H, {ℓa}a∈A, ℓe), where H is a
chromatic hypergraph, and ℓa : Apa → P (Va), ℓe : Ape → P (E) are valuation functions.

From now on, we sometimes omit the adjective “chromatic” when clear from context.
We can now define the semantics of 2CH formulas with respect to chromatic hypergraph

models. Given a hypergraph model H , the satisfaction relations are defined for every sort by
mutual induction. As expected, world formulas are interpreted in a world e ∈ E, and agent
formulas are interpreted in a point of view v ∈ Va of that agent.
H, v |=a pa iff v ∈ ℓa(pa)
H, v |=a ¬φ iff H, v ̸|=a φ
H, v |=a φ ∧ ψ iff H, v |=a φ and H, v |=a ψ

H, v |=a K̂aΦ iff H, e |=e Φ for some e ∈ E
such that pra(e) = v

H, e |=e pe iff e ∈ ℓe(pe)
H, e |=e ¬Φ iff H, e ̸|=e Φ
H, e |=e Φ ∧ Ψ iff H, e |=e Φ and H, e |=e Ψ
H, e |=e Eaφ iff H, v |=a φ for some v ∈ Va

such that pra(e) = v

2.3 Examples
Let us illustrate the semantics of 2CH on a few examples.

▶ Example 11. Consider again the three hypergraphs from Example 9, which we denote by
H1, H2, H3, from left to right. For now, we do not worry about atomic propositions: we just
need to assume that the sets Ap∗ are non-empty, in order to get the constant true = p ∨ ¬p.
Also, recall that the agents are depicted as a = , b = , and c = .

CSL 2024

30:10 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

In the model H1, let us consider the hyperedge e = { , }. Then we have H1, e |= Eatrue
and H1, e |= Ebtrue, but H1, e ̸|= Ectrue. Indeed, the edge e does not contain a point of view
of agent c, i.e., prc(e) is undefined. In fact, the world formula “Eatrue” is satisfied exactly in
the worlds where agent a is alive. So let us write alive(a) := Eatrue, so that H, e |= alive(a)
iff e contains a point of view of a, that is, iff pra(e) is defined.

We can now talk about whether agents know that other agents are alive. Let v = be
the (unique) point of view of a in the model. In model H1, all combinations of alive and dead
agents are possible. So as expected, H1, v |= ¬Kaalive(b). In model H2 however, a knows
that all agents are alive, since this is the only possible world: H2, v |= Ka(alive(b) ∧ alive(c)).
Finally in model H3 the situation is more complicated: a knows that another agent is alive,
but does not know which one. Thus, H3, v |= Ka(alive(b)∨alive(c))∧¬Kaalive(b)∧¬Kaalive(c).

▶ Example 12 (2-agent binary input model with solo executions). As an example where atomic
propositions play a role, we consider the situation where two agents are given a binary input
value, either 0 or 1. Moreover, there can be solo executions (a.k.a. initial crash failures, in
distributed computing), so that agents do not know if they are running alone or not. As
before, the agents are depicted as a = and b = . The sets of atomic propositions are
Apa = {0a, 1a}, Apb = {0b, 1b}, and Ape = {solo}. The agent atomic propositions hold in
the points of view indicated on the picture below. The environment atomic proposition solo
holds in the four singleton hyperedges where only one agent is alive.

0a

1a

0b

1b

solo solo

Let v be the top-left vertex, where agent a has input value 0. Then by definition H, v |= 0a.
Moreover, a does not know whether agent b is alive: H, v |= ¬KaEbtrue, which we could also
reformulate as H, v |= ¬Kasolo, that is, a does not know whether this is a solo execution.
We can also say that a considers possible that b is alive with value 1: H, v |= K̂aEb1b. As
a last example, we can express that a knows that if b is alive, its value is either 0 or 1:
H, v |= Ka(¬solo ⇒ Eb(0b ∨1b)). Alternatively, we could have used the operator Ab to express
the same fact without a conditional: H, v |= KaAb(0b ∨ 1b).

2.4 Safe and unsafe knowledge

In traditional epistemic logics, formulas are interpreted in a world of the model. In the logic
2CH, to talk about the knowledge of an agent in a world, we first need to quantify over
the points of view of this agent. Since there are two quantifiers Ea and Aa, we obtain two
different knowledge operators on worlds, which we call safe and unsafe knowledge.

Ksafe
a Φ := EaKaΦ Kunsafe

a Φ := AaKaΦ

These two operators only differ in the knowledge of dead agents. Indeed, given a world e

and an agent a which is dead in e (i.e., pra(e) is undefined), we have H, e ̸|= Ksafe
a Φ (dead

agents know nothing), whereas H, e |= Kunsafe
a Φ (dead agents know everything). However,

when the agent a is alive in e, the two notions agree: H, e |= Ksafe
a Φ ⇐⇒ H, e |= Kunsafe

a Φ.

É. Goubault, R. Kniazev, and J. Ledent 30:11

3 Axiomatics

The logic 2CH has all the usual inference rules of classical propositional logic (such as modus
ponens) together with classical tautologies. It also has the following rules for modalities. We
annotate the ⊢ symbol with the sort of the corresponding formula, a ∈ A for agent sorts and
e for the world sort.

⊢e Φ
⊢a KaΦ

Nec-a
⊢a φ

⊢e Aaφ
Nec-e

⊢e Φ → Ψ
⊢a ♡Φ → ♡Ψ

RM
⊢a φ → ψ

⊢e ♡φ → ♡ψ
RM’

⊢e Φ → Aaψ

⊢a K̂aΦ → ψ
============ Adj-1

⊢a φ → KaΨ

⊢e Eaφ → Ψ
============ Adj-2

where ♡ ∈ {Ea,Aa} for rule RM, and ♡ ∈ {K̂a,Ka} for rule RM’. The first two rules are
necessitation rules. The next two rules are monotonicity rules. The last two rules are called
adjunction rules, and the double horizontal bar indicates that they go in both directions:
top-to-bottom and bottom-to-top. They describe the interaction between the two pairs of
modalities. Finally, we have the following axiom schemes for modalities:

⊢a φ → K̂aEaφ : every point of view belongs to some world;
⊢a K̂aEaφ → φ : every world has at most one point of view of a given agent;
⊢e

∨
a∈A Eatrue : every world contains at least one point of view.

As we will see, the axiom schemes for modalities correspond to the defining properties
of chromatic hypergraphs. Therefore, we will call the first axiom scheme surjecitivity, the
second one functionality, and the third one non-emptiness.

▶ Proposition 13. The logic 2CH is sound with respect to chromatic hypergraphs.

3.1 Playing with the logic 2CH
In this logic, we can show that the universal modalities satisfy axiom K:

▶ Proposition 14. For ♡ ∈ {Aa,Ka}, the axiom K♡ holds: ♡(φ → ψ) → (♡φ → ♡ψ).

We give a list of useful formulas that are derivable in the logic 2CH.

▶ Proposition 15. The following statements are derivable in the two-level logic 2CH:

1. Eaφ → Aaφ

2. KaΦ → KaEaKaΦ
3. EaKaΦ → Φ

4. Φ → AaK̂aΦ
5. φ → KaEaφ

6. KaΦ → K̂aΦ

Here is an intuitive explanation of these formulas:
1. If φ holds in a point of view of a, then it holds in all points of view of a. That is, there

can be at most one point of view per world.
2. This is a form of positive introspection: if an agent knows something, then he knows that

he knows it. However, we can put stress on the last “he”, that is, “if he knows something,
then he knows that he knows it”.

3. This is a form of veracity: if a fact about a world is known by someone, then it is true.
4. If a certain fact holds in a world, then the agents in this world consider this fact possible.

This is related to negative introspection.
5. Agents know the local facts about themselves.
6. This is the usual modal axiom D. It reflects the fact that every point of view belongs to

at least one world.

CSL 2024

30:12 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

In [9], the use of local atomic propositions leads to a so-called assumption of locality,
Ka(pa,x) ∨Ka(¬pa,x). In hypergraph models, valuations are local by construction:

▶ Proposition 16. For any pa ∈ Apa, the formula KaEapa ∨ KaEa¬pa is derivable in 2CH.

Proof. By adjunction rules, we have K̂aAapa → pa and pa → KaEapa. By cut rule, we have
K̂aAapa → KaEapa. This is equivalent to KaEapa ∨ KaEa¬pa by propositional logic. ◀

Note that the above proof does not use the fact that pa is atomic, so in fact, an agent
can decide any formula about itself. That is, for any φ, KaEaφ ∨ KaEa¬φ is derivable.

3.2 Completeness
The proof of completeness uses the standard canonicity argument, extended to the many-
sorted case. There is nothing surprising: the canonical model consists of the maximal
consistent sets of formulas, now of several sorts. These sets satisfy standard properties, and
together form a chromatic hypergraph.

▶ Definition 17. A set of formulas S∗ of sort ∗ is inconsistent if false can be derived from
it. Otherwise, it is called consistent. A consistent set of formulas is maximal if it is not a
proper subset of any other consistent set of formulas.

▶ Proposition 18. Maximal consistent sets (MCS) of formulas of sort ∗ are closed under
modus ponens: for any formula ξ of sort ∗, either ξ ∈ S∗ or ¬ξ ∈ S∗, and every (non-
maximal) consistent set of formulas of sort ∗ is contained in a maximal consistent set of
formulas of sort ∗.

▶ Definition 19. The canonical hypergraph model consists of the following:
the set of hyperedges is E = {Se | Se is a MCS of sort e};
for each agent a, the set of vertices is Va = {Sa | Sa is a MCS of sort a};

together with relations Ra ⊆ E × Va for every agent a, which are defined as follows: SERaSa

iff for all formulas Φ, if Φ ∈ SE, then K̂aΦ ∈ Sa. The valuation function is defined by:
ℓ∗(p∗) = {S∗ | p∗ ∈ S∗}.

▶ Proposition 20. In the canonical model, if SERaSa, if KaΦ ∈ Sa, then Φ ∈ SE.

▶ Lemma 21. The canonical model is a chromatic hypergraph, that is, Ra is surjective,
functional, and for any SE there is Sa such that SERaSa for at least one a.

Proof. First, suppose that SERaSa, SERaS
′
a, and Sa ≠ S′

a. It means that there is a formula
φ which is in Sa, but is not in S′

a. By adjoint axiom and modus ponens, KaEaφ is in
Sa. By Proposition 20, Eaφ is in SE . Using the definition of the canonical model, K̂aEaφ

belongs to S′
a. From there, by functionality axiom and modus ponens, φ ∈ S′

a, which is a
contradiction. Thus, Sa = S′

a.
Second, we need to show that in the canonical model every vertex belongs to a hyperedge.

Assume this is not the case, that is, there is a vertex Sa that does not belong to any
hyperedge. It means that there is no maximal consistent set of formulas that contains
S = {Φ | KaΦ ∈ Sa}. In particular, it means that S is itself not consistent, that is, there is a
finite set of formulas {Φi} such that

∧
i Φi → false is derivable. By applying necessitation,

we get that Ka(
∧

i Φi → false) is derivable, thus belongs to Sa. As Ka distributes over
conjunction, and every AaΦi is in Sa, we get that Ka

∧
i Φi is in Sa. Applying modus ponens,

we get that Kafalse is in Sa. Using surjectivity axiom, we get that false is in Sa, that is Sa is
not consistent, which is a contradiction.

É. Goubault, R. Kniazev, and J. Ledent 30:13

Lastly, we need to show that every hyperedge contains some vertex. Suppose it is not
the case, that is there is a hyperedge SE that does not contain any vertex. It means that
for every a, the set K̂aSE is not consistent. Thus, for all a, there is a finite set of formulas
{Φa

i } ⊂ SE , such that
∧

i K̂aΦa
i → false is derivable. We now show that this implies that SE

is not consistent. By applying necessitation, we get that Aa(
∧

i K̂aΦa
i → false) is derivable

for every a. By (K) and modus ponens, we derive Aa(
∧

K̂aΦa
i) → Aafalse. Combining them

all together, we have that
∧

a

∧
i(AaK̂aΦa

i) →
∧

a Aafalse is derivable too. The antecedent is
in SE because every Φa

i is in SE and Φ → AaK̂aΦ is an axiom. Thus,
∧

a Aafalse is in SE ,
which means that SE is not consistent since

∨
a Eatruea is an axiom, which is its negation.

We have a contradiction, which means that every hyperedge contains some vertex. ◀

▶ Lemma 22. In the canonical model, S∗ |=∗ ξ iff ξ ∈ S∗.

▶ Theorem 23. The logic 2CH is complete with respect to chromatic hypergraph models.

4 Links to related work

4.1 Equivalence with partial epistemic frames
Let us recall first the definition of a partial epistemic frame, which has been one of the main
models used in the study of epistemic logics such as KB4n in [10]:

▶ Definition 24. Given the set of agents A, a partial epistemic frame M consists of a set of
worlds M together with a family of partial equivalence relations {∼a}a∈A, such that for every
w ∈ M , w ∼a w for at least one a ∈ A. A morphism of partial epistemic frames is a function
f : M → M ′ such that for every a ∈ A and w,w′ ∈ M , w ∼a w

′ implies f(w) ∼a f(w′).

We can transform a partial epistemic frame into a chromatic hypergraph, and vice versa,
using the following construction. Suppose we are given a partial epistemic frame M. We
construct a chromatic hypergraph η(M) by setting E = M and Va = M/∼a

, that is the
set of hyperedges is exactly the set of worlds, and the set of vertices of color a is the set of
equivalence classes of ∼a. We then set pra(w) to be [w]a, that is the equivalence class of w
under ∼a. It is easy to check that this indeed defines a chromatic hypergraph.

Conversely, given a chromatic hypergraph H, we can construct a partial epistemic frame
κ(H). We set the set of worlds M to be equal to the set of hyperedges of H, and e ∼a e

′ if
and only if e and e′ share an a-colored vertex. This yields a partial equivalence relation.

These maps can be seen as the dual hypergraph construction: if H = (V,E) is a (non-
chromatic) hypergraph, then H∗ is the hypergraph (E, V) where the hyperedges are the
vertices of H and the vertices are the hyperedges of H . Partial epistemic frames can be seen
as hypergraphs that have colored hyperedges which are defined by equivalence classes. The
correspondence is exemplified in Figure 3.

η

κ

Figure 3 Example of correspondence between chromatic hypergraphs and frames.

CSL 2024

30:14 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

In fact, η and κ can be extended to morphisms of partial epistemic frames and chromatic
hypergraphs, giving an equivalence of categories. First, we need to define the corresponding
morphisms of chromatic hypergraphs:

▶ Definition 25. A morphism of hypergraphs f : H → H ′ is a family of functions fa : Va → V ′
a

for each agent a, together with a function fe : E → E′ such that for all a ∈ A, if pra(e) = v

then pr′
a(fe(e)) = fa(v).

▶ Theorem 26. The category of partial epistemic frames is isomorphic to the category of
chromatic hypergraphs. In particular, for any chromatic hypergraph H, η(κ(H)) is isomorphic
to H, and for any partial epistemic frame M, κ(η(M)) is isomorphic to M.

In light of Theorem 26, chromatic hypergraphs and partial epistemic frames contain
exactly the same information. So, in theory, we could have defined the semantics of 2CH
in partial epistemic frames. However, this would be quite unnatural to do, since epistemic
frames do not have a tangible notion of point of view: we would have to attach atomic
propositions, and interpret agent formulas, in the equivalence classes of ∼a.

Instead, we can still embed partial epistemic models (with only world atomic propositions)
into a subclass of chromatic hypergraphs models, such that Apa = ∅ for every agent. From
this, we can extend Theorem 26 to work at the level of models:

▶ Corollary 27. The category of partial epistemic models is isomorphic to the category of
chromatic hypergraph models with empty sets of atomic propositions for agents.

4.2 Translation from KB4n to 2CH
We can use the equivalence of epistemic frames and hypergraphs for showing how the logics
KB4n and 2CH are related: we will show that 2CH is a conservative extension of KB4n + NE,
where axiom NE ensures that there is an alive agent in each world (see [10] for further details).
From semantics side, the worlds of epistemic frames are the hyperedges of hypergraphs, thus
the formulas of KB4n are to be translated to the world formulas of 2CH. In particular, when
defining the translation, we set the set of world atomic propositions to be the set of atomic
propositions of KB4n. The translation of formulas is defined recursively as follows:

⌜p⌝ := p ⌜¬Φ⌝ := ¬⌜Φ⌝ ⌜Φ ∧ Ψ⌝ := ⌜Φ⌝ ∧ ⌜Ψ⌝ ⌜KaΦ⌝ := AaKa⌜Φ⌝

Essentially, this translation interprets the knowledge operator of KB4n using the unsafe
knowledge operator described in Section 2.4. So, if in a given world agent a is dead, ⌜KaΦ⌝
will be vacuously true.

▶ Proposition 28. For a partial epistemic frame M and a formula Φ of KB4n, M, w |= Φ
iff η(M), η(w) |=e ⌜Φ⌝.

Proof. We show the statement by induction on the structure of Φ. For atomic propositions,
as well as boolean connectives, the proof is trivial. For the modality, we have: M, w |= KaΦ
if and only if for all w′ ∈ M such that w ∼a w

′, M, w′ |= Φ. By induction, this is equivalent
to for all w′ ∈ M such that w ∼a w

′, η(M), η(w′) |= ⌜Φ⌝. By definition of η, it is the same
as for all hyperedges e ∈ η(M)E that share an a vertex with η(w), η(M), e |= ⌜Φ⌝. This is
equivalent to η(M), η(w) |= ⌜KaΦ⌝. ◀

▶ Corollary 29. Φ is valid in a partial epistemic frame M iff ⌜Φ⌝ is valid in η(M).

Using this and Theorem 23, we can show that 2CH is a conservative extension of KB4n:

É. Goubault, R. Kniazev, and J. Ledent 30:15

▶ Theorem 30. For every KB4n-formula Φ, ⊢KB4n+NE Φ if and only if ⊢e ⌜Φ⌝.

Proof. By completeness, for KB4n we have ⊢KB4n+NE Φ ⇔ |= Φ. By Corollary 29, we have
|= Φ ⇔ |=e ⌜Φ⌝. And by completeness for 2CH, we have |=e ⌜Φ⌝ ⇔ ⊢e ⌜Φ⌝. ◀

As a corollary, we get that the combined modality AaKa satisfies axioms K, B, and 4.
▶ Remark 31. Similarly, one can wonder which logic we would get if we translate formulas
using instead the safe knowledge operator Ksafe

a Φ = EaKaΦ. First thing to note is that this
does not yield the three-valued logic S5▷◁

n of [18]3. We can show that the safe knowledge
modality satisfies axioms K and T. However, this modality is not normal as the necessitation
rule is not admissible: true is valid in every world, but it is not the case that EaKatrue is
valid in every world. Thus, we cannot derive EaKatrue from true.

4.3 Correspondence with neighborhood frames
Chromatic hypergraphs require that every hyperedge contains at most one vertex of each
color. So in every world, an agent can have either 0 or 1 point of view. But what happens
if we drop this condition and allow agents to have multiple points of view about a given
world? Technically, this can be achieved by replacing, in Definition 7, the partial function
pra : E → Va by a relation pra ⊆ E × Va, i.e., get rid of the functionality requirement.

This leads to an intriguing connection with neighborhood frames [17]. In this subsection
we will not prove formal results, but rather give an intuition of the connection between the
two notions, applying a similar construction as in Section 4.1.

Neighborhood frames generalize epistemic frames by allowing agents to have multiple
points of view on the same world, which on the side of hypergraphs corresponds exactly to
the situation when we allow hyperedges to contain multiple vertices of the same color:

▶ Definition 32 ([17]). A neighborhood frame is a pair M = (S, {Na}a∈A), where S is a set
of states, and for every agent a ∈ A, Na is a function that assigns to every state s ∈ S, a set
Na(s) ⊆ 2S called the a-neighborhoods of s.

An example of a situation where neighborhood frames are required is as follows. Suppose
we have two processes, communicating through shared memory. The memory has two cells,
and each cell stores a bit of information: 0 or 1. Processes are given access to memory cells
arbitrarily, and both can be assigned the same cell. They know which cell is assigned to
them, and they know the value that is stored in this cell, that is, they read the value of
the cell. Therefore, a process can have two points of view on the same situation, depending
on which cell it is given access to. Assume for example that the shared memory stores
values (0, 1). Process a, when assigned the first cell, knows that the memory stores 0, and
when assigned the second cell, knows that the memory stores 1. So the set of possible states
is S = {(0, 0), (0, 1), (1, 0), (1, 1)}. In state (0, 1), the two possible points of view of process a
are described by neighborhoods: Na((0, 1)) = {{(0, 0), (0, 1)}, {(0, 1), (1, 1)}}

We can also make sense of this example using generalized chromatic hypergraphs, where
we allow hyperedges that contain multiple points of view of the same agent. In that case,
we can model our example as follows. We have two agents, a and b. There are four
hyperedges corresponding to four possible states of the memory: (0, 0), (0, 1), (1, 0), and
(1, 1). Each agent has four possible points of view, depending on which memory cell is

3 A translation of S5▷◁
n into 2CH is possible, but it is more involved. One must first translate the

well-definedness judgment, then set ⌜KaΦ⌝ := Ksafe
a (well-defined(Φ) ⇒ ⌜Φ⌝).

CSL 2024

30:16 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

assigned (left or right), and which bit is read (0 or 1). Let us denote the vertices of agent a
by {(a,m, b) | m ∈ {L,R}, b ∈ {0, 1}}, and similarly for agent b. Then, a vertex (a,m, b)
belongs to a hyperedge (xL, xR) if and only if xm = b.

Recall the duality construction of Figure 3, switching the role of vertices and hyperedges.
In our case, the set of hyperedges becomes the set of states, and the set of vertices defines
the neighborhood function. In our example, the hyperedge/state s = (0, a) contains two
vertices of agent a: (a, L, 0) and (a,R, 1). The first vertex corresponds to the a-neighborhood
{(0, 0), (0, 1)}, which is the set of hyperedges containing this vertex. Similarly, the second
vertex corresponds to the neighborhood {(0, 1), (1, 1)}. This recovers the set Na(s) of the
corresponding neighborhood frame. Note that we do not obtain all neighborhood frames in
this way, but only those in which a world belongs to all of its neighborhoods.

5 Conclusion

In this paper, we proposed a many-sorted modal logic for reasoning about knowledge in multi-
agent systems that treat as first-class citizens both participating agents and the environment.
This allowed us to reconcile the numerous logics and models of the literature, which indeed
struggled with expressing coherent general global properties of worlds and local properties
of agents. There are two main extensions that we are currently studying based on this
work. First, having points of view of agents as first-class citizens, a combination of epistemic
logics with temporal modalities allows us to provide a framework with greater emphasis on
local action of agents, compared to e.g., DEL [5] or interpreted systems [6]. Secondly, a
natural question arises as to whether we can reconcile chromatic hypergraphs, with chromatic
(semi-)simplicial sets as studied in e.g., [8]. This would allow us to naturally extend our logic
with a distributed knowledge operator.

References
1 Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane Mansfield.

Contextuality, cohomology and paradox. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, volume 41 of LIPIcs, pages 211–228. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.211.

2 Yifeng Ding, Jixin Liu, and Yanjing Wang. Someone knows that local reasoning on
hypergraphs is a weakly aggregative modal logic. Synthese, 201(2):1–27, 2023. doi:
10.1007/s11229-022-04032-y.

3 Hans van Ditmarsch. Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.
In Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, Logic,
Language, Information, and Computation - 27th International Workshop, WoLLIC 2021,
Proceedings, volume 13038 of Lecture Notes in Computer Science, pages 31–46. Springer, 2021.
doi:10.1007/978-3-030-88853-4_3.

4 Hans van Ditmarsch, Éric Goubault, Jérémy Ledent, and Sergio Rajsbaum. Knowledge and
simplicial complexes. In Björn Lundgren and Nancy Abigail Nuñez Hernández, editors, Philo-
sophy of Computing, volume 143, pages 1–50, Cham, 2022. Springer International Publishing.
doi:10.1007/978-3-030-75267-5_1.

5 Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic Logic,
volume 337 of Synthese Library. Springer, 2007. doi:10.1007/978-1-4020-5839-4.

6 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, Cambridge, MA, USA, 2003.

7 Jelle Gerbrandy and Willem Groeneveld. Reasoning about information change. Journal of
Logic, Language and Information, 6:147–169, 1997.

https://doi.org/10.4230/LIPIcs.CSL.2015.211
https://doi.org/10.1007/s11229-022-04032-y
https://doi.org/10.1007/s11229-022-04032-y
https://doi.org/10.1007/978-3-030-88853-4_3
https://doi.org/10.1007/978-3-030-75267-5_1
https://doi.org/10.1007/978-1-4020-5839-4

É. Goubault, R. Kniazev, and J. Ledent 30:17

8 Éric Goubault, Roman Kniazev, Jérémy Ledent, and Sergio Rajsbaum. Semi-simplicial
set models for distributed knowledge. In 38th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, 2023. doi:10.1109/LICS56636.2023.10175737.

9 Éric Goubault, Jérémy Ledent, and Sergio Rajsbaum. A simplicial complex model for dynamic
epistemic logic to study distributed task computability. Inf. Comput., 278:104597, 2021.
doi:10.1016/j.ic.2020.104597.

10 Éric Goubault, Jérémy Ledent, and Sergio Rajsbaum. A simplicial model for KB4: Epistemic
logic with agents that may die. In 39th International Symposium on Theoretical Aspects of
Computer Science, STACS 2022, pages 33:1–33:20, 2022. doi:10.4230/LIPIcs.STACS.2022.
33.

11 Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990. doi:10.1145/79147.79161.

12 Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and time.
I. lower bounds. J. Comput. Syst. Sci., 38(1):195–237, 1989. doi:10.1016/0022-0000(89)
90039-1.

13 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, San Francisco, CA, USA, 2013.

14 Maurice Herlihy and Sergio Rajsbaum. Algebraic topology and distributed computing: A
primer. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
volume 1000 of Lecture Notes in Computer Science, pages 203–217. Springer, 1995. doi:
10.1007/BFb0015245.

15 Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. An overview of synchronous message-
passing and topology. Electronic Notes in Theoretical Computer Science, 39(2):1–17, 2000.
doi:10.1016/S1571-0661(05)01148-5.

16 Jaakko Hintikka. Knowledge and Belief. Cornell University Press, 1962.
17 E. Pacuit. Neighborhood Semantics for Modal Logic. Short Textbooks in Logic. Springer Inter-

national Publishing, 2017. URL: https://books.google.co.uk/books?id=WK4-DwAAQBAJ.
18 Rojo Fanamperana Randrianomentsoa, Hans van Ditmarsch, and Roman Kuznets. Impure

simplicial complexes: Complete axiomatization. CoRR, abs/2211.13543, 2022. doi:10.48550/
arXiv.2211.13543.

19 Mehrnoosh Sadrzadeh and Roy Dyckhoff. Positive logic with adjoint modalities: Proof theory,
semantics and reasoning about information. Electronic Notes in Theoretical Computer Science,
249:451–470, 2009. Proceedings of the 25th Conference on Mathematical Foundations of
Programming Semantics (MFPS 2009). doi:10.1016/j.entcs.2009.07.102.

A Proofs

A.1 Proof of Proposition 14
Proof. First, we show that universal modalities distribute over conjunction, that is ♡(ξ∧η) ↔
(♡ξ ∧ ♡η). Left-to-right direction: we have that (ξ ∧ η) → ξ and (ξ ∧ η) → η. Applying
the RM rule, we get that ♡(ξ ∧ η) → ♡ξ and ♡(ξ ∧ η) → ♡η. From this, the left-to-right
direction follows. Right-to-left direction: denote the modality adjoint to ♡ by ♠, that
is, if ♡ = Aa then ♠ = K̂a and if ♡ = Ka then ♠ = Ea. We have that ♠♡ξ → ξ from
♡ξ → ♡ξ and the corresponding adjunction rule, similarly for η. From this we have that
♠♡ξ ∧ ♠♡η → ξ ∧ η. By the same proof as in the left-to-right direction, we have that
♠(♡ξ ∧ ♡η) → ♠♡ξ ∧ ♠♡η. Thus, we have that ♠(♡ξ ∧ ♡η) → ξ ∧ η. Applying the
adjunction rule, we get that ♡(ξ ∧ η) → ♡ξ ∧ ♡η, which is the right-to-left direction.

The fact that K follows from the distribution of universal modalities over conjunction
is a standard proof: From ((ξ → η) ∧ ξ) → η by RM we have ♡((ξ → η) ∧ ξ) → ♡η. By
distribution, we have (♡(ξ → η) ∧ ♡ξ) → ♡((ξ → η) ∧ ξ). Combining these two, we get
(♡(ξ → η) ∧ ♡ξ) → ♡η, and thus ♡(ξ → η) → (♡ξ → ♡η). ◀

CSL 2024

https://doi.org/10.1109/LICS56636.2023.10175737
https://doi.org/10.1016/j.ic.2020.104597
https://doi.org/10.4230/LIPIcs.STACS.2022.33
https://doi.org/10.4230/LIPIcs.STACS.2022.33
https://doi.org/10.1145/79147.79161
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1007/BFb0015245
https://doi.org/10.1007/BFb0015245
https://doi.org/10.1016/S1571-0661(05)01148-5
https://books.google.co.uk/books?id=WK4-DwAAQBAJ
https://doi.org/10.48550/arXiv.2211.13543
https://doi.org/10.48550/arXiv.2211.13543
https://doi.org/10.1016/j.entcs.2009.07.102

30:18 A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

A.2 Proof of Proposition 15
Proof. Recall the list of formulas:

1. Eaφ → Aaφ;
2. KaΦ → KaEaKaΦ;
3. EaKaΦ → Φ;

4. Φ → AaK̂aΦ;
5. φ → KaEaφ;
6. KaΦ → K̂aΦ.

For the first formula, we just apply the adjunction rule to K̂aEaφ → φ, which is an axiom.
In order to show the second formula, just apply the adjunction rule to EaKaΦ → EaKaΦ,
which is a tautology. Formulas 3, 4 and 5 are derived from KaΦ → KaΦ, K̂aΦ → K̂aΦ, and
Eaφ → Eaφ respectively by applying the adjunction rule. The last formula is shown as
follows: from formulas 3 and 4 we have EaKaΦ → AaK̂aΦ. Applying the adjunction rule, we
get K̂aEaKaΦ → K̂aΦ. We also have KaΦ → K̂aEaKaΦ, which is an axiom. From the last
two formulas, we get KaΦ → K̂aΦ. ◀

A.3 Proof of Theorem 26
Proof. We just need to show how η and κ are extended to morphisms. Functoriality is then
straightforward, and checking that η(κ(H)) ≃ H and κ(η(M)) ≃ M is also straightforward.
Let f : H → H ′ be a morphism of chromatic hypergraphs. Then η(f) : η(H) → η(H ′) just
sends a world e to fE(e). This is indeed a morphism of partial epistemic frames: suppose
two worlds e and e′ in η(H) are ∼a-equivalent. It means that in H these two hyperedges
share a vertex, and thus in H ′ the two hyperedges fE(e) and fE(e′) share a vertex, and thus
fE(e) ∼a fE(e′).

Now let g : M → M′ be a morphism of partial epistemic frames. Then κ(g) : κ(M) →
κ(M′) sends a hyperedge w to g(w), thus κ(g)E is defined. We need to show that it induces
a map on vertices, and that the condition for morphsisms is satisfied. As g preserves ∼a, it
induces a map on equivalence classes, which is exactly κ(g)a. Let w be a hyperedge and v be
a vertex in κ(M), such that pra(w) = v. It means that w belongs to the equivalence class
corresponding to v in M. Thus, g(w) belongs to the equivalence class corresponding to g(v)
in M′, and thus pra(g(w)) = g(v). ◀

Remarks on Parikh-Recognizable Omega-languages
Mario Grobler #

University of Bremen, Germany

Leif Sabellek #

University of Bremen, Germany

Sebastian Siebertz #

University of Bremen, Germany

Abstract
Several variants of Parikh automata on infinite words were recently introduced by Guha et
al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as
introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed
that every ω-language recognized by a blind counter machine is of the form

⋃
i
UiV

ω
i for Parikh

recognizable languages Ui, Vi, but blind counter machines fall short of characterizing this class of
ω-languages. They posed as an open problem to find a suitable automata-based characterization.
We introduce several additional variants of Parikh automata on infinite words that yield automata
characterizations of classes of ω-language of the form

⋃
i
UiV

ω
i for all combinations of languages Ui, Vi

being regular or Parikh-recognizable. When both Ui and Vi are regular, this coincides with Büchi’s
classical theorem. We study the effect of ε-transitions in all variants of Parikh automata and show
that almost all of them admit ε-elimination. Finally we study the classical decision problems with
applications to model checking.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Parikh automata, blind counter machines, infinite words, Büchi’s theorem

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.31

Related Version This paper subsumes the unpublished results of [19, 21].
Full Version: https://arxiv.org/abs/2307.07238 [20]

Acknowledgements We thank Georg Zetzsche for his valuable remarks.

1 Introduction

Finite automata find numerous applications in formal language theory, logic, verification,
and many more, in particular due to their good closure properties and algorithmic properties.
To enrich this spectrum of applications even more, it has been a fruitful direction to add
features to finite automata to capture also situations beyond the regular realm.

One such possible extension of finite automata with counting mechanisms has been
introduced by Greibach in her study of blind and partially blind (one-way) multicounter
machines [18]. Blind multicounter machines are generalized by weighted automata as
introduced in [28]. Parikh automata (PA) were introduced by Klaedtke and Rueß in [26].
A PA is a non-deterministic finite automaton that is additionally equipped with a semi-
linear set C, and every transition is equipped with a d-tuple of non-negative integers.
Whenever an input word is read, d counters are initialized with the values 0 and every
time a transition is used, the counters are incremented by the values in the tuple of the
transition accordingly. An input word is accepted if the PA ends in an accepting state and
additionally, the resulting d-tuple of counter values lies in C. Klaedtke and Rueß showed
that PA are equivalent to weighted automata over the group (Zk, +, 0), and hence equivalent
to Greibach’s blind multicounter machines, as well as to reversal bounded multicounter
machines [2, 24]. Recently it was shown that these models can be translated into each other

© Mario Grobler, Leif Sabellek, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grobler@uni-bremen.de
https://orcid.org/0000-0001-8103-6440
mailto:leif.sabellek@gmail.com
https://orcid.org/0000-0001-8051-5749
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.CSL.2024.31
https://arxiv.org/abs/2307.07238
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Remarks on Parikh-Recognizable Omega-languages

using only logarithmic space [3]. In this work we call the class of languages recognized by
any of these models Parikh recognizable. Klaedtke and Rueß [26] showed that the class of
Parikh recognizable languages is precisely the class of languages definable in weak existential
monadic second-order logic of one successor extended with linear cardinality constraints.
The class of Parikh-recognizable languages contains all regular languages, but also many
more, even languages that are not context-free, e. g., the language {anbncn | n ∈ N}. On
the other hand, the language of palindromes is context-free, but not Parikh-recognizable.
On finite words, blind counter automata, Parikh automata and related models have been
investigated extensively, extending [18, 26] for example by affine PA and PA on letters [6, 7],
bounded PA [8], two-way PA [16], PA with a pushdown stack [25] as well as a combination of
both [11], history-deterministic PA [12], automata and grammars with valences [13, 23], and
several algorithmic applications, e.g. in the context of path logics for querying graphs [15].

In the well-studied realm of verification of reactive systems, automata-related approaches
provide a powerful framework to tackle important problems such as the model checking
problem [1, 9, 10]. However, computations of systems are generally represented as infinite
objects, as we often expect them to not terminate (but rather interact with the environment).
Hence, automata processing infinite words are suited for these tasks. One common approach
is the following: assume we are given a system, e.g. represented as a Kripke structure K,
and a specification represented as an automaton A (or any formalism that can be translated
into one) accepting all counterexamples. Then we can verify that the system has no bad
computations by solving intersection-emptiness of K and A. Yet again, the most basic
model of Büchi automata (which recognize ω-regular languages) are quite limited in their
expressiveness, although they have nice closure properties.

Let us consider two examples. In a three-user setting in an operating system we
would like to ensure that none of the users gets a lot more resources than the other two.
A corresponding specification of bad computations can be modeled via the ω-language
{α ∈ {a, b, c}ω | there are infinitely many prefixes w of α with |w|a > |w|b + |w|c}, stating
that one user gets more resources than the other two users combined infinitely often. As
another example, consider a classical producer-consumer setting, where a producer continu-
ously produces a good, and a consumer consumes these goods continuously. We can model
this setting as an infinite word and ask that at no time the consumer has consumed more
than the producer has produced at this time. Bad computations can be modeled via the
ω-language {α ∈ {p, c}ω | there is a prefix w of α with |w|c > |w|p}. Such specifications are
not ω-regular, as these require to “count arbitrarily”. This motivates the study of blind-
counter and Parikh automata on infinite words, which was initiated by Fernau and Stiebe [14].
Independently, Klaedte and Rueß proposed possible extensions of Parikh automata on infinite
words. This line of research was recently picked up by Guha et al. [22].

Guha et al. [22] introduced safety, reachability, Büchi- and co-Büchi Parikh automata.
These models provide natural generalization of studied automata models with Parikh con-
ditions on infinite words. One shortcoming of safety, reachability and co-Büchi Parikh
automata is that they do not generalize Büchi automata, that is, they cannot recognize all
ω-regular languages. The non-emptiness problem, which is highly relevant for model checking
applications, is undecidable for safety and co-Büchi Parikh automata. Furthermore, none
of these models has ω-closure, meaning that for every model there is a Parikh-recognizable
language (on finite words) L such that Lω is not recognizable by any of these models. Guha
et al. raised the question whether (appropriate variants of) Parikh automata on infinite
words have the same expressive power as blind counter automata on infinite words.

M. Grobler, L. Sabellek, and S. Siebertz 31:3

Büchi’s famous theorem states that ω-regular languages are characterized as languages
of the form

⋃
i UiV

ω
i , where the Ui and Vi are regular languages [4]. As a consequence of

the theorem, many properties of ω-regular languages are inherited from regular languages.
For example, the non-emptiness problem for Büchi automata can basically be solved by
testing non-emptiness for nondeterministic finite automata. In their systematic study of blind
counter automata, Fernau and Stiebe [14] considered the class K∗, the class of ω-languages of
the form

⋃
i UiV

ω
i for Parikh-recognizable languages Ui and Vi. They proved that the class of

ω-languages recognizable by blind counter machines is a proper subset of the class K∗. They
posed as an open problem to provide automata models that capture classes of ω-languages
of the form

⋃
i UiV

ω
i where Ui and Vi are described by a certain mechanism.

In this work we propose reachability-regular Parikh automata, limit Parikh automata, and
reset Parikh automata as new automata models.

We pick up the question of Fernau and Stiebe [14] to consider classes of ω-languages of
the form

⋃
i UiV

ω
i where Ui and Vi are described by a certain mechanism. We define the four

classes Lω
Reg,Reg, Lω

PA,Reg, Lω
Reg,PA and Lω

PA,PA of ω-languages of the form
⋃

i UiV
ω

i , where the
Ui, Vi are regular or Parikh-recognizable languages of finite words, respectively. By Büchi’s
theorem the class Lω

Reg,Reg is the class of ω-regular languages.
We show that the newly introduced reachability-regular Parikh automata, which are

a small modification of reachability Parikh automata (as introduced by Guha et al. [22])
capture exactly the class Lω

PA,Reg. This model turns out to be equivalent to limit Parikh
automata. This model was hinted at in the concluding remarks of [26].

Fully resolving the classification of the above mentioned classes we introduce reset Parikh
automata. In contrast to all other Parikh models, these are closed under the ω-operation,
while maintaining all algorithmic properties of PA (in particular, non-emptiness is NP-
complete and hence decidable). We show that the class of Reset-recognizable ω-languages is
a strict superclass of Lω

PA,PA. We show that appropriate graph-theoretic restrictions of reset
Parikh automata exactly capture the classes Lω

PA,PA and Lω
Reg,PA, yielding the first automata

characterizations for these classes.
The automata models introduced by Guha et al. [22] do not have ε-transitions, while

blind counter machines have such transitions. Towards answering the question of Guha et al.
we study the effect of ε-transitions in all Parikh automata models. We show that all models
except safety and co-Büchi Parikh automata admit ε-elimination. This in particular answers
the question of Guha et al. [22] whether blind counter automata and Büchi Parikh automata
have the same expressive power over infinite words affirmative. We show that safety and
co-Büchi automata with ε-transitions are strictly more powerful than their variants without
ε-transitions, and in particular, they give the models enough power to recognize all ω-regular
languages.

All lemmas with missing proofs are marked with (⋆), the full version [20] containing all
proofs can be found on arXiv.

2 Preliminaries

2.1 Finite and infinite words

We write N for the set of non-negative integers including 0, and Z for the set of all integers.
Let Σ be an alphabet, i. e., a finite non-empty set and let Σ∗ be the set of all finite words
over Σ. For a word w ∈ Σ∗, we denote by |w| the length of w, and by |w|a the number of
occurrences of the letter a ∈ Σ in w. We write ε for the empty word of length 0.

CSL 2024

31:4 Remarks on Parikh-Recognizable Omega-languages

An infinite word over an alphabet Σ is a function α : N \ {0} → Σ. We often write αi

instead of α(i). Thus, we can understand an infinite word as an infinite sequence of symbols
α = α1α2α3 . . . For m ≤ n, we abbreviate the finite infix αm . . . αn by α[m, n]. We denote
by Σω the set of all infinite words over Σ. We call a subset L ⊆ Σω an ω-language. Moreover,
for L ⊆ Σ∗, we define Lω = {w1w2 · · · | wi ∈ L \ {ε}} ⊆ Σω.

2.2 Regular and ω-regular languages
A nondeterministic finite automaton (NFA) is a tuple A = (Q, Σ, q0, ∆, F), where Q is the
finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q

is the set of transitions and F ⊆ Q is the set of accepting states. A run of A on a
word w = w1 . . . wn ∈ Σ∗ is a (possibly empty) sequence of transitions r = r1 . . . rn with
ri = (pi−1, wi, pi) ∈ ∆ such that p0 = q0. We say r is accepting if pn ∈ F . The empty run
on ε is accepting if q0 ∈ F . We define the language recognized by A as L(A) = {w ∈ Σ∗ |
there is an accepting run of A on w}. If a language L is recognized by some NFA A, we
call L regular.

A Büchi automaton is an NFA A = (Q, Σ, q0, ∆, F) that takes infinite words as in-
put. A run of A on an infinite word α1α2α3 . . . is an infinite sequence of transitions
r = r1r2r3 . . . with ri = (pi−1, αi, pi) ∈ ∆ such that p0 = q0. We say r is accepting if
there are infinitely many i with pi ∈ F . We define the ω-language recognized by A as
Lω(A) = {α ∈ Σω | there is an accepting run of A on α}. If an ω-language L is recognized
by some Büchi automaton A, we call L ω-regular. Büchi’s theorem establishes an important
connection between regular and ω-regular languages:

▶ Theorem 1 (Büchi [4]). A language L ⊆ Σω is ω-regular if and only if there are regular
languages U1, V1, . . . , Un, Vn ⊆ Σ∗ for some n ≥ 1 such that L = U1V ω

1 ∪ · · · ∪ UnV ω
n .

If every state of a Büchi automaton A is accepting, we call A a safety automaton.

2.3 Semi-linear sets
For some d ≥ 1, a linear set of dimension d is a set of the form {b0 + b1z1 + · · · + bℓzℓ |
z1, . . . , zℓ ∈ N} ⊆ Nd for b0, . . . , bℓ ∈ Nd. If b0 = 0, then we call C a homogeneous linear
set. A semi-linear set is a finite union of linear sets. For vectors u = (u1, . . . , uc) ∈ Nc and
v = (v1, . . . , vd) ∈ Nd, we denote by u · v = (u1, . . . , uc, v1, . . . , vd) ∈ Nc+d the concatenation
of u and v. We extend this definition to sets of vectors. Let C ⊆ Nc and D ⊆ Nd. Then
C · D = {u · v | u ∈ C, v ∈ D} ⊆ Nc+d. We denote by 0d (or simply 0 if d is clear
from the context) the all-zero vector, and by ed

i (or simply ei) the d-dimensional vector
where the ith entry is 1 and all other entries are 0. We also consider semi-linear sets over
(N ∪ {∞})d, that is semi-linear sets with an additional symbol ∞ for infinity. As usual,
addition of vectors and multiplication of a vector with a number is defined component-wise,
where z + ∞ = ∞ + z = ∞ + ∞ = ∞ for all z ∈ N, z · ∞ = ∞ · z = ∞ for all z > 0 ∈ N,
and 0 · ∞ = ∞ · 0 = 0.

2.4 Parikh-recognizable languages
A Parikh automaton (PA) is a tuple A = (Q, Σ, q0, ∆, F, C) where Q, Σ, q0, and F are
defined as for NFA, ∆ ⊆ Q × Σ × Nd × Q is a finite set of labeled transitions, and C ⊆ Nd is
a semi-linear set. We call d the dimension of A and refer to the entries of a vector v in a
transition (p, a, v, q) as counters. Similar to NFA, a run of A on a word w = x1 . . . xn is a
(possibly empty) sequence of labeled transitions r = r1 . . . rn with ri = (pi−1, xi, vi, pi) ∈ ∆

M. Grobler, L. Sabellek, and S. Siebertz 31:5

such that p0 = q0. We define the extended Parikh image of a run r as ρ(r) =
∑

i≤n vi (with
the convention that the empty sum equals 0). We say r is accepting if pn ∈ F and ρ(r) ∈ C,
referring to the latter condition as the Parikh condition. We define the language recognized
by A as L(A) = {w ∈ Σ∗ | there is an accepting run of A on w}. If a language L ⊆ Σ∗ is
recognized by some PA, then we call L Parikh-recognizable.

2.5 Graphs
A (directed) graph G consists of its vertex set V (G) and edge set E(G) ⊆ V (G) × V (G). In
particular, a graph G may have loops, that is, edges of the form (u, u). A (simple) path from
a vertex u to a vertex v in G is a sequence of pairwise distinct vertices v1 . . . vk such that
v1 = u, vk = v, and (vi, vi+1) ∈ E(G) for all 1 ≤ i < k. Similarly, a (simple) cycle in G is a
sequence of pairwise distinct vertices v1 . . . vk such that (vi, vi+1) ∈ E(G) for all 1 ≤ i < k,
and (vk, v1) ∈ E(G). If G has no cylces, we call G a directed acyclic graph (DAG). For a
subset U ⊆ V (G), we denote by G[U] the graph G induced by U , i. e., the graph with vertex
set U and edge set {(u, v) ∈ E(G) | u, v ∈ U}. A strongly connected component (SCC) in G

is a maximal subset U ⊆ V (G) such that for all u, v ∈ U there is a path from u to v, i. e., all
vertices in U are reachable from each other. We write SCC(G) for the set of all strongly
connected components of G (observe that SCC(G) partitions V (G)). The condensation
of G, written C(G), is the DAG obtained from G by contracting each SCC of G into a single
vertex, that is V (C(G)) = SCC(G) and (U, V) ∈ E(C(G)) if and only if there is u ∈ U

and v ∈ V with (u, v) ∈ E(G). We call the SCCs with no outgoing edges in C(G) leaves.
Note that an automaton can be seen as a labeled graph. Hence, all definitions translate to
automata by considering the underlying graph (to be precise, an automaton can be seen as a
labeled multigraph; however, we simply drop parallel edges).

3 Parikh automata on infinite words

In this section, we recall the acceptance conditions of Parikh automata operating on infinite
words that were studied before in the literature and introduce our new models. We make
some easy observations and compare the existing with the new automata models. We define
only the non-deterministic variants of these automata.

Let A = (Q, Σ, q0, ∆, F, C) be a PA. A run of A on an infinite word α = α1α2α3 . . . is
an infinite sequence of labeled transitions r = r1r2r3 . . . with ri = (pi−1, αi, vi, pi) ∈ ∆ such
that p0 = q0. The automata defined below differ only in their acceptance conditions. In the
following, whenever we say that an automaton A accepts an infinite word α, we mean that
there is an accepting run of A on α.

1. The run r satisfies the safety condition if for every i ≥ 0 we have pi ∈ F and ρ(r1 . . . ri) ∈ C.
We call a PA accepting with the safety condition a safety PA [22]. We define the ω-language
recognized by a safety PA A as Sω(A) = {α ∈ Σω | A accepts α}.

2. The run r satisfies the reachability condition if there is an i ≥ 1 such that pi ∈ F and
ρ(r1 . . . ri) ∈ C. We say there is an accepting hit in ri. We call a PA accepting with the
reachability condition a reachability PA [22]. We define the ω-language recognized by a
reachability PA A as Rω(A) = {α ∈ Σω | A accepts α}.

3. The run r satisfies the Büchi condition if there are infinitely many i ≥ 1 such that pi ∈ F

and ρ(r1 . . . ri) ∈ C. We call a PA accepting with the Büchi condition a Büchi PA [22]. We
define the ω-language recognized by a Büchi PA A as Bω(A) = {α ∈ Σω | A accepts α}.
Hence, a Büchi PA can be seen as a stronger variant of a reachability PA where we require
infinitely many accepting hits instead of a single one.

CSL 2024

31:6 Remarks on Parikh-Recognizable Omega-languages

4. The run r satisfies the co-Büchi condition if there is i0 such that for every i ≥ i0 we
have pi ∈ F and ρ(r1 . . . ri) ∈ C. We call a PA accepting with the co-Büchi condition
a co-Büchi PA [22]. We define the ω-language recognized by a co-Büchi PA A as
CBω(A) = {α ∈ Σω | A accepts α}.
Hence, a co-Büchi PA can be seen as a weaker variant of safety PA where the safety
condition needs not necessarily be fulfilled from the beginning, but from some point
onwards.

Guha et al. [22] assume that reachability PA are complete, i.e., for every (p, a) ∈ Q×Σ there
are v ∈ Nd and q ∈ Q such that (p, a, v, q) ∈ ∆, as incompleteness allows to express additional
safety conditions. We also make this assumption in order to study “pure” reachability PA.
In fact, we can assume that all models are complete, as the other models can be completed
by adding a non-accepting sink. We remark that Guha et al. also considered asynchronous
reachability and Büchi PA, where the Parikh condition does not necessarily need to be
satisfied in accepting states. However, for non-deterministic automata this does not change
the expressiveness of the considered models [22].

We now define the models newly introduced in this work. As already observed in [22]
among the above considered models only Büchi PA can recognize all ω-regular languages.
For example, {α ∈ {a, b}ω | |α|a = ∞} cannot be recognized by safety PA, reachability PA
or co-Büchi PA.

We first extend reachability PA with the classical Büchi condition to obtain reachability-
regular PA. In Theorem 9 we show that these automata characterize ω-languages of the
form Lω

PA,Reg, hence, providing a robust and natural model.

5. The run satisfies the reachability and regularity condition if there is an i ≥ 1 such that
pi ∈ F and ρ(r1 . . . ri) ∈ C, and there are infinitely many j ≥ 1 such that pj ∈ F .
We call a PA accepting with the reachability and regularity condition a reachability-
regular PA. We define the ω-language recognized by a reachability-regular PA A as
RRω(A) = {α ∈ Σω | A accepts α} and call it reachability-regular.

Note that (in contrast to reachability PA) we may assume that reachability-regular PA
are complete without changing their expressiveness. Observe that every ω-regular language
is reachability-regular, as we can turn an arbitrary Büchi automaton into an equivalent
reachability-regular PA by labeling every transition with 0 and setting C = {0}.

We next introduce limit PA, which were proposed in the concluding remarks of [26]. As
we will prove in Theorem 9, this seemingly quite different model is equivalent to reachability-
regular PA.

6. The run satisfies the limit condition if there are infinitely many i ≥ 1 such that pi ∈ F ,
and if additionally ρ(r) ∈ C, where the jth component of ρ(r) is computed as follows. If
there are infinitely many i ≥ 1 such that the jth component of vi has a non-zero value,
then the jth component of ρ(r) is ∞. In other words, if the sum of values in a component
diverges, then its value is set to ∞. Otherwise, the infinite sum yields a positive integer.
We call a PA accepting with the limit condition a limit PA. We define the ω-language
recognized by a limit PA A as Lω(A) = {α ∈ Σω | A accepts α}.

Still, none of the yet introduced models have ω-closure. This shortcoming is addressed
with the following two models, which will turn out to be equivalent and form the basis of the
automata characterization of Lω

Reg,PA and Lω
PA,PA.

M. Grobler, L. Sabellek, and S. Siebertz 31:7

7. The run satisfies the strong reset condition if the following holds. Let k0 = 0 and denote
by k1 < k2 < . . . the positions of all accepting states in r. Then r is accepting if k1, k2, . . .

is an infinite sequence and ρ(rki−1+1 . . . rki
) ∈ C for all i ≥ 1. We call a PA accepting

with the strong reset condition a strong reset PA. We define the ω-language recognized
by a strong reset PA A as SRω(A) = {α ∈ Σω | A accepts α}.

8. The run satisfies the weak reset condition if there are infinitely many reset positions
0 = k0 < k1 < k2, . . . such that pki

∈ F and ρ(rki−1+1 . . . rki
) ∈ C for all i ≥ 1. We call

a PA accepting with the weak reset condition a weak reset PA. We define the ω-language
recognized by a weak reset PA A as WRω(A) = {α ∈ Σω | A accepts α}.

Intuitively worded, whenever a strong reset PA enters an accepting state, the Parikh
condition must be satisfied. Then the counters are reset. Similarly, a weak reset PA may
reset the counters whenever there is an accepting hit, and they must reset infinitely often, too.
In the following we will often just speak of reset PA without explicitly stating whether they
are weak or strong. In this case, we mean the strong variant. We will show the equivalence
of the two models in Lemma 26 and Lemma 27.

q0 q1

b,

(
0
1

)
a,

(
1
0

) a,

(
1
0

)

b,

(
0
1

)
Figure 1 The automaton A with C = {(z, z′), (z, ∞) | z′ ≥ z} from Example 1.

▶ Example 1. Let A be the automaton in Figure 1 with C = {(z, z′), (z, ∞) | z′ ≥ z}.
If we interpret A as a PA (over finite words), then we have L(A) = {w ∈ {a, b}∗ · {b} |
|w|a ≤ |w|b} ∪ {ε}. The automaton is in the accepting state at the very beginning and
every time after reading a b. The first counter counts the occurrences of letter a, the
second one counts occurrences of b. By definition of C the automaton only accepts when
the second counter value is greater or equal to the first counter value (note that vectors
containing an ∞-entry have no additional effect).
If we interpret A as a safety PA, then we have Sω(A) = {b}ω. As q1 is not accepting,
only the b-loop on q0 may be used.
If we interpret A as a reachability PA, then we have Rω(A) = {α ∈ {a, b}ω | α has a
prefix in L(A)}. The automaton has satisfied the reachability condition after reading a
prefix in L(A) and accepts any continuation after that.
If we interpret A as a Büchi PA, then we have Bω(A) = L(A)ω. The automaton accepts
an infinite word if infinitely often the Parikh condition is satisfied in the accepting state.
Observe that C is a homogeneous linear set and the initial state as well as the accepting
state have the same outgoing transitions.
If we interpret A as a co-Büchi PA, then we have CBω(A) = L(A) · {b}ω. This is similar
to the safety PA, but the accepted words may have a finite “non-safe” prefix from L(A).

CSL 2024

31:8 Remarks on Parikh-Recognizable Omega-languages

If we interpret A as a reachability-regular PA, then we have RRω(A) = {α ∈ {a, b}ω |
α has a prefix in L(A) and |α|b = ∞}. After having met the reachability condition the
automaton still needs to satisfy the Büchi condition, which enforces infinitely many visits
of the accepting state.
If we interpret A as a limit PA, then we have Lω(A) = {α ∈ {a, b}ω | |α|a < ∞}. The
automaton must visit the accepting state infinitely often. At the same time the extended
Parikh image must belong to C, which implies that the infinite word contains only some
finite number z of letter a (note that only the vectors of the form (z, ∞) have an effect
here, as at least one symbol must be seen infinitely often by the infinite pigeonhole
principle).
If we interpret A as a weak reset PA, then we have WRω(A) = L(A)ω. As a weak reset
PA may (but is not forced to) reset the counters upon visiting the accepting state, the
automaton may reset every time a (finite) infix in L(A) has been read.
If we interpret A as a strong reset PA, then we have SRω(A) = {b∗a}ω ∪ {b∗a}∗ · {b}ω.
Whenever the automaton reaches an accepting state also the Parikh condition must be
satisfied. This implies that the a-loop on q1 may never be used, as this would increase
the first counter value to at least 2, while the second counter value is 1 upon reaching the
accepting state q0 (which resets the counters).

▶ Remark. The automaton A in the example is deterministic. We note that Lω(A) is not
deterministic ω-regular but deterministic limit PA-recognizable.

4 Büchi-like characterizations

It was observed in [22] that Büchi PA recognize a strict subset of Lω
PA,PA. In this section we

first show that the class of reset PA-recognizable ω-languages is a strict superset of Lω
PA,PA.

Then we provide an automata-based characterization of Lω
PA,Reg, Lω

PA,PA, and Lω
Reg,PA. Towards

this goal we first establish some closure properties.
Guha et al. [22] have shown that safety, reachability, Büchi, and co-Büchi PA are closed

under union using a modification of the standard construction for PA, i. e., taking the disjoint
union of the automata (introducing a fresh initial state), and the disjoint union of the
semi-linear sets, where disjointness is achieved by “marking” every vector in the first set
by an additional 1 (increasing the dimension by 1), and all vectors in the second set by
an additional 2. We observe that the same construction also works for reachability-regular
and limit PA, and a small modification is sufficient to make the construction also work for
reset PA. We leave the details to the reader.

▶ Lemma 2. The classes of reachability-regular, limit PA-recognizable, and reset PA-
recognizable ω-languages are closed under union.

Furthermore, we show that these classes, as well as the class of Büchi PA-recognizable
ω-languages, are closed under left-concatenation with PA-recognizable languages. We provide
some details in the next lemma, as we will need to modify the standard construction in such
a way that we do not need to keep accepting states of the PA on finite words. This will help
to characterize Lω

PA,PA via (restricted) reset PA.

▶ Lemma 3 (⋆). The classes of reachability-regular, limit PA-recognizable, reset PA-
recognizable, and Büchi PA-recognizable ω-languages are closed under left-concatenation
with PA-recognizable languages.

M. Grobler, L. Sabellek, and S. Siebertz 31:9

Before we continue, we show that we can normalize PA (on finite words) such that the
initial state is the only accepting state. This observation simplifies several proofs in this
section.

▶ Lemma 4 (⋆). Let A = (Q, Σ, q0, ∆, F, C) be a PA of dimension d. Then there exists an
equivalent PA A′ of dimension d + 1 with the following properties.

The initial state of A′ is the only accepting state.
SCC(A′) = {Q}.

We say that A′ is normalized.

Observe that we have SRω(A′) = L(A)ω, that is, every normalized PA interpreted as a
reset PA recognizes the ω-closure of the language recognized by the PA. As an immediate
consequence we obtain the following corollary.

▶ Corollary 5. The class of reset PA-recognizable ω-languages is closed under the ω-operation.

Combining these results we obtain that every ω-language in Lω
PA,PA, i.e. every ω-language

of the form
⋃

i UiV
ω

i is reset PA-recognizable. We show that the other direction does not
hold, i.e., the inclusion is strict.

▶ Lemma 6. The class Lω
PA,PA is a strict subclass of the class of reset PA-recognizable

ω-languages.

Proof. The inclusion is a direct consequence of Lemma 2, Lemma 3, and Corollary 5. Hence
we show that the inclusion is strict.

Consider the ω-language L = {anbn | n ≥ 1}ω ∪ {anbn | n ≥ 1}∗ · {a}ω. This ω-
language is reset PA-recognizable, as witnessed by the strong reset PA in Figure 2 with
C = {(z, z) | z ∈ N}.

q0 q1 q2 q3

a,

(
1
0

)
b,

(
0
1

)

b,

(
0
1

)

b,

(
0
1

)
b,

(
0
1

)

a,

(
1
0

)

a,

(
0
0

) a,

(
0
0

)

Figure 2 The strong reset PA for L = {anbn | n ≥ 1}ω ∪ {anbn | n ≥ 1}∗ · {a}ω.

We claim that L /∈ Lω
PA,PA. Assume towards a contraction that L ∈ Lω

PA,PA, i. e., there
are Parikh-recognizable languages U1, V1, . . . , Un, Vn such that L = U1V ω

1 ∪ · · · ∪ UnV ω
n .

Then there is some i ≤ n such that for infinitely many j ≥ 1 the infinite word αj =
aba2b2 . . . ajbj · aω ∈ UiV

ω
i . Then Vi must contain a word of the form v = ak, k > 0.

Additionally, there cannot be a word in Vi with infix b. To see this assume for sake of
contradiction that there is a word w ∈ Vi with ℓ = |w|b > 0. Let β = (vℓ+1w)ω. Observe
that β has an infix that consists of at least ℓ + 1 many a, followed by at most ℓ, but at least
one b, hence, no word of the form uβ with u ∈ Ui is in L. This is a contradiction, thus
Vi ⊆ {a}+.

CSL 2024

31:10 Remarks on Parikh-Recognizable Omega-languages

Since Ui ∈ LPA, there is a PA Ai with L(Ai) = Ui. Let m be the number of states
in Ai and w′ = aba2b2 . . . am4+1bm4+1. Then w′ is a prefix of a word accepted by Ai. Now
consider the infixes aℓbℓ and the pairs of states q1, q2, where we start reading aℓ and end
reading aℓ, and q3, q4 where we start to read bℓ and end to read bℓ, respectively. There
are m2 choices for the first pair and m2 choices for the second pair, hence m4 possibilities
in total. Hence, as we have more than m4 such infixes, there must be two with the same
associated states q1, q2, q3, q4. Then we can swap these two infixes and get a word of the
form ab . . . arbs . . . asbr . . . am4+1bm4+1 that is a prefix of some word in L(Ai) = Ui. But no
word in L has such a prefix, a contradiction. Thus, U1V ω

1 ∪ · · · ∪ UnV ω
n ̸= L. ◀

4.1 Characterization of Büchi Parikh automata
As mentioned in the last section, the class of ω-languages recognized by Büchi PA is a strict
subset of Lω

PA,PA, i. e., languages of the form
⋃

i UiV
ω

i for Parikh-recognizable Ui and Vi. In
this subsection we show that a restriction of the PA recognizing the Vi is sufficient to exactly
capture the expressiveness of Büchi PA. To be precise, we show the following.

▶ Lemma 7. The following are equivalent for all ω-languages L ⊆ Σω:
1. L is Büchi PA-recognizable.
2. L is of the form

⋃
i UiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable and Vi ∈ Σ∗ is recognized

by a normalized PA where C is a homogeneous linear set.

We note that we can translate every PA (with a linear set C) into an equivalent normal-
ized PA by Lemma 4. However, this construction adds a base vector, as we concatenate {1}
to C. In fact, this can generally not be avoided without losing expressiveness. It turns
out that this loss of expressiveness is exactly what we need to characterize the class of
ω-languages recognized by Büchi PA as stated in the previous lemma. The main reason for
this is pointed out in the following lemma.

▶ Lemma 8 (⋆). Let L be a language recognized by a (normalized) PA A =
(Q, Σ, q0, ∆, {q0}, C) where C is a homogeneous linear set. Then we have Bω(A) = L(A)ω.

This is the main ingredient to prove Lemma 7.

Proof of Lemma 7. We note that the proof in [22] showing that every ω-language L recog-
nized by a Büchi-PA is of the form

⋃
i UiVi for PA-recognizable Ui and Vi already constructs

PA for the Vi of the desired form. This shows the implication (1) ⇒ (2).
To show the implication (2) ⇒ (1), we use that the ω-closure of languages recognized

by PA of the stated form is Büchi PA-recognizable by Lemma 8. As Büchi PA are closed
under left-concatenation with PA-recognizable languages (Lemma 3) and union [22], the
claim follows. ◀

4.2 Characterization of Lω
PA,Reg

In this subsection we characterize Lω
PA,Reg by showing the following equivalences.

▶ Theorem 9. The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable, and Vi ⊆ Σ∗ is regular.

2. L is limit PA-recognizable.
3. L is reachability-regular.

M. Grobler, L. Sabellek, and S. Siebertz 31:11

Observe that in the first item we may assume that L is of the form
⋃

i UiVi, where
Ui ∈ Σ∗ is Parikh-recognizable, and Vi ⊆ Σω is ω-regular. Then, by simple combinatorics and
Büchi’s theorem we have

⋃
i UiVi =

⋃
i Ui(

⋃
ji

Xji
Y ω

ji
) =

⋃
i,ji

Ui(Xji
Y ω

ji
) =

⋃
i,ji

(UiXji
)Y ω

ji
,

for regular languages Xji , Yji , where UiXji is Parikh-recognizable, as Parikh-recognizable
languages are closed under concatenation [5, Proposition 3].

To simplify the proof, it is convenient to consider the following generalizations of
Büchi automata. A transition-based generalized Büchi automaton (TGBA) is a tuple
A = (Q, Σ, q0, ∆, T) where T ⊆ 2∆ is a collection of sets of transitions. Then a run
r1r2r3 . . . of A is accepting if for all T ∈ T there are infinitely many i such that ri ∈ T . It is
well-known that TGBA have the same expressiveness as Büchi automata [17].

Theorem 9 will be a direct consequence from the following lemmas. The first lemma
shows the implication (1) ⇒ (2).

▶ Lemma 10. If L ∈ Lω
PA,Reg, then L is limit PA-recognizable.

Proof. As the class of limit PA-recognizable ω-languages is closed under union by Lemma 2,
it is sufficient to show how to construct a limit PA for an ω-language of the form L = UV ω,
where U is Parikh-recognizable and V is regular.

Let A1 = (Q1, Σ, q1, ∆1, F1, C) be a PA with L(A1) = U and A2 = (Q2, Σ, q2, ∆2, F2)
be a Büchi automaton with Lω(A2) = V ω. We use the following standard construction for
concatenation. Let A = (Q1 ∪ Q2, Σ, q1, ∆, F2, C) be a limit PA where

∆ = ∆1 ∪ {(p, a, 0, q) | (p, a, q) ∈ ∆2} ∪ {(f, a, 0, q) | (q2, a, q) ∈ ∆2, f ∈ F1}.

We claim that Lω(A) = L.

⇒ To show Lω(A) ⊆ L, let α ∈ Lω(A) with accepting run r1r2r3 . . . where ri =
(pi−1, αi, vi, pi). As only the states in F2 are accepting, there is a position j such that
pj−1 ∈ F1 and pj ∈ Q2. In particular, all transitions of the copy of A2 are labeled with 0,
i. e., vi = 0 for all i ≥ j. Hence ρ(r) = ρ(r1 . . . rj−1) ∈ C (in particular, there is no ∞ value
in ρ(r)). We observe that r1 . . . rj−1 is an accepting run of A1 on α[1, j −1], as pj−1 ∈ F1 and
ρ(r1 . . . rj−1) ∈ C. For all i ≥ j let r′

i = (pi−1, αi, pi). Observe that (q2, αj , pj)r′
j+1r′

j+2 . . .

is an accepting run of A2 on αjαj+1αj+2 . . . , hence α ∈ L(A1) · Lω(A2) = L.

⇐ To show L = UV ω ⊆ Lω(A), let w ∈ L(A1) = U with accepting run s, and
α ∈ Lω(A2) = V ω with accepting run r = r1r2r3 . . . , where ri = (pi−1, α1, pi). Observe
that s is also a partial run of A on w, ending in an accepting state f . By definition of ∆, we
can continue the run s in A basically as in r. To be precise, let r′

1 = (f, α1, 0, p1), and, for
all i > 1 let r′

i = (pi−1, αi, 0, pi). Then sr′
1r′

2r′
3 . . . is an accepting run of A on wα, hence

wα ∈ Lω(A). ◀

Observe that the construction in the proof of the lemma works the same way when we
interpret A as a reachability-regular PA (every visit of an accepting state has the same good
counter value; this argument is even true if we interpret A as a Büchi PA), showing the
implication (1) ⇒ (3).

▶ Corollary 11. If L ∈ Lω
PA,Reg, then L is reachability-regular.

For the backwards direction we need an auxiliary lemma, essentially stating that semi-
linear sets over C ⊆ (N ∪ {∞})d can be modified such that ∞-entries in vectors in C are
replaced by arbitrary integers, and remain semi-linear.

CSL 2024

31:12 Remarks on Parikh-Recognizable Omega-languages

▶ Lemma 12. Let C ⊆ (N ∪ {∞})d be semi-linear and D ⊆ {1, . . . , d}. Let CD ⊆ Nd be the
set obtained from C as follows.
1. Remove every vector v = (v1, . . . , vd) where vi = ∞ for an i /∈ D.
2. As long as CD contains a vector v = (v1, . . . , vd) with vi = ∞ for an i ≤ d: replace v by

all vectors of the form (v1, . . . vi−1, z, vi+1, . . . , vd) for z ∈ N.
Then CD is semi-linear.

Proof. For a vector v = (v1, . . . , vd) ∈ (N ∪ {∞})d, let Inf(v) = {i | vi = ∞} denote the
positions of ∞-entries in v. Furthermore, let v̄ = (v̄1, . . . , v̄d) denote the vector obtained
from v by replacing every ∞-entry by 0, i. e., v̄i = 0 if vi = ∞, and v̄i = vi otherwise.

We carry out the following procedure for every linear set of the semi-linear set indepen-
dently, hence we assume that C = {b0 + b1z1 + · · · + bℓzℓ | z1, . . . , zℓ ∈ N} is linear. We also
assume that there is no bj with Inf(bj) ̸⊆ D, otherwise, we simply remove it.

Now, if Inf(b0) ̸⊆ D, then CD = ∅, as this implies that every vector in C has an ∞-entry
at an unwanted position (the first item of the lemma). Otherwise, CD = {b0 +

∑
j≤ℓ b̄jzj +∑

i∈Inf(bj) eizij | zj , zij ∈ N}, which is linear by definition. ◀

We are now ready to prove the following lemma, showing the implication (2) ⇒ (1).

▶ Lemma 13. If L is limit PA-recognizable, then L ∈ Lω
PA,Reg.

Proof. Let A = (Q, Σ, q0, ∆, F, C) be an limit PA of dimension d. The idea is as follows.
We guess a subset D ⊆ {1, . . . , d} of counters whose values we expect to be ∞. Observe that
every counter not in D has a finite value, hence for every such counter there is a point where
all transitions do not increment the counter further. For every subset D ⊆ {1, . . . , d} we
decompose A into a PA and a TGBA. In the first step we construct a PA where every counter
not in D reaches its final value and is verified. In the second step we construct a TGBA
ensuring that for every counter in D at least one transition adding a non-zero value to that
counter is used infinitely often. This can be encoded directly into the TGBA. Furthermore
we delete all transitions that modify counters not in D.

Fix D ⊆ {1, . . . , d} and f ∈ F , and define the PA AD
f = (Q, Σ, q0, ∆, {f}, CD) where CD

is defined as in Lemma 12. Furthermore, we define the TGBA BD
f = (Q, Σ, f, ∆D, T D)

where ∆D contains the subset of transitions of ∆ where the counters not in D have zero-values
(just the transitions without vectors for the counters, as we construct a TGBA). On the
other hand, for every counter i in D there is one acceptance component in T D that contains
exactly those transitions (again without vectors) where the ith counter has a non-zero value.
Finally, we encode the condition that at least one accepting state in F needs to by seen
infinitely often in T D by further adding the component {(p, a, q) ∈ ∆ | q ∈ F} (i. e. now we
need to see an incoming transition of a state in F infinitely often).

We claim that Lω(A) =
⋃

D⊆{1,...,d},f∈F L(AD
f) · Lω(BD

f), which by the comment below
Theorem 9 and the equivalence of TGBA and Büchi automata implies the statement of the
lemma. The details are presented in the appendix. ◀

The construction in Lemma 10 yields a limit PA whose semi-linear set C contains no
vector with an ∞-entry. Hence, by this observation and the construction in the previous
lemma we obtain the following corollary.

▶ Corollary 14. For every limit PA there is an equivalent limit PA whose semi-linear set
does not contain any ∞-entries.

Finally we show the implication (3) ⇒ (1).

M. Grobler, L. Sabellek, and S. Siebertz 31:13

▶ Lemma 15. If L is reachability-regular, then L ∈ Lω
PA,Reg.

Proof. Let A = (Q, Σ, q0, ∆, F, C) be a reachability-regular PA. The intuition is as follows.
a reachability-regular PA just needs to verify the counters a single time. Hence, we can
recognize the prefixes of infinite words α ∈ Bω(A) that generate the accepting hit with a PA.
Further checking that an accepting state is seen infinitely often can be done with a Büchi
automaton.

Fix f ∈ F and let Af = (Q, Σ, q0, ∆, {f}, C) be the PA that is, syntactically equal
to A with the only difference that f is the only accepting state. Similarly, let Bf =
(Q, Σ, f, {(p, a, q) | (p, a, v, q) ∈ ∆}, F) be the Büchi automaton obtained from A by setting f

as the initial state and the forgetting the vector labels.
We claim that RRω(A) =

⋃
f∈F L(Af) · Lω(Bf).

⇒ To show RRω(A) ⊆
⋃

f∈F L(Af) · Lω(Bf), let α ∈ Bω(A) with accepting run r =
r1r2r3 . . . where ri = (pi−1, αi, vi, pi). Let k be arbitrary such that there is an accepting
hit in rk (such a k exists by definition) and consider the prefix α[1, k]. Obviously r1 . . . rk

is an accepting run of Apk
on α[1, k]. Furthermore, there are infinitely many j such that

pj ∈ F by definition. In particular, there are also infinitely many j ≥ k with this property.
Let r′

i = (pi−1, αi, pi) for all i > k. Then r′
k+1r′

k+2 . . . is an accepting run of Bpk
on

αk+1αk+2 . . . (recall that pk is the initial state of Bpk
). Hence we have α[1, k] ∈ L(Apk

) and
αk+1αk+2 · · · ∈ Lω(Bpk

).
⇐ To show

⋃
f∈F L(Af) · Lω(Bf) ⊆ RRω(A), let w ∈ L(Af) and β ∈ Lω(Bf) for some

f ∈ F . We show wβ ∈ Bω(A). Let s = s1 . . . sn be an accepting run of Af on w, which ends
in the accepting state f with ρ(s) ∈ C by definition. Furthermore, let r = r1r2r3 . . . be an
accepting run of BD

f on β which starts in the accepting state f by definition. It is now easily
verified that sr′ with r′ = r′

1r′
2r′

3 . . . where r′
i = (pi−1, αi, vi, pi) (for an arbitrary vi such that

r′
i ∈ ∆) is an accepting run of A on wβ, as there is an accepting hit in sn, and the (infinitely

many) visits of an accepting state in r translate one-to-one, hence wβ ∈ Bω(A). ◀

As shown in Lemma 7, the class of Büchi PA-recognizable ω-languages is equivalent to
the class of ω-languages of the form

⋃
i UiV

ω
i where Ui and Vi are Parikh-recognizable, but

the PA for Vi is restricted in such a way that the initial state is the only accepting state
and the set is a homogeneous linear set. Observe that for every regular language L there is
a Büchi automaton A where the initial state is the only accepting state with Lω(A) = Lω

(see e.g. [29, Lemma 1.2]). Hence, Lω
PA,Reg is a subset of the class of Büchi PA-recognizable

ω-languages. This inclusion is also strict, as witnessed by the Büchi PA in Example 1 which
has the mentioned property.

▶ Corollary 16. The class Lω
PA,Reg is a strict subclass of the class of Büchi PA-recognizable

ω-languages.

We finish this subsection by observing that (complete) reachability PA capture a subclass
of Lω

PA,Reg where, due to completeness, all Vi = Σ.

▶ Observation 17. The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiΣω where Ui ⊆ Σ∗ is Parikh-recognizable.

2. L is reachability PA-recognizable.

4.3 Characterization of Lω
PA,PA and Lω

Reg,PA

In this section we give a characterization of Lω
PA,PA and a characterization of Lω

Reg,PA. As
mentioned in the beginning of this section, reset PA are too strong to capture this class.
However, restrictions of strong reset PA are good candidates to capture Lω

PA,PA as well

CSL 2024

31:14 Remarks on Parikh-Recognizable Omega-languages

as Lω
Reg,PA. In fact we show that it is sufficient to restrict the appearances of accepting states

to capture Lω
PA,PA, as specified by the first theorem of this subsection. Further restricting the

vectors yields a model capturing Lω
Reg,PA, as specified in the second theorem of this subsection.

Recall that the condensation of A is the DAG of strong components of the underlying graph
of A.

▶ Theorem 18. The following are equivalent for all ω-languages L ⊆ Σω.

1. L is of the form
⋃

i UiV
ω

i , where Ui, Vi ⊆ Σ∗ are Parikh-recognizable.

2. L is recognized by a strong reset PA A with the property that accepting states appear only
in the leaves of the condensation of A, and there is at most one accepting state per leaf.

Proof. (1) ⇒ (2). Let Ai = (Qi, Σ, qi, ∆i, Fi) for i ∈ {1, 2} be PA and let L = L(A1)·L(A2)ω.
By Lemma 4 we may assume that A2 is normalized (recall that by Corollary 5 this implies
SRω(A2) = L(A2)ω) and hence write L = L(A1) · SRω(A2). As pointed out in the proof of
Lemma 3, we can construct a reset PA A that recognizes L such that only the accepting
states of A2 remain accepting in A. As A2 is normalized, this means that only q2 is accepting
in A. Hence A satisfies the property of the theorem. Finally observe that the construction
in Lemma 2 maintains this property, implying that the construction presented in Lemma 6
always yields a reset PA of the desired form. ⌟

(2) ⇒ (1). Let A = (Q, Σ, q0, ∆, F, C) be a strong reset PA of dimension d with
the property of the theorem. Let f ∈ F and let Af = (Q, Σ, q0, ∆f , {f}, C · {1}) with
∆f = {p, a, v · 0, q) | (p, a, v, q) ∈ ∆, q ̸= f} ∪ {(p, a, v · 1, f) | (p, a, v, f) ∈ ∆} be the
PA of dimension d + 1 obtained from A by setting f as the only accepting state with an
additional counter that is 0 at every transition except the incoming transitions of f , where
the counter is set to 1. Additionally all vectors in C are concatenated with 1. Similarly,
let Af,f = (Q, Σ, f, ∆f , {f}, C · {1}) be the PA of dimension d + 1 obtained from Af by
setting f as the initial state.

⇒ To show SRω(A) ⊆
⋃

f∈F L(Af) · L(Af,f)ω, let α ∈ Sω(A) with accepting run
r = r1r2r3 . . . where ri = (pi−1, αi, vi, pi). Let k1 < k2 < . . . be the positions of accepting
states in r, i. e., pki ∈ F for all i ≥ 1. First observe that the property in the theorem implies
pki

= pkj
for all i, j ≥ 1, i. e., no two distinct accepting states appear in r, since accepting

states appear only in different leaves of the condensation of A.
For j ≥ 1 define r′

j = (pj−1, αj , vj ·0, pj) if j ̸= ki for all i ≥ 1, and r′
j = (pj−1, αj , vj ·1, pj)

if j = ki for some i ≥ 1, i. e., we replace every transition rj by the corresponding transition
in ∆f .

Now consider the partial run r1 . . . rk1 and observe that pi ̸= pk1 for all i < k1, and
ρ(r1 . . . rk1) ∈ C by the definition of strong reset PA. Hence r′ = r′

1 . . . r′
k1

is an accepting
run of Apk1

on α[1, k1], as only a single accepting state appears in r′, the newly introduced
counter has a value of 1 when entering pk1 , i. e., ρ(r′) ∈ C · {1}, hence α[1, k1] ∈ L(Apk1

).
Finally, we show that α[ki + 1, ki+1] ∈ L(Apk1 ,pk1

). Observe that r′
ki+1 . . . r′

ki+1
is an

accepting run of Apk1 ,pk1
on α[ki + 1, ki+1]: we have ρ(rki+1 . . . rki+1) = v ∈ C by definition.

Again, as only a single accepting state appears in r′
ki+1 . . . r′

ki+1
, we have ρ(r′

ki+1 . . . r′
ki+1

) =
v·1 ∈ C ·{1}, and hence α[ki+1, ki+1] ∈ L(Apk1 ,pk1

). We conclude α ∈ L(Apk1
)·L(Apk1 ,pk1

)ω.

⇐ To show
⋃

f∈F L(Af) · L(Af,f)ω ⊆ SRω(A), let u ∈ L(Af), and v1, v2, · · · ∈ L(Af,f)
for some f ∈ F . We show that uv1v2 · · · ∈ SRω(A).

M. Grobler, L. Sabellek, and S. Siebertz 31:15

First let u = u1 . . . un and r′ = r′
1 . . . r′

n with r′
i = (pi−1, ui, vi · ci, pi), where ci ∈ {0, 1},

be an accepting run of Af on u. Observe that ρ(r′) ∈ C · {1}, hence
∑

i≤n ci = 1, i. e., pn is
the only occurrence of an accepting state in r′ (if there was another, say pj , then cj = 1 by the
choice of ∆f , hence

∑
i≤n ci > 1, a contradiction). For all 1 ≤ i ≤ n let ri = (pi−1, ui, vi, pi).

Then r1 . . . rn is a partial run of A on w with ρ(r1 . . . rn) ∈ C and pn = f .
Similarly, no run of Af,f on any vi visits an accepting state before reading the last

symbol, hence we continue the run from rn on v1, v2, . . . using the same argument. Hence
uv1v2 · · · ∈ SRω(A), concluding the proof. ◀

As a side product of the proof of Theorem 18 we get the following corollary, which is in
general not true for arbitrary reset PA.

▶ Corollary 19. Let A = (Q, Σ, q0, ∆, F, C) be a strong reset PA with the property that
accepting states appear only in the leaves of the condensation of A, and there is at most one
accepting state per leaf. Then we have SRω(A) =

⋃
f∈F Sω(Q, Σ, q0, ∆, {f}, C).

By even further restricting the power of strong reset PA, we get the following characteri-
zation of Lω

Reg,PA.

▶ Theorem 20 (⋆). The following are equivalent for all ω-languages L ⊆ Σω.
1. L is of the form

⋃
i UiV

ω
i , where Ui ⊆ Σ∗ is regular and Vi ⊆ Σ∗ is Parikh-recognizable.

2. L is recognized by a strong reset PA A with the following properties.
(a) At most one state q per leaf of the condensation of A may have incoming transitions

from outside the leaf, this state q is the only accepting state in the leaf, and there are
no accepting states in non-leaves.

(b) only transitions connecting states in a leaf may be labeled with a non-zero vector.

Observe that property (a) is a stronger property than the one of Theorem 18, hence,
strong reset PA with this restriction are at most as powerful as those that characterize Lω

PA,PA.
However, as a side product of the proof we get that property (a) is equivalent to the property
of Theorem 18. Hence, property (b) is mandatory to sufficiently weaken strong reset PA
such that they capture Lω

Reg,PA. In fact, using the notion of normalization, we can re-use
most of the ideas in the proof of Theorem 18.

5 Blind counter machines and ε-elimination

As mentioned in the introduction, blind counter machines as an extension of automata with
counting mechanisms were already introduced and studied in the 70s [18]. Over finite words
they are equivalent to Parikh automata [26]. Blind counter machines over infinite words were
first considered by Fernau and Stiebe [14]. In this section we first recall the definition of blind
counter machines as introduced by Fernau and Stiebe [14]. The definition of these automata
admits ε-transitions. It is easily observed that Büchi PA with ε-transitions are equivalent to
blind counter machines. Therefore, we extend all Parikh automata models studied in this
paper with ε-transitions and consider the natural question whether they admit ε-elimination
(over infinite words). We show that almost all models allow ε-elimination, the exception
being safety and co-Büchi PA. For the latter two models we observe that ε-transitions allow
to encode ω-regular conditions, meaning that such transitions give the models enough power
such that they can recognize all ω-regular languages.

A blind k-counter machine (CM) is a quintuple M = (Q, Σ, q0, ∆, F) where Q, Σ, q0
and F are defined as for NFA, and ∆ ⊆ Q × (Σ ∪ {ε}) × Zk × Q is a finite set of integer
labeled transitions. In particular, the transitions of ∆ are labeled with possibly negative
integer vectors. Observe that ε-transitions are allowed.

CSL 2024

31:16 Remarks on Parikh-Recognizable Omega-languages

A configuration for an infinite word α = α1α2α3 . . . of M is a tuple of the form
c = (p, α1 . . . αi, αi+1αi+2 . . . , v) ∈ Q × Σ∗ × Σω × Zk for some i ≥ 0. A configuration c de-
rives into a configuration c′, written c ⊢ c′, if either c′ = (q, α1 . . . αi+1, αi+2 . . . , v + u)
and (p, αi+1, u, q) ∈ ∆, or c′ = (q, α1 . . . αi, αi+1αi+2 . . . , v + u) and (p, ε, u, q) ∈ ∆.
M accepts an infinite word α if there is an infinite sequence of configuration deriva-
tions c1 ⊢ c2 ⊢ c3 ⊢ . . . with c1 = (q0, ε, α, 0) such that for infinitely many i we have
ci = (pi, α1 . . . αj , αj+1αj+2 . . . , 0) with pi ∈ F and for all j ≥ 1 there is a configuration of
the form (p, α1 . . . αj , αj+1αj+2 . . . , v) for some p ∈ Q and v ∈ Zk in the sequence. That is,
a word is accepted if we infinitely often visit an accepting state when the counters are 0,
and every symbol of α is read at some point. We define the ω-language recognized by M as
Lω(M) = {α ∈ Σω | M accepts α}.

Parikh automata naturally generalize to Parikh automata with ε-transitions. An ε-
PA is a tuple A = (Q, Σ, q0, ∆, E , F, C) where E ⊆ Q × {ε} × Nd × Q is a finite set of
labeled ε-transitions, and all other entries are defined as for PA. A run of A on an infinite
word α1α2α3 . . . is an infinite sequence of transitions r ∈ (E∗∆)ω, say r = r1r2r3 . . . with
ri = (pi−1, γi, vi, pi) such that p0 = q0, and γi = ε if ri ∈ E , and γi = αj if ri ∈ ∆ is the j-th
occurrence of a (non-ε) transition in r. The acceptance conditions of the models translate to
runs of ε-PA in the obvious way. We use terms like ε-safety PA, ε-reachability PA, etc, to
denote an ε-PA with the respective acceptance condition.

Note that we can treat every PA as an ε-PA, that is, a PA A = (Q, Σ, q0, ∆, F, C) is
equivalent to the ε-PA A′ = (Q, Σ, q0, ∆,∅, F, C).

5.1 Equivalence of blind counter machines with Büchi PA
We start with the following simple observation.

▶ Lemma 21 (⋆). CM and ε-Büchi PA are equivalent.

5.2 ε-elimination for Parikh automata
We now show that almost all PA models admit ε-elimination. We first consider Büchi PA,
where ε-elimination implies the equivalence of blind counter machines and Büchi PA
by Lemma 21. We provided a direct but quite complicated proof in the manuscript [19]. We
thank Georg Zetzsche for outlining a much simpler proof, which we present here.

▶ Theorem 22. ε-Büchi PA admit ε-elimination.

Proof. Observe that the construction in Lemma 21 translates ε-free CM into ε-free Büchi PA.
We can hence translate a given Büchi PA into a CM and eliminate ε-transitions and then
translate back into a Büchi PA. Therefore, all we need to show is that CM admit ε-elimination.

To show that CM admit ε-elimination we observe that

L is recognized by a CM ⇐⇒ L =
⋃

i

UiV
ω

i ,

where Ui is a language of finite words that is recognized by a CM and Vi is a language of
finite words that is recognized by a CM where F = {q0}. The proof of this observation is
very similar to the proof of Lemma 7 and we leave the details to the reader.

As shown in [18, 27, 30], CM on finite words admit ε-elimination. Furthermore, the proof
technique established in [30, Lemma 7.7] it is immediate that the condition that F = {q0}
is preserved. We obtain ε-free CM A′

i and B′
i for the languages Ui and Vi. Using the

M. Grobler, L. Sabellek, and S. Siebertz 31:17

construction of [26], we can translate A′
i and B′

i into PA Ai and Bi, where the Bi satisfy
Fi = {q0} and the sets Ci are homogeneous linear sets (Theorem 32 of [26]). Now the
statement follows by Lemma 7. ◀

We continue with ε-reachability, ε-reachability-regular and ε-limit PA, as we show ε-
elimination using the same technique for these models. As shown in Observation 17 and
Theorem 9, the class of ω-languages recognized by reachability PA coincides with the class of ω-
languages of the form

⋃
i UiΣω for Parikh-recognizable Ui, and the class of reachability-regular

and limit PA-recognizable ω-languages coincides with the class of ω-languages of the form⋃
i UiV

ω
i for Parikh-recognizable Ui and regular Vi, respectively. It is well-known that NFA

and PA on finite words are closed under homomorphisms and hence admit ε-elimination [26]
(as a consequence of [27, Proposition II.11], ε-transitions can even be eliminated without
changing the semi-linear set). The characterizations allow us to reduce ε-elimination of these
infinite word PA to the finite case.

▶ Lemma 23 (⋆). ε-reachability, ε-reachability-regular, and ε-limit PA admit ε-elimination.

Finally we show that safety and co-Büchi PA do not admit ε-elimination.

▶ Lemma 24. ε-safety PA and ε-co-Büchi PA do not admit ε-elimination.

Proof. Consider the automaton A in Figure 3 with C = {(z, z′) | z′ ≥ z}.

q0 q1

ε,

(
0
1

)
a,

(
0
0

) b,

(
1
0

)

b,

(
0
0

)
Figure 3 The ε-PA with C = {(z, z′) | z′ ≥ z} for the proof of Lemma 24.

If we interpret A as an ε-safety or ε-co-Büchi PA, we have we have Sω(A) = CBω(A) =
{ab+}ω. This ω-language is neither safety PA nor co-Büchi PA-recognizable (one can easily
adapt the proof in [22] showing that {α ∈ {a, b}ω | |α|a = ∞} is neither safety PA nor
co-Büchi PA-recognizable).

Observe how A utilizes the ε-transition to enforce that q0 is seen infinitely often: whenever
the b-loop on q1 is used, the first counter increments. The semi-linear set states that at no
point the first counter value may be greater than the second counter value which can only
be increased using the ε-loop on q0. Hence, any infinite word accepted by A may contain
arbitrary infixes of the form bn for n < ∞, as the automaton can use the ε-loop on q0 at
least n times before, but not bω. ◀

As a consequence of the previous proof we show that ε-safety PA and ε-co-Büchi PA
recognize all ω-regular languages, as the presented trick can be used to encode ω-regular
conditions, that is ε-transitions can be used to enforce that at least one state of a subset of
states needs to be visited infinitely often.

▶ Lemma 25 (⋆). Every ω-regular language is ε-safety PA and ε-co-Büchi recognizable.

Finally we show that strong ε-reset PA and weak ε-reset PA admit ε-elimination. We
show that these two models are equivalent. Hence to show this statement we only need to
argue that strong ε-reset PA admit ε-elimination.

CSL 2024

31:18 Remarks on Parikh-Recognizable Omega-languages

▶ Lemma 26 (⋆). Every strong ε-reset PA A is equivalent to a weak ε-reset PA A′ that has
the same set of states and uses one additional counter. If A is a strong reset PA, then A′ is
a weak reset PA.

▶ Lemma 27 (⋆). Every weak ε-reset PA A is equivalent to a strong ε-reset PA A′ with at
most twice the number of states and the same number of counters. If A is a strong reset PA,
then A′ is a weak reset PA.

▶ Lemma 28 (⋆). Strong ε-reset PA admit ε-elimination.

6 Decision problems

As shown by Guha et al. [22], the results for common decision problems translate from the
finite case to reachability PA and Büchi PA, that is, non-emptiness is NP-complete, and
universality (and hence inclusion and equivalence) are undecidable. We show that these
results translate to reset PA (which are more expressive), even if we allow ε-transitions
(which does not increase their expressiveness but our ε-elimination procedure constructs an
equivalent reset PA of super-polynomial size). Hence, (ε-)reset PA are a powerful model that
can still be used for algorithmic applications, such as the model checking problem.

The main reason for this is that the ω-languages recognized by reset PA are ultimately
periodic, meaning that whenever a reset PA accepts at least one infinite word, then it also
accepts an infinite word of the form uvω.

▶ Lemma 29 (⋆). Let A be an ε-reset PA. If SRω(A) ̸= ∅, then A accepts an infinite word
of the form uvω.

As a consequence, we can reduce non-emptiness for reset PA to the finite word case, as
clarified in the following lemma.

▶ Lemma 30 (⋆). Non-emptiness for ε-reset PA is NP-complete.

Furthermore, we study the following membership problem for automata processing infinite
words. Given an automaton A and finite words u, v, does A accept uvω?

Note that we can always construct a safety automaton that recognizes uvω and no
other infinite word with |uv| many states. Recall that every state of a safety automaton
is accepting. We show that the intersection of a reset PA-recognizable ω-language and a
safety automaton-recognizable ω-language remains reset PA-recognizable using a product
construction which is computable in polynomial time. Hence, we can reduce the membership
problem to the non-emptiness the standard way.

▶ Lemma 31 (⋆). The class of reset PA-recognizable ω-languages is closed under intersection
with safety automata-recognizable ω-languages.

As the membership problem for PA (on finite words) is NP-complete [15], and the
construction in the previous lemma can be computed efficiently, we obtain the following
result.

▶ Corollary 32. Membership for ε-reset PA is NP-complete.

Finally, we observe that universality, inclusion and equivalence remain undecidable
for (ε-)reset PA, as these problems are already undecidable for Büchi PA [22] and the
constructions showing that the class of Büchi PA-recognizable ω-languages is a subclass
of Lω

PA,PA, and that Lω
PA,PA is a subclass of the class of reset PA-recognizable ω-languages are

effective.

M. Grobler, L. Sabellek, and S. Siebertz 31:19

rechability PA

reachability-regular PA
= limit PA = Lω

PA,Reg

Büchi PA

ω-regular = Lω
Reg,Reg reset PA (∗∗) = Lω

Reg,PA

co-Büchi PA ε-co-Büchi PA ε-safety PA safety PA

reset PA (∗) = Lω
PA,PA

strong reset PA
= weak reset PA

(∗) At most one state q per leaf of C(A) may have incoming transitions from outside the leaf, this
state q is the only accepting state in the leaf, and there are no accepting states in non-leaves;

(∗∗) and only transitions connecting states in leaves may be labeled with non-zero vectors.

Figure 4 Overview of our results. Arrows mean strict inclusions. If not explicitly shown otherwise,
all models are equivalent to their ε-counterparts.

7 Conclusion

We conclude by giving an overview of all characterizations and inclusions shown in this paper,
as depicted in Figure 4.

Recall the ω-languages motivated by the model checking problem from the introduction,
namely {α ∈ {a, b, c}ω | there are infinitely many prefixes w of α with |w|a > |w|b + |w|c},
representing unfair resource distributions of an operating system, and {α ∈ {p, c}ω |
there is a prefix w of α with |w|c > |w|p}, representing invalid computations in a producer-
consumer setting. Both of these ω-languages are Reset PA-recognizable (in fact, the first is
Büchi PA-recognizable and the second is even reachability PA-recognizable). As mentioned,
in a common approach we are given a system represented as a Kripke structure K, and a
specification of counter-examples given as an automaton, e.g. a reset PA A. By moving
the labels of the states of K to its transitions, we can see a Kripke structure as a safety
automaton AK (see [10, Theorem 28] for details). As every state of a safety automaton
is accepting, we can easily find a reset automaton recognizing all bad computations of K

(that is the intersection of the ω-languages recognized by AK and A) by Lemma 31. As
(non-)emptiness is decidable for reset PA, we can solve the model-checking problem by
computing the product automaton of AK and A and testing for emptiness, which is in coNP
by Lemma 30.

References

1 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

2 Brenda S. Baker and Ronald V. Book. Reversal-bounded multipushdown machines. Journal
of Computer and System Sciences, 8(3):315–332, 1974.

CSL 2024

31:20 Remarks on Parikh-Recognizable Omega-languages

3 Pascal Baumann, Flavio D’Alessandro, Moses Ganardi, Oscar Ibarra, Ian McQuillan, Lia
Schütze, and Georg Zetzsche. Unboundedness problems for machines with reversal-bounded
counters. In Foundations of Software Science and Computation Structures, pages 240–264,
Cham, 2023. Springer Nature Switzerland.

4 J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

5 Michaël Cadilhac. Automates à contraintes semilinéaires= Automata with a semilinear
constraint. PhD thesis, University of Montréal, 2013.

6 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of Parikh
automata and related models. In Third Workshop on Non-Classical Models for Automata and
Applications - NCMA 2011, volume 282 of books@ocg.at, pages 103–119. Austrian Computer
Society, 2011.

7 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Affine Parikh automata. RAIRO Theor.
Informatics Appl., 46(4):511–545, 2012.

8 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded Parikh automata. Int. J.
Found. Comput. Sci., 23(8):1691–1710, 2012.

9 Edmund M Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The MIT Press,
London, Cambridge, 1999.

10 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
Model Checking. Springer Publishing Company, Incorporated, 1st edition, 2018.

11 Luc Dartois, Emmanuel Filiot, and Jean-Marc Talbot. Two-way Parikh automata with a
visibly pushdown stack. In Foundations of Software Science and Computation Structures -
22nd International Conference, FOSSACS 2019, volume 11425 of Lecture Notes in Computer
Science, pages 189–206. Springer, 2019.

12 Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann.
History-deterministic Parikh automata. arXiv preprint, 2022. arXiv:2209.07745.

13 Henning Fernau and Ralf Stiebe. Sequential grammars and automata with valences. Theoretical
Computer Science, 276(1):377–405, 2002.

14 Henning Fernau and Ralf Stiebe. Blind counter automata on omega-words. Fundam. Inform.,
83:51–64, 2008.

15 Diego Figueira and Leonid Libkin. Path logics for querying graphs: Combining expressiveness
and efficiency. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), LICS ’15, pages 329–340. IEEE, 2015.

16 Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi. Two-way Parikh automata. In
39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2019, volume 150 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

17 Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving translation
of LTL formulae to Büchi automata. In Formal Techniques for (Networked and) Distributed
Systems, 2002.

18 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(3):311–324, 1978.

19 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Parikh automata on infinite words.
arXiv preprint, 2023. arXiv:2301.08969.

20 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Remarks on Parikh-recognizable omega-
languages. arXiv preprint, 2023. arXiv:2307.07238.

21 Mario Grobler and Sebastian Siebertz. Büchi-like characterizations for Parikh-recognizable
omega-languages. arXiv preprint, 2023. arXiv:2302.04087.

https://arxiv.org/abs/2209.07745
https://arxiv.org/abs/2301.08969
https://arxiv.org/abs/2307.07238
https://arxiv.org/abs/2302.04087

M. Grobler, L. Sabellek, and S. Siebertz 31:21

22 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh Automata
over Infinite Words. In 42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2022), volume 250 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 40:1–40:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

23 Hendrik Jan Hoogeboom. Context-free valence grammars - revisited. In Developments in
Language Theory, pages 293–303, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

24 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978.

25 Wong Karianto. Parikh automata with pushdown stack. Diplomarbeit, RWTH Aachen, 2004.
26 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Automata,

Languages and Programming, pages 681–696, Berlin, Heidelberg, 2003. Springer.
27 Michel Latteux. Cônes rationnels commutatifs. Journal of Computer and System Sciences,

18(3):307–333, 1979.
28 Victor Mitrana and Ralf Stiebe. Extended finite automata over groups. Discrete Applied

Mathematics, 108(3):287–300, 2001.
29 Wolfgang Thomas. Automata on Infinite Objects, pages 133–191. MIT Press, Cambridge, MA,

USA, 1991.
30 Georg Zetzsche. Silent transitions in automata with storage. In Automata, Languages, and

Programming, pages 434–445, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

CSL 2024

Characterising and Verifying the Core in
Concurrent Multi-Player Mean-Payoff Games
Julian Gutierrez #

Monash University, Clayton, Australia

Anthony W. Lin #

University of Kaiserslautern-Landau, Germany
Max-Planck Institute for Software Systems, Kaiserslautern, Germany

Muhammad Najib #

Heriot-Watt University, Edinburgh, UK

Thomas Steeples #

University of Oxford, UK

Michael Wooldridge #

University of Oxford, UK

Abstract
Concurrent multi-player mean-payoff games are important models for systems of agents with
individual, non-dichotomous preferences. Whilst these games have been extensively studied in terms
of their equilibria in non-cooperative settings, this paper explores an alternative solution concept:
the core from cooperative game theory. This concept is particularly relevant for cooperative AI
systems, as it enables the modelling of cooperation among agents, even when their goals are not
fully aligned. Our contribution is twofold. First, we provide a characterisation of the core using
discrete geometry techniques and establish a necessary and sufficient condition for its non-emptiness.
We then use the characterisation to prove the existence of polynomial witnesses in the core. Second,
we use the existence of such witnesses to solve key decision problems in rational verification and
provide tight complexity bounds for the problem of checking whether some/every equilibrium in
a game satisfies a given LTL or GR(1) specification. Our approach is general and can be adapted
to handle other specifications expressed in various fragments of LTL without incurring additional
computational costs.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking; Theory of computation → Solution concepts in
game theory

Keywords and phrases Concurrent games, multi-agent systems, temporal logic, game theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.32

Related Version Full Version: https://doi.org/10.48550/arXiv.2311.15883

Funding Julian Gutierrez : Research partially sponsored by the DARPA Assured Neuro Symbolic
Learning and Reasoning (ANSR) program under award number FA8750-23-2-1016.
Anthony W. Lin: supported by European Research Council under European Union’s Horizon research
and innovation programme (grant agreement no 501100000781)
Michael Wooldridge: Supported by a UKRI Turing AI World Leading Researcher Fellowship
(EP/W002949/1).

Acknowledgements We wish to thank anonymous reviewers for their useful feedback.

1 Introduction

Concurrent games, where agents interact over an infinite sequence of rounds by choosing
actions simultaneously, are one of the most important tools for modelling multi-agent
systems. This model has received considerable attention in the research community (see,

© Julian Gutierrez, Anthony W. Lin, Muhammad Najib, Thomas Steeples, and Michael Wooldridge;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 32; pp. 32:1–32:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julian.gutierrez@monash.edu
mailto:awlin@mpi-sws.org
https://orcid.org/0000-0003-4715-5096
mailto:m.najib@hw.ac.uk
https://orcid.org/0000-0002-6289-5124
mailto:thomas.steeples@cs.ox.ac.uk
mailto:mjw@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2024.32
https://doi.org/10.48550/arXiv.2311.15883
https://doi.org/10.3030/101089343
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 The Core in Concurrent Multi-Player Mean-Payoff Games

e.g., [4, 11, 38, 32, 45]). In these games, the system evolves based on the agents’ choices, and
their preferences are typically captured by associating them with a Boolean objective (e.g.,
a temporal logic formula) representing their goal. Strategic issues arise as players seek to
satisfy their own goals while taking into account the goals and rational behaviour of other
players. Note that the preferences induced by such goals are dichotomous: a player will
either be satisfied or unsatisfied. However, many systems require richer models of preferences
that capture issues such as resource consumption, cost, or system performance [19, 18, 22].

Mean-payoff games [29, 62] are widely used to model the quantitative aspects of systems.
Whilst much research has been conducted on non-cooperative mean-payoff games and solution
concepts such as Nash equilibrium (NE) and subgame perfect equilibrium (e.g., [58, 14, 15]),
this paper focuses on a cooperative setting. In this setting, players can reach binding
agreements and form coalitions to collectively achieve better payoffs or eliminate undesirable
outcomes1. As a result, NE and its variants may not be suitable for examining the stable
behaviours that arise in these types of games. For example, in the Prisoner’s Dilemma
game, players can avoid mutual defection, which is the unique NE, by establishing binding
agreements [53]. Thus, analysing games through the lens of cooperative game theory poses
distinct challenges and is important in and of itself. This paradigm is particularly relevant for
modelling and analysing cooperative AI systems, which have recently emerged as a prominent
topic [26, 25, 24, 7]. In these systems, agents are able to communicate and benefit from
cooperation, even when their goals are not fully aligned. We illustrate that this is also the
case in the context of mean-payoff games in Example 1.

We focus on a solution concept from cooperative game theory known as the core [5, 54, 40],
which is the most widely-studied solution concept for cooperative games. Particularly, we
study the core of mean-payoff games where players have access to finite but unbounded memory
strategies. The motivation is clear, as finite-memory strategies are sufficiently powerful for
implementing LTL objectives while being realisable in practice. Our main contribution
is twofold: First, we provide a characterisation of the core using techniques from discrete
geometry2 (cf. logical characterisation in [40, 39]) and establish a necessary and sufficient
condition for its non-emptiness. We believe that our characterisation holds value in its own
right, as it connects to established techniques used in game theory and economics. This has
the potential to enable the application of more sophisticated methods and computational
tools (e.g., linear programming solvers) in the area of rational verification [1, 38]. Second,
we provide tight complexity bounds for key decision problems in rational verification with
LTL and GR(1) [8] specifications (see Table 1). GR(1) is a LTL fragment that has been used
in various domains [35, 17, 31, 47] and covers a wide class of common LTL specification
patterns [46]. Our approach to solving rational verification problems is very general and can
be easily adapted for different LTL fragments beyond GR(1). This is the first work to study
the core of mean-payoff games with finite but unbounded memory strategies, and to explore
the complexity of problems related to the rational verification of such games in this setting.

Related Work. The game-theoretical analysis of temporal logic properties in multi-agent
systems has been studied for over a decade (see e.g., [32, 23, 49, 45, 37, 61]). However,
most of the work has focused on a non-cooperative setting. Recently, there has been

1 We emphasise that this paper concerns the outcome of games when such agreements can be reached.
The mechanism for agreements is assumed to be exogenous and beyond the scope of this paper.

2 We note that linear programming and convex analysis are well-established tools for studying the core
in traditional economics (see e.g., [33, 10, 54, 59]). However, the settings and contexts (e.g., the
game models) of these previous works differ from those of the present work, and their results do not
automatically carry over.

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:3

an increased interest in the analysis of concurrent games in a cooperative setting. The
core has been studied in the context of deterministic games with dichotomous preferences
by [40, 39] using the logics ATL* [4] and SL [49]. However, as far as we are aware, there
are no extensions of these logics that adopt mean-payoff semantics. Quantitative extensions
exist [16, 12], and the core is studied in [12] using the logic SL[F] that extends SL with
quantitative satisfaction value, but the semantics of these logics are not defined on mean-
payoff conditions and thus cannot be used to reason about the core of mean-payoff games. In
the stochastic setting, [36] examines the core in stochastic games with LTL objectives under
the almost-sure satisfaction condition. The approach relies on qualitative parity logic [6] and
is not applicable to mean-payoff objectives. Closer to our work is [57] which studies the
core of multi-player mean-payoff games with Emerson-Lei condition [30] in the memoryless
setting. Whilst memoryless strategies are easy to implement, finite-memory and arbitrary
mathematical strategies offer greater richness. For instance, players can achieve higher payoffs
and implement LTL properties with finite-memory strategies, which may not be possible
with memoryless ones (see Example 1). The approach proposed in [57], which involves using
a non-deterministic Turing machine to guess the correct strategies, is not applicable in the
present work’s setting. This is because players may have finite but unbounded memory
strategies, and as such, strategies may be arbitrarily large. To address this limitation, we
propose a new approach that can handle such scenarios.

Organisation. The rest of the paper is structured as follows. Section 2 provides an overview
of temporal logics, multi-player mean-payoff games, relevant game-theoretic concepts, and
key mathematical concepts. Section 3 develops a method to characterise the core using
discrete geometry techniques, leading to a crucial result for Section 4, where we determine
the complexity of several decision problems. Finally, Section 5 offers concluding remarks.
Due to space constraints, all the missing proofs and some technical details are omitted from
this version and can be found in the full version [41].

2 Preliminaries

Given any set X, we use X∗, Xω and X+ for, respectively, the sets of finite, infinite, and
non-empty finite sequences of elements in X. For Y ⊆ X, we write X−Y for X \ Y and X−i

if Y = {i}. We extend this notation to tuples w = (x1, ..., xk, ..., xn) ∈ X1 × · · · ×Xn, and
write w−k for (x1, ..., xk−1, xk+1, ..., xn). Similarly, for sets of elements, we write w−Y to
denote w without each xk, for k ∈ Y . For a sequence v, we write v[t] or vt for the element in
position t+ 1 in the sequence; for example, v[0] = v0 is the first element of v.

Mean-Payoff. For an infinite sequence of real numbers, r0r1r2 · · · ∈ Rω, we define the
mean-payoff value of r, denoted mp(r), to be the quantity, mp(r) = lim infn→∞

1
n

∑n−1
i=0 r

i.

Temporal Logics. We use LTL [52] with the usual temporal operators, X (“next”) and
U (“until”), and the derived operators G (“always”) and F (“eventually”). We also use
GR(1) [8], a fragment of LTL given by formulae written in the following form:

(GFψ1 ∧ · · · ∧GFψm)→ (GFφ1 ∧ · · · ∧GFφn),

where each subformula ψi and φi is a Boolean combination of atomic propositions. Addi-
tionally, we also utilise an extension of LTL known as LTLlimΣ [9] that allows mean-payoff
assertion such as mp(v) ≥ c for a numeric variable v and a constant number c, which asserts

CSL 2024

32:4 The Core in Concurrent Multi-Player Mean-Payoff Games

that the mean-payoff of v is greater than or equal to c along an entire path. The satisfaction
of temporal logic formulae is defined using standard semantics. We use the notation α |= φ

to indicate that the formula φ is satisfied by the infinite sequence α.

Arenas. An arena is a tuple A = ⟨N, {Aci}i∈N, St, sinit, tr, lab⟩ where N, Aci, and St are
finite non-empty sets of players, actions for player i, and states, respectively; sinit ∈ St is
the initial state; tr : St× A⃗c→ St is a transition function mapping each pair consisting of
a state s ∈ St and an action profile a⃗c ∈ A⃗c = Ac1 × · · · × Acn, with one action for each
player, to a successor state; and lab : St→ 2AP is a labelling function, mapping every state
to a subset of atomic propositions.

A run ρ = (s0, a⃗c0), (s1, a⃗c1) · · · is an infinite sequence in (St×A⃗c)ω such that tr(sk, a⃗ck) =
sk+1 for all k. Runs are generated in the arena by each player i selecting a strategy σi that
will define how to make choices over time. A strategy for i can be understood abstractly as
a function σi : St+ → Aci which maps sequences (or histories) of states into a chosen action
for player i. A strategy σi is a finite-memory strategy if it can be represented by a finite
state machine σi = (Qi, q

0
i , δi, τi), where Qi is a finite and non-empty set of internal states,

q0
i is the initial state, δi : Qi × St→ Qi is a deterministic internal transition function, and
τi : Qi → Aci an action function. A memoryless strategy σi : St → Aci chooses an action
based only on the current state of the environment. We write Σi for the set of strategies for
player i.

A strategy profile σ⃗ = (σ1, . . . , σn) is a vector of strategies, one for each player. Once a
state s and profile σ⃗ are fixed, the game has an outcome, i.e., a path in A, denoted by π(σ⃗, s).
In this paper, we assume that players’ strategies are finite-memory and deterministic, as such,
π(σ⃗, s) is the unique path induced by σ⃗, that is, the sequence s0s1s2 . . . such that s0 = s,
sk+1 = tr(sk, (τ1(qk

1), . . . , τn(qk
n))), and qk+1

i = δi(qk
i , s

k), for all k ≥ 0. Note that such a
path is ultimately periodic (i.e., a lasso). We simply write π(σ⃗) for π(σ⃗, sinit). We extend
this to run induced by σ⃗ in a similar way, i.e., ρ(σ⃗) = (s0, a⃗c0), (s1, a⃗c1), For an element
of a run ρ(σ⃗)[k] = (sk, a⃗ck), we associate the configuration cfg(σ⃗, k) = (sk, qk

1 , . . . , q
k
n) with

τi(qk
i) = ack

i for each i.

Multi-Player Games. A multi-player game is obtained from an arena A by associating each
player with a goal. We consider multi-player games with mean-payoff goals. A multi-player
mean-payoff game (or simply a game) is a tuple G =⟨A, (wi)i∈N⟩, where A is an arena and
wi : St → Z is a function mapping, for every player i, every state of the arena into an
integer number. Given a game G =⟨A, (wi)i∈N⟩ and a strategy profile σ⃗, an outcome π(σ⃗) in
A induces a sequence lab(π(σ⃗)) = lab(s0)lab(s1) · · · of sets of atomic propositions, and for
each player i, the sequence wi(π(σ⃗)) = wi(s0)wi(s1) · · · of weights. The payoff of player i is
payi(π(σ⃗)) = mp(wi(π(σ⃗))). By a slight abuse of notation, we write payi(σ⃗) for payi(π(σ⃗)),
and π(σ⃗) |= φ or σ⃗ |= φ for lab(π(σ⃗)) |= φ for some temporal logic formula φ.

Solution Concept. We focus on a solution concept known as the core [5, 54, 40]. To
understand the concept of the core, it might be helpful to compare it with the NE and how
each can be characterised by deviations. Informally, a NE is a strategy profile from which
no player has any incentive to unilaterally deviate. On the other hand, the core comprises
strategy profiles from which no coalitions of agents can deviate such that every agent in the
coalition is strictly better off, regardless of the actions of the remaining players.

Formally, we say that a strategy profile σ⃗ is in the core if for all coalitions C ⊆ N,
and strategy profiles σ⃗′

C , there is some counter-strategy profile σ⃗′
−C such that payi(σ⃗) ≥

payi(σ⃗′
C , σ⃗

′
−C), for some i ∈ C. Alternatively, as we already discussed above, we can

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:5

characterise the core by using the notion of beneficial deviations: Given a strategy profile σ⃗
and a coalition C ⊆ N, C ̸= ∅, we say that the strategy profile σ⃗′

C is a beneficial deviation
if for all counter-strategies σ⃗′

−C , we have payi((σ⃗′
C , σ⃗

′
−C)) > payi(σ⃗) for all i ∈ C. The core

then consists of those strategy profiles which admit no beneficial deviations; note that these
two definitions are equivalent. For a given game G, let Core(G) denote the set of strategy
profiles in the core of G.

m

(0, 0)

r

(0, 1)

l

(1, 0)

(L, L)

(∗, R) (R, R)

(L, ∗)

(L, R)
(R, L)

(L, L) (R, R)

Figure 1 Arena for Example 1. The symbol ∗ is a wildcard that matches all possible actions.

▶ Example 1. We illustrate how the core differs from NE, and how cooperation and memory
affect the outcome of a game. Consider a game consisting of two players {1, 2}. The arena
is depicted in Figure 1, and the players are initially in m. Each player has two actions: L
and R. Player 1 (resp. 2) gets 1 when the play visits l (resp. r) – e.g., tasks assigned to the
players, for which they are rewarded upon completion. However, these states can only be
visited by agreeing on the actions (e.g., tasks that must be carried out by multiple robots).
Observe that player 1 (resp. 2) always choosing L (resp. R) is a NE, and a “bad” one since
each player receives a payoff of 0. On the other hand, this bad equilibrium is not included in
the core: the players can coordinate/cooperate to alternately visit l and r and obtain higher
payoffs (i.e., each receives 1

4). Furthermore, observe that to execute this plan, the players
must remember previously visited states (i.e., finite-memory strategies are necessary). This
outcome also corresponds to the liveness property GFl ∧GFr (“the tasks will be completed
infinitely often”), which cannot be realised using memoryless strategies.

Vectors and Inequations. Given two vectors a⃗, b⃗ ∈ Qd the notation a⃗ ≥ b⃗ corresponds to
the component-wise inequality, and let ||⃗a|| = d+

∑
i∈J1,dK ||ai||, ai is represented using the

usual binary encoding of numerators/denominators. The linear function fa⃗ : Rd → R is
the function fa⃗(x⃗) =

∑
i∈J1,dK ai · xi. A linear inequation is a pair (⃗a, b) where a⃗ ∈ Qd \ {⃗0}

and b ∈ Q. The size of (⃗a, b) is ||(⃗a, b)|| = ||⃗a|| + ||b||. The half-space corresponding to
(⃗a, b) is the set hspace(⃗a, b) = {x⃗ ∈ Rd | fa⃗(x⃗) ≤ b}. A linear inequality system is a set
λ = {(⃗a1, b1), . . . , (⃗al, bl)} of linear inequations. A polyhedron generated by λ is denoted
by poly(λ) =

⋂
(a⃗,b)∈λ hspace(⃗a, b). Let P be a polyhedron in Rd and C ⊆ D = {1, . . . , d},

and let c = |C|. The projection of P ⊆ Rd on variables with indices in C is the set
projC(P) = {x⃗ ∈ Rc | ∃y⃗ ∈ P ∧ ∀i ∈ C, yi = xi}.

3 Characterising the core

In this section, we provide a characterisation of the core and other important concepts which
we will use to prove our complexity results.

Multi-Mean-Payoff Games. Multi-mean-payoff games (MMPGs) [21, 60] are similar to
two-player, turn-based, zero-sum mean-payoff games, except the states of the game graph
are labelled with k-dimensional integer vectors representing the weights. Player 1’s objective
is to maximise the mean-payoff of the k-dimensional weight function. Note that since the
weights are multidimensional, there is not a unique maximal value in general.

CSL 2024

32:6 The Core in Concurrent Multi-Player Mean-Payoff Games

Formally, a multi-mean-payoff game G is a tuple, G = (V1, V2, E, w), where V1, V2 are
the states controlled by player 1 and 2 respectively, with V := V1 ∪ V2 and V1 ∩ V2 = ∅;
E ⊆ V × V is a set of edges; w : V → Zk is a weight function with k ∈ N. Given a start
state v0 ∈ Vi, player i chooses an edge (v0, v1) ∈ E, and the game moves to state v1 ∈ Vj .
Then player j chooses an edge and the game moves to the specified state, and this continues
forever. Paths are defined in the usual way and for a path π, the payoff pay(π) is the vector
(mp(w1(π)), . . . ,mp(wk(π))). It is shown in [60] that memoryless strategies suffice for player
2 to act optimally, and that the decision problem which asks if player 1 has a strategy that
ensures pay(π) ≥ x⃗ from a given state and for some x⃗ ∈ Rk is coNP-complete.

We consider a sequentialisation of a game where players are partitioned into two coalitions,
C ⊆ N and −C = N \ C. This game is modelled by a MMPG where coalition C acts as
player 1 and −C as player 2. The k-dimensional vectors represent the weight functions of
players in C. In the case C = N, player 2 is a “dummy” player with no influence in the game.

▶ Definition 2. Let G = (A, (wi)i∈N) be a game with A = (N,Ac, St, sinit, tr, lab) and
let C ⊆ N. The sequentialisation of G with respect to C is the (turn-based two-player)
MMPG GC = (V1, V2, E, w) where V1 = St, V2 = St × A⃗cC ; w : V1 ∪ V2 → Zc is such that
wi(s) = wi(s, a⃗cC) = wi(s); and E = {(s, (s, a⃗cC)) ∈ St × (St × A⃗cC)} ∪ {((s, a⃗cC), s′) ∈
(St× A⃗cC)× St : ∃a⃗c−C ∈ A⃗c−C .s

′ = tr(s, (a⃗cC , a⃗c−C))}.3

The construction above is clearly polynomial in the size of the original game G.
Let ΣM

2 be the set of memoryless strategies4 for player 2. For a strategy σ2 ∈ ΣM
2 , the

game induced by applying such strategy is given by GC [σ2] = (V1, V2, E
′, (wi)i∈C) where

E′ = {(s, s′) ∈ E | s ∈ V1 ∨ (s ∈ V2 ∧ σ2(s) = s′)}. That is, a subgame in which player 2
plays according to the memoryless strategy σ2.

Enforceable Values and Pareto Optimality. We present the definitions of enforceable values
and Pareto optimality in MMPGs [13] below, which we will use for our characterisation of
the core.

▶ Definition 3. For a MMPG GC and a state s ∈ V1 ∪ V2, define the set of enforceable
values that player 1 can guarantee from state s as:

val(GC , s) = {x⃗ ∈ Rc | ∃σ1∀σ2∀j ∈ C : xj ≤ mpj(wj(π((σ1, σ2), s)))}.

A vector x⃗ ∈ Rc is C-Pareto optimal from s (or simply Pareto optimal when C = N or
C is clear from the context, and s = sinit) if it is maximal in the set val(GC , s). The set of
Pareto optimal values is called Pareto set, formally defined as:

PO(GC , s) = {x⃗ ∈ val(GC , s) | ¬∃x⃗′ ∈ val(GC , s) : x⃗′ ≥ x⃗ ∧ ∃i s.t.x′
i > xi}.

When s = sinit, we simply write val(GC) and PO(GC). We naturally extend Pareto optimality
to strategy profiles: a strategy profile σ⃗ is C-Pareto optimal if (payi(σ⃗))i∈C ∈ PO(GC).

A notable aspect of the core in mean-payoff games is that it generally does not coincide
with Pareto optimality, as shown in Propositions 4 and 5 below (the proofs are provided
in [41]). This stands in sharp contrast to conventional cooperative (transferable utility,
superadditive) games in which the core is always included in the Pareto set [20, pp. 24–25].

3 For C = N, the set A⃗c−C is empty, and the transition is fully characterised by A⃗cC . We keep the
current notation to avoid clutters.

4 Here we define a strategy as a mapping from sequences of states to a successor state σi : V ∗Vi → V for
i ∈ {1, 2}. A strategy is memoryless when it chooses a successor based on the current state σi : Vi → V .

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:7

▶ Proposition 4. There exist games G such that σ⃗ ∈ Core(G) and σ⃗ is not Pareto optimal.

▶ Proposition 5. There exist games G such that σ⃗ is Pareto optimal and σ⃗ ̸∈ Core(G).

Discrete Geometry and Values. To characterise the core, we utilise techniques from
discrete geometry. First, we provide the definitions of two concepts: convex hull and
downward closure. The convex hull of a set X ⊆ Rd is the set conv(X) = {

∑
x⃗∈X ax⃗ · x⃗ |

∀x⃗ ∈ X, ax⃗ ∈ [0, 1] ∧
∑

x⃗∈X ax⃗ = 1}. The downward closure of a set X ⊆ Rd is the set
↓X = {x⃗ ∈ Qd | ∃x⃗′ ∈ X, ∀i ∈ J1, dK, xi ≤ x′

i}. Note that if the set X is finite, then conv(X)
and ↓ conv(X) are convex polyhedra, thus can be represented by intersections of some finite
number of half-spaces [34, Theorem 3.1.1].

Now, observe that the downward closure of the Pareto set is equal to the set of values
that player 1 can enforce, that is, ↓ PO(GC , s) = val(GC , s). The set val(GC) can also
be characterised by the set of simple cycles and strongly connected components (SCCs) in
the arena of GC [3]. A simple cycle within S ⊆ (V1 ∪ V2) is a finite sequence of states
o = s0s1 · · · sk ∈ S∗ with s0 = sk and for all i and j, 0 ≤ i < j < k, si ≠ sj . Let C(S) be the
set of simple cycles in S, and SCC(GC [σ2]) the set of SCCs reachable from sinit in GC [σ2].
The set of values that player 1 can enforce is characterised by the intersection of all sets of
values that it can achieve against memoryless strategies of player 2. Formally, we have the
following [13, Theorem 4]:

val(GC) =
⋂

σ2∈ΣM
2

⋃
S∈SCC(GC [σ2])

↓ conv
({(∑k

j=0 wi(oj)
|o|

)
i∈C

∣∣∣∣∣ o ∈ C(S)
})

.

With these definitions in place, we first obtain the following lemma, which shows that
the set of enforceable values has polynomial representation.

▶ Lemma 6. The set val(GC) can be represented by a finite union of polyhedra PC
1 , . . . , P

C
k ,

each of them defineable by a system of linear inequations λC
j . Moreover, each linear inequation

(⃗a, b) ∈ λC
j can be represented polynomially in the size of GC .

Proof. Let X = {x⃗1, . . . , x⃗m} be the set of extreme points of conv({(
∑k

j=0
wi(oj)

|o|)i∈C | o ∈
C(S)}) for a given S ∈ SCC(GC [σ2]). Observe that X corresponds to the set of simple
cycles in S, as such, for each x⃗ ∈ X we have ||x⃗|| that is of polynomial in the size of GC . As
shown in [13, Theorem 3], ↓ conv(X) has a system of inequations λ whose each inequation
has representation polynomial in c and log2(max{||x⃗|| | x⃗ ∈ X}). Since this holds for each
σ2 ∈ ΣM

2 and for each SCC in GC [σ2], we obtain the lemma. ◀

Let PS(GC) denote the set of polyhedra whose union represents val(GC), and for a
polyhedron PC

j ∈ PS(GC), we denote by HC
j the set of half-spaces whose intersection

corresponds to PC
j .

Polynomial Witness in the Core. A polynomial witness in the core of G is a vector
x⃗ ∈ Qn such that there exists σ⃗ ∈ Core(G) where (payi(σ⃗))i∈N = x⃗ and x⃗ has a polynomial
representation with respect to G. The rest of this section focuses on characterising the
core (Theorem 12) and showing the existence of a polynomial witness in a non-empty core
(Theorem 13). We start by introducing some concepts and proving a couple of lemmas.

▶ Definition 7. Given a set of player N and a coalition C ⊆ N. The inclusion mapping of
X ⊆ Rc to subsets of Rn is the set F(X) = {y⃗ ∈ Rn | ∃x⃗ ∈ X, ∀j ∈ C, xj = yj}.

CSL 2024

32:8 The Core in Concurrent Multi-Player Mean-Payoff Games

s

(0, 0, 0)

m

(0, 2, 1)

t

(2, 1, 0)

b

(1, 0, 2)

(H, H, ∗)

(∗, T, H)

(T, ∗, T)

∗

∗

∗

(H, T, T)
(T, H, H)

1 2 3

1

2

3

x3 ≤ 1

x2 ≤ 2

Q

R

P

S

H2 ∩ H3

x2

x3

Figure 2 Left: Arena for Example 11. Right: Graphical representation of val(G{2,3}). Coordinates
P, Q, R, S corresponds to the set PO(G′N). There is a beneficial deviation by {2, 3} (dashed arrow)
from P (the {1, 2}-Pareto optimal value) to Q (the {2, 3}-Pareto optimal value), but there is no
such a deviation from S.

▶ Definition 8. Let H = hspace(⃗a, b) be a half-space, the closed complementary half-space
H is given by H = {x⃗ ∈ Rd | fa⃗(x⃗) ≥ b}.

▶ Lemma 9. If σ⃗ ∈ Core(G) then for all coalitions C ⊆ N and for all polyhedra PC
j ∈ PS(GC),

there is a half-space H ∈ HC
j such that F((payi(σ⃗))i∈C) ⊆ F(H).

Proof. Suppose, for the sake of contradiction, that there is a strategy profile σ⃗ ∈ Core(G),
coalition C ⊆ N, and polyhedron PC

j such that for every half-space H ∈ HC
j we have

F((payi(σ⃗))i∈C) ̸⊆ F(H). Thus, it follows that F((payi(σ⃗))i∈C) ⊆ F(val(GC)) and there
exists a vector x⃗ ∈ F(val(GC)) such that for every player i ∈ C, we have xi > payi(σ⃗).
This implies that there exists a strategy profile σ⃗C such that for all counter-strategies
σ⃗−C and players i ∈ C, we have payi((σ⃗C , σ⃗−C)) > payi(σ⃗). In other words, there is a
beneficial deviation by the coalition C. Therefore, σ⃗ cannot be in the core, leading to a
contradiction. ◀

In essence, Lemma 9 states that the absence of a beneficial deviation from a strategy
profile σ⃗ can be expressed in terms of polyhedral representations and closed complementary
half-spaces. The next lemma, asserts that any value x⃗ ∈ Rc enforceable by a coalition C can
also be achieved by the grand coalition N.

▶ Lemma 10. For all coalitions C ⊆ N, it holds that val(GC) ⊆ projC(val(GN)).

Proof. Suppose, for the sake of contradiction, that there is a vector x⃗ = (x1, . . . , xc) ∈ val(GC)
such that x⃗ ̸∈ projC(val(GN)). This means that there is some strategy profile (σ⃗C , σ⃗−C) and
a player i ∈ C with payi((σ⃗C , σ⃗−C)) > payi(σ⃗) for all σ⃗ ∈ ΣC∪−C . This implies that there is
a strategy profile (σ⃗C , σ⃗−C) ̸∈ ΣC∪−C , i.e., there is a strategy profile that is not included in
the set of all strategy profiles, which is a contradiction. ◀

▶ Example 11. Consider a game with N = {1, 2, 3}. The arena is depicted in Figure 2.
Observe that the game has an empty core: if the players stay in s forever, then {1, 2} can
beneficially deviate to t. If the play goes to t, then {2, 3} can beneficially deviate to m. Similar
arguments can be used for m and b; thus, no strategy profile lies in the core. We can show
this using (the contrapositive of) Lemma 9: for instance, take a strategy profile σ⃗ that goes
to t, and let C = {2, 3}. Then val(GC) can be represented by the intersection of half-spaces

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:9

H2 = {x⃗ ∈ R2 | x2 ≤ 2} and H3 = {x⃗ ∈ R2 | x3 ≤ 1} (see Figure 2 right). Coordinate P
corresponds to σ⃗, and F((payi(σ⃗))i∈{2,3}) ̸⊆ F(H2) and F((payi(σ⃗))i∈{2,3}) ̸⊆ F(H3). Thus,
σ⃗ is not in the core. Now, suppose we modify the game such that (wi(s))i∈N = (1, 1, 1); we
obtain PO(G′N) = {(2, 1, 0), (0, 2, 1), (1, 0, 2), (1, 1, 1)}. Let σ⃗′ be a strategy profile that stays
in s forever (corresponding to S in Figure 2 right); σ⃗′ is in the core of the modified game,
and F((payi(σ⃗′))i∈{2,3}) ⊆ F(H3). Indeed for all C ⊆ N there exists such a half-space. Now
if we take the intersection of such half-spaces and the set val(G′N) =↓ PO(G′N), we obtain a
non-empty set namely {(1, 1, 1)} which corresponds to a member of the core σ⃗′.

From Example 11, we observe that a member of the core can be found in the intersection
of some set of half-spaces and the set of values enforceable by the grand coalition. We
formalise this observation in Theorem 12, which provides a necessary and sufficient condition
for the non-emptiness of the core.

▶ Theorem 12. The core of a game G is non-empty if and only if there exists a set of
half-spaces I such that
1. for all coalitions C ⊆ N and for all polyhedra PC

j ∈ PS(GC), I ∩HC
j ̸= ∅, and

2. there exists a polyhedron PN ∈ PS(GN) such that R =
⋂

H∈I F(H) ∩ PN ̸= ∅.

Proof. From left to right. Suppose that Core(G) ̸= ∅, then there is a strategy profile
σ⃗ ∈ Core(G). It follows from Lemma 9 that for each coalition C ⊆ N and for each polyhedron
PC

j ∈ PS(GC), there exists a half-space H ∈ HC
j such that F((payi(σ⃗))i∈C) ⊆ F(H). Since

this holds for each coalition C ⊆ N and for each polyhedron PC
j ∈ PS(GC), then it is the

case that there exists a set of half-spaces I such that for all coalitions C ⊆ N and for all
polyhedra PC

j ∈ PS(GC) there is a half-space H ∈ I ∩HC
j , and (payi(σ⃗))i∈N ∈

⋂
H∈I F(H).

Furthermore, for each coalition C ⊆ N, it is the case that F((payi(σ⃗))i∈C) ⊆ F(val(GC))
and by Lemma 10, we have (payi(σ⃗))i∈C ∈ projC(val(GN)). Thus, it is also the case that
there exists a polyhedron PN ∈ PS(GN), such that (payi(σ⃗))i∈N ∈ PN. Thus, it follows that
(payi(σ⃗))i∈N ∈

⋂
H∈I F(H) ∩ PN and consequently

⋂
H∈I F(H) ∩ PN ̸= ∅.

From right to left. Suppose R ̸= ∅. Take a vector x⃗ ∈ R. Since x⃗ ∈
⋂

H∈I F(H), then for
all coalitions C ⊆ N there is a player i ∈ C where xi ≥ x′

i for some vector x⃗′ ∈ F(PO(GC)).
Thus, by the definition of C-Pareto optimality, there exists a player i ∈ C that cannot
strictly improve its payoff without making other player j ∈ C, j ̸= i, worse off. Thus, for each
coalition C ⊆ N there is no (partial) strategy profile σ⃗C such that for all counter-strategy
profiles σ⃗−C we have payi((σ⃗C , σ⃗−C)) > xi for every player i ∈ C. In other words, for
each coalition C and (partial) strategy profile σ⃗C , there is a counter-strategy profile σ⃗−C

that ensures payi((σ⃗C , σ⃗−C)) ≤ xi. This means that there is no beneficial deviation by the
coalition C. Moreover, since x⃗ ∈ PN, then we have x⃗ ∈ val(GN). As such, there exists a
strategy profile σ⃗ ∈ ΣN with (payi(σ⃗))i∈N ≥ x⃗ and σ⃗ ∈ Core(G). ◀

Using the characterisation of the core from Theorem 12 above, it follows that if the core
is non-empty, then the set R is a polyhedron poly(λ) for some system of inequations λ. As
such, there exists a vector x⃗ ∈ R whose representation is polynomial in n and max{||(⃗a, b)|| |
(⃗a, b) ∈ λ} [13, Theorem 2]. By Lemma 6, it is also the case that max{||(⃗a, b)|| | (⃗a, b) ∈ λ}
is polynomial in the size of the game. Therefore, we obtain the following.

▶ Theorem 13. Given a game G, if the core is non-empty, then there is σ⃗ ∈ Core(G) such
that (payi(σ⃗))i∈N can be represented polynomially in the size of G.

Theorem 13 plays a crucial role in our approach to solving Non-Emptiness and E-Core
problems discussed in the next section. It guarantees the existence of a polynomial witness if
the core is non-empty, allowing it to be guessed and verified in polynomial time.

CSL 2024

32:10 The Core in Concurrent Multi-Player Mean-Payoff Games

Algorithm 1 Algorithm for Dominated.

input: G, s, x⃗
1: guess a coalition C ⊆ N and a vector (x′

i)i∈C ∈ Qc

2: GC ← Sequentialise(G, C)
3: if ∀i ∈ C, x′

i > xi and (x′
i)i∈C ∈ val(GC , s) then

4: return YES
5: return NO

4 Decision problems

We are now in a position to study each of our decision problems in turn, and establish their
complexities. We write d ∈ D to denote “d is a yes-instance of decision problem D”. Our
first problem, called Dominated, serves as an important foundation for studying the other
problems. It is formally defined as follows.

Given: Game G, state s, and vector x⃗ ∈ Qn.
Dominated: Is there a coalition C ⊆ N, and a strategy profile σ⃗C , such that for all
counter-strategy profile σ⃗−C , we have payi(π((σ⃗C , σ⃗−C), s)) > xi for each i ∈ C?

▶ Theorem 14. Dominated is ΣP
2 -complete.

Proof. Observe that an instance (G, s, x⃗) ∈ Dominated has a witness vector (x′
i)i∈C that lies

in the intersection of a polyhedron PC ∈ PS(GC , s) and the set {y⃗ ∈ Rc | ∀i ∈ C : yi ≥ xi}.
Such an intersection forms a polyhedron poly(λ), definable by a system of linear inequalities
λ. By Lemma 6, each (⃗a, b) ∈ λ has polynomial representation in the size of GC . Therefore,
(x′

i)i∈C has a representation that is polynomial in the size of G. To solve Dominated, we
provide Algorithm 1. The correctness follows directly from the definition of Dominated.
For the upper bound: since (x′

i)i∈C is of polynomial size, line 1 can be done in NP. In line 2,
we have subprocedure Sequentialise that builds and returns sequentialisation of G w.r.t.
coalition C; this can be done in polynomial time. Finally, line 3 is in coNP [60, Theorem 3,
Lemma 6]. Therefore, the algorithm runs in NPcoNP = ΣP

2 .
For the lower bound, we reduce from QSAT2(3DNF) (satisfiability of quantified Boolean

formulae with 2 alternations and 3DNF clauses). The complete hardness proof can be found
in the appendix.

To illustrate the reduction, consider the formula

Φ = ∃x1∃x2∀y1∀y2(x1 ∧ x2 ∧ y1) ∨ (x1 ∧ ¬x2 ∧ ¬y2) ∨ (x1 ∧ x2 ∧ ¬y1).

We build a corresponding game GΦ such that (GΦ, sinit, (−1,−1,−1,−1,−1, 0)) = χ ∈
Dominated if and only if Φ is satisfiable. To this end, we construct the game GΦ in
Figure 3 with N = {1, 2, 3, 4, E,A} and the weight function given as vectors, such that for a
given vector (w1, ..., w6) in state s, wi(s) = wi, i ∈ {1, 2, 3, 4} and wE(s) = w5,wA(s) = w6.
The ssink (not shown) only has transition to itself and its weights is given by the vector
(−1,−1,−1,−1,−1, 0). The intuition is that if Φ is satisfiable, then there is a joint strategy
σ⃗C by C = N \ {A} that guarantees a payoff of 0 for each i ∈ C. If Φ is not satisfiable, then
A has a strategy that visits some state yk (resp. ¬yk) infinitely often and player 2k− 1 (resp.
2k) gets payoff < −1. Since yk (resp. ¬yk) is controlled by 2k− 1 (resp. 2k), then the player
will deviate to ssink, and χ /∈ Dominated. On the other hand, if χ ∈ Dominated, then

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:11

sinit

C2C1 C3

x2x1 y1 ¬x2x1 ¬y2 x1x2 ¬y1

(4,−4, 0, 0, 0, 0) (0, 0,−4, 4, 0, 0) (−4, 4, 0, 0, 0, 0)

Figure 3 The game arena of GΦ. White circle states are controlled by E, square by A, grey
circles y1, ¬y1, ¬y2 by players 1, 2, 4, respectively. The weight function is given as vectors shown
below the states, and states without vectors have 0⃗. Furthermore, each grey circle state also has a
transition to ssink, which is not shown in the figure.

there exists a strategy σ⃗C which guarantees that the play: (a) ends up in some state xk or
¬xk, or (b) visits both yk and ¬yk infinitely often. For the former, it means that there is a
clause with only x-literals, and the latter implies that for all (valid) assignments of y-literals,
there is an assignment for x-literal that makes at least one clause evaluate to true. Both cases
show that Φ is satisfiable. Now, notice that the formula Φ is satisfiable: take the assignment
that set x1 and x2 to be both true. Indeed, χ ∈ Dominated: the coalition {1, 2, 3, 4, E}
have a strategy that results in payoff vector 0⃗, e.g., take a strategy profile that corresponds
to the cycle (C1y1C3¬y1)ω. ◀

Our next problem ∃-Ben-Dev simply asks if a given game has a beneficial deviation
from a provided strategy profile:

Given: Game G, strategy profile σ⃗.
∃-Ben-Dev: Does there exist some coalition C ⊆ N such that C has a beneficial
deviation from σ⃗?

Notice that ∃-Ben-Dev is closely related to Dominated. Firstly, we fix s to be the
initial state. Secondly, instead of a vector, we are given a strategy profile. If we can compute
the payoff induced by the strategy profile, then we can immediately reduce ∃-Ben-Dev
to Dominated. [57] studies this problem in the memoryless setting, but the approach
presented there (i.e., by “running” the strategy profile and calculating the payoff vectors)
does not generalise to finite-state strategies σ⃗ as the lasso π(σ⃗) may be of exponential size.
To illustrate this, consider a profile σ⃗ that acts like a binary counter. We have |σ⃗| that is of
polynomial size, but when we run the profile, we obtain an exponential number of step before
we encounter the same configuration of game and strategies states. However, in order to
compute the payoff vector of a finite-state strategy profile σ⃗, we only need polynomial space.
First, we recall that for deterministic, finite-state strategies, the path π(σ⃗) is ultimately
periodic (i.e., a lasso-path). As such, there exist (sk, a⃗ck) and (sl, a⃗cl) with l > k and
cfg(σ⃗, k) = cfg(σ⃗, l). With this observation, computing the payoff vector can be done by
Algorithm 2.

Line 1 can be done non-deterministically in polynomial space. In line 2, we have
ComputeIndex subprocedure that computes and returns k, l. This procedure is also in
polynomial space: we run the profile σ⃗ from sinit and in each step only store the current
configuration; for the first time we have cfg(σ⃗, t) = (sj , qj

1, . . . , q
j
n), assign k = t, and the

CSL 2024

32:12 The Core in Concurrent Multi-Player Mean-Payoff Games

Algorithm 2 Algorithm for computing payoff.

input: G, σ⃗
1: guess sj and a vector (qj

1, . . . , q
j
n) ∈

∏
i∈N Qi

2: k, l← ComputeIndex
(
G, σ⃗, (sj , qj

1, . . . , q
j
n)
)

3: return
(∑l

t=k
wi(π(σ⃗)[t])
l−k

)
i∈N

second time cfg(σ⃗, t′) = (sj , qj
1, . . . , q

j
n), assign l = t′, and we are done. Note that this

subprocedure returns the smallest pair of k, l. Line 3 is in polynomial time. So, overall we
have a function problem that can be solved in NPSPACE, and by Savitch’s theorem we obtain
the following.

▶ Lemma 15. For a given G and σ⃗, the payoff vector (payi(σ⃗))i∈N can be computed in
PSPACE.

This puts us in position to determine the complexity of ∃-Ben-Dev as follows.

▶ Theorem 16. ∃-Ben-Dev is PSPACE-complete.

Proof. To solve ∃-Ben-Dev, we reduce it to Dominated as follows. First, using Algorithm 2
we compute (payi(σ⃗))i∈N in PSPACE (Lemma 15). Then, using Algorithm 1 we can check
whether (G, sinit, (payi(σ⃗))i∈N) ∈ Dominated. Since ΣP

2 ⊆ PSPACE, ∃-Ben-Dev can be
solved in PSPACE. For the lower bound, we reduce from the non-emptiness problem of
intersection of automata that is known to be PSPACE-hard [44]. The full proof is provided
in the appendix. ◀

Another decision problem that is naturally related to the core is asking whether a given
strategy profile σ⃗ is in the core of a given game. The problem is formally stated as follows.

Given: Game G and strategy profile σ⃗.
Membership: Is it the case that σ⃗ ∈ Core(G)?

Observe that we can immediately see the connection between ∃-Ben-Dev and Member-
ship: they are essentially dual to each other. Therefore, we immediately obtain the following
lemma.

▶ Lemma 17. For a given game G and strategy profile σ⃗, it holds that σ⃗ ∈ Core(G) if and
only if (G, σ⃗) /∈ ∃-Ben-Dev.

Using Lemma 17 and the fact that co-PSPACE = PSPACE, we obtain the following
theorem.

▶ Theorem 18. Membership is PSPACE-complete.

In rational verification, we check which temporal logic properties are satisfied by a game’s
stable outcomes. Two key decision problems are formally defined as follows.

Given: Game G, formula φ.
E-Core: Is it the case that there exists some σ⃗ ∈ Core(G) such that σ⃗ |= φ?
A-Core: Is it the case that for all σ⃗ ∈ Core(G), we have σ⃗ |= φ?

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:13

Algorithm 3 Algorithm for Non-Emptiness.

input: G
1: GN ← Sequentialise(G,N)
2: guess a vector x⃗ ∈ Qn s.t. x⃗ ∈ val(GN)
3: if (G, sinit, x⃗) ∈ Dominated (Alg. 1)

then
4: return NO
5: return YES

G

sinit

∀s ∈ S
(G, s, x⃗) /∈ Dominated

G[S]

π

Figure 4 Illustration for solving E-Core.

Algorithm 4 Algorithm for E-Core.

input: G, φ
1: GN ← Sequentialise(G,N)
2: guess a vector x⃗ ∈ Qn s.t. x⃗ ∈ val(GN) and set of states S ⊆ St
3: if there is no s ∈ S s.t. (G, s, x⃗) ∈ Dominated (Algorithm 1) then
4: G[S]← UpdateArena(G, S)
5: if π |= ψ for some π ∈ G[S] then
6: return YES
7: return NO

To illustrate the decision problems above, let us revisit Example 1. Consider a query of
A-Core for Example 1 with property φ = GFl ∧GFr. Such a query will return a positive
answer, i.e., every strategy profile that lies in the core satisfies φ.

Another key decision problem in rational verification is determining whether a given
game has any stable outcomes. This involves checking if the game has a non-empty core.

Given: Game G.
Non-Emptiness: Is it the case that Core(G) ̸= ∅?

As demonstrated in Example 11, there exist mean-payoff games with an empty core
– this is in stark contrast to the dichotomous preferences setting (cf. [40, 36]). As such,
Non-Emptiness problem is non-trivial in mean-payoff games.

To solve Non-Emptiness, it is important to recall the following two results. Firstly, if a
game G has a non-empty core, then there is a payoff vector x⃗ resulting from σ⃗ ∈ Core(G)
whose representation is polynomial (Theorem 13). Secondly, if x⃗ is a witness for the core,
then (G, sinit, x⃗) /∈ Dominated. With these observations, solving Non-Emptiness can be
done by Algorithm 3. The subprocedure in line 1 is polynomial. Line 2 is in NP (Theorem 13)
and we call ΣP

2 oracle for line 3. Thus, Algorithm 3 runs in ΣP
3 . For hardness, we reduce

from QSAT3(3CNF) (satisfiability of quantified Boolean formulae with 3 alternations and
3CNF clauses). The reduction has a similar flavour to the one used in Theorem 14, albeit a
bit more involved. The complete hardness proof is included in the appendix.

▶ Theorem 19. Non-Emptiness is ΣP
3 -complete.

Now we turn our attention to E-Core. Observe that for a game G and a LTL specification
φ, a witness to E-Core would be a path π such that (payi(π))i∈N ≥ (payi(σ⃗)) for some
σ⃗ ∈ Core(G), and π |= φ. Furthermore, a (satisfiable) LTL formula φ has an ultimately

CSL 2024

32:14 The Core in Concurrent Multi-Player Mean-Payoff Games

periodic model of size 2O(|φ|) [56]. Thus, the size of representation of payi(π) is at most
log2(|W | · 2O|φ|), where W is the maximal absolute value appearing in the weights in G, i.e.,
W = max{|wi(s)| | i ∈ N, s ∈ St}. To solve E-Core with a LTL specification φ we use
Algorithm 4. An intuitive illustration is provided in Figure 4. We begin by guessing a vector
x⃗ ∈ Qn and a set of states S ⊆ St, such that for every s ∈ S, (G, s, x⃗) /∈ Dominated. Next,
we obtain a (sub-)game G[S] (shaded area) by removing all states s /∈ S and edges leading to
those removed states. In this new game G[S], we identify the lasso path π with payi(π) ≥ xi

for all i ∈ N and π |= φ. This path corresponds to a strategy profile in the core since there is
no beneficial deviation by any C ⊆ N in any state in it.

Line 1 is in polynomial time. Line 2 can be done in NP (Theorem 13). In line 3, we can
use Algorithm 1 with a slight modification: the state s is not given as part of the input, but
included in the first guess in the algorithm. Clearly, the modified algorithm still runs in ΣP

2 .
In line 4, we have the subprocedure UpdateArena that returns G[S]; this can be done in
polynomial time. For line 5, consider the LTLlimΣ formula ψ := φ ∧

∧
i∈N(mp(wi) ≥ xi).

Observe that a path in G[S] satisfying the formula ψ corresponds to a strategy profile σ⃗
such that in every state s in π(σ⃗), (G, s, (payi(σ⃗))i∈N) /∈ Dominated. Thus, it follows that
σ⃗ ∈ Core(G), and additionally, π(σ⃗) |= φ. Finding such a path corresponds to (existential)
model checking ψ against the underlying arena of G[S] – this can be done in PSPACE [9].
Hardness directly follows from setting wi(s) = 0 for all i ∈ N and s ∈ St. For A-Core,
observe that the problem is exactly the dual of E-Core, and since co-PSPACE = PSPACE,
we have the following theorem.

▶ Theorem 20. The E-Core and A-Core problems with LTL specifications are PSPACE-
complete.

E/A-Core with GR(1) Specifications. The main bottleneck in Algorithm 4 for LTL
specifications is in line 5, where the model checking of LTLlimΣ formula occurs. This can
be avoided by considering classes of properties with easier model checking problem. In this
section, we address E/A-Core with GR(1) specifications5. The approach is similar to that
in [58, Theorem 18]. The main idea is to define a linear program L such that it has a feasible
solution if and only if the condition in line 5 of Algorithm 4 is met.

To this end, first recall that a GR(1) formula φ has the following form

φ =
m∧

l=1
GFψl →

n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in G that satisfy the Boolean combinations
ψl and θr, respectively. Observe that property φ is satisfied over a path π if, and only if,
either π visits every V (θr) infinitely many times or visits some of the V (ψl) only a finite
number of times. To check the satisfaction of

∧m
l=1 GFψl we define linear programs L(ψl)

such that it admits a solution if and only if there is a path π in G[S] such that payi(π) ≥ xi

for every player i and visits V (ψl) only finitely many times. Similarly, for
∧n

r=1 GFθr, define
a linear program L(θ1, . . . , θn) that admits a solution if and only if there exists a path π in
G[S] such that payi(π) ≥ xi for every player i and visits every V (θr) infinitely many times.
Both linear programs are polynomial in the size of G and φ, and at least one of them admits
a solution if and only if φ is satisfied in some path in G[S]. Therefore, given G[S] and GR(1)
formula φ it is possible to check in polynomial time whether φ is satisfied by a suitable path
π in G[S]. The detailed construction is provided in the full version [41].

5 We could use any other “easy” fragment of LTL to avoid this bottleneck, as we will discuss later.

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:15

Table 1 Summary of complexity results. The NE column shows complexity results for the
corresponding decision problems with NE. Complexity results for decision problems related to the
core in the memoryless setting can be found in [57], whereas for NE in [58, 43].

Problem Finite Memory Memoryless NE

Dominated ΣP
2 -c (Thm. 14)

∃-Ben-Dev PSPACE-c (Thm. 16) NP-c
Membership PSPACE-c (Thm. 18) coNP-c
Non-Emptiness ΣP

3 -c (Thm. 19) ΣP
2 NP-c

E-Core with LTL spec. PSPACE-c (Thm. 20) PSPACE-c
A-Core with LTL spec. PSPACE-c (Thm. 20) PSPACE-c
E-Core with GR(1) spec. ΣP

3 -c (Thm. 21) ΣP
2 NP-c

A-Core with GR(1) spec. ΠP
3 -c (Thm. 21) ΠP

2 coNP-c

Therefore, to solve E-Core with GR(1) specifications, we can use Algorithm 4 with
polynomial time check for line 5. Thus, it follows that E-Core with GR(1) specifications can
be solved in ΣP

3 . The lower bound follows directly from hardness result of Non-Emptiness
by setting φ = ⊤. Moreover, since A-Core is the dual of E-Core, we obtain the following
theorem.

▶ Theorem 21. The E-Core and A-Core problems with GR(1) specifications are ΣP
3 -

complete and ΠP
3 -complete, respectively.

E/A-Core with Other Specifications. We conclude this section by noting that the approach
presented here for solving E/A-Core problem is easily generalisable to different types of
specification languages without incurring additional computational costs. For instance, the
approach for GR(1) is directly applicable to the ω-regular specifications considered in [57].
Furthermore, Algorithm 4 can also be easily adapted for LTL fragments whose witnesses are
of polynomial size w.r.t. G and φ [28, 48]. This can be done by (1) guessing a witness π in
line 2 and (2) checking whether π |= φ and payi(π) ≥ xi for all i ∈ N in line 5, resulting in
the same complexity classes as stated in Theorem 21.

5 Concluding remarks

In this paper, we present a novel characterisation of the core of cooperative concurrent
mean-payoff games using discrete geometry techniques which differs from previous methods
that relied on logical characterisation and punishment/security values [57, 39]. We have also
determined the exact complexity of several related decision problems in rational verification.
Our results and other related results from previous work are summarised in Table 1.

It is interesting to note that Non-Emptiness of the core is two rungs higher up the
polynomial hierarchy from its NE counterpart. This seems to be induced by the fact that
for a given deviation, the punishment/counter-strategy is not static as in NE. It is also
worth mentioning that generalising to finite-memory strategies (second column) results in
an increase in complexity classes compared to the memoryless setting (third column). In
particular, ∃-Ben-Dev and Membership jump significantly from NP-complete and coNP-
complete, respectively, to PSPACE-complete. Furthermore, and rather surprisingly, in the
finite memory setting, ∃-Ben-Dev and Membership are harder than Non-Emptiness,
which sharply contrasts with the memoryless setting. This seems to be caused by the

CSL 2024

32:16 The Core in Concurrent Multi-Player Mean-Payoff Games

following: Algorithm 3 for Non-Emptiness is “non-constructive”, in the sense that we only
care about the existence of a strategy profile that lies in the core without having to explicitly
construct one. On the other hand, with Membership, we have to calculate the payoff from a
compact representation of a given strategy profile, which requires us to “unpack” the profile.

Our characterisation of the non-emptiness of the core (Theorem 12) provides a way to
ensure that the core always has a polynomially representable witness. However, it would be
interesting to establish the sufficient and necessary conditions in a broader sense. Previous
work has addressed the sufficient and necessary conditions for the non-emptiness of the core
in non-transferable utility (NTU) games. For example, [55] showed that the core of an NTU
game is non-empty when the players have continuous and quasi-concave utility functions.
[59] relaxed the continuity assumption (which aligns more closely with the setting in this
paper) and achieved a result similar to [55]. However, their game models differ from ours,
and the results do not directly apply to our setting. We conjecture that a similar condition,
namely the quasi-concavity of utility functions, plays a vital role in the non-emptiness of
the core in concurrent multi-player mean-payoff games. Nevertheless, this still needs to be
formally proven and would make for interesting future work.

As previously mentioned, a key difference between the core of concurrent multi-player
mean-payoff games and games with dichotomous preferences is that the former may have
an empty core. This raises the question: what can we do when the core is empty? One
might want to introduce stability, thereby making the core non-empty. One approach, which
relates to the above conjecture, involves modifying the utility functions, for instance, through
subsidies or rewards [42, 2]. Another approach is to introduce norms [51]. This is an area for
future exploration.

It would also be interesting to generalise the current work to decidable classes of imperfect
information mean-payoff games [27]. Another potential avenue is to relax the concurrency,
for instance, by making agents loosely coupled. A different but intriguing direction would be
to investigate the possibility of using our construction and characterisation here to extend
ATL* with mean-payoff semantics.

References
1 Alessandro Abate, Julian Gutierrez, Lewis Hammond, Paul Harrenstein, Marta Kwiatkowska,

Muhammad Najib, Giuseppe Perelli, Thomas Steeples, and Michael Wooldridge. Rational
verification: game-theoretic verification of multi-agent systems. Applied Intelligence, 51(9):6569–
6584, 2021.

2 S. Almagor, G. Avni, and O. Kupferman. Repairing Multi-Player Games. In CONCUR,
volume 42 of LIPIcs, pages 325–339. Schloss Dagstuhl, 2015.

3 Rajeev Alur, Aldric Degorre, Oded Maler, and Gera Weiss. On omega-languages defined
by mean-payoff conditions. In Luca de Alfaro, editor, Foundations of Software Science and
Computational Structures, pages 333–347, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

4 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.

5 Robert J Aumann. The core of a cooperative game without side payments. Transactions of
the American Mathematical Society, 98(3):539–552, 1961.

6 Raphaël Berthon, Shibashis Guha, and Jean-François Raskin. Mixing probabilistic and non-
probabilistic objectives in markov decision processes. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 195–208, 2020.

7 Elisa Bertino, Finale Doshi-Velez, Maria Gini, Daniel Lopresti, and David Parkes. Artificial
intelligence and cooperation. Technical Report White Paper 4, Computing Community
Consortium, Washington, D.C., October 2020. URL: https://cra.org/ccc/wp-content/
uploads/sites/2/2020/11/AI-and-Cooperation.pdf.

https://doi.org/10.1145/585265.585270
https://cra.org/ccc/wp-content/uploads/sites/2/2020/11/AI-and-Cooperation.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2020/11/AI-and-Cooperation.pdf

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:17

8 Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, May 2012. doi:10.1016/j.jcss.
2011.08.007.

9 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
specifications with accumulative values. ACM Trans. Comput. Log., 15(4):1–25, August 2014.
doi:10.1145/2629686.

10 Olga N Bondareva. Some applications of linear programming methods to the theory of
cooperative games. Problemy kibernetiki, 10(119):139, 1963.

11 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
equilibria in concurrent deterministic games. Log. Meth. Comput. Sci., 11(2), June 2015.
doi:10.2168/lmcs-11(2:9)2015.

12 Patricia Bouyer, Orna Kupferman, Nicolas Markey, Bastien Maubert, Aniello Murano, and Gi-
useppe Perelli. Reasoning about quality and fuzziness of strategic behaviors. ACM Transactions
on Computational Logic, 24(3):1–38, 2023.

13 Romain Brenguier and Jean-François Raskin. Pareto curves of multidimensional mean-payoff
games. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification,
pages 251–267. Springer International Publishing, 2015.

14 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Subgame-perfect equilibria
in mean-payoff games. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference,
volume 203 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CONCUR.2021.8.

15 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer cost games with simple nash
equilibria. In Sergei Artemov and Anil Nerode, editors, Logical Foundations of Computer
Science, pages 59–73, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

16 Nils Bulling and Valentin Goranko. Combining quantitative and qualitative reasoning in
concurrent multi-player games. Autonomous Agents and Multi-Agent Systems, 36:1–33, 2022.

17 Alberto Camacho, Meghyn Bienvenu, and Sheila A McIlraith. Towards a unified view of ai
planning and reactive synthesis. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 58–67, 2019.

18 Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna Kupferman, and
Rupak Majumdar. Verifying quantitative properties using bound functions. In Dominique
Borrione and Wolfgang Paul, editors, Correct Hardware Design and Verification Methods,
pages 50–64, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

19 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Resource
interfaces. In Rajeev Alur and Insup Lee, editors, Embedded Software, pages 117–133, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

20 Georgios Chalkiadakis, Edith Elkind, and Michael J. Wooldridge. Computational Aspects of
Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2011. doi:10.2200/S00355ED1V01Y201107AIM016.

21 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Generalized Mean-payoff and Energy Games. In FSTTCS, pages 505–516, 2010. doi:10.4230/
LIPIcs.FSTTCS.2010.505.

22 Krishnendu Chatterjee, Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan, Christoph M.
Kirsch, Claudio Pinello, and Alberto Sangiovanni-Vincentelli. Logical reliability of interacting
real-time tasks. In 2008 Design, Automation and Test in Europe, pages 909–914, 2008.
doi:10.1109/DATE.2008.4484790.

23 Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Strategy logic. Information
and Computation, 208(6):677–693, 2010.

CSL 2024

https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1145/2629686
https://doi.org/10.2168/lmcs-11(2:9)2015
https://doi.org/10.4230/LIPIcs.CONCUR.2021.8
https://doi.org/10.2200/S00355ED1V01Y201107AIM016
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.1109/DATE.2008.4484790

32:18 The Core in Concurrent Multi-Player Mean-Payoff Games

24 Vincent Conitzer and Caspar Oesterheld. Foundations of cooperative AI. In Brian Williams,
Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pages 15359–15367. AAAI
Press, 2023. doi:10.1609/AAAI.V37I13.26791.

25 Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and Thore Graepel.
Cooperative ai: machines must learn to find common ground. Nature, 593(7857):33–36, 2021.

26 Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R McKee, Joel Z
Leibo, Kate Larson, and Thore Graepel. Open problems in cooperative ai. arXiv preprint
arXiv:2012.08630, 2020.

27 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon Tor-
uńczyk. Energy and mean-payoff games with imperfect information. In Anuj Dawar and
Helmut Veith, editors, Computer Science Logic, pages 260–274, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

28 Stéphane Demri and Philippe Schnoebelen. The complexity of propositional linear temporal
logics in simple cases. Information and Computation, 174(1):84–103, 2002.

29 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. J. Game
Theory, 8(2):109–113, June 1979. doi:10.1007/BF01768705.

30 E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program., 8(3):275–306, June 1987. doi:10.1016/0167-6423(87)
90036-0.

31 Ioannis Filippidis, Sumanth Dathathri, Scott C Livingston, Necmiye Ozay, and Richard M
Murray. Control design for hybrid systems with tulip: The temporal logic planning toolbox.
In 2016 IEEE Conference on Control Applications (CCA), pages 1030–1041. IEEE, 2016.

32 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools and Algorithms
for the Construction and Analysis of Systems: 16th International Conference, TACAS 2010,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings 16, pages 190–204. Springer, 2010.

33 Donald B Gillies. Solutions to general non-zero-sum games. Contributions to the Theory of
Games, 4(40):47–85, 1959.

34 Branko Grünbaum, Volker Kaibel, Victor Klee, and Günter M. Ziegler. Convex polytopes.
Springer, New York, 2003. URL: http://www.springer.com/mathematics/geometry/book/
978-0-387-00424-2.

35 Zhaoyuan Gu, Nathan Boyd, and Ye Zhao. Reactive locomotion decision-making and robust
motion planning for real-time perturbation recovery. In 2022 International Conference on
Robotics and Automation (ICRA), pages 1896–1902, 2022. doi:10.1109/ICRA46639.2022.
9812068.

36 Julian Gutierrez, Lewis Hammond, Anthony W. Lin, Muhammad Najib, and Michael J.
Wooldridge. Rational verification for probabilistic systems. In Meghyn Bienvenu, Gerhard
Lakemeyer, and Esra Erdem, editors, Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2021, Online event, November
3-12, 2021, pages 312–322, 2021. doi:10.24963/kr.2021/30.

37 Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. Iterated boolean games. Inform.
Comput., 242:53–79, June 2015. doi:10.1016/j.ic.2015.03.011.

38 Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. From model checking to
equilibrium checking: Reactive modules for rational verification. Artif. Intell., 248:123–157,
2017. doi:10.1016/j.artint.2017.04.003.

39 Julian Gutierrez, Szymon Kowara, Sarit Kraus, Thomas Steeples, and Michael Wooldridge.
Cooperative concurrent games. Artificial Intelligence, 314:103806, 2023.

https://doi.org/10.1609/AAAI.V37I13.26791
https://doi.org/10.1007/BF01768705
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
http://www.springer.com/mathematics/geometry/book/978-0-387-00424-2
http://www.springer.com/mathematics/geometry/book/978-0-387-00424-2
https://doi.org/10.1109/ICRA46639.2022.9812068
https://doi.org/10.1109/ICRA46639.2022.9812068
https://doi.org/10.24963/kr.2021/30
https://doi.org/10.1016/j.ic.2015.03.011
https://doi.org/10.1016/j.artint.2017.04.003

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:19

40 Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative concurrent games. In
Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors, Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, {AAMAS}
’19, Montreal, QC, Canada, May 13-17, 2019, pages 1198–1206. International Foundation
for Autonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.
cfm?id=3331822.

41 Julian Gutierrez, Anthony W. Lin, Muhammad Najib, Thomas Steeples, and Michael
Wooldridge. Characterising and verifying the core in concurrent multi-player mean-payoff
games (full version), 2023. arXiv:2311.15883.

42 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. Equilib-
rium Design for Concurrent Games. In Wan Fokkink and Rob van Glabbeek, editors, 30th
International Conference on Concurrency Theory (CONCUR 2019), volume 140 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.22.

43 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. On the
complexity of rational verification. Annals of Mathematics and Artificial Intelligence, 91(4):409–
430, 2023.

44 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 254–266, 1977. doi:10.1109/SFCS.1977.
16.

45 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environments.
Ann. Math. Artif. Intel., 78(1):3–20, June 2016. doi:10.1007/s10472-016-9508-8.

46 Shahar Maoz and Jan Oliver Ringert. Gr (1) synthesis for ltl specification patterns. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering, pages
96–106, 2015.

47 Shahar Maoz and Yaniv Sa’ar. Assume-guarantee scenarios: Semantics and synthesis. In
Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson, editors, Model Driven
Engineering Languages and Systems, pages 335–351, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

48 Nicolas Markey. Past is for free: on the complexity of verifying linear temporal properties
with past. Acta Informatica, 40:431–458, 2004.

49 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y Vardi. Reasoning about
strategies: On the model-checking problem. ACM Transactions on Computational Logic
(TOCL), 15(4):1–47, 2014.

50 C. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994.
51 G. Perelli. Enforcing equilibria in multi-agent systems. In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages 188–196, 2019.
URL: http://dl.acm.org/citation.cfm?id=3306127.3331692.

52 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, September 1977. doi:10.1109/sfcs.1977.
32.

53 Debraj Ray and Rajiv Vohra. Equilibrium binding agreements. Journal of Economic theory,
73(1):30–78, 1997.

54 Herbert E Scarf. The core of an n person game. Econometrica: Journal of the Econometric
Society, pages 50–69, 1967.

55 Herbert E Scarf. On the existence of a coopertive solution for a general class of n-person
games. Journal of Economic Theory, 3(2):169–181, 1971.

56 A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM,
32(3):733–749, July 1985. doi:10.1145/3828.3837.

57 Thomas Steeples, Julian Gutierrez, and Michael Wooldridge. Mean-payoff games with ω-
regular specifications. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1272–1280, 2021.

CSL 2024

http://dl.acm.org/citation.cfm?id=3331822
http://dl.acm.org/citation.cfm?id=3331822
https://arxiv.org/abs/2311.15883
https://doi.org/10.4230/LIPIcs.CONCUR.2019.22
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/s10472-016-9508-8
http://dl.acm.org/citation.cfm?id=3306127.3331692
https://doi.org/10.1109/sfcs.1977.32
https://doi.org/10.1109/sfcs.1977.32
https://doi.org/10.1145/3828.3837

32:20 The Core in Concurrent Multi-Player Mean-Payoff Games

58 M. Ummels and D. Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games.
In CONCUR, pages 482–496, 2011. doi:10.1007/978-3-642-23217-6_32.

59 Metin Uyanık. On the nonemptiness of the α-core of discontinuous games: Transferable and
nontransferable utilities. Journal of Economic Theory, 158:213–231, 2015.

60 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander
Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and multi-energy
games. Inform. Comput., 241:177–196, April 2015. doi:10.1016/j.ic.2015.03.001.

61 M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, and A. Toumi. Rational
Verification: From Model Checking to Equilibrium Checking. In {AAAI}, pages 4184–4191.
{AAAI} Press, 2016.

62 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1-2):343–359, May 1996. doi:10.1016/0304-3975(95)00188-3.

A Appendix: Proofs

A.1 Proof of Theorem 16
▶ Theorem 16. ∃-Ben-Dev is PSPACE-complete.

Proof. To solve ∃-Ben-Dev, we reduce it to Dominated as follows. First we compute
(payi(σ⃗))i∈N in PSPACE (Lemma 15). Then we can query whether (G, sinit, (payi(σ⃗))i∈N) ∈
Dominated. Since ΣP

2 ⊆ PSPACE, ∃-Ben-Dev can be solved in PSPACE.
For the lower bound, we reduce from the non-emptiness problem of the intersection of

deterministic finite automata (DFA) that is known to be PSPACE-hard [44]. Let A1, . . . , An

be a set of deterministic finite automata (DFAs), and let Fi = {q∗
i } be the set of accepting

state of Ai. Note that we can always assume that Fi only has one state; otherwise, we can
simply introduce a new symbol in the alphabet (call it a), a new state fi for Ai, and define
the final state of Ai to be fi, as well as defining ∆i(q, a) := fi, for each q ∈ Fi, where ∆i

is the transition function of Fi. We construct from each Ai = (Qi,Σi, δi, q
0
i , Fi) a strategy

σi = (Qi, q
0
i , δi, τi) where τi(qi) = qi. We build a game with N = {1, . . . , n} and arena with 3

states St = {s0, s1, s2}. For each i ∈ N,Aci = Qi ∪ {di}, where di is a fresh variable. The
transition function is defined by Figure 5 left, and the weight function by Figure 5 right.

s0 s1

s2

(q∗
1 , . . . , q

∗
n)

(d1, . . . , dn)

(q′
1, ∗, . . . , ∗)

(∗, q′
2, ∗, . . . , ∗)
·
·
·

(∗, . . . , ∗, q′
n)

∗

∗

s ∈ St (wi(s))i∈N

s0 (0, . . . , 0)
s1 (1, . . . , 1)
s2 (1, . . . , 1)

Figure 5 Left: The game arena where q′
i ̸= q∗

i . Right: The weight function of the game.

Given (G, σ⃗) where σ⃗ = (σ1, . . . , σn), we claim that (G, σ⃗) /∈ ∃-Ben-Dev if and only if the
intersection of A1, . . . , An has non-empty language. From left to right: it is easy to see that
in order for σ⃗ to admit no beneficial deviation, the game has to eventually enter s2, because
otherwise the grand coalition can deviate to s1 and obtain better payoffs. The only possible
way to enter s2 is when each of Ai arrives at the accepting state, and thus the intersection
has non-empty language. From right to left, we argue in a similar way. ◀

https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.1016/j.ic.2015.03.001
https://doi.org/10.1016/0304-3975(95)00188-3

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:21

A.2 Proof of Theorem 14
▶ Theorem 14. Dominated is ΣP

2 -complete.

Proof. For the lower bound, we reduce from QSAT2(3DNF) (satisfiability of quantified
Boolean formulae with 2 alternations and 3DNF clauses), which is known to be ΣP

2 -hard [50].
Consider a formula of the form Φ := ∃x1 · · · ∃xp∀y1 · · · ∀yqC1 ∨ · · · ∨ Cr where each Ci is the
conjunction of three literals Ci = li,1 ∧ li,2 ∧ li,3, and the literals are of the form xk,¬xk, yk,

or ¬yk. For clauses C and C ′, we say that they are not clashing if there is no literal xk

appears in C and ¬xk in C ′.
For a given formula Φ we build a corresponding game GΦ such that

(GΦ, sinit, (−1, . . . ,−1, 0)) ∈ Dominated if and only if Φ is satisfiable, as follows.
N = {1, . . . , 2q, E,A};
St = {sinit, C1, . . . , Cr, l1,1, . . . , lr,3, ssink} where

the states sinit and x-literal states are controlled by player E,
each state li,j of the from yk (resp. ¬yk) is controlled by player 2k (resp. 2k − 1), and
{C1, . . . , Cr} (i.e., the clause states) by player A;

the transition function is given as:
from sinit, player E can decide to which state in {C1, . . . , Cr} the play will proceed –
she picks the clause;
from each state Ci, player A can decide to which state in {li,1, . . . , li,3} the play will
proceed – he picks the literal;
from each li,j , there is a self-loop transition,
from each li,j of the form yk (resp. ¬yk), the transitions are controlled by player 2k
(resp. 2k − 1), and defined as follows:
∗ there is a transition from li,j to every Ch, i ̸= h, where yk or ¬yk occurs in Ch, and
Ci, Ch are not clashing, and

∗ there is also a transition to ssink.
ssink has only self-loop transition.

the weight function is given as:
for a literal state li,j
∗ if li,j is of the form yk, then w2k−1(li,j) = 2q and w2k(li,j) = −2q, and for each
a ∈ N \ {2k − 1, 2k}, wa(li,j) = 0;

∗ if li,j is of the form ¬yk, then w2k−1(li,j) = −2q and w2k(li,j) = 2q and for each
a ∈ N \ {2k − 1, 2k}, wa(li,j) = 0;

∗ if li,j is of the form xk or ¬xk, (wa(li,j))a∈N = 0⃗.
for each non-literal state s ∈ {sinit, C1, . . . , Cr}, we have (wi(s))i∈N = 0⃗.
for each i ∈ N \ {A},wi(ssink) = −1 and wA(ssink) = 0.

We show that (GΦ, sinit, (−1, . . . ,−1, 0)) ∈ Dominated if and only if the formula Φ is
satisfiable.

(⇐) Assume that Φ is satisfiable, then there is a (partial) assignment v(x1, . . . , xp) such
that the formula ∀y1 · · · ∀yqC1∨· · ·∨Cr is valid. Let σK and σA denote strategies of coalition
K = N \ {A} and player A, respectively. According to [60], it is enough to only consider
memoryless strategies σA. The strategies correspond to some assignments of variables, that
is, by choosing the literal yk or ¬yk, player A sets the assignment of the literal such that it
evaluates to false. Similarly, by choosing the clause Ci, K pick the correct assignments for
literals xk or ¬xk in Ci. We distinguish between strategies that are admissible and those that
are not. A non-admissible strategy is a strategy that chooses two contradictory literals yk in
C and ¬yk in C ′. If σA is non-admissible, then K can achieve 0⃗ by choosing the strategy
that alternates between C and C ′, and thus we have a yes-instance of Dominated.

CSL 2024

32:22 The Core in Concurrent Multi-Player Mean-Payoff Games

Now suppose that A chooses an admissible strategy σA. Then it corresponds to a valid
assignment v(y1, . . . , yq). Since for v(x1, . . . , xp) the formula ∀y1 · · · ∀yqC1 ∨ · · · ∨Cr is valid,
the (full) assignment v(x1, . . . , xp, y1, . . . , yq) makes the formula C1 ∨ · · · ∨ Cr evaluate to
true. Thus, K can pick a clause state Ci that is true under v(x1, . . . , xp, y1, . . . , yq) and
A picks a literal state of the form xk or ¬xk in clause Ci, and not yk or ¬yk since it will
contradict the assumption that Ci evaluates to true. Therefore, the strategy profile (σK, σA)
induces the payoff 0⃗, and we have a yes-instance of Dominated.

(⇒) Assume that the strategy profile (σK, σA) induces a payoff payj((σK, σA)) > −1 for
each j ∈ K. Let C and C be the set of clauses that are chosen and not chosen in (σK, σA),
respectively. We define the (partial) assignment of v(x1, . . . , xp) as follows:
1. for each Ci ∈ C and for each literal xk or ¬xk in Ci

a. v(xk) is true;
b. v(¬xk) is false;

2. for each Ch ∈ C and for each literal xk or ¬xk in Ch, if it does not appear in Ci ∈ C, then
v(xk) or v(¬xk) is true.

Let v′ be an (extended) arbitrary assignment of x1, . . . , xp, y1, . . . , yq compatible with
v(x1, . . . , xp). Assume towards a contradiction that v′ does not make any of the clauses
evaluate to true. Then in each Ci ∈ C, A can choose a literal that makes Ci false. Either (i)
A chooses a literal yk or ¬yk and there is only a self-loop from the sate yk or ¬yk, or (ii) we
visit some clauses infinitely often. We distinguish between these two cases:

(i) If the run arrives in literal yk or ¬yk and there is only a self-loop from the sate yk or ¬yk,
then player 2k or 2k−1 will choose to move into the sink state and the players get payoff
(−1, . . . ,−1, 0). This contradicts our previous assumption that payj((σK, σA)) > −1
for each j ∈ K;

(ii) If the play visits some clauses infinitely often, then by the construction of the game graph
there exists a literal state yk (resp. ¬yk) visited infinitely often with w2k−1(yk) = −2q
(resp. w2k(¬yk) = −2q) and the state ¬yk (resp. yk) is never visited. This means that
either pay2k((σK, σA)) < −1 or pay2k−1((σK, σA)) < −1, and player 2k or 2k − 1 will
choose to go to ssink and the players get (−1, . . . ,−1, 0). This contradicts our previous
assumption that payj((σK, σA)) > −1 for each j ∈ K;

This implies that assignment v′ makes at least one clause evaluate to true. Furthermore,
since this holds for any arbitrary v′ compatible with v(x1, . . . , xp), we conclude that Φ ∈
QSAT2. ◀

A.3 Proof of Theorem 19
▶ Theorem 19. Non-Emptiness is ΣP

3 -complete.

Proof. For hardness, we reduce from QSAT3(3CNF) (satisfiability of quantified Boolean
formulae with 3 alternations and 3CNF clauses). Consider a formula of the form

Ψ := ∃x1 · · · ∃xp∀y1 · · · ∀yq∃z1 · · · ∃ztC1 ∧ · · · ∧ Cr.

where each Ci is the disjunction of three literals Ci = li,1 ∨ li,2 ∨ li,3, and the literals are
of the form xk,¬xk, yk,¬yk, zk, or ¬zk. For clauses C and C ′, we say that they are not
y-clashing if there is no literal yk (resp. ¬yk) appears in C and ¬yk (resp. yk) in C ′.

For a given formula Ψ we build a corresponding game GΨ such that the core of GΨ is not
empty if and only if Ψ is satisfiable, as follows.

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:23

N = {1, . . . , 2p, 2p+ 1, . . . , 2p+ 2t, E,A, P,Q,R}
St = {sinit, ssink} ∪ {Cv|1 ≤ v ≤ r} ∪ {l1,1, . . . , lr,3}, where

state sinit is controlled by player A
states C1, . . . , Cr are controlled by player E
each state li,j of the form xk (resp.¬xk) is controlled by player 2k − 1 (resp. 2k)
each state li,j of the form zk (resp.¬zk) is controlled by player 2(p + k) − 1 (resp.
2(p+ k)) and player A, where player 2(p+ k)− 1/2(p+ k) has a “veto” power to either
follow player A’s decision or, instead, unilaterally choose to go to ssink

each state li,j of the form yk or ¬yk is controlled by player A 6

the state ssink is a sink state, and implemented by a gadget that will be explained
later.

the transition function is given as:
from sinit player A can choose to move to a clause state Cv, 1 ≤ v ≤ r
from a state Cv player E can choose to move to a literal state lv,j

from a literal state li,j of the form xk (resp. ¬xk), player 2k − 1 (resp. 2k) can choose
to move to sinit or ssink

from a literal state li,j of the form zk or ¬zk, player E can choose to stay in the current
state or to move to any clause state C ′ that is not y-clashing with Ci.
from a literal state li,j of the form zk (resp. ¬zk) player 2(p+ k)− 1 (resp. 2(p+ k))
can overrule player A’s decision, and move to ssink.

the weight function is given as:
for each literal state li,j
∗ if it is of the form xk, then w2k−1(li,j) = 3r,w2k(li,j) = −3r and for each a ∈

N \ {2k − 1, 2k},wa(li,j) = 0
∗ if it is of the form ¬xk, then w2k(li,j) = 3r,w2k−1(li,j) = −3r and for each a ∈

N \ {2k − 1, 2k},wa(li,j) = 0
∗ if it is of the form zk, then w2(p+k)−1(li,j) = 3r,w2(p+k)(li,j) = −3r and for each
a ∈ N \ {2(p+ k)− 1, 2(p+ k)},wa(li,j) = 0

∗ if it is of the form ¬zk, then w2(p+k)(li,j) = 3r,w2(p+k)−1(li,j) = −3r and for each
a ∈ N \ {2(p+ k)− 1, 2(p+ k)},wa(li,j) = 0

∗ otherwise, wa(li,j) = 0 for each a ∈ N.

wa(sinit) = wa(s∀) = wa(Ci) = 0 for each a ∈ N and 1 ≤ i ≤ r.

Now we explain the construction of ssink gadget which is a small variation of a game
with an empty core provided in the proof of Proposition 5. Consider a graph arena with
four states I, U,M,B in which the players P,Q,R each has two actions: H,T , and only
the actions of those players matter in these states (i.e., the rest of the players are dummy
players.) The weight function and the transition function are given below – we only specify
the transitions for the state I as the other states only have self-loops.

6 Note that the controller of these states is ultimately not important because, as later defined, from these
states we can only go to ssink.

CSL 2024

32:24 The Core in Concurrent Multi-Player Mean-Payoff Games

wa(s) P Q R E a ∈ N \ {P, Q, R, E}
I −1 −1 −1 0 1
U 2 1 0 0 1
M 0 2 1 0 1
B 1 0 2 0 1

(aP , aQ, aR) St
(H, H, H) U

(H, H, T) U

(H, T, H) M

(H, T, T) I

(T, H, H) I

(T, H, T) B

(T, T, H) M

(T, T, T) B

Observe that once we enter ssink, we cannot get out. Furthermore, every strategy profile
that starts at state I admits beneficial deviations. If the run stays at I forever, the players
can beneficially deviate by moving to one of U,M,B. However, if the game ends up at either
of those states, then there will always be a coalition (of 2 players) that can beneficially
deviate.

We now show that the core of GΨ is not empty if and only if Ψ is satisfiable.
(⇒) Suppose σ⃗ ∈ Core(GΨ). By the construction of the game, there are three cases:

(a) π(σ⃗) visits some literal state of the form xk (resp. ¬xk) infinitely often, and pay2k−1(σ⃗) ≥
1 (resp. pay2k(σ⃗) ≥ 1)

(b) π(σ⃗) visits some literal state of the form zk (resp. ¬zk) infinitely often, and
pay2(p+k)−1(σ⃗) ≥ 1 (resp. pay2(p+k)(σ⃗) ≥ 1)

(c) both (a) and (b).
The condition payi(σ⃗) ≥ 1 is necessary, because otherwise player i can deviate to ssink and
gets a payoff of 1 which contradicts σ⃗ being in the core.

We start with (a). This implies that for each clause Ci, 1 ≤ i ≤ r, there is a strategy
σE for player E that agrees with σ⃗ for choosing a literal state li,j such that for a literal of
the form xk (resp. ¬xk) we have w2k−1(li,j) ≥ 3 (resp. w2k(li,j) ≥ 3). Moreover, if such a
strategy exists, then it is a valid assignment for x1, . . . , xp (i.e., contains no contradictions),
since otherwise player A can alternate between the two contradictory choices and gets
pay2k(σ⃗) = 0 or pay2k−1(σ⃗) = 0, which implies that there is a beneficial deviation by player
2k or 2k − 1–contradicting our assumption that σ⃗ being in the core. Since this assignment is
valid and makes all clauses evaluate to true, then it is the case that Ψ is satisfiable.

For case (b), the argument is similar to (a). The main difference is that from a literal state
li,j of the form zk or ¬zk, player A can choose to go to state a C ′ that is not y-clashing with
Ci. This assures that player A can only choose a valid assignment for y1, . . . , yq. Moreover,
since we have pay2(p+k)−1(σ⃗) ≥ 1 or pay2(p+k)(σ⃗) ≥ 1, then for each clause visited, there
exists an assignment of z1, . . . , zt that makes the clause evaluates to true. This assignment is
a satisfying assignment for Ψ. For case (c), we combine the arguments from (a) and (b), and
obtain a similar conclusion.

(⇐) Now, suppose that Ψ is satisfiable, then we have the following cases:
(1) there exists an assignment v(x1, . . . , xp) such that Ψ(v) is a tautology, where Ψ(v) is the

resulting formula after applying the assignment v(x1, . . . , xp).
(2) there exists an assignment v(x1, . . . , xp) such that for each assignment w(y1, . . . , yq),

there is an assignment u(z1, . . . , zt) that makes Ψ(v, w, u) evaluates to true.

For case (1), we start by turning the assignment v(x1, . . . , xp) into a strategy σE that
prescribes to which x-literal state li,j from each clause state Ci the play must proceed. For
instance, if v(xk) is true and xk is a literal in Ci, then player E will choose to go to xk from
Ci. Notice that it may be the case that there are more than one possible ways to choose a
literal according to a given assignment, in which we can just arbitrarily choose one. Observe

J. Gutierrez, A. W. Lin, M. Najib, T. Steeples, and M. Wooldridge 32:25

that by following σE , for all strategy of player A σA, corresponding to the assignments of
y1, . . . , yq, and for all literal state xk (resp. ¬xk) visited infinitely often in π((σE , σA)) we
have pay2k−1((σE , σA)) ≥ 1 (resp. pay2k((σE , σA)) ≥ 1). This means that (σE , σA) admits
no beneficial deviation and thus it is in the core.

For case (2), we perform a similar strategy construction as in (1). First, observe that the
resulting formula Ψ(v) may contain clauses that evaluate to true. We denote this by χ(Ψ(v)).
Notice that if χ(Ψ(v)) = {Cv|1 ≤ v ≤ r}, then Ψ(v) is a tautology – the same as case (1),
and we are done. Otherwise, there is Ci /∈ χ(Ψ(v)) and Ci contains some z-literals. Now,
using u(z1, . . . , zt) we construct a strategy σ′

E that prescribes which x-literal and z-literal
to choose from each clause Ci. Since Ψ(v, w, u) evaluates to true, then for each Ci it is the
case that Ci ∈ χ(Ψ(v, w, u)). This means that for any Ci, Cj /∈ χ(Ψ(v)) that are visited
infinitely often in a play resulting from (σA, σ

′
E), there exist no clashing z-literals in Ci, Cj

visited infinitely often. That is, for any Ci, Cj /∈ χ(Ψ(v)) we have only zk (resp. ¬zk) visited
infinitely often, and by the weight function of the game, we have pay2(p+k)−1((σA, σ

′
E)) ≥ 1

(resp. pay2(p+k)((σA, σ
′
E)) ≥ 1). Thus, it is the case that (σA, σ

′
E) ∈ Core(GΨ). ◀

CSL 2024

Decidable (Ac)counting with Parikh and Muller:
Adding Presburger Arithmetic to Monadic Second-
Order Logic over Tree-Interpretable Structures
Luisa Herrmann # Ñ

Computational Logic Group, TU Dresden, Germany
Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Vincent Peth #

Département d’informatique de l’ÉNS, École normale supérieure, CNRS, PSL University, Paris,
France

Sebastian Rudolph # Ñ

Computational Logic Group, TU Dresden, Germany
Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Abstract
We propose ωMSO⋊⋉BAPA, an expressive logic for describing countable structures, which subsumes
and transcends both Counting Monadic Second-Order Logic (CMSO) and Boolean Algebra with
Presburger Arithmetic (BAPA). We show that satisfiability of ωMSO⋊⋉BAPA is decidable over
the class of labeled infinite binary trees, whereas it becomes undecidable even for a rather mild
relaxations. The decidability result is established by an elaborate multi-step transformation into a
particular normal form, followed by the deployment of Parikh-Muller Tree Automata, a novel kind
of automaton for infinite labeled binary trees, integrating and generalizing both Muller and Parikh
automata while still exhibiting a decidable (in fact PSpace-complete) emptiness problem. By means
of MSO-interpretations, we lift the decidability result to all tree-interpretable classes of structures,
including the classes of finite/countable structures of bounded treewidth/cliquewidth/partitionwidth.
We generalize the result further by showing that decidability is even preserved when coupling
width-restricted ωMSO⋊⋉BAPA with width-unrestricted two-variable logic with advanced counting.
A final showcase demonstrates how our results can be leveraged to harvest decidability results for
expressive µ-calculi extended by global Presburger constraints.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Tree
languages; Theory of computation → Automata over infinite objects; Theory of computation →
Automated reasoning

Keywords and phrases MSO, BAPA, Parikh-Muller tree automata, decidability, MSO-interpretations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.33

Related Version An extended version of the paper including more details and full proofs is available
at: https://arxiv.org/abs/2305.01962

Funding BMBF (SCADS22B) and SMWK by funding ScaDS.AI Dresden/Leipzig.
Sebastian Rudolph: European Research Council, Consolidator Grant DeciGUT (771779).

1 Introduction

Monadic second-order logic (MSO) is a popular, expressive, yet computationally reasonably
well-behaved logical formalism to deal with various classes of finite or countable structures. It
allows for expressing “mildly recursive” structural properties like connectedness or reachability,
which go beyond first-order logic yet meet crucial modeling demands in verification, database
theory, knowledge representation, and other fields of computational logic. The well-understood

© Luisa Herrmann, Vincent Peth, and Sebastian Rudolph;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luisa.herrmann@tu-dresden.de
https://iccl.inf.tu-dresden.de/web/Luisa_Herrmann
https://orcid.org/0009-0004-9532-0994
mailto:vincent.peth@ens.psl.eu
https://orcid.org/0009-0007-8450-0705
mailto:sebastian.rudolph@tu-dresden.de
http://sebastian-rudolph.de
https://orcid.org/0000-0002-1609-2080
https://doi.org/10.4230/LIPIcs.CSL.2024.33
https://arxiv.org/abs/2305.01962
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

link between MSO and automata theory has been very fertile in theory and practice. In
particular, the MSO theory of infinite binary trees is decidable by Rabin’s famous result [50],
and the same holds for structures of bounded treewidth, cliquewidth, and partitionwidth.

Unfortunately, MSO’s native capabilities to express cardinality relationships are very
limited; they are essentially restricted to fixed thresholds (e.g. “there are at least 10 leaves”).
Counting MSO [18, 17], denoted CMSO, extends MSO by modulo counting and a finiteness
test over sets (e.g. “there is an even number of nodes”), which increases expressiveness in
general, while over finite and infinite words or trees, CMSO can be simulated in plain MSO.
In contrast, enriching MSO with cardinality constraints [40, 41] (as in “all nodes have as many
incoming as outgoing edges”) increases the expressivity drastically, but causes satisfiability
to become undecidable even over finite words. Decidability (over finite words, trees, or
graphs of bounded treewidth [42]) can be recovered when confining set variables occurring in
cardinality constraints to those existentially quantified in front (MSO∃Card). One way to
show this is through Parikh automata extending finite automata by adding finitely many
counters and exploiting the relationship of Presburger arithmetic and semilinear sets [31].

Very recent work [37, 33, 35] extended Parikh word automata to infinite words and inves-
tigated the impact of various acceptance conditions, but left a logical characterization as
open question. As with the original Parikh automata, one central motivation behind these
works is to provide automata-based approaches for specifying and verifying systems beyond
regular languages. The study of ω-Parikh automata is motivated by reactive systems, whose
behaviors are typically represented by infinite words. Then, the plethora of branching-time
approaches in verification should call for a further generalization to ω-tree-automata. Yet, to
our knowledge, Parikh automata have not been studied in the context of infinite trees so far.

Another, orthogonal logical approach for describing sets and their cardinalities, motivated
by tasks from program analysis and verification, combines the first-order theory of Boolean
algebras (BA) with Presburger arithmetic (PA), resulting in the theory of BAPA [44, 45]. As
opposed to computationally benign extensions of MSO, BAPA provides stronger support
for arithmetic (so one can talk about “all selections with the same number of blue and red
nodes” or even “all selections with a share of 70% – 80% red nodes”, modeling statistical
information). BAPA usually assumes a finite universe, but can be extended to the countable
setting [46]; satisfiability is decidable in either case. However, very regrettably, BAPA lacks
non-unary relations, which is outright fatal when it comes to expressing structural properties.

Combining both worlds, we introduce ωMSO⋊⋉BAPA

ˈoːmzoǁˌbapa

ˈoːmzo‖ˌbapa

[ˈoːmzoǁˌbapa]

,1 a logic for countable
structures, which extends CMSO by BAPA’s set operations and Presburger statements,
strictly contains MSO∃Card, and allows for sophisticated structural-arithmetic statements
(Section 3). We warrant computational manageability by gently controlling the usage of
variables, noting that satisfiability turns undecidable otherwise (Section 4). Exhibiting an
elaborate transformation (Section 5), we prove that ωMSO⋊⋉BAPA formulae over trees can be
brought into a very restricted tree normal form (TNF). We then provide a characterization
showing that the sets of ω-trees satisfying TNF formulae coincide with the sets of trees
recognized by Parikh-Muller Tree Automata (PMTA), a novel automata model designed by
us – and the first-ever automaton model on infinite trees capable of testing Parikh conditions
(Section 6). PMTA generalize both Muller and Parikh automata and their emptiness is
decidable. The decidability of ωMSO⋊⋉BAPA over the class of labeled infinite binary trees
thereby obtained is then lifted to all tree-interpretable classes, including vast and practically

1 Note that the “⋊⋉” inside the name is meant to be pronounced as lateral click, commonly used by riders
and coachmen to urge on their horses, and present in several African languages as a consonant.

L. Herrmann, V. Peth, and S. Rudolph 33:3

relevant classes of finite or countable structures that are bounded in terms of certain width
measures (Section 7). Such width-bounded ωMSO⋊⋉BAPA can be decidably coupled with
width-unbounded two-variable logics with advanced counting (Section 8). We demonstrate
how to leverage our results to gain decidability results for statistics-enhanced formalisms of
the µ-calculus family, which subsumes branching-time logics such as CTL∗ (Section 9).

2 Preliminaries

As usual, for any n ∈ N, let [n] := {1, . . . , n}. In order to count to infinity, we use N
extended by (countable) infinity ∞, with arithmetics lifted in the usual way; in particular,
∞ + n = ∞ + ∞ = (n + 1) · ∞ = ∞ and 0 · ∞ = 0 as well as n ≤ ∞ and ∞ ≤ ∞. For
countable sets A, let |A| denote the element of N∪ {∞} that corresponds to their cardinality.

To define countable structures, assume the following countable, pairwise disjoint sets:
a set C of (individual) constants, denoted by a, b, c, ..., and, for every n ∈ N, a set Pn of n-ary
predicates, denoted by P, R, Q, The set of all predicates will be denoted by P :=

⋃
i∈N Pn,

and we let ar : P → N such that ar(Q) = n iff Q ∈ Pn. A (relational) signature S is a union
SC ∪SP of finite subsets of C and P, respectively. An S-structure is a pair A = (A, ·A), where
A is a countable, nonempty set, called the domain of A and ·A is a function that maps every
a ∈ SC to a domain element aA ∈ A, and every Q ∈ SP to an ar(Q)-ary relation QA ⊆ Aar(Q).

We define infinite trees starting from a finite, non-empty set Σ, called alphabet. A (full)
infinite binary tree (often simply called a tree) labeled by some alphabet Σ is a mapping
ξ : {0, 1}∗ → Σ. We denote the set of all trees labeled by Σ by Tω

Σ . A finite tree is a mapping
ξ : X → Σ where X is a finite, prefix-closed subset of {0, 1}∗. The set of all finite trees over Σ
will be denoted by TΣ. We sometimes refer to the domain X of ξ by pos(ξ), whose elements
we call positions or nodes of ξ. Given a tree ξ ∈ Tω

Σ and a finite, prefix-closed set X ⊆ {0, 1}∗,
we denote by ξ|X the finite tree in TΣ that has X as domain and coincides with ξ on X.

An (infinite) path π is an infinite sequence π = π1π2 . . . of positions from {0, 1}∗ such
that π1 = ε and, for each i ≥ 1, πi+1 ∈ (πi · {0, 1}). Given a tree ξ ∈ Tω

Σ and a path π, we
denote by ξ(π) the infinite word ξ(π1)ξ(π2) . . . obtained by concatenating the labels of ξ
along π. We denote by inf(ξ(π)) the set of all labels occurring infinitely often in ξ(π).

We will also find it convenient to represent trees over some given alphabet Σ = {a1, . . . , an}
as structures over the signature S = SP = {≻0,≻1, Pa1 , . . . , Pan

}: Thereby, a tree ξ ∈ Tω
Σ will

be represented by the structure Aξ with Aξ = {0, 1}∗, where ≻Aξ

0 = {(w,w0) | w ∈ {0, 1}∗}
and ≻Aξ

1 = {(w,w1) | w ∈ {0, 1}∗} while PAξ
ai = {u ∈ {0, 1}∗ | ξ(u) = ai} for each i ∈ [n].

When there is no danger of confusion, we will simply write ξ instead of Aξ.

3 Syntax and Semantics of ωMSO⋊⋉BAPA

We now introduce the logic ωMSO⋊⋉BAPA. The underlying “design principles” for this logical
formalism are to have a language that syntactically subsumes and tightly integrates CMSO
and BAPA, while still exhibiting favorable computational properties, even over countably
infinite structures. To this end, we will first define the language ωMSO·BAPA and then
obtain ωMSO⋊⋉BAPA by imposing some syntactic restrictions on the usage of variables.

▶ Definition 1 (Syntax of ωMSO·BAPA). Given a signature S = SC ∪ SP, together with three
countable and pairwise disjoint sets Vind of individual variables (denoted x, y, z, ...), Vset of
set variables (denoted X,Y, Z, ...), and Vnum of number variables (denoted k, l,m, n...), we
define the following sets of expressions by mutual induction:

CSL 2024

33:4 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

the set I of individual terms: ι ::= a | x
the set S of set terms (P being a unary predicate): S ::= {a} | P | X | Sc | S1∩S2 | S1∪S2
the set N of number terms:2 t ::= n | oo | k | #S | m t | t1 + t2
(with n ∈ N and m ∈ N \ {0}; we use typewriter font to indicate that we mean an explicit
representation of a constant natural number n or m rather than the symbol “n” or “m”)
the set F of (unrestricted) formulae:

φ ::= Q(ι1, . . . , ιn) | S(ι) | t -<fin t
′ | t -< t

′ | #S ≡n m | Fin(S) | true | false |
¬φ | φ ∧ φ′ | φ ∨ φ′ | ∃x.φ | ∀x.φ | ∃X.φ | ∀X.φ | ∃k.φ | ∀k.φ

The first six types of atomic formulae will be referred to as predicate atoms, set atoms,
classical Presburger atoms, modern Presburger atoms, modulo atoms, and finiteness
atoms, respectively. We use Presburger atoms and write t -<(fin) t

′ to jointly refer to the
classical and modern variants. A Presburger atom t -<(fin) t

′ is called simple, if it contains
at most one occurrence of a term of the shape #S and no occurrences of number variables.

▶ Definition 2 (Semantics of ωMSO·BAPA). A variable assignment (for a structure A) is a
function ν that maps

every individual variable x ∈ Vind to a domain element ν(x) ∈ A,
every set variable X ∈ Vset to a subset ν(X) ⊆ A of the domain, and
every number variable k ∈ Vnum to a number ν(k) ∈ N ∪ {∞}.

We write νx7→a, νX 7→A′ , and νk7→n to denote ν updated in the way indicated in the subscript.
Given an interpretation A and a variable assignment ν, we let the function ·A,ν map
I to A by letting aA,ν = aA and xA,ν = ν(x),
S to 2A by letting

{a}A,ν = {aA,ν}
PA,ν = PA

XA,ν = ν(X)
(Sc)A,ν = A \ SA,ν

(S1 ∩ S2)A,ν = SA,ν
1 ∩ SA,ν

2
(S1 ∪ S2)A,ν = SA,ν

1 ∪ SA,ν
2

N to N ∪ {∞} by letting

nA,ν = n

ooA,ν = ∞
kA,ν = ν(k)

(#S)A,ν = |SA,ν |
(n t)A,ν = n · tA,ν

(t1 + t2)A,ν = tA,ν
1 + tA,ν

2

Finally we define satisfaction of formulae from F as follows: A, ν satisfies

Q(ι1,..., ιn) iff ((ι1)A,ν,..., (ιn)A,ν) ∈ QA

S(ι) iff ιA,ν ∈ SA,ν

t1 -< t2 iff tA,ν
1 ≤ tA,ν

2
t1 -<fin t2 iff tA,ν

1 ≤ tA,ν
2 < ∞

#S ≡n m iff (#S)A,ν = m mod n

and (#S)A,ν < ∞
Fin(S) iff |SA,ν | < ∞
¬φ iff A, ν ̸|= φ

φ1∧φ2 iff A, ν |= φ1 and A, ν |= φ2
φ1∨φ2 iff A, ν |= φ1 or A, ν |= φ2
∃x.φ iff A, νx7→a |= φ for some a∈A
∀x.φ iff A, νx7→a |= φ for all a∈A
∃X.φ iff A, νX 7→A′ |= φ for some A′ ⊆A

∀X.φ iff A, νX 7→A′ |= φ for all A′ ⊆A

∃k.φ iff A, νk7→n |= φ for some n∈N∪ {∞}
∀k.φ iff A, νk7→n |= φ for all n∈N∪ {∞}

Plus, we always let A, ν |= true and A, ν ̸|= false. For a formula φ, its free variables
(denoted free(φ)) are defined as usual; φ is a sentence if free(φ) = ∅. For sentences, ν does
not influence satisfaction, which allows us to write A |= φ and call A a model of φ in case
A, ν |= φ holds for any ν. We call φ satisfiable if it has a model.

2 We will consider number terms obtainable from each other through basic transformations (reordering,
factoring, summarizing, rules for ∞) as syntactically equal, allowing us to focus on simplified expressions.

L. Herrmann, V. Peth, and S. Rudolph 33:5

Note that, for notational homogeneity, we choose to write X(ι) instead of ι ∈ X. Where
convenient, we will also make use of the Boolean connectives ⇒ and ⇔ as abbreviations with
the usual meaning. While the original syntax of ωMSO·BAPA does not provide an explicit
equality predicate, both individual and set equality can be expressed (see further below).

▶ Definition 3 (Syntax of ωMSO⋊⋉BAPA). From now on, we will make the following as-
sumption (which is easily obtainable via renaming): In every formula, all quantifications use
different variable names and these are disjoint from the names of free variables. Given an
ωMSO·BAPA formula φ satisfying this assumption, we analyze its constituents as follows:

A (set or individual) variable is called assertive, if it is free, or it is existentially quantified
and the quantification does not occur inside the scope of a negation or of a universal (set,
individual, or number) quantifier.

The set of delicate individual and set variables is the smallest set of (non-assertive)
variables satisfying the following:

Every non-assertive set variable occurring in a non-simple Presburger atom is delicate.

If some atom contains a delicate (individual or set) variable, then all of this atom’s
non-assertive (individual or set) variables are delicate.

Then, φ is an ωMSO⋊⋉BAPA formula iff each of its predicate atoms Q(· · ·) contains at most
one delicate variable (possibly in multiple occurrences).

It is easy to see that, despite the above restrictions, ωMSO⋊⋉BAPA entirely encompasses
CMSO and MSO∃Card (no delicate variables) as well as BAPA (no predicates of arity >1).
For convenience and better readability, we will make use of the following abbreviations.

x = y := ∀Z.Z(x) ⇔ Z(y)
S ̸= ∅ := ∃z.S(z)
S ⊆ S′ := ∀z.S(z) ⇒ S′(z)
S = S′ := (S ⊆ S′) ∧ (S′ ⊆ S)

∃x∈S.φ := ∃x.S(x) ∧ φ

∀x∈S.φ := ∀x.S(x) ⇒ φ

t = t′ := (t -< t
′) ∧ (t′ -< t)

t =fin t
′ := (t -<fin t

′) ∧ (t′ -<fin t)

An analysis of these abbreviations reveals that ωMSO⋊⋉BAPA allows for the variables x, y
and set variables in S, S′ in these abbreviations to be delicate. We will also employ shortcuts
specific to the signature {≻0,≻1, Pa | a ∈ Σ} for Σ-labeled trees. Contrary to above, in these
shortcuts, x, y, X, Y must not be delicate to warrant inclusion in ωMSO⋊⋉BAPA (Obs. †).

X(x.i) := ∃y.x ≻i y ∧X(y)
x ≻ y := (x ≻0 y) ∨ (x ≻1 y)

φroot(x) := ¬∃z.(z ≻ x)
φ↑clsd(X) := ∀z.X(z.0) ∨X(z.1) ⇒ X(z)
x ≻∗ y := ∀Z.Z(y) ∧ φ↑clsd(Z) ⇒ Z(x)
x ≻+ y := (x ≻∗ y) ∧ (x ̸= y)

φ↓(x,X) := ∀z.
(
X(z) ⇔ x ≻∗ z

)
φpath(X) := X ̸= ∅ ∧ φ↑clsd(X) ∧ ∀z ∈X.

(
X(z.0) ⇔ ¬X(z.1)

)
φinf(X) := ∃Z.φpath(Z) ∧ ∀z ∈Z.∃z′∈X.(z ≻+ z′)

φ∩
inf(X,Y) := ∃Z.Z ⊆ X ∧ Z ⊆ Y ∧ φinf(Z)

CSL 2024

33:6 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Example 4. We use ωMSO⋊⋉BAPA to specify the class of all labeled infinite binary trees
over the alphabet Σ = {blue, red, green, yellow, black} satisfying the following property:
“There is a path X and some node x on X such that the following hold:
1. For every infinite selection Y of blue nodes from the x-descendants on the path X, there

is a selection Y ′ of red nodes from the whole tree, such that
a. Y and Y ′ contain the same number of nodes with infinitely many green descendants,
b. Y contains twice as many nodes as Y ′ having less than 10 yellow descendants.

2. For every finite selection Z of blue x-descendants, the total number of nodes lying on
paths from x to nodes of Z is even.”

∃X.∃x.φpath(X) ∧ X(x) ∧ ∃V0.φ↓(x, V0) ∧(
∃V1.

(
∀v1.V1(v1) ⇔ ∃V v1

↓ .φ↓(v1, V v1
↓) ∧ ¬Fin(V v1

↓ ∩ Pgreen)
)

∧

∃V2.
(
∀v2.V2(v2) ⇔ ∃V v2

↓ .φ↓(v2, V v2
↓) ∧ #(V v2

↓ ∩ Pyellow) -< 10
)

∧(
∀Y.

(
¬Fin(Y) ∧ Y ⊆ X ∩ V0 ∩ Pblue

)
⇒

∃Y ′.Y ′ ⊆ Pred ∧ #(Y ∩ V1) = #(Y ′ ∩ V1) ∧ #(Y ∩ V2) = 2 #(Y ′ ∩ V2)
))

∧(
∀Z.

(
Fin(Z) ∧ Z ⊆ V0 ∩ Pblue

)
⇒

∃V3.
(
∀v3.V3(v3) ⇔ (x ≻+ v3 ∧ ∃z ∈ Z.v3 ≻∗ z′)

)
∧ #V3 ≡2 0

)
Therein, we use set variables capturing all descendants of x (V0); all nodes with infinitely

many green descendants (V1); all nodes with less than 10 yellow descendants (V2); and all
nodes between x and elements of Z (V3). Analysing the variables yields that X, x, V0, V1,
and V2 are assertive, while Y and Y ′ are delicate due to their occurrence in the non-simple
Presburger atoms in the fifth line. Delicacy is not inherited further, thus no two delicate
variables occur in any predicate atom. Therefore the formula is indeed in ωMSO⋊⋉BAPA.
Note that it is crucial that V1 and V2 are defined “prematurely” outside the scope of ∀Y ,
so they become assertive and thus their occurrence in the (non-simple) Presburger atoms
does not turn them delicate. This technique of “encapsulating” unary descriptions into
assertive set variables unveils significant additional expressiveness of ωMSO⋊⋉BAPA. See also
Section 10 for a discussion on a handier syntax for this.

4 Mildly Extending ωMSO⋊⋉BAPA Leads to Undecidability

Just slightly relaxing the syntax of ωMSO⋊⋉BAPA allows us to express Hilbert’s 10th Problem.

▶ Definition 5 (Positive Diophantine Equation). A positive Diophantine equation D is a tuple
(NV,M, (nw)w∈M , (mw)w∈M) where NV is a non-empty, ordered set {z1, . . . ,zk} of number
variables; M (the variable products or monomials) is a finite and non-empty, prefix-closed
set of sorted variable sequences, i.e.,

M ⊆ {z1 . . .z1︸ ︷︷ ︸
i1

. . .zk . . .zk︸ ︷︷ ︸
ik

| i1, . . . , ik ∈ N};

and all nw and mw are from N and encode the monomial coefficients on either side of the
equation. A positive Diophantine equation is solvable if it admits a solution, where a solution
for D = (NV,M, (nw)w∈M , (mw)w∈M) is a variable assignment ν : NV → N satisfying∑

w=z
i1
1 ...z

ik
k

∈M
nw · ν(z1)i1 · ... · ν(zk)ik =

∑
w=z

i1
1 ...z

ik
k

∈M
mw · ν(z1)i1 · ... · ν(zk)ik .

L. Herrmann, V. Peth, and S. Rudolph 33:7

·w
·w

·w
·wzi

·wzi ·wzi

·wzi
·wzi ·wzi

·zi

·zi

φlab := ∃x∈Pε.φroot(x) ∧
∧

w∈M

(
∀x∈Pw ∪ Pŵ.∀y.x≻y ⇒ Pŵ(y) ∨

∨
wzi∈M

Pwzi (y)
)

φprod :=
∧

w,wzi∈M
∀y∈Pw.∃Z.φ↓(y, Z) ∧ #(Z ∩ Pwzi) =fin #Pzi

φsol :=
∑

w∈M
nw #Pw =fin

∑
w∈M

mw #Pw

Figure 1 Illustration of the intended model structure and definition of φD := φlab ∧ φprod ∧ φsol.

Solvability of positive Diophantine equations is undecidable, which is a straightforward
consequence of the undecidability of arbitrary Diophantine equations over integers [48].

We will show that for any D, we can compute an ωMSO·BAPA sentence φD whose satis-
fiability over labeled trees coincides with solvability of D, despite φD being only “minimally
outside” ωMSO⋊⋉BAPA — also contrasting the fact that sentences of this shape still warrant
decidable satisfiability over finite words [39, Thm. 8.13].

As detailed in Figure 1, we let φD := φlab ∧ φprod ∧ φsol characterize trees labeled by
w and ŵ, for w ∈ M , such that each model ξ of φD corresponds to a solution ν of D as
follows: for each z ∈ NV , the number of nodes in ξ labeled with z (i.e., #Pz) equals the
number that ν assigns to z. Likewise, for each variable product wzi ∈ M , we ensure that
#Pwzi

= #Pw · #Pzi
. To this end, we stipulate via φlab that for any w, all w-labeled nodes are

pairwise ≻∗-incomparable, and every wz-labeled node has exactly one w-labeled ancestor
(using the label ŵ for “padding” between w and wzi), and we enforce via φprod that for any
w,wzi ∈ M , each subtree rooted in a w-labeled node contains precisely as many wzi-labeled
nodes as there are zi-labeled nodes in the whole tree. Finally, under the conditions enforced
by φlab and φprod, φsol implements that the model indeed encodes a solution of the given D.

While the first conjunct is pure MSO and the third is a variable-free Presburger atom,
the second is not in ωMSO⋊⋉BAPA: ∃Z occurs inside the scope of ∀y, thus Z is not assertive.
Yet, as discussed in Section 3 (Obs. †), this is at odds with Z occurring in φ↓(y, Z).

▶ Proposition 6. For any positive Diophantine equation D, satisfaction of φD over (finite
or infinite) labeled trees coincides with solvability of D. Consequently, satisfiability of the
class of ωMSO·BAPA sentences of the shape φD is undecidable.

5 Transformation into Normal Form

Toward establishing our decidability result, we show that ωMSO⋊⋉BAPA formulae can be
transformed into a specific, very restricted normal form. To this end, we use a variety of
techniques, mostly known from the literature, but with some adjustments to our setting;
thus, due to space, we will restrict ourselves to a high-level description and examples. The
normalization procedure is subdivided into two phases: The first phase, establishing the
general normal form (GNF), is valid independently of the underlying class of structures. The
second phase, yielding the tree normal form (TNF), is specific to the class of labeled trees.

Given an ωMSO⋊⋉BAPA formula, substitute complex set expressions in modulo and finite-
ness atoms by new set variables (e.g. Fin(P ∩X) becomes ∃Y.(Y = P ∩X) ∧ Fin(Y)), remove
set operations from set atoms (e.g. turning (Pc ∩X)(y) into ¬P(y) ∧X(y)), and rewrite all sim-
ple Presburger atoms into plain MSO (e.g. 2 #P -< 3 becomes ∀xy.P(x)∧P(y) ⇒ x=y). Then,
skolemize all assertive variables (e.g. ∃x.∃X.∀y.R(x, y)⇒X(y) becomes ∀y.R(cx, y)⇒PX(y)).
Next “presburgerize” all non-Presburger atoms containing (only) delicate variables (e.g. re-
placing #X ≡3 1 with ∃k.#X =fin 3k + 1), which may require to turn delicate individual

CSL 2024

33:8 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

into set variables (e.g. ∀y.P(y) ⇒ X(y) becomes ∀Y.(#Y = 1) ∧ 1 -< #(P ∩ Y) ⇒ 1 -< #(X ∩ Y)).
The resulting formula exhibits a clear separation of variable usage: Presburger atoms use
delicate and number variables, all other atoms use non-delicate variables. In a subsequent
step, we “disentangle” the quantifiers, such that the scopes of quantified number or delicate
variables are strictly separated from those of non-delicate variables.3

We next apply “vennification” : a technique known from BAPA. In essence, we introduce
new number variables to count the number of elements contained in every Venn region, that
is, every possible combination of set (non-)memberships (with this, #(P ∪X) -< #Pc becomes
kP∩X+kPc∩X+kP∩Xc -< kPc∩X+kPc∩Xc). This allows us to remove all delicate set variables
from our formula. We are now in the setting where we can apply the well-known quantifier
elimination for Presburger Arithmetic over the “purely arithmetic” subformulae (which may
produce new modulo atoms) – since the latter is classically defined for N instead of N∪ {∞},
we require a pre-processing step implementing a vast case-distinction as to which of the Venn
regions are infinite. As a consequence, we obtain a formula free of number variables, with all
Presburger atoms being classic and outside any quantifier scope.

Finally, we “de-skolemize” : all constants and unary predicates introduced via the initial
skolemization, but also by the intermediate transformation steps, are projected away from
the signature, re-interpreting them as existentially quantified individual and set variables.
We thus recover “proper” equivalence with the initial formula. Last, we bring the formula in
disjunctive normal form and pull the trailing existential individual quantifiers inside.

▶ Definition 7 (General Normal Form). A Parikh constraint is a classical Presburger atom with-
out number variables and where all occurring set terms are set variables. An ωMSO⋊⋉BAPA
formula is in general normal form (GNF), if it is of the shape

∃X1. · · · ∃Xn.
∨k

i=1
(
φi ∧

∧li

j=1 χi,j

)
,

where the φi are CMSO formulae,4 whereas the χi,j are (unnegated) Parikh constraints.

▶ Theorem 8. For every ωMSO⋊⋉BAPA formula φ, it is possible to compute an equivalent
formula φ′ in general normal form.

We now focus on the case of labeled trees. Very similar to the case of CMSO, under this
assumption, we can equivalently transform the GNF formula into one without occurrences of
modulo and finiteness atoms. We rewrite #X ≡n m into the formula

Fin(X) ∧ ∃X0...∃Xn−1.
(

∃x.
(
φroot(x) ∧

∧
0≤i<n

i̸=m

¬Xi(x)
)

∧ ∀x.
(
(∃y∈X.x ≻∗ y) ∨ X0(x)

)
∧∧

i,j∈{0,...,n−1}
∀z.

(
Xi(z.0) ∧ Xj(z.1) ⇒ (¬X(z) ⇒ Xi⊕j(z)) ∧ (X(z) ⇒ Xi⊕j⊕1(z))

))
,

where ⊕ denotes addition modulo n. Finally, we replace all occurrences of Fin(X) by φfin(X),
as defined in Section 3. Thus, when employing ωMSO⋊⋉BAPA to describe labeled trees, we
can confine ourselves to an even more restrictive normal form.

▶ Definition 9 (Tree Normal Form). An ωMSO⋊⋉BAPA formula is in tree normal form (TNF),
if it is of the shape

∃X1. · · · ∃Xn.
∨k

i=1
(
φi ∧

∧li

j=1 χi,j

)
,

where the φi are plain MSO formulae and the χi,j are (unnegated) Parikh constraints.

▶ Theorem 10. For every ωMSO⋊⋉BAPA formula φ, it is possible to compute a formula φ′

in tree normal form that is equivalent to φ over all labeled infinite binary trees.

3 While this transformation is not very complicated technically, it may incur nonelementary blowup.
4 Recall that CMSO is MSO with modulo and finiteness atoms over set variables.

L. Herrmann, V. Peth, and S. Rudolph 33:9

6 Parikh-Muller Tree Automata

In this section, we introduce a novel type of automata, combining and generalizing Parikh
tree automata and Muller tree automata. We prove that the tree languages recognized by
this automaton type coincide with those definable by TNF formulae. Moreover, we show
that the emptiness problem of this automaton model is decidable. In combination, this yields
us decidable satisfiability of ωMSO⋊⋉BAPA over labeled infinite binary trees.

Variable-adorned Trees, Semilinear Sets, and Extended Parikh Maps

Given a finite set V ⊆ (Vind ∪ Vset), we denote by ΦV the set of all variable assignments of
variables from V to elements/subsets of {0, 1}∗. The set of V-models of a formula φ is the set
LV(φ) := {(ξ, ν) | ξ ∈ Tω

Σ , ν ∈ ΦV, ξ, ν |= φ} and by L(φ) we mean Lfree(φ)(φ). To represent
V-models, it is convenient to encode variable assignments ν ∈ ΦV into the alphabet. For
this, we let ΣV = Σ × 2V be a new alphabet and identify Σ∅ with Σ. We say that a tree
ξ ∈ Tω

ΣV
is valid (i.e., it encodes a variable assignment) if for each individual variable x in V

there is exactly one position in ξ where x occurs. As there is a bijection between Tω
Σ × ΦV

and the set of all valid trees in Tω
ΣV

, we use these two views interchangeably.
A set C ⊆ Ns, s ≥ 1, is linear if it is of the form C = {v⃗0 +

∑
i∈[l] miv⃗i | m1, . . . ,ml ∈ N}

for some l ∈ N and vectors v⃗0, . . . , v⃗l ∈ Ns. Any finite union of linear sets is called semilinear.
Given two vectors v⃗ = (v1, . . . , vs) ∈ Ns and v⃗′ = (v′

1, . . . , v
′
s′) ∈ Ns′ , we define their

concatenation v⃗ · v⃗′ as the vector (v1, . . . , vs, v
′
1, . . . , v

′
s′) ∈ Ns+s′ . This definition is lifted to

sets by letting C · C ′ = {v⃗ · v⃗′ | v⃗ ∈ C, v⃗′ ∈ C ′} ⊆ Ns+s′ for C ⊆ Ns, C ′ ⊆ Ns′.

▶ Lemma 11 ([30, 31]). The family of semilinear sets of Ns coincides with the family of Pres-
burger sets of Ns (i.e., sets of the form {(x1, . . . , xs) | φ(x1, . . . , xs)} for a Presburger formula
φ). Semilinear sets are closed under union, intersection, complement, and concatenation.

Given an alphabet Σ and some finite D ⊆ Ns for s ≥ 1, our automaton model works
with symbols from Σ ×D. Thus we use the projections ·Σ : Σ ×D → Σ with (a, d)Σ = a and
·D : Σ ×D → D with (a, d)D = d, which we will also apply to finite and infinite trees, resulting
in a pointwise substitution of labels. Moreover, the extended Parikh map Ψ: TΣ×D → Ns is
defined for each finite, non-empty tree ξ ∈ TΣ×D by Ψ(ξ) =

∑
i∈pos(ξ)(ξ(i))D .

Automaton Model

We now formally introduce our notion of a Parikh-Muller Tree Automaton (PMTA), which
recognizes infinite trees employing a Muller acceptance condition while also testing some
finite initial tree part for an arithmetic property related to Parikh’s commutative image [49].
This is implemented by utilizing a finite number of global counters, which are “blindly”
increased throughout the run, but are read off only once a posteriori – when it is verified
whether the tuple of the final counter values belongs to a given semilinear set.

▶ Definition 12 (Parikh-Muller Tree Automaton). Let Σ be an alphabet, let s ∈ N \ {0}, let
D ⊆ Ns be finite, and denote (Σ × D) ∪ Σ by Ξ. A PMTA (of dimension s) is a tuple
A = (Q,Ξ, qI ,∆,F , C) where Q = QP ∪ Qω ∪ {qI} is a finite set of states with QP ,Qω

disjoint and qI being the initial state, ∆ = ∆P ∪ ∆ω is the transition relation with

∆P ⊆ (QP ∪ {qI}) × (Σ ×D) ×Q×Q and ∆ω ⊆ (Qω ∪ {qI}) × Σ ×Qω ×Qω,

F ⊆ 2Qω is a set of final state sets, and C ⊆ Ns is a semilinear set named final constraint.

CSL 2024

33:10 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Definition 13 (Semantics of PMTA). A run of A on a tree ζ ∈ Tω
Ξ is a tree κζ ∈ Tω

Q whose
root is labeled with qI and which respects ∆ jointly with ζ. By definition of ∆, if a run exists,
then ζ−1(Σ ×D) is prefix-closed; we denote ζ|ζ−1(Σ×D) by ζcnt. A run κζ is accepting if
1. for each path π, we have inf(κζ(π)) ∈ F , and
2. if pos(ζcnt) ̸= ∅, then Ψ(ζcnt) ∈ C.
Note that, by the first condition, κζ being accepting implies finiteness of ζcnt and, thus,
well-definedness of the sum in Ψ(ζcnt). The set of all accepting runs of A on ζ will be denoted
by RunA(ζ). Then, the tree language of A, denoted by L(A), is the set

L(A) := {ξ ∈ Tω
Σ | ∃ζ ∈ Tω

Ξ with RunA(ζ) ̸= ∅ and (ζ)Σ = ξ} .

We highlight that, by choosing ∆P = ∅, we reobtain the well-known concept of a Muller
tree automaton (MTA). In this case, we can drop QP , D, ∆P , and C from A’s specification
without affecting its semantics. Thus, we define an MTA A by the tuple (Qω,Σ, qI ,∆ω,F).

For alphabets Σ,Γ, a relabeling (from Σ to Γ) is a mapping τ : Σ → P(Γ). We extend it
to a mapping τ : Tω

Σ → P(Tω
Γ) by letting ξ′ ∈ τ(ξ) if and only if for each position ϱ ∈ {0, 1}∗,

we have ξ′(ϱ) ∈ τ(ξ(ϱ)). Note that the reverse τ−1 of a relabeling τ is again a relabeling.

▶ Proposition 14. The set of tree languages recognized by Parikh-Muller tree automata is
closed under union, intersection, and relabeling.

Proof (sketch). As the proof techniques are rather standard and some of them were already
presented in earlier work [37], we only sketch the main ideas here. Let A1 and A2 be PMTA.

For the union, we construct a PMTA that starts in a fresh initial state. From there, it
can either enter the transitions of A1 or of A2; we keep apart the final constraints of A1
and A2 by using one additional dimension. The intersection PMTA is constructed as the
Cartesian product of A1 and A2; it uses the concatenation of final constraints of both given
PMTA and, as A1 and A2 might not “arithmetically test” the same initial tree part, it can
nondeterministically freeze parts of its counters on different paths. Relabeling is trivial. ◀

Correspondence of PMTA and ωMSO⋊⋉BAPA

We now provide a logical characterization of PMTAs, by showing that a tree language is
recognized by a PMTA precisely if it is the set of tree models of some ωMSO⋊⋉BAPA sentence.
The “only if” part is established by Proposition 15 and the “if” part by Proposition 17.

▶ Proposition 15. For any PMTA A, there is an ωMSO⋊⋉BAPA sentence φ with L(A) = L(φ).

Proof. Given a PMTA A = (Q,Ξ, qI ,∆,F , C), we adopt (and slightly simplify) the idea
from [41, Thm. 10] of how to encode counter values and the semilinear set C, and combine it
with the usual construction to define the behavior of an MTA by means of an MSO formula:
The existence of a run is defined by a sequence of existential set quantifiers representing
the states of A; one additional universal set quantifier ranging over paths is used to encode
the Muller acceptance condition. Furthermore, we (outermost) existentially quantify over
“counter contributions” using set quantifiers Z0

1 , ... ,Z
K
1 , . . . , Z

0
s , ... ,Z

K
s (with s being the

number of counters and K the greatest counter increment occurring in A’s transitions) – the
presence of a variable Zdi

i at a position indicates that di has to be added to the ith counter
to simulate the extended Parikh map. Then we enforce satisfaction of the final constraint C
by adding the conjunct φC defined as follows: By definition of C, there are k, l ∈ N \ {0} and
linear polynomials p1, . . . , pk : Nl → Ns such that C is the union of the images of p1, . . . , pk.

L. Herrmann, V. Peth, and S. Rudolph 33:11

Assume pg(m1, . . . ,ml) = v⃗0 + m1v⃗1 + . . . + mlv⃗l with v⃗j = (vj,1, . . . , vj,s). Then, using
number variables m1, . . . ,ml, we encode pg by

φpg
:= ∃m1 . . . ∃ml.

∧s
i=1

(∑K
d=0 d#Zd

i =fin v0,i + v1,im1 + . . .+ vl,iml

)
,

and let φC :=
(∧s

i=1
∧K

d=0 ∀x.¬Zd
i (x)

)
∨ φp1 ∨ . . . ∨ φpk

. This finishes the construction of
the overall sentence specifying L(A), which can be easily shown to be in ωMSO⋊⋉BAPA. ◀

The other direction is proved by an induction on the structure of TNF formulae involving
the closure properties of PMTA. The last piece that needs to be shown for this is the
recognizability of the models of a Parikh constraint.

▶ Lemma 16. For each Parikh constraint χ there is a PMTA A with L(A) = L(χ).

Proof. We assume w.l.o.g. that χ is of the form c +
∑

i∈[r] ci #Xi -<fin d +
∑

j∈[k] dj #Yj

where all Xi are pairwise distinct, and all Yj likewise. Given a subset θ ⊆ free(χ), we denote
by |θ|X the number

∑
Xi∈θ ci (and similar for |θ|Y). Then, assuming ξ(ϱ) = (σξ

ϱ, θ
ξ
ϱ), we get

L(χ) = {ξ ∈ Tω
Σfree(χ)

| c+
∑

ϱ∈pos(ξ) |θξ
ϱ|X ≤ d+

∑
ϱ∈pos(ξ) |θξ

ϱ|Y < ∞}

and, by the condition <∞, both sums can add up only finitely many non-zero elements.
Therefore, ξ ∈ L(χ) holds exactly if there is a non-empty, finite, prefix-closed Z ⊂ {0, 1}∗

that comprises all positions holding variable assignments and for which ξ|Z satisfies χ. This
condition can be verified by a PMTA defined in the following.

Let D = {(i, j) | 0 ≤ i ≤
∑

l∈[r] cl, 0 ≤ j ≤
∑

l∈[k] dl}. We construct the PMTA
A = ({qI , qf },Ξ, qI ,∆, {{qf }}, C) with Ξ = (Σfree(χ) ×D) ∪ Σfree(χ), ∆ = ∆P ∪ ∆ω where

∆P = {(qI ,
(
(σ, θ), (|θ|X , |θ|Y)

)
, q′, q′) | (σ, θ) ∈ Σfree(χ), q

′ ∈ {qI , qf }} and
∆ω = {(qf , (σ, ∅), qf , qf) | σ ∈ Σ}

and C = {(z1, z2) | c + z1 -<fin d + z2}.5 Then, one can easily show that L(χ) = L(A). ◀

▶ Proposition 17. For every ωMSO⋊⋉BAPA formula φ there is a PMTA A with L(A) = L(φ).

Proof. Let φ be an ωMSO⋊⋉BAPA formula. By Theorem 10, we can assume that φ is in
tree normal form, i.e., of the form ∃X1. · · · ∃Xn.

∨k
i=1

(
φi ∧

∧li

j=1 χi,j

)
, where φi are plain

MSO sentences and the χi,j are (unnegated) Parikh constraints. The proof of the statement
is an induction on the (now restricted) structure of φ using the well-known recognizability of
MSO sentences [50], Lemma 16, and Proposition 14. ◀

The characterization obtained through Proposition 15 and Proposition 17 also provides an
answer to the open problem posed by the authors in [35, 34] to find a logical characterization
for their reachability-regular Parikh automata (RRPA) on words: in the usual way, our tree
automata can simulate word automata (by embedding words in particular trees) and it is not
too hard to see that the word version of PMTA is expressively equivalent to RRPA (details
can be found in the appendix). Finally, by a routine inspection of the corresponding proofs
we easily observe that our logical characterization also applies to the word setting.

5 Note that by Lemma 11 we can use this description for a semilinear set.

CSL 2024

33:12 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

Deciding Emptiness of Parikh-Muller Tree Automata

Our proof of decidability (and complexity) of the emptiness problem of PMTA rests on the
respective results for the two components it combines, MTA and PTA. Thus, let us first
recall the definition of Parikh tree automata [40, 39], slightly adjusted to our setting.

▶ Definition 18 (Parikh tree automaton [41]). Let Σ be an alphabet, let s ≥ 1, and let D ⊆ Ns

be finite. A Parikh tree automaton (PTA) is a tuple A = (Q,Σ ×D, δ, qI , F, C) where Q is a
finite set of states, δ ⊆ Q× (Σ ×D) ×Q×Q is the transition relation, qI is the initial state,
F ⊆ Q is a set of final states, and C ⊆ Ns is a semilinear set.6 Given a finite tree ξ ∈ TΣ×D,
a run of A on ξ is a tree κξ ∈ TQ with pos(κξ) = {ε} ∪ {ui | u ∈ pos(ξ), i ∈ {0, 1}} and
κ(ε) = qI that respects the transition relation of A. The run κξ is said to be accepting if
Ψ(ξ) ∈ C and κξ(u) ∈ F for each leaf u ∈ pos(κξ) \ pos(ξ); we denote the set of all accepting
runs of A on ξ by RunA(ξ). Finally, the tree language of A, denoted L(A), is the set

L(A) := {ξ ∈ TΣ | ∃ξ′ ∈ TΣ×D with RunA(ξ′) ̸= ∅ and (ξ′)Σ = ξ} .

It was shown in [39] that non-emptiness is decidable for PTA. The exact complexity can
be obtained by adopting [28, Proposition III.2.] to the tree setting. This ultimately enables
us to establish the desired result for our automaton model.

▶ Proposition 19 (based on [39, 28]). Given a PTA A, deciding L(A) ̸= ∅ is NP-complete.

▶ Theorem 20. Given a PMTA A, deciding L(A) ̸= ∅ is PSpace-complete.

Proof (sketch). Let A = (Q,Ξ, qI ,∆,F , C) be a PMTA with Q = QP ∪ Qω ∪ {qI}, Ξ =
(Σ ×D) ∪ Σ, and ∆ = ∆P ∪ ∆ω. We observe that each tree in the language of A can be seen
as some finite tree over Σ × D (on which the Parikh constraint is tested), having infinite
trees from TΣ attached to all its leafs. This allows us to reduce PMTA non-emptiness testing
to deciding non-emptiness of Muller tree automata and Parikh tree automata. To this end,
consider

the Muller tree automaton AqI
= (Qω ∪ {qI},Σ, qI ,∆ω,F),

the Muller tree automata Aq = (Qω,Σ, q,∆ω,F) for all q ∈ Qω, and
the Parikh tree automaton AP = (Q,Σ × D, qI ,∆P , FP , C) with FP =
{q ∈Qω | L(Aq) ̸= ∅}.

As deciding L(Aq) ̸= ∅ is PSpace-complete [50, 38], AP can be constructed in PSpace
and, by Proposition 19, its non-emptiness can be decided in NP. Thus, the overall PSpace
complexity follows from the observation that L(A) ̸= ∅ iff L(AqI

) ̸= ∅ or L(AP) ̸= ∅. ◀

▶ Corollary 21. Satisfiability of ωMSO⋊⋉BAPA over labeled infinite binary trees is decidable.

7 Decidability over Tree-Interpretable Classes of Structures

Finally, we lift the obtained decidability result for labeled trees to much more general classes
of structures, leveraging the well-known technique of MSO-interpretations (also referred to
as MSO-transductions or MSO-definable functions in the literature [1, 19, 25, 20, 22]).

6 We note that the PTAs defined in [41] were total, i.e., δ is a function of type Q × (Σ × D) → P(Q × Q).
Each PTA as defined here can be made total by using an additional sink state.

L. Herrmann, V. Peth, and S. Rudolph 33:13

▶ Definition 22 (MSO-Interpretation). Given two signatures S and S′, an MSO-interpretation
is a sequence I = (φDom(x), (φc(x))c∈SC , (φQ(x1, . . . , xar(Q)))Q∈SP) of MSO-formulae over S′

(with free variables as indicated). We identify I with the partial function satisfying I(A) = B

for an S′-structure A and an S-structure B if {a ∈ A | A, {x 7→ a} |= φDom(x)} = B as well
as {a ∈ B | A, {x 7→ a} |= φc(x)} = {cB} for every c ∈ SC, and, for every Q ∈ SP, we have
QB = {(a1, . . . , aar(Q)) ∈ Bar(Q) | A, {xi 7→ ai}1≤i≤ar(Q) |= φQ(x1, . . . , xar(Q))}. For a class S

of S′-structures, let I(S) := {B | I(A) = B,A ∈ S}. A class Tof S-structures is tree-inter-
pretable, if it coincides with I(Tω

Σ) for some Σ and corresponding MSO-interpretation I.

The key insight for our result is that the well-known rewritability of MSO formulae under
MSO-interpretations can be lifted to ωMSO⋊⋉BAPA without much effort.

▶ Lemma 23. Let I be an MSO-interpretation. Then, for every ωMSO⋊⋉BAPA sentence φ
over S one can compute an ωMSO⋊⋉BAPA sentence φI over S′ satisfying A |= φI ⇐⇒ B |= φ

for every S′-structure A and S-structure B with I(A) ∼= B.

This insight can be used to show that decidability is propagated through MSO-interpreta-
tions, and thus can be guaranteed for all tree-interpretable classes, thanks to Corollary 21.

▶ Theorem 24. Let S be a class of structures over which satisfiability of ωMSO⋊⋉BAPA is
decidable, let I be an MSO-interpretation. Then satisfiability of ωMSO⋊⋉BAPA over I(S) is
decidable as well. In particular, ωMSO⋊⋉BAPA is decidable over any tree-interpretable class.

This result allows us, in one go, to harvest several decidability results, as tree-interpreta-
bility is able to capture classes of (finite or countable) structures whose treewidth [51],
cliquewidth [27, 22, 21, 36], or partitionwidth [10, 11, 26] is bounded by some value k ∈ N.

▶ Corollary 25. Given a signature S, satisfiability of ωMSO⋊⋉BAPA is decidable over the
classes of finite or countable S-structures of bounded treewidth, cliquewidth, and partitionwidth.

8 Incorporating Two-Variable-Logics without Width Restrictions

Corollary 25 constitutes a strong decidability result, also in view of the fact that lifting the
width restriction immediately leads to undecidability even for much weaker logics like FO. A
feasible way to nevertheless relax this restriction without putting decidability at risk and yet
maintaining all the expressive power of ωMSO⋊⋉BAPA is to “couple” it with another logic L
whose satisfiability problem is decidable over arbitrary structures. Then, one considers
sentences φ ∧ ψ, where φ is an ωMSO⋊⋉BAPA sentence while ψ is an L-sentence, and asks
for models whose reduct to the signature of φ adheres to the width restriction. That way,
signature elements of ψ not occurring in φ can “behave freely” and are not subject to the
imposed width constraint.7 Such a “coupling” of ωMSO⋊⋉BAPA and L can be made more or
less “tight” depending on the arity of the predicates allowed to be shared between φ and ψ.

We can show that a decidable coupling with shared unary predicates can be done for
L = FO2

Pres [7], an expressive extension of 2-variable first-order logic by Presburger-like
counting quantifiers of the form ∃S , where S ⊆ N ∪ {∞} is an ultimately periodic set from
N∪{∞} with the semantics defined by A, ν |= ∃Sx.φ iff |{a ∈ A | A, νx7→a |= φ}| ∈ S. FO2

Pres
subsumes the prominent counting 2-variable first-order fragment C2 [32], but goes beyond
first-order logic. Its satisfiability problem was shown to be decidable only recently [7].

7 We refer to Kotek et al. [42] for a result that is similar in spirit, establishing decidability of finite
satisfiability of treewidth-bounded MSO2 coupled with C2.

CSL 2024

33:14 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

▶ Theorem 26. Let w be any of treewidth, cliquewidth, or partitionwidth, and let n ∈ N. Let
Sa and Sb be signatures whose only joint elements are unary predicates. Then the following
problem is decidable: Given a ωMSO⋊⋉BAPA sentence φ over Sa and a FO2

Pres sentence ψ
over Sb, does there exist a countable Sa∪ Sb-structure C satisfying w(C|Sa) ≤ n and C |= φ∧ψ.

In a nutshell, this result is obtained by exploiting the fact that, for every FO2
Pres formula

ψ over Sb, one can construct a ωMSO⋊⋉BAPA formula ψ′ over the purely unary signature
Sa ∩ Sb that is satisfied by precisely those Sa-structures that are “Sa∩ Sb-compatible” with
some model of ψ. Consequently, the ωMSO⋊⋉BAPA formula φ∧ψ′ over Sa is such that for any
of its models A one finds a “Sa∩Sb-compatible” model B of ψ. Then, superimposing A and B

would yield a model C of φ∧ψ, which by construction satisfies w(C|Sa
) = w(A). Consequently,

to solve the decision problem of Theorem 26, it suffices to check if the ωMSO⋊⋉BAPA formula
φ ∧ ψ′ has a model A satisfying w(A|Sa

) ≤ n which is decidable by Corollary 25. We note
that the extended arithmetic capabilities of ωMSO⋊⋉BAPA are essential for this result, as ψ′

needs to encode linear inequalities over counts of realized atomic 1-types.

9 Showcase: Decidability of Tame Satisfiability of the Fully Enriched
µ-Calculus with Global Presburger Counting

An important and practically relevant class of expressive logical formalisms, which play
a pivotal role in logic-based knowledge representation and verification, is obtained from
variations and extensions of propositional modal logics [8, 9] and description logics [4, 53].
This class contains most ontology languages as well as PDL [29], CTL∗ [24], the propositional
modal µ-calculus [43] and their extensions. Modulo some representational variations, all these
logics’ model-theoretic semantics rest on structures over unary and binary predicates (often
interpreted as a transition system’s state space). While the simpler variants of this family
can be seen as fragments of first-order logic, the more expressive ones cannot, as they feature
fixed-point capabilities (through regular path expressions or explicit fixed-point operators).
Typically, decidability of the satisfiability problem in these logics follows from some sort of
tree-model property. Many of these logics exhibit some limited local counting capabilities
[54], but recently, there has been an increased interest in accommodating more advanced
arithmetic constraints [23, 47, 2, 5], including global constraints [3, 52] expressing statistical
information such as “more than 50% of the state space’s final states are successful”.

We will demonstrate the usefulness of ωMSO⋊⋉BAPA for establishing decidability results
at the example of adding global Presburger constraints to the fully enriched µ-calculus, a
very powerful formalism used in verification. We first introduce syntax and semantics.8

▶ Definition 27. Given a signature S = SC ∪ SP,1 ∪ SP,2 of constants, unary predicates and
binary predicates, the formulas of the fully enriched µ-calculus (FEµ) are defined by

φ ::= true | false | X | c | ¬c | P | ¬P | φ ∧ φ′ | φ ∨ φ′ | ⟨n, α⟩φ | [n, α]φ | µX.φ | νX.φ

where X is a set variable from some countable set Vset, P ∈ SP,1, n ∈ N and α has the form
R or R− for some R ∈ SP,2. For ease of presentation, we assume positive normal form.

8 For brevity and coherence, we slightly adjust the syntax and use classical model-theoretic semantics
(structures with unary and binary predicates) instead of the original one of modal logic (Kripke structures
with propositional variables and programs), as the two are well known to be equivalent.

L. Herrmann, V. Peth, and S. Rudolph 33:15

Given a structure A and a set variable assignment ν : Vset → 2A, the semantics JφKAν ⊆ A of
formulae φ is defined by the following function (stipulating (R−)A = {(a, a′) | (a′, a) ∈ RA}):

true 7→ A

false 7→ ∅
X 7→ ν(X) c 7→ {cA}

¬c 7→ A \ {cA}
P 7→ PA

¬P 7→ A \ PA

φ ∧ φ′ 7→ JφKAν ∩ Jφ′KAν
φ ∨ φ′ 7→ JφKAν ∪ Jφ′KAν

⟨n, α⟩φ 7→ {a | |{αA ∩ ({a}×JφKAν)}| ≥ n}
[n, α]φ 7→ {a | |{αA ∩ ({a}×(A \ JφKAν))}| ≤ n}

µX.φ 7→
⋂

{A′ ⊆ A | JφKAνX 7→A′ ⊆ A′}
νX.φ 7→

⋃
{A′ ⊆ A | A′ ⊆ JφKAνX 7→A′ }

A FEµ formula is closed if all occurrences of set variables are in the scope of some µ or ν.
A global FEµ Presburger constraint is a Parikh constraint (cf. Definition 7), where all set
variables have been replaced by closed FEµ formulae. Given a set Π of global FEµ Presburger
constraints, we let A |= Π if for every element of Π, replacing each of its closed FEµ formulae
ψ by JψKA∅ produces a statement valid in A. A closed FEµ formula φ is satisfiable wrt. Π if
there is some structure A |= Π with JφKA∅ ̸= ∅, in which case we call A a model of (φ,Π).

In fact, unrestricted satisfiability in FEµ (even without Presburger constraints) is unde-
cidable [13]. Decidability can be regained, however, when restricting to tame structures, also
commonly known as “quasi-forests” [15, 12, 16, 6].

▶ Definition 28 (tame structures). Let S = SC ∪ SP,1 ∪ SP,2 be a signature as above. A tame
structure A over S is a countable structure such that, for some finite set Roots,

the domain A of A is a forest, i.e., a prefix-closed subset of {rw | r ∈ Roots, w ∈ N∗},
the roots coincide with the named elements, i.e., Roots = {aA | a ∈ SC}, and
for every a, a′ ∈ A with (a, a′) ∈ RA for some R ∈ SP,2, either (i) {a, a′} ∩Roots ̸= ∅, or
(ii) a = a′, or (iii) a is a child of a′, or (iv) a′ is a child of a.

A logic has the tame model property if every satisfiable formula φ has a model that is tame
over the signature used by φ. The tame satisfiability problem consists in deciding if a given
formula has a tame model.

While the restriction to tame structures may seem somewhat arbitrary at first, it is well
justified: three maximal decidable sublogics of FEµ have the tame-model-property [12], in
which case satisfiability over arbitrary structures and tame structures coincide. Also, the
structural restriction has some plausibility from a transition system perspective in that one
distinguishes between a finite set of “named” states with arbitrary transitions between them
and potentially infinitely many “anonymous” states with more restricted access. It is easy to
see that all tame structures over S = SC ∪ SP have a treewidth not larger than |SC| + 1.

▶ Theorem 29. The tame satisfiability problem of the fully enriched µ-calculus with global
Presburger constraints is decidable.

Proof (sketch). Let S be a finite signature, φ a closed FEµ formula over S, and Π a finite set of
global FEµ Presburger constraints. Being a tame structure over S can be expressed by an MSO
sentence ψtame. We define a translation transx mapping closed FEµ formulae to ωMSO⋊⋉BAPA
formulae with free variable x such that A, {x 7→ a} |= transx(φ) iff a ∈ JφKA∅ . Based on
this, we exhibit another translation trans, which maps global FEµ Presburger constraints
to equivalent ωMSO⋊⋉BAPA sentences. Then, tame satisfiability of (φ,Π) corresponds
to satisfiability of the ωMSO⋊⋉BAPA sentence ψtame ∧ ∃x.transx(φ) ∧

∧
trans(Π) over all

countable structures of treewidth ≤ |SC| + 1, which is decidable by Corollary 25. ◀

Thanks to the expressive power of FEµ, the above result transfers to numerous other
prominent logics (and their fragments), including PDL and CTL∗ as well as the description
logics µALCOIQ and ALCOIQreg [14], for all of which tame satisfiability is thus decidable
even in the presence of global Presburger constraints. The argument easily extends to the
description logic ZOIQ [16], adding Boolean combinations of binary predicates (programs).

CSL 2024

33:16 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

10 Conclusion

We have proposed ωMSO⋊⋉BAPA, a logic with a high combined structural and arithmetic
expressivity, subsuming and properly extending existing popular formalisms for either purpose.
We have established decidability of the satisfiability of ωMSO⋊⋉BAPA formulae over arbitrary
tree-interpretable classes of structures. A key role is played by Parikh-Muller Tree Automata,
a novel type of automaton over labeled infinite binary trees with decidable emptiness.

For improving readability and succinctness, the syntax of our formalism could be extended
by “comprehension expressions”: set terms of the form {x |ψ} with x ∈ Vind and ψ ∈ F,
whose semantics is straightforwardly defined by {x |ψ}A,ν = {a ∈ A | A, νx7→a |= ψ}. E.g.,
this allows us to write 2 #{x | ∃y.R(x, y)} = 3 #{y | ∃x.R(x, y)} rather than the more unwieldy

∃V1.(∀x.V1(x) ⇔ ∃y.R(x, y)) ∧ ∃V2.(∀y.V2(y) ⇔ ∃x.R(x, y)) ∧ 2 #V1 = 3 #V2.

Note that comprehension expressions do not increase expressivity; they can be removed from
a formula φ yielding an equivalent formula φ′ as follows: Let χ be the largest subformula of φ
that contains the expression {x |ψ} but no quantifiers binding any of the free variables of ψ.
Then, obtain φ′ from φ by replacing χ by χ′, where χ′ := ∃Z.(∀x.Z(x) ⇔ ψ)∧χ[{x |ψ} 7→ Z].
ωMSO⋊⋉BAPA membership of such extended formulae can then be decided based on their
“purified” variant,9 or by means of an elaborately refined analysis of variable interactions.

Concluding, we are quite confident that this paper’s findings and techniques will prove
useful as a generic tool for establishing decidability results for formalisms from various areas
of computer science such as knowledge representation or verification. That said, in view of
the non-elementary blow-ups abounding in our methods, we concede that they are unlikely
to be helpful in more fine-grained complexity analyses, once decidability is established.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for tree-decomposable

graphs (extended abstract). In Timo Lepistö and Arto Salomaa, editors, 15th International
Colloquium on Automata, Languages and Programming (ICALP 1988), volume 317 of LNCS,
pages 38–51. Springer, 1988. doi:10.1007/3-540-19488-6_105.

2 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme
Lang, editors, 24th European Conference on Artificial Intelligence, (ECAI 2020) – Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume
325 of Frontiers in Artificial Intelligence and Applications, pages 616–623. IOS Press, 2020.
doi:10.3233/FAIA200146.

3 Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions on concepts.
Artif. Intell., 88(1-2):195–213, 1996. doi:10.1016/S0004-3702(96)00010-0.

4 Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017. doi:10.1017/9781139025355.

5 Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable
logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2021), volume 213 of LIPIcs, pages 36:1–36:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.36.

9 The described removal technique is optimized toward producing formulae in ωMSO⋊⋉BAPA.

https://doi.org/10.1007/3-540-19488-6_105
https://doi.org/10.3233/FAIA200146
https://doi.org/10.1016/S0004-3702(96)00010-0
https://doi.org/10.1017/9781139025355
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36

L. Herrmann, V. Peth, and S. Rudolph 33:17

6 Bartosz Bednarczyk and Sebastian Rudolph. Worst-case optimal querying of very expressive
description logics with path expressions and succinct counting. In Sarit Kraus, editor, 28st
International Joint Conference on Artificial Intelligence (IJCAI 2019), pages 1530–1536.
ijcai.org, 2019. doi:10.24963/ijcai.2019/212.

7 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately
periodic counting. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume
168 of LIPIcs, pages 112:1–112:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.112.

8 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/
CBO9781107050884.

9 Patrick Blackburn, Johan F.A.K. van Benthem, and Frank Wolter, editors. Handbook of Modal
Logic, volume 3 of Studies in logic and practical reasoning. North-Holland, 2007.

10 Achim Blumensath. Structures of bounded partition width. PhD thesis, RWTH Aachen
University, Germany, 2003. URL: http://sylvester.bth.rwth-aachen.de/dissertationen/
2003/256/index.htm.

11 Achim Blumensath. A model-theoretic characterisation of clique width. Annals of Pure and
Applied Logic, 142(1-3):321–350, 2006. doi:10.1016/j.apal.2006.02.004.

12 Piero A. Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The complexity of
enriched mu-calculi. Log. Methods Comput. Sci., 4(3), 2008. doi:10.2168/LMCS-4(3:11)2008.

13 Piero A. Bonatti and Adriano Peron. On the undecidability of logics with converse, nominals,
recursion and counting. Artif. Intell., 158(1):75–96, 2004. doi:10.1016/j.artint.2004.04.
012.

14 Diego Calvanese and Giuseppe De Giacomo. Expressive Description Logics, pages 193–236.
Cambridge University Press, 2 edition, 2007. doi:10.1017/CBO9780511711787.007.

15 Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries
in expressive description logics: An automata-theoretic approach. In 22nd Conference on
Artificial Intelligence (AAAI 2007), pages 391–396. AAAI Press, 2007. URL: http://www.
aaai.org/Library/AAAI/2007/aaai07-061.php.

16 Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in expressive
description logics with nominals. In Craig Boutilier, editor, 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pages 714–720, 2009. URL: http://ijcai.org/
Proceedings/09/Papers/124.pdf.

17 Bruno Courcelle. The monadic second-order logic of graphs, II: Infinite graphs of bounded
width. Mathematical Systems Theory, 21(1):187–221, 1988. doi:10.1007/BF02088013.

18 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

19 Bruno Courcelle. The monadic second-order logic of graphs V. On closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153–202, 1991. doi:
10.1016/0304-3975(91)90387-H.

20 Bruno Courcelle. Monadic second-order definable graph transductions: A survey. Theoretical
Computer Science, 126(1):53–75, 1994. doi:10.1016/0304-3975(94)90268-2.

21 Bruno Courcelle. Clique-width of countable graphs: A compactness property. Discrete
Mathematics, 276(1-3):127–148, 2004. doi:10.1016/S0012-365X(03)00303-0.

22 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

23 Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J.
Appl. Log., 8(3):233–252, 2010. doi:10.1016/j.jal.2010.03.001.

24 E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: On
branching versus linear time. In John R. Wright, Larry Landweber, Alan J. Demers, and Tim
Teitelbaum, editors, 10th Annual ACM Symposium on Principles of Programming Languages
(POPL 1983), pages 127–140. ACM Press, 1983. doi:10.1145/567067.567081.

CSL 2024

https://doi.org/10.24963/ijcai.2019/212
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
http://sylvester.bth.rwth-aachen.de/dissertationen/2003/256/index.htm
http://sylvester.bth.rwth-aachen.de/dissertationen/2003/256/index.htm
https://doi.org/10.1016/j.apal.2006.02.004
https://doi.org/10.2168/LMCS-4(3:11)2008
https://doi.org/10.1016/j.artint.2004.04.012
https://doi.org/10.1016/j.artint.2004.04.012
https://doi.org/10.1017/CBO9780511711787.007
http://www.aaai.org/Library/AAAI/2007/aaai07-061.php
http://www.aaai.org/Library/AAAI/2007/aaai07-061.php
http://ijcai.org/Proceedings/09/Papers/124.pdf
http://ijcai.org/Proceedings/09/Papers/124.pdf
https://doi.org/10.1007/BF02088013
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/S0012-365X(03)00303-0
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/j.jal.2010.03.001
https://doi.org/10.1145/567067.567081

33:18 Adding Presburger Arithmetic to MSO Logic over Tree-Interpretable Structures

25 Joost Engelfriet. A characterization of context-free NCE graph languages by monadic second-
order logic on trees. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, 4th International Workshop on Graph-Grammars and Their Application to Computer
Science (Graph Grammars 1990), volume 532 of LNCS, pages 311–327. Springer, 1990.
doi:10.1007/BFb0017397.

26 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Decidability
of querying first-order theories via countermodels of finite width, 2023. arXiv:2304.06348.

27 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-
cliquewidth sets of existential rules: Toward a general criterion for decidable yet highly
expressive querying. In 26th International Conference on Database Theory (ICDT 2023),
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

28 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness
and Efficiency. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2015), pages 329–340, 2015. doi:10.1109/LICS.2015.39.

29 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

30 Seymour Ginsburg and Edwin H. Spanier. Bounded Algol-Like Languages. Transactions of
the American Mathematical Society, 113(2):333, 1964. doi:10.2307/1994067.

31 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.

32 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In
12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages 306–317. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614957.

33 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Parikh Automata on Infinite Words,
2023. arXiv:2301.08969.

34 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Remarks on Parikh-recognizable omega-
languages, 2023. arXiv:2307.07238.

35 Mario Grobler and Sebastian Siebertz. Büchi-like characterizations for Parikh-recognizable
omega-languages, 2023. arXiv:2302.04087.

36 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory of Computing Systems, 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

37 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata
over infinite words. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022), volume 250 of LIPIcs, pages 40:1–40:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.40.

38 Paul Hunter and Anuj Dawar. Complexity Bounds for Regular Games. In Joanna Jȩdrzejowicz
and Andrzej Szepietowski, editors, Mathematical Foundations of Computer Science (MFCS
2005), LNCS, pages 495–506. Springer, 2005. doi:10.1007/11549345_43.

39 Felix Klaedtke. Automata-based decision procedures for weak arithmetics. PhD thesis, University
of Freiburg, Freiburg im Breisgau, Germany, 2004. URL: http://freidok.ub.uni-freiburg.
de/volltexte/1439/index.html.

40 Felix Klaedtke and Harald Rueß. Parikh automata and monadic second-order logics with
linear cardinality constraints. Technical Report 177, Albert-Ludwigs-Universität Freiburg,
2002. (revised version).

41 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M.
Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata,
Languages and Programming, 30th International Colloquium (ICALP 2003), volume 2719 of
LNCS, pages 681–696. Springer, 2003. doi:10.1007/3-540-45061-0_54.

42 Tomer Kotek, Helmut Veith, and Florian Zuleger. Monadic Second Order Finite Satisfiability
and Unbounded Tree-Width. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages
13:1–13:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CSL.2016.13.

https://doi.org/10.1007/BFb0017397
https://arxiv.org/abs/2304.06348
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.2307/1994067
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1109/LICS.1997.614957
https://arxiv.org/abs/2301.08969
https://arxiv.org/abs/2307.07238
https://arxiv.org/abs/2302.04087
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://doi.org/10.1007/11549345_43
http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html
http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.4230/LIPIcs.CSL.2016.13
https://doi.org/10.4230/LIPIcs.CSL.2016.13

L. Herrmann, V. Peth, and S. Rudolph 33:19

43 Dexter Kozen. Results on the propositional µ-calculus. In Mogens Nielsen and Erik Meineche
Schmidt, editors, Automata, Languages and Programming, 9th Colloquium (ICALP 1982),
volume 140 of LNCS, pages 348–359. Springer, 1982. doi:10.1007/BFb0012782.

44 Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. An Algorithm for Deciding BAPA:
Boolean Algebra with Presburger Arithmetic. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar,
Moshe Y. Vardi, Gerhard Weikum, and Robert Nieuwenhuis, editors, Automated Deduction
(CADE 2005), volume 3632 of LNCS, pages 260–277. Springer, 2005. doi:10.1007/11532231_
20.

45 Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean Algebra with
Presburger Arithmetic. Journal of Automated Reasoning, 36(3):213–239, 2006. doi:10.1007/
s10817-006-9042-1.

46 Aless Lasaruk and Thomas Sturm. Effective Quantifier Elimination for Presburger Arithmetic
with Infinity. In Vladimir P. Gerdt, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing (CASC 2009), volume 5743 of LNCS, pages 195–212.
Springer, 2009. doi:10.1007/978-3-642-04103-7_18.

47 Yensen Limón, Edgard Benítez-Guerrero, Everardo Bárcenas, Guillermo Molero-Castillo,
and Alejandro Velázquez-Mena. A satisfiability algorithm for the mu-calculus for trees with
presburger constraints. In 7th International Conference in Software Engineering Research and
Innovation (CONISOFT 2019), pages 72–79, 2019. doi:10.1109/CONISOFT.2019.00020.

48 Yuri V. Matiyasevich. Hilbert’s Tenth Problem. Foundations of Computing. MIT Press, 1993.
49 Rohit J. Parikh. On Context-Free Languages. Journal of the ACM, 13(4):570–581, 1966.

doi:10.1145/321356.321364.
50 Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.

Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.
51 Neil Robertson and P.D Seymour. Graph minors. III. Planar tree-width. Journal of Combina-

torial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.
52 “Johann” Sebastian Rudolph. Presburger concept cardinality constraints in very expressive de-

scription logics – Allegro sexagenarioso ma non ritardando. In Carsten Lutz, Uli Sattler, Cesare
Tinelli, Anni-Yasmin Turhan, and Frank Wolter, editors, Description Logic, Theory Combina-
tion, and All That – Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday,
volume 11560 of LNCS, pages 542–561. Springer, 2019. doi:10.1007/978-3-030-22102-7_25.

53 Sebastian Rudolph. Foundations of description logics. In Axel Polleres, Claudia d’Amato,
Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F.
Patel-Schneider, editors, Lecture Notes of the 7th International Reasoning Web Summer
School (RW’11), volume 6848 of LNCS, pages 76–136. Springer, 2011. doi:10.1007/
978-3-642-23032-5_2.

54 Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in
expressive description logics. J. Artif. Intell. Res., 12:199–217, 2000. doi:10.1613/jair.705.

CSL 2024

https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/978-3-642-04103-7_18
https://doi.org/10.1109/CONISOFT.2019.00020
https://doi.org/10.1145/321356.321364
https://doi.org/10.2307/1995086
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1007/978-3-030-22102-7_25
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1613/jair.705

Energy Games over Totally Ordered Groups
Alexander Kozachinskiy #

IMFD Chile & CENIA Chile, Santiago, Chile

Abstract
Kopczyński (ICALP 2006) conjectured that prefix-independent half-positional winning conditions
are closed under finite unions. We refute this conjecture over finite arenas. For that, we introduce a
new class of prefix-independent bi-positional winning conditions called energy conditions over totally
ordered groups. We give an example of two such conditions whose union is not half-positional. We
also conjecture that every prefix-independent bi-positional winning condition coincides with some
energy condition over a totally ordered group on periodic sequences.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Games on graphs, half-positionality, ordered groups

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.34

Related Version Previous Version: https://doi.org/10.48550/arXiv.2205.04508

Funding Alexander Kozachinskiy: the author is funded by ANID – Millennium Science Initiative
Program – Code ICN17002, and the National Center for Artificial Intelligence CENIA FB210017,
Basal ANID.

1 Introduction

This paper is devoted to positional determinacy in turn-based infinite-duration games. An
arena is a (possibly, infinite) directed graph whose edges are colored into elements of some set
of colors C and whose nodes are partitioned between two players called Eve and Adam. They
play by traveling over the nodes of the arena. In each turn, one of the players chooses an
edge from the current node, and the players move toward the endpoint of this edge. Whether
it is an Eve’s or an Adam’s turn to choose depends on whether the current node is an Eve’s
node or an Adam’s node. This continues for infinitely many turns. As a result, the players
obtain an infinite word over C (by concatenating the colors of edges that appear in the
play). A winning condition W , which is a set of infinite words over C, defines the aims of
the players. Eve wants to obtain an infinite word that belongs to W , while Adam wants it to
be outside W .

A vast amount of literature in this area is devoted to positional strategies. A strategy of
Eve or Adam is positional if, for every node controlled by the player in question, there exists
an out-going edge which is always played by this strategy at this node. Implementing such
strategies is easy because we only have to specify one edge for each node of the corresponding
player. This makes these strategies relevant for such areas as controller synthesis [2], where
an implementation of a controller can be seen as its strategy against an environment.

Correspondingly, of great interest are winning conditions for which positional strategies
are always sufficient to play optimally (for one of the players or even for both of them). This
area has the following terminology. A winning condition W is half-positional if in every
arena Eve has a positional strategy σ such that for every node of the arena the following
holds: if σ is not winning w.r.t. W if the game starts at this node, then Adam has a winning
strategy w.r.t. W (not necessarily positional) from this node. To put it simply, σ must be
winning everywhere where Adam does not have a winning strategy. If this condition holds
in all finite arenas (but possibly does not hold in some infinite arenas), then W is called
half-positional over finite arenas. A winning condition W is bi-positional (over all or over

© Alexander Kozachinskiy;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 34; pp. 34:1–34:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.kozachinskyi@cenia.cl
https://orcid.org/0000-0002-9956-9023
https://doi.org/10.4230/LIPIcs.CSL.2024.34
https://doi.org/10.48550/arXiv.2205.04508
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Energy Games over Totally Ordered Groups

finite arenas) if additionally the same requirement as for Eve holds for Adam (or, in other
words, if both W and its complement are half-positional). The family of parity condition,
which is of great interest due to its applications in logic [20, 14], is known to be bi-positional
over finite and infinite arenas [9]. There exist winning conditions that are bi-positional over
finite arenas, but not even half-positional over infinite arenas, for instance, certain variants
of the mean-payoff condition [18].

Winning conditions, bi-positional over infinite arenas, are understood quite well. For
instance, it is known that all of them are ω-regular [4]. In turn, parity conditions are exactly
those winning conditions that are bi-positional over infinite arenas and are prefix-independent,
that is, closed under adding or removing finite prefixes [7].

Bi-positionality over finite arenas was studied by Gimbert and Zielonka [11, 12]. In [11],
they gave a simple sufficient condition for bi-positionality over finite arenas, suitable for
the majority of the applications, and in [12], they gave a condition which is sufficient and
necessary (but far more complex). Their sufficient and necessary condition has a corollary
called 1-to-2-player lifting, which is of great interest in practice. It states that as long as a
winning condition is half-positional for Eve in finite arenas without Adam and half-positional
for Adam in finite arenas without Eve, it is bi-positional in all finite arenas.

Recently, Ohlmann [18] obtained a sufficient and necessary condition for half-positionality
over infinite arenas. As for finite arenas, several sufficient conditions for half-positionality
were obtained in the literature [15, 1], but none of them is necessary.

Are there set operations under which bi-positional and half-positional winning conditions
are closed? Bi-positional winning conditions are closed under complement by definition. At
the same time, bi-positional winning conditions are not closed under intersection (and hence
under union) [17].

Closure properties of half-positional winning conditions were first addressed by Kop-
czyński [15]. He conjectured that prefix-independent half-positional winning conditions are
closed under union. This conjecture has many variants, depending on whether we mean
half-positionality over finite or infinite arenas, and whether we consider arbitrary unions or
only finite ones. Kopczyński himself refuted a variant for infinite arenas and uncountable
unions. He also noticed that dropping the prefix-independence assumption or changing union
to intersection immediately makes the conjecture false.

No counter-example, refuting it for finite or even countable unions, had been found. On
the positive side, several classes of prefix-independent half-positional winning conditions that
are closed under union were identified in the literature, including concave conditions (over
finite arenas and arbitrary unions) of Kopczyński [15] and conditions “excluding healing” of
Ohlmann [18] (for infinite arenas but at most countable unions).

In this paper, we refute the Kopczyński’s conjecture for finite arenas and finite unions.
Moreover, we present two winning conditions that are bi-positional over finite arenas and
whose union is not half-positional over finite arenas.

Kopczyński’s conjecture over infinite arenas for finite/countable unions remains open.
Additionally, there has been an interest in whether some variant of the Kopczyński’s conjecture
holds in a restriction to ω-regular condition. Bouyer et al. [3] obtained that prefix-independent
ω-regular conditions, recognizable by deterministic Büchi automata (DBA), are closed under
finite union. In fact, they simply show that every prefix-independent DBA-recognizable
ω-regular condition can be given as a set of sequences, having infinitely many occurrences of
some fixed subset of colors. Such conditions are trivially closed under finite unions.

A. Kozachinskiy 34:3

Our technique. We introduce a new class of bi-positional winning conditions called energy
conditions over totally ordered groups, or ETOG conditions for short. They are defined as
follows (see more details in Section 3). We consider elements of some totally ordered group
(we stress that it should be bi-ordered) as colors of edges. Given an infinite sequence of these
elements, we arrange them into a formal series. Eve wants the sequence of its partial sums
to have an infinite decreasing subsequence. Canonical energy conditions [5] can be defined in
this way over Z with the standard ordering.

In Section 4, we establish the bi-positionality (over finite arenas) of the ETOG conditions
using a sufficient condition of Gimbert and Zielonka. In Section 5, we refute the Kopczyński’s
conjecture over finite arenas and for finite unions. A key factor allowing us to do this is
that free groups can be totally ordered. We construct two energy conditions over a free
group with 2 generators whose union is not half-positional. We also observe in Section 5 that
energy conditions over free groups are non-permuting, and that they can be used to refute
1-to-2-player lifting for half-positionality.

We believe that the class of energy conditions over totally ordered groups is interesting
on its own. Namely, we find this class suitable for the following conjecture.

▶ Conjecture 1. Every prefix-independent winning condition, bi-positional over finite arenas,
coincides on periodic sequences with some energy condition over a totally ordered group.

We cannot expect it to hold for all sequences, but periodic ones are sufficient, say, for
algorithmic applications. If our conjecture is true, it gives an explicit description of the
class of bi-positional prefix-independent winning condition. This would be in line with an
explicit description of the class of continuous bi-positional payoffs from [16]. We discuss our
conjecture in more detail in Section 6, where we reduce it to a problem about free groups.

2 Preliminaries

From now on, we restrict ourselves to finite arenas and to bi(half)-positionality over finite
arenas.

If C is a set, we denote by C∗ (resp., by Cω) the set of all finite (resp., infinite) words
over C. For x ∈ C∗, by |x| we denote the length of x. Additionally, by C+ we denote the
set of all finite non-empty words over C. If x ∈ C+, then by xω we denote an infinite word
obtained by repeating x infinitely many times. The free group over C is denoted by FC .

An arena A over a non-empty finite set (of colors) C is a tuple ⟨VA, VB , E⟩, where VA

and VB are disjoint finite sets and E ⊆ (VA ∪ VE) × C × (VA ∪ VB) is such that for every
s ∈ VA ∪ VB there exist c ∈ C and t ∈ VA ∪ VB for which (s, c, t) ∈ E. Elements of VA are
called Eve’s nodes, and elements of VB are called Adam’s nodes. Elements of E are called
edges of A. An edge e = (s, c, t) ∈ E is represented as a c-colored arrow from s to t. We
use the notation source((s, c, t)) = s, col((s, c, t)) = c and target((s, c, t)) = t. Our definition
guarantees that every node v ∈ VA ∪ VB has an out-going edge, that is, an edge e such that
source(e) = v.

An infinite-duration game over A from a node s ∈ VA ∪ VB is played as follows. At the
beginning, one of the players chooses an edge e1 ∈ E with source(e1) = s. Namely, if s ∈ VA,
then Eve chooses e1, and if s ∈ VB, then Adam chooses e1. More generally, in the first n

turns players choose n edges e1, e2, . . . , en ∈ E, one edge per turn. These edges always form a
path in A, that is, we have target(e1) = source(e2), . . . , target(en−1) = source(en). Then the
(n + 1)st turn is played as follows. Players consider the endpoint node of the current path,
which is target(en). One of the players chooses an edge en+1 with source(en+1) = target(en).

CSL 2024

34:4 Energy Games over Totally Ordered Groups

Namely, if target(en) ∈ VA, then Eve chooses en+1, and if target(en) ∈ VB , then Adam chooses
en+1. After infinitely many turns, players get an infinite sequence of edges p = (e1, e2, e3, . . .)
called a play (it forms an infinite path in A).

A winning condition over a set of colors C is a subset W ⊆ Cω. A strategy of Eve is
winning from s ∈ VA ∪ VB w.r.t. W if any play p = (e1, e2, e3, . . .) with this strategy in the
infinite-duration game over A from s is such that its sequence of colors col(e1)col(e2)col(e3) . . .

belongs to W . Similarly, a strategy of Adam is winning from s ∈ VA ∪ VB w.r.t. W if any
play p = (e1, e2, e3, . . .) with this strategy in the infinite-duration game over A from s is such
that col(e1)col(e2)col(e3) . . . /∈ W .

A positional strategy of Eve is a function σ : VA → E such that source(σ(u)) = u for any
u ∈ VA. It is interpreted as follows: for any u ∈ VA, whenever Eve has to choose an edge
from u, she chooses σ(u). Similarly, a positional strategy of Adam is a function τ : VB → E

such that source(τ (u)) = u for any u ∈ VB . It is interpreted analogously.
A winning condition W ⊆ Cω is half-positional if for every finite arena A over C there

exists a positional strategy σ of Eve such that for every node s of A the following holds: if σ is
not winning w.r.t. W from s, then Adam has a winning strategy w.r.t. W from s. A winning
condition W is bi-positional if both W and its complement Cω \ W are half-positional.

A winning condition W ⊆ Cω is prefix-independent if for all x ∈ C∗ and α ∈ Cω we have
α ∈ W ⇐⇒ xα ∈ W .

We state the following sufficient condition for bi-positionality due to Gimbert and Zielonka.

▶ Definition 2. Let W ⊆ Cω be a winning condition over a finite set of colors C. We call
W fairly mixing if the following 3 conditions hold:

A) For every x ∈ C∗ and α, β ∈ Cω we have that

(xα /∈ W ∧ xβ ∈ W) =⇒ (α /∈ W ∧ β ∈ W).

B) For every S ∈ {W, Cω \ W}, for every x ∈ C+ and for every α ∈ Cω we have that

(xω ∈ S, α ∈ S) =⇒ (xα ∈ S).

C) For every S ∈ {W, Cω \W} and for every infinite sequence x1, x2, x3, . . . ∈ C+ it holds
that:[

(x1x3x5 . . . ∈ S
)

∧ (x2x4x6 . . . ∈ S) ∧ (∀n ≥ 1 xω
n ∈ S)

]
=⇒ x1x2x3 . . . ∈ S.

▶ Theorem 3 ([11]). Any fairly mixing winning condition is bi-positional over finite arenas.

3 Definition of Energy Games over Totally Ordered Groups

A totally ordered group [8] is a triple (G, +, ≤), where (G, +) is a group and ≤ is a total
order on G such that

a ≤ b =⇒ x + a + y ≤ x + b + y for all a, b, x, y ∈ G.

The neutral element of G is denoted by 0. We do not assume that + is commutative1.

1 Possibly, more common is to use the multiplicative notation for non-Abelian groups. However, we find
additive notation more suitable due to the intuition that comes with the standard energy games.

A. Kozachinskiy 34:5

Consider any finite set C of colors and any totally ordered group (G, +, ≤). By a
valuation of colors over (G, +, ≤) we mean any function val : C → G. It can be extended to
a homomorphism val : C∗ → G by setting

val(empty word) = 0, val(c1c2 . . . cn) = val(c1) + val(c2) + . . . + val(cn).

Additionally, for every infinite sequence of colors c1c2c3 . . . ∈ Cω, we denote by val(c1c2c3 . . .)
the sequences of valuations of its finite prefixes:

val(c1c2c3 . . .) = {val(c1 . . . cn)}∞
n=1.

In other words, val(c1c2c3 . . .) is the sequence of partial sums of the formal series∑∞
n=1 val(cn).
An energy condition over (G, +, ≤), defined by a valuation of colors val : C → G, is the

set W ⊆ Cω of all α ∈ Cω such that val(α) has an infinite decreasing subsequence. It is
immediate that any energy condition over a totally ordered group is prefix-independent.

As an illustration, we show that parity conditions fall into this definition. The parity
condition over d priorities is a winning condition W d

par ⊆ {1, 2, . . . , d}ω,

W d
par = {c1c2c3 . . . ∈ {1, 2, . . . , d}ω | lim sup

n→∞
ci is odd}.

Observe that W d
par is an energy condition over Zd with the lexicographic ordering, defined

by the following valuation:

val(d) = ((−1)d, 0, . . . 0)
val(d − 1) = (0, (−1)d−1, . . . 0)

...
val(1) = (0, 0, . . . , −1).

As far as we know, the most general class of bi-positional prefix-independent winning
conditions that were previously considered are priority mean payoff conditions [13]. They
can also be defined as energy conditions over Zd. Moreover, to define them, it is sufficient to
consider only valuations that map each color to a vector with at most 1 non-zero coordinate,
as in the case of parity conditions.

4 Bi-positionality of Energy Conditions over Totally Ordered Groups

In this section, we establish

▶ Theorem 4. Every ETOG condition is bi-positional over finite arenas.

We derive it from the following technical result (which will also be useful in Section 6). If
C is a non-empty finite set and W ⊆ Cω, define per(W) = {x ∈ C+ | xω ∈ W} to be the set
of periods of periodic words from W .

▶ Proposition 5. Let C be a non-empty finite set. Consider any set P ⊆ C+ such that both
P and C+ \ P are closed under concatenations and cyclic shifts. Define a winning condition
WP ⊆ Cω as follows:

WP = {xy1y2y3 . . . | x ∈ C∗, y1, y2, y3, . . . ∈ P}.

Then WP is a prefix-independent fairly mixing winning condition with P = per(WP).

CSL 2024

34:6 Energy Games over Totally Ordered Groups

Let us start with a derivation of Theorem 4.

Proof of Theorem 4 (modulo Proposition 5). Assume that W ⊆ Cω is an energy condition
over a totally ordered group (G, +, ≤), defined by a valuation of colors val : C → G. Set
P = {y ∈ C+ | val(y) < 0}. We claim that W = WP . Indeed, W consists of all
α = c1c2c3 . . . ∈ Cω such that

val(α) = (val(c1), val(c1c2), val(c1c2c3), . . .)

has an infinite decreasing subsequence. Consider any i < j. Observe that the jth element of
val(α) is smaller than the ith element of val(α) if and only if

−val(c1 . . . ci) + val(c1 . . . cj) = val(ci+1 . . . cj) < 0.

In other words, val(α) has an infinite decreasing subsequence if and only if α = c1c2c3 . . .

can be represented, except for some finite prefix, as a as a sequence of words with negative
valuations. This means that W = WP .

We now show that both P and C+ \ P are closed under concatenations and cyclic shifts.
By Proposition 5, this would imply that W = WP is fairly mixing. In turn, by Theorem 3,
this implies that W is bi-positional.

Consider any two words x, y ∈ C+. Obviously:

val(x) < 0, val(y) < 0 =⇒ val(xy) = val(x) + val(y) < 0,

val(x) ≥ 0, val(y) ≥ 0 =⇒ val(xy) = val(x) + val(y) ≥ 0.

This demonstrates that both P and C+ \ P are closed under concatenations. Now, we claim
that val(c1c2 . . . cn) < 0 ⇐⇒ val(c2 . . . cnc1) < 0 for any word c1c2 . . . cn ∈ C+ (this implies
that both P and C+ \ P are closed under cyclic shifts). Indeed,

val(c1) + val(c2) + . . . + val(cn) < 0
⇐⇒ −val(c1) + (val(c1) + val(c2) + . . . + val(cn)) + val(c1) < −val(c1) + 0 + val(c1)
⇐⇒ val(c2) + . . . + val(cn) + val(c1) < 0.

Proof of Proposition 5. Prefix-independence of WP is immediate. We now show that P =
per(WP). We have zω ∈ WP for any z ∈ P by definition. Hence, P ⊆ per(WP). Now, take
any z ∈ per(WP). We show that z ∈ P . By definition of per(WP), we have zω = xy1y2y3 . . .

for some x ∈ C∗ and y1, y2, y3 . . . ∈ P . There exist i < j such that |xy1 . . . yi| and |xy1 . . . yj |
are equal modulo |z|. This means that yj+1 . . . yj must be a multiple of some cyclic shift of
z. We have that yj+1 . . . yj ∈ P because P is closed under concatenations. This means that
this cyclic shift of z also belongs to P . Indeed, otherwise, we could write yj+1 . . . yj as a
multiple of some word from C+ \ P , and this is impossible because C+ \ P is closed under
concatenations. Since P is closed under cyclic shifts, we obtain z ∈ P .

Finally, we show that WP is fairly mixing. Since WP is prefix-independent, we should
care only about the third item of Definition 2. That is, we only have to show the following
two claims:[

(x1x3x5 . . . ∈ WP) ∧ (x2x4x6 . . . ∈ WP) ∧ (∀n ≥ 1 xω
n ∈ WP)

]
=⇒ x1x2x3 . . . ∈ WP , (1)[

(x1x3x5 . . . ∈ WP) ∧ (x2x4x6 . . . ∈ WP) ∧ (∀n ≥ 1 xω
n ∈ WP)

]
=⇒ x1x2x3 . . . ∈ WP , (2)

for every infinite sequence of words x1, x2, x3, . . . ∈ C+. Here, for brevity, by WP we denote
Cω \ WP .

A. Kozachinskiy 34:7

We first show (1). If xω
n ∈ WP for every n, then xn ∈ per(WP) = P for every n, and

hence x1x2x3 . . . ∈ WP by definition.
A proof of (2) is more elaborate. Assume for contradiction that x1x2x3 . . . ∈ WP . Then

we can write x1x2x3 . . . = xy1y2y3 . . . for some x ∈ C∗ and y1, y2, y3, . . . ∈ P . One can
represent the equality as a sequence of “cuts” inside x1x2x3 . . ., as on the following picture:

x1 x2 x3 x4 x5

x y1

a b

first cut second cut

. . .

Either there are infinitely many cuts inside xn with odd indices, or there are infinitely
many cuts inside xn with even indices. Without loss of generality, we may assume that we
only have cuts inside xn with odd indices, and at most one for each n. Indeed, if necessary,
we can join several successive yi’s into one word (this is legal because P is closed under
concatenations).

We can now write each yi as yi = ax2kx2k+1 . . . x2mb for some a, b ∈ C∗ and 1 ≤ k ≤ m.
Now, let y′

i = ax2k+1x2k+3 . . . x2m−1b be a word which can be obtained from yi by removing
xn with even indices. Additionally, we let x′ ∈ C∗ be a word which can be obtained from x

in the same way. Since each xn with an even index lies entirely in some yi or in x, we have
that x1x3x5 . . . = x′y′

1y′
2y′

3 . . ., as the following picture illustrates:
x1 x3 x5

x′ y′
1

a b

first cut second cut

. . .

We will show that y′
i ∈ P for every P . This would contradict the fact that x1x3x5 . . . ∈ WP .

First, observe that xn /∈ P for every n. Indeed, we are given that xω
n ∈ WP for every n.

Hence, xn /∈ per(WP) = P , as required.
Assume for contradiction that y′

i = ax2k+1x2k+3 . . . x2m−1b /∈ P . Using the fact that
C+ \ P is closed under concatenations and cyclic shifts, we obtain:

y′
i =ax2k+1x2k+3 . . . x2m−1b /∈ P

=⇒ x2k+1x2k+3 . . . x2m−1ba /∈ P

=⇒ x2kx2k+1x2k+3 . . . x2m−1ba /∈ P because x2k /∈ P

=⇒ x2k+3 . . . x2m−1bax2kx2k+1 /∈ P

=⇒ x2k+2x2k+3 . . . x2m−1bax2kx2k+1 /∈ P because x2k+2 /∈ P

...
=⇒ x2mbax2kx2k+1 . . . x2m−1 /∈ P because x2m /∈ P

=⇒ yi = ax2kx2k+1 . . . x2mb /∈ P,

contradiction. ◀

CSL 2024

34:8 Energy Games over Totally Ordered Groups

5 Refuting Kopczyński’s conjecture

▶ Theorem 6. There exist two ETOG conditions whose union is not half-positional over
finite arenas.

This theorem, together with the result that ETOG conditions are bi-positional over finite
arenas (Theorem 4), refutes the Kopczyński’s conjecture over finite arenas for finite unions.

Proof of Theorem 6. Consider the free group F{a,b} with 2 generators a, b. As was proved
by Shimbireva [19], see also [8, Page 18], free groups can be totally ordered. We take an
arbitrary total ordering ≤ of F{a,b}. We also consider its inverse ≤−1, which is also a total
ordering of F{a,b}. Define a set of colors C = {a, a−1, b, b−1, ε}. Here a−1, b−1 are inverses of
a, b in F{a,b}, and ε is the identity element of F{a,b}.

Let W1 ⊆ Cω be an energy condition over (F{a,b}, ≤), defined by a (suggestive) valuation
of colors which interprets elements of C as corresponding elements of F{a,b}. Similarly, we
let W2 ⊆ Cω be an energy condition over (F{a,b}, ≤−1), defined by the same valuation. The
only difference between W1 and W2 is that they are defined w.r.t. different total orderings of
F{a,b} (one ordering is the inverse of the other one).

We show that the union W1 ∪W2 is not half-positional. It consists of all α ∈ Cω such that
val(α) contains either an infinite decreasing subsequence w.r.t. ≤ or an infinite decreasing
subsequence w.r.t. ≤−1. In other words, it consists of all α ∈ Cω such that val(α) contains
either an infinite decreasing subsequence or an infinite increasing subsequence w.r.t. ≤.

We show that W1 ∪ W2 is not half-positional in the following finite arena.

εε

b

b−1

a

a−1

Here, Eve controls the square and Adam controls the two circles. Assume that the game
starts in the square. We show that Eve has a winning strategy w.r.t. W1 ∪ W2, but not a
positional one.

Eve has two positional strategies in this arena: always go to the left and always go to the
right. Consider, for example, the first one. Adam has the following counter-strategy which
wins against it: alternate the a-edge with the a−1-edge. We get the following sequence of
colors in the play of these two strategies:

εaεa−1εaεa−1 . . .

This sequence does not belong to W1 ∪ W2 because

val(εaεa−1εaεa−1 . . .) = ε, a, a, ε, ε, a, a, ε, . . .

There are only two distinct elements of F{a,b} occurring in val(εaεa−1εaεa−1 . . .). Hence, it
neither has an infinite decreasing subsequence nor an infinite increasing subsequence. By the
same argument, the second positional strategy of Eve (always go to the right) is not winning
w.r.t. W1 ∪ W2 either.

A. Kozachinskiy 34:9

On the other hand, Eve has the following winning strategy: alternate the edge to the left
circle with the edge to the right circle. Consider any play with this strategy. Its sequence of
colors looks as follows:

εa±1εb±1εa±1εb±1 . . .

We show that this sequence belongs to W1 ∪ W2. A restriction of val(εa±1εb±1εa±1εb±1) to
elements with even indices looks like this:

a±1, a±1b±1, a±1b±1a±1, a±1b±1a±1b±1 . . . (3)

All elements of (3) are distinct. Hence, by the Infinite Ramsey Theorem, it either has
an infinite decreasing subsequence or an infinite increasing subsequence w.r.t. ≤. Indeed,
consider an infinite complete graph over {1, 2, 3, . . .}, whose edges are colored green and red
as follows. Pick any i, j ∈ {1, 2, 3, . . .}, i < j. If the ith element of (3) is bigger than the
jth element of (3), then color the edge between i and j into green. Otherwise, color this
edge red (in this case, the ith element of (3) is smaller than the jth element of (3)). Our
graph has an infinite induced subgraph in which all edges are of the same color. If they are
all green (resp., red), then this subgraph defines an infinite decreasing (resp., increasing)
subsequence of (3). ◀

Additional remarks. Energy conditions over free groups are interesting because they are
non-permuting (if there is more than one generator). A prefix-independent winning condition
is permuting if it is closed under permuting periods of periodic sequences. All previously
known prefix-independent bi-positional winning conditions were permuting. This is because
they can be seen as energy conditions over Abelian groups (on periodic sequences). In a talk
of Colcombet and Niwiński [6] it was asked whether there exists a non-permuting bi-positional
prefix-independent winning condition. The answer is “yes”. For example, take W1 as above
in this section. Without loss of generality, we may assume that aba−1b−1 is negative w.r.t. ≤
(otherwise we can consider its inverse). Then (aba−1b−1)ω ∈ W1, but (aa−1bb−1)ω /∈ W1.

Additionally, the winning condition W1 ∪ W2 is interesting because it refutes 1-to-2-player
lifting for half-positionality. Namely, it is easy to see that W1 ∪ W2 is positional for Eve in
all arenas, where there are no nodes of Adam. This is because she can win in such arenas if
and only if there is a reachable non-zero simple cycle. But as we have shown, W1 ∪ W2 is
not positional for Eve in the presence of Adam. Previously, there were examples that refute
1-to-2-player lifting for half-positionality in stochastic games [10].

6 Discussing Conjecture 1

First, it is useful to understand how prefix-independent bi-positional winning conditions are
arranged on periodic sequences. Luckily, Proposition 5 gives an answer.

▶ Proposition 7. Let C be a finite non-empty set. Then for any P ⊆ C+ the following two
conditions are equivalent:

A) P = per(W) for some prefix-independent bi-positional (over finite arenas) winning
condition W ⊆ Cω;
B) P and C+ \ P are closed under concatenations and cyclic shifts;

Proof. The fact that the second item implies the first item follows from Proposition 5. Indeed,
if P and C+ \ P are closed under concatenations and cyclic shifts, then P = per(WP) for a
prefix-independent fairly mixing winning condition WP , which is bi-positional by Theorem 3.

CSL 2024

34:10 Energy Games over Totally Ordered Groups

We now show that the first item implies the second item. The fact that P and C+ \ P are
closed under cyclic shifts is a consequence of the prefix-independence of W :

c1c2 . . . cn ∈ P ⇐⇒ (c1c2 . . . cn)ω ∈ W ⇐⇒ cn(c1c2 . . . cn)ω = (cnc1 . . . cn−1)ω ∈ W

⇐⇒ cnc1 . . . cn−1 ∈ P.

We now show that P is closed under concatenations (there is a similar argument for C+ \ P).
Take any x, y ∈ P . Consider the following arena.

x

y

It has a central circle node that lies on two simple cycles, one of which is colored by x

and the other one by y. All nodes are controlled by Adam. Since, x, y ∈ P , we have that
xω, yω ∈ W . Hence, Adam does not have a positional winning strategy w.r.t. W from the
central circle. Since W is bi-positional, Adam has no winning strategy from the central circle
w.r.t. W . Now, assume that Adam alternates the x-cycle with the y-cycle. He obtains (xy)ω

as a sequence of colors. Since this strategy is not winning, we have xy ∈ P . ◀

In turn, periods of periodic sequences of ETOG conditions are arranged as follows.

▶ Proposition 8. Let C be a non-empty finite set and W ⊆ Cω be an energy condition
over a totally ordered group (G, +, ≤), defined by a valuation of colors val : C → G. Then
per(W) = {x ∈ C+ | val(x) < 0}.

Proof. Define P = {x ∈ C+ | val(x) < 0}. By the argument from the derivation of
Theorem 4, we have W = WP . Moreover, it was shown there that P and C+ \ P are
closed under concatenations and cyclic shifts. Finally, by Proposition 5, we have that
P = per(WP) = per(W). ◀

Thus, Conjecture 1 is equivalent to the following conjecture.

▶ Conjecture 9. Let C be any non-empty finite set. Then for any P ⊆ C+ such that P and
C+ \ P are closed under concatenations and cyclic shifts there exists a totally ordered group
(G, +, ≤) and a valuation of colors val : C → G such that P = {x ∈ C+ | val(x) < 0}.

It might be concerning that P and C+ \ P are interchangeable in Conjecture 9, while val
treats them asymmetrically. Namely, we require it to be negative on P and non-negative on
C+ \ P . However, val can always be made strictly positive on C+ \ P . Namely, instead of G,
consider the direct product G × Z with the lexicographic order, and define a new valuation
of colors val′ : C → G × Z, val′(c) = (val(c), 1).

Finally, we notice that our conjecture can be reduced to a reasoning about free groups.

▶ Definition 10. A subset S of a group G is called an invariant sub-semigroup of G if
the following two conditions hold:

A) xy ∈ S for all x, y ∈ S (closure under multiplications);
B) gxg−1 ∈ S for all g ∈ G, x ∈ S (closure under conjugations with elements of G).

A. Kozachinskiy 34:11

▶ Conjecture 11. Consider an arbitrary non-empty finite set C and any P ⊆ C+ such
that P and C+ \ P are closed under concatenations and cyclic shifts. Then there exists
an invariant sub-semigroup S of the free group FC such that, first, C+ \ P is a subset of
S, second, P is disjoint with S, and third, for every g ∈ FC either g ∈ S or g−1 ∈ S (in
particular, S must have the neutral element).

▶ Proposition 12. Conjecture 9 is equivalent to Conjecture 11.

Proof. Consider an arbitrary non-empty finite set C. It is sufficient to show that for any
P ⊆ C+ the following two conditions are equivalent:

A) there exist a totally ordered group (G, +, ≤) and a valuation of colors val : C → G

such that P = {x ∈ C+ | val(x) < 0}.
B) there exists an invariant sub-semigroup S of the free group FC such that, first, C+ \ P

is a subset of S, second, P is disjoint with S, and third, for every g ∈ FC either g ∈ S or
g−1 ∈ S.

We first establish A) =⇒ B). Extend val to a homomorphism from FC to G by setting
val(c−1) = −val(c) for c ∈ C. Set S = {g ∈ FC | val(g) ≥ 0}. It is easy to check that all
conditions on S are satisfied.

Now we establish B) =⇒ A). Let S be as in B). Consider a binary relation ∼ on FC ,
defined by f ∼ g ⇐⇒ fg−1, gf−1 ∈ S for f, g ∈ FC . The fact that S is an invariant
sub-semigroup with the neutral element implies that ∼ is a congruence on the group FC . Let
G = FC/ ∼ be the corresponding quotient group. Now, consider a binary relation ⪯ on FC ,
defined by f ⪯ g ⇐⇒ gf−1 ∈ S for f, g ∈ FC (observe that f ∼ g ⇐⇒ f ⪯ g, g ⪯ f). It is
easy to see that ⪯ is correctly defined over FC/ ∼, whose elements are equivalence classes
of ∼. More formally, it holds that if a ∼ b, x ∼ y, then a ⪯ x ⇐⇒ b ⪯ y (it can again be
derived from the fact that S is an invariant sub-semigroup). It is also routine to check that
⪯ defines a total ordering on G. We need a condition that either g ∈ S or g−1 ∈ S for every
g ∈ FC only to show the totality of our order. Namely, to show that there are no f, g ∈ FC

with f ̸⪯ g and g ̸⪯ f , we notice that otherwise neither gf−1 nor fg−1 = (gf−1)−1 are in
S. Observe that the equivalence class of g ∈ FC w.r.t. ∼ is non-negative in (G, ⪯) if and
only if g ∈ S. Now, recall that C+ \ P is a subset of S and P is disjoint with P . Hence, if
we consider a valuation of colors val : C → G, which maps c ∈ C to its equivalence class
w.r.t. ∼, then P would be the set of words from C+ whose valuation is negative w.r.t. ⪯. ◀

References

1 Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. Exploring the
boundary of half-positionality. Annals of Mathematics and Artificial Intelligence, 62(1):55–77,
2011.

2 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and reactive
synthesis. In Handbook of Model Checking, pages 921–962. Springer, 2018.

3 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic büchi automata. In 33rd International Conference
on Concurrency Theory (CONCUR 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

4 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. TheoretiCS, 2(1):1–48, 2023.

5 Arindam Chakrabarti, Luca de Alfaro, Thomas A Henzinger, and Mariëlle Stoelinga. Resource
interfaces. In International Workshop on Embedded Software, pages 117–133. Springer, 2003.

CSL 2024

34:12 Energy Games over Totally Ordered Groups

6 Thomas Colcombet and Damian Niwiński. Positional determinacy over finite games. Slides,
available at https://www.irif.fr/~colcombe/Talks/talk_posdet_rennes_13.10.05.pdf,
2005.

7 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theoretical Computer Science, 352(1-3):190–196, 2006.

8 Bertrand Deroin, Andrés Navas, and Cristóbal Rivas. Groups, orders, and dynamics. arXiv
preprint, 2014. arXiv:1408.5805.

9 EA Emerson and CS Jutla. Tree automata, mu-calculus and determinacy. In [1991] Proceedings
32nd Annual Symposium of Foundations of Computer Science, pages 368–377. IEEE, 1991.

10 H Gimbert and E Kelmendi. Two-player perfect-information shift-invariant submixing
stochastic games are half-positional. corr, abs/1401.6575. arXiv preprint, 2014. arXiv:
1401.6575.

11 Hugo Gimbert and Wiesław Zielonka. When can you play positionally? In International
Symposium on Mathematical Foundations of Computer Science, pages 686–697. Springer, 2004.

12 Hugo Gimbert and Wiesław Zielonka. Games where you can play optimally without any
memory. In International Conference on Concurrency Theory, pages 428–442. Springer, 2005.

13 Hugo Gimbert and Wiesław Zielonka. Deterministic priority mean-payoff games as limits of
discounted games. In International Colloquium on Automata, Languages, and Programming,
pages 312–323. Springer, 2006.

14 Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata, logics, and infinite games: a
guide to current research, volume 2500. Springer, 2003.

15 Eryk Kopczyński. Half-positional determinacy of infinite games. In International Colloquium
on Automata, Languages, and Programming, pages 336–347. Springer, 2006.

16 Alexander Kozachinskiy. Continuous Positional Payoffs. In Serge Haddad and Daniele Varacca,
editors, 32nd International Conference on Concurrency Theory (CONCUR 2021), volume
203 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:17, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CONCUR.2021.10.

17 Pierre Ohlmann. Monotonic graphs for parity and mean-payoff games. PhD thesis, IRIF –
Research Institute on the Foundations of Computer Science, 2021.

18 Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
TheoretiCS, 2(3):1–51, 2023.

19 H Shimbireva. On the theory of partially ordered groups. Matematicheskii Sbornik, 62(1):145–
178, 1947.

20 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

https://www.irif.fr/~colcombe/Talks/talk_posdet_rennes_13.10.05.pdf
https://arxiv.org/abs/1408.5805
https://arxiv.org/abs/1401.6575
https://arxiv.org/abs/1401.6575
https://doi.org/10.4230/LIPIcs.CONCUR.2021.10
https://doi.org/10.4230/LIPIcs.CONCUR.2021.10

QLTL Model-Checking
François Laroussinie # Ñ

IRIF, Université Paris Cité, France

Loriane Leclercq #

Ecole Centrale de Nantes, CNRS, LS2N, Nantes, France

Arnaud Sangnier #

DIBRIS, Università di Genova, Italy

Abstract
Quantified LTL (QLTL) extends the temporal logic LTL with quantifications over atomic propositions.
Several semantics exist to handle these quantifications, depending on the definition of executions
over which formulas are interpreted: either infinite sequences of subsets of atomic propositions
(aka the “tree semantics”) or infinite sequences of control states combined with a labelling function
that associates atomic propositions to the control states (aka the “structure semantics”). The
main difference being that in the latter different occurrences of a control state should be labelled
similarly. The tree semantics has been intensively studied from the complexity and expressivity
point of view (especially in the work of Sistla [21, 22]) for which the satisfiability and model-checking
problems are known to be TOWER-complete. For the structure semantics, French has shown that
the satisfiability problem is undecidable [8]. We study here the model-checking problem for QLTL
under this semantics and prove that it is EXPSPACE-complete. We also show that the complexity
drops down to PSPACE-complete for two specific cases of structures, namely path and flat ones.

2012 ACM Subject Classification Theory of Computation → Logic

Keywords and phrases Quantified Linear-time temporal logic, Model-cheking, Verification, Automata
theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.35

Funding Loriane Leclercq: ANR project ProMiS ANR-19-CE25-0015

1 Introduction

Temporal logics (TLs) have been introduced in computer science in the late 1970’s by
Pnueli [19]; they provide a powerful formalism for specifying correctness properties of evolving
systems. Various kinds of temporal logics have been defined, with different expressive power
and algorithmic properties. For instance, the Computation Tree Logic (CTL) expresses
properties of the computation tree of the system under study (time is branching: a state
may have several successors), and the Linear-time Temporal Logic (LTL) expresses properties
of one execution at a time (a system is viewed as a set of executions).

In verification, we are mainly interested in two decision problems: the satisfiability
problem (given a formula, decide whether there exists a model for it) and the model-checking
problem (given a potential model and a formula, decide whether the formula holds true or not
over the model). For the temporal logic LTL, it is well known that both these problems are
PSPACE-complete. The key argument is the construction of an automaton that recognises
the models (a set of infinite words) of a fixed formula. For CTL, the model-checking can be
done in polynomial time while satisfiability is EXPTIME-complete (these decision procedures
can also be based on automata techniques, but this time we need to use tree automata).

In terms of expressiveness, classical temporal logics like CTL or LTL still have some
limitations: in particular, they lack the ability of counting. For instance, they cannot express
that an event occurs (at least) at every even position along a path, or that a state has

© François Laroussinie, Loriane Leclercq, and Arnaud Sangnier;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francoisl@irif.fr
https://www.irif.fr/~francoisl/
mailto:loriane.leclercq@ls2n.fr
https://orcid.org/0000-0002-6254-8691
mailto:arnaud.sangnier@unige.it
https://doi.org/10.4230/LIPIcs.CSL.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 QLTL Model-Checking

exactly two successors. In order to cope with this, temporal logics have been extended with
propositional quantifiers [21, 22]: in this framework, a formula ∃p.φ is verified when there is
a way of labelling the current execution by p in such a way that φ holds true.

Different semantics for quantified TLs have been studied in the literature depending on the
definition of the quantifiers. For example, consider a formula Φ of the linear-time temporal
logic QLTL (i.e., LTL extended with propositions quantifiers). We can interpret Φ either over
an infinite word over the alphabet 2AP (where AP denotes the set of atomic propositions used
in Φ), or over a labelled execution composed by an infinite sequence of control states (some
of them may have several occurrences along the execution) and a labelling function which
maps each control state to a set of atomic propositions. These two points of view coincide
for LTL formulas. But as soon as quantifiers are added, the two semantics are quite different:
in the first one (called the tree semantics), each position along the execution corresponds to
a new (control) state whose labelling is independent of the others. In the second one (called
the structure semantics), two occurrences of the same control state are always labelled in the
same manner.

The tree semantics has been studied extensively, especially in [22] where QLTL is proven
to be as expressive as S1S (the monadic second-order logic with one successor), and the
satisfiability and model-checking problems for the k-alternation fragment are shown k-
EXPSPACE-complete.

For QLTL with the structure semantics, the main result concerns the satisfiability problem.
In this setting, the satisfiability problem is stated as follows: given a QLTL formula Φ, does
there exist an infinite word ρ ∈ Qω where Q is an alphabet describing the control states, and
a labelling ℓ : Q 7→ 2AP (where AP is the set of atomic propositions occuring in Φ) such that
the labelled execution (ρ, ℓ) satisfies Φ? French has shown that this problem is undecidable
even when Q is assumed to be finite [8].

In this paper, we focus on the model-checking problem for QLTL under the structure
semantics. We first explain the types of properties we can express with this logic, and
then we show that the problem is EXPSPACE-complete. We also consider two other special
model-checking problems: when the structure is a path of the form ρ1 · ρω

2 and when the
structure is flat. In both cases, we prove that the problem is then PSPACE-complete.

Related results. Adding quantifications over atomic propositions in LTL has been first
considered in [21, 22] for the tree semantics: both the expressiveness and the complexity
have been studied. The stutter-invariant fragment of QLTL, with a restricted notion of
propositional quantification, was developed in [6]. Proof systems for QLTL were developed
(still with the tree semantics), both with and without past-time modalities [11, 9].

For QLTL under the structure semantics, the main contribution is [8] where French shows
that satisfiability is undecidable.

Propositional quantifications have also been studied for branching-time temporal logics.
The extension of CTL∗ with external existential quantification was compared with tree
automata over binary trees [5]. In [13], restricted quantifications are added to CTL. In [7],
the satisfiability of QCTL∗ was proven undecidable in the structure semantics, and decidable
in the tree semantics. In [14], QCTL and QCTL∗ are considered (both for the structure
semantics and the tree semantics): the expressive power (relationship with the monadic
second-order logic MSO) and complexity (for model-checking and satisfiability) are studied.
In [1], the satisfiability problem of several fragments of QCTL (e.g. with only the EX modality)
under the tree semantics is shown to be TOWER-complete, i.e. exactly as it is for the full
QCTL logic. In [10], a model-checking algorithm is proposed for QCTL with the structure
semantics based on a reduction to QBF and experimental results are discussed (with several
QBF solvers).

F. Laroussinie, L. Leclercq, and A. Sangnier 35:3

The model-checking problem restricted to a path has been studied in [16, 18]. The
(existential) model-checking of LTL over flat structures has been first studied in [12] where it
is shown to be in NP and later on, in [4], the problem has been shown to be NP-complete
even when adding past operators.

2 Model and Logic

2.1 Kripke Structures and Labelled Executions

In formal verification, systems are usually modelled with labelled transition systems (or
Kripke structures): we have a finite set of control states, transitions to move from a state to
another one and a labelling function which associates a set of atomic propositions with every
control state. In this paper, we consider a countable set of atomic propositions denoted by
AP. Kripke structures are then formally defined as follows.

▶ Definition 1. A Kripke structure (KS) is a tuple K = ⟨Q,R, qin, ℓ⟩ where Q is a finite
set of states, R ⊆ Q×Q is a set of transitions (we assume that for any q ∈ Q, there exists
q′ ∈ Q s.t. (q, q′) ∈ R), qin ∈ Q is the initial control state and ℓ : Q → 2AP is a labelling
function.

The semantics of such a transition system is either the structure itself or its unfolding
(an infinite labelled tree), and an execution can be seen either as an infinite sequence of
labelled control states or an infinite word over the alphabet 2AP (the underlying control
states are forgotten). These two points of view coincide when considering fragments of CTL∗

logic: the truth value of a formula does not depend on this choice of semantics. There
is no way to distinguish two different control states if their behaviours defined in terms
of atomic proposition and transitions are “equivalent” (i.e. bisimilar) w.r.t. the considered
logic. Classically the infinite 2AP-labelled tree unfolding is used to base decision procedures
over automata theory (word automata for linear-time temporal logic, or tree automata for
branching-time temporal logic). And the “structure” view is used for example to develop
classical algorithms for CTL-like logics (corresponding to basic graph analysis).

Adding quantifications over atomic propositions makes a big difference (see Section 3)
between these two approaches. Indeed labelling control states implies that every occurrence
of a state will carry the same labels. It can be seen as a second order quantification over the
control states of the structure. For example it becomes possible to specify that there exists a
self-loop from a given state (we can mark a single control state in order to distinguish it from
other ones). With the “labelled tree” semantics, every position can be labelled independently.
As in previous works on this topic, we will refer to the former semantics as the structure
semantics and the latter as the tree semantics. For the linear-time logic QLTL, the most
popular approach is the tree semantics: in [22], Sistla et al. showed important properties
about its complexity and its relation with Büchi automata. Here we consider the structure
semantics where the model for QLTL formulas are labelled executions.

An execution ρ of a Kripke structure K = ⟨Q,R, qin, ℓ⟩ is an infinite sequence of states
q0q1q2 . . . such that (qi, qi+1) ∈ R for all i ∈ N. Given i ∈ N, we use ρ(i) to denote qi the
i-th (control) state of ρ, and ρ≥i to denote qiqi+1qi+2 . . . its i-th suffix. Finally a labelled
execution is a pair (ρ, λ) where ρ is an execution and λ is a labelling function from Q to
2AP. We use ExecK(q) [resp. Execlab

K(q)] to denote the set of executions ρ [resp. labelled
executions (ρ, λ)] in K starting from q, i.e. such that ρ(0) = q.

CSL 2024

35:4 QLTL Model-Checking

2.2 Syntax and (Structure) Semantics of QLTL
We present now the definition of the logic QLTL, which extends the classical linear-time
temporal logic LTL with quantifications over atomic propositions. The syntax of QLTL is
given by the following grammar:

φ ::= q | ¬φ | φ ∨ φ | Xφ | φUφ | ∃p. φ

where q and p range over AP.
In the structure semantics, QLTL formulas are evaluated over labelled executions of a

Kripke structure K = ⟨Q,R, qin, ℓ⟩. Before providing the formal semantics, we need to
introduce another notion. Given a set P ⊆ AP, two labellings λ and λ′ from Q to 2AP are
said to be P -equivalent (denoted by λ ≡P λ′) iff λ(q) ∩ P = λ′(q) ∩ P for every q ∈ Q. The
semantics of QLTL formulas is then provided by the satisfaction relation |= between a labelled
execution (ρ, λ) and a formula φ which is defined inductively as follows:

(ρ, λ) |= p iff p ∈ λ(ρ(0))
(ρ, λ) |= ¬φ iff (ρ, λ) ̸|= φ

(ρ, λ) |= φ ∨ ψ iff (ρ, λ) |= φ or (ρ, λ) |= ψ

(ρ, λ) |= Xφ iff (ρ≥1, λ) |= φ

(ρ, λ) |= φUψ iff there exists i ≥ 0 s.t. (ρ≥i, λ) |= ψ and (ρ≥j , λ) |= φ for all i > j ≥ 0
(ρ, λ) |= ∃p. φ iff there exists a labelling λ′ s.t. λ′ ≡AP\{p} λ and (ρ, λ′) |= φ

In the sequel, we use standard abbreviations such as ⊤, ⊥, ∧, ⇒ and ⇔. We also
use the additional (classical) temporal modalities of LTL : Fφ = ⊤Uφ, Gφ = ¬F¬φ and
φRψ = ¬((¬φ)U(¬ψ)). Moreover, we use the following abbreviations related to quantifiers
over atomic propositions : ∀p. φ = ¬∃p. ¬φ, and for a set P = {p1, . . . , pk} ⊆ AP, we write
∃P.φ for ∃p1. . . . ∃pk.φ and ∀P.φ for ∀p1. . . . ∀pk.φ.

Given a formula φ, we denote by SubF(φ) the set of its subformulas and Prop(φ) the set
of the atomic propositions. A proposition p is said to be free in φ if it appears out of scope
of some operator ∃p. . . . or ∀p.

The size of a formula φ ∈ QLTL, denoted |φ|, is defined inductively by : |q| = 1,
|¬φ| = |∃p.φ| = |∀p.φ| = |Xφ| = 1 + |φ|, |φ∨ψ| = |φUψ| = |φRψ| = 1 + |φ| + |ψ|. Moreover,
we use th(φ) to denote the temporal height of φ, i.e. the maximal number of nested temporal
modalities in φ.

A formula is said to be in negated normal form (NNF) if negations apply only to atomic
propositions. Any QLTL formula φ can be transformed into an equivalent NNF formula ψ
s.t. |ψ| = O(|φ|). Note that ψ is built from boolean operators ∧ and ∨, Temporal modalities
X, U and R, atomic propositions and their negations, and quantifiers ∃ and ∀.

Two QLTL formulas φ and ψ are said to be equivalent (written φ ≡ ψ) iff for any labelled
execution (ρ, λ), we have (ρ, λ) |= φ iff (ρ, λ) |= ψ. This equivalence is substitutive.

We write K |=∃ φ when φ is satisfied by a labelled execution (ρ, ℓ) in K rooted at the
initial state qin, and K |=∀ φ when every such labelled execution in K satisfy φ.

3 What can we express with QLTL?

To illustrate the kind of properties that can be expressed with QLTL with the structure
semantics, we introduce the following abbreviation:

∃1p.φ = ∃p.
(

Fp ∧
(
∀p′.(F(p ∧ p′) ⇒ G(p ⇒ p′))

)
∧ φ

)

F. Laroussinie, L. Leclercq, and A. Sangnier 35:5

and its dual ∀1p.φ = ¬∃1p.¬φ. Informally ∃1p.φ is satisfied if one can label exactly one
control state (reachable from the current position) by p in order to make φ to be satisfied by
the execution.

Now we can express the fact that a labelled execution (ρ, λ) is built from a finite number
of control states (which is of course always the case when considering finite KS). The following
formula expresses this property:

Φfinite = ∃1q.∀p.
(

(pU(q ∧ p)) ⇒ (Gp)
)

Assume that the property holds true for (ρ, λ). Then there is a last occurring control state:
the control state whose first occurrence is located after the first occurrence of every other
control state. Clearly if we label this state by q, any p-labelling of all states occurring before
q-state labels all states of ρ. Conversely if the formula is satisfied by some execution (ρ, λ),
it implies that the p-labelling limited to control states occurring over a finite prefix allows us
to label all ρ-states.

One can also ensure that at least k distinct control states occur infinitely often along an
execution with the following formula:

Φ≥k = ∃1q1 . . . qk.
∧

1≤i̸=j≤k

G(¬qi ∨ ¬qj) ∧
∧

1≤i≤k

(
GF(qi)

)
We can also specify that any position satisfying the proposition a is always followed by

the same control state with:

Φsucc = ∃1q.
(

G (a ⇒ X q)
)

An execution (ρ, λ) is deterministic if every control state occurring along ρ is always
followed by the same control state. This property can easily be expressed with QLTL:

Φdeter = ∀1q.∀1q′.
(

F(q ∧ Xq′) ⇒ G(q ⇒ Xq′)
)

Indeed, assume we label two control states by q and q′ respectively, and the formula (q ∧ Xq′)
holds true at a position along ρ, then we require that every occurrence of q is followed by q′.
This is precisely the definition of deterministic execution.

When the set of control states Q is fixed and finite, any quantification ∃p.φ is equivalent
to some disjunction of all possible subsets associated with the proposition p. And then any
QLTL formula is equivalent for executions built with exactly |Q|-control states to some QLTL
formula with a unique existential quantification:

▶ Proposition 2. Let k ≥ 1. Any QLTL formula Φ is equivalent for labelled executions
containing exactly k distinct control states to some QLTL formula Φ̃ = ∃p0 . . . p2k−1.Φ̂ where
Φ̂ belongs to LTL.

Proof. Consider a set of control states Q s.t. |Q| = k. We use 2k new atomic propositions in
order to label every possible subset over Q. The formula Φ̂ combines two parts: the first one
ensures this labelling of subsets and the second one is just Φ where every existential (resp.
universal) quantification is replaced by a disjunction (resp. conjunction). Formally given a
QLTL formula φ, we define φ̃k inductively as follows:

p̃k = p φ̃1 ∧ φ2
k

= φ̃1
k ∧ φ̃2

k ¬̃φ1
k = ¬φ̃1

k
φ̃1Uφ2

k

= φ̃1
kUφ̃2

k

X̃φ1
k

= Xφ̃1
k ∃̃p.α

k
=

∨
0≤i<2k

˜α[p 7→ pi]
k

∀̃p.α
k

=
∧

0≤i<2k

˜α[p 7→ pi]
k

CSL 2024

35:6 QLTL Model-Checking

And then it remains to show that for any execution (ρ, ℓ) and for any QLTL formula Φ, if
the number of distinct control states occurring along ρ equals k, we have:

(ρ, ℓ) |= Φ iff (ρ, ℓ) |= ∃p0 . . . p2k−1.
(∧

0≤i<j<2k

F(pi ⇔ ¬pj)
)

∧ Φ̃k

The proof is based on the fact that the labelling of every pi labels a specific subset of
control states. This is ensured by the first part of the formula: there are 2k labellings and all
are different. Property 2 is then proved. ◀

We can observe several important differences with the tree semantics 1. For example,
under the tree semantics, the formula Φdeter is valid (as every position corresponds to a new
control state). It is also well known that the property Evenc(p) defined by “a control state
is labelled by p iff at least one of its occurrences is located at an even position along the
execution” can easily be expressed with the tree semantics, but this is not true anymore with
the structure semantics:

▶ Proposition 3. With the structure semantics, there is no QLTL formula equivalent to the
property Evenc(p).

Proof. We reuse a construction of [24] for proving that LTL cannot express that a proposition
holds for every even state. Consider the set of control states Q = {q, q′} and the execution
ρk = qk · q′ · qω for k > 0. We can easily observe that the labelled execution (ρk, ℓ) satisfies
Evenc(p) if and only if (1) k is even and both q and q′ are labelled by p, or (2) k is odd and
only q is labelled by p.

Now we can show that given k, k′ ≥ 1 and any LTL formula ψ s.t. |ψ| ≤ min(k, k′), we
have: (ρk, ℓ) |= ψ ⇔ (ρk′ , ℓ) |= ψ. The proof of this result is done by induction over |ψ|:

|ψ| = 1: ψ is an atomic proposition, and ℓ(ρk(0)) = ℓ(ρk′(0)) as k, k′ ≥ 1.
|ψ| = n+ 1: We distinguish several cases (and omit the case of Boolean combinators):
ψ = Xψ1: consider k, k′ ≥ n+ 1 and assume (ρk, ℓ) |= Xψ1. Then (ρk−1, ℓ) |= ψ1. As
both k − 1 and k′ − 1 are greater or equal to n = |ψ1|, we have by i.h. (ρk′−1, ℓ) |= ψ1
and then (ρk′ , ℓ) |= Xψ1.
ψ = ψ1Uψ2: consider k, k′ ≥ n+ 1 and assume (ρk, ℓ) |= ψ1Uψ2. Then there exists
i ≥ 0 s.t. ((ρk)≥i, ℓ) |= ψ2 and for any 0 ≤ j < we have ((ρk)≥j , ℓ) |= ψ1. We
distinguish several cases:
∗ k > k′ and k− i ≤ k′: then ψ2 holds true for ((ρk′)≥i−(k−k′), ℓ) and ψ1 is verified for

any ((ρk′)≥j , ℓ) for 0 ≤ j < i− (k − k′), and this provides the result ((ρk′), ℓ) |= ψ.
∗ k > k′ and k − i > k′: In this case, we know that ((ρk)≥i, ℓ) |= ψ2 is equivalent to

((ρk−i), ℓ) |= ψ2 and k − i and k′ are both greater than |ψ2|, which allows us to use
the i.h. and deduce ((ρk′), ℓ) |= ψ2, and then ((ρk′), ℓ) |= ψ.

∗ k < k′: if (ρk, ℓ) |= ψ1, then we can use the i.h. as in the previous case to deduce
that for all j s.t. (ρk′−j , ℓ) |= ψ1 for any 0 ≤ j ≤ k′ − k. This ensures the result.
And if (ρk, ℓ) |= ψ2, we deduce directly (ρk′ , ℓ) |= ψ2 by the i.h. In both case, we
obtain (ρk′ , ℓ) |= ψ

Now assume that there exists some QLTL formula Ψ equivalent to Evenc(p). From
Proposition 2, there exists a formula of the form Ψ′ = ∃P.ψ with ψ ∈ LTL such that Ψ and Ψ′

are equivalent over all the executions ρk (and more generally over any execution containing
two control states). Let K be the size of ψ.

1 The tree semantics has not been formally defined but it just consists in interpreting formulas over words
in (2AP)ω or equivalently over labelled executions where every control state occurs exactly once.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:7

Consider the odd integer λ = 2 · K + 1 and the labelling ℓ defined by ℓ(q) = {p}
and ℓ(q′) = ∅. We know that (ρλ, ℓ) |= Evenc(p) and (ρλ+1, ℓ) ̸|= Evenc(p), and therefore
(ρλ, ℓ) |= Ψ′ and (ρλ+1, ℓ) ̸|= Ψ′. Then there exists an extended labelling ℓ′ of ℓ such that
(ρλ, ℓ

′) |= ψ. And from the previous result, we can deduce (ρλ+1, ℓ
′) |= ψ as λ and λ+ 1 are

greater than |ψ|, and this contradicts the fact (ρλ+1, ℓ) ̸|= Ψ′. ◀

Note that Evenc(p) is expressible when every control state always occurs at positions
of the same parity (and this explains why this property is easily expressed with the tree
semantics where every position corresponds to a unique control state).

Finally we can also notice that the U modality cannot be expressed with F, X and
quantifications (contrary to what happens in tree semantics). Let LQ(F,X) (resp. L(F,X))
be the fragment of QLTL (resp. LTL) where the Until modality is replaced by its weak form
F. We have:

▶ Proposition 4. With the structure semantics, there is no LQ(F,X) formula equivalent to
the formula aUb.

Proof. Consider the set Q = {q0, q1, q2} and an integer k > 0. Let ρk be the finite sequence
(q0)k · q1 and ρ′

k be the finite sequence (q0)k · q2. Consider the labelling function ℓ over Q
defined as follows: ℓ(q0) = {a}, ℓ(q1) = {b} and ℓ(q2) = ∅. Let πk (resp. π′

k) be the infinite
execution (ρk ·ρ′

k)ω (resp. (ρ′
k ·ρk)ω). We clearly have (πk, ℓ) |= aUb and (π′

k, ℓ) ̸|= aUb. Now
assume that there exists some LQ(F,X) formula Ψ equivalent to aUb. Over the executions
πk and π′

k, such a formula would be equivalent to some formula of the form ∃P.ψ with ψ an
L(F,X) formula (indeed Proposition 2 does not introduce any U modality). And then we
would have (πk, ℓ) |= ∃P.ψ and (π′

k, ℓ) ̸|= ∃P.ψ. Now let ℓ′ be the extended labelling ℓ′ with 8
atomic propositions p0, . . . , p7 that label each subset of Q such that (πk, ℓ

′) |= ψ. Note that
the L(F,X) formula ψ does not depend on k: its construction is only based on the number
of control states in the structures.

It remains to show that if k is large enough (i.e. larger than the number of nested X on
top of the formula), then we have (π′

k, ℓ
′) |= ψ, which contradicts the hypothesis. Let hX(φ)

be the height of Next modalities on the top of φ. We can prove the following result: for any
ψ ∈ L(F,X) such that hX(ψ) < k − i, we have ((πk)≥i, ℓ

′) |= ψ ⇔ ((π′
k)≥i, ℓ

′) |= ψ. The
proof is done by induction over hX(ψ):

hX(ψ) = 0: If ψ is an atomic proposition, it is true because ℓ′((πk)(i)) = ℓ′((π′
k)(i)) if

i < k. If ψ = Fψ1 and ((πk)≥i, ℓ
′) |= ψ, then there exists i′ ≥ i such that ((πk)≥i′ , ℓ′) |=

ψ1 and given the definition of executions πk and π′
k, there exists i′′ ≥ i such that

((πk)≥i′ , ℓ′) = ((π′
k)≥i′′ , ℓ′). The same holds when ((π′

k)≥i, ℓ
′) |= ψ.

hX(ψ) > 0: in that case, ψ is a Boolean combination of atomic propositions, F-formulas
or X-formulas. The Boolean part is easily handled by a induction over the size of
the formula, and the last case is when ψ = Xψ1. Assume ((πk)≥i, ℓ

′) |= Xψ1, then
((πk)≥i+1, ℓ

′) |= ψ1, then by i.h. we get ((π′
k)≥i+1, ℓ

′) |= ψ1 since hX(ψ1) < k− i− 1, and
then ((π′

k)≥i, ℓ
′) |= Xψ1. The other direction is done in a similar way.

In conclusion, the formula ∃P.ψ obtained from the hypothetical Ψ is fixed, as is hX(ψ). For
any k > hX(ψ), we know that ((πk), ℓ′) |= ψ if and only if ((π′

k), ℓ′) |= ψ and this contradicts
the fact that Ψ is equivalent to aUb. ◀

CSL 2024

35:8 QLTL Model-Checking

4 Model checking

4.1 The model-checking problem
The model-checking problem consists in verifying that a given formula is satisfied by a
given model. In our framework, we can consider several variants of this problem. First, we
distinguish between the existential and the universal model-checking problem:

MC∃(QLTL): Given a KS K = ⟨Q,R, qin, ℓ⟩ and a formula φ ∈ QLTL, does there exist a
labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying φ, i.e. K |=∃ φ ?
MC∀(QLTL): Given a KS K = ⟨Q,R, qin, ℓ⟩ and a formula φ ∈ QLTL, do all labelled
executions (ρ, ℓ) ∈ Execlab

K(qin) satisfy φ, i.e. K |=∀ φ ?

Note that in the statement of these two problems, we assume that the initial labelling
associated with the executions is the labelling ℓ of the Kripke structure K. We point out the
fact that these two problems are strongly related, indeed we can use for instance an algorithm
for MC∃(QLTL) to solve MC∀(QLTL) since all labelled executions (ρ, ℓ) ∈ Execlab

K(qin) satisfy
φ iff there does not exist a labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying ¬φ.

▶ Example 5. Let K be the Kripke structure of Figure 1 rooted at qin where atomic
propositions are defined next to nodes. Now, we can consider the two following formulas:

Ψ0 = Φdeter ⇒
(

F a ⇒ G ¬c
)

, and

Ψ1 =
(

F G c
)

⇒ Φdeter.
where Φdeter is the formula we defined previously. We can observe that Ψ0 holds true for every
execution starting from qin (if the execution is deterministic, q2 will be followed by q4 or
always by q3), but this is not true for Ψ1 (an execution ending with a loop in q4 may contain
both the edges q2 → q3 and q2 → q4). Therefore we clearly have K |=∀ Ψ0 and K ̸|=∀ Ψ1.

qin q1

q2 q4

q3

b a

c

Figure 1 Example of model-checking problem.

4.2 Upper bound for the QLTL model-checking problems
This section is devoted to show the EXPSPACE-membership of MC∃(QLTL) and MC∀(QLTL).
For this matter, we rely on alternating Büchi automata. Note that for what concerns the
LTL (existential) model-checking, one technique consists in translating an LTL formula into
an alternating Büchi automaton, which recognises all the models of the LTL formula, and
in performing a cross-product with the Kripke structure to check whether an execution of
the structure is accepted by the automaton (see, e.g. [23]). Such a method can as well be
used to decide the satisfiability of LTL formulas by checking the emptiness of the associated
automata. As the satisfiability problem is undecidable for QLTL [8], such a translation to
a class of automata with a decidable emptiness problem will not exist. However we shall
see that dealing with the model-checking problem allows us to rely on the Kripke structure
to build an alternating Büchi automaton which will recognise the executions satisfying the
QLTL formula. We now pursue with the formal explanation.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:9

▶ Definition 6. An Alternating Büchi Automaton (ABA) on infinite words is a tuple
A = (S,Σ, sin, δ, F) where S is a finite set of states, Σ is a finite alphabet, sin is the initial
state, δ : S × Σ → B+(S) is the transition function assigning a positive Boolean formula over
S including false (⊥) and true (⊤), to every pair (s, σ), and F ⊆ S is the accepting set of
states.

In order to define how ABAs recognise infinite words over the alphabet Σ, we first need
to introduce labelled trees. Given a set Γ, a Γ-labelled tree is a pair (T, σ) where:

T ⊆ N∗ is a tree, that is, a set of finite words in N∗, called the nodes of T , such that for
any t ∈ T and n ∈ N, if t · n ∈ T , then t ∈ T and t · k ∈ T for any 0 ≤ k < n. The empty
word ε represents the root of T . A node t ∈ T is said to be at depth i ≥ 0 if its length is
equal to i (the root node is hence at depth 0).
σ : T 7→ Γ assigns an element in Γ to every node of T .

Given an automaton A, a run of A over an infinite word w = a0a1 · · · ∈ Σω is a S-labelled
tree T = (T, σ) such that: σ(ε) = sin and every node t at depth i (written |t| = i) has k
(k ≥ 0) children t1,. . . ,tk such that the formula δ(σ(t), ai) is interpreted to true when one
assigns ⊤ to every state in {σ(t1), . . . , σ(tk)} and ⊥ to other states. Such a run is accepting
when every infinite branch of T contains infinitely often nodes labelled by states in F and
every finite branch ends in a node t such that δ(σ(t), a|t|) = ⊤. We use L(A) to denote the
set of words accepted by A. Deciding whether L(A) = ∅ is a PSPACE-complete problem [2].

We will now show how to build an ABA accepting the executions of a Kripke structure
satisfying a QLTL formula. Let K = ⟨Q,R, qin, ℓ⟩ be a Kripke structure and φ a QLTL formula
in negated normal form. We define the ABA Aφ,K = (S,Q, sin, δ, F) over the alphabet Q
with:

S = {sin} ∪Q ∪ {(ψ, λ) | ψ ∈ SubF(φ) and λ : Q 7→ 2Prop(φ)};
F contains the elements (ψ, λ) such that ψ is not of the form ψ1Uψ2;
and the transition function δ is defined in Figure 2.

Note that the size of S (i.e. |S|) is in O(|Q| + |φ| · 2|Prop(φ)|·|Q|). The intuition behind this
construction is that we distinguish two parts in the automaton. First, the states in Q are
used to ensure that the accepting word in Qω corresponds to some execution in K (see the
definition of δ(q, q), in equations 2 to 5). The other part (the states (ψ, λ) from 6 to 14)
ensures that the subformula ψ holds for true along the forthcoming execution labelled with
λ. The key to the correct translation to solve the model-checking problem is that, in this
ABA, the same word over Q is recognised along every branch of the execution tree. The
equation 1 ensures that the two parts of the automaton are visited to check whether the
word corresponds to a correct execution from the structure and that it satisfies the formula.

To state the correctness of the construction, we will use Aφ,K[s] to denote the automaton
where s is used as the initial state. We have then:

▶ Lemma 7. Let ψ be a subformula of φ, q be a control state, ρ be an infinite sequence in
Qω and λ : Q 7→ 2Prop(φ) be a labelling function (defined on the free variables in ψ). The two
following properties hold:
1. ρ ∈ L(Aφ,K[q]) ⇔ ρ ∈ ExecK(q),
2. ρ ∈ L(Aφ,K[(ψ, λ)]) ⇔ (ρ, λ) |= ψ.

Proof. The first result comes directly from the definition of δ(q,−) when q ∈ Q.
The second point is proved by induction over ψ. We only focus on the main cases and note
that we omit argument when the reverse direction is similar to the described one:

ψ = p: If ρ ∈ L(Aφ,K[(p, λ]), then by def. δ((p, λ), ρ(0)) = ⊤ and we have p ∈ λ(ρ(0))
and then (ρ, λ) |= p. The reverse direction is similar.

CSL 2024

35:10 QLTL Model-Checking

δ(sin, q) =δ((φ, ℓ), q) ∧ δ(qin, q) (1)

δ(q, q) =
∨

(q,q′)∈R

q′ (2)

δ(q, q′) =⊥ if q ̸= q′ (3)
δ((⊤, λ), q) =⊤ (4)
δ((⊥, λ), q) =⊥ (5)

δ((p, λ), q) =
{

⊤ if p ∈ λ(q)
⊥ otherwise

(6)

δ((¬p, λ), q) =
{

⊥ if p ∈ λ(q)
⊤ otherwise

(7)

δ((ψ1 ∨ ψ2, λ), q) =δ((ψ1, λ), q) ∨ δ((ψ2, λ), q) (8)
δ((ψ1 ∧ ψ2, λ), q) =δ((ψ1, λ), q) ∧ δ((ψ2, λ), q) (9)

δ((Xψ, λ), q) =(ψ, λ) (10)
δ((ψ1Uψ2, λ), q) =δ((ψ2, λ), q) ∨ (δ((ψ1, λ), q) ∧ (ψ1Uψ2, λ)) (11)
δ((ψ1Rψ2, λ), q) =δ((ψ2, λ), q) ∧ (δ((ψ1, λ), q) ∨ (ψ1Rψ2, λ)) (12)

δ((∃p.ψ, λ), q) =
∨

P ⊆Q

δ((ψ, λ[p⇝ P]), q) (13)

δ((∀p.ψ, λ), q) =
∧

P ⊆Q

δ((ψ, λ[p⇝ P]), q) (14)

where λ[p⇝ P] denotes the labelling function λ′ defined by: λ′(q) = λ(q) ∪ {p} if q ∈ P and
λ′(q) = λ(q) otherwise.

Figure 2 Definition of δ.

ψ = ψ1 ∧ ψ2: If ρ ∈ L(Aφ,K[(ψ1 ∧ ψ2, λ)], then by def. of δ we have ρ ∈ L(Aφ,K[(ψ1, λ)])
and ρ ∈ L(Aφ,K[(ψ2, λ)]). By ind. hyp. we can deduce (ρ, λ) |= ψ1 and (ρ, λ) |= ψ2, and
therefore (ρ, λ) |= ψ. The reverse direction is similar.
ψ = Xψ1: If ρ ∈ L(Aφ,K[(Xψ1, λ)]), then by def. of δ we have ρ≥1 ∈ L(Aφ,K[(ψ1, λ)] and
by i.h. we have (ρ≥1, λ) |= ψ1, from which we get (ρ, λ) |= Xψ1 by the semantics of X.
ψ = ψ1Uψ2: If ρ ∈ L(Aφ,K[(ψ, λ)]), then by def. of δ we have either (1) δ((ψ2, λ), ρ(0))
holds true for the run (that is ρ ∈ L(Aφ,K[(ψ2, λ)]) or equivalently (ρ, λ) |= ψ2), or
δ((ψ1, λ), ρ(0)) holds true and one successor node (in the execution tree) is recognised
by the state (ψ1Uψ2, λ), and so on. As any infinite branch cannot be labelled infinitely
often by some (ψ1Uψ2,−)-state, this stops at some level k with the satisfaction of
δ((ψ2, λ), ρ(0)). From this we can deduce by i.h. that (ρ≥k, λ) |= ψ2 and (ρ≥i, λ) |= ψ1
for 0 ≤ i < k. This is precisely the definition of ψ1Uψ2.
Now assume (ρ, λ) |= ψ1Uψ2. By definition, there exists k ≥ 0 s.t. (ρ≥k, λ) |= ψ2
and (ρ≥i, λ) |= ψ1 for 0 ≤ i < k. By i.h. we get ρ≥k ∈ L(Aφ,K[(ψ2, λ)]) and ρ≥i ∈
L(Aφ,K[(ψ1, λ]) for 0 ≤ i < k. We can deduce that ρ ∈ L(Aφ,K[(ψ1Uψ2, λ)]).
ψ = ∃p.ψ1. If ρ ∈ L(Aφ,K[(ψ, λ)]), then by def. of δ, there exists some P ⊆ Q s.t.
δ((ψ1, λ[p ⇝ P]), q) holds true for the run. By i.h. we get (ρ, λ[p ⇝ P]) |= ψ1, which
implies (ρ, λ) |= ∃p.ψ1. ◀

F. Laroussinie, L. Leclercq, and A. Sangnier 35:11

Note that if we apply the previous lemma with the formula φ and the labelling ℓ of K
and since δ(sin, q) = δ((φ, ℓ), q) ∧ δ(qin, q) for all q ∈ Q, we deduce that L(Aφ,K) ̸= ∅ if and
only if there exists a labelled execution (ρ, ℓ) ∈ Execlab

K(qin) satisfying φ. Furthermore since
the number of states of Aφ,K is in O(|Q| + |φ| · 2|Prop(φ)|·|Q|) and the emptiness problem for
ABA is PSPACE-complete [2], we deduce the following result.

▶ Proposition 8. MC∃(QLTL) and MC∀(QLTL) are in EXPSPACE.

4.3 Lower bound for the QLTL model-checking problems

To prove the complexity lower bound (EXPSPACE-hardness), we use a domino tiling problem
that we shall now define. Let C be a finite set of colours. A tile’s type is then a tuple
(cdown, cleft, cup, cright) in C4. Let T be a finite set of tile’s type. Given two integers a
and b, a T -tiling function for the a × b-grid (with a rows and b columns) is a function
f : [0, a − 1] × [0, b − 1] → T such that for all 0 ≤ i < a and 0 ≤ j < b, we have: (1)
f(i, j)up = f(i+ 1, j)down if i < a− 1, and (2) f(i, j)right = f(i, j + 1)left if j < b− 1. As a
matter of fact, the tiling function ensures that adjacent tiles share the same colour.

When such a function exists, we say that the grid can be tiled. We now define the
following tiling decision problem T :
Input: a set of colours C, a set of tile’s types T , an integer m (encoded in unary) and
tinit, tfinal ∈ T

Output: yes iff there exists an integer n and a T -tiling function f for the n× 2m-grid such
that f(0, 0) = tinit and f(n− 1, 2m − 1) = tfinal.
This problem is EXPSPACE-complete (see e.g. [20]) and has already been used to prove
complexity lower bound for variant of LTL as in [15]. We adapt here the reduction proposed
in this latter work to our context.

▶ Proposition 9. MC∃(QLTL) and MC∀(QLTL) are EXPSPACE-hard.

Proof. Let T = (C, T, tinit, tfinal,m) be an instance of the tiling problem with T =
{t1, . . . , tp}. We build a Kripke structure KT and a QLTL formula ΦT such that there
exist a labelled execution (ρ, ℓ) ∈ Execlab

KT (qin) satisfying φ if and only if there is some
n such that the n × 2m-grid can be tiled. The path witnessing the existence of the tiling
function for the grid n× 2m is of the form qin ·

(
((b1 · · · bm) · t)2m

)n

·Eω (with bj ∈ {b−
j , b

+
j }

for all j ∈ {1, . . . ,m} and t ∈ {t1, . . . , tp}). This word represents the sequence of the lines
of the grid. The i-th line is listed from the cell (i, 0) to cell (i, 2m − 1): each cell description
starts with a sequence of m bits which encodes the cell’s column number, followed by the
type of tile associated with it. Such a path clearly belongs to the generic Kripke structure
depicted in Figure 3 where we suppose that control states and their associated labels are the
same.

We now build a QLTL formula ΦT to specify what is a “tiling function” path in KT . First
we use b±

j as a shorthand for b+
j ∨ b−

j . The formula ΦT is a conjunction of several properties:

The tile tinit (resp. tfinal) occurs at the first (resp. last) cell:

Φ1 = X
[(m∧

j=1
Xj−1 b−

j

)
∧ Xm tinit

]
∧ F

[(m∧
j=1

Xj−1b+
j

)
∧ Xm (tfinal ∧ XE)

)]

CSL 2024

35:12 QLTL Model-Checking

qin

b−
1

b+
1

b−
2

b+
2

...

...

b−
m

b+
m

...

tp

t2

t1

E

Figure 3 Kripke structure KT for the tiling problem.

The ordering of the cells is correct (w.r.t. the counter encoded by the bjs):

Φ2 = G
[(
b±

1 ∧ ¬Xm+1E
)

⇒
(
b+

1 ⇔ Xm+1b−
1

)]
∧ G

m−1∧
j=1

[(
b+

j ∧ Xm+1b−
j

)
⇔ X

(
b+

j+1 ⇔ Xm+1b−
j+1

)]
The first part of Φ2 ensures that the b−

1 and b+
1 alternate when considering two successive

cells (except at the end of the execution before looping forever at E). The second part
ensures that the sign of bj+1 changes between two successive cells if and only if the bit bj

goes from ⊤ (1) to ⊥ (0).
The successive cells along a row have to agree on the colour of the shared side (that is
f(i, j)right = f(i, j + 1)left for 0 ≤ j < 2m − 1):

Φ3 =
∧
t∈T

G
[
t ⇒

(∨
t′∈T s.t.

tright=t′
left

(Xm+1t′) ∨ XE ∨ (
m∧

j=1
Xjb−

j)
)]

The successive cells along a column have to agree on the colour of the shared side (that
is f(i, j)up = f(i + 1, j)down for 0 ≤ i < n − 1). This is the difficult part because the
two cells are separated by an exponential number of states. To specify this property, we
need the quantification of atomic propositions: we can store the number of the cell (i.e.
the values of the bjs) and access the next cell with this number. For this, we define two
shorthand, first we have:

StoreNb(p) = (
m∧

j=1
Xj−1 p) ∧ G(p ⇒

m∨
j=1

b±
j) ∧

m∧
j=1

F((b+
j ∧ ¬p) ∨ (b−

j ∧ ¬p))

StoreNb labels m consecutive states by p and ensures that only bjs states can be labelled
and that either b+

j or b−
j is not labelled by p: therefore the p-labelling describes exactly

the number of the column of the current cell (assuming that the formula is evaluated at

the beginning of the cell, that is over b+
1 or b−

1). And now we can use Nb(p) = (
m∧

j=1
Xj p)

to locate the cells of the row “p”.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:13

We can now state the property ensuring that two successive cells on the same column
share the same colour on the common side:

Φ4 =
∧
t∈T

G
[(
b±

1 ∧ Xmt
)

⇒
(

XG (¬
m−1∧
j=1

Xjb−
j) ∨

∃p.
[
StoreNb(p) ∧ X

(
(¬Nb(p)) U (Nb(p) ∧

∨
t′∈T s.t.

tup=t′
down

Xm+1t′)
)])]

The subformula XG(¬
m−1∧
j=1

Xjb−
j) is used to exclude the last column where there is no

correspondence to ensure. The U operator allows us to select exactly the next cell of the
column p.

Finally we have: ΦT = Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4. And we can easily conclude that T is a positive
instance of the tiling problem iff there exists an execution (ρ, ℓ) ∈ Execlab

KT (qin) such that
(ρ, ℓ) |= ΦT . ◀

From Propositions 8 and 9, we can deduce the main theorem about QLTL model-checking.

▶ Theorem 10. MC∃(QLTL) and MC∀(QLTL) are EXPSPACE-complete.

4.4 Relation with QCTL*
As CTL∗ which extends both CTL and LTL, we can consider the logic QCTL∗. Two variants
of QCTL∗ have been defined in literature: in the first one, called FCTL∗ (see [7]), the formula
∃p.φ is defined as a path formula (as U or X) and in the second variant, called QCTL∗

(see [14]), it is defined as a state formula. For the tree semantics, both logics are equally
expressive, but with the structure semantics, there is a big difference in terms of expressivity
(FCTL∗ may express the existence of an eulerian path which is not possible with QCTL∗) and
while the model-checking problem is PSPACE-complete for QCTL∗, for FCTL∗ the model-
checking algorithm is based on a reduction to the tree semantics and its complexity is in
k-EXPTIME where k is the number of alternations of quantifications. Clearly the logic QLTL
we consider here can be seen as a fragment of FCTL∗ but it is not included in QCTL∗: the
expressiveness of the two logics are different and none of the two is strictly more expressive
than the other. However, it is worth noting that selecting an execution first and then looking
for a labelling, as for QLTL, induces a complexity blow-up.

However we can still use the result about QCTL∗ model-checking to define a last verification
problem for Prenex formulas Q.ψ with ψ ∈ LTL, where we look for labellings of the full
structure, and then select paths in the structure. Such an approach corresponds to a
model-checking instance for QCTL∗. Formally we define these verification problems (denoted
MC∀(q-LTL) or MC∃(q-LTL)) as follows: given a structure K = ⟨Q, q0, R, ℓ⟩ and a formula
Q.ψ with ψ ∈ LTL and Q a block of quantifications, decide whether ⟨Q, q0, R, ℓ⟩ |=∀ Q.ψ
with:

⟨Q, q0, R, ℓ⟩ |=∀∃p.Q.ψ ⇔ ∃Q′ ⊆ Q s.t. ⟨Q, q0, R, ℓ[p 7→ Q′]⟩ |=∀ Q.ψ
⟨Q, q0, R, ℓ⟩ |=∀∀p.Q.ψ ⇔ ∀Q′ ⊆ Q, we have ⟨Q, q0, R, ℓ[p 7→ Q′]⟩ |=∀ Q.ψ

and where ⟨Q, q0, R, ℓ⟩ |=∀ ψ with ψ ∈ LTL is interpreted as usual. In the same way, we
can define the existential variant MC∃(q-LTL). Clearly MC∀(q-LTL) and MC∃(q-LTL) are
PSPACE-complete (PSPACE-hard due to QBF, and PSPACE-easy due to QCTL∗).

CSL 2024

35:14 QLTL Model-Checking

This defines an interesting class of problems that are different from the ones we introduced
before for QLTL and whose complexity is better. For example, if we consider a two-player
turn-based game G = (Q1, Q2, q0, RG , F1, F2) where Q1 (resp. Q2) are the states of Player 1
(resp. Player 2), q0 ∈ Q1 ∪Q2 is the initial state and RG ⊆ (Q1 ∪Q2) × {0, 1} × (Q1 ∪Q2)
is the transition relation (NB: we assume that in every state of Player i, there are exactly
two possible moves labelled by 0 and 1, and we label every transition by the number of the
move it corresponds to) and F1 (resp. F2) is the set of winning positions of Player 1 (resp.
Player 2). The existence of a memoryless strategy for Player 1 (or 2) can easily be reduced
to a model-checking problem of MC∀(q-LTL) by considering the following Kripke structure
KG = ⟨Q, q0, R, ℓ⟩:

Q = Q1 ∪Q2 ∪ {(q, q′, ε) | q ∈ Q1 and (q, ε, q′) ∈ RG};
R = {(q, q′) | q ∈ Q2 and (q,−, q′) ∈ R} ∪ {(q, (q, ε, q′)) | q ∈ Q1 and (q, ε, q′) ∈ R} ∪
{((q, ε, q′), q′) | (q, ε, q′) ∈ Q};
ℓ labels the structure KG as follows: states in Q1 (resp. Q2) are labelled with P1 (resp.
P2), states in F1 (resp. F2) are labelled with W1 (resp. W2). And intermediary states
(q, ε, q′) are labelled by Cε (in order to specify which move is currently played by Player
1).

Clearly a memoryless strategy for Player 1 consists in marking every Q1 states by the move
(0 or 1) corresponding to the strategy. Here with only two allowed moves, it suffices to
use a single atomic proposition c. Therefore the existence of a memoryless strategy can be
expressed with the following formula:

Ψstrat = ∃c.
[
G

(
(P1 ∧ c) ⇒ (X C1) ∧ (P1 ∧ ¬c) ⇒ (X C0)

)
⇒ FW1

]
5 Model Checking Paths and Flat Structures

We present here some restrictions on the considered structures which allow to obtain better
complexity bounds for the model checking of QLTL formulas. We first consider ultimately
periodic paths and use the facts that the model-checking problem for the branching logic
QCTL (with the structure semantics) is PSPACE-complete [14] and that morally a QLTL
formula over a path can be translated into a QCTL formula (in a path there is indeed
no branching). We then study the model-checking problem for QLTL restricted to Kripke
structures with no nested loop and show it is as well PSPACE-complete. To obtain the
upper bound, we follow the same reasoning as the one presented in [4] to show that the
model-checking problem for LTL with Past is in NP. It relies on two aspects: a stuttering
theorem for QLTL and the fact that we can represent finitely all the executions of a flat
structure with what we call iterated path schemas.

5.1 Path Model Checking
We first consider path as it is done in [17] for LTL. Given a set of states Q, a labelled path
is an ultimately-periodic structure (ρ1 · ρω

2 , ℓ) with ρ1 ∈ Q∗, ρ2 ∈ Q+ and ℓ : Q → 2AP is
a labelling function. The size of such a structure is given by the sum of the length of the
sequences ρ1 and ρ2. We use MCp(QLTL) to denote this model-checking problem which
takes as input a labelled path (ρ1 · ρω

2 , ℓ) and a formula φ ∈ QLTL and which asks whether
(ρ1 · ρω

2 , ℓ) |= φ. Note that in a path the same control state might appear more than one time
in ρ1 and ρ2. We have then the following result:

▶ Theorem 11. MCp(QLTL) is PSPACE-complete.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:15

Proof. PSPACE-hardness comes from the QBF problem: a QBF instance Φ belongs to QLTL,
and its validity can be directly reduced to some path model-checking problem (qω, ℓ∅) |= Φ.
The PSPACE-membership comes from the PSPACE-membership of the model-checking prob-
lem for QCTL in structure semantics [14]: when considering a single path, the QLTL formula
φ has the same truth value as the QCTL formula φ̂ with every temporal modality X, U or
R associated with some existential or universal path quantifier. This provides the result. ◀

5.2 Flat Kripke Structures and Path Schemas

A Kripke structure is said to be flat (sometimes the term weak is used, see e.g. [12]) if every
node in the underlying graph belongs to at most one simple cycle (a simple cycle is a cycle
where each edge appears at most once) [3]. Figure 4 presents an example of a flat Kripke
structure. Note that if we add an edge for instance from state q4 to q2 then the structure will
not be flat anymore as the control states q2, q3 and q4 will belong to two simple cycles. It is
worth noticing that path model-checking is not subsumed by flat structure model-checking
(and of course, neither does the opposite) because in a path there is no restriction on the
occurrences of a state, whereas in a flat structure each occurrence of a state (except the last
one) is necessarily followed by the same state.

q0

q1

q2 q3

q4

Figure 4 A flat Kripke structure.

We then denote by MCf,∃(QLTL) (resp. MCf,∀(QLTL)) the existential (resp. universal)
model-checking problem MC∃(QLTL) (resp. MC∀(QLTL)) restricted to flat Kripke structures.
As for the general case, our method to solve MCf,∃(QLTL) can be used (with the same
complexity bound) to solve MCf,∀(QLTL) by taking the negation of the formula.

Flat Kripke structures are easier to analyse than general structures, because we can
represent their executions thanks to a finite set of path schemas (of polynomial size). Let
K = ⟨Q,R, qin, ℓ⟩ be a flat Kripke structures. A path p in K is a finite (non-empty) sequence
of control states q0, . . . , qk ∈ Q+ such that (qi, qi+1) ∈ R for all i ∈ [0, k − 1]. We denote by
first(p) the first control state q0 of the sequence and last(p) the last one equals to qk. A loop
is then a path p such that first(p) = last(p). A path schema P is an expression of the form
p1l1p2l2 . . . pklk such that :

pi is a path for all i ∈ [1, k];

li is a loop for all i ∈ [1, k];

first(p1) = qin and first(li) = last(pi) = first(pi+1) for all i ∈ [1, k − 1] and first(lk) =
last(pk).

CSL 2024

35:16 QLTL Model-Checking

The size of a path schema P = p1l1p2l2 . . . pklk is the sum of the lengths of each sequence
composing it. We say that an execution ρ ∈ Qω respects a path schema P = p1l1p2l2 . . . pklk
iff there exists n1, . . . , nk−1 ∈ N \ {0} such that ρ = p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k . Fi-

nally, for all n1, . . . , nk−1 ∈ N \ {0}, by definition of path schemas, we have that
p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k is an execution. From Section 3 of [4] we have the following

proposition2:

▶ Proposition 12 ([4]). In a flat Kripke structure, for each execution ρ, there exists a path
schema P of size smaller than 3 ∗ |Q| such that ρ respects P .

5.3 Stuttering Result for QLTL
In [4], the authors have shown a general stuttering theorem for LTL with past, they have
proved that if an execution of the form ρ1s

Mρ2 (where ρ1 and s are finite sequence of states)
satisfies an LTL formula φ of temporal height at most N and if M > 2N , then the execution
ρ1s

2N+1ρ2 satisfies φ as well. In other words, to satisfy φ there is no need to repeat the infix
s more than 2N + 1 times. We shall see that we have the same result for QLTL.

Let K = ⟨Q,R, q0, ℓ⟩ be a Kripke structure (not necessarily flat) and assume that we
have two executions ρ = ρ1s

Mρ2 and ρ′ = ρ1s
M ′
ρ2 with ρ1, s ∈ Q∗ and ρ2 ∈ Qω and

M,M ′ > 2N for some N ≥ 2. In Section 4 of [4], the authors present an equivalence relation
(parametrised by N) between positions in ρ and ρ′ which can be defined as for i, i′ ∈ N, we
have (ρ, i) ≡N (ρ′, i′) if and only if one of the following conditions holds:
1. i, i′ < |ρ1| +N · |s| and i = i′

2. i ≥ |ρ1| + (M −N) · |s| and i′ ≥ |ρ1| + (M ′ −N) · |s| and (i− i′) = (M −M ′) · |s|
3. |ρ1| +N · |s| ≤ i < |ρ1| + (M −N) · |s| and |ρ1| +N · |s| ≤ i′ < |ρ1| + (M ′ −N) · |s| and

|i− i′| = 0 mod |s|
Intuitively, this relation states that either i and i′ should be at the same position in the
parts consisting of ρ1 and the first N copies of s and in the same relative positions in the
last N copies of s and in ρ2, otherwise i and i′ should be at the same position in s. We
can show following the exact same steps as for the proof of Theorem 4.1 of [4], that if
φ is a QLTL formula such that th(φ) ≤ N and if (ρ, i) ≡N (ρ′, i′) then for all labellings
λ, we have (ρ≥i, λ) |= φ iff (ρ′

≥i′ , λ) |= φ. This proof is done by a double induction on
the structure of φ and on N , and we should pay attention to two aspects. First, for LTL
there is no need to consider labelling, however here we take them into account, but since
the sequence of control states is the same (modulo the iterations of s) in ρ and ρ′, we can
universally quantify on labellings (for each labelling we get two new sequences of subset
of atomic propositions, and we use the fact that results for LTL hold for such sequences).
Second, in order to reuse the induction reasoning, we should take care of the specific case
of subformula ∃p. ψ. Assume hence that we have (ρ, i) ≡N ′ (ρ′, i′) and that for ψ such
that th(ψ) ≤ N ′, we have (ρ≥i, λ

′) |= ψ iff (ρ′
≥i′ , λ′) |= ψ for all labelling λ′. Now for any

labelling λ, we have that there exists λ′ ≡AP\{p} λ s.t. (ρ≥i, λ
′) |= ψ if and only if there

exists λ′′ ≡AP\{p} λ s.t. (ρ′
≥i′ , λ′′) |= ψ (simply take λ′ = λ′′). And we can hence conclude,

since the temporal height of ∃p. ψ is the same as ψ, that for all labellings λ, we have
(ρ≥i, λ) |= ∃p. ψ iff (ρ′

≥i′ , λ) |= ∃p. ψ. Finally, since (ρ, 0) ≡N (ρ′, 0) for any N ≥ 2, we can
adapt Theorem 4.1 of [4] to our case.

2 In [4], the size of path schema is bounded by 2 ∗ |R|, since we consider here sequence of control states,
we use 3 as a constant to stay on the safe side.

F. Laroussinie, L. Leclercq, and A. Sangnier 35:17

▶ Proposition 13. Let N ≥ 2 and M,M ′ > 2N and ρ = ρ1s
Mρ2 and ρ′ = ρ1s

M ′
ρ2 with

ρ1, s ∈ Q∗ and ρ2 ∈ Qω. For all QLTL formulas φ such that th(φ) ≤ N , we have (ρ, ℓ) |= φ

iff (ρ′, ℓ) |= φ.

5.4 Algorithm for Flat Kripke Structures
We now present the algorithm to solve MCf,∃(QLTL). Let K = ⟨Q,R, qin, ℓ⟩ be a flat Kripke
structure and φ a QLTL formula such that th(φ) ≤ N . Assume there exists a labelled
execution (ρ, ℓ) ∈ Execlab

K(q0) satisfying φ. Using Proposition 12, there exists a path schema
P = p1l1p2l2 . . . pklk (of size smaller than 3 ∗ |Q|) and n1, . . . , nk−1 ∈ N \ {0} such that
ρ = p1l

n1
1 p2l

n2
2 . . . pk−1l

nk−1
k−1 pkl

ω
k . Now for all i ∈ {1, . . . , k−1}, we define n′

i = min(ni, 2N+5)
and let ρ′ be the execution p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k , thanks to Proposition 13, we get that

(ρ′, ℓ) |= φ. This gives us the path for a non-deterministic PSPACE-algorithm. We seek for a
path schema P = p1l1p2l2 . . . pklk and for (k− 1) positive naturals n′

1, . . . , n
′
k−1 smaller than

2N+5 such that (p1l
n′

1
1 p2l

n′
2

2 . . . pk−1l
n′

k−1
k−1 pkl

ω
k , ℓ) |= φ. Note that p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k

is of polynomial size in the size of the flat Kripke structure K and the formula φ and that
checking whether (p1l

n′
1

1 p2l
n′

2
2 . . . pk−1l

n′
k−1

k−1 pkl
ω
k , ℓ) |= φ can be done in polynomial space

thanks to Theorem 11. We use then Savitch’s theorem to obtain a PSPACE-algorithm. For
the lower bound, the proof is the same as for the path model-checking.

▶ Theorem 14. MCf,∃(QLTL) and MCf,∀(QLTL) are PSPACE-complete.

6 Conclusion

We studied the model-checking problem for QLTL for the structure semantics. (In this
semantics, executions are seen as an infinite sequence of control states, together with a
labelling function that associates atomic propositions to the control states.) To begin with,
we proved that the model-checking problem is EXPSPACE-complete. To obtain a better
understanding of this semantics, we have considered some variants of the model-checking
problem, with a restriction on the form of the structures: path model-checking and model-
checking of flat structures. Both problems turn out to be PSPACE-complete. Our results are
summarised in Figure 5. We also showed that the problems MC∀(q-LTL) and MC∃(q-LTL)
corresponding to another way of considering quantifications are PSPACE-complete.

problem: MC∃(QLTL) MC∀(QLTL) MCp(QLTL) MCf,∃(QLTL) MCf,∀(QLTL)
complexity: EXPSPACE-complete PSPACE-complete

Figure 5 Complexity of QLTL model-checking.

The interesting properties that this semantics can express (as the finite number of
reachable control states, the determinism of an execution) leads us to continue studying
this semantics by working on the satisfiability problem of fragments of QLTL and on the
expressivity of prenex formulas.

References
1 B. Bednarczyk and S. Demri. Why Does Propositional Quantification Make Modal and

Temporal Logics on Trees Robustly Hard? Logical Methods in Computer Science, 18(3):5:1–
5:46, July 2022.

2 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

CSL 2024

35:18 QLTL Model-Checking

3 H. Comon and Y. Jurski. Multiple counter automata, safety analysis and PA. In CAV’98,
volume 1427 of LNCS, pages 268–279. Springer, 1998.

4 S. Demri, A. K. Dhar, and A. Sangnier. Taming past LTL and flat counter systems. Inf.
Comput., 242:306–339, 2015.

5 E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and Control,
61(3):175–201, June 1984.

6 K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In Nicolas
Halbwachs and Doron A. Peled, editors, CAV’99), volume 1633 of LNCS, pages 236–248.
Springer-Verlag, July 1999.

7 T. French. Decidability of quantified propositional branching time logics. In AJCAI’01, volume
2256 of LNCS, pages 165–176. Springer-Verlag, December 2001.

8 T. French. Quantified propositional temporal logic with repeating states. In TIME-ICTL’03,
pages 155–165. IEEE Comp. Soc. Press, July 2003.

9 T. French and M. Reynolds. A sound and complete proof system for QPTL. In Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, AIML’02,
pages 127–148. King’s College Publications, 2003.

10 A. Hossain and F. Laroussinie. QCTL model-checking with QBF solvers. Inf. Comput.,
280:104642, 2021.

11 Y. Kesten and A. Pnueli. Complete proof system for QPTL. Journal of Logic and Computation,
12(5):701–745, October 2002.

12 L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In CONCUR’11, volume 6901
of LNCS, pages 419–433. Springer, 2011.

13 O. Kupferman. Augmenting branching temporal logics with existential quantification over
atomic propositions. In CAV’95, volume 939 of LNCS, pages 325–338. Springer-Verlag, July
1995.

14 F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logical Methods
in Computer Science, 10(4), 2014.

15 F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In
LICS’02, pages 383–392. IEEE Computer Society, 2002.

16 N. Markey and P.Schnoebelen. Model checking a path. In CONCUR’03, volume 2761 of LNCS,
pages 248–262. Springer, 2003.

17 N. Markey and P. Schnoebelen. Model checking a path. In CONCUR’03, volume 2761 of
LNCS, pages 248–262. Springer, 2003.

18 Markey N and P. Schnoebelen. Mu-calculus path checking. Inf. Process. Lett., 97(6):225–230,
2006.

19 A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE Comp. Soc. Press,
October-November 1977.

20 F. Schwarzentruber. The complexity of tiling problems. CoRR, abs/1907.00102, 2019.
21 A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD

thesis, Harvard University, Cambridge, Massachussets, USA, 1983.
22 A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata

with applications to temporal logics. Theoretical Computer Science, 49:217–237, 1987.
23 M. Y. Vardi. Alternating automata and program verification. In Jan van Leeuwen, editor,

Computer Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages
471–485. Springer, 1995.

24 P. Wolper. Temporal logic can be more expressive. Inf. Control., 56(1/2):72–99, 1983.

Limitations of Game Comonads for Invertible-Map
Equivalence via Homomorphism Indistinguishability
Moritz Lichter #

RWTH Aachen University, Germany

Benedikt Pago #

University of Cambridge, UK

Tim Seppelt #

RWTH Aachen University, Germany

Abstract
Abramsky, Dawar, and Wang (2017) introduced the pebbling comonad for k-variable counting logic
and thereby initiated a line of work that imports category theoretic machinery to finite model
theory. Such game comonads have been developed for various logics, yielding characterisations of
logical equivalences in terms of isomorphisms in the associated co-Kleisli category. We show a first
limitation of this approach by studying linear-algebraic logic, which is strictly more expressive than
first-order counting logic and whose k-variable logical equivalence relations are known as invertible-
map equivalences (IM). We show that there exists no finite-rank comonad on the category of graphs
whose co-Kleisli isomorphisms characterise IM-equivalence, answering a question of Ó Conghaile
and Dawar (CSL 2021). We obtain this result by ruling out a characterisation of IM-equivalence
in terms of homomorphism indistinguishability and employing the Lovász-type theorem for game
comonads established by Reggio (2022). Two graphs are homomorphism indistinguishable over a
graph class if they admit the same number of homomorphisms from every graph in the class. The
IM-equivalences cannot be characterised in this way, neither when counting homomorphisms in the
natural numbers, nor in any finite prime field.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases finite model theory, graph isomorphism, linear-algebraic logic, homomorphism
indistinguishability, game comonads, invertible-map equivalence

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.36

Related Version Full Version: https://arxiv.org/abs/2308.05693

Funding Moritz Lichter : European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (EngageS: agreement No. 820148).
Tim Seppelt: German Research Foundation (DFG) via RTG 2236/2 (UnRAVeL), European Union
(ERC, SymSim, 101054974).

Acknowledgements We would like to thank the anonymous reviewers for detailed comments.
Moreover, we are greatful for discussions which took place at the “Resources and Co-Resources”
workshop at the University of Cambridge in July 2023.

1 Introduction

Logic fragments such as k-variable first-order logic with or without counting quantifiers
induce equivalence relations on graphs, or more generally, on structures: Two structures
are equivalent in this sense if they satisfy exactly the same sentences of the respective logic
fragment. Such equivalence relations are approximations of the isomorphism relation. The
more expressive the logic fragment, the more non-isomorphic structures are distinguished by
it. Classical model-comparison games and counterexamples like the Cai–Fürer–Immerman
(CFI) construction show that k-variable first-order logic (even with counting) does not
distinguish all pairs of non-isomorphic structures. Hence, the induced equivalence is indeed

© Moritz Lichter, Benedikt Pago, and Tim Seppelt;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 36; pp. 36:1–36:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lichter@lics.rwth-aachen.de
https://orcid.org/0000-0001-5437-8074
mailto:benedikt.pago@cl.cam.ac.uk
https://orcid.org/0000-0001-6377-1230
mailto:seppelt@cs.rwth-aachen.de
https://orcid.org/0000-0002-6447-0568
https://doi.org/10.4230/LIPIcs.CSL.2024.36
https://arxiv.org/abs/2308.05693
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Limitations of Game Comonads via Homomorphism Indistinguishability

strictly coarser than isomorphism. Such approximations of isomorphism can be studied from
many different angles. For example, it is well-known that counting logic equivalence is the
same as indistinguishability by the Weisfeiler–Leman graph isomorphism test [6].

Another perspective to approximations of isomorphism is offered by homomorphism
indistinguishability: Two graphs G and H are homomorphism indistinguishable over a class
of graphs F if for all graphs F ∈ F the number of homomorphisms from F to G is equal to
the number of homomorphisms from F to H. Equivalence relations with respect to many
logic fragments can be characterised as homomorphism indistinguishability relations over
some graph class. For example, two graphs are counting logic equivalent if and only if
they are homomorphism indistinguishable over all graphs of bounded treewidth [13, 12].
Besides counting logic equivalence, many other natural equivalence relations between graphs,
including isomorphism [24], quantum isomorphism [26], cospectrality [12], and feasibility of
integer programming relaxations for graph isomorphism [12, 18, 33] have been characterised
as homomorphism indistinguishability relations over various graph classes. Characterising
(logical) equivalences as homomorphism indistinguishability relations is desirable because
such characterisations allow to compare the expressive power of logics solely by comparing the
graph classes from which homomorphisms are counted [33, 32]. In this way, deep results from
structural graph theory are made available for studying the expressive power of logics [34].

It is natural to ask whether this approach can be extended to interesting logics that are
more expressive than counting logic, as they are for example studied in the quest for a logic
for Ptime. Such examples are rank logic [9, 16] and the more general linear-algebraic logic
(LA) [8]. We answer this question in the negative. The invertible-map equivalence ≡IM

k,P,
as the equivalence of the k-variable fragment of LA is called, cannot be characterised as a
homomorphism indistinguishability relation.

▶ Theorem 1. For every k ≥ 6, ≡IM
k,P is not a homomorphism indistinguishability relation.

The proof relies on a CFI-like construction similar to the one used by the first author to
separate rank logic from polynomial time [23]. We combine this with results by Roberson [32]
in order to obtain graphs that are invertible-map equivalent but not quantum isomorphic.
As shown by the third author [34], this suffices to conclude that invertible-map equivalence
is not a homomorphism indistinguishability relation – if it were, then it would have to be a
refinement of quantum isomorphism.

Theorem 1 implies a negative answer to a question posed by Ó Conghaile and Dawar [30].
Their work is part of a recent line of research that explores connections between methods from
finite model theory, descriptive complexity, and category theory [3]. One goal of these efforts is
to characterise logical equivalences using game comonads. Concretely, Ó Conghaile and Dawar
asked whether this is possible for linear-algebraic logic. Employing a categorical Lovász-type
theorem [11, 31] that allows to infer a homomorphism indistinguishability characterisation
from the existence of appropriate game comonads, we obtain the following result. To our
knowledge, this is the first provable limitation of such comonadic characterisations.

▶ Theorem 2. For every k ≥ 6, there is no finite-rank comonad C on the category of graphs
such that ≡IM

k,P coincides with the isomorphism relation in the co-Kleisli category of C.

In this context, the concept of a comonad is best explained by recalling the pebbling co-
monad Tk introduced by Abramsky, Dawar, and Wang [1]. Designed to provide a categorical
formulation of the k-pebble game from finite model theory, it can be thought of as map
sending structures to structures encoding Spoiler’s plays in this game. Being a comonad, it
gives rise to a category, its co-Kleisli category, whose objects are graphs and whose morphisms

M. Lichter, B. Pago, and T. Seppelt 36:3

can be interpreted as winning strategies for Duplicator in the k-pebble game. Various notions
from finite model theory can now be recovered from this construction: For example, a graph
has treewidth less than k if and only if it admits a Tk-coalgebra. Crucially, two graphs satisfy
the same k-variable counting logic sentences if and only if they are isomorphic in the co-Kleisli
category of Tk. Subsequently, comonads for many fragments [1, 3, 27] and extensions [30] of
first-order logic have been constructed. They have in common that their co-Kleisli morphisms
and isomorphisms encode winning strategies for Duplicator in one-sided, symmetric, and
bijective games. Our Theorem 2 rules out a characterisation of invertible-map equivalence
via co-Kleisli isomorphisms. We note that our Theorem 1 does not exclude characterisations
involving other comonadic constructions.

Comonads on the category of graphs and homomorphism indistinguishability are intimately
connected. Every homomorphism indistinguishability relation over a graph class with
mild closure properties can be characterised as co-Kleisli isomorphism over a comonad [2].
Conversely, the existence of co-Kleisli isomorphisms over a finite-rank comonad can be
characterised as a homomorphism indistinguishability relation [11, 31]. This fundamental
connection between comonads and homomorphism counting relations is exactly the reason
why we can conclude the impossibility of the former from the impossibility of the latter:
There is no finite-rank comonad for linear-algebraic logic.

Hence, linear-algebraic logic seems to be of a very different nature than the weaker
counting logic as it does not connect with the theory revolving around homomorphism
indistinguishability and game comonads. This raises the question as to what is the precise
reason for this situation. What makes a logic “nice enough” to fit within the homomorphism
indistinguishability and comonadic framework? We can at least say that the shortcomings
of LA in this respect are not due to it being strictly stronger than counting logic. There
does exist an extension of counting logic which admits a comonad construction and thereby
a homomorphism indistinguishability relation: This is k-variable infinitary FO enriched with
all possible n-ary generalised quantifiers over one-dimensional interpretations [30]. An n-ary
generalised quantifier (also known as Lindström quantifier) is essentially a membership oracle
for a class K (of at most n-ary structures) that allows to test whether some structure B

interpretable in the given structure A is in K. LA lies somewhere between counting logic
and its extension by all binary Lindström quantifiers because LA is infinitary FO extended
with a proper subclass of binary Lindström quantifiers. Counting logic itself is nothing but
the extension of FO with all unary Lindström quantifiers [22]. Hence, we can describe
the situation as follows: Whenever a Lindström-extension of infinitary FO contains all
one-dimensional Lindström quantifiers up to a given arity n, then it admits a comonad. If it
only contains a subset of these Lindström quantifiers, then this is not necessarily the case
(our Theorem 1 is true even when we restrict LA to one-dimensional interpretations).

Finally, another direction that we explore in this paper is counting homomorphisms
in finite prime fields. A large part of the theory of homomorphism indistinguishability
that has been established so far works over the natural numbers. Given the fact that the
linear-algebraic operators in LA are over finite fields, one might a priori suspect that the
appropriate homomorphism indistinguishability relation must be based on homomorphism
counts modulo a prime. However, this can also be ruled out, even when the homomorphisms
are counted modulo several primes (Theorem 25).

As a positive result concerning homomorphism counting modulo primes, we find that
Dvořák’s proof [13] can be adapted to finite fields: Two graphs admit the same numbers of
homomorphisms modulo p from all graphs of treewidth less than k if and only if they are
equivalent with respect to k-variable modular counting logic (Theorem 26).

CSL 2024

36:4 Limitations of Game Comonads via Homomorphism Indistinguishability

2 Preliminaries

All structures in this paper are relational and finite. General relational structures are usually
denoted A or B, with A or B, respectively, being used for the universe. When we speak
of graphs, we mean {E}-structures, where E is binary, and we will write V (G) and E(G)
for the vertices respectively edges of a graph G. When nothing else is specified, graphs are
undirected and we may write uv ∈ E(G) for edges {u, v} ∈ E(G). The set {1, 2, ..., n} is
denoted by [n], and P ⊆ N denotes the set of primes.

Counting logic. The logic Ck is the k-variable fragment of first-order logic with counting
quantifiers of the form ∃≥ix, for every i ∈ N. The semantics is as expected, i.e., a structure A

satisfies a sentence ∃≥ixφ(x) if there exist at least i distinct a ∈ A such that A |= φ(a). We
write A ≡Ck B if A and B are Ck-equivalent, i.e., they satisfy exactly the same Ck-sentences.

Lindström quantifiers and interpretations. A more general way to extend FO is with
Lindström quantifiers (also known as generalised quantifiers). A Lindström quantifier is
essentially a membership oracle for a class of structures. Before introducing Lindström
quantifiers, we need the concept of logical interpretations. Let σ and τ be relational
vocabularies with τ = {R1, ..., Rm} where each Ri is a relation symbol of arity ri, and
let L be a logic. An ℓ-dimensional L[σ, τ]-interpretation I is an L-definable mapping from
σ-structures to τ -structures. The elements of the τ -structure are sets of ℓ-tuples in the original
σ-structure. Generally, interpretations can take a tuple of parameters z: An ℓ-dimensional
L-interpretation (with parameters) is a tuple

I(z) =
(
φδ(x, z), φ≈(x, y, z), φR1(x1, ..., xr1 , z), ..., φRm(x1, ..., xrm , z)

)
,

where x, y, xi are ℓ-tuples of variables, and φδ, φ≈, φRi are σ-formulas of the logic L.
The interpretation I(z) defines a partial mapping from σ-structures to τ -structures. For
a given σ-structure A and an assignment z 7→ a, we define B to be the τ -structure
that has universe B := {b ∈ Ak | A |= φδ(b, a)} and, for all i ∈ [m], has the relations
RB
i := {(b1, ..., bri) ∈ Bri | A |= φRi(b1, ..., bri , a)}. From this structure, we obtain the “out-

put” I(A, z 7→ a) of I by factoring out the equivalence classes defined by φ≈. Formally,
let E := {(b1, b2) ∈ A2k | A |= φ≈(b1, b2, a)}. If E is not a congruence relation on B, then
I(A, z 7→ a) is undefined. Otherwise, I(A, z 7→ a) is defined as the quotient structure B/E .

Let K be a class of τ -structures and L be a logic. The extension L(QK) of L by the
Lindström quantifier for K is obtained by closing L under the following formula formation
rule: Whenever I(z) is an L(QK)[σ, τ]-interpretation, then QKI(z) is a σ-formula of L(QK)
with free variables z. For a σ-structure A and an assignment z 7→ a, it holds (A, a) |= QKI(z)
if I(A, x 7→ a) ∈ K. If Q is a class of Lindström quantifiers, then L(Q) denotes the extension
by all Lindström quantifiers in Q. When we speak of the one-dimensional restriction of such
a logic, we mean that in formulas QKI(z), the interpretation I has to be one-dimensional.

Linear-algebraic logic and invertible-map equivalences. Linear-algebraic logic (LA) was
introduced by Dawar, Grädel, and Pakusa [8] as an extension of infinitary first-order logic with
all isomorphism-invariant linear-algebraic operators. As such, it extends rank logic [9, 16].
Rank logic in turn is an extension of FO with operators for determining the rank of a
matrix that is definable in the input structure. In linear-algebraic logic, formulas have
access to any isomorphism-invariant parameter of a definable matrix and not only to the
rank. This logic was studied to show that no linear-algebraic operators whatsoever can

M. Lichter, B. Pago, and T. Seppelt 36:5

enhance the power of FO such that its k-variable fragment distinguishes all non-isomorphic
structures, for some fixed k. For the detailed definition of LA, we refer to [8]. In short,
a linear-algebraic function over some field F with some arity m ≥ 1 is a function f that
maps tuples (M1, ...,Mm) of linear transformations/matrices over F to natural numbers such
that f is invariant under vector space isomorphisms. Formally, this means that whenever two
sequences of matrices M1, ...,Mm and M ′

1, ...,M
′
m over F are simultaneously similar, then

f(M1, ...,Mm) = f(M ′
1, ...,M

′
m). Simultaneous similarity means that there is an invertible

matrix S over F such that Mi · S = S · M ′
i for all i ∈ [m]. That is to say, there exists an

isomorphism between the underlying vector spaces that maps each linear transformation Mi

to the corresponding M ′
i that operates on the isomorphic space. For instance, the rank

operator is such a function with arity m = 1 that maps a given matrix to its rank.
With every m-ary linear-algebraic function f and every natural number r, we associate

the class Kt
f of structures (for some appropriate vocabulary) that encode tuples of matrices

(M1, ...,Mm) satisfying f(M1, ...,Mm) ≥ t. Now, linear-algebraic logic LA is the closure
of FO under infinite conjunctions and disjunctions and under Lindström quantifiers for
all classes Kt

f : A structure A satisfies QKt
f
I(x) if I(A) is a structure that encodes a tuple

(M1, ...,Mm) of matrices and satisfies f(M1, ...,Mm) ≥ t.
Fragments of LA yield interesting equivalence relations between structures, which are

approximations of isomorphism. The fragments that are studied in the literature (e.g. in [8,
23]) are parametrized by k ∈ N and Q ⊆ P. The logic LAk(Q) is the k-variable fragment
of LA that only uses linear-algebraic operators over finite fields of characteristic p ∈ Q.
The equivalence relation induced by LAk(Q) is called invertible-map equivalence. We write
A ≡IM

k,Q B if the structures A and B satisfy exactly the same LAk(Q)-sentences. Invertible-
map equivalence of two given structures can be tested in polynomial time [8].

The logic LAk(Q) is at least as expressive as Ck because the quantifier ∃≥ixφ(x) can be
simulated with the rank operator [8]: We have A |= ∃≥ixφ(x) if and only if the diagonal
matrix that has a 1-entry at exactly those positions (a, a) ∈ A2 such that A |= φ(a) has rank
at least i. This works irrespective of which primes are in Q. Hence, for every non-empty Q,
the relation ≡IM

k,Q is at least as fine as ≡Ck . In fact, it is strictly finer because there exist
generalised CFI-structures that are ≡Ck -equivalent but distinguishable in rank logic [9] using
ranks over Fp for each p ∈ Q.

Invertible-map equivalence is also characterized by a Spoiler-Duplicator game called the
invertible-map game [10]. We follow the exposition in [23]. Let Q ⊆ P and k ∈ N. The
IM-game Mk,Q is played on two structures A and B. There are k pairs of pebbles labelled
with 1, . . . , k. A position in the game is a pair a, b of tuples a ∈ Am and b ∈ Bm for some
m ≤ k. In position a, b corresponding pebbles, i.e., pebbles with the same label, are placed
on ai and bi for every i ∈ [k]. Initially, the pebbles are not on the board. If |A| ̸= |B|, then
Spoiler wins immediately. Otherwise, a round of the game is played as follows:
1. Spoiler chooses a prime p ∈ Q and a number ℓ satisfying 2ℓ ≤ k. Next, Spoiler picks

up 2ℓ pebbles from A and the corresponding pebbles (with the same labels) from B.
2. Duplicator picks a partition P of Aℓ × Aℓ and another one P ′ of Bℓ × Bℓ such that

|P| = |P ′|. Furthermore, Duplicator picks a bijection h : P → P ′ and an invertible
(Aℓ × Bℓ)-matrix S over Fp such that χP = S · χh(P) · S−1 for every P ∈ P. Here, χP
denotes the characteristic matrix of P , which has a 1-entry at position (u, v) if uv ∈ P

and is 0 otherwise.
3. Spoiler chooses a block P ∈ P, a tuple u ∈ P , and a tuple v ∈ h(P). Then for each

i ∈ [2ℓ], Spoiler places one of the pebbles picked up from A on ui and the corresponding
one picked up from B on vi.

CSL 2024

36:6 Limitations of Game Comonads via Homomorphism Indistinguishability

After a round, Spoiler wins the game if the pebbles do not define a partial isomorphism or if
Duplicator was not able to respond with a matrix satisfying the condition above. Note that
this condition states that the characteristic matrices of the blocks are simultaneously similar.

▶ Lemma 3. Let k ∈ N, Q ⊆ P, A and B be structures, a ∈ Ak, and b ∈ Bk. Then
(A, a) ≡IM

k,Q (A, b) if and only if Duplicator has a winning strategy in the invertible-map
game Mk,Q on A and B in position a, b.

The lemma follows from a combination of [10, 8], in which the game is also parametrised
by the dimension 2ℓ of the interpretations. In [10], only finite sets of primes are considered
because the logics considered there are not infinitary. The arguments straight-forwardly
apply to arbitrary sets of primes.

Homomorphism Indistinguishability. Let F and G be graphs. A homomorphism ψ from F

to G is a map ψ : V (F) → V (G) such that ψ(u)ψ(v) ∈ E(G) for every edge uv ∈ E(F). We
write Hom(F,G) for set of homomorphisms from F to G and hom(F,G) := |Hom(F,G)|.
Homomorphism counts induce equivalence relations on graphs: Let F be a class of graphs.
Two graphs G and H are homomorphism indistinguishable over F , denoted by G ≡F H, if
for every F ∈ F , it holds that hom(F,G) = hom(F,H). An equivalence relation ≈ between
graphs is a homomorphism indistinguishability relation if there exists a graph class F such
that ≈ and ≡F coincide.

In this paper, we call two graphs quantum isomorphic if they are homomorphism in-
distinguishable over all planar graphs. The term was originally introduced as a quantum
information theoretic notion [4]. The titular result of Mančinska’s and Roberson’s seminal
work [26] asserts that it is the same as homomorphism indistinguishability over all planar
graphs. Note that our results do not depend on [4, 26].

3 Homomorphisms to CFI-Like Graphs over Finite Abelian Groups

Roberson [32] studied homomorphisms to CFI-like graphs constructed over Z2. This variant
of CFI graphs was introduced by Fürer [15]. Neuen and Schweitzer [29] generalised the more
classical CFI construction from Z2 to arbitrary finite abelian groups. We combine both
constructions and generalise the CFI construction from [15, 32] to arbitrary finite abelian
groups. The goal of these efforts is to show that certain CFI graphs over planar base graphs
and w.r.t. to arbitrary finite abelian groups are not quantum isomorphic.

We fix such a group Γ throughout this section and write its operation as addition. For
a graph G and a vertex v ∈ V (G), write E(v) := {e ∈ E(G) | v ∈ e} for the set of edges
incident to v. We consider vectors U ∈ ΓX for finite sets X. For an element x ∈ X, we write
U(x) ∈ Γ for the x-th entry of U . We write

∑
U for

∑
x∈X U(x).

▶ Definition 4. A base graph is a connected graph. Let G be a base graph and U ∈ ΓV (G).
For every vertex u of G, we define

Vu :=
{

(u, S)
∣∣∣ S ∈ ΓE(u),

∑
S = U(u)

}
.

The CFI graph CFI[Γ, G, U] over the finite abelian group Γ and the base graph G has vertex
set

⋃
u∈V (G) Vu and edge set{
{(u, S), (v, T)}

∣∣ (u, S) ∈ Vu, (v, T) ∈ Vv, uv ∈ E(G), S(uv) + T (uv) = 0
}
.

We say that the vertices in Vu have origin u.

M. Lichter, B. Pago, and T. Seppelt 36:7

The proof of the following Lemma 5 uses well-known arguments for CFI graphs [15, 29, 23].

▶ Lemma 5. Let G be a base graph and U,U ′ ∈ ΓV (G). If
∑
U =

∑
U ′, then CFI[Γ, G, U] ∼=

CFI[Γ, G, U ′].

Proof. Let uv ∈ E(G). Denote the vertex set of CFI[Γ, G, U] respectively CFI[Γ, G, U ′] by
VU and VU ′ . First consider U ′ := U + u − v where u and v denote the vectors in ΓV (G)

with one at the u-th and v-th component, respectively, and zero otherwise. Define the map
φ : VU → VU ′ by

φ((w, S)) :=

(u, S + uv), if w = u,

(v, S − uv), if w = v,

(w, S), otherwise.

where uv denotes the vector in ΓE(u) in the first case or in ΓE(v) in the second case with one at
the uv-th component and zero otherwise. Observe that

∑
e∈E(v)(S−uv)(e) = U(v)−1 = U ′(v)

and analogously for u. Hence, φ is indeed a well-defined map to VU ′ . Clearly, φ is a bijection.
Let (x, S), (y, T) ∈ VU be arbitrary vertices of CFI[Γ, G, U] and define (x, S′) := φ(x, S) and
(y, T ′) := φ(y, T). Then S′(xy) + T ′(xy) = S(xy) + T (xy). Hence, (x, S) and (y, T) are
adjacent in CFI[Γ, G, U] if and only if they are adjacent in CFI[Γ, G, U ′].

Since G is connected, the maps constructed above can be composed to yield CFI[Γ, G, U] ∼=
CFI[Γ, G, U + u− v] for every pair of vertices u, v. This yields CFI[Γ, G, U] ∼= CFI[Γ, G, U ′] as
desired. ◀

We proceed by counting homomorphisms into the CFI graphs. For a graph G and U ∈
ΓV (G), consider the projection map ρ : CFI[Γ, G, U] → G sending (v, S) to v. Clearly, ρ is a
homomorphism. For a graph F and a homomorphism ψ : F → G, define

Homψ(F,CFI[Γ, G, U]) :=
{
φ ∈ Hom(F,CFI[Γ, G, U])

∣∣ ρ ◦ φ = ψ
}
.

The sets Homψ(F,CFI[Γ, G, U]) for all ψ : F → G partition the set Hom(F,CFI[Γ, G, U])
of homomorphisms F → CFI[Γ, G, U]. Write homψ(F,CFI[Γ, G, U]) for the cardinality of
Homψ(F,CFI[Γ, G, U]).

▶ Lemma 6. Let F be a graph and G be a base graph. Let U ∈ ΓV (G) and fix ψ ∈ Hom(F,G).
Consider the system of equations Hom(F,G,U, ψ) with variables xae for all a ∈ V (F) and
e ∈ E(ψ(a)) and equations∑

e∈E(ψ(a))

xae = U(ψ(a)) for all a ∈ V (F), (1)

xae + xbe = 0 for all ab ∈ E(F) and e = ψ(ab) ∈ E(G). (2)

Then the number of solutions to Hom(F,G,U, ψ) over Γ is equal to homψ(F,CFI[Γ, G, U]).

Proof. The proof is by giving a bijection between the solution set and Homψ(F,CFI[Γ, G, U]).
Let ξ = (ξae)a∈V (F),e∈E(ψ(a)) be a solution to Hom(F,G,U, ψ) over Γ. Define a homomorphism
φξ ∈ Homψ(F,CFI[Γ, G, U]) via φξ(a) :=

(
ψ(a), (ξae)e∈E(ψ(a))

)
. Equation (1) guarantees that

this is indeed a map from the vertices of F to the ones of CFI[Γ, G, U]. If a and b are adjacent
in F , then so are ψ(a) and ψ(b) in G. Furthermore, ξaψ(ab) + ξbψ(ab) = 0 by Equation (2).
Hence, φξ(a) and φξ(b) are adjacent in CFI[Γ, G, U].

It is easy to see that this construction is injective, i.e., if φξ = φζ , then ξ = ζ. For
surjectivity, let φ ∈ Homψ(F,CFI[Γ, G, U]). For every a ∈ V (F) and e ∈ E(ψ(a)), define ξae
as the second component of φ(a), i.e. ξae := Sa(e) where φ(a) = (ψ(a), Sa). Clearly, ξ := (ξae)
is such that φξ = φ. The fact that ξ satisfies Equations (1) and (2) is easily verified. ◀

CSL 2024

36:8 Limitations of Game Comonads via Homomorphism Indistinguishability

▶ Theorem 7. For a base graph G, U ∈ ΓV (G), and ψ ∈ Hom(F,G) for some graph F , the
following hold:
1. homψ(F,CFI[Γ, G, 0]) > 0.
2. If Hom(F,G,U, ψ) has a solution, then homψ(F,CFI[Γ, G, 0]) = homψ(F,CFI[Γ, G, U]).
3. If Hom(F,G,U, ψ) has no solution, then homψ(F,CFI[Γ, G, U]) = 0.

Proof. The system Hom(F,G,U, ψ) can be compressed into a matrix equation as follows:
For ψ ∈ Hom(F,G) and P := {(a, e) | a ∈ V (F), e ∈ E(ψ(a))}, let Aψ ∈ ΓV (F)×P and
Bψ ∈ ΓE(F)×P be the matrices defined by

Aψb,(a,e) := δb=a and Bψbc,(a,e) := δa∈{b,c}∧e=ψ(bc), (3)

where δC , similar to the Kronecker delta, evaluates to 1 if the condition C is satisfied and
is 0 otherwise. Then Equations (1) and (2) are equivalent to(

Aψ

Bψ

)
x =

(
U ◦ ψ

0

)
. (4)

If U = 0, then this system always has a solution, namely ξ = 0. In particular, by Lemma 6,
Homψ(F,CFI[Γ, G, 0]) ̸= ∅. By Lemma 6, it remains to give a bijection between the sets of
solutions to

(
Aψ

Bψ

)
x = (0

0) and the set of solutions to
(
Aψ

Bψ

)
x =

(
U◦ψ

0
)
: Provided with a

solution ξ to the latter system, x 7→ x+ ξ can be taken to be this bijection. ◀

Theorem 7 yields Corollary 8 which gives a criterion for a CFI graph CFI[Γ, G, U] to have∑
U = 0 in terms of homomorphism counts from G. The condition in Item 3 is what allows

us to infer the ultimate Corollary 9.

▶ Corollary 8. Let G be a base graph and U ∈ ΓV (G). Then the following are equivalent:
1.

∑
U = 0,

2. CFI[Γ, G, U] ∼= CFI[Γ, G, 0],
3. hom(G,CFI[Γ, G, U]) = hom(G,CFI[Γ, G, 0]), and
4. homid(G,CFI[Γ, G, U]) = homid(G,CFI[Γ, G, 0]), where id is the identity map on G.

Proof. The fact that Item 1 implies Item 2 follows from Lemma 5. It is immediate that
Item 2 implies Item 3. The fact that Item 3 implies Item 4 follows from Theorem 7.

It thus remains to prove that Item 4 implies Item 1. By Theorem 7, let ξ be a solution to
Equation (4) for ψ = id: G → G. Then,

∑
a∈V (G)

U(a) (1)=
∑

a∈V (G)

∑
e∈E(a)

ξae =
∑

e=ab∈E(G)

ξae + ξbe
(2)= 0.

Hence, Item 1 holds. ◀

Thus, if G is planar, then G witnesses quantum non-isomorphism of its CFI graphs.

▶ Corollary 9. If G is a planar base graph and
∑
U ̸= 0, then CFI[Γ, G, 0] and CFI[Γ, G, U]

are not quantum isomorphic.

M. Lichter, B. Pago, and T. Seppelt 36:9

4 Invertible-Map Equivalence and Homomorphism Indistinguishability

In this section we prove that, for every k ≥ 6, the invertible-map equivalence ≡IM
k,P over the

set of all primes is not a homomorphism indistinguishability relation. The proof idea is
the following: Using techniques from [23], we will construct, for every k ∈ N, a planar base
graph G such that we obtain non-isomorphic but ≡IM

k,P-equivalent generalised CFI graphs
over G and Z2i for some i ≥ 1. By Corollary 9, the two CFI graphs are not quantum
isomorphic. Exploiting [34], we will see that this implies that ≡IM

k,P is not a homomorphism-
indistinguishability relation.

▶ Lemma 10. Let k ≥ 6. If ≡IM
k,P (over graphs) is a homomorphism indistinguishability

relation, then all ≡IM
k,P-equivalent graphs are quantum isomorphic.

Proof. For every (self-complementary) logic L, the following holds [34, Theorem 22]: If
L-equivalence is a homomorphism indistinguishability relation, and if, for every ℓ ∈ N,
there are Cℓ-equivalent but not L-equivalent graphs H and H ′, then all L-equivalent graphs
are quantum isomorphic. Here, L is LAk(P). We show that for every ℓ ∈ N, there are
Cℓ-equivalent but not LAk(P)-equivalent graphs H and H ′. Let ℓ ∈ N. It is well-known [6]
that there is a base graph G such that the two non-isomorphic CFI graphs H and H ′

over Z2 and G, using the classical CFI construction [6] (which we have not presented in this
paper), are Cℓ-equivalent. However, the CFI graphs H and H ′ are not equivalent in rank
logic [9]. The interpretation defining the distinguishing matrices is actually one-dimensional
and requires 6 variables [21]. Thus, H and H ′ are not LAk(P)-equivalent. ◀

The missing fundamental lemma to prove Theorem 1 is the following:

▶ Lemma 11. For every k ∈ N, there is a planar base graph G and an i ∈ N such that, for
all U,U ′ ∈ ZV (G)

2i satisfying
∑
U =

∑
U ′ + 2i−1, we have CFI[Z2i , G, U] ≡IM

k,P CFI[Z2i , G, U
′].

We first show how Theorem 1 can be proved using Lemma 11 and afterwards spend the rest
of this section on the proof of Lemma 11.

Proof of Theorem 1. Let k ≥ 6. By Lemma 11, there is a planar base graph G and an
i ∈ N such that CFI[Z2i , G, 0] ≡IM

k,P CFI[Z2i , G, U] for some U ∈ Z2i with
∑
U = 2i−1. These

two CFI graphs are not quantum isomorphic by Corollary 9. Hence, the invertible-map
equivalence ≡IM

k,P is not a homomorphism indistinguishability relation by Lemma 10. ◀

Because the interpretation in the proof of Lemma 10 is one-dimensional, the result of
Theorem 1 also holds for equivalence in the fragment of k-variable linear-algebraic logic that
is restricted to one-dimensional interpretations.

It remains to prove Lemma 11. Without the planarity requirement, non-isomorphic but
≡IM
k,P-equivalent generalised CFI structures were constructed in [23]. By a careful analysis of

the proof, the construction can be adapted to certain planar base graphs, which we will show
now. However, we first have to extend our CFI graphs by additional relations. An ordered
graph is a pair (G,≤) of a graph G and a total order ≤ on V (G). If G is an ordered graph,
we denote its vertex set, its edge set, and its order by V (G), E(G), and ≤G, respectively.

▶ Definition 12. Let i be a positive integer, G be an ordered base graph, and U ∈ ZV (G)
2i .

We define the CFI structure CFI∗[Z2i , G, U] on the same vertex set as CFI[Z2i , G, U], that
is, on

⋃
u∈V (G) Vu (recall Definition 4). We first define a total preorder ⪯ on the vertices:

(u, S) ⪯ (v, T) if and only if u ≤G v. For every uv ∈ E(G), we define the following relations:

CSL 2024

36:10 Limitations of Game Comonads via Homomorphism Indistinguishability

Nu,v :=
{ (

(u, S), (u, T)
)

∈ V 2
u

∣∣ S(uv) = T (uv)
}
,

Cu,v :=
{ (

(u, S), (u, T)
)

∈ V 2
u

∣∣ S(uv) + 1 = T (uv)
}
.

Finally, we add for every j ∈ Z2i the following relation:

Ij :=
{

{(u, S), (v, T)}
∣∣ (u, S) ∈ Vu, (v, T) ∈ Vv, uv ∈ E(G), S(uv) + T (uv) = j

}
.

The structure CFI∗[Z2i , G, U] can be seen as a vertex-coloured and edge-coloured directed
graph (with an order on the colours), where two vertices receive the same colour if and only
if they are ⪯-equivalent. This means that precisely vertices with the same origin receive
the same colour. The other relations colour edges by the set of relations in which they are
contained. Note that I0 coincides with the edge relation of the CFI graph CFI[Z2i , G, U].
The additional relations are, apart from the preorder, already implicit in CFI[Z2i , G, U] and
are made explicit to ensure definability of certain properties in logics.

Non-isomorphic but ≡IM
k,P-equivalent CFI graphs were constructed using a class of regular

base graphs, in which the degree, the girth, and the vertex-connectivity are simultaneously
unbounded [23]. We will show that it suffices that the graph only satisfies these properties
“locally”. The r-ball around a vertex v ∈ V is the set of vertices with distance at most r to v.

▶ Definition 13. Let G be a base graph and r, d, g, c ∈ N. We say that G is (r, d, g, c)-nice if
there is some vertex w ∈ V (G) such that the r-ball W around w satisfies the following:
1. Every vertex in W has degree at least d.
2. Every cycle in G containing a vertex of W as length at least g.
3. For every set V ′ ⊆ V (G) of size at most c, all vertices in W \ V ′ are contained in the

same connected component of G− V ′.
4. For every set V ′ ⊆ V (G) of size c′ ≤ c, there is at most one connected component

X ⊆ V (G) of G− V ′ such that G[X] has treewidth1 larger than c′.

▶ Lemma 14. For every n ∈ N, there is a planar graph G that is (n, 2n, 2n, n)-nice.

Proof. We start with a complete 2n-ary tree (with fixed root w) of depth 4n. For every
i ≥ 1, the i-th level of the tree consists of (2n)(2n− 1)i−1 vertices. In particular, the tree has
(2n)(2n− 1)4n−1 leaves. Next, we attach a grid of height 2n and width (2n)(2n− 1)4n−1 to
the tree as follows: The i-th leaf from the left (according to the usual drawing of a tree in the
plane) is identified with the i-th vertex of the grid in the first row. Denote this graph by G.
It is easy to see that G is planar. We prove that G is (n, 2n, 2n, n)-nice, which is witnessed
by the root w. Let W be the n-ball around w, that is, the set of vertices whose level is at
most n+ 1 in the tree. By construction, every vertex in W has degree 2n and every cycle, in
which a vertex of W is contained, has length at least 2n because the tree has depth 4n.

For every vertex u ∈ W , there are at least 2n paths from u into the grid that are disjoint
apart from u. Let V ′ ⊂ V (G) be a set of at most n vertices. We show that all vertices in
W \ V ′ are connected in G− V ′. Let u, v ∈ W \ V ′. If there is a path from u to v only using
vertices of the tree, we are done. Otherwise, there are at most n paths disjoint apart from u

respectively v into the grid (because there were 2n such paths for u respectively v before
removing n vertices). Let Vu and Vv be the sets of endpoints of these paths, i.e., sets of size
at least n of vertices in the first row of the grid. Because there is no path between u and v

1 For a definition of treewidth, the reader is referred to [5].

M. Lichter, B. Pago, and T. Seppelt 36:11

in the tree, at most n− 1 vertices of the grid are removed in G− V ′ (we count the leaves of
the tree as vertices of the grid). By removing n− 1 vertices from a grid of height 2n (and
larger width) it is not possible to separate the sets Vu and Vv because they are of size at
least n each. Hence, some vertex of Vu is connected to some vertex of Vv in G − V ′ and
thus u and v are connected in G− V ′.

We finally show that at most one connected component of G − V ′ is not an induced
subgraph of a grid of height at most |V ′|. First, we claim that all vertices of the tree are
in the same connected component of G− V ′ (again, we count the leaves as vertices of the
grid). One easily sees that the argument above actually works for all vertices of the tree
because for all vertices of the tree there are 2n disjoint paths into the grid. So there is a
component containing all vertices of the tree and some vertices of the grid. Second, because
the grid has height and length greater than n, by removing |V ′| ≤ n vertices from G we can
only “cut out” holes or corners of the grid. This means that the component containing the
tree vertices also contains all grid vertices apart from the holes and corners cut out. Each
of them contains at most |V ′| vertices per column and thus all these holes and corners are
induced subgraphs of a grid of height |V ′|. It is well-known [5] that grids of height at most
|V ′| have treewidth at most |V ′| and the same holds for induced subgraphs of them. ◀

We now analyse properties of CFI structures over nice base graphs. The following proofs
assume that the reader is familiar with the CFI construction. For more details we refer for
example to [6, 15, 16, 23]. For some number c ∈ N, a c-orbit of a structure A is a maximal
set of c-tuples of A that are all related by an automorphism of A. That is, x, y ∈ Ac are in
the same orbit if and only if there is an automorphism φ of A such that φ(x) = y. The set
of c-orbits is a partition of Ac.

We often need isomorphisms of a particular kind between generalised CFI structures. We
have seen in Lemma 5 that two CFI graphs CFI[Z2i , G, U] and CFI[Z2i , G, U

′] over some base
graph G are isomorphic if, and actually only if,

∑
U =

∑
U ′. The same reasoning applies to

the CFI structures CFI∗[Z2i , G, U] and CFI∗[Z2i , G, U
′] (see also [23]). Let p = u1, . . . , um be

a path in G and j ∈ Z2i . Now we can construct an isomorphism φ between CFI∗[Z2i , G, U]
and CFI∗[Z2i , G, U − ju1 + jum] (where jv denotes the vector in V (G)Z2i that has entry j
at position v and is zero otherwise) such that φ is the identity map on all vertices whose
origin is not contained in p. This isomorphism can be composed out of the maps constructed
in Lemma 5 by following the path p. We call such isomorphisms path-isomorphisms. If p is
a closed cycle, then the associated path-isomorphism is an automorphism of the structure,
which we call cycle-automorphism (again see [23]).

▶ Lemma 15. Let i ∈ N, G be an (r, d, g, c)-nice ordered base graph, and U ∈ ZV (G)
2i . Then

two tuples of length c′ ≤ c of CFI∗[Z2i , G, U] are C3c′-equivalent if and only if they are in the
same c′-orbit.

Proof. We start with the following special case:

▷ Claim 16. Let a = γx and b = γy be tuples of length c′ ≤ c of CFI∗[Z2i , G, U]. If a and b
are C3c′ -equivalent, then a and b are in the same c′-orbit.

Proof Sketch. The vertices x and y must have the same origin v because otherwise they
are easily distinguished in C3. So let x = (v, S) and y = (v, T) for some S, T ∈ ZE(v)

2i . To
construct an automorphism π that pointwise fixes γ and maps x to y, we have to shift the
edges F := {e ∈ E(v) | S(e) ̸= T (e)}. Let B be the set of all origins of vertices in γ. Let P
be the partition of the edges F such that two edges are in the same part of P if and only if
they lead into the same connected component of G − B − {v}. Such an automorphism π

CSL 2024

36:12 Limitations of Game Comonads via Homomorphism Indistinguishability

exists if and only if every P ∈ P satisfies
∑
e∈P S(e) −T (e) = 0. Suppose this is not the case.

At least two parts of P do not satisfy the condition, since
∑
S =

∑
T . Because G is nice,

the corresponding connected component of at least one of the parts is an induced subgraph
of a grid of height c′. Because non-isomorphic CFI graphs over base graphs of treewidth at
most c′ are not Cc′+1-equivalent [5, 17, 19], the tuples a and b are not C3c′ -equivalent, which
is a contradiction. ◁

To prove the lemma, first note that if two tuples are in the same orbit, then they are
equivalent in every logic. So it remains to prove the other direction. We show by induction
on the length c′ of the tuples a and b that if a and b are C3c′ -equivalent, then they are in the
same c′-orbit, i.e., there is an automorphism of CFI∗[Z2i , G, U] that maps a to b.

For c′ = 1, the result follows from Claim 16 using γ as the empty tuple. For the inductive
step, assume a = a′x and b = b

′
y are C3(c′+1)-equivalent. Then a′ and b

′ are C3c′ -equivalent.
By induction, there exists an automorphism π′ such that π′(a′) = b

′. Then the tuples π′(a)
and b agree on all entries except potentially the last one. They are C3(c′+1)-equivalent because
logical formulas do not distinguish between tuples in the same orbit. By Claim 16, there is
an automorphism π such that π(π′(a)) = b. So a and b are in the same orbit. ◀

For a graph G, we call two sets V,W ⊆ V (G) adjacent if there are v ∈ V and w ∈ W such
that v and w are adjacent in G.

▶ Lemma 17. Let i ∈ N, G be an (r, d, g, c)-nice ordered base graph witnessed by a vertex
w ∈ V (G), and let U ∈ ZV (G)

2i . Furthermore, let φ be an automorphism of CFI∗[Z2i , G, U].
If x, y, and z are tuples of CFI∗[Z2i , G, U] such that
1. |xyz| ≤ c,
2. the sets of all origins of vertices in x, y, and z, respectively, are pairwise not adjacent

in G, and
3. all origins of vertices in x and y are contained in the (r − 1)-ball around w,
then xyz, φ(x)yz, and xφ(y)z are in the same orbit of CFI∗[Z2i , G, U].

The proof of Lemma 17 makes use of standard arguments for CFI graphs and cycle-
automorphisms [23]. Such cycles can always be found for x and y because removing all
origins of vertices in x and y does not disconnect G because G is nice.

▶ Lemma 18. For every k ∈ N, there are r, d, g, c, i ∈ N such that, for every (r, d, g, c)-nice
ordered base graph G and every U,U ′ ∈ ZV2i such that

∑
U =

∑
U ′ + 2i−1, we have

CFI∗[Z2i , G, U] ≡IM
k,{2} CFI∗[Z2i , G, U

′].

Proof. The proof is based on a close inspection of the proof in [23]: For every 2m ≤ k, base
graphs of degree at least d(m, k − 2m), girth at least g(m, k − 2m), and vertex-connectivity
at least c(m, k− 2m) are considered (for the definitions of d, g, and c, see [23]). Of particular
interest is the r(m, k− 2m)-ball around some vertex, which we will see later. The CFI graphs
are constructed over Z2i , for some i(m, k−2m) ∈ N. Define d = d(k) := max2m≤k d(m, k−2m)
and define g = g(k), c = c(k), r = r(k), and i = i(k) analogously. We finally define r′ := 2r+4
and g′ := max{r′, g}.

Assume G is a(r′, d, g′, c)-nice and ordered base graph and let u ∈ V (G) be a vertex
witnessing this. We call the r′-ball around u the nice region of G. Let U,U ′ ∈ ZV2i with∑
U =

∑
U ′ + 2i−1 and consider A := CFI∗[Z2i , G, U] and B := CFI∗[Z2i , G, U

′]. To prove
A ≡IM

k,{2} B, we show that Duplicator wins the characteristic 2 IM-game with k-pebbles
Mk,{2} played on A and B. Duplicator maintains as invariant that in position v, v′, there is
an isomorphism φ : B → B′ where B′ := CFI[Z2i , G, U

′′] for some U ′′ ∈ ZV2i such that

M. Lichter, B. Pago, and T. Seppelt 36:13

1. φ(v′) = v,
2. there is only a single vertex w ∈ V such that U(w) ̸= U ′′(w) that we call twisted, and
3. the (r + 1)-ball around w is contained in the nice region and does not contain the origin

of a vertex in v.
Clearly, the invariant holds initially. So assume that the invariant holds by the inductive
hypothesis and that it is Spoiler’s turn. Up to isomorphism, we can assume to play on A

and B′ in position v, v. Spoiler chooses an arity 2m ≤ k and picks up 2m pebbles from A

and the corresponding ones (with the same labels) from B′. Duplicator picks the 2m-orbit
partition P of (A, v), and the 2m-orbit partition P ′ of (B, v). We construct a suitable bijection
P → P ′ using the techniques of [23]. If G was regular with degree at least d(m, k − 2m),
of girth at least g(m, k − 2m), and of vertex-connectivity at least c(m, k − 2m), then there
would indeed be a similarity matrix as required by the game [23]. One crucial property of
base graphs with vertex-connectivity strictly larger than k is the following: Let xy be a
tuple of A of length at most k such that the set of all origins of vertices in x is not adjacent
to the same set for y. In this case, automorphisms can be applied independently, that is,
if φ is an automorphism, then xy is in the same orbit as φ(x)y, xφ(y), and φ(xy). The
construction of the similarity matrix in [23] heavily depends on this fact. However, non-trivial
automorphisms are only applied to such parts of tuples, for which all entries are contained in
the r(m, k − 2m)-ball around the twisted vertex (called the “active region” in [23]). This
still holds for the (r′, d, g′, c)-nice base graph G, if the r(m, k − 2m)-ball around the twisted
vertex w is contained in the nice region: Let xyz be a tuple of vertices of A of length at
most k such that the sets of all origins of vertices of x, y, and respectively z are pairwise
not adjacent and the sets of all origins of vertices of x and y are contained within the r-ball
around w. Then automorphisms can be applied independently in the sense above (Lemma 17).
Hence, the same construction of the similarity matrix of [23] can also be applied here. All
arguments requiring large girth and degree only consider vertices in the “active region”, for
which we also have long cycles and large degree in the nice region.

Spoiler places 2m pebbles on the vertices in a 2m-tuple in some block P ∈ P and the
corresponding ones on a 2m-tuple in f(P) ∈ P ′ resulting in the position v′′ and v′′′. By the
properties of the similarity matrix and the bijection from [23], the pebbles define a partial
isomorphism, and there is an isomorphism ψ : B′ → B′′ such that ψ(v′′′) = v′′ and there is
only a single twisted vertex between A and B′′. Hence, Conditions 1 and 2 of the invariant
are satisfied.

To satisfy Condition 3, we move the twist to a vertex that has distance at least r + 2
to the origins of all vertices in v using a path-isomorphism as follows. Let O ⊆ V (G) be
this set of at most k origins. Because G is nice, we can move the twist to all vertices in the
nice region apart from whose in O (because removing the vertics in O does not separate the
nice region). Since the nice region is an r′-ball around u and g′ ≥ r′, there are no cycles in
the nice region. Hence, the nice region induces a tree T of height r′ with root u where each
non-leaf has degree at least d and every leaf has distance r′ to u. We call a neighbour u′ of u
blocked, if the subtree Tu′ of T rooted at u′ contains some vertex from O. Because k < d [23],
there is a neigbor u′ of u that is not blocked. Hence, if a vertex w′ in Tu′ has distance at
least r + 1 to u′ in Tu′ , then w′ has distance at most r + 2 in T to all vertices in O. Such a
vertex w′ of distance exactly r + 1 to u′ always exists in T beause every leaf has distance r′

to u. Because r′ = 2r + 4, the (r + 1)-ball around w′ in G is contained in the nice region.
Because g′ ≥ r′ and w′ is in the nice region, w′ has distance at least r + 2 to each vertex
of O in G. We move the twist to this vertex w′. Duplicator maintains the invariant and thus
wins the invertible-map game. ◀

CSL 2024

36:14 Limitations of Game Comonads via Homomorphism Indistinguishability

▶ Lemma 19. For every k ∈ N, there is a planar ordered base graph G and an i ∈ N such that,
for all U,U ′ ∈ ZV (G)

2i with
∑
U =

∑
U ′ +2i−1, we have CFI∗[Z2i , G, U] ≡IM

k,P CFI∗[Z2i , G, U
′].

Proof. Let k ∈ N be arbitrary. Let r, d, g, c, and i be the constants given by Lemma 18 for
k′ := 3k + 1 and let ℓ := max{r, d, g, c}. By Lemma 14, there is a planar graph G that is
(ℓ, 2ℓ, 2ℓ, ℓ)-nice. One easily sees that G is also (r, d, g, c)-nice. Hence,

CFI∗[Z2i , G, U] ≡IM
3k+1,{2} CFI∗[Z2i , G, U

′]

by Lemma 18 for all U,U ′ ∈ ZV (G)
2i with

∑
U =

∑
U ′ + 2i−1. By Lemma 15, the k′-orbits of

these CFI structures are C3k′ -definable and hence the class of CFI structures over (ℓ, 2ℓ, 2ℓ, ℓ)-
nice and ordered base graphs is homogeneous in the sense of [8]. From [8] it follows that

CFI∗[Z2i , G, U] ≡IM
3k+1,P\{2} CFI∗[Z2i , G, U

′].

To show that these two equivalences imply

CFI∗[Z2i , G, U] ≡IM
k,P CFI∗[Z2i , G, U

′],

we use the arguments from [7, Lemma 10]. The authors prove for k′′ = k + 2 the following:
If the k-orbits of two structures H and H ′ are definable in Ck′′ and for two sets of primes P
and Q we have H ≡IM

k′′+1,P H
′ and H ≡IM

k′′+1,Q H ′, then H ≡IM
k,P∪Q H ′. The same argument

also applies for k′′ = 3k and the claim of the lemma is proven. ◀

Proof of Lemma 11. Because CFI[Z2i , G, U] is up to renaming relation symbols a reduct of
CFI∗[Z2i , G, U] (only the relation I0 is kept), CFI∗[Z2i , G, U] ≡IM

k,P CFI∗[Z2i , G, U
′] (Lemma 19)

implies CFI[Z2i , G, U] ≡IM
k,P CFI[Z2i , G, U

′]. ◀

5 Comonads

Certain comonads on the category of relational structures capture equivalences over certain
fragments of first-order logic [1]. For example, the pebbling comonad Tk has the property
that two structures A and B satisfy the same sentences over k-variable first-order logic with
counting quantifiers if and only if they are isomorphic in the co-Kleisli-category of Tk. We
refer the reader to [11, 31] and the previously mentioned references for formal definitions. The
following Lovász-type theorem for comonads allows us to derive Theorem 2 from Theorem 1:

▶ Theorem 20 ([31]). Let C be a finite-rank comonad on the category of (not necessarily
finite) graphs. Then there exists a graph class F such that two finite graphs are isomorphic in
the co-Kleisli category of C if and only if they are homomorphism indistinguishable over F .

For a definition of finite rank, see [31, Definition B.3]. Less generally, one may think of a
finite-rank comonad as a comonad which sends finite structures to finite structures, cf. [11].
Note that Theorem 2 does not rule out that invertible-map equivalence can be characterised
comondically in a different way, i.e., not as co-Kleisli isomorphism but via a more involved
construction.

Proof of Theorem 2. Towards a contradiction, suppose that ≡IM
k,P coincides with the iso-

morphism relation in the co-Kleisli category of some finite-rank comonad. Then, by The-
orem 20, ≡IM

k,P is a homomorphism indistinguishability relation contradicting Theorem 1. ◀

M. Lichter, B. Pago, and T. Seppelt 36:15

6 Modular Homomorphism Indistinguishability

In this section, we consider homomorphism indistinguishability modulo integers n ∈ N. For a
graph class F , two graphs G and H are said to be homomorphism indistinguishable over F
modulo n, in symbols G ≡n

F H, if hom(F,G) ≡ hom(F,H) mod n for every F ∈ F . We
write G ≡N

F H for a set N ⊆ N if G ≡n
F H for every n ∈ N .

In contrary to the classical result of Lovász [24] asserting that two graphs are homo-
morphism indistinguishable over all graphs if and only if they are isomorphic, homomorphism
counts modulo a prime p do not suffice to determine a graph up to isomorphism. In [14],
homomorphism indistinguishability over all graphs modulo p was characterised as follows:
For a graph G with automorphism σ, write Gσ for the subgraph of G induced by the
fixed points of σ. Write G →p G

′ for two graphs G and G′ if there is an automorphism
σ of G of order p such that Gσ ∼= G′ and write G →∗

p H if there is a sequence of graphs
G1, . . . , Gn such that G →p G1 →p G2 →p · · · →p Gn →p H. By [14, Theorem 3.7], for
every graph G and prime p, there is a graph G∗

p, unique up to isomorphism, such that G∗
p

has no automorphisms of order p and G →∗
p G

∗
p. Furthermore, by [14, Theorem 3.4], G and

G∗
p are homomorphism indistinguishable over all graphs modulo p. A characterisation of

homomorphism indistinguishability over all graphs modulo p can now be stated as follows:

▶ Theorem 21 ([14, Lemma 3.10]). Let p be a prime. Two graphs G and H are homomorphism
indistinguishable over all graphs modulo p if and only if G∗

p and H∗
p are isomorphic.

In general, modular homomorphism indistinguishability relations are rather oblivious to
striking differences between graphs:

▶ Example 22. For n ∈ N, the one-vertex graph K1 and the coclique Kn+1 are homomorphism
indistinguishable over all graphs modulo n, i.e. hom(F,K1) ≡ hom(F,Kn+1) mod n for all
graphs F .

Proof. If F is an edgeless graph, then hom(F,K1) = 1 ≡ (n + 1)|V (F)| = hom(F,Kn+1)
mod n. If otherwise F contains an edge, then hom(F,K1) = 0 = hom(F,Kn+1). ◀

Before we move to modular homomorphism indistinguishability characterisations for certain
logic fragments, we clarify the relationship between the various notions introduced so far:

▶ Lemma 23. Let F and K be graph classes. Let N ⊆ N and n ∈ N.
1. If N is infinite, then ≡N

F and ≡F coincide.
2. If N is finite and m is the least common multiple of the numbers in N , then ≡N

F and ≡m
F

coincide.
3. If ≡F and ≡n

K coincide, then F = ∅, i.e., all graphs are ≡F -equivalent.

Proof. For the first claim, let G and H be graphs and F ∈ F . Since N is infinite, there
exists n ∈ N greater than |V (G)||V (F)| and |V (H)||V (F)|. Then hom(F,G) ≡ hom(F,H)
mod n implies that hom(F,G) = hom(F,H).

For the second claim, first observe that G ≡m
F H entails G ≡N

F H since all n ∈ N divide m.
Conversely, for a prime p write ν(p) for the greatest integer k ≥ 0 such that there is an n ∈ N

that is divisible by pk. Then m =
∏
p∈P p

ν(p), where the product ranges over all primes.
Hence, if hom(F,G) ≡ hom(F,H) mod n for all n ∈ N , then hom(F,G) ≡ hom(F,H)
mod pν(p) for all primes p appearing as divisors of elements in N , i.e., ν(p) > 0. Hence, by
the Chinese Remainder Theorem [28, Theorem 2.10], also hom(F,G) ≡ hom(F,H) mod m.

Towards the third claim, we first show the following Claim 24: Write ℓ for the maximum
integer such that pℓ divides n for some prime p. Write φ : N → N for Euler’s totient function
[28, Section 2.3] and G×k for the k-th categorical power of the graph G, cf. [25, p. 40].

CSL 2024

36:16 Limitations of Game Comonads via Homomorphism Indistinguishability

▷ Claim 24. For every graph G, the graphs G×(φ(n)+ℓ) and G×ℓ are homomorphism
indistinguishable over all graphs modulo n.

Proof. We show that aℓ(aφ(n) − 1) ≡ 0 mod n for every a ∈ N. By the Chinese Remainder
Theorem [28, Theorem 2.10], writing n =

∏
pℓii as product of powers of distinct primes,

it suffices to show that this equality holds modulo pℓii for every i. By Euler’s Theorem
[28, Theorem 2.12], aφ(pℓi

i
) ≡ 1 mod pℓii if a and pi are coprime. Since φ(n) =

∏
φ(pℓii)

[28, Theorem 2.7], also aφ(n) ≡ 1 mod pℓii . If pi divides a, then aℓ ≡ 0 mod pℓii as ℓi ≤ ℓ.
Finally, for every graph F , hom(F,G×(φ(n)+ℓ)) = hom(F,G)φ(n)+ℓ ≡ hom(F,G)ℓ mod n

by [25, (5.30)]. ◁

Let F ∈ F , m := |V (F)|, and write Km for the clique on m vertices. Then hom(F,Km) > 1.
Define G := K

×(φ(n)+ℓ)
m and H := K×ℓ

m . By [25, (5.30)] and φ(n) ≥ 1, it holds that
hom(F,G) = hom(F,Km)φ(n)+ℓ ̸= hom(F,Km)ℓ = hom(F,H). Hence, G ̸≡F H. However,
G ≡n

K H by Claim 24 contradicting that ≡F and ≡n
K coincide. ◀

Lemma 23 shows that non-trivial modular homomorphism indistinguishability relations cannot
be expressed by (non-modular) homomorphism indistinguishability relations. Furthermore,
considering sets of moduli does not yield more relations. We may restrict our attention
to homomorphism indistinguishability relations modulo some not necessarily prime n ∈ N.
In the remainder of this section, we give an example and a non-example of a logic whose
equivalence can be characterised as modular homomorphism indistinguishability relation.

We have seen already that the relation ≡IM
k,P is not a homomorphism indistinguishability

relation over any graph class. But since ≡IM
k,P is a relation based on linear algebra over finite

fields, it might a priori be that it can be characterised as a homomorphism indistinguishability
relation modulo a prime. This can be ruled out, at least in the following sense:

▶ Theorem 25. Let k ≥ 2 and Q be a set of primes. Then there exists no graph class F and
no n ∈ N such that ≡IM

k,Q and ≡n
F coincide.

Proof. Towards a contradiction, suppose that ≡IM
k,Q and ≡n

F coincide for some graph class F
and some n ∈ N. Recall from Example 22 that the clique K1 and the coclique Kn+1 are
homomorphism indistinguishable over all graphs modulo n. However K1 and Kn+1 are easily
distinguished in 2-variable FO and thus K1 ̸≡IM

k,Q Kn+1. ◀

By extending techniques of [13], we prove that homomorphism indistinguishability over
graphs of bounded treewidth counted modulo a prime characterises equivalence in first-order
logic with modular counting quantifiers. The strategy is to construct, for every graph F of
treewidth ≤ k and every m ∈ Fp, a modular counting logic formula with ≤ k+1 variables such
that a graph satisfies the formula if and only if it admits m mod p many homomorphisms
from F . Conversely, counting logic formulas are translated into Fp-linear combinations of
graphs of bounded treewidth such that the linear combination of their homomorphism counts
in a graph is 1 mod p if and only if the formula is satisfied. In this direction, it is crucial
that Fp is a field for an interpolation argument to carry through.

Modular counting logic is defined as follows: Let p be a prime. Formulas of C[p] are
boolean combinations of atomic formulas, equality, and modular counting quantifiers ∃cxφ for
every c ∈ Fp. The semantics of modular counting quantifiers is as expected, i.e., a structure A

satisfies a sentence ∃cxφ(x) if there exist c mod p distinct a ∈ A such that A |= φ(a). Let
Ck+1[p] denote the (k + 1)-variable fragment of this logic.

▶ Theorem 26. Let p be a prime and k ≥ 0. Two arbitrary graphs G and H are homo-
morphism indistinguishable over all graphs of treewidth at most k modulo p if and only if G
and H are Ck+1[p]-equivalent.

M. Lichter, B. Pago, and T. Seppelt 36:17

As a consequence, Theorem 26 in conjunction with Lemma 23 and Theorem 20 yields that
Ck+1[p]-equivalence cannot be characterised as a co-Kleisli isomorphism with respect to a
finite-rank comonad.

7 Conclusion

We studied linear-algebraic logic, a logic stronger than first-order logic with counting, and
proved that equivalence with respect to it can neither be characterised as a homomorphism
indistinguishability relation, nor as co-Kleisli isomorphism for a finite-rank comonad. The
latter answers an open question of Ó Conghaile and Dawar [30] and shows a limitation of
the game comonad programme for capturing logical equivalences. It would be desirable to
understand more generally which properties are responsible for making a logic suitable for a
homomorphism indistinguishability or game comonad characterisation. We know that game
comonads can be defined for FO with all Lindström quantifiers up to a fixed arity [30]. What
we do not know is whether these are the only Lindström extensions of FO admitting such a
characterisation. Other interesting classes of Lindström quantifiers to look at besides the
linear-algebraic ones could be CSP quantifiers. The corresponding logic defined in [20] comes
with a fairly natural game characterising equivalence. Thus, one may ask whether this CSP
logic admits a game comonad or if this can be ruled out with similar methods as in this
paper. The same question is also open for (bounded variable fragments of) counting monadic
second order logic CMSO. In principle, our approach works for every extension of counting
logic for which there exists a CFI-like lower bound construction that works over planar base
graphs and with only one binary relation. It remains to devise such a construction for CSP
logic and CMSO.

A different topic, that we have merely touched upon, is homomorphism counting in
prime fields. We have shown that the corresponding homomorphism indistinguishability
relations do not characterise IM-equivalence. On the other hand, we stated an example of
a logic that is captured by a modular homomorphism indistinguishability relation, namely
modular counting logic. A more comprehensive theory of modular homomorphism counting
is yet to be developed. A particularly interesting question, which is not in the scope of this
paper, is whether the known connections between homomorphism counting and solutions to
semidefinite/linear programs for graph isomorphism [33] have a meaningful generalisation to
prime fields.

References
1 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in Finite

Model Theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavík, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005129.

2 Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete Density Comonads and Graph
Parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in
Computer Science, pages 23–44, Cham, 2022. Springer International Publishing. doi:
10.1007/978-3-031-10736-8_2.

3 Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. Journal of Logic and Computation, 31(6):1390–1428, September
2021. doi:10.1093/logcom/exab048.

4 Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and
Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms. J. Comb. Theory,
Ser. B, 136:289–328, 2019. doi:10.1016/j.jctb.2018.11.002.

CSL 2024

https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.1007/978-3-031-10736-8_2
https://doi.org/10.1007/978-3-031-10736-8_2
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1016/j.jctb.2018.11.002

36:18 Limitations of Game Comonads via Homomorphism Indistinguishability

5 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1–45, December 1998. doi:10.1016/S0304-3975(97)00228-4.

6 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/BF01305232.

7 Anuj Dawar, Erich Grädel, and Moritz Lichter. Limitations of the invertible-map equivalences.
J. Log. Comput., 33(5):961–969, 2023. doi:10.1093/logcom/exac058.

8 Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of Isomorphism and Logics
with Linear-Algebraic Operators. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 112:1–112:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2019.112.

9 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with Rank Operators.
In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA, pages 113–122. IEEE Computer Society,
2009. doi:10.1109/LICS.2009.24.

10 Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. In 39th International
Colloquium on Automata, Languages, and Programming, ICALP 2012, Warwick, UK, July
9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages
251–262. Springer, 2012. doi:10.1007/978-3-642-31585-5_25.

11 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470609.

12 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:14,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ICALP.2018.40.

13 Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, August 2010. doi:10.1002/jgt.20461.

14 John Faben and Mark Jerrum. The Complexity of Parity Graph Homomorphism: An Initial
Investigation. Theory of Computing, 11(2):35–57, 2015. doi:10.4086/toc.2015.v011a002.

15 Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations.
In 28th International Colloquium on Automata, Languages, and Programming, ICALP 2001,
Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science,
pages 322–333. Springer, 2001. doi:10.1007/3-540-48224-5_27.

16 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! J. Symb. Log.,
84(1):54–87, 2019. doi:10.1017/jsl.2018.33.

17 Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI graphs
and lower bounds for the weisfeiler-leman refinements. CoRR, abs/2308.11970, 2023. to appear
at FOCS 2023. doi:10.48550/ARXIV.2308.11970.

18 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.70.

19 Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996.
doi:10.1006/inco.1996.0070.

https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1093/logcom/exac058
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1007/978-3-642-31585-5_25
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://doi.org/10.1002/jgt.20461
https://doi.org/10.4086/toc.2015.v011a002
https://doi.org/10.1007/3-540-48224-5_27
https://doi.org/10.1017/jsl.2018.33
https://doi.org/10.48550/ARXIV.2308.11970
https://doi.org/10.4230/LIPIcs.ICALP.2022.70
https://doi.org/10.1006/inco.1996.0070

M. Lichter, B. Pago, and T. Seppelt 36:19

20 Lauri Hella. The Expressive Power of CSP-Quantifiers. In Bartek Klin and Elaine Pimentel,
editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume
252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:19, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CSL.2023.25.

21 Bjarki Holm. Descriptive complexity of linear algebra. PhD thesis, University of Cambridge,
2011. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609435.

22 Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and pebble games on
finite structures. Annals of Pure and Applied Logic, 74(1):23–75, June 1995. doi:10.1016/
0168-0072(94)00025-X.

23 Moritz Lichter. Separating rank logic from polynomial time. Journal of the ACM, 70(2):1–53,
2023. doi:10.1145/3572918.

24 Lászlo Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3):321–328, September 1967. doi:10.1007/BF02280291.

25 László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical
Society colloquium publications. American Mathematical Society, Providence, Rhode Island,
2012. doi:10.1090/coll/060.

26 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.
2020.00067.

27 Yoàv Montacute and Nihil Shah. The Pebble-Relation Comonad in Finite Model Theory. In
Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 13:1–13:11. ACM, 2022.
doi:10.1145/3531130.3533335.

28 Melvyn B. Nathanson. Elementary Methods in Number Theory, volume 195 of Graduate Texts
in Mathematics. Springer New York, New York, NY, 2000. doi:10.1007/b98870.

29 Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph isomorphism. In
25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna,
Austria, volume 87 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.60.

30 Adam Ó Conghaile and Anuj Dawar. Game Comonads & Generalised Quantifiers. In Christel
Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2021.16.

31 Luca Reggio. Polyadic sets and homomorphism counting. Advances in Mathematics, 410:108712,
December 2022. doi:10.1016/j.aim.2022.108712.

32 David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree, 2022. arXiv:2206.10321.

33 David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Ho-
momorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming (IC-
ALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages
101:1–101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2023.101.

34 Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2023.82.

CSL 2024

https://doi.org/10.4230/LIPIcs.CSL.2023.25
https://doi.org/10.4230/LIPIcs.CSL.2023.25
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609435
https://doi.org/10.1016/0168-0072(94)00025-X
https://doi.org/10.1016/0168-0072(94)00025-X
https://doi.org/10.1145/3572918
https://doi.org/10.1007/BF02280291
https://doi.org/10.1090/coll/060
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1145/3531130.3533335
https://doi.org/10.1007/b98870
https://doi.org/10.4230/LIPIcs.ESA.2017.60
https://doi.org/10.4230/LIPIcs.CSL.2021.16
https://doi.org/10.1016/j.aim.2022.108712
https://arxiv.org/abs/2206.10321
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://doi.org/10.4230/LIPIcs.MFCS.2023.82

Confluence of Conditional Rewriting Modulo
Salvador Lucas # Ñ

DSIC & VRAIN, Universitat Politècnica de València, Spain

Abstract
We investigate confluence of rewriting with Equational Generalized Term Rewriting Systems R,
consisting of Horn clauses, some of them defining conditional equations s = t⇐ c and rewriting rules
ℓ→ r ⇐ c. In both cases, c is a sequence of atoms, possibly defined by using additional Horn clauses.
Such systems include Equational Term Rewriting Systems and (join, oriented, and semi-equational)
Conditional Term Rewriting Systems. A set of equations E defines an equivalence =E and quotient
set T (F ,X)/=E of terms, where reductions s→R/E t using rules in R occur. For such systems, we
obtain a finite set of conditional pairs π, which can be viewed as logical sentences, to prove and
disprove confluence of →R/E by (dis)proving joinability of such conditional pairs π.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Logic and verification; Theory of computation → Equational logic and rewriting

Keywords and phrases Conditional rewriting, Confluence, Program analysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.37

Funding Salvador Lucas: Supported by project PID2021-122830OB-C42 funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant CIPROM/2022/6
funded by Generalitat Valenciana.

Acknowledgements I thank the anonymous referees for their helpful remarks.

1 Introduction

A sequence 0, s(0), s(s(0)) of numbers in Peano’s notation is usually written as a term
by using a “pairing” (binary) operator ++ as in t1 = (0 ++ s(0)) ++ s(s(0)) or t2 =
0 ++ (s(0) ++ s(s(0))). This is necessary when computing with (variants of) Term Rewriting
Systems (TRSs [1]). However, multiple presentations of the sequence are possible. We can
overcome this if ++ is associative, i.e., the equation xs ++ (ys ++ zs) = (xs ++ ys) ++ zs is
satisfied for all terms xs, ys, and zs. Then, t1 and t2 are made equivalent modulo associativity
and become members of an equivalence class [t], consisting of all terms which are equivalent
to t modulo associativity. Here, t can be t1 or t2, the specific choice being immaterial.

In general, if T (F ,X) is the set of terms built from a signature F and variables in X , a set
of equations E on terms defines an equivalence =E and a partition T (F ,X)/=E of T (F ,X)
into equivalence classes. When additionally considering a set of rules R, it is natural to
view rewriting computations as transformations [s]E →R/E [t]E of equivalence classes. Here,
[s]E →R/E [t]E (i.e., rewriting modulo) means that s′ →R t′ for some s′ ∈ [s]E and t′ ∈ [t]E .
We often just write s→R/E t. In this paper we are interested in E-confluence of R, i.e., the
commutation of the following diagram:

[s]E

∗R/E

��

∗
R/E

// [t]E

∗R/E

��

[t′]E
∗
R/E

// [u]E

In [10], Jouannaud addressed the problem of proving E-confluence of equational term rewriting,
where E and R consist of (unconditional) equations and rewrite rules, respectively. In this
paper we consider conditional rules ℓ→ r ⇐ c and conditional equations s = t⇐ d, where c

and d are sequences of atoms, possibly defined by Horn clauses.
© Salvador Lucas;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 37; pp. 37:1–37:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:slucas@dsic.upv.es
http://slucas.webs.upv.es
https://orcid.org/0000-0001-9923-2108
https://doi.org/10.4230/LIPIcs.CSL.2024.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Confluence of Conditional Rewriting Modulo

▶ Example 1. The signature F = {0, s, ++ } can be used to represent nonempty sequences
of natural numbers in Peano’s notation. A single number is considered a sequence as well.

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (1)
Nat(0) (2)

Nat(s(n)) ⇐ Nat(n) (3)
x ≈ y ⇐ x→∗ y (4)

0 + n → n (5)
s(m) + n → s(m + n) (6)

sum(n) → n⇐ Nat(n) (7)
sum(m ++ ns) → m + n

⇐ Nat(m), sum(ns) ≈ n (8)

Predicate Nat defined by clauses (2) and (3) identifies an expression (without variables) as
representing a natural number ; clause (4) describes the interpretation of conditions s ≈ t as
reachability in conditional rules like (8). The application of a rule like (8) to a term sum(t) is
as follows: for each substitution σ, if (i) t =E σ(m ++ ns), (ii) Nat(σ(m)) holds, and (iii)
sum(σ(ns)) rewrites to σ(n), then we obtain σ(m) + σ(n). Note that associativity of ++ is
essential to obtain the expected functionality of sum as it permits the “reorganization” of t

into t′, i.e., σ(m) ++ σ(ns), so that, for the first member σ(m) of t′, Nat(σ(m)) holds.

For the analysis of E-confluence of ETRSs, E-critical pairs were considered [10, Definition 10].
Given unconditional (variable disjoint) rules ℓ → r and ℓ′ → r′, a nonvariable position
p ∈ Pos(ℓ) and an E-unifier θ such that θ(ℓ|p) =E θ(ℓ′), an E-critical pair ⟨θ(ℓ)[θ(r′)]p, θ(r)⟩
is obtained. However, in sharp contrast with TRSs [13, 9], (i) there is no general E-unification
algorithm and “for each equational theory one must invent a special algorithm” [22, page 74].
Furthermore, even for E-unifying terms, (ii) there can be several, even infinitely many
E-unifiers θ which must be considered to obtain a complete set of E-critical pairs which can
be used to check E-confluence of R [2, 20]. In order to improve this situation, we propose
the use of Logic-based Conditional Critical Pairs instead.

▶ Example 2 (Continuing Example 1). Terms sum(n) and sum(m ++ ns) syntactically unify
with mgu θ = {n 7→ m ++ ns}. However, there are infinitely many E-unifiers θa,b,c = {n 7→
(sa(0) ++ sb(0)) ++ sc(0), m 7→ sa(0), ns 7→ (sb(0) ++ sc(0))} for all a, b, c ≥ 0 which cannot
be seen as refinements τ ◦ θ of θ for some substitution τ (in the usual way). This leads
to infinitely many (conditional) critical pairs for (7) and (8). Instead, a single logic-based
conditional critical pair would represent them all:

⟨m′ + n′, n⟩ ⇐ sum(n) = sum(m′ ++ ns′), Nat(n), Nat(m′), sum(ns′) ≈ n′ (9)

After some preliminary notions and notations (Section 2) and a summary of Jouannaud and
Kirchner’s results [11] we rely on (Section 3), the contributions of this paper are: (i) we
introduce Equational Generalized Term Rewriting Systems (EGTRSs) R consisting of a set
of conditional equations E and conditional rules R whose conditional parts are sequences of
atoms, possibly defined by definite Horn clauses in a set H ; then, (ii) rewriting computations
(modulo) are described as deduction in a first-order theory obtained from E, H, and R

(Section 4). After that, (iii) confluence of EGTRSs modulo is investigated by considering
the structure of peaks that may lead to diverging computations. We distinguish between
rewriting and coherence peaks and show that the first ones can be used to disprove confluence
modulo (Sections 5 and 6). Also, (iv) we provide a logic-based definition of (conditional)
critical pair which avoids the explicit computation of E-unifiers. We also show that other
conditional pairs (namely, conditional variable pairs and down conditional critical pairs) are
necessary to capture (non-)E-confluence of EGTRSs (Section 7). Finally, (v) we show that
by using appropriate notions of joinability (modulo), such pairs permit to obtain proofs
of E-confluence and non-E-confluence (Section 8). Section 9 discusses some related work.
Section 10 concludes and points to some future work. For the sake of clarity, additional
details about the analysis of confluence of R in Example 1 are supplied in Appendix A.

S. Lucas 37:3

2 Preliminaries

In the following, s.t. means such that and iff means if and only if. We assume some familiarity
with the basic notions of term rewriting [1, 19] and first-order logic [5, 18]. For the sake of
readability, though, here we summarize the main notions and notations we use.

Abstract Reduction Relations. Given a binary relation R⊆ A× A on a set A, we often
write a R b or b R−1 a instead of (a, b) ∈R. The composition of two relations R and R′ is
written R ◦ R′ and defined as follows: for all a, b ∈ A, a R ◦ R′ b iff there is c ∈ A such
that a R c and c R′ b. The reflexive closure of R is denoted by R=; the transitive closure of
R is denoted by R+; and the reflexive and transitive closure by R∗. An element a ∈ A is
R-irreducible (or just irreducible if no confusion arises) if there is no b such that a R b. We
say that b ∈ A is R-reachable from a ∈ A if a R∗ b. We say that a, b ∈ R are R-joinable if
there is c ∈ A such that a R∗ c and b R∗ c. Also, a, b ∈R are R-convertible if a (R ∪ R−1)∗ b.
Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then a is
R-terminating; R is terminating if a is R-terminating for all a ∈ A. We say that R is (locally)
confluent if, for all a, b, c ∈ A, if a R∗ b and a R∗ c (resp. a R b and a R c), then b and c

are R-joinable.
Signatures, Terms, Positions. In this paper, X denotes a countable set of variables.

A signature of symbols is a set of symbols each with a fixed arity. We use F to denote a
signature of function symbols, i.e., {f, g, . . .} whose arity is given by a mapping ar : F → N.
The set of terms built from F and X is T (F ,X). The set of variables occurring in t is Var(t).
Terms are viewed as labeled trees in the usual way. Positions p are represented by chains of
positive natural numbers used to address subterms t|p of t. The set of positions of a term t

is Pos(t). The set of positions of a subterm s in t is denoted Poss(t). The set of positions
of non-variable symbols in t are denoted as PosF (t). Positions are ordered by the prefix
ordering ≤ on sequences: given positions p, q, we write p ≤ q iff p is a prefix of q. If p ̸≤ q

and q ̸≤ p, we say that p and q are disjoint (written p ∥ q).
First-Order Logic. Here, Π denotes a signature of predicate symbols. First-order formulas

are built using function symbols from F , predicate symbols from Π, and variables from
X in the usual way. In particular, atomic formulas A (often called atoms in the realm of
automated theorem proving [23, page 2], but also in [12, pages 79 & 149]) are expressions
P (t1, . . . , tn) where P ∈ Π and t1, . . . , tn are terms; we often refer to P as root(A).

A first-order theory (FO-theory for short) Th is a set of sentences (formulas whose
variables are all quantified). In the following, given an FO-theory Th and a formula φ,
Th ⊢ φ means that φ is deducible from (or a logical consequence of) Th by using a correct
and complete deduction procedure [5, 18]. A sequence A1, . . . , An of atoms Ai, 1 ≤ i ≤ n is
Th-feasible with respect to a theory Th (or just feasible if no confusion arises), if there is a
substitution σ such that Th ⊢ σ(Ai) holds for all 1 ≤ i ≤ n; otherwise, it is infeasible [7].

3 Abstract analysis of confluence of rewriting modulo

Following [11, Section 2], in this section t, t′, . . . refer to elements of a set A. Let ⊢⊣E be
a symmetric relation on A and ∼E be its reflexive and transitive closure: an equivalence
relation often called E-equality. Let →R (R for short) be a binary relation on A. Given R
and E, the relation →R/E (R / E for short), is called reduction (with →R) modulo ∼E and
defined as

→R/E = ∼E ◦ →R ◦ ∼E (10)

CSL 2024

37:4 Confluence of Conditional Rewriting Modulo

t

RE

��

R
// t′′

∗RE

��

t′ ∗

RE
// t′

1 E
t′′
1

t
✤

E
✤

RE

��

t′′

RE
// t′′

1

∗RE

��

t′ ∗

RE
// t′

1 E
t′′
2

Local confluence modulo E of RE with R Local coherence modulo E of RE

Figure 1 Confluence and coherence properties: 3rd and 5th diagrams in [11, Figure 2.1].

▶ Definition 3 (Confluence and termination of R modulo E). Let R and E be as above. Then,
R is confluent modulo E (or E-confluent) iff for all t, t1, t2 ∈ A, if t →∗R/E t1 and
t →∗R/E t2, then there are t′1 and t′2 such that t1 →∗R/E t′1, t2 →∗R/E t′2 and t′1 ∼E t′2 [11,
Def. 1].1

R is terminating modulo E (or E-terminating) iff →R/E is terminating [11, p. 1158].
Computing with R / E is difficult as it may involve searching inside an infinite E-equivalence
class [t]E for some t′ on which a R-reduction step can be performed. Peterson and Stickel
investigated this problem for TRSs R and equational theories E. They introduced a reduction
relation on terms, usually denoted →R,E , which can be advantageously used for this purpose
[20]. In their abstract setting, Jouannaud and Kirchner use a relation →RE (RE for short)
satisfying the following fundamental assumption [11, page 1158]:

R⊆ RE ⊆ R / E (11)

Then, confluence of R / E is investigated by means of appropriate properties of RE. As in
[10, 11], we rely on the following related properties of (abstract) relations.

▶ Definition 4. Consider R, E, RE, and R / E as above, and t1, t2 ∈ A. A pair ⟨t1, t2⟩ is
1. R / E-joinable (t1 ↓R/E t2), iff ∃ t′1, t′2 s.t. t1 →∗R/E t′1, t2 →∗R/E t′2, and t′1 ∼E t′2.2

2. RE-joinable modulo E, (t1 ↓RE t2), iff ∃ t′1, t′2 s.t. t1 →∗RE t′1, t2 →∗RE t′2, and t′1 ∼E t′2 [11,
Def. 2].

3. right-strict RE-joinable modulo E, (t1 ↓rs
RE t2), iff ∃ t′1, t′2 s.t. t1 →∗RE t′1, t2 →+

RE t′2, and
t′1 ∼E t′2.

▶ Definition 5 (Abstract confluence and coherence). Consider R, E, RE, and R / E as above.
According to [11, Definition 3] (see Figure 1),
1. R is RE-Church-Rosser modulo E iff for all t and t′, t (⊢⊣E ∪ →R ∪ R←)∗ t′ implies t ↓RE t′.
2. RE is locally confluent modulo E with R iff for all t, t′, and t′′, if t→RE t′ and t→R t′′,

then t′ ↓RE t′′.
3. RE is locally coherent modulo E iff for all t, t′, and t′′, if t →RE t′ and t ⊢⊣E t′′, then

t′ ↓rs
RE t′′.

1 Definition 1 in [11] does not use the last requirement t′
1 ∼E t′

2 as the authors assume t, t1, and t2
to be E-equivalence classes on A (i.e., t, t1, t2 ∈ A/∼E) rather than t, t1, t2 ∈ A. In order to make
the difference explicit, consider A = {a, b, c}, E be given by (the reflexive, transitive, and symmetric
closure of) b ∼E c, and R be given by a R b and a R c. Then, a →R/E b and also a →R/E c, but b
and c are →R/E-irreducible. And →∗

R/E= {(a, a)(b, b), (c, c), (a, b), (a, c)}. Thus, neither b→∗
R/E c nor

c →∗
R/E b, i.e., as a relation on A, →R/E is not confluent. However, b ∼E c. As a relation on A/∼E,

→R/E is confluent.
2 Continuing footnote 1, requiring this last equivalence step can be essential to achieve “joinability”. For

instance, this is necessary for b and c in the example of the footnote to be R / E-joinable.

S. Lucas 37:5

▶ Proposition 6 ([11, p. 1160, bullet 1]). If R is RE-Church-Rosser modulo E, then R is
E-confluent.

▶ Theorem 7 ([11, Theorem 5]). If R is E-terminating, then R is RE-Church-Rosser modulo
E iff RE is (i) locally confluent modulo E with R and (ii) locally coherent modulo E.

Theorem 7 and Proposition 6, yield a sufficient condition for E-confluence of R.

▶ Corollary 8. If R is E-terminating, then R is E-confluent if RE is (i) locally confluent with
R modulo E and (ii) locally coherent modulo E.

In the following, we investigate how to deal with the abstract peaks displayed in Figure 1:

t′
RE← t →R t′′ (12) t′

RE← t ⊢⊣E t′′ (13)

that we call R-peaks (12) and E-peaks (13), as they share the same leftmost part, with RE,
but differ on the rightmost part, with R and E, respectively. In general, non-joinability of
these peaks does not entail non-E-confluence of R (Corollary 8 is just a sufficient condition
for E-confluence). However, we have:

▶ Proposition 9. If t′ and t′′ in (12) are not R/E-joinable, then R is not E-confluent.

Note that coherence peaks (13) are trivially R/E-joinable, as t′′ →R/E t′.

4 Equational Generalized Term Rewriting Systems

The following definition introduces the kind of computational systems we consider here
which can be viewed as an specialization of Generalized Term Rewriting Systems (GTRSs)
introduced in [15] (see Section 9 for a more detailed comparison).

▶ Definition 10 (Equational Generalized Term Rewriting Systems). An Equational Generalized
Term Rewriting System (EGTRS) is a tuple R = (F , Π, E, H, R) where F is a signature
of function symbols Π is a signature of predicate symbols with =,→,→∗∈ Π, and, for c a
sequence A1, . . . , An of atomic formulas,

E is a set of conditional equations s = t⇐ c, for terms s and t;
H is a set of definite Horn clauses A ⇐ c where A = P (t1, . . . , tn) for some terms
t1, . . . , tn, n ≥ 0, is such that P /∈ {=,→,→∗}; and
R is a set of conditional rules ℓ→ r ⇐ c for terms ℓ /∈ X and r.

Note that E ∪H ∪R is a set of (definite) Horn clauses.

Requiring root(A) /∈ {=,→,→∗} for all A⇐ c ∈ H ensures that computational predicates
=, →, and →∗ are defined by E and R only (with an auxiliary use of H).
▶ Remark 11 (Conditions s ≈ t and their interpretation). In the literature about Conditional
TRSs (CTRSs, see, e.g., [19, Chapter 7]), symbol ≈ is often used to specify conditions s ≈ t in
rules having different interpretations: as joinability, reachability, etc. [19, Definition 7.1.3]. In
EGTRSs, ≈ would be treated as a predicate in Π and the desired interpretation is explicitly
obtained by including in H an appropriate set of clauses defining ≈. For instance, (4) in
Example 1 interprets ≈ as reachability.

▶ Notation 12. Equations s = t ⇐ c in E are often transformed into rules by chosing
a left-to-right or right-to-left orientation: −→E = {s → t ⇐ c | s = t ⇐ c ∈ E}, and
←−
E = {t → s ⇐ c | s = t ⇐ c ∈ E}. We let

↔
E= −→E ∪ ←−E . Note that

↔
E may contain rules

λ→ ρ⇐ c whose left-hand side λ is a variable. Let D(
↔
E) = {root(λ) | λ→ ρ⇐ d ∈

↔
E}.

CSL 2024

37:6 Confluence of Conditional Rewriting Modulo

Table 1 Generic sentences of the FO-theory of EGTRSs.

Label Sentence
(Rf)▷◁ (∀x) x ▷◁ x

(Tr)▷◁ (∀x, y, z) x ▷◁ y ∧ y ▷◁ z ⇒ x ▷◁ z

(Sy)▷◁ (∀x, y) y ▷◁ x⇒ x ▷◁ y

(Co)▷◁ (∀x, y, z) x ▷◁ y ∧ y ▷◁∗ z ⇒ x ▷◁∗ z

(Pr)▷◁
f,i (∀x1, . . . , xk, yi) xi ▷◁ yi ⇒ f(x1, . . . , xi, . . . , xk) ▷◁ f(x1, . . . , yi, . . . , xk)

(HC)A⇐A1,...,An (∀x⃗) A1 ∧ · · · ∧An ⇒ A

(R,E)ℓ→r⇐A1,...,An (∀x, x⃗) x = ℓ ∧A1 ∧ · · · ∧An ⇒ x
ps→ r

(R/E) (∀x, x′, y, y′) x = x′ ∧ x′ → y′ ∧ y′ = y ⇒ x
rm→ y

▶ Definition 13. We say that P ∈ Π depends on R if P ∈ {→,→∗} or there is A ⇐
A1, . . . , An ∈ E ∪H with root(A) = P such that root(Ai) depends on R for some 1 ≤ i ≤ n.

In this paper, computational relations (e.g., =E , →R, →R,E , →R/E ,. . .) induced by an
EGTRS R = (F , Π, E, H, R) are defined by deduction of atoms s = t (equality in E), s→ t

(one-step rewriting in the usual sense), s
ps→ t (rewriting modulo à la Peterson & Stickel),

s
rm→ t (rewriting modulo), etc., in some FO-theory. We extend Π with ps→, rm→, etc., and also
≈ps, ≈rm (as they depend on the previous predicates). Our FO-theories are obtained from
the generic sentences in Table 1, where:

Sentences (Rf)▷◁, (Tr)▷◁, and (Sy)▷◁, which are parametric on a binary relation ▷◁, express
reflexivity, transitivity, and symmetry of ▷◁, respectively;
(Co)▷◁ expresses compatibility of one-step and many-step reduction with ▷◁;
for each k-ary function symbol f , 1 ≤ i ≤ k, and x1, . . . , xk and yi distinct variables,
(Pr)▷◁

f,i propagates an ▷◁-step to the i-th immediate subterm of an f -rooted term;
(HC)α presents a clause α : A⇐ A1, . . . , An, with variables x⃗ as a sentence.
(R,E)α defines a Peterson & Stickel rewriting step s →R,E t (at the root) using rule
α : ℓ→ r ⇐ c with variables x⃗. Here, x /∈ x⃗.
(R/E) defines reduction modulo →R/E in the usual way.

The following example illustrates the differences between (i) rewriting with →R (where a
term t is rewritten if t|p = σ(ℓ) for some position p in t, rule ℓ→ r ⇐ c in R, and substitution
σ such that σ(c) holds), (ii) rewriting modulo →R/E (where a term t is rewritten if it is
E-equivalent to another term t′ to which a rewrite rule applies as above), and (iii) rewriting à
la Peterson & Stickel →R,E (where a term t is rewritten if some subterm t|p is E-equivalent
to an instance σ(ℓ) of the left-hand side ℓ of a rewrite rule ℓ→ r ⇐ c and σ(c) holds).

▶ Example 14. Consider E = {(14), (15)} and R = (F , R) with R = {(16), (17)}, where

b = f(a) (14)
a = c (15)

c → d (16)
b → d (17)

Then, f(a) is →R-irreducible. However, f(a) →R,E f(d) because a =E c →R d. Further-
more, f(a) →R/E f(d) because f(a) =E f(c) →R f(d). However, f(a) →R/E d because
f(a) =E b→R d, but f(a) ̸→R,E d because f(a) is not E-equivalent to the left-hand side of
any rule.

Now, consider the following parametric theories with parameters S (referring to a signature),
E (a set of equations), and R (a set of rules):

S. Lucas 37:7

ThEq[S,E] = {(Rf)= , (Sy)= , (Tr)=}} ∪ {(Pr)=
f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)e | e ∈ E}

ThR[S,R] = {(Rf)→∗
, (Co)→} ∪ {(Pr)→f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)α | α ∈ R}}

ThR,M[S,R] = {(Rf)
ps−→∗ , (Co)

ps→} ∪ {(Pr)
ps→
f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(R,E)α | α ∈ R}

ThR/M[S,R] = {(Rf)
rm−→∗ , (Co)

rm→, } ∪ {(Pr)→f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(HC)α | α ∈ R}} ∪ {(R/E)}

Note that, in ThR/M[S,R] propagation sentences are given for → rather than for rm→; this is
consistent with the usual definition of rewriting modulo implemented by (R/E).

Since rules α : ℓ → r ⇐ c in R are used to specify different computational relations
(see Definition 17), conditions s ≈ t ∈ c have different interpretations depending on the
targetted relation: the meaning of ≈ is based on predicate → if α is used to describe the
usual (conditional) rewrite relation →R; however, ≈ should be treated using ps→ if α is used
to describe Peterson & Stickel’s rewriting modulo →R,E ; and ≈ should be treated using rm→
if α is used to describe →R/E . A simple way to deal with this situation is the following.

▶ Definition 15. Let R = (F , Π, E, H, R) be an EGTRS.
Hps (resp. Hrm) is obtained from H by replacing in each A ⇐ A1, . . . , An ∈ H all
occurrences of ≈, → and →∗ by ≈ps, ps→ and ps−→∗ (resp. ≈rm, rm→, and rm−→∗).
Rps (Rrm) is obtained from R by replacing all occurrences of ≈ in each ℓ→ r ⇐ c ∈ R

by ≈ps (≈rm).

▶ Example 16. For R in Example 1, Hrm and Rrm are (Hps and Rps are similar):

Nat(0) (18)
Nat(s(n)) ⇐ Nat(n) (19)

x ≈rm y ⇐ x
rm−→∗ y (20)

0 + n → n (21)
s(m) + n → s(m + n) (22)

sum(n) → n⇐ Nat(n) (23)
sum(m ++ ns) → m + n⇐ Nat(m), sum(ns) ≈rm n (24)

Given an EGTRS R = (F , Π, E, H, R) whose equality predicate = does not depend on R,3
the following theories are obtained:

ThE = ThEq[F , E] ∪ {(HC)α | α ∈ H}
ThR = ThEq[F , E] ∪ ThR[F , R] ∪ {(HC)α | α ∈ H}

ThR,E = ThEq[F , E] ∪ ThR,M[F , Rps] ∪ {(HC)α | α ∈ Hps}
ThR/E = ThEq[F , E] ∪ ThR/M[F , Rrm] ∪ {(HC)α | α ∈ Hrm}

These theories are used to define the expected computational relations as follows.

▶ Definition 17. Let R = (F , Π, E, H, R) be an EGTRS and s, t ∈ T (F ,X).
We write s =E t (resp. s→↔

E
t) iff ThE ⊢ s = t (resp. ThR[F ,

↔
E] ⊢ s→ t) holds.

We write s→R t (resp. s→R,E t and s→R/E t) iff ThR ⊢ s→ t (resp. ThR,E ⊢ s
ps→ t

and ThR/E ⊢ s
rm→ t) holds. Similarly for s→∗R t (resp. s→∗R,E t and s→∗R/E t).

▶ Definition 18 (Confluence and termination modulo of an EGTRS). Let R = (F , Π, E, H, R)
be an EGTRS. We say that
R is confluent modulo E (or E-confluent) iff for all terms t, t1, and t2, if t →∗R/E t1
and t→∗R/E t2, then there are t′1 and t′2 such that t1 →∗R/E t′1, t2 →∗R/E t′2 and t′1 =E t′2.
R is terminating modulo E (or E-terminating) iff →R/E is terminating.

3 Requiring that = does not depend on R implies that the “meaning” of equational atoms s = t does not
depend on the rules in R.

CSL 2024

37:8 Confluence of Conditional Rewriting Modulo

Table 2 Abstract notions in Section 3 applied to EGTRSs.

Abstract reduction: ⊢⊣E ∼E →R →RE →R/E

Application to EGTRSs: →↔
E

=E →Rrm →Rrm ,E →R/E

Note that (i) →↔
E

is symmetric by definition of
↔
E; (ii) =E is an equivalence due to (Rf)=

(reflexivity), (Sy)= (symmetry), and (Tr)= (transitivity), all included in ThE ; and (iii) =E

is the reflexive and transitive closure of →↔
E

. Unfortunately, the relationship between →R,
=E , and →R/E , is not as required. In particular, →R/E = (=E ◦ →R ◦ =E) does not hold.

▶ Example 19. Consider the following EGTRS

a = b (25)
x ≈ y ⇐ x→∗ y (26)

a → c (27)
a → d⇐ b ≈ c (28)

We have a →R c; but (28) is ThF,R-infeasible, hence a ̸→R d. However, a →R/E d,
as b =E a →R c, i.e., b →R/E c and (28) can be used. Thus, →R = {(a, c)},
(=E ◦ →R ◦ =E) = {(a, c), (b, c)}, and →R/E = {(a, c), (b, c), (a, d), (b, d)}, i.e.,
→R/E ̸= (=E ◦ →R ◦ =E).

▶ Remark 20 (Rewriting modulo and rewriting in conditional systems). Example 19 shows
a mismatch between the definition of →R/E for an EGTRS R (Definition 17) and the
abstract definition (10), usually understood for ETRSs. For EGTRSs (and already for
CTRSs), the connection →R/E = (=E ◦ →R ◦ =E) is lost. This is because the conditions
in rules are treated using, e.g., →∗R to obtain →R (see, e.g., [19, Definition 7.1.4]), whereas
computations with →R/E evaluate conditions using →∗R/E instead, see, e.g., [4, page 819].
We overcome this problem as follows.

▶ Definition 21 (CR-theory of an EGTRS). Let R = (F , Π, E, H, R) be an EGTRS. The
CR-theory of R is

Rcr = ThEq[F , E] ∪ ThR[F , Rrm] ∪ ThR,M[F , Rrm] ∪ ThR/M[F , Rrm] ∪ {(HC)α | α ∈ Hrm}

Then, →Rrm and →Rrm ,E (and also →∗Rrm and →∗Rrm ,E) are defined as follows:

s→Rrm t ⇔ Rcr ⊢ s→ t and s→Rrm ,E t ⇔ Rcr ⊢ s
ps→ t

In contrast to →R and →R,E , to obtain →Rrm and →Rrm ,E conditions in rules are evaluated
using →R/E (instead of →R and →R,E). Now, the requirements (10) and (11) are fulfilled.

▶ Proposition 22. Let R = (F , Π, E, H, R) be an EGTRS. Then, →R/E = (=E ◦ →Rrm

◦ =E). Also, →Rrm ⊆→Rrm ,E ⊆→R/E.

▶ Remark 23 (Use of Jouannaud & Kirchner’s abstract framework). By the first statement
in Proposition 22, E-confluence of EGTRSs (Definition 18) and E-confluence of →Rrm (as
an abstract relation on terms, Definition 3) coincide. This enables the use of the results of
Section 3 to analyze E-confluence of EGTRSs.
The results in Section 3 apply to EGTRSs according to the correspondence in Table 2. As a
consequence of Proposition 6 and Theorem 7 we have the following.

▶ Corollary 24. Let R = (F , Π, E, H, R) be an EGTRS. If R is E-terminating and→Rrm ,E is
locally confluent modulo E with →Rrm and locally coherent modulo E, then R is E-confluent.

S. Lucas 37:9

The following result is essential in the analysis of peaks in Sections 5 and 6.

▶ Proposition 25. Let R = (F , Π, E, H, R) be a EGTRS and s, t ∈ T (F ,X).
If s→Rrm t, then there is p ∈ Pos(s) and ℓ→ r ⇐ c ∈ Rrm such that (i) s|p = σ(ℓ) for
some substitution σ, (ii) for all A ∈ c, Rcr ⊢ σ(A) holds, and (iii) t = s[σ(r)]p.
If s→Rrm ,E t, then there is p ∈ Pos(s) and ℓ→ r ⇐ c ∈ Rrm such that (i) s|p =E σ(ℓ)
for some substitution σ, (ii) for all A ∈ c, Rcr ⊢ σ(A) holds, and (iii) t = s[σ(r)]p.

5 Analysis of local confluence modulo E of →Rrm ,E with →Rrm

Given an EGTRS R = (F , Π, E, H, R) and terms s, t, and t′, rewriting peaks (12) become:

t Rrm ,E←s→Rrm t′ (29)

▶ Example 26. Consider E and R (=Rrm) in Example 14 viewed as an EGTRS R =
({a, b, c, d, f}, {=,→,→∗}, E, ∅, R). Since (i) f(c) =E f(a) =E b →(17) d and (ii) c →(16) d,
we have the following rewriting peak:

d (17),E←
←−−−
f(c−→) →(16) f(d) (30)

The Rrm, E-joinability of all peaks (29) characterizes local confluence modulo E of →Rrm ,E

with →Rrm , which provides an ingredient to prove E-confluence (see Corollary 24). By
Proposition 25, there are positions p, p′ ∈ Pos(s), rules α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm

sharing no variable (rename if necessary), and substitution σ, such that (i) s|p = w =E σ(ℓ)
and σ(c) hold; and (ii) s|p′ = σ(ℓ′) and σ(c′) hold, i.e., every rewriting peak is of the form

t = s[σ(r)]p Rrm ,E← s[w←−]p = s = s[σ(ℓ′)
−−→

]p′ →Rrm s[σ(r′)]p′ = t′ (31)

Depending on the relative location of p and p′, different classes of peaks (31) are distinguished.

Disjoint rewriting peaks. If p and p′ in (31) are disjoint, i.e., p ∥ p′, then s =
s[w]p[σ′(ℓ′)]p′ = s[σ′(ℓ′)]p′ [w]p. Accordingly, (31) can be written as follows:

t = s[σ(r)]p[σ(ℓ′)]p′ Rrm ,E← s[w←−]p[σ(ℓ′)
−−→

]p′ →Rrm s[w]p[σ(r′)]p′ = t′ (32)

Now, t = s[σ(r)]p[σ(ℓ′)
−−→

]p′ →Rrm s[σ(r)]p[σ(r′)]p′ Rrm ,E← s[w←−]p[σ(r′)]p′ = t′, i.e., t and t′

are Rrm, E-joinable.

Nested rewriting peaks. If p′ = p.p ∈ Pos(s) for p and p′ in (31) and some position p,
then (31) can be written in one of the following possibilities, according to the position where
the →Rrm -step applies (by abuse, we also use t and t′).
1. In the first case, rewriting with →Rrm occurs above or on the →Rrm ,E-step and we have

t = σ(ℓ′)[σ(r)]p Rrm ,E← σ(ℓ′)[←−w]p−−−−−−→
→Rrm σ(r′) = t′ (33)

where w =E σ(ℓ) and p ≥ Λ. We call (33) an Rrm-up peak. We distinguish two cases:
a. If p ∈ PosF (ℓ′), then σ(ℓ′)|p = σ(ℓ′|p) = w =E σ(ℓ), i.e., ℓ and ℓ′|p E-unify and we

say that (33) is an E-critical Rrm-up peak;
b. If p /∈ PosF (ℓ′), there is x ∈ Var(ℓ′) such that ℓ′|q = x for some q ≤ p and (33) is a

variable Rrm-up peak.

CSL 2024

37:10 Confluence of Conditional Rewriting Modulo

2. In the second case, rewriting with →Rrm occurs below the →Rrm ,E-step; we have
t = σ(r) Rrm ,E←

←−−−−−−
w[σ(ℓ′)
−−→

]p →Rrm w[σ(r′)]p = t′ (34)
where w = w[σ(ℓ′)]p =E σ(ℓ) and p > Λ, as p = Λ coincide with p = Λ in (33). We call
(34) an Rrm-down peak. For instance, (30) is an Rrm-down peak.

▶ Remark 27. If E = ∅, then →Rrm ,E=→Rrm , and Rrm-up and Rrm-down peaks boil down
into a unique class of peaks, just distinguishing critical and variable peaks.

From the proof of [11, Theorem 16] (Case 4 in page 1171), for Rrm-down peaks involving
unconditional rules, we have:

▶ Proposition 28. Let R = (F , Π, E, H, R) be an EGTRS. If →Rrm ,E is locally coherent
modulo E, then Rrm-down peaks (34) such that α and α′ are unconditional rules are Rrm, E-
joinable.

6 Analysis of local coherence modulo E of →Rrm ,E

Given an EGTRS R = (F , Π, E, H, R) and terms s, t, t′, coherence peaks (13) are of the
form

t Rrm ,E←s→↔
E

t′ (35)

Given a term s, positions p, p′ ∈ Pos(s), an oriented equation λ → ρ ⇐ d ∈
↔
E, a rule

α : ℓ→ r ⇐ c ∈ Rrm (sharing no variables), and substitution σ, such that (i) s|p = w =E σ(ℓ)
and σ(c) hold; and (ii) s|p′ = σ(λ) and σ(d) hold, every coherence peak (35) is of the form

t = s[σ(r)]p Rrm ,E← s[w←−]p = s = s[σ(λ)
−−→

]p′ →↔
E

s[σ(ρ)]p′ = t′ (36)

Disjoint coherence peaks. If p and p′ in (36) are disjoint, then s = s[w]p[σ(λ)]p′ =
s[σ(λ)]p′ [w]p and we have:

t = s[σ(r)]p[σ(λ)]p′ ↔
E
← s[σ(r)]p[σ(ρ)]p′ Rrm ,E← s[w]p[σ(ρ)]p′ = t′

Since t →↔
E

s[σ(r)]p[σ(ρ)]p′ implies t =E s[σ(r)]p[σ(ρ)]p′ , we conclude that t and t′ are
right-strict Rrm, E-joinable.

Nested coherence peaks. If p and p′ in (36) are not disjoint, then (36) can be written in
one of the following three ways (again, by abuse, we use t and t′):

t = σ(λ)[σ(r)]p Rrm ,E←
←−−
σ(λ)
−−→

→↔
E

σ(ρ) = t′ (37)

t = σ(λ)[σ(r)]p Rrm ,E← σ(λ)[←−w]p−−−−−−→
→↔

E
σ(ρ) = t′ (38)

t = σ(r) Rrm ,E←
←−−−−−
w[σ(λ)
−−→

]p →↔
E

w[σ(ρ)]p = t′ (39)

that we call E-root (37), E-up (38), and E-down (39) coherence peaks, depending on the
application of the →↔

E
-step. Note that σ(ℓ) =E σ(λ) in (37), and p > Λ in (38) and (39).

▶ Proposition 29. Coherence peaks (37) and (39) are right-strict Rrm, E-joinable.

Now, we investigate finite representations of nested rewriting and coherence peaks.

S. Lucas 37:11

7 Conditional pairs for proving E-confluence of EGTRSs

In the following, we deal with general conditional pairs, or just conditional pairs, as follows,
see [15, Section 5]:

▶ Definition 30 (Conditional pair). A conditional pair is an expression ⟨s, t⟩︸︷︷︸
peak

⇐ A1, . . . , An︸ ︷︷ ︸
conditional part

,

where s and t are terms and A1, . . . , An are atoms.

▶ Definition 31 (Joinability of conditional pairs). Let R = (F , Π, E, H, E) be an EGTRS. A
conditional pair π : ⟨s, t⟩ ⇐ c is Rrm, E-joinable (resp. right-strict Rrm, E-joinable, R/E-
joinable) iff for all substitutions σ, if Rcr ⊢ σ(A) holds for all A ∈ c, then σ(s) and σ(t) are
Rrm, E-joinable (resp. right-strict Rrm, E-joinable, R/E-joinable).

▶ Definition 32 (Feasible conditional pair). Let R be an EGTRS. A general conditional pair
⟨s, t⟩ ⇐ c is Rcr-feasible (or just feasible if Rcr is clear from the context) if c is Rcr-feasible.

The following result is immediate from Definitions 31 and 32.

▶ Proposition 33. Let R be an EGTRS. Rcr-infeasible conditional pairs are Rrm, E-joinable
(resp. right-strict Rrm, E-joinable, R/E-joinable)

We describe three families of conditional pairs which are useful to prove and disprove
E-confluence.

7.1 Logic-based conditional critical pairs
These pairs capture Rrm-up and E-up critical peaks.

▶ Definition 34 (Logic-based conditional critical pair). Let α : ℓ→ r ⇐ c and α′ : ℓ′ → r′ ⇐ c′

be two rules sharing no variables, together with a non-variable position p ∈ PosF (ℓ). The
logic-based conditional critical pair (LCCP for short) πα,p,α′ of α at position p with α′ is:

πα,p,α′ : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ (40)

Our terminology “logic-based conditional critical pair” tries to avoid confusion with the
E-critical pairs for ETRSs of [11, Definition 12] and also the conditional critical pairs for
rewrite theories of [4, Definition 6] which make an explicit use of E-unifiers which we avoid
by including the atom ℓ|p = ℓ′ in the conditional part of (40). Given sets of rules U and
V , we let GLCCP(U, V) = {πα,p,α′ | α : ℓ → r ⇐ c ∈ U, p ∈ PosF (ℓ), α′ ∈ V }. For
R = (F , Π, E, H, R), we let

LCCP(R) = GLCCP(Rrm, Rrm) and LCCP(E,R) = GLCCP(
↔
E, Rrm)

For GTRSs involving finite sets of equations and rules, both LCCP(R) and LCCP(E,R) are
finite. The following result shows that they suffice to capture any possible critical peak.

▶ Proposition 35 (Critical peaks and LCCPs). Let R = (F , Π, E, H, R) be a EGTRS.
Let α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, induce Rrm-up critical
peaks (33) with p ∈ PosF (ℓ′) as in (33). Then, (33) is Rrm, E-joinable (R/E-joinable),
iff πα,p,α′ ∈ LCCP(R) is Rrm, E-joinable (R/E-joinable).
Let α : ℓ → r ⇐ c ∈ Rrm and β : λ → ρ ⇐ d ∈

↔
E, sharing no variable, induce E-up

critical peaks (38) with p ∈ PosF (λ) as in (38). Then, (38) is right-strict Rrm, E-joinable
(R/E-joinable) iff πα,p,β ∈ LCCP(E,R) is right-strict Rrm, E-joinable (R/E-joinable).

CSL 2024

37:12 Confluence of Conditional Rewriting Modulo

▶ Example 36. (Continuing Example 26) LCCP(R) consists of:
α p α′ LCCP

(16) Λ (16) ⟨d, d⟩ ⇐ c = c (41)
(16) Λ (17) ⟨d, d⟩ ⇐ c = b (42)
(17) Λ (17) ⟨d, d⟩ ⇐ b = c (43)

which are all trivially Rrm, E-joinable. Note that π(17),Λ,(16) is not considered as it is
Rrm, E-joinable iff π(16),Λ,(17) is. Regarding LCCP(E,R), we have that π←−−(14),1,(16) i.e.,

⟨f(d), b⟩ ⇐ a = c

is not right-strict Rrm, E-joinable: although the conditional part a = c holds, and b→Rrm ,E d,
⟨f(d), d⟩ is not Rrm, E-joinable.

▶ Example 37. For R in Example 1, LCCP(R) consists of 22 LCCPs. The complete list and
proofs of Rrm, E-joinability are given in Appendix A. Representative examples are:

π(24),Λ,(24) is

⟨m′+n′, m+n⟩ ⇐ sum(m ++ ns) = sum(m′ ++ ns′), Nat(m), sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′

If a substitution σ satisfies the conditional part, then σ(m ++ ns) =E σ(m′ ++ ns′), i.e.,
the sequences σ(m ++ ns) and σ(m′ ++ ns′) are identical except for the distribution of
parenthesis. Furthermore, σ(m) and σ(m′) are the same natural number in Peano’s nota-
tion. Therefore, σ(ns) and σ(ns′) are identical up to parenthization. Hence, sum(σ(ns))
and sum(σ(ns′)) can be reduced by →∗R/E to the same expression, i.e., we can assume
that σ(n) and σ(n′) coincide and thus that σ(m + n) and σ(m′ + n′) are Rrm, E-joinable.
π(21),Λ,(22) is ⟨s(m′ + n′), n⟩ ⇐ 0 + n = s(m′) + n′. Since the conditional part is clearly
infeasible, π(21),Λ,(22) is trivially Rrm, E-joinable.

LCCP(E,R) consists of 16 LCCPs. Every π ∈ LCCP(E,R) is infeasible: they include a
condition s = t where s is rooted with ++ and t is always rooted with a different symbol.
For instance, π−→(1),Λ,(21) is ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = 0 + n. Thus, every
π ∈ LCCP(E,R) is right-strict Rrm, E-joinable, see Appendix A too. Hence, all pairs in
LCCP(R) are Rrm, E-joinable and all pairs in LCCP(E,R) are right-strict Rrm, E-joinable.

7.2 Conditional variable pairs
These pairs capture Rrm-up and E-up variable peaks.

▶ Definition 38 (Parametric conditional variable pair). Let α : s→ t⇐ c be a rule where s

can be a variable, x ∈ Var(s), p ∈ Posx(s), and x′ /∈ α be a fresh variable. Let ▷◁ be a binary
relation on terms. Define a ▷◁-parametric Conditional Variable Pair (CVP) π▷◁

α,x,p as follows:

π▷◁
α,x,p : ⟨s[x′]p, t⟩ ⇐ x ▷◁ x′, c (44)

In the following, CVP(U, ▷◁) is the set of all ▷◁-parametric CVPs in a set of rules U . We let

CVP(R) = CVP(Rrm,
ps→) and CVP(E) = CVP(

↔
E,

ps→)

▶ Proposition 39 (Variable peaks and CVPs). Let R = (F , Π, E, H, R) be an EGTRS.
Let α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, determine variable
Rrm-up peaks (33) with p /∈ PosF (ℓ′) as in (33). Then, (33) is Rrm, E-joinable (R/E-
joinable) iff π

ps→
α′,x,q ∈ CVP(R) (for some x ∈ Var(ℓ′) and q ∈ Posx(ℓ′) such that q ≤ p)

is Rrm, E-joinable (R/E-joinable).

S. Lucas 37:13

Let α : ℓ→ r ⇐ c ∈ Rrm and β : λ→ ρ⇐ d ∈
↔
E, sharing no variable, determine variable

E-up peaks (38) with p /∈ PosF (λ) as in (38). Then, (38) is right-strict Rrm, E-joinable
(R/E-joinable) iff π

ps→
β,x,q ∈ CVP(E) (for some q ∈ Posx(λ) and x ∈ Var(λ) such that

q ≤ p) is right-strict Rrm, E-joinable (R/E-joinable).
For unconditional rules, we have the following.

▶ Proposition 40. Let R = (F , Π, E, H, R) be an EGTRS and α : λ→ ρ be an unconditional
rule, where λ can be a variable. Then, for all x ∈ Var(λ) and p ∈ Posx(λ), π

ps→
α,x,p is Rrm, E-

joinable. If x ∈ Var(ρ), then π is right-strict joinable.

Accordingly, in the following we dismiss from CVP(R) those CVPs obtained from uncondi-
tional rules in R; and we also dismiss from CVP(E) those CVPs obtained from unconditional
rules λ→ ρ ∈

↔
E whose critical variable x occurs in ρ.

▶ Example 41. For R in Example 1, CVP(R) consists of the following:
α var. p CVP

(23) n 1 ⟨sum(n′), n⟩ ⇐ n
ps→ n′, Nat(n) (45)

(24) m 1.1 ⟨sum(m′ ++ ns), m + n⟩ ⇐ m
ps→ m′, Nat(m), sum(ns) ≈rm n (46)

(24) ns 1.2 ⟨sum(m ++ ns′), m + n⟩ ⇐ ns
ps→ ns′, Nat(m), sum(ns) ≈rm n (47)

These CVPs are infeasible, as terms t satisfying Nat(t) are of the form sp(0) for some p ≥ 0
and hence →Rrm ,E-irreducible. Hence they are Rrm, E-joinable. The set CVP(E) is empty,
as all variables in the left hand side of the unconditional rules

−→
(1) and

←−
(1) also occur in the

corresponding right-hand side (Proposition 40).

For R in Example 26, CVP(R) = ∅.

7.3 Down conditional critical pairs
Rrm-down peaks (34) combine possible rule overlaps (modulo) and the application of rules
“below” a variable. Unfortunately, these two sources of divergence do not admit a neat
separation (as done for Rrm-up peaks) into “critical” and “variable” Rrm-down peaks to
be captured by means of LCCPs and CVPs. Alternatively, down conditional critical pairs
capture these two (mingled) situations at once. First consider the predicate ✄× defining a
strict subterm relation on pairs (s, t) of terms by the following clauses:

(Sb)✄
×

f,i (f(x1, . . . , xi, . . . , xk), f(x1, . . . , x′
i, . . . , xk)) ✄× (xi, x′

i)
(Sb2)✄

×

f,i (f(x1, . . . , xi, . . . , xk), f(x1, . . . , x′
i, . . . , xk)) ✄× (x, x′)⇐ (xi, x′

i) ✄× (x, x′)

Let Th✄×(F) = {(HC)(Sb)✄×
f,i

, (HC)(Sb2)✄×
f,i

| f ∈ F , 1 ≤ i ≤ ar(f)}.

▶ Proposition 42. Let F be a signature and s, t, u, v be terms. Then, Th✄×(F) ⊢ (s, t)✄×(u, v)
holds iff there is a nonempty context C[] such that s = C[u] and t = C[v].

▶ Definition 43 (Down conditional critical pairs). Let R = (F , Π, E, H, R) be an EGTRS.
Rules α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm (sharing no variables) define a Down
Conditional Critical Pair (DCCP for short) as follows:

πα,α′ : ⟨r, x′⟩ ⇐ x = ℓ, (x, x′)✄×(ℓ′, r′), c, c′ (48)

where x and x′ are fresh variables. The set of DCCPs of R is

DCCP(R) = {πα,α′ | α, α′ ∈ Rrm}

CSL 2024

37:14 Confluence of Conditional Rewriting Modulo

▶ Proposition 44 (Rrm-peaks and DCCPs). Let R = (F , Π, E, H, R) be an EGTRS. Let
α : ℓ → r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ Rrm, sharing no variable, determine Rrm-down
critical peaks (34). Then, (34) is Rrm, E-joinable (R/E-joinable) iff πα,α′ ∈ DCCP(R) is
Rrm, E-joinable (R/E-joinable).

▶ Remark 45 (Continuing Remark 27). If E = ∅ in an EGTRS R = (F , Π, E, H, R), then all
peaks represented by DCCP(R) are captured by LCCP(R) and CVP(R).

▶ Example 46. For R in Example 26, DCCP(R) consists of the following DCCPs:
α α′ DCCP

(16) (16) ⟨d, x′⟩ ⇐ x = c, (x, x′) ✄×(c, d) (49)
(16) (17) ⟨d, x′⟩ ⇐ x = b, (x, x′) ✄×(c, d) (50)
(17) (16) ⟨d, x′⟩ ⇐ x = c, (x, x′) ✄×(b, d) (51)
(17) (17) ⟨d, x′⟩ ⇐ x = b, (x, x′) ✄×(b, d) (52)

As for (50), σ = {x 7→ f(c), x′ 7→ f(d)} satisfies the conditional part as σ(x) = f(c) =E

f(a) =E b and (f(c), f(d) ✄×(c, d). However, d and f(d) are not Rrm, E-joinable.

▶ Proposition 47. Let R = (F , Π, E, H, R) be an EGTRS and α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐
c′ ∈ Rrm be such that ℓ = ℓ[x1, . . . , xn] is linear, Var(ℓ) = {x1, . . . , xn}, and for all terms
t, if t =E σ(ℓ) for some substitution σ satisfying c and c′, then t = ℓ[t1, . . . , tn] for some
terms t1, . . . , tn. If every LCCP πα,p,α′ is Rrm, E-joinable for all p ∈ PosF (ℓ), and every
CVP π

ps→
α,x,q is Rrm, E-joinable for all x ∈ Var(ℓ) and q ∈ Posx(ℓ), then the DCCP πα,α′ is

Rrm, E-joinable.

By Propositions 28 and 44, dealing with EGTRSs R such that →Rrm ,E is locally coherent
modulo E, we can dismiss DCCPs for unconditional rules α and α′.

▶ Example 48. For R in Example 1, DCCP(R) consists of 16 DCCPs (involving a conditional
rule). The complete list (with all Rrm, E-joinability proofs) is given in Appendix A. A
representative example is π(21),(24), i.e.,

⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) ✄×(sum(m′ ++ ns′), m′ + n′), Nat(m′), sum(ns′) ≈rm n′

If σ satisfies the conditional part, then σ(x) =E 0 + σ(n) holds. Since + /∈ D(
↔
E), it follows

that σ(x) = 0 + σ(n). Thus, by Proposition 47 and since every π ∈ LCCP(R) ∪ CVP(R) is
Rrm, E-joinable (Examples 37 and 41), π(21),(24) is Rrm, E-joinable.

Example 46 shows that Rrm, E-joinability of all π ∈ LCCP(R) ∪ CVP(R) does not imply
Rrm, E-joinability of DCCPs in DCCP(R) unless the conditions in Proposition 47 are fulfilled.

8 Proving and disproving E-confluence

The following result shows how to prove and disprove E-confluence.

▶ Theorem 49. Let R = (F , Π, E, H, R) be an EGTRS.
1. →Rrm ,E is locally confluent modulo E with →Rrm iff every π ∈ LCCP(R) ∪ CVP(R) ∪

DCCP(R) is Rrm, E-joinable.
2. →Rrm ,E is locally coherent modulo E iff every π ∈ LCCP(E,R) ∪ CVP(E) is right-strict
Rrm, E-joinable.

3. If R is E-terminating, then R is →Rrm ,E-Church-Rosser modulo E iff every π ∈
LCCP(R)∪CVP(R)∪DCCP(R) is Rrm, E-joinable, and every π ∈ LCCP(E,R)∪CVP(E)
is right-strict Rrm, E-joinable.

S. Lucas 37:15

4. If R is E-terminating, every π ∈ LCCP(R)∪CVP(R)∪DCCP(R) is Rrm, E-joinable, and
every π ∈ LCCP(E,R) ∪ CVP(E) is right-strict Rrm, E-joinable, then R is E-confluent.

5. If there is π ∈ LCCP(R)∪CVP(R)∪DCCP(R) which is not R/E-joinable, then R is not
E-confluent.

▶ Example 50. (Continuing Example 1) For R in Example 1, every π ∈ LCCP(R) ∪
CVP(R) ∪ DCCP(R) is Rrm, E-joinable (see Examples 37, 41, and 48) and every π ∈
LCCP(E,R) ∪ CVP(E) is right-strict Rrm, E-joinable (see Examples 37 and 41). It is not
difficult to see that R is E-terminating. Thus, by Theorem 49(4), R is E-confluent.

▶ Example 51. For R in Example 26, the DCCP (50) has been proved non-R/E-joinable
in Example 46. By Theorem 49(5), R is not E-confluent. Note that all pairs in LCCP(R)
are joinable (see Example 36) and CVP(R) is empty. Thus, DCCP(R) is the only set of
conditional pairs that can be used to disprove E-confluence of R.

9 Related work

GTRSs and EGTRSs. A Generalized Term Rewriting System (GTRS, [15, Definition 51])
is a tuple R = (F , Π, µ, H, R), where F , Π, H and R are defined as above, and µ is a
replacement map establishing which arguments µ(f) can be rewritten for each function
symbol f ∈ F [14]. EGTRSs do not use replacement maps, which corresponds to “use” the
so-called top replacement map µ⊤ which permits all rewritings in all arguments of symbols.
We have borrowed from [15, Definition 30] the notion of conditional variable pair, although
we use it here in a slightly different way, as conditional pairs ⟨s, t⟩ ⇐ x

ps→ x′, c where ps→
is interpreted as →R,E , but possible rewritings in c may correspond to →R/E , →∗R/E , etc.
Conditional variable pairs of GTRSs R are written ⟨s, t⟩ ⇐ x → x′, c, where → is the
one-step rewrite relation →R of R and conditions in c are treated using →R, →∗R, etc.

Plaisted proposed quite a general notion of conditional rewrite systems where rules are viewed
as clauses including (possibly many) negative literals [21]. In this respect, EGTRSs are
particular cases of Plaisted’s conditional rewrite systems. Plaisted also provides a complete
specification of the logical theory which could be used (together with such rules) to obtain
the desired reduction, see [21, page 217]. However, equational components are not allowed.

Jouannaud and Kirchner’s main result for ETRSs [11, Theorem 16], cannot be used to
disprove E-confluence of ETRSs. For instance, the proof of non-E-confluence of R in Example
26 would not be obtained. Actually, (30) in Example 26 is an R-down rewriting peak. Such
peaks are explictly excluded to obtain E-critical pairs in [10, 11]4. Our down conditional
critical pairs (DCCPs) fill this gap. On the other hand, Jouannaud and Kirchner’s results
for proving confluence of ETRSs modulo permit an application to relations RE on terms
like →L ∪ →N ,E , where L and N are a partition of R where L includes left-linear rules
only and N includes any other rules [11, Section 3.5]. The case considered here, →R,E , is a
particular case of the previous one, where L = ∅ and N = R. Under these conditions, [11,
Theorem 16] treats proofs of E-confluence essentially as our Theorem 49.(4) (as CVP(R) and
DCCP(R) can be dismissed according to the discussion above). The aforementioned more
general treatment for EGTRSs is left as an interesting subject for future work.

4 “we do not consider the case where →R applies at an occurrence p and →R,E at the outermost occurrence
Λ” [11, below E-critical pairs lemma] (notation adapted).

CSL 2024

37:16 Confluence of Conditional Rewriting Modulo

Durán and Meseguer investigated E-confluence of conditional rewrite theories R = (F , A, R)
[4]. Such theories include CTRSs. Conditional equations s = t⇐ c can be specified, but they
are treated as conditional rewrite rules (in R) by imposing some specific orientation (e.g.,
s→ t⇐ c). Only unconditional equations s = t (called axioms) which are linear and regular
(i.e., Var(s) = Var(t) [4, page 819]) are used in E (denoted A in [4]). The main result about
E-confluence is [4, Theorem 2], which characterizes E-confluence by the joinability of the set
of conditional E-critical pairs obtained from rules ℓ→ r ⇐ c and ℓ′ → r′ ⇐ c′ in R (which
may include oriented conditional equations) by computing (if possible) the A-unifiers of ℓ|p
and ℓ′ for some nonvariable position p ∈ PosF (ℓ) [4, Definition 6]. However, a number of
restrictions are imposed: (i) A is a set of linear and regular unconditional equations; (ii)
R is strongly A-coherent (i.e., for all terms u, u′, and v, if u →R/A v and u =A u′, then
u′ →R,A v′ and v =A v′ [4, page 819]); (iii) the rules in R are strongly deterministic [4,
Definition 1]; (iv) R is quasi-decreasing [4, Definition 2]. Again, this result would not apply
to disprove E-confluence of R in Example 26; note that E satisfies the requirements for
axioms A in [4]. We have: b =E f(a)→R f(d), i.e., b→R/E f(d), but the only →R,E-step on
b is b→R,E d, and f(d) ̸=E d. Thus, R is not strongly E-coherent and [4, Theorem 2] does
not apply. Also, the proof of E-confluence for R in Example 1 could not (in principle) be
obtained from [4, Theorem 2]: since the set of E-unifiers for the left-hand sides of rules is
infinite (Example 2), the joinability of infinitely many conditional E-critical pairs should be
checked. Also, we do not require (i)-(iv) above in Theorem 49; only E-termination.

10 Conclusion and future work

We have introduced Equational Generalized Term Rewriting Systems (EGTRSs) consisting of
conditional rules and conditional equations whose conditions are sequences of atoms, possibly
defined by additional Horn clauses. Rewriting computations with EGTRSs R are described
by deduction in appropriate FO-theories. We show that E-confluence of EGTRSs can be
proved and disproved by checking (right-strict) Rrm, E-joinability or non-R/E-joinability of
finite sets of conditional pairs of three kinds: Logic-based Conditional Critical Pairs (LCCPs),
Conditional Variable Pairs (CVPs), and Down Conditional Critical Pairs (DCCPs). As
far as we know, none of them had been used in proofs of E-confluence yet. The discussed
examples suggest that the new techniques can be useful.

Future work. Much work remains to be done for a practical use of these new proposals. The-
orem 49 heavily relies on checking (right-strict) Rrm, E-joinability and non-R/E-joinability
of LCCPs, CVPs, and DCCPs, to obtain proofs of (non) E-confluence. We plan to improve
our tool CONFident [8], which implements methods for the analysis of similar conditional pairs
(see [15, 16]) and heavily relies on the (in)feasibility results developed in [7] and implemented
in the tool infChecker. It also uses theorem provers like Prover9 [17] and model generators
like Mace4 [17] and AGES [6] to implement these checkings. Overall, this approach has
proved useful to prove confluence of variants of TRSs, see [8, Section 9] for an account.
Unfortunately, our preliminary attempts to follow this methodology to prove E-confluence of
EGTRSs in CONFident suggest that the use of the generic reasoning methods implemented
in these tools is not powerful enough as to deal with the conditional pairs involved in
E-confluence proofs. For instance, LCCPs avoid considering (infinitely many) conditional
E-critical pairs. From a practical point of view, though (in particular, to obtain an efficient
implementation), it is important to investigate the possibility of a mixed use of conditional

S. Lucas 37:17

E-critical pairs together with LCCPs. For instance, if there is an E-unification algorithm
and the set of (complete) E-unifiers is finite, then the corresponding (computable and finite
set of) conditional E-critical pairs could be used instead of LCCPs. In spite of this, DCCPs
and CVPs remain as main ingredients in proofs of (non-)E-confluence.

Finally, exploring the impact of our techniques in first-order deduction modulo see, e.g., [3]
and the references therein, is another interesting subject of future work.

References

1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

2 Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 445–532. Elsevier
and MIT Press, 2001. doi:10.1016/b978-044450813-3/50010-2.

3 Gilles Dowek. Automated theorem proving in first-order logic modulo: on the difference between
type theory and set theory. CoRR, abs/2306.00498, 2023. doi:10.48550/ARXIV.2306.00498.

4 Francisco Durán and José Meseguer. On the church-rosser and coherence properties of
conditional order-sorted rewrite theories. J. Log. Algebraic Methods Program., 81(7-8):816–850,
2012. doi:10.1016/j.jlap.2011.12.004.

5 Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer, 1996. doi:10.1007/978-1-4612-2360-3.

6 Raúl Gutiérrez and Salvador Lucas. Automatic Generation of Logical Models with AGES. In
Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th International Conference
on Automated Deduction, Proceedings, volume 11716 of Lecture Notes in Computer Science,
pages 287–299. Springer, 2019. doi:10.1007/978-3-030-29436-6_17.

7 Raúl Gutiérrez and Salvador Lucas. Automatically Proving and Disproving Feasibility Condi-
tions. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020, Proceedings, Part II, volume 12167 of Lecture
Notes in Computer Science, pages 416–435. Springer, 2020. doi:10.1007/978-3-030-51054-1_
27.

8 Raúl Gutiérrez, Miguel Vítores, and Salvador Lucas. Confluence Framework: Proving
Confluence with CONFident. In Alicia Villanueva, editor, Logic-Based Program Syn-
thesis and Transformation - 32nd International Symposium, LOPSTR 2022, Proceedings,
volume 13474 of Lecture Notes in Computer Science, pages 24–43. Springer, 2022. doi:
10.1007/978-3-031-16767-6_2.

9 Gérard P. Huet. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. J. ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.

10 Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting systems: Application
to proofs in abstract data types. In Giorgio Ausiello and Marco Protasi, editors, CAAP’83,
Trees in Algebra and Programming, 8th Colloquium, Proceedings, volume 159 of Lecture Notes
in Computer Science, pages 269–283. Springer, 1983. doi:10.1007/3-540-12727-5_16.

11 Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15(4):1155–1194, 1986. doi:10.1137/0215084.

12 Stephen Cole Kleene. Mathematical Logic. Dover Publications, 2002. Originally published by
John Wiley & Sons, 1967.

13 Donald E. Knuth and Peter E. Bendix. Simple Word Problems in Universal Algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press,
1970.

14 Salvador Lucas. Context-sensitive Rewriting. ACM Comput. Surv., 53(4):78:1–78:36, 2020.
doi:10.1145/3397677.

CSL 2024

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.48550/ARXIV.2306.00498
https://doi.org/10.1016/j.jlap.2011.12.004
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-030-29436-6_17
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-031-16767-6_2
https://doi.org/10.1007/978-3-031-16767-6_2
https://doi.org/10.1145/322217.322230
https://doi.org/10.1007/3-540-12727-5_16
https://doi.org/10.1137/0215084
https://doi.org/10.1145/3397677

37:18 Confluence of Conditional Rewriting Modulo

15 Salvador Lucas. Local confluence of conditional and generalized term rewriting systems.
Journal of Logical and Algebraic Methods in Programming, 136:paper 100926, pages 1–23, 2024.
doi:10.1016/j.jlamp.2023.100926.

16 Salvador Lucas, Miguel Vítores, and Raúl Gutiérrez. Proving and disproving confluence
of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming,
126:100749, 2022. doi:10.1016/j.jlamp.2022.100749.

17 William McCune. Prover9 & Mace4. Technical report, University of New Mexico, 2005–2010.
URL: http://www.cs.unm.edu/~mccune/prover9/.

18 Elliott Mendelson. Introduction to mathematical logic (4. ed.). Chapman and Hall, 1997.
19 Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/

978-1-4757-3661-8.
20 Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational

theories. J. ACM, 28(2):233–264, 1981. doi:10.1145/322248.322251.
21 David A. Plaisted. A Logic for Conditional Term Rewriting Systems. In Stéphane Kaplan

and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting Systems, 1st International
Workshop, Proceedings, volume 308 of Lecture Notes in Computer Science, pages 212–227.
Springer, 1987. doi:10.1007/3-540-19242-5_16.

22 Gordon D. Plotkin. Building-in equational theories. Machine Intelligence, 7:73–90, 1972.
23 John Alan Robinson. A review of automatic theorem proving. In J.T. Schwartz, editor,

Mathematical Aspects of Computer Science, volume XIX of Proceedings of Simposia in Applied
Mathematics, pages 1–18, 1967. doi:10.1090/psapm/019.

A Conditional pairs for the main running example

A.1 LCCP(R) for R in Example 1

The LCCPs in LCCP(R) for R in Example 1 are displayed in Figure 2. The following result
is useful to analyze their joinability.

▶ Proposition 52. Let R be an EGTRS and π : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ ∈ LCCP(R). If
root(ℓ|p), root(ℓ′) /∈ D(

↔
E), and root(ℓ|p) ̸= root(ℓ′), then π is Rcr-infeasible.

Proof. By definition of LCCP, since p ∈ PosF (ℓ) and α′ ∈ Rrm, we have that ℓ|p, ℓ′ /∈ X .
Thus, for all substitutions σ satisfying ℓ|p = ℓ′, we have σ(ℓ|p)→∗↔

E
σ(ℓ′). Since root(ℓ|p) ̸=

root(ℓ′) and reductions with→↔
E

cannot ultimately lead to a root symbol root(σ(ℓ′)) = root(ℓ′)
in the sequence above, π is Rcr-infeasible. ◀

Regarding Rrm, E-joinability of these LCCPS,
By Proposition 52, the LCCPs (54)–(60); (62)–(67); and (71)–(74) are Rcr-infeasible,
hence Rrm, E-joinable.
(69) is also infeasible as the satisfaction of Nat(n) by a substitution σ is possible only
if σ(n) = sp(0) for some p ≥ 0; in this case, sum(σ(n)) = sum(σ(m′) ++ σ(ns′)), i.e.,
sum(sp(0)) = sum(σ(m′) ++ σ(ns′)) does not hold in Rcr.
The Rrm, E-joinability of (70) is discussed in Example 37. The Rrm, E-joinability of (53),
(61), (68) and (70) is concluded in a similar way.

Thus, every π ∈ LCCP(R) is Rrm, E-joinable.

https://doi.org/10.1016/j.jlamp.2023.100926
https://doi.org/10.1016/j.jlamp.2022.100749
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1145/322248.322251
https://doi.org/10.1007/3-540-19242-5_16
https://doi.org/10.1090/psapm/019

S. Lucas 37:19

α p α′ LCCP
(21) Λ (21) ⟨n′, n⟩ ⇐ 0 + n = 0 + n′ (53)
(21) Λ (22) ⟨s(m′ + n′), n⟩ ⇐ 0 + n = s(m′) + n′ (54)
(21) Λ (23) ⟨n′, n⟩ ⇐ 0 + n = sum(n′), Nat(n′) (55)
(21) Λ (24) ⟨m′ + n′, n⟩ ⇐ 0 + n = sum(m′ ++ ns′), Nat(m′), sum(ns′) ≈rm n′ (56)
(21) 1 (21) ⟨n′ + n, n⟩ ⇐ 0 = 0 + n (57)
(21) 1 (22) ⟨s(m′ + n′) + n, n⟩ ⇐ 0 = s(m′) + n′ (58)
(21) 1 (23) ⟨n′ + n, n⟩ ⇐ 0 = sum(n′), Nat(n′) (59)
(21) 1 (24) ⟨(m′ + n′) + n, n⟩ ⇐ 0 = sum(m′ ++ ns′), Nat(m′), sum(ns′) ≈rm n′ (60)
(22) Λ (22) ⟨s(m′ + n′), s(m + n)⟩ ⇐ s(m) + n = s(m′) + n′ (61)
(22) Λ (23) ⟨n′, s(m + n)⟩ ⇐ s(m) + n = sum(n′), Nat(n′) (62)
(22) Λ (24) ⟨m′ + n′, s(m + n)⟩ ⇐ s(m) + n = sum(m′ ++ ns′), Nat(m′), sum(ns′) (63)
(22) 1 (21) ⟨n′ + n, s(m + n)⟩ ⇐ s(m) = 0 + n′ (64)
(22) 1 (22) ⟨s(m′ + n′) + n, s(m + n)⟩ ⇐ s(m) = s(m′) + n′ (65)
(22) 1 (23) ⟨n′ + n, s(m + n)⟩ ⇐ s(m) = sum(n′), Nat(n′) (66)
(22) 1 (24) ⟨m′ + n′ + n, s(m + n)⟩ ⇐ s(m) = sum(m′ ++ ns′), Nat(m′), sum(ns′) (67)
(23) Λ (23) ⟨n′, n⟩ ⇐ sum(n) = sum(n′), Nat(n), Nat(n′) (68)
(23) Λ (24) ⟨m′ + n′, n⟩ ⇐ sum(n) = sum(m′ ++ ns′), Nat(n), Nat(m′), sum(ns′) ≈rm n′ (69)
(24) Λ (24) ⟨m′ + n′, m + n⟩ ⇐ sum(m ++ ns) = sum(m′ ++ ns′), Nat(m),

sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (70)
(24) 1 (21) ⟨sum(n′), m + n⟩ ⇐ m ++ ns = 0 + n′, Nat(m), sum(ns) ≈rm n (71)
(24) 1 (22) ⟨sum(s(m′ + n′)), m + n⟩ ⇐ m ++ ns = s(m′) + n′, Nat(m), sum(ns) ≈rm n (72)
(24) 1 (23) ⟨sum(n′), m + n⟩ ⇐ m ++ ns = sum(n′), Nat(m), sum(ns) ≈rm n, Nat(n′) (73)
(24) 1 (24) ⟨sum(m′ + n′), m + n⟩ ⇐ m ++ ns = sum(m′ ++ ns′), Nat(m),

sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (74)

Figure 2 LCCPs of R in Example 1.

A.2 LCCP(E, R) for R in Example 1
The LCCPs in LCCP(E,R) for R in Example 1 are displayed in Figure 3. The following
result is useful to analyze their joinability. Here, we say that a set U of conditional rules is
collapsing if there is a feasible rule in U whose right-hand side is a variable.

▶ Proposition 53. Let R be an EGTRS and π : ⟨ℓ[r′]p, r⟩ ⇐ ℓ|p = ℓ′, c, c′ ∈ LCCP(E,R). If
↔
E is not collapsing and root(ℓ′) /∈ D(

↔
E), then π is Rcr-infeasible.

Proof. By definition of LCCP, since p ∈ PosF (ℓ) and α′ ∈ Rrm, we have that ℓ|p, ℓ′ /∈ X .
Thus, for all substitutions σ satisfying ℓ|p = ℓ′, we have σ(ℓ|p) →∗↔

E
σ(ℓ′). Since

↔
E is

not collapsing and root(ℓ′) /∈ D(
↔
E), reductions with →↔

E
cannot ultimately lead to a root

symbol root(σ(ℓ′)) = root(ℓ′) /∈ D(
↔
E) in the sequence above, π is Rcr-infeasible. ◀

The following example shows that non-collapsingness of
↔
E is necessary for Proposition 53 to

hold.

▶ Example 54. Consider the following EGTRS

0 + x = x (75)
f(0) → 0 (76)

We have the following LCCP in LCCP(E,R):

⟨x, x⟩ ⇐ 0 + x = f(0) (77)

CSL 2024

37:20 Confluence of Conditional Rewriting Modulo

α p α′ LCCP
−→
(1) Λ (21) ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = 0 + n (78)
−→
(1) Λ (22) ⟨s(m + n), (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = s(m) + n (79)
−→
(1) Λ (23) ⟨n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = sum(n), Nat(n) (80)
−→
(1) Λ (24) ⟨m + n, (xs ++ ys) ++ zs⟩ ⇐ xs ++ (ys ++ zs) = sum(m ++ ns),

Nat(m), sum(ns) ≈rm n (81)−→
(1) 2 (21) ⟨xs ++ n, (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = 0 + n (82)
−→
(1) 2 (22) ⟨xs ++ s(m + n), (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = s(m) + n (83)
−→
(1) 2 (23) ⟨xs ++ n, (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = sum(n), Nat(n) (84)
−→
(1) 2 (24) ⟨xs ++ (m + n), (xs ++ ys) ++ zs⟩ ⇐ ys ++ zs = sum(m ++ ns), Nat(m),

sum(ns) ≈rm n (85)←−
(1) Λ (21) ⟨n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = 0 + n (86)
←−
(1) Λ (22) ⟨s(m + n), xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = s(m) + n (87)
←−
(1) Λ (23) ⟨n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = sum(n), Nat(n) (88)
←−
(1) Λ (24) ⟨m + n, xs ++ (ys ++ zs)⟩ ⇐ (xs ++ ys) ++ zs = sum(m ++ ns), Nat(m),

sum(ns) ≈rm n (89)←−
(1) 1 (21) ⟨n ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = 0 + n (90)
−→
(1) 1 (22) ⟨s(m + n) ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = s(m) + n (91)
←−
(1) 1 (23) ⟨n ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = sum(n), Nat(n) (92)
←−
(1) 1 (24) ⟨(m + n) ++ zs, xs ++ (ys ++ zs)⟩ ⇐ xs ++ ys = sum(m ++ ns), Nat(m)

sum(ns) ≈rm n (93)

Figure 3 LCCPs of E and R in Example 1.

Substitution σ = {x 7→ f(0)} satisfies the conditional part of (77), i.e., it is Rcr-feasible.

By Proposition 53, the LCCPs in Figure 3 are all Rcr-infeasible, hence right-strict Rrm, E-
joinable. Thus, every π ∈ LCCP(E,R) is right-strict Rrm, E-joinable.

A.3 DCCP(R) for R in Example 1
The DCCPs in DCCP(R) for R in Example 1 are displayed in Figure 4.

α α′ DCCP
(21) (23) ⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) ✄×(sum(n′), n′), Nat(n′) (94)

(21) (24) ⟨n, x′⟩ ⇐ x = 0 + n, (x, x′) ✄×(sum(m′ ++ ns′), m′ + n′), Nat(m′),
sum(ns′) ≈rm n′ (95)

(22) (23) ⟨s(m + n), x′⟩ ⇐ x = s(m) + n, (x, x′) ✄×(sum(n′), n′), Nat(n′) (96)

(22) (24) ⟨s(m + n), x′⟩ ⇐ x = s(m) + n, (x, x′) ✄×(sum(m′ ++ ns′), m′ + n′), Nat(m′),
sum(ns′) ≈rm n′ (97)

(23) (21) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) ✄×(0 + n′, n′), Nat(n) (98)
(23) (22) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) ✄×(s(m′) + n′, s(m′ + n′)), Nat(n) (99)
(23) (23) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) ✄×(sum(n′), n′), Nat(n), Nat(n′) (100)

(23) (24) ⟨n, x′⟩ ⇐ x = sum(n), (x, x′) ✄×(sum(m′ ++ ns′), m′ + n′), Nat(n), Nat(m′),
sum(ns′) ≈rm n′ (101)

(24) (21) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) ✄×(0 + n′, n′), Nat(m),
sum(ns) ≈rm n (102)

(24) (22) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) ✄×(s(m′) + n′, s(m′ + n′)),
Nat(m), sum(ns) ≈rm n (103)

(24) (23) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) ✄×(sum(n′), n′), Nat(m),
sum(ns) ≈rm n, Nat(n′) (104)

(24) (24) ⟨m + n, x′⟩ ⇐ x = sum(m ++ ns), (x, x′) ✄×(sum(m′ ++ ns′), m′ + n′),
Nat(m), sum(ns) ≈rm n, Nat(m′), sum(ns′) ≈rm n′ (105)

Figure 4 DCCPs for R in Example 1.

S. Lucas 37:21

By Proposition 47, since we have proven above that every π ∈ LCCP(R) ∪ CVP(R) is
Rrm, E-joinable, the DCCPs (94)–(101) are Rrm, E-joinable.
Regarding (102)–(105), notice that all these DCCPs contain the following conditions in the
conditional part: (i) x = sum(m ++ ns) and (ii) Nat(m). Therefore, for all substitutions σ

satisfying them, σ(m) = sp(0) for some p ≥ 0 and σ(x) = sum(sp(0) ++ σ(ns)). Therefore,
Proposition 47 can be applied to conclude Rrm, E-joinability of all of them.

Therefore, every π ∈ DCCP(R) is Rrm, E-joinable.

CSL 2024

A First Order Theory of Diagram Chasing
Assia Mahboubi
Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France
Vrije Universiteit Amsterdam, The Netherlands

Matthieu Piquerez
Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Abstract
This paper discusses the formalization of proofs “by diagram chasing”, a standard technique for
proving properties in abelian categories. We discuss how the essence of diagram chases can be
captured by a simple many-sorted first-order theory, and we study the models and decidability of
this theory. The longer-term motivation of this work is the design of a computer-aided instrument
for writing reliable proofs in homological algebra, based on interactive theorem provers.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Diagram chasing, formal proofs, abelian categories, decidability

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.38

Related Version
Full Version: https://hal.science/hal-04266479
Full Version: https://arxiv.org/abs/2311.01790

Supplementary Material Software: https://gitlab.inria.fr/mpiquere/coq-diagram-chasing
archived at swh:1:dir:be0a95b35dcfefe6d05a2446be611fa81f424995

Funding This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
101001995).

Acknowledgements The authors would like to thank Kenji Maillard, Loïc Pujet and the anonymous
reviewers for their useful comments and suggestions on this work.

1 Introduction

Homological algebra [12, 14] attaches and studies a sequence of algebraic objects, typically
groups or modules, to a certain space, e.g., a ring or a topological space, in order to better
understand the latter. In this field, diagram chasing is a major proof technique, which is
usually carried out via a form of diagrammatic reasoning on abelian categories. Diagrams
appear as early as in the introduction of Mac Lane’s classic reference book [13], while Riehl’s
textbook devotes a section to the art of diagram chase [18, Section 1.6]. Lawvere and
Schanuel’s pedagogical introduction to category theory [11, Session 17] uses an entire session
to discuss the role of graphs in diagrammatic categorical reasoning.

A diagram can be seen as a functor F : J → C, whose domain J , the indexing category,
is a small category [18] sometimes also called the shape of the diagram [14]. Diagrams are
usually represented as directed multi-graphs, also called quivers, whose vertices are decorated
with objects of C, and arrows with morphisms. Paths in such graphs thus correspond to chains
of composable arrows. Diagrams allow for visualizing the existence of certain morphisms,
and to study identities between certain compositions of morphisms. In particular, a diagram
commutes when any two paths with same source and target lead to identical composite. For
instance, the commutativity of the diagram on Figure 1 asserts that morphism e is equal
to the composition of morphisms a and b, denoted by b ◦ a, as well as to the composition
d ◦ c. Commutativity of diagrams in certain categories can be used to state more involved
properties, and diagram chasing essentially consists in establishing the existence, injectivity,

© Assia Mahboubi and Matthieu Piquerez;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 38; pp. 38:1–38:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0312-5461
https://orcid.org/0009-0002-1126-4725
https://doi.org/10.4230/LIPIcs.CSL.2024.38
https://hal.science/hal-04266479
https://arxiv.org/abs/2311.01790
https://gitlab.inria.fr/mpiquere/coq-diagram-chasing
https://archive.softwareheritage.org/swh:1:dir:be0a95b35dcfefe6d05a2446be611fa81f424995;origin=https://gitlab.inria.fr/mpiquere/coq-diagram-chasing.git;visit=swh:1:snp:45754a4f13e667f537e4d9fc63bc78840cae5076;anchor=swh:1:rev:967e24b65e1bb389a355db168cc73f8196f2fb83
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 A First Order Theory of Diagram Chasing

. .

. .

a

c b

d

e

Figure 1 Square diagram with a diagonal arrow.

surjectivity of certain morphisms, or the exactness of some sequences, using hypotheses of the
same nature. The five lemma or the snake lemma are typical examples of results with proofs
“by diagram chasing”, also called diagram chases. On paper, diagrams help conveying in a
convincing manner proofs otherwise consisting of overly pedestrian chains of equations. The
tension between readability and elusiveness may however become a challenge. For instance,
diagram chases may rely on non-trivial duality arguments, that is, on the fact that a property
about diagrams in any abelian category remains true after reversing all the involved arrows,
although the replay of a given proof mutatis mutandis cannot be fulfilled in general.

Motivated in part by the second author’s experience in writing intricate diagram chases
(see for instance [16, p.338]), this work aims at laying the foundations of a computer-aided
instrument for writing reliable proofs in homological algebra, based on interactive theorem
provers. The present article discusses the design of a formal language for statements of
properties amenable to proofs by diagram chasing, according to three objectives. The first
is simplicity and expressivity: this language should be at the same time simple enough to
be implemented in a formal library, and expressive enough to encompass the desired corpus
of results. Then, duality arguments in proofs shall follow directly from a meta-property of
the language. Finally, the corresponding proof system should allow for automating proofs of
commutativity clauses. Observe for instance, that the commutativity of the square diagram
of Figure 1 follows from that of the two triangle sub-diagrams: the concluding step in diagram
chases usually amounts to a such a commutativity clause. Automating the mundane proofs
of commutativity clauses amounts to studying a decision problem hereafter referred to as the
commerge problem: Given a collection of sub-diagrams of a larger diagram which commute,
must the entire diagram commute?

For this purpose, we introduce the two following formal languages.

▶ Definition 1. We define a many-sorted signature Σ̊ with sorts the collection of finite
quivers. Signature Σ̊ has one function symbol restrm : Q′→Q, of arity Q → Q′, per each quiver
morphism m : Q′ → Q between two quivers Q and Q′, and one predicate symbol commuteQ,
on sort Q, for each finite quiver Q.

Similarly, we define a many-sorted signature Σ with sorts the collection of finite acyclic
quivers. Signature Σ has one function symbol restrm : Q′↪→Q, of arity Q → Q′, per each
injective quiver morphism m : Q′ ↪→ Q between two quivers Q and Q′, and one predicate
symbol commuteQ, on sort Q, for each finite acyclic quiver Q.

The thesis of the present article is that signature Σ fulfills the three above objectives. We
validate this thesis by giving a first-order theory for diagrams in small and abelian small
categories respectively. We state and prove a duality theorem and motivate the choice of Σ
over the possibly more intuitive Σ̊ by the automation objective.

The rest of the article is organized as follows. We first fix some vocabulary and notations
in Section 2, so as in particular to make Definition 1 precise. Then, Section 3 introduces
a theory for small categories and describes its models, Section 4 discusses duality, before
Section 5 provides an analogue study for abelian categories. Finally in Section 6, we formalize
and study the decidability of several variants of the commerge problem.

A. Mahboubi and M. Piquerez 38:3

2 Preliminaries

In all what follows, N := {0, 1, . . . } refers to the set of non-negative integers. If k ∈ N, then
[k] denotes the finite collection {0, . . . , k − 1}. We denote card(A) the cardinal of a finite
set A. We use the notation id for the identity map.

2.1 Quivers
In this section, we introduce some vocabulary and notations related to directed multi-graphs,
also called simply graphs in some standard category theory textbooks [11, 13]. In this article,
we depart from these texts and use instead the term quiver.

▶ Definition 2 (General quiver, dual). A general quiver Q is a quadruple (VQ, AQ, sQ : AQ →
VQ, tQ : AQ → VQ) where VQ and AQ are two sets. The element of VQ are called the vertices
of Q and the element of AQ are called arrows. If a ∈ AQ, sQ(a) is called the source of a
and tQ(a) is called its target. The dual of a quiver Q is the quiver Q† := (VQ, AQ, tQ, sQ),
which swaps the source and the target maps of Q.

▶ Definition 3 (Morphism, embedding, restriction). A morphism of quivers m : Q → Q′, is
the data of two maps mV : VQ → VQ′ and mA : AQ → AQ′ such that mV ◦ sQ = sQ′ ◦ mA

and mV ◦ tQ = tQ′ ◦mA. Such a morphism is called an embedding of quivers if moreover
both mV and mA are injective. In this case we write m : Q ↪→ Q′.

If A is a subset of AQ, the (spanning) restriction of Q to A denoted by Q|A is the quiver
(VQ, A, sQ|A, tQ|A). There is a canonical embedding Q|A ↪→ Q.

We denote by ∅ the empty quiver with no vertex and no arrow, and by S̊ the set of
quivers Q such that VQ and AQ are finite subsets of N. In this article, a quiver refers to an
element of S̊. We use a non-cursive Q for elements of S̊, and a cursive Q for general quivers.

For the sake of readability, we use drawings to describe some elements of S̊, as for instance:

. . .

For a quiver Q denoted by such a drawing, the convention is that VQ = [card(VQ)] and
AQ = [card(AQ)]. From left to right, the drawn vertices correspond to 0, 1, . . . , card(VQ) − 1.
Arrows are then numbered by sorting pairs (sQ, tQ) in increasing lexicographical order, as in:

. . .0 1 20
1

2
3

We also use drawings to denote embeddings. The black part represents the domain of the
morphism, the union of black and gray parts represents its codomain. Here is an example of
an embedding of the quiver . . into the quiver drawn above.

. . .

▶ Definition 4 (Path-quiver). The path-quiver of length k, denoted by PQk, is the quiver
with k + 1 vertices and k arrows ([k + 1], [k], id, (i 7→ i+ 1)).

A path-quiver can be drawn as:

.

with at least one vertex. Such a path-quiver is called nontrivial if it has at least two vertices.

CSL 2024

38:4 A First Order Theory of Diagram Chasing

If 0 ≤ k ≤ l are two integers, we denote by spk,l : PQk ↪→ PQl the leftmost embedding
of PQk into PQl, i.e., such that (spk,l)V (0) = 0. If k and l are clear from the context, we
draw spk,l as if k ̸= 0 and as . if k = 0. Moreover, we denote by tpk,l : PQk ↪→ PQl the
rightmost embedding of PQk into PQl, i.e., such that (tpk,l)V (k) = l. The corresponding
drawings are and .. Moreover, if P is a nontrivial path-quiver, we define stP : . . ↪→ P

to be the embedding mapping the first vertex on the leftmost vertex of P and the second
vertex on the rightmost vertex of P . We denote this embedding . ..

If Q is a general quiver, a morphism of the form p : PQk → Q, for some k, is called a path
of Q from u to v of length k, where u := p(0) and v := p(k). If moreover pA is injective, it is
called a trail [24]. A trail p such that pV (0) = pV (k) is called a cycle. Two paths p1 : P1 → Q,
p2 : P2 → Q of Q have the same extremities if p1 ◦ stP1 = p2 ◦ stP2 . We denote by BPQ, resp.
BT Q, the set of pairs of paths, resp. of trails, of Q having the same extremities. Such a pair
is called a bipath, resp. a bitrail.

A general quiver is acyclic if any path of this quiver is an embedding. The set of acyclic
quivers in S̊ is denoted by S.

We now recall the definition of a free category (see for instance [13, Section II.7]).

▶ Definition 5 (Free category). For a general quiver Q, the free category over Q, denoted by
⟨Q⟩ is the category with objects Ob⟨Q⟩ = VQ whose morphisms Hom⟨Q⟩(u, v), for two vertices
u and v are the paths from u to v. The identity map from u to u is the empty path, and the
composition is defined as the concatenation of paths.

Note that a morphism m of quivers induces a functor between the corresponding categories
that we denote by Φm. In the other direction, any small category C has an underlying quiver.

2.2 Diagrams
The purpose of this section is to introduce diagrams in a category, and to define what it
means for a diagram to commute. We also introduce useful constructions later used for
building new diagrams by restricting and pasting existing ones.

▶ Definition 6 (Diagram). For any category C and any quiver Q, a diagram in C over Q is a
functor from ⟨Q⟩ to C.

Definition 6 is actually a special case of D-shaped diagrams, for D a small category [14].
Thanks to the universal properties of free categories, it coincides with Mac Lane’s Q-shaped
diagrams in category C [13, Section II.7].

Let P be a path-quiver from vertex u to vertex v. To a diagram D : ⟨P ⟩ → C over P one
can associate the corresponding composition of morphisms in the category C, which is an
element of HomC(D(u), D(v)). We denote this element comp(D). By convention, when the
path-quiver P is trivial, comp(D) is the identity map idD(u).

▶ Definition 7 (Pullback). Let Q,Q′ be two quivers and let D be a diagram over Q. Let
m : Q′ → Q be a morphism of quivers. We define the pullback of D by m, denoted by m∗(D),
as the diagram D ◦ Φm over Q′.

Note that term pullback here refers to pre-composition rather than to fiber products.

▶ Definition 8 (Commutative diagram). For any category C and any quiver Q, a diagram D

over Q is commutative if comp(p∗
1(D)) and comp(p∗

2(D)) coincide for any two paths p1 and
p2 in Q with same extremities, that is:

∀(p1, p2) ∈ BPQ, comp(p∗
1(D)) = comp(p∗

2(D)).

A. Mahboubi and M. Piquerez 38:5

▶ Definition 9 (Pushout configuration). Consider four quivers Q,Q1, Q2, Q
′ and four embed-

dings m1 : Q ↪→ Q1, m2 : Q ↪→ Q2, m′
1 : Q1 ↪→ Q′ and m′

2 : Q2 ↪→ Q′:

Q Q1

Q2 Q′.

m1

m2 m′
1

m′
2

This data is a pushout configuration if:
m′

1 ◦m1 = m′
2 ◦m2,

Q′ = Im(m′
1) ∪ Im(m′

2), (i.e., VQ′ = Im(m′
1,V) ∪ Im(m′

2,V) and AQ′ = Im(m′
1,A) ∪

Im(m′
2,A)),

Im(m′
1 ◦m1) = Im(m′

1) ∩ Im(m′
2).

In this case, the triple (Q′,m′
1,m

′
2) is called a pushout of (Q,Q1, Q2,m1,m2).

▶ Remark 10. Any tuple (Q,Q1, Q2,m1,m2) has a pushout, and any two pushouts of the
same tuple are isomorphic, see for instance Figure 2.
The next lemma allows to reduce the number of distinct diagrams involved in a formula.

▶ Lemma 11. Let C be some category. Consider a pushout configuration as in Definition 9.
Consider two diagrams D1 and D2 in C over Q1 and Q2, respectively. If the pullback of D1
by m1 coincides with the pullback of D2 by m2, i.e.,

m∗
1(D1) = m∗

2(D2)

then there exists a unique diagram D′ over Q′ such that D1, resp. D2, is the pullback of D′

by m′
1, resp. m′

2, i.e.,

D1 = m′∗
1 (D′) and D2 = m′∗

2 (D′)

Proof. Immediate. ◀

2.3 Category congruences, path relations and quotient categories
We first introduce category congruences and quotients, following Mac Lane [13, Section II.8],
and provide an important example thereof. However, we slightly depart from this reference
by only considering the special case of quotients of categories by congruences, as it is the
only one used in the present article.

▶ Definition 12 (Category congruence). A category congruence r on C is the data of an
equivalence relation rA,B ⊆ HomC(A,B)2 for any pair of objects A and B such that, for any
objects A,B,C and any morphisms f, g ∈ HomC(A,B) and f ′, g′ ∈ HomC(B,C),

f ∼ g and f ′ ∼ g′ =⇒ f ′ ◦ f ∼ g′ ◦ g,

where we write h ∼ h′ if h and h′ are in relation, i.e., (h, h′) ∈ rE,F for some objects E and
F . Such a relation is said complete if rA,B = HomC(A,B)2 for any pair of objects A and B.

P1 = P2 = . . . Q′ =

Figure 2 A pushout Q′ of two path-quivers P1 and P2 with respect to stP1 and stP2 .

CSL 2024

38:6 A First Order Theory of Diagram Chasing

▶ Proposition 13 (Quotient category). Given such a category congruence, the data ObC/r :=
ObC and HomC/r(A,B) := HomC(A,B)/rA,B define a category C/r called the quotient
category of C by r.

Proof. Immediate. ◀

We now introduce relations on pairs of paths with same extremities in a general quiver:
the ones that are induced from a congruence on the corresponding free category are of special
interest.

▶ Definition 14. A relation between paths with same extremities in Q is by definition a
subset of BPQ. If r ⊆ BPQ is such a relation then, for (p, q) ∈ BPQ, we write p ∼ q if
(p, q) ∈ r. Note that BPQ =

⊔
A,B∈Ob⟨Q⟩

Hom⟨Q⟩(A,B)2. Such a relation r is called a path
relation if it is a category congruence on ⟨Q⟩. The complete path relation on Q, i.e., BPQ,
is denoted by totQ.

For instance, in a small category C the composition axiom induces a path relation on the
underlying quiver Q. To be more precise, this relation is given by

{(p1, p2) ∈ BPQ | comp(F ◦ Φp1) = comp(F ◦ Φp2)}

where F is the canonical functor from ⟨Q⟩ to C. Following the usual notation of ideals, if
r0, . . . , rl−1 are some relations between paths with same extremities, we denote by (ri | i ∈ [l])
the smallest path relation containing r0, . . . , rl−1.

Let Q′ be another general quiver and let m : Q → Q′ be a morphism. If r ⊆ BPQ, we
denote by m∗(r) the relation induced by the image by m of r in BPQ′ .

2.4 A finite characterization of commutative diagrams
Definition 8 about the commutativity of a finite diagram a priori relies on an infinite number
of equations. In this section, we give an equivalent formulation based on the finite set BT Q.

▶ Lemma 15. Let Q be a quiver. The smallest path relation containing BT Q ⊆ BPQ is the
total relation totQ.

Proof. Denote this smallest path relation by r. It suffices to prove that any path is related
with a trail. Let p be a path which is not a trail. Then p contains a nontrivial cycle, i.e., if
we denote by ≫ the concatenation operator on paths, p = p1 ≫c≫p2 for some paths p1 and
p2 and some nontrivial cycle c. Since any cycle is a trail, the pair (c, c ◦ .) belongs to BT Q,
where c ◦ . is the path of length 0 based on cV (0). Hence p = p1 ≫c≫p2 ∼ p1 ≫p2. This
last past is strictly smaller, and we conclude by infinite descent. ◀

As a direct consequence of the previous lemma, we get the following proposition.

▶ Proposition 16. A diagram D over a finite quiver Q is commutative if and only if

∀(p1, p2) ∈ BT Q, comp(p∗
1(D)) = comp(p∗

2(D)).

2.5 Many-sorted logic, categorical interpretation
We first recall a few basic definitions mostly pertaining to many-sorted logic, but instantiated
to the signatures introduced by Definition 1, and we set the corresponding notations.

Remember that signature Σ only differs from Σ̊ by restricting the allowed sorts to the
acyclic quivers and the allowed quiver morphisms to embeddings.

A. Mahboubi and M. Piquerez 38:7

Let us first fix a countable set X, so that for each quiver Q in S̊ (resp. in S), elements of
the set XQ := X × {Q} are the variables of sort Q. A term of sort Q either is a variable of
sort Q or has the form restrm : Q→Q′(t), with t a term of sort Q′, Q′ a quiver and m : Q → Q′

a morphism of quivers. When possible, we leave the sorts implicit and simplify the notation
of symbol restrm : Q′→Q into restrm.

We denote the equality symbols by ≈, leaving sorts implicit. An atom is thus of the form
s ≈ t with s and t two terms of the same sort, or of the form commuteQ(t) with t a term of
sort Q. We consider first-order many-sorted formulas and write the sort of quantifiers as a
subscript, i.e., ∃Q xQ, ϕ and ∀Q xQ, ϕ where Q ∈ S̊, xQ ∈ XQ and ϕ is a formula.

We shorten ∀Qx, ∀Qy, P (x, y), resp. ∃Qx, ∃Qy, P (x, y), into ∀Qx, y, P (x, y), resp. into
∃Qx, y, P (x, y). We write ∃!Q y, P (y) for formula

(
∃Q y, P (y)

)
∧

(
∀Q y1, y2, P (y1)∧P (y2) →

y1 ≈ y2
)
. A formula with free variables x1, . . . , xn of respective sorts Q1, . . . , Qn is said to

be of arity Q1 × . . . Qn.
We now define standard, sometimes also called Tarskian [20], semantics for first-order

theories on signatures Σ̊ and Σ. We mostly follow classic presentations [9] but adapted to
the context of multi-sorted signatures.

▶ Definition 17 (Structures, models). A Σ̊-structure M, also called interpretation of Σ̊, is
defined by:

a collection of disjoint non-empty domain sets (MQ)Q, indexed by the collection of
(quiver) sorts;
an interpretation of each function symbol restrm : Q′→Q, as a function restrM

m : Q′→Q with
domain MQ and codomain MQ′ ;
an interpretation of each predicate symbol commuteQ, as a subset commuteM

Q of MQ.
A given Σ̊-structure together with a variable assignment mapping any variable of sort Q to
an element of domain MQ entail a truth value for any first-order formula ϕ on language Σ̊.
If ϕ has no free variable, we write M |= ϕ if ϕM is true and we say that ϕ is valid in M.
A formula ϕ is satisfiable when there is a variable assignment which makes it true, and
unsatisfiable in the opposite case. A model of a theory T on signature Σ̊ is the interpretation
of a Σ̊-structure such that every formula in T is true.

We also define analogue structures, interpretations, models for signature Σ.

The standard models of the signatures introduced in Definition 1 are actually diagrams
in a certain category.

▶ Definition 18 (Categorical interpretation). To each small category C, we associate an
interpretation of Σ, resp. Σ̊, that we also denote by C, as follows:

To each sort Q we associate the set CQ of diagrams in C over Q.
restrm is interpreted as the function mapping a diagram D to the diagram m∗(D).
commuteC

Q is the set of commutative diagrams in C over Q.
We call such an interpretation a categorical interpretation of Σ, resp. Σ̊.

3 A theory for diagrams in small categories

This section introduces a theory whose models can be seen as categorical interpretations.

3.1 Axioms
We now introduce the different axioms of the theory. A formula F with free variables
x1, . . . , xn is written F (x1, . . . , xn) so as to clarify the sorts of each variable in the arity of F .

CSL 2024

38:8 A First Order Theory of Diagram Chasing

Existence and uniqueness of the empty diagram

EmptyEU: ∃!∅ x, x ≈ x

Compatibility of restrictions

For any quivers Q,Q′, Q′′ and morphisms m : Q → Q′ and m′ : Q′ → Q′′, we define:

RestrCompm,m′ : ∀Q′′ x′′, restrm(restrm′(x′′)) ≈ restrm′◦m(x′′).

Pushout

For any pushout configuration as in Definition 9, and using the same notations as this
definition, we define the following formulas of arity Q1 ×Q2 ×Q′:

Cospanm′
1,m′

2
(x1, x2, x

′) : restrm′
1
(x′) ≈ x1 ∧ restrm′

2
(x′) ≈ x2.

PushoutEUm1,m2,m′
1,m′

2
: ∀Q1 x1, ∀Q2 x2, restrm1(x1) ≈ restrm2(x2)

→ ∃!Q′ x′, Cospanm′
1,m′

2
(x1, x2, x

′).

Composition

The following predicate, of arity . . × . . × . . , describes composite of arrows:

Comp(x, y, z) : ∃.
.

. w, restr .
.

. (w) ≈ x ∧ restr.
.

.(w) ≈ y

∧ restr .
. .(w) ≈ z ∧ commute(w)

while the following one ensures the existence of compositions:

CompE: ∀. .x, y, restr. .(x) ≈ restr .. (y) → ∃. .z, Comp(x, y, z).

Equality of nontrivial paths

For any two nontrivial path-quivers P1 and P2, it is possible to choose in a canonical way a
quiver Q′ together with two embeddings m′

1, m′
2 such that the following diagram forms a

pushout configuration (as for instance on Figure 2):

. . P1

P2 Q′

stP1

stP2 m′
1

m′
2

We thus define the following predicate of arity P1 × P2:

EqPathP1,P2
(x1, x2) : restr. .(x1) ≈ restr. .(x2)

∧
(
∀Q′ x, Cospanm′

1,m′
2
(x1, x2, x) → commute(x)

)
.

A. Mahboubi and M. Piquerez 38:9

Identity

The following predicate, of arity . × . . , defines the identity map:

Id(x, y) : restr .. (y) ≈ x ∧ ∀. .z, w,(
Comp(y, z, w) → EqPath(z, w)

)
∧

(
Comp(z, y, w) → EqPath(z, w)

)
and the following formula ensures the existence of identity maps.

IdE: ∀.x, ∃. .y, Id(x, y).

Note that Id(x, y) and IdE entail that restr. .(y) ≈ x.

Equality for general paths

For any nontrivial path-quiver P , we define the following formulas:

EqPath.,.(x, y) : x ≈ y,

EqPath.,P (x, y) : ∃. .z, Id(x, z) ∧ EqPath. .,P (z, y),
EqPathP,.(x, y) : EqPath.,P (y, x).

Hence, we can see EqPath as a relation with arity any pair of path-quivers. We ensure
this relation to be an equivalence relation by defining for any path-quivers P1, P2 and P3 the
three formulas EqPathReflP1 , EqPathSymP1,P2 and EqPathTransP1,P2,P3 stating that the
relation EqPath is respectively reflexive, symmetric and transitive.

We also make sure to enforce the properties of a category congruence. For this purpose,
for any four path-quivers P1, P ′

1, P2, and P ′
2, of respective length k1, k

′
1, k2 and k′

2, we define
the following formula where bound variables x1, x2, x

′
1, x

′
2 respectively have sort P1, P2, P ′

1
and P ′

2 and the sort of x′′
i , i ∈ {1, 2}, is PQki+k′

i
.

EqPathConcatP1,P2,P ′
1,P ′

2
: ∀x1, x2, x

′
1, x

′
2,

EqPath(x1, x2) ∧ EqPath(x′
1, x

′
2) ∧ restr .(x1) ≈ restr. (x′

1)
→ ∀x′′

1 , x
′′
2 , Cospan , (x1, x

′
1, x

′′
1) ∧ Cospan , (x2, x

′
2, x

′′
2)

→ EqPath(x′′
1 , x

′′
2).

Commutativity

We relate commutativity and equality by the following formula:

ComEq : ∀. . x, commute(x) → restr. .(x) ≈ restr. .(x).

For any quiver Q, the following formula provides an analogue of the notion of commut-
ativity of diagrams via the characterization given in Proposition 16,

PathComQ : ∀Q x,
∧

(p1,p2)∈BTQ

EqPath(restrp1(x), restrp2(x)) ↔ commute(x).

where we recall that BT Q denotes the (finite) set of pairs of trails of Q having the same
extremities.

CSL 2024

38:10 A First Order Theory of Diagram Chasing

▶ Definition 19. Theory T̊cat, over signature Σ̊, consists of the following formulas:
EmptyEU, CompE, IdE, ComEq,
RestrCompm,m′ for any pair of maps m and m′ such that the codomain of m is the
domain of m′,
PushoutEUm1,m2,m′

1,m′
2

for a pushout configuration as in Definition 9,
EqPathReflP1 ,EqPathSymP1,P2 ,EqPathTransP1,P2,P3 ,EqPathConcatP1,P2,P3,P4 for any
quadruple of path-quivers P1, P2, P3 and P4,
PathComQ for any quiver Q.

Theory Tcat is defined as the restriction of T̊cat to Σ.

3.2 Models
Models of Tcat, resp. T̊cat, are in fact exactly what we have called categorical interpretations.

▶ Theorem 20. Every categorical interpretation of Σ, resp. Σ̊, is a model of Tcat, resp. T̊cat.
Moreover, any model M of Tcat, resp. T̊cat, has an isomorphic categorical interpretation.

Proof. We only prove the theorem for Tcat, as the proof for T̊cat is similar.
If C is a small category, a routine check shows that the associated model C of Σ verifies

the theory Tcat. For instance,
the formulas PushoutEU follows from Lemma 11;
IdE and CompE come from the existence of the identity map and the existence of the
composition respectively;
for two diagrams D1 and D2 respectively over path-quivers P1 and P2, the formula
EqPathP1,P2

(D1, D2) corresponds to the relation comp(D1) = comp(D2), which is a path
relation;
ComEq and PathComQ follow from Proposition 16.

Let us prove the other direction. Let Q be an acyclic quiver. By an abuse of the notations,
if v ∈ VQ, resp. a ∈ AQ, we also denote by v, resp. a, the corresponding embedding v : . ↪→ Q,
resp. a : . . ↪→ Q. Here is a crucial lemma for the proof of the theorem.

▶ Lemma 21 (General pushout). Let M be a model of Tcat. Let Q be an acyclic quiver,
βV : VQ → M. and βA : AQ → M. . be two maps. Then the following statements are
equivalent.
1. There exists an element β of MQ such that, for any v ∈ VQ and any a ∈ AQ, restrM

v (β) =
βV (v) and restrM

a (β) = βA(a).
2. For any a ∈ AQ, restrM

.. (βA(a)) = βV (sQ(a)) and restrM
. .(βA(a)) = βV (tQ(a)).

Moreover, when both statements hold, the element β is unique.

Proof. The fact that the first point induces the second one follows directly from RestrComp.
Hence we focus on the other direction and on the uniqueness.

We proceed by induction on the structure of Q. In the case of an empty Q, the second
point holds trivially. The first point and the uniqueness follows from EmptyEU.

Assume first that the lemma holds for some quiver Q1 with no arrow. Let Q be the quiver
Q1 with an extra vertex v0. Let βV and βA be two maps as in the statement of the lemma,
and β1,V the restriction of βV to VQ1 . We have the following pushout configuration:

A. Mahboubi and M. Piquerez 38:11

∅ Q1

. Q

m1

m2 m′
1

m′
2=v0

Point 2 holds trivially. Let us prove the existence and uniqueness of an element β sat-
isfying the property of Point 1. By induction, we get a unique β1 ∈ MQ1 compat-
ible with β1,V and βA. Set β2 := βV (v0). By EmptyEU, restrM

m1
(β1) = restrM

m2
(β2).

Hence we can apply PushoutEUm1,m2,m′
1,m′

2
to get a unique element β ∈ MQ such that

CospanM
m′

1,m′
2
(β1, β2, β). From RestrComp and the induction hypothesis, it follows that for

β′ ∈ MQ, CospanM
m′

1,m′
2
(β1, β2, β

′) is equivalent to restrM
v (β′) = βV (v) for any v ∈ VQ. This

concludes the induction.

Assume more generally that the lemma holds for some acyclic quiver Q1. Let Q be an
acyclic quiver obtained from Q1 by adding one arrow a0. Let βV and βA be two maps as
before and β1,A the restriction of βA to AQ1 . Let m1 : . . ↪→ Q1 mapping the first point to
sQ(a0) and the second point to tQ(a0). Let m2 := st. . = . . . Once again, we get a
pushout configuration:

. . Q1

Q

m1

m2 m′
1

m′
2:=a0

Assume that Point 2 holds. By induction, we get a unique element β1 ∈ MQ1 compatible
with βV and β1,A. Set β2 := βA(a0). We have already proven the lemma for the quiver . . .
Hence we deduce that

restrM
m1

(β1) = restrM
m2

(β2).

We can apply PushoutEU as before to get Point 1 as well as the uniqueness part. This
concludes the proof of the lemma. ◀

We now continue the proof of Theorem 20. Let M be a model of Tcat. We define the
general quiver Q associated to M by

VQ := M. , AQ := M. . , sQ := restrM
.. and tQ := restrM

. . .

Set C̃ := ⟨Q⟩. Thanks to Lemma 21, to each acyclic quiver Q and to each element β ∈ MQ,
we can associate a unique diagram Ψ̃(β) in C̃ verifying:

for any v ∈ VQ, Ψ̃(β)(v) = restrM
v (β).

for any a ∈ AQ, Ψ̃(β)(a) is the path of length one with arrow restrM
a (β).

The image of Ψ̃ is exactly the set of diagrams whose morphisms are paths of lengths one.
Let us now introduce another important map. Let A and B be two objects of C̃, and let

p ∈ HomC̃(A,B). Recall that p is just a path from A to B in Q. Let k be the length of p.
By Lemma 21, there exists a unique element Θ(p) ∈ MPQk

such that
for each v ∈ VPQk

, restrM
v (Θ(p)) = p(v),

for each a ∈ APQk
, restrM

a (Θ(p)) = p(a).

CSL 2024

38:12 A First Order Theory of Diagram Chasing

Relation EqPathM thus induces a relation r on morphisms of C̃. Moreover, EqPathRefl,
EqPathSym, EqPathTrans and EqPathConcat, together with Lemma 21, make r a category
congruence. We can hence define the category C := C̃/r. Now Ψ̃ induces a map Ψ: MQ → CQ

for any quiver Q, and we claim that Ψ induces a model isomorphism between M and C.
Let Q be any acyclic quiver. We first prove that Ψ is injective. Let β, γ ∈ MQ such

that Ψ(β) = Ψ(γ). For any vertex v ∈ VQ, Ψ̃(β)(v) = Ψ̃(γ)(v), i.e., restrM
v (β) = restrM

v (γ).
Let a be an arrow of Q. Then we have the relation Ψ̃(β)(a) ∼ Ψ̃(γ)(a). By definition of
EqPath. .,. . , we validate the premise of ComEq, and thus the equality Ψ̃(β)(a) = Ψ̃(γ)(a),
i.e., restrM

a (β) = restrM
a (γ). By the uniqueness part of Lemma 21, we get β = γ.

We now consider the surjectivity of Ψ. It suffices to prove that any morphism p ∈
HomC̃(A,B), for any A,B ∈ ObC̃ , is in relation via r to a path of length one. Indeed, in
such a case, for any diagram D̃ in C̃ over Q, one can find another diagram D̃′ over Q whose
morphisms are path of size one and such that any morphism of D̃ is in relation with the
corresponding morphism of D̃′. Hence the induced diagrams in C are equal. Moreover, D̃′ is
in the image of Ψ̃, and we would get the surjectivity.

Let P be a path-quiver and let β ∈ MP . We have to find an element γ ∈ M. . such
that EqPathM

P,. .(β, γ). If P has length one, this is trivial. If P has length zero, then by
IdE, there exists γ such that IdM(β, γ). Moreover, by the definition EqPath.,. . and using
the reflexivity of EqPath, we get EqPathM

.,. .(β, γ). If P has length two, then by CompE,
we can find an element γ such that

Comp(restrM
... (β), restrM

. . .(β), γ).

The commutativity of the triangle induces EqPathM
. . .,. .(β, γ).

For P with length k > 2, we proceed by induction on the length of P . Using EqPathTrans,
it suffices to find γ over PQk−1 such that EqPathM

P,PQk−1
(β, γ). To do so, we see P as the

pushout of PQ2 and PQk−2 along m′
1 = : PQ2 → P and m′

2 = : PQk−2 → P . By
the case k = 2, we can find γ1 ∈ M. . such that EqPath(restrM

m′
1
(β), γ1). We set γ2 =

restrM
m′

2
(β). In particular we have EqPath(γ2, γ2). By EqPathConcat, we get EqPath(β, γ)

where γ ∈ MPQk−1 is such that Cospanm′
1,m′

2
(γ1, γ2, γ), and the result follows.

We have shown that Ψ induces a bijection between the corresponding domains. In order
to conclude the proof, it remains to prove that Ψ commutes with function restr and with
predicate commute. The commutativity with restr follows from the definition of Ψ and the
formulas RestrComp.

The compatibility with the predicate commute can be reduced to the compatibility
of EqPath via the formula PathCom and the characterization of commutativity given in
Proposition 16. Let P1 and P2 be two path-quivers and β1 ∈ MP1 and β2 ∈ MP2 . These
elements correspond to paths p1 and p2 in Q. Using the definitions of the different elements,
we get the following chain of equivalences:

EqPathC(Ψ(β1),Ψ(β2)) ⇔ compC(Ψ(β1)) = compC(Ψ(β2))

⇔ compC̃(Ψ̃(β1)) ∼ compC̃(Ψ̃(β2)) ⇔ p1 ∼ p2 ⇔ EqPath(β1, β2).

This concludes the proof of the theorem. ◀

4 Duality

Signatures of Definition 1 are tailored to enforce a built-in, therefore easy to prove, duality
principle, which we now make precise. Recall from Definition 2 that duality is an involution
on quivers, as well as on acyclic quivers. We define the dual of a formula over Σ̊ as follows:

A. Mahboubi and M. Piquerez 38:13

if m : Q → Q′ is a morphism, then m† : Q† → Q′† is defined by m†
V = mV and m†

A = mA.
if x = (x, Q) is a variable in X × S̊ then x† := (x, Q†),
(restrm(x))† := restrm†(x†) and (commuteQ(x))† := commuteQ†(x†),
(x ≈ y)† := x† ≈ y†,
(∀Q x, ϕ)† := ∀Q† x†, ϕ† and (∃Q x, ϕ)† := ∃Q† x†, ϕ†,
(ϕ ∧ ψ)† := ϕ† ∧ ψ†, etc.

For Y a set of variables, Y † denotes {x† | x ∈ Y }. For any theory T , T † denotes {ϕ† | ϕ ∈ T }.
For M an interpretation of Σ̊ over a set of variables Y , we define its dual model M† over

Y † as:
M†

Q := MQ† ,
for x ∈ Y †, xM† := (x†)M.
restrM†

m := restrM
m† and commuteM†

Q := commuteM
Q† ,

The duality involution also induces involutions respectively on formulas, theories and
models over Σ.

▶ Example 22. If C is a small category, then the dual interpretation C† is isomorphic to the
model of the dual category, both with respect to Σ̊ and to Σ.

▶ Theorem 23 (Duality theorem). Let ϕ be a formula with free variables included in Y ⊆ X×S,
resp. in Y ⊆ X × S̊, and let M be a model of Σ, resp. of Σ̊. Then

M |= ϕ ⇐⇒ M† |= ϕ†.

Proof. The proof is direct. ◀

▶ Remark 24. The duality principle has some useful direct consequences:
If ϕ is a valid, resp. satisfiable, resp. unsatisfiable, formula, then so is ϕ†.
Let T be theory such that any model of T verifies T †. If ϕ is a valid, resp. satisfiable,
resp. unsatisfiable, formula among models of T , so is ϕ†.
We have the following reciprocal. Let T be a theory such that any model M of T verifies
that M† |= T , then every model of T verifies T †.

The following fact follows directly from this last point, Theorem 20 and Example 22.

▶ Proposition 25. Models of Tcat verify T †
cat, and models of T̊cat verify T̊ †

cat.

5 A theory for diagrams in abelian categories

We now introduce a theory whose models are diagrams in small abelian categories. We rely
on the set of axioms given by Freyd in [7]. This reference is particularly well-suited for our
purpose. Indeed, the author does not impose the homomorphisms between any two objects
of an abelian category to form an abelian group, but this fact rather follows from the axioms.

Let us first formulate common notions of category theory in the languages introduced in
Section 2.5. Here is a predicate of arity . . which corresponds to monicity of a map in a
category.

Mono(x) : ∀. . . y, restr. . .(y) ≈ x

∧ commute(restr. . .(y)) ∧ commute(restr. . .(y))

→ commute(restr ... (y)).

CSL 2024

38:14 A First Order Theory of Diagram Chasing

The dual predicate to Mono(x) is named Epi(x).
Let Q be a quiver. We define the cone of Q as the quiver

cone(Q) := (VQ ⊔ {v0}, AQ ⊔ {av | v ∈ VQ}, scone(Q), tcone(Q)),

where scone(Q) and tcone(Q) are extensions of sQ and tQ by sQ(av) = v0 and tQ(av) = v. We
define by iQ : Q ↪→ cone(Q) the corresponding embedding. If m : Q → Q′ is a morphism of
quivers, we get a canonical morphism cone(m) : cone(Q) → cone(Q′).

Abusing the notations, if a is an arrow of Q, we also denote by a : . . ↪→ Q the
corresponding morphism. We then introduce the usual notion of cones of diagrams by the
following formula of arity Q× cone(Q).

ConeQ(x, y) : restriQ
(y) ≈ x ∧

∧
a∈AQ

commute(restrcone(a)(y)).

We now formulate the notion of limit.

LimitQ(x, y) : ConeQ(x, y) ∧
∀cone(Q) z, ConeQ(x, z) → ∃!cone(cone(Q)) w, Cone(y, w) ∧ restrcone(iQ)(w) ≈ z.

We also introduce the dual ColimitQ(x, y) := Limit†
Q†(x, y).

The introduction of monos, epis, limits and colimits allows to state Freyd’s axioms of
abelian categories [7]. First, we define zero objects and kernels of respective arity . and
. . × . . as follows:

Zero(x) : ∀∅ y, Limit∅(y, x) ∧ Colimit∅(y, x),
Ker(x, y) : ∃. .. .z, restr. .. .(z) ≈ x ∧ restr (z) ≈ y

∧ Zero(restr. . .. (z)) ∧ Limit(restr. .. .(z), z).

We also define Coker(x, y) := Ker†(x, y).

We define the category Tab, resp. T̊ab as the extension of Tcat, resp. T̊cat, by the following
formulas.

ZeroE: ∃.x, Zero(x),
ProductE: ∀..x, ∃cone(..) y, Limit..(x, y),

CoproductE: ProductE†,

KerE: ∀. .x, ∃. .y, Ker(x, y),
CokerE: KerE†,

MonoNormal : ∀. .x, Mono(x) → ∃. .y, Ker(y, x),
EpiNormal : MonoNormal†.

The following theorem states that Tab is a theory for diagrams in abelian categories.

▶ Theorem 26. The categorical interpretation induced by any small abelian category is a
model of Tab. Conversely, any model of Tab is isomorphic to the categorical interpretation
associated to some small abelian category.

Proof. This follows from Theorem 20 and from [7, Chapter 2]. ◀

A. Mahboubi and M. Piquerez 38:15

▶ Proposition 27. The theory Tab implies its dual T †
ab.

Proof. The theory Tcat implies its dual by Proposition 25. Moreover, ZeroE clearly implies
its dual. Finally, the other axioms have their dual in the theory, by definition thereof. ◀

▶ Remark 28. The theorem and the proposition also hold for theory T̊ab.

6 Decidability of the commerge problem

In this section, we use the notations of Section 2.3. Let Q be a quiver, k ∈ N and, for each
i ∈ [k], let Qi be a quiver and mi : Qi → Q be a morphism. We define the following formula:

Commergem0,...,mk−1
: ∀Q x,

k−1∧
i=0

commute(restrmi
(x)) → commute(x).

▶ Definition 29. Notations as above, the acyclic, resp. cyclic, commerge problem for
morphisms, or embeddings, m0, . . . ,mk−1 and for a theory T on language Σ, resp. Σ̊, is the
problem of deciding the validity of Commergem0,...,mk−1

in models of theory T .

We recall that a thin category is a category with at most one morphism between any pair
of objects. Let totQi

= BPQi
be the complete path relation on Qi. Set ri := mi ∗(totQi

) for
i ∈ [k]. Recall that (ri | i ∈ [k]) is the smallest path relation containing the ri for all i ∈ [k].

▶ Lemma 30. Notations as above, the formula Commergem0,...,mk−1
is valid for models of

Tcat, resp. T̊cat, if and only if ⟨Q⟩/(ri | i ∈ [k]) is a thin category.

Proof. Set C := ⟨Q⟩/(ri | i ∈ [k]). It is a model of Tcat, resp. T̊cat. Moreover, the canonical
diagram D : ⟨Q⟩ → C verifies the premise of Commergem0,...,mk−1

. If C is not thin, then there
are two paths p and q in ⟨Q⟩ with the same extremities which are not in relation. Then
comp(p∗(D)) is the class of p in the quotient, which is different of the class of q, that is of
comp(q∗(D)). Hence D is not commutative.

For the other direction, by Theorem 20, it suffices to study diagrams in small categories.
It is easy to check that any diagram D′ over Q in a category C′ which verifies the condition
of Commergem0,...,mk−1

factors through D, i.e., D′ = F ◦D for some functor F : C → C′. If
C is thin, then for any two paths p and q with same extremities in Q, we have:

comp(p∗(D′)) = F (comp(p∗(D))) = F (comp(q∗(D))) = comp(q∗(D′)).

Hence Commergem0,...,mk−1
is valid. ◀

▶ Theorem 31. The acyclic commerge problem for embeddings and Tcat is decidable.

Proof. By Lemma 30, it suffices to decide if ⟨Q⟩/(ri | i ∈ [k]) is a thin category. Since the
set of paths in ⟨Q⟩ is finite, we can compute the relation (mi ∗(totQi

) | i ∈ [k]) extensively
and check whether it is complete. ◀

▶ Proposition 32. The cyclic commerge problem for morphisms and T̊cat is undecidable.

Proof. We proceed by reduction to an undecidability result, independently due to Adyan
and Rabin [2, 17]. For B an arbitrary finite set and ⟨B⟩ the associated free monoid, let
M be the finitely presentable monoid ⟨B | r = 1, r ∈ R⟩, for R a nonempty finite subset
of ⟨B⟩ ∖ {1}. In particular, any finitely presentable group is of this form. Hence, by the
Adyan-Rabin theorem, determining the triviality of M from B and R is undecidable.

CSL 2024

38:16 A First Order Theory of Diagram Chasing

Let B, R and M as above. Let Q = ({v}, B⊔{e}, sQ, tQ) be a quiver with one vertex and
loops labeled by elements of B plus one loop e. To each element ρ ∈ R corresponds a path
pρ : PQkρ

→ Q, for some kρ ∈ N. Let Qρ be a pushout of the morphisms . .: . . ↪→ PQkρ
and

. . . Let mρ be the extension to Qρ of pρ obtained by mapping the new arrow onto e.
Also set me : . → Q which maps the loop on e. Now, ⟨Q⟩/

(
m∗

e(tot .), (m∗
ρ(totQρ

) | ρ ∈ R)
)

is the category associated to the monoid M . Hence this category is thin if and only if the
monoid is trivial. The Adyan-Rabin theorem and Lemma 30 conclude the proof. ◀

We strengthen the previous proposition to the case of embeddings.

▶ Theorem 33. The cyclic commerge problem for embeddings and T̊cat is undecidable.

Proof. Let B, R, M as in the proof of Proposition 32. Let Q be the quiver ({v}, B, sQ, tQ)
(note that we removed the arc e). If n ≥ 2, we define the quiver Q̊n as

Q̊n :=
(

{vi | i ∈ [n]}, {bi,j | b ∈ B, 0 ≤ i < j < n} ⊔ {ei,j | i, j ∈ [n]}, sQ̊n , tQ̊n

)
where

sQ̊n(bi,j) = vi, sQ̊n(ei,j) = vi, tQ̊n(bi,j) = vj , tQ̊n(ei,j) = vj .

We have a projection π : ⟨Q̊n⟩ → ⟨Q⟩, which maps bi,j on b and ei,j on idv, and a section
ι : ⟨Q⟩ → ⟨Q̊n⟩ defined by mapping v onto v0 and b onto b0,n−1 ◦ en−1,0, where, as usual, we
denote in a same way an arrow and the corresponding path of length one.

For A any subset of AQ̊n , let mA : Q̊n|A ↪→ Q̊n be the canonical embedding, and let
rA := mA ∗(totQ̊n|A

). Set r′ := (rA | A ∈ A) for A ⊂ P(AQ̊n) defined as the set containing
Ae := {ei,j | i, j ∈ [n]},
for i < j and b ∈ B,

Ab,i,j := { e0,i︸︷︷︸
if i ̸= 0

, bi,j , ej,n−1︸ ︷︷ ︸
if j ̸= n − 1

, b0,n−1}.

We claim that π and ι induce an equivalence of category between ⟨Q⟩ and ⟨Q̊n⟩/r′. From
the definition of Ae, for any i, j, l ∈ [n], we have ei,j ◦ ej,l ∼ ei,l and ei,i ∼ idi. Now the
definition of Ab,i,j , for b ∈ B and 0 ≤ i < j < n, induces that e0,i ◦ bi,j ◦ ej,n−1 ∼ b0,n−1.
These relations generate all r′, and they become equalities by applying the projection. Hence
π∗ : ⟨Q̊n⟩/r′ → ⟨Q⟩ is well-defined. Clearly π ◦ ι is identity. Concerning the other direction,
for b ∈ B and 0 ≤ i < j < n, we have

ι ◦ π(bi,j) = b0,n−1 ◦ en−1,0 ∼ e0,i ◦ bi,j ◦ ej,n−1 ◦ en−1,0 ∼ e0,i ◦ bi,j ◦ ej,0.

Hence we get a natural transformation η between the identity functor and ι ◦ π∗ by setting
ηi := ei,0 ∈ Hom⟨Q̊n⟩/r′(i, ι ◦ π(i) = v0). Since ei,0 is an isomorphism, we conclude that there
is an equivalence of category between ⟨Q⟩ and ⟨Q̊n⟩/r′.

Recall that M is the finitely presentable monoid ⟨B | r = 1, r ∈ R⟩. Assume that n is
greater than the longest word in R. To any word ρ = b0b1 · · · bl−1 in R corresponds a subset

Aρ := {e0,l, b
0
0,1, b

1
1,2, . . . , b

l−1
l−1,l} ⊆ AQ̊n .

Let A′ := A ∪ {Aρ | ρ ∈ R}. Then, ⟨Q̊n⟩/(rA | A ∈ A′) is equivalent as a category
to ⟨Q⟩/(π∗(rAρ

) | ρ ∈ R) which is the category of the monoid M . Hence the validity of
Commerge(mA)A∈A′ is equivalent to the triviality of M . Once again, we conclude using
Lemma 30 and the Adyan-Rabin theorem. ◀

A. Mahboubi and M. Piquerez 38:17

▶ Theorem 34. The theory Tcat is undecidable.

Proof. Let M , B, R be as in the proof of Theorem 33. Consider the acyclic quiver Q :=
({v0, v1}, B, sQ, tQ) where sQ(b) = v0 and tQ(b) = v1 for any b ∈ B. To a word ρ =
b0b1 · · · bl−1 with b0, . . . , bl−1 ∈ B, for some l ∈ N, we associate the predicate of arity Q

EqIdρ(x) : ∃PQl
y,

∧
i∈[l]

restrai
(y) ≈ restrbi(x) ∧ EqPath.,PQl

(restr. (y), y)

where, for i ∈ [l], ai : . . → PQl maps the arc of . . onto the i-th arc of PQl and, as
usual, for b ∈ B, b : . . → Q maps the arc of . . onto the arc b ∈ AQ. If D is a diagram
over Q in some category C, then EqIdρ(D) is equivalent to the fact that D(v0) = D(v1) and
D(bl−1) ◦ · · · ◦D(b0) = idD(v0). In particular, a diagram D : ⟨Q⟩ → C verifies

∧
ρ∈R EqIdρ(D)

if and only if it factorizes through the category associated to the monoid M . Hence, the
triviality of the monoid M is equivalent to the validity of the following formula in Tcat:

∀Q x,
∧

ρ∈R

EqIdρ(x) → commute(x).

The Adyan-Rabin theorem concludes the proof. ◀

7 Conclusion

We have shown that the many-sorted signature Σ is expressive enough to formulate a theory
Tcat whose models are exactly diagrams in small categories, as well as an extension Tab
of Tcat whose models are exactly diagrams in small abelian categories. Restricting sorts
to acyclic quivers and morphisms to embeddings makes the commerge problem for Tcat
decidable, that is, one can decide when the commutativity of a given diagram follows from
that of a given collection of sub-diagrams. Generalizing this study to monoidal categories [19]
or more generally to higher category theory does not seem immediate. However, type-
theoretic approaches have been successfully applied to devise a syntactic description of weak
ω-categories [6] and of opetopes [22], and both these works laid the foundations of prototype
proof assistants.

The signatures and theories presented in this article are shaped by their subsequent usage
as interfaces in a computer-aided tool for diagram chases. This tool eventually produces
formal proofs of the corresponding theorems for a given mathematical structure. Interfaces
should indeed be convenient enough to fullfil for concrete applications, e.g., abelian groups.
This motivation explains some seemingly odd choices, including the use of a commutation
predicate instead of the arguably more natural equivalence relation on paths.

A companion file [1] to this submission illustrates how to implement a deep embedding
of formulas of Σ using the Coq proof assistant [21]; its content should be easy to transpose
to other proof systems. Theorem duality_theorem_with_theory expresses a general duality
principle. It can be specialized, e.g., to any formalized definition of abelian categories, and
the resulting instance of the theorem ensures that a formula of the language is valid for
abelian categories if and only if its dual is valid. This companion file however does not
provide any specific such formal definition of abelian categories. Theorem 31 results in a
complete decision procedure for commutativity clauses. The optimizations that make it work
on concrete examples however go beyond the scope of the present article.

Similar concerns about diagrammatic reasoning have motivated the implementation of
the accomplished Globular proof assistant [3], for higher-dimensional category theory. Based
on higher-dimensional rewriting, it implements various algorithms for constructing and

CSL 2024

38:18 A First Order Theory of Diagram Chasing

comparing diagrams in higher categories. It is geared towards visualization rather than
formal verification. The closest related work we are aware of seem unpublished at the time
of writing. Lafont’s categorical diagram editor [10], based on the Unimath library [23]
and Barras and Chabassier’s graphical interface for diagrammatic proofs [4] both provide a
graphical interface for generating Coq proof scripts and visualizing Coq goals as diagrams.
Himmel [8] describes a formalization of abelian categories in Lean [5], including proofs of
the five lemma and of the snake lemma, and proof (semi-)automation tied to this specific
formalization. Duality arguments are not addressed. Monbru [15] also discusses automation
issues in diagram chases, and provides heuristics for generating them automatically, albeit
expressed in a pseudo-language.

References
1 http://matthieu.piquerez.fr/partage/FANL_duality.v.
2 Sergei Ivanovich Adyan. Algorithmic undecidability of problems of recognition of certain

properties of groups. Dokl. Akad. Nauk SSSR, 103:533–535, 1955.
3 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for higher-

dimensional rewriting. Log. Methods Comput. Sci., 14(1), 2018. doi:10.23638/LMCS-14(1:
8)2018.

4 Luc Chabassier and Bruno Barras. A graphical interface for diagrammatic proofs in proof
assistants. Contributed talks in the 29th International Conference on Types for Proofs and
Programs (TYPES 2023), 2023. URL: https://types2023.webs.upv.es/TYPES2023.pdf.

5 Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in
Computer Science, pages 378–388. Springer, 2015. doi:10.1007/978-3-319-21401-6_26.

6 Eric Finster and Samuel Mimram. A type-theoretical definition of weak ω-categories. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005124.

7 Peter Freyd. Abelian categories. An introduction to the theory of functors. Harper’s Series in
Modern Mathematics. Harper & Row Publishers, New York, 1964.

8 Markus Himmel. Diagram chasing in interactive theorem proving. Bachelorarbeit. Karlsruher
Institut für Technologie, 2020. URL: https://pp.ipd.kit.edu/uploads/publikationen/
himmel20bachelorarbeit.pdf.

9 Wilfrid Hodges. A shorter model theory. Cambridge: Cambridge University Press, 1997.
10 Ambroise Lafont. A categorical diagram editor to help formalising commutation proofs.

https://amblafont.github.io/graph-editor/index.html.
11 F. William Lawvere and Stephen H. Schanuel. Conceptual mathematics. A first introduction

to categories. Cambridge: Cambridge University Press, 2nd ed. edition, 2009.
12 Saunders Mac Lane. Homology. Class. Math. Berlin: Springer-Verlag, reprint of the 3rd corr.

print. 1975 edition, 1995.
13 Saunders Mac Lane. Categories for the working mathematician, volume 5 of Grad. Texts Math.

New York, NY: Springer, 2nd ed edition, 1998.
14 J. Peter May. A concise course in algebraic topology. Chicago, IL: University of Chicago Press,

1999.
15 Yannis Monbru. Towards automatic diagram chasing. M1 report. École Normale

Supérieure Paris-Saclay, 2022. URL: https://github.com/ymonbru/Diagram-chasing/blob/
main/MONBRU_Yannis_Rapport.pdf.

16 Matthieu Piquerez. Tropical Hodge theory and applications. PhD thesis, Institut Polytechnique
de Paris, November 2021. URL: https://theses.hal.science/tel-03499730#.

http://matthieu.piquerez.fr/partage/FANL_duality.v
https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.23638/LMCS-14(1:8)2018
https://types2023.webs.upv.es/TYPES2023.pdf
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1109/LICS.2017.8005124
https://doi.org/10.1109/LICS.2017.8005124
https://pp.ipd.kit.edu/uploads/publikationen/himmel20bachelorarbeit.pdf
https://pp.ipd.kit.edu/uploads/publikationen/himmel20bachelorarbeit.pdf
https://amblafont.github.io/graph-editor/index.html
https://github.com/ymonbru/Diagram-chasing/blob/main/MONBRU_Yannis_Rapport.pdf
https://github.com/ymonbru/Diagram-chasing/blob/main/MONBRU_Yannis_Rapport.pdf
https://theses.hal.science/tel-03499730#

A. Mahboubi and M. Piquerez 38:19

17 Michael O. Rabin. Recursive unsolvability of group theoretic problems. Ann. Math. (2),
67:172–194, 1958. doi:10.2307/1969933.

18 Emily Riehl. Category Theory in Context. Dover Publications, 2017. URL: https://math.
jhu.edu/~eriehl/context.pdf.

19 Peter Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke, editor,
New Structures for Physics, volume 813 of Lecture Notes in Physics, pages 289–355. Springer,
2011. doi:10.1007/978-3-642-12821-9_4.

20 Alfred Tarski. The semantic conception of truth and the foundations of semantics. Philos.
Phenomenol. Res. 4, 341-376 (1944)., 1944.

21 The Coq Development Team. The coq proof assistant, June 2023. doi:10.5281/zenodo.
8161141.

22 Cédric Ho Thanh, Pierre-Louis Curien, and Samuel Mimram. A sequent calculus for opetopes.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785667.

23 Vladimir Voevodsky. Univalent semantics of constructive type theories. In Jean-Pierre Jouan-
naud and Zhong Shao, editors, Certified Programs and Proofs - First International Conference,
CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture Notes
in Computer Science, page 70. Springer, 2011. doi:10.1007/978-3-642-25379-9_7.

24 Douglas B. West. Introduction to graph theory. New Delhi: Prentice-Hall of India, 2nd ed.
edition, 2005.

CSL 2024

https://doi.org/10.2307/1969933
https://math.jhu.edu/~eriehl/context.pdf
https://math.jhu.edu/~eriehl/context.pdf
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1109/LICS.2019.8785667
https://doi.org/10.1007/978-3-642-25379-9_7

What Monads Can and Cannot Do
with a Bit of Extra Time
Rasmus Ejlers Møgelberg # Ñ

IT University of Copenhagen, Denmark

Maaike Annebet Zwart # Ñ

IT University of Copenhagen, Denmark

Abstract
The delay monad provides a way to introduce general recursion in type theory. To write programs
that use a wide range of computational effects directly in type theory, we need to combine the
delay monad with the monads of these effects. Here we present a first systematic study of such
combinations.

We study both the coinductive delay monad and its guarded recursive cousin, giving concrete
examples of combining these with well-known computational effects. We also provide general
theorems stating which algebraic effects distribute over the delay monad, and which do not. Lastly,
we salvage some of the impossible cases by considering distributive laws up to weak bisimilarity.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Type structures

Keywords and phrases Delay Monad, Monad Compositions, Distributive Laws, Guarded Recursion,
Type Theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.39

Related Version An appendix containing the full proofs is available at arXiv.
Extended Version: http://arxiv.org/abs/2311.15919

Supplementary Material Software (Source Code): https://github.com/maaikezwart/Agda-proofs
/tree/main/What%20monads%20can%20and%20cannot%20do

archived at swh:1:dir:e29201a731f2bffb8137ffa7b0eb09fb388d62d1

Funding Independent Research Fund Denmark, grant number 2032-00134B.

1 Introduction

Martin Löf type theory [29] is a language that can be understood both as a logic and a
programming language. For the logical interpretation it is crucial that all programs terminate.
Still, one would like to reason about programming languages with general recursion, or even
write general recursive programs inside type theory. One solution to this problem is to
encapsulate recursion in a monad, such as the delay monad D. This monad maps an object
X to the coinductive solution to DX ∼= X + DX. The right inclusion into the sum of the
above isomorphism introduces a computation step, and infinitely many steps correspond to
divergence. Capretta [8] showed how D introduces general recursion via an iteration operator
of type (X → D(X + Y)) → X → DY . For this reason, D has been used to model recursion
in type theory [14, 41, 4], and in particular forms part of the basis of interaction trees [42].

The delay monad has a guarded recursive variant defined using Nakano’s [33] fixed
point modality ▷. Data of type ▷X should be thought of as data of type X available only
one time step from now. This modal operator has a unit next : X → ▷X transporting
data to the future, and a fixed point operator fix : (▷X → X) → X mapping productive
definitions to their fixed points satisfying fix(f) = f(next(fix(f))). Guarded recursion can be
modelled in the topos of trees [7] – the category Setωop

of presheaves on the ordered natural
© Rasmus Ejlers Møgelberg and Maaike Annebet Zwart;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 39; pp. 39:1–39:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mogel@itu.uk
http://www.itu.dk/~mogel/
https://orcid.org/0000-0003-0386-4376
mailto:maaike.annebeth@gmail.com
http://www.maaikezwart.com
https://orcid.org/0000-0002-0257-1574
https://doi.org/10.4230/LIPIcs.CSL.2024.39
http://arxiv.org/abs/2311.15919
https://github.com/maaikezwart/Agda-proofs/tree/main/What%20monads%20can%20and%20cannot%20do
https://github.com/maaikezwart/Agda-proofs/tree/main/What%20monads%20can%20and%20cannot%20do
https://archive.softwareheritage.org/swh:1:dir:e29201a731f2bffb8137ffa7b0eb09fb388d62d1;origin=https://github.com/maaikezwart/Agda-proofs;visit=swh:1:snp:e69e7d3454b65469f72c0d328fa4494302cbc0ad;anchor=swh:1:rev:96307e60216a85d907c232344937fccb14c36bef
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 What Monads Can and Cannot Do

numbers – by defining (▷X)(0) = 1 and (▷X)(n + 1) = X(n). The guarded delay monad Dg

is defined as the free monad on ▷, i.e., the inductive (and provably also coinductive) solution
to DgX ∼= X + ▷(DgX).

The two delay monads can be formally related by moving to a multiclock variant of
guarded recursion, in which the modal operator ▷ is indexed by a clock variable κ, which
can be universally quantified. Then by defining the guarded delay monad DκX to be the
unique solution to DκX ∼= X + ▷κ(DκX), the coinductive variant can be encoded [2] as
DX

def= ∀κ.DκX. In this paper we will work informally in Clocked Cubical Type Theory
(CCTT) [5], a type theory in which such encodings of coinductive types can be formalised
and proven correct.

Unlike the coinductive variant, the guarded delay monad has a fixed point operator of
type ((X → DκY) → (X → DκY)) → (X → DκY), defined using fix. For the coinductive
delay monad, fixed points only exist for continuous maps, but in the guarded case, continuity
is a consequence of a causality property enforced in types using ▷. As a consequence, higher
order functional programming languages with recursion can be embedded in type theories
like CCTT by interpreting function spaces as Kleisli exponentials for Dκ. For example,
Paviotti et al. [36] showed how to model the simply typed lambda calculus with fixed point
terms (PCF), and proved adequacy of the model, all in a type theory with guarded recursion.
These results have since been extended to languages with recursive types [31] and (using an
impredicative universe) languages with higher-order store [38]. This suggests that the guarded
delay monad can be used for programming and reasoning about programs using a wide range
of advanced computational effects directly in type theory. However, a mathematical theory
describing the interaction of the delay monads with other monads is still lacking, even for
basic computational effects.

1.1 Combining the Delay Monad With Other Effects
In this paper, we present a first systematic study of monads combining delay with other
effects. We first show how to combine the delay monad with standard monads known from
computational effects: exceptions, reader, global state and the selection monad. Most of
these follow standard combinations of effects and non-termination known from domain theory,
but, the algebraic status of these combinations is simpler than in the domain theoretic case:
Whereas the latter can be understood as free monads for order-enriched algebraic theories [20],
the combinations with the guarded recursive delay monad are simply free models of theories
in the standard sense, with the caveat that the arity of the step operation is non-standard.

The rest of the paper is concerned with distributive laws of the form TD → DT , where
T is any monad and D is the delay monad in any of the two forms mentioned above. Such a
distributive law distributes the operations of T over steps, and equips the composite DT

with a monad structure that describes computations whose other effects are only visible
upon termination. This is the natural monad for example in the case of writing to state,
when considering non-determinism and observing must-termination, or for computing data
contained in data structures such as trees or lists.

There are two natural ways of distributing an n-ary operation op over computation
steps: The first is to execute each of the n input computations in sequence until they
have all terminated, the second is to execute the n inputs in parallel, delaying terminated
computations until all inputs have terminated. We show that sequential execution yields a
distributive law for algebraic monads (monads generated by algebraic theories) where all
equations are balanced, i.e., the number of occurrences of each variable on either side is the
same. Trees, lists, and multisets are examples of such monads.

R. Ejlers Møgelberg and M. A. Zwart 39:3

The requirement of balanced equations is indeed necessary. This was observed already
by Møgelberg and Vezzosi [32] who showed that for the finite powerset monad, sequential
distribution of steps over the union operator was not well defined, and parallel distribution did
not yield a distributive law due to miscounting of steps. Here we strengthen this result to show
that no distributive law is possible for the finite powerset monad over the coinductive delay
monad. At first sight it might seem that the culprit in this case is the idempotency axiom.
However, we show that in some cases it is possible to distribute idempotent operations
over the coinductive delay monad, but not over the guarded one (we show this just for
commutative operations).

Finally, we show that if one is willing to work up to weak bisimilarity, i.e., equating
elements of the delay monad that only differ by a finite number of computation steps, then
one can construct a distributive law TD → DT for any monad T generated by an algebraic
theory with no drop equations (equations where a variable appears on one side, but not the
other). To make this precise, we formulate this result as a distributive law of monads on a
category of setoids.

Agda Formalisation

Some of the results presented in this paper have been formalised in Agda using Vezzosi’s
Guarded Cubical library1. The code can be found at https://tinyurl.com/WMCDAgda.

2 Monads and Algebraic Theories

In this background section we briefly remind the reader of algebraic theories and free model
monads for an algebraic theory. We mention different classes of equations that play a role in
our analysis of monad compositions, and we discuss distributive laws for composing monads.

▶ Definition 1 (Algebraic Theory). An algebraic theory A consists of a signature ΣA and a
set of equations EA. The signature is a set of operation symbols with arities given by natural
numbers. The signature ΣA together with a set of variables X inductively defines the set of
A-terms: Every variable x : X is a term, and for each operation symbol op in ΣA, if op has
arity n and t1, . . . , tn are terms, then op(t1, . . . , tn) is a term. The set of equations contains
pairs of terms (s, t) in a finite variable context which are to be considered equal, often written
as s = t. These pairs then define an equivalence relation on terms via equational logic.

▶ Example 2 (Monoids). The algebraic theory of monoids has a signature consisting of
a constant c and a binary operation ∗, satisfying the left and right unital equations: ∀x :
X. c ∗ x = x and ∀x : X. x ∗ c = x, and associativity: ∀x, y, z : X. (x ∗ y) ∗ z = x ∗ (y ∗ z).
Commutative monoids also include the commutativity equation: ∀x, y : X. x ∗ y = y ∗ x.

▶ Definition 3 (Category of Models). A model of an algebraic theory (ΣA, EA) is a set X

together with an interpretation opX : Xn → X of each n-ary operation op in ΣA, such that
sX = tX for each equation s = t in EA. Here sX is the interpretation of s defined inductively
using the interpretation of operations.

A homomorphism between two models (X, (−)X) and (Y, (−)Y) is a morphism h : X → Y

such that h(opX(x1, . . . , xn)) = opY (h(x1), . . . , h(xn)) for each n-ary operation op in ΣA

and x1, . . . , xn : X. The models of an algebraic theory and homomorphisms between them
form a category called the category of algebras of the algebraic theory, denoted A-alg.

1 https://github.com/agda/guarded

CSL 2024

https://tinyurl.com/WMCDAgda
https://github.com/agda/guarded

39:4 What Monads Can and Cannot Do

The free model of an algebraic theory A with variables in a set X consists of the set of
equivalence classes of A-terms in context X. The functor F : Set → A-alg sending each set
X to the free model of A on X is left adjoint to the forgetful functor sending each A-model
to its underlying set. This adjunction induces a monad on Set, called the free model monad
of the algebraic theory [24, 23, 25]. The category of algebras of A is isomorphic to the
Eilenberg-Moore category of this monad. If a monad T is isomorphic to the free model
monad of an algebraic theory, then we say that T is presented by that algebraic theory.

▶ Example 4 (Boom Hierarchy Monads [30]). The binary tree monad, the list monad, the
multiset monad and the powerset monad are the free model monads of respectively the
theories of:

Magmas, the theory consisting of a constant and a binary operation satisfying the left
and right unit equations.
Monoids, which are magmas satisfying the associativity equation.
Commutative monoids.
Idempotent commutative monoids, which are also known as semilattices.

The equations of an algebraic theory determine much of the behaviour of its free model
monad. For example, linear equations result in monads that always compose with commut-
ative monads [26, 34]. In this paper, we built upon the ideas of Gautam [16] and Parlant et
al [35], and distinguish the following classes of equations:

▶ Definition 5. Write var(t) for the set of variables that appear in a term t. We say that an
equation s = t is:
Linear if var(s) = var(t) and each variable in these sets appears exactly once in both s and t.

Example: x ∗ y = y ∗ x.
Balanced if var(s) = var(t) and each variable in these sets appears equally many times in s

and t. Example: (x ∗ y) ∗ (y ∗ z) = (y ∗ y) ∗ (x ∗ z).
Dup if there is an x : var(s) ∪ var(t), such that x appears ≥ 2 times in s and/or t. Example:

the balanced equation above, as well as x ∗ x = x ∗ x ∗ x and x ∧ (x ∨ y) = x.
Drop if var(s) ̸= var(t). Example: x ∧ (x ∨ y) = x.

▶ Remark 6. Notice that these types of equations are not mutually exclusive. An equation
can for instance be both dup and drop, such as the absorption equation x ∧ (x ∨ y) = x.

2.1 Distributive Laws
One way of composing two monads is via a distributive law describing the interaction between
the two monads [6].

▶ Definition 7 (Distributive Law). Given monads ⟨S, ηS , µS⟩ and ⟨T, ηT , µT ⟩, a distributive
law distributing S over T is a natural transformation ζ : ST → TS satisfying the following
axioms:

ζ ◦ ηST = TηS ζ ◦ SηT = ηT S (unit axioms)
ζ ◦ µST = TµS ◦ ζS ◦ Sζ ζ ◦ SµT = µT S ◦ Tζ ◦ ζT (multiplication axioms)

▶ Example 8 (Lists and Multisets). Distributive laws are named after the well-known
distributivity of multiplication over addition: a ∗ (b + c) = (a ∗ b) + (a ∗ c). Many distributive
laws follow the same distribution pattern. For example, the list monad distributes over the
multiset monad in this way: ζ[HaI, Hb, cI] = H[a, b], [a, c]I. However, this is by no means the
only way a distributive law can function.

R. Ejlers Møgelberg and M. A. Zwart 39:5

▶ Theorem 9 (Beck [6]). Let C be a category, and ⟨S, ηS , µS⟩ and ⟨T, ηT , µT ⟩ two monads
on C. If ζ : ST → TS is a distributive law, then the functor TS carries a monad structure
with unit ηT ηS and multiplication µT µS ◦ TζS.

We frequently use the following equivalence in our proofs:

▶ Theorem 10 (Beck [6]). Given two monads ⟨S, ηS , µS⟩ and ⟨T, ηT , µT ⟩ on a category C,
there is a bijective correspondence between distributive laws of type ST → TS, and liftings of
T to the Eilenberg-Moore category CS of S.

Here, a lifting of T to CS is an assignment mapping S-algebra structures on a set X to
S-algebra structures on TX such that ηT and µT are S-algebra homomorphisms.

3 Guarded Recursion and the Delay Monad

In this paper we work informally in Clocked Cubical Type Theory (CCTT) [5]. At present,
this is the only known theory combining the features we need: Multiclocked guarded recursion
and quotient types (to express free monads). Here we remind the reader of the basic principles
of CCTT, but we refer to Kristensen et al. [5] for the full details, including a denotational
semantics for CCTT.

3.1 Algebraic Theories in Cubical Type Theory
CCTT is an extension of Cubical Type Theory (CTT) [12], which in turn is a version of
Homotopy Type Theory (HoTT) [39] that gives computational content to the univalence
axiom. In CTT, the identity type of Martin-Löf type theory is replaced by a path type,
which we shall write infix as t =A u, often omitting the type A of t and u. We will work
informally with =, using its standard properties such as function extensionality.

A type A is a homotopy proposition (or hprop) in HoTT and CTT, if any two elements
of A are equal, and an hset if x =A y is an hprop for all x, y : A. Assuming a universe of
small types, one can encode universes hProp and hSet of homotopy sets and propositions in
the standard way. The benefit of working with hsets is that there is no higher structure to
consider. In particular, the collection of hsets and maps between these forms a category in
the sense of HoTT [39], and so basic category theoretic notions such as functors and monads
on hsets can be formulated in the standard way.

The notion of algebraic theory can also be read directly in CTT this way. Moreover, the
free monads on algebraic theories can be defined using higher inductive types (HITs). These
are types given inductively by constructors for terms as well as for equalities. For example,
the format for HITs used in CCTT [5] (adapted from Cavallo and Harper [9]) is expressive
enough2.

We write type equivalence as A ≃ B. For hsets this just means that there are maps
f : A → B and g : B → A that are inverses of each other, as expressed in CTT using path
equality.

3.2 Multi-Clocked Guarded Recursion
CCTT extends CTT with multi-clock guarded recursion. The central component in this is
a modal type operator ▷ indexed by clocks κ, used to classify data that is delayed by one
time step on clock κ. The most important typing rules of CCTT are collected in Figure 1.

2 Full details are in the appendix in the extended version on ArXiv

CSL 2024

39:6 What Monads Can and Cannot Do

Γ ⊢
Γ, κ : clock ⊢

κ : clock ∈ Γ
Γ, α : κ ⊢

Γ, TimeLess(Γ′) ⊢ t : ▷ (α :κ).A Γ, β : κ, Γ′ ⊢
Γ, β : κ, Γ′ ⊢ t [β] : A [β/α]

Γ, α : κ ⊢ t : A

Γ ⊢ λ(α :κ).t : ▷ (α :κ).A
Γ, κ : clock ⊢ t : A

Γ ⊢ Λκ.t : ∀κ.A

Γ ⊢ t : ∀κ.A Γ ⊢ κ′ : clock
Γ ⊢ t[κ′] : A[κ′/κ]

Γ ⊢ t : ▷κA → A

Γ ⊢ dfixκ t : ▷κA

Γ ⊢ t : ▷κA → A

Γ ⊢ pfixκ t : ▷ (α :κ).(dfixκt) [α] =A t(dfixκt)

Figure 1 Selected typing rules for Clocked Cubical Type Theory [5]. The telescope TimeLess(Γ′)
is composed of the timeless assumptions in Γ, i.e. interval variables and faces (as in Cubical Type
Theory) as well as clock variables.

Clocks are introduced as special assumptions κ : clock in a context, and can be abstracted
and applied to terms of the type ∀κ.A which behaves much like a Π-type for clocks. Like
function extensionality, extensionality for ∀κ.A also holds in CCTT.

The rules for ▷ also resemble those of Π-types: Introduction is by abstracting special
assumptions α : κ called ticks on the clock κ. Since ticks can appear in terms, the modal
type ▷ (α :κ).A binds α in A, just like a Π-type binds a variable. We write ▷κA for ▷ (α :κ).A
when α does not appear in A. The introduction rule for ▷ can be read as stating that if t

has type A after the tick α, then λ(α :κ).t has type ▷ (α :κ).A now.
The modality ▷ is eliminated by applying a term to a tick. Note that the term t applied

to the tick β cannot already contain β freely. This restriction prevents t from being applied
twice to the same tick, which would construct terms of type ▷κ ▷κ A → ▷κA, collapsing two
steps into one. Moreover, t cannot contain any variables nor other ticks occurring in the
context after β, only timeless assumptions, i.e., clocks, interval assumptions and faces. One
application of timeless assumptions is to type the extensionality principle for ▷:

(t =▷ (α:κ).A u) ≃ ▷ (α :κ).(t [α] =A u [α]). (1)

For all explicit applications of terms to ticks in this paper, the term will not use timeless
assumptions. The usual η and β laws hold for tick abstraction and application.

The use of ticks for programming with ▷ implies that ▷ is an applicative functor, and can
even be given a dependent applicative action of type

Π(f : ▷κ(Π(X : A).B(x)).Π(y : ▷κA).▷ (α :κ).B(y [α]).

Ticks are named in CCTT for reasons of normalisation [3], but are essentially identical.
This is expressed in type theory as the tick irrelevance principle:

tirrκ : Π(x : ▷κA). ▷ (α :κ). ▷ (β :κ).(x [α] =A x [β]). (2)

The term tirrκ is defined in CCTT using special combinators on ticks, allowing for computa-
tional content to tirrκ. This means that the rule for tick application is more general than the
one given in Figure 1. However, we will not need this further generality for anything apart
from tirrκ, which we use directly.

Finally, CCTT has a fixed point operator dfix which unfolds up to path equality as
witnessed by pfix. Using these, one can define fixκ : (▷κA → A) → A as fixκ(t) = t(dfixκt)
and prove fixκ(t) = t(nextκ(fixκ(t))) where nextκ def=(λ(x : A).λ(α : κ).x) : A → ▷κA. Note
that this uses that also variables appearing before a tick in a context can be introduced.
This is not the case in all Fitch-style modal type theories [11, 17].

R. Ejlers Møgelberg and M. A. Zwart 39:7

3.3 Guarded Recursive Types
A guarded recursive type is a recursive type in which the recursive occurrences of the type
are all guarded by a ▷. These can be encoded up to equivalence of types using fixed points
of maps on the universe. Our primary example is the guarded recursive delay monad Dκ

defined to map an X to the recursive type

DκX ≃ X + ▷κ(DκX).

We write now : X → DκX and step : ▷κ(DκX) → DκX for the two maps given by inclusion
and the equivalence above.

Since ▷κ preserves the property of being an hset, one can prove by guarded recursion that
DκX is an hset whenever X is. Dκ can be seen as a free construction in the following sense.

▶ Definition 11. A delay algebra on the clock κ is an hset X together with a map ▷κX → X.

Given an hset X, the hset DκX carries a delay algebra structure. It is the free delay
algebra in the sense that given any other delay algebra (Y, ξ), and a map f : X → Y , there
is a unique homomorphism f : DκX → Y extending f along now, defined by the clause

f(step(x)) = ξ(λ(α :κ).f(x [α])). (3)

This is a recursive definition that can be encoded as a fixed point of a map h : ▷κ(DκX →
Y) → (DκX → Y) defined using the clause h(g)(step(x)) = ξ(λ(α :κ).(g [α])(x [α])). In this
paper we use the simpler notation of Equation (3) for such definitions rather than the explicit
use of fixκ.

We sketch the proof that f is the unique homomorphism extending f , to illustrate the
use of fixκ for proofs. Suppose g is another such extension. To use guarded recursion, assume
that ▷κ(g = f). We show that g(step(x)) = ξ(λ(α :κ).f(x [α])). Since g is a homomorphism:
g(step(x)) = ξ(λ(α : κ).g(x [α])). So by extensionality for ▷ (1) it suffices to show that
▷ (α :κ).(g(x [α]) = f(x [α])), which follows from the guarded recursion hypothesis.

Tick irrelevance implies that Dκ is a commutative monad in the sense of Kock [22].

3.4 Encoding Coinductive Types
Coinductive types can be encoded using a combination of guarded recursive types and
quantification over clocks. This was first observed by Atkey and McBride [2]. We recall the
following special case of a more general theorem for this in CCTT [5]. First a definition.

▶ Definition 12. A functor F : hSet → hSet commutes with clock quantification, if the
canonical map F (∀κ.(X [κ])) → ∀κ.F (X [κ]) is an equivalence for all X : ∀κ.hSet. An hset
X is clock irrelevant if the constant functor to X commutes with clock quantification, i.e. if
the canonical map X → ∀κ.X is an equivalence.

Note that functors commuting with clock quantification map clock irrelevant types to
clock irrelevant types.

▶ Theorem 13 ([5]). Let F be an endofunctor on the category of hsets commuting with clock
quantification, and let νκF be the guarded recursive type satisfying F (▷κ(νκF)) ≃ νκF , then
νF

def= ∀κ.νκF carries a final coalgebra structure for F .

In order to apply Theorem 13, of course, one needs a large collection of functors F

commuting with clock quantification. Fortunately, the collection of such functors is closed
under almost all type constructors, including finite sum and product, Π and Σ types, ▷, ∀κ,

CSL 2024

39:8 What Monads Can and Cannot Do

and guarded recursive types [5, Lemma 4.2]. Clock irrelevant types are likewise closed under
the same type constructors, and path equality. The only exception to clock irrelevance is the
universe type.

For example, if X is clock irrelevant, then F (Y) = X + Y commutes with clock quantific-
ation, and so DX

def= ∀κ.DκX is the coinductive solution to DX ≃ X + DX.
CCTT moreover has a principle of induction under clocks allowing one to prove that

many HITs are clock irrelevant, including the empty type, booleans and natural numbers.
Moreover, one can prove the following.

▶ Proposition 14. Let A = (ΣA, EA) be an equational theory such that ΣA and EA are clock
irrelevant. Then the free model monad T commutes with clock quantification. In particular,
T (X) is clock irrelevant for all clock irrelevant X.

The collection of clock irrelevant propositions can be shown to be closed under standard
logical connectives. Alternatively, one can assume a global clock constant κ0, which then
can be used to prove that all propositions are clock irrelevant.

▶ Convention 15. In the remainder of this paper, the word set will refer to a clock-irrelevant
hset, and the word proposition will refer to clock-irrelevant homotopy propositions. We will
write Set and Prop for the universes of these. Similarly, whenever we mention functors these
are assumed to commute with clock quantification.

4 Specific Combinations with Delay

In this section we look at some specific examples of monads, and see how they combine with
the delay monads. In particular, we will look at the exception, reader, state, and selection
monads. Intuitively, these monads model (parts of) the process: read input - compute - do
something with the output. For instance, the state monad reads a state, then both updates
the current state and gives an output. Combining the state monad with the delay monads
allows us to model the fact that the computation in between reading the input and giving
the output takes time, and might not terminate.

The examples we give follow the same pattern as the adaptation of these monads to
domain theory: we insert a delay monad where one would use lifting in the domain theoretic
case. However, we also show that the algebraic status of these monads is much simpler in
the guarded recursive case than in the domain theoretic one: they can simply be understood
as being generated by algebraic theories where one operation (step) has a non-standard
arity. In the domain theoretic case, the algebraic description is in terms of enriched Lawvere
theories [20]. We give no algebraic description of the combinations with the coinductive delay
monads, because this does not by itself have an algebraic description.

First note that for combinations with delay via a distributive law, it is enough to find a
distributive law for the guarded recursive version Dκ.

▶ Lemma 16. Let T be a monad. A distributive law ζX : ∀κ.T (Dκ(X)) → Dκ(T (X)) for the
guarded delay monad induces a distributive law TD → DT for the coinductive delay monad.
Similarly, if T κ is a family of monads indexed by κ then T (X) = ∀κ.T κ(X) carries a monad
structure.

Proof. The distributive law can be constructed as the composite

T (∀κ.Dκ(X)) → (∀κ.T (Dκ(X))) → ∀κ.Dκ(T (X)),

where κ is fresh for T and X. For the second statement define the multiplication as the
composite ∀κ.T κ(∀κ.T κ(X)) → (∀κ.T κ(T κ(X))) → ∀κ.T κ(X). ◀

R. Ejlers Møgelberg and M. A. Zwart 39:9

Exceptions

The first monad we consider is the exception monad. For a set of exceptions E, the exception
monad is given by the functor (− + E), with obvious unit and multiplication. The exception
monad is the free model monad of the algebraic theory consisting of a signature with a
constant e for each exception in E, and no equations.

It is well known that the exception monad distributes over any monad, and therefore
we have a distributive law ζ : (Dκ(−) + E) → Dκ(− + E). The resulting composite monad
Dκ(− + E) is the free model monad of the theory consisting of constants e : E and a
step-operator forming a delay algebra, with no additional equations.

Reading

The reader monad (−)R is presented by the algebraic theory consisting of a single operation
lookup : XR → X, satisfying the equations

∀x : X. lookup(λr.x) = x ∀g : (XR)R. lookup(lookup ◦g) = lookup(λs.g s s).

To combine the reader monad with the delay monad, we define a distributive law DκR →
RDκ by the clauses ζ(now f) = λr. now(fr) and ζ(step d) = λr. step(λ(α : κ).(ζ(d [α]))r),
where f : XR and d : ▷κ(XR). The resulting composite monad RDκ is the free model monad
of the theory consisting of lookup and step satisfying the above equations for lookup and

∀d : ▷κ(XR). step(λ(α :κ). lookup(d [α])) = lookup(λr. step(λ(α :κ).d [α] r)). (4)

Global State

Plotkin and Power [37] show that the global state monad (S × −)S can be described
algebraically by two operations: lookup : XS → X and update : X → XS , satisfying four
interaction diagrams. They call the category of such algebras GS-algebras.

The natural combination of global state and Dκ is (Dκ(S ×−))S describing computations
whose steps occur between reading the initial state and writing back the updated state. To
describe this monad algebraically define a GSD-algebra to be a GS-algebra which also carries
a delay algebra structure satisfying (4) and

∀x : ▷κX. λs. update(step x)s = λs. step(λ(α :κ). update(x [α])s).

Diagrammatically:

▷κ(XS) (▷κX)S XS ▷κX ▷κ(XS) (▷κX)S

▷κX X X XS

▷κ(lookup)

stepS

lookup

▷κ(update)

step stepS

step update

▶ Theorem 17. The monad (Dκ(S × −))S is the free model monad of the theory of GSD-
algebras.

Note that also (D(S × −))S is a monad by Lemma 16, since the assumption of S being
clock irrelevant implies (D(S × −))S ≃ ∀κ.((Dκ(S × −))S).

CSL 2024

39:10 What Monads Can and Cannot Do

Selecting

The selection monad J X = (X → S) → X takes a function X → S, and selects an input
x : X to return [15]. This could, for example, be an input for which the function attains
an optimal value. It is a monad similar to the reader monad, with a more advanced input.
It is also a close companion to the continuation monad (X → S) → S, and it has many
applications in for example game theory and functional programming [18].

The selection monad combines with the delay monad via a distributive law of type
DκJ → J Dκ. Intuitively, it first gathers all the data from the function X → S, and then
computes which element from X to select. This computation takes time and might not
terminate. We assume that the initial input is readily available, even though the resulting
type of the monad composition is (DκX → S) → DκX. This fact is reflected in the definition
of the distributive law below.

The distributive law is similar to the distributive law for the delay monad over the reader
monad, and is given by:

ζ(step(d)) = λg. step(λ(α :κ).(ζ(d [α]))g),

where f : (X → S) → X and d : ▷κ(Dκ((X → S) → X)). As a result, both J Dκ and J D

can be equipped with monad structures.

Free Combinations With Delay

The sum of two monads T and S is a monad T ⊕S whose algebras are objects X with algebra
structures for both T and S [19]. In terms of algebraic theories, the sum can be understood
as combining two theories with no equations between them. The sum of Dκ with any other
monad always exists [19, Theorem 4]:

▶ Corollary 18. Let T be a monad, and define T ⊕ Dκ as the guarded recursive type:

(T ⊕ Dκ)X ≃ T (X + ▷κ((T ⊕ Dκ)X)).

Then (T ⊕ Dκ)(X) is the carrier of the free T -algebra and delay-algebra structure.

The monad mapping X to ∀κ.(T ⊕ Dκ)(X) includes the coinductive delay monad and T ,
but we have not been able to prove a general universal property for this. We believe that it
is not the sum of the two.

5 Parallel and Sequential Distribution of Operations

We now consider distributive laws of type TD → DT , where D is one of the delay monads
and T is any presentable monad. Such laws equip the composite DT with a monad structure,
which is the natural one in particular for monads describing data structures, such as those in
the Boom hierarchy.

We again focus on distributive laws involving the guarded version of the delay monad,
invoking Lemma 16. Intuitively, such a distributive law pulls all the steps out of the algebraic
structure of T : it turns a T -structure with delayed elements into a delayed T -structure.
There are two obvious candidates for such a lifting: parallel and sequential computation. We
define both of these on operations using guarded recursion. A lifting of terms then follows
inductively from lifting each operation in the signature of the presentation of T .

R. Ejlers Møgelberg and M. A. Zwart 39:11

▶ Definition 19 (Parallel Lifting of Operators). Let A be an algebraic theory, and let X be an
A-model. Define, for each n-ary operation op in A, a lifting oppar

DκX : (DκX)n → DκX by:

oppar
DκX(now x1, . . . , now xn) = now(opX(x1, . . . , xn))

oppar
DκX(x1, . . . , xn) = step(λα.(oppar

DκX(x′
1, . . . , x′

n))),

where the second clause only applies if one of the xi is of the form step(x′′
i) and

x′
i =

{
xi if xi = now(x′′

i)
x′′

i [α] if xi = step(x′′
i)

▶ Definition 20 (Sequential Lifting of Operators). Let A be an algebraic theory, and let X be
an A-model. Define, for each n-ary operation op in A, a lifting opseq

DκX : (DκX)n → DκX

by:

opseq
DκX(now x1, . . . , now xn) = now(opX(x1, . . . , xn))

opseq
DκX(now x1, . . . , step xi, . . . xn) = step(λα.(opseq

DκX(now x1, . . . , (xi [α]), . . . , xn))),

where, in the second clause, the ith argument is the first not of the form now(x′
k).

In general, for an n-ary operation op, parallel lifting evaluates all arguments of the form
step(xi) in parallel, and sequential lifting evaluates them one by one from the left. Parallel
lifting of an operator therefore terminates in as many steps as the maximum required for
each of its inputs to terminate, while sequential lifting terminates in the sum of the number
of steps required for each input.

The evaluation order of arguments in the case of sequential lifting is inessential, which
can be proved using guarded recursion and tick irrelevance.

▶ Lemma 21. Let A be an algebraic theory, and let op be an n-ary operation in A. Then

opseq
DκX(x1, . . . , step(xi), . . . xn) = step(λ(α :κ).opseq

DκX(x1, . . . , xi [α], . . . , xn)).

5.1 Preservation of Equations
Parallel lifting preserves all non-drop equations, whereas sequential lifting only preserves
balanced equations. We prove this in the two following propositions. We write spar

DκX for
the interpretation of a term s on DκX defined by induction of s using the parallel lifting
of operations, and likewise sseq

DκX for the interpretation defined using sequential lifting of
operations.

▶ Proposition 22 (Parallel Preserves Non-Drop). Let A = (ΣA, EA) be an algebraic theory,
X an A-model, and s = t a non-drop equation that is valid in A. Then also spar

DκX = tpar
DκX .

The restriction to non-drop equations is necessary, because divergence in a dropped
variable leads to divergence on one side of the equation, but not on the other.

Møgelberg and Vezzosi [32] observed that parallel lifting does not define a distributive law
in the case of the finite powerset monad. Their proof uses idempotency, but in fact parallel
lifting does not define a monad even just in the presence of a single binary operation.

▶ Theorem 23. Let T be an algebraic monad with a binary operation op. Then the natural
transformation ζ : TD → DT induced by parallel lifting does not define a distributive law,
because it fails the second multiplication axiom.

CSL 2024

39:12 What Monads Can and Cannot Do

Proof. The counter example is the same as used by Møgelberg and Vezzosi:

oppar
DDX(µD(now(step now x)), µD(step(now(now y))) = step(now(opX(x, y)))
µD(oppar

DDX(now(step(now x)), step(now(now y)))) = step(step(now(opX(x, y)))). ◀

Note that we used the coinductive version of the delay monad in the above theorem. By
Lemma 16, this implies the same result for the guarded recursive version.

▶ Proposition 24 (Sequential Preserves Balanced). Let A be an algebraic theory, and s, t be two
A-terms such that s = t is a balanced equation that is valid in A. Then also sseq

DκX = tseq
DκX .

Balance is necessary. For example, if t and s are terms in a single variable which occurs
twice in t and once in s, then tseq

DκX(step(x)) takes at least two steps, but sseq
DκX(step(x))

might take only one. Building on Proposition 24, one can prove the following.

▶ Theorem 25. Let T be the free model monad of algebraic theory T = (ΣT, ET), such
that ET only contains balanced equations. Then sequential lifting defines a distributive law
TDκ → DκT .

Combining this with Lemma 16 we obtain a distributive law TD → DT for all T as in
Theorem 25.
▶ Remark 26. Since Dκ is a commutative monad, we already know from Manes and Mulry [26]
and Parlant [34] that there is a distributive law in the case where T only has linear equations.
We can extend this linearity requirement here to allow duplications of variables, as long as
there are equally many duplicates on either side of each equation.

▶ Example 27. The sequential distributive law successfully combines the delay monad with
the binary tree monad, the list monad, and the multiset monad, resulting in the monads
DκB, DκL, and DκM , respectively.

6 Idempotent Equations

This section studies distributive laws TD → DT for T an algebraic monad with an idempotent
binary operation “op”. Since idempotency is not a balanced equation, as remarked after
Proposition 24, sequential distribution does not respect it, and so neither parallel nor
sequential distribution define distributive laws in this case. Idempotency turns out to be
a tricky equation: We first show an example of such a theory T where no distributive law
TD → DT is possible, then a theory where it is, and finally we show that no distributive
law of type TDκ → DκT is possible. First observe the following.

▶ Lemma 28. Let T be an algebraic monad with an idempotent binary operation op and let
ζ : TD → DT be a distributive law. There exist binary T -operations op1 and op’ such that for
any T -model X, the lifting of op to DX satisfies op(step x, step y) = step(op1(x, y)) and either
1) op(step x, y) = step(op’(x, y)) and op’(x, step y) = op1(x, y) or 2) op(step x, y) = op’(x, y)
and op’(x, step y) = step(op1(x, y)).

Proof Sketch. We just sketch the proof of existence of op1. Consider the naturality diagram
for the unique map ! : 2 → 1 from the 2-element set {tt, ff} to the singleton set {⋆}.

D(T (2)) × D(T (2)) D(T (2))

D(T (1)) × D(T (1)) D(T (1))

op

D(T (!))×D(T (!)) D(T (!))

op

R. Ejlers Møgelberg and M. A. Zwart 39:13

By idempotency, the lower composition maps (step(now(ηT (tt))), step(now(ηT (ff)))) to
step now(ηT (⋆)). Therefore it must be the case that op(step(now(ηT (tt))), step(now(ηT (ff))))
is step(now(op1(ηT (tt), ηT (ff)))) for some op1. ◀

▶ Proposition 29. There is no distributive law PfD → DPf for Pf the finite powerset functor.

Proof Sketch. There are only four possible cases for op1(x, y) and op’(x, y): ∅, {x}, {y} and
{x, y}. An easy analysis rules out the first three. Lemma 28 then implies that {step(x), y} =
step({x, y}). This leads to a contradiction as follows

step({x}) = {step(x)} = {step(x), step(x)} = step({x, step(x)}) = step2({x}). ◀

▶ Example 30. Let A be the algebraic theory with one idempotent binary operation ∗ and
one unary operator !, with no further equations. Let T be the monad generated by A. There
is a distributive law ζ : TD → DT given by the following clauses

!(step(x)) = x step(x) ∗ y = step(x ∗ (!y)) x ∗ step(y) = step((!x) ∗ y).

Note in particular, that step(x) ∗ step(y) = step(x ∗ (!(step(y)))) = step(x ∗ y). This example
can be extended to ∗ associative, if the equation !(x ∗ y) = (!x) ∗ (!y) is added.

▶ Theorem 31 (No-Go Theorem). Let T be a monad with a binary algebraic operation that
is commutative and idempotent. Then there is no distributive law of type TDκ → DκT .

7 Semi-Go Theorem: Up to Weak Bisimilarity

In the proof of Theorem 31 the failure of existence of distributive laws comes down to a
miscounting of steps. This section shows that this is indeed all that fails, and that parallel
lifting defines a distributive law up to weak bisimilarity for algebraic monads with no drop
equations. Weak bisimilarity is a relation on the coinductive delay monad, which relates
computations that only differ by a finite number of steps. To make this precise, we work in
a category of setoids. The objects are pairs (X, R), where R is an equivalence relation on
X, and morphisms are equivalence classes of maps f between the underlying sets respecting
the relations. Two such maps are equivalent if their values on equal input are related by the
equivalence relation on the target type.

We first define a lifting of the coinductive delay monad D to the category of setoids.
We do this via a similar relation (taken from Møgelberg and Paviotti [31]) defined for the
guarded delay monad, because that allows us to reason using guarded recursion. We write
δκ for step ◦ next : DκX → DκX.

▶ Definition 32 ([31]). Let X, Y be sets, and suppose R : X → Y → Prop is a relation.
Define weak bisimilarity up to R, written ∼κ

R : DκX → DκY → Prop, by:

now(x) ∼κ
R y

def= ∃(n : N, y′ : Y).y = (δκ)n(now(y′))and R(x, y′),

x ∼κ
R now(y) def= ∃(n : N, x′ : X).x = (δκ)n(now(x′))and R(x′, y),

step(x) ∼κ
R step(y) def= ▷ (α :κ).(x [α] ∼κ

R y [α]).

Note that the two first cases both apply for now(x) ∼κ
R now(y), but that they are equivalent

in that case. If R is symmetric and reflexive, then the same properties hold for ∼κ
R , but

transitivity is not preserved. In fact, if ∼κ
= were transitive, then one could prove that it is

the total relation, which is not the case.

CSL 2024

39:14 What Monads Can and Cannot Do

▶ Definition 33. Let R : X → Y → Prop be a relation. Define ∼R : DX → DY → Prop as

x ∼R y
def= ∀κ.x [κ] ∼κ

R y [κ].

The above definition is an encoding (using guarded recursion) of the standard coinductive
definition of weak bisimilarity. We note the following, which was also observed by Chapman
et al [10].

▶ Proposition 34. The mapping Dsd(X, R) = (DX, ∼R) defines a monad on the category
of setoids.

In fact, the multiplication for Dκ preserves the guarded recursive definition of weak
bisimilarity.

Similarly, any algebraic monad T can be lifted to the category of setoids by defining
T (R) to be the smallest equivalence relation relating an equivalence class [t(x1, . . . , xn)] to
[t(y1, . . . , yn)] if R(xi, yi) for all i. We write Tsd for this.

Recall that by Proposition 22, if T is an algebraic monad given by a theory with no drop
equations, then parallel lifting defines a natural transformation TD → DT on the category
of sets. We show that this map lifts to a distributive law on the category of setoids.

▶ Theorem 35. Let T be the free model monad of algebraic theory T = (ΣT, ET), such that
ET contains no drop equations. Then parallel lifting defines a distributive law of monads
TsdDsd → DsdTsd.

▶ Remark 36. The free monad on an algebraic theory could alternatively be expressed on the
category of setoids by taking the set to be the free monad just on operations, introducing
the equations of the theory into the equivalence relation. In the presence of the axiom of
choice this generates a monad equivalent to Tsd, and we expect that the proof above can be
adapted to that choice as well.

8 Related Work

Møgelberg and Vezzosi [32] study two combinations of the guarded delay monad Dκ with
the finite powerset monad Pf expressed as a HIT in CCTT. They use these to show that
applicative simulation is a congruence for the untyped lambda calculus with finite non-
determinism using denotational techniques. One combination is the sum Pf ⊕ Dκ, which is
used for the case of may-convergence, and the other is the composite DκPf equipped with
the parallel lifting, which is used for must-convergence. They observe that only the former is
a monad. In this paper, we not only provide a more general study of such combinations, but
also suggest a way to remedy the situation in the latter case by considering weak bisimilarity.

Weak bisimilarity for the coinductive delay monad was first defined by Capretta [8].
Møgelberg and Paviotti [31] show that their embedding of FPC in guarded dependent type
theory respects weak bisimilarity and use that to prove an adequacy theorem up to weak
bisimilarity.

Chapman et al. [10] observe that quotienting the coinductive delay monad by weak
bisimilarity appears to not yield a monad unless countable choice is assumed. Altenkirch
et al. [1] propose a solution to this problem by constructing the quotient and the weak
bisimilarity relation simultaneously, as a higher inductive-inductive type. Chapman et al.
themselves suggest a different solution, constructing the quotient as the free ω-cpo using
an ordinary HIT. These quotients have not (to the best of our knowledge) been studied in
combination with other effects.

R. Ejlers Møgelberg and M. A. Zwart 39:15

Interaction trees [42] are essentially monads of the form ∀κ.(T ⊕Dκ)(−) for T an algebraic
monad generated by operations with no equations. Much work has gone into building libraries
for working with these up to weak bisimilarity in Coq, and these allow for interaction trees
to be used for program verification. To our knowledge, versions of interaction trees with
equations between terms have not been considered.

As mentioned in the introduction, the guarded recursive delay monad has two benefits
over the coinductive one: Firstly, it has a fixed point operator of the type (rather than
an iteration operator), which means that it allows for embedding languages with recursion
directly in type theory. In the coinductive case, one must either use some encoding of
recursion using the iteration operator, or prove that all constructions used are continuous.
We believe this is a considerable burden for higher order functions. The second advantage is
that guarded recursion allows for also advanced notions of state to be encoded, as shown
recently by Sterling et al. [38]. Neither the interaction trees nor the quotiented delay monads
appear to have these benefits.

Related Work on Monad Compositions
The field of monad compositions in general has attracted quite a bit of attention lately.
After Plotkin proved that there is no distributive law combining probability and non-
determinism [40], Klin and Salamanca [21] studied impossible distributions of the powerset
monad over itself, while Zwart and Marsden provided a general study on what makes
distributive laws fail [43]. Meanwhile, the initial study of monad compositions by Manes
and Mulry [26, 27] was continued by Parlant et al [13, 34, 35]. In both the positive and the
negative theorems on distributive laws in these papers, certain classes of equations were
identified as causes for making or breaking the monad composition. Idempotence, duplication,
and dropping variables came out as especially noteworthy types of equations, which the
findings in this paper confirm.

Our study of the delay monad provides an interesting extension on the previous works,
because of its non-standard algebraic structure given by delay algebras, and the fact that the
delay monad is neither affine nor relevant, which are the main properties studied by Parlant
et al.

9 Conclusion and Future Work

We have studied how both the guarded recursive and the coinductive version of the delay
monad combine with other monads. After studying some specific examples and free combin-
ations, we looked more generally at possible distributive laws of TDκ → DκT . We found
two natural candidates for such distributive laws, induced by parallel and sequential lifting
of operations on T . We showed that:

Sequential lifting provides a distributive law for monads presented by theories with
balanced equations.
There is no distributive law possible for monads with a binary operation that is com-
mutative and idempotent over Dκ, but this does not rule out a distributive law of such
monads over D.
Parallel lifting does not define a distributive law, but it does define one up to weak
bisimilarity, for monads presented by theories with non-drop equations.

It is unfortunate that weak bisimilarity requires working with setoids, but this is due to
the quotient of D up to weak bisimilarity not being a monad [10]. It is not clear how to
adapt the solutions to this problem mentioned above [10, 1] to the guarded recursive setting.

CSL 2024

39:16 What Monads Can and Cannot Do

This paper only considers the case of finite arity operations (except for state, which can
be of any arity). Distributive laws for countable arity operations such as countable non-
deterministic choice are more difficult. In those cases sequential lifting seems an unnatural
choice, not only because it does not interact well with idempotency, but also because it
introduces divergence even in the cases where there is an upper limit to the number of
steps taken by the arguments. Extending our parallel lifting operation to the countable case
requires deciding whether all the countably many input operations are values, which is not
possible in type theory.

The results presented in this paper are formulated and proven in CCTT. It is natural
to ask whether the results proven for the coinductive delay monad D also hold for D

considered as a monad on the category Set of sets. For some of the results proven in this
paper (Proposition 29 and Example 30) both the statements and proofs can be read in Set.
These results can therefore easily be seen to hold in this setting. In many other cases, our
constructions use guarded recursion (e.g. the definitions of parallel and sequential lifting of
operators). To lift these results to Set, one would need to redo the constructions and argue
for their productivity. However, we believe that using guarded recursion is the natural way to
work with coinductive types and proofs. Another approach could therefore be to use guarded
recursion as a language to reason about Set. This should be possible because the universe
used to model clock irrelevant types in the extensional model of Clocked Type Theory [28]
classifies a category equivalent to Set. We leave this as a direction for future research.

References
1 Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited. In

International Conference on Foundations of Software Science and Computation Structures,
pages 534–549. Springer, 2017.

2 Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. ACM
SIGPLAN Notices, 48(9):197–208, 2013.

3 Patrick Bahr., Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The clocks are ticking:
No more delays! In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–12. IEEE, 2017.

4 Patrick Bahr and Graham Hutton. Monadic compiler calculation (functional pearl). Proc.
ACM Program. Lang., 6(ICFP), August 2022. doi:10.1145/3547624.

5 Magnus Baunsgaard Kristensen, Rasmus Ejlers Mogelberg, and Andrea Vezzosi. Greatest hits:
Higher inductive types in coinductive definitions via induction under clocks. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 1–13, 2022.

6 Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical
Homology Theory, pages 119–140. Springer Berlin Heidelberg, 1969.

7 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods
in Computer Science, 8(4), 2012.

8 Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1, 2005.

9 Evan Cavallo and Robert Harper. Higher inductive types in cubical computational type theory.
Proceedings of the ACM on Programming Languages, 3(POPL):1–27, 2019.

10 James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak
bisimilarity. Mathematical Structures in Computer Science, 29(1):67–92, 2019.

11 Ranald Clouston. Fitch-style modal lambda calculi. In International Conference on Foundations
of Software Science and Computation Structures, pages 258–275. Springer, 2018.

https://doi.org/10.1145/3547624

R. Ejlers Møgelberg and M. A. Zwart 39:17

12 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. In 21st International Conference on Types
for Proofs and Programs (TYPES 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

13 Fredrik Dahlqvist, Louis Parlant, and Alexandra Silva. Layer by layer - combining
monads. In Theoretical Aspects of Computing – ICTAC 2018 – 15th International Col-
loquium, Stellenbosch, South Africa, October 16-19, 2018, Proceedings, pages 153–172, 2018.
doi:10.1007/978-3-030-02508-3_9.

14 Nils Anders Danielsson. Operational semantics using the partiality monad. SIGPLAN Not.,
47(9):127–138, September 2012. doi:10.1145/2398856.2364546.

15 Martín Escardó and Paulo Oliva. Selection functions, bar recursion and backward induc-
tion. Mathematical Structures in Computer Science, 20(2):127–168, 2010. doi:10.1017/
S0960129509990351.

16 ND Gautam. The validity of equations of complex algebras. Archiv für mathematische Logik
und Grundlagenforschung, 3(3):117–124, 1957.

17 Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type
theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 492–506, 2020.

18 Jules Hedges. Monad transformers for backtracking search. In Paul Levy and Neel Krish-
naswami, editors, Proceedings 5th Workshop on Mathematically Structured Functional Program-
ming, Grenoble, France, 12 April 2014, volume 153 of Electronic Proceedings in Theoretical Com-
puter Science, pages 31–50. Open Publishing Association, 2014. doi:10.4204/EPTCS.153.3.

19 Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor.
Theoretical Computer Science, 357(1):70–99, 2006. doi:10.1016/j.tcs.2006.03.013.

20 Martin Hyland and John Power. Discrete lawvere theories and computational effects. Theoret-
ical Computer Science, 366(1-2):144–162, 2006.

21 Bartek Klin and Julian Salamanca. Iterated covariant powerset is not a monad. In Proceedings
34th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2018,
2018.

22 Anders Kock. Monads on symmetric monoidal closed categories. Archiv der Mathematik,
21(1):1–10, 1970.

23 F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National
Academy of Sciences of the United States of America, 50(5):869–872, 1963.

24 Fred EJ Linton. Some aspects of equational categories. In Proceedings of the Conference on
Categorical Algebra, pages 84–94. Springer, 1966.

25 Ernie Manes. Algebraic theories, volume 26. Springer, 1976.
26 Ernie Manes and Philip Mulry. Monad compositions I: general constructions and recursive

distributive laws. Theory and Applications of Categories, 18:172–208, April 2007.
27 Ernie Manes and Philip Mulry. Monad compositions II: Kleisli strength. Mathematical

Structures in Computer Science, 18(3):613–643, 2008. doi:10.1017/S0960129508006695.
28 Bassel Mannaa, Rasmus Ejlers Møgelberg, and Niccolò Veltri. Ticking clocks as dependent

right adjoints: Denotational semantics for clocked type theory. Logical Methods in Computer
Science, 16, 2020.

29 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
30 Lambert Meertens. Algorithmics, towards programming as a mathematical activity. In J.W.

De Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Mathematics and Computer Science:
Proceedings of the CWI Symposium, November 1983, CWI monographs, pages 289–334. North-
Holland, 1986.

31 Rasmus E Møgelberg and Marco Paviotti. Denotational semantics of recursive types in synthetic
guarded domain theory. Mathematical Structures in Computer Science, 29(3):465–510, 2019.

CSL 2024

https://doi.org/10.1007/978-3-030-02508-3_9
https://doi.org/10.1145/2398856.2364546
https://doi.org/10.1017/S0960129509990351
https://doi.org/10.1017/S0960129509990351
https://doi.org/10.4204/EPTCS.153.3
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1017/S0960129508006695

39:18 What Monads Can and Cannot Do

32 Rasmus Ejlers Møgelberg and Andrea Vezzosi. Two guarded recursive powerdomains for
applicative simulation. In Ana Sokolova, editor, Proceedings 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online,
30th August - 2nd September, 2021, volume 351 of EPTCS, pages 200–217, 2021. doi:
10.4204/EPTCS.351.13.

33 Hiroshi Nakano. A modality for recursion. In Proceedings Fifteenth Annual IEEE Symposium
on Logic in Computer Science, pages 255–266. IEEE, 2000.

34 Louis Parlant. Monad Composition via Preservation of Algebras. PhD thesis, UCL (University
College London), 2020.

35 Louis Parlant, Jurriaan Rot, Alexandra Silva, and Bas Westerbaan. Preservation of equations
by monoidal monads. In 45th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

36 Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. A model of PCF in guarded
type theory. Electronic Notes in Theoretical Computer Science, 319:333–349, 2015.

37 Gordon Plotkin and John Power. Notions of computation determine monads. In International
Conference on Foundations of Software Science and Computation Structures, pages 342–356.
Springer, 2002.

38 Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Denotational semantics of general store
and polymorphism. Unpublished manuscript, July 2022.

39 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

40 Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Mathem-
atical Structures in Computer Science, 16(1):87–113, 2006.

41 Niccolò Veltri and Niels F. W. Voorneveld. Inductive and coinductive predicate liftings for
effectful programs. In Ana Sokolova, editor, Proceedings 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online,
30th August - 2nd September, 2021, volume 351 of EPTCS, pages 260–277, 2021. doi:
10.4204/EPTCS.351.16.

42 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,
and Steve Zdancewic. Interaction trees: Representing recursive and impure programs in Coq.
Proc. ACM Program. Lang., 4(POPL), December 2019. doi:10.1145/3371119.

43 Maaike Zwart and Dan Marsden. No-go theorems for distributive laws. In 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LiCS), pages 1–13, 2019. doi:
10.1109/LICS.2019.8785707.

https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.4204/EPTCS.351.13
https://homotopytypetheory.org/book
https://doi.org/10.4204/EPTCS.351.16
https://doi.org/10.4204/EPTCS.351.16
https://doi.org/10.1145/3371119
https://doi.org/10.1109/LICS.2019.8785707
https://doi.org/10.1109/LICS.2019.8785707

Syntactically and Semantically Regular Languages
of λ-Terms Coincide Through Logical Relations
Vincent Moreau # Ñ

IRIF & Université Paris Cité & Inria Paris, France

Lê Thành Dũng (Tito) Nguyễn # Ñ

Laboratoire de l’informatique du parallélisme (LIP), École normale supérieure de Lyon, France

Abstract
A fundamental theme in automata theory is regular languages of words and trees, and their
many equivalent definitions. Salvati has proposed a generalization to regular languages of simply
typed λ-terms, defined using denotational semantics in finite sets.

We provide here some evidence for its robustness. First, we give an equivalent syntactic
characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting
regular languages of words and syntactic λ-definability. Second, we show that any finitary extensional
model of the simply typed λ-calculus, when used in Salvati’s definition, recognizes exactly the same
class of languages of λ-terms as the category of finite sets does.

The proofs of these two results rely on logical relations and can be seen as instances of a more
general construction of a categorical nature, inspired by previous categorical accounts of logical
relations using the gluing construction.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Regular languages

Keywords and phrases regular languages, simple types, denotational semantics, logical relations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.40

Related Version Full version with additional proofs: https://arxiv.org/abs/2308.00198

Funding Lê Thành Dũng (Tito) Nguyễn: Supported by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated
by the French National Research Agency (ANR).

Acknowledgements We would like to thank Amina Doumane, Sam van Gool, Paul-André Melliès
and Sylvain Salvati for in-depth discussions that significantly helped us refine our ideas. We are
also grateful to Sam and Paul-André for proof-reading drafts of this paper, and to the ReFL
discussion group https://www.engboris.fr/refl/ for hosting a reading group on logical relations
and normalization by evaluation. The first author would like to thank the Felicissimo family for
their support during the writing process of this article.

1 Introduction

Much work has been devoted to the study of regular languages of words and trees – also
called recognizable – and their equivalent characterizations, typically in terms of automata,
algebra, and logic. The remarkable robustness of this notion of regularity has led to attempts
to extend it to several other structures, such as infinite words/trees or graphs of bounded
treewidth – many examples can be found, for instance, in [4].

This paper focuses on a less studied extension: recognizable languages of simply typed
λ-terms, introduced by Salvati [27]. They are a conservative generalization [27, §3]:1 using the
Church encoding, finite words and trees can be represented in the simply typed λ-calculus,

1 Alternatively, see [34, Proposition 7.1] for the case of words.

© Vincent Moreau and Lê Thành Dũng Nguyễn;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 40; pp. 40:1–40:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moreau@irif.fr
http://www.irif.fr/~moreau
https://orcid.org/0009-0005-0638-1363
mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
https://doi.org/10.4230/LIPIcs.CSL.2024.40
https://arxiv.org/abs/2308.00198
https://www.engboris.fr/refl/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Syntactically and Semantically Regular Languages of λ-Terms Coincide

and recognizability for Church encodings coincides with the usual notion of regularity.
Furthermore, as Salvati explains in his habilitation thesis [28], regular languages of λ-terms
can be used to shed light on several classical topics concerning the simply typed λ-calculus,
such as higher-order matching [27, §6.2] and higher-order grammars [17].

However, not many characterizations of the class of recognizable languages of simply
typed λ-terms are known, and it would be desirable to have more evidence that it is robust.
Moreover, if we know that this class of languages is a truly canonical object, then so is its
Stone dual, namely the recently introduced space of profinite λ-terms [34]. Currently, there
exist two definitions of recognizable languages of λ-terms, both provided in [27]:

The first one [27, Definition 1] uses denotational semantics into the finite standard
models of the simply typed λ-calculus. This may be understood as generalizing to higher
orders the computational aspects of deterministic finite automata. In the same vein, the
concrete construction of profinite λ-terms in [34] depends on specific properties of the
category FinSet of finite sets and functions between them.
The second one, grounded in intersection types [27, §4], turns out to admit an equivalent
presentation in terms of a denotational semantics in finite domains [28, Theorem 25].
Indeed, the connection between intersection types and semantics is standard, see e.g. [26].

Both definitions can be seen as an instance of the following pattern: the interpretation
of a simply typed λ-term in some denotational model with a finitary flavor should suffice
to know whether the term belongs to our language of interest. This is closely analogous
to the algebraic definition of regular word languages. Indeed, viewing the set Σ∗ of words
over a finite alphabet Σ as the free monoid generated by Σ, a language L ⊆ Σ∗ is regular if
and only if, for some homomorphism φ : Σ∗ → M to a finite monoid M , the “interpretation”
φ(w) determines2 whether w ∈ L for each w ∈ Σ∗. Asking for φ to be a homomorphism
parallels the compositionality property of denotational semantics.

We may therefore ask:
What kind of semantics yield the same notion of recognizable language? More precisely,
with a definition of C-recognizable language for any cartesian closed category (CCC) C,
i.e. any categorical model of the simply typed λ-calculus with products, the question
becomes: when do recognizability by C and by FinSet coincide?
Alternatively, is there any characterization of regular languages of λ-terms that does not
involve denotational semantics?

For the latter, we propose a positive answer inspired by the following result of Hillebrand
and Kanellakis [14, Theorem 3.4]: a language of words is regular if and only if it can be
decided by a simply typed λ-term operating on Church-encoded words. By replacing the
type of Church encodings with any simple type A, we get a natural notion of syntactically
regular language of λ-terms, defined by means purely internal to the simply typed λ-calculus.

Contributions and proof methods. The main results of this paper are as follows:
Theorem 3.2 any non-degenerate cartesian closed category can recognize at least every

language which is syntactically regular.
Theorem 5.9 every language recognized by a locally finite and well-pointed CCC – in other

words, a finitary extensional model of the simply typed λ-calculus – is recognized by
FinSet. This was first stated by Salvati without proof in [28, Lemma 20].

Theorem 6.5 every language recognized by FinSet is syntactically regular.

2 More formally, L = φ−1(P) for some P ⊆ M .

V. Moreau and L. T. D. Nguyễn 40:3

These three theorems, taken together, show that all non-degenerate, well-pointed and locally
finite CCCs yield the same notion of regular language of λ-terms, which is the same as the
syntactic one.

To achieve this goal, we introduce a construction on CCCs, which we call squeezing,
and combine it with the standard categorical account of logical relations based on sconing.
Indeed, Salvati claims in [28] that Theorem 5.9 can be established via logical relations, and
it turns out that this falls out directly from our squeezing construction; but its versatility
also allows us to apply it to prove the more diffcult Theorem 6.5 on syntactic recognizability.

Related work. Morally, the study of regular languages of λ-terms amounts to understanding
what information can be extracted by evaluating simply typed λ-terms in finitary models.
A seminal result in this spirit is Statman’s finite completeness theorem [30], which can be
rephrased as the regularity of all singleton languages of λ-terms – a perspective that has
led to a simplified proof [29]. The idea of using another CCC than FinSet, easier to use to
show Statman’s theorem, has been exploited in [17]. This shows the advantage to use an
appropriate CCC to recognize a given language, a possibility which is extended to a vast
class of CCCs in this paper (see Proposition 7.3 for an example of application).

Finitary semantics are powerful tools, in particular, for understanding the computational
power of the simply typed λ-calculus. For instance, in [14], Hillebrand and Kanellakis use
the finite set semantics to prove their aforementioned theorem on regular word languages; as
for finite Scott domains presented as intersection types, they have been applied by Terui [33]
to study the complexity of normalizing simply typed λ-terms.

As can be seen inter alia from rather surprising results of Statman [31] and Plotkin [25],
finitary models are also useful to tame the infinitary aspects of an extension of the simply typed
λ-calculus with a fixed-point operator, called the λY -calculus. Furthermore, the well-studied
higher-order model checking problem is about testing regular properties on infinite trees that
can be Church-encoded in the λY -calculus; it sits at the interface between automata and
programming languages, with applications to the formal verification of functional programs
(see e.g. [16]). Decidability of higher-order model checking, first established by Ong through
game semantics [23], now admits proofs based on intersection types [15, 24] and on finitary
semantics [35, 10]. Drawing on this line of work, higher-order parity automata [19] generalize
to λY -terms the recognizable languages of simply typed λ-terms.

The theme of syntactic recognizability à la Hillebrand and Kanellakis, for its part,
has been recently revived in Nguyễn and Pradic’s implicit3 automata theory. They use
substructural λ-calculi and Church encodings to characterize star-free languages [22] and
classes of string-to-string functions computed by transducers [21].

Plan of the paper. We start by recalling in Section 2 the semantics of the simply typed
λ-calculus, the notion of language recognized by a CCC as defined in [27] for finite sets,
and by introducing the notion of syntactically regular language, generalizing recognition
as defined in [14]. In Theorem 3.2 of Section 3, we show that every non-degenerate CCC
recognizes all syntactically regular languages. In Section 4, we recall the definition of logical
relations and introduce the squeezing construction Sqz(−) which will be a crucial tool for

3 The name is a nod to implicit computational complexity, a field concerned with alternative definitions
of complexity classes that avoid low-level machine models and explicit resource bounds. As an example,
in addition to their result on regular word languages in the simply typed λ-calculus, Hillebrand and
Kanellakis’s paper [14] also contains characterizations of the k-EXPTIME and k-EXPSPACE hierarchies
based on λ-terms, that are again proved by evaluation in finite sets.

CSL 2024

40:4 Syntactically and Semantically Regular Languages of λ-Terms Coincide

the two next sections. In Section 5, we recall the definition of locally finite and well-pointed
CCCs, and show in Theorem 5.9 that CCCs enjoying both conditions do not recognize more
languages than finite sets do. In Theorem 6.5 of Section 6, we show that languages recognized
by finite sets are syntactically regular. We finish this paper by giving some consequences of
the equivalence established by these three theorems in Section 7.

2 Languages of λ-terms

Syntax and semantics

We first specify the syntax we are working with. The grammars of types and preterms are

A, B ::= o | A ⇒ B | A × B | 1 and t, u ::= x | λ(x : A). t | t u | ⟨t, u⟩ | ti for i = 1, 2

and we consider the usual typing rules and βη-conversion rules, see e.g. [2, §4.1]. We extend
the notation of ti, for the projection to the ith coordinate, to the case where t is of type
A1 × · · · × An and i is between 1 and n. As the λ-abstractions are annotated, a closed λ-term
has at most one type derivation. For any simple type A, we write Λ(A) for the set of closed
simply typed λ-terms of type A, taken modulo βη-conversion.

We recall the semantics of the simply typed λ-calculus into cartesian closed categories,
abbreviated as CCC, see [2, Chapter 4] for more details. For any CCC C, object c of C and
simple type A, we define an object JAKc of C by induction on A as follows:

JoKc := c JA ⇒ BKc := JAKc ⇒ JBKc JA × BKc := JAKc × JBKc J1Kc := 1

Using the CCC structure of C, one can define a family of set-theoretic functions

J−Kc : Λ(A) −→ C(1, JAKc) for every simple type A

called semantic brackets, sending closed λ-terms to points of the objects JAKc.
These assignments can be described in another way. Let Lam be the category whose

objects are simple types and whose set of morphisms from A to B is Λ(A ⇒ B), with the
expected composition. This category is the free CCC on one object, i.e., for every CCC C
and object c of C, there exists a unique CCC functor J−Kc : Lam → C such that JoKc = c.
This can be represented by the commutativity of the following diagram:

Lam

1 Cc

o

J−Kc (1)

In this paper, the CCCs come with specified terminal object, cartesian products, and
exponentials, and CCC functors are required to respect these structures strictly, on the nose.
In that way, the unicity in the universal property of Lam depicted in Equation (1) holds up
to equality, and not merely isomorphism.

We write FinSet for the cartesian closed category of finite sets. The semantics of the
simply typed λ-calculus in this CCC corresponds to its naive set-theoretic interpretation.
For ease of notation, we identify the finite set Q with the set of functions FinSet(1, Q).

Recognizable languages of λ-terms, semantically

We now define the notion of C-recognizable language of λ-terms, for any CCC C. The
case C = FinSet corresponds to the notion of regular language of simply typed λ-terms
introduced in [27, Definition 1].

V. Moreau and L. T. D. Nguyễn 40:5

▶ Definition 2.1. Let C be a CCC and c be an object of C. For every simple type A and
subset F ⊆ C(1, JAKc), the language LF of λ-terms of type A is defined as

LF := {t ∈ Λ(A) | JtKc ∈ F} .

We define the set Recc(A) of languages of λ-terms of type A recognized by c as

Recc(A) := {LF : F ⊆ C(1, JAKc)} .

Finally, a language L of λ-terms of type A is C-recognizable if there exists an object c of C
such that L belongs to the set Recc(A).

▶ Example 2.2. For any natural number n, we define the associated simple type

Churchn := (o ⇒ o)n ⇒ o ⇒ o .

There is a bijection between the sets Λ(Churchn) and {1, . . . , n}∗, the set of finite words over
an alphabet with n letters, called the Church encoding. For example, the word 12212 over
the two letter-alphabet {1, 2} is encoded as the λ-term

λ(a : (o ⇒ o)2). λ(e : o). a2 (a1 (a2 (a2 (a1 e)))) ∈ Λ(Church2) .

Under this bijection, a language of λ-terms of type Churchn is FinSet-recognizable, in the
sense of Definition 2.1, if and only if the language of words associated by the Church encoding
is a regular language of finite words, see [34, Proposition 7.1].

▶ Example 2.3. We give a detailed example using the Church encoding. We show that the
language L of λ-terms of type Church2 which are encodings of words in {1, 2}∗ that contain
an even number of 1s and an odd number of 2s, is FinSet-recognizable.

Let Q be the finite set {q⊤, q⊥} and F be the subset of JChurch2KQ defined as

F := {f ∈ (Q ⇒ Q) × (Q ⇒ Q) ⇒ Q ⇒ Q | f(not, IdQ)(q⊤) = f(IdQ, not)(q⊥) = q⊤}

where not : Q → Q is the function defined as not(q⊤) = q⊥ and not(q⊥) = q⊤. The language
L is equal to LF which belongs to RecQ(Church2), so L is FinSet-recognizable.

The idea is that, given the semantic interpretation f ∈ JChurch2KQ of the encoding of
a word w ∈ {1, 2}∗, the states f(not, IdQ)(q⊤) and f(IdQ, not)(q⊥) are the states reached
respectively, after reading w, in the two following deterministic finite automata:

q⊤start q⊥

1

1

2 2

q⊤ q⊥ start

2

2

1 1

The language L is the intersection of the two languages recognized by these automata.

▶ Example 2.4. We consider the simple type

UntypedTerms := ((o ⇒ o) ⇒ o) ⇒ (o ⇒ o ⇒ o) ⇒ o .

There is a canonical bijection – which is classical, see e.g. [3] for an in-depth treatment –
between Λ(UntypedTerms) and the set of closed untyped λ-terms modulo α-renaming, i.e.

CSL 2024

40:6 Syntactically and Semantically Regular Languages of λ-Terms Coincide

syntax trees with binders, without β-conversion. Here are examples of encodings of the latter
into the former (for the general definition, see Appendix A):

λx. x x ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
ℓ (λ(x : o). a x x)

(λx. x x) (λx. x x) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
a (ℓ (λ(x : o). a x x)) (ℓ (λ(x : o). a x x))

λf. (λx. x x) (λx. f (x x)) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
ℓ (λ(f : o). a (ℓ (λ(x : o). a x x))

(ℓ (λ(x : o). a f (a x x))))

This can be seen as an extension of Church encodings to higher-order abstract syntax: indeed,
the variable ℓ plays the role of a constructor and introduces a bound variable.

A closed untyped term is affine if and only if every bound variable occurs at most
once. We now give the outline of the proof, detailed in Appendix A, that the encodings in
Λ(UntypedTerms) of closed untyped affine terms form a FinSet-recognizable language.

Let Q be the finite set {0, 1, ∞} × {⊤, ⊥}, where {0, 1, ∞} is seen as the additive
monoid N truncated to 2 = 3 = · · · = ∞. We consider the two set-theoretic functions
fapp : Q → (Q ⇒ Q) and fabs : (Q ⇒ Q) → Q defined as

fapp(k, b)(k′, b′) := (k +k′, b∧ b′) and fabs(g) := (g1(0, ⊤), g2(0, ⊤)∧ (g1(1, ⊤) ≤ 1))

where g1 : Q → {0, 1, ∞} and g2 : Q → {⊤, ⊥} are the compositions of g : Q → Q with the
two projections. We verify that, for any closed untyped term t, we have

JtKQ (fabs)(fapp) = (0, b) where b is ⊤ if and only if t is affine.

Therefore, if F is the subset of JUntypedTermsKQ defined as

F := {s ∈ ((Q ⇒ Q) ⇒ Q) ⇒ (Q ⇒ Q ⇒ Q) ⇒ Q | s(fabs)(fapp) = (0, ⊤)}

then the FinSet-recognizable language LF of terms of type UntypedTerms is the language of
affine terms.

To the best of our knowledge, this regularity result is original. It also strongly suggests
that the notion of FinSet-recognizable language, when applied to the type UntypedTerms of
syntax trees with binders, differs from the recognizability of these syntax trees by the nominal
tree automata of [13, §3.1]. Indeed, nominal automata cannot recognize the language of data
words whose letters are all different [5, Proof of Lemma 5.4].

▶ Remark 2.5. Let C and D be CCCs and G : C → D be a CCC functor. By the universal
property of Lam, see Equation (1), for every object c of C, the following diagram commutes:

Lam

1 C D

o

c G

J−Kc

J−KG(c)

In particular, this means that for every simple type A, the objects JAKG(c) and G(JAKc) are
equal, and that for every simply typed λ-terms t and t′ of type A,

if JtKc = Jt′Kc then JtKG(c) = Jt′KG(c) .

V. Moreau and L. T. D. Nguyễn 40:7

This means that interpreting the simply typed λ-calculus at the object c will always be at
least as fine as interpreting it at G(c). In particular, this entails that RecG(c)(A) ⊆ Recc(A).
If G is moreover faithful, we then have that RecG(c)(A) = Recc(A) for any object c of C.
Therefore, all languages which are C-recognizable are D-recognizable.

Recognizable languages of λ-terms, syntactically

A syntactic approach to recognition is described in [14]. This syntactic approach uses the
type substitution, also called cast, whose definition we now recall.

▶ Definition 2.6. If A and B are simple types, we define a simple type A[B] = A{o := B}
by replacing every occurence of o in A by B. We extend this to λ-terms by induction:

x[B] := x (λ(x : A). t)[B] := λ(x : A[B]). t[B] (t u)[B] := t[B] u[B]
⟨t, u⟩[B] := ⟨t[B], u[B]⟩ ti[B] := (t[B])i

▷ Claim 2.7. For every simple types A and B and t ∈ Λ(A), we have t[B] ∈ Λ(A[B]).

▶ Remark 2.8. A more categorical way to understand casting is to see it as the unique CCC
functor (−)[B] : Lam → Lam such that the following diagram commutes:

Lam

1 Lam
B

o

(−)[B]

As such, it is the semantic bracket functor J−KB : Lam → Lam.
Finally, we recall the encoding of Booleans into the simply typed λ-calculus.

▶ Definition 2.9. Let Bool be the simple type o
2 ⇒ o. Its two inhabitants are the λ-terms

true := λ(x : o2). x1 and false := λ(x : o2). x2 .

The following definition naturally generalizes the one given in [14] for A = Churchn.

▶ Definition 2.10. For any simple type A, a language L ⊆ Λ(A) is syntactically regular if
there exists a simple type B and a λ-term r of type A[B] ⇒ Bool such that

L = {t ∈ Λ(A) | r t[B] =βη true} .

▶ Theorem 2.11 (Hillebrand & Kanellakis, [14, Theorem 3.4]). A language of λ-terms of type
Churchn is syntactically regular if and only if the associated language of finite words by the
Church encoding is regular in the usual sense.

▶ Example 2.12. The Church encodings of words in {1, 2}∗ with an even number of 1s and
an odd number of 2s is syntactically regular. Indeed, we consider the following λ-terms

and := λ(p : Bool × Bool). λ(x : o × o). p1 ⟨p2 x, x2⟩
id := λ(b : Bool). b

not := λ(b : Bool). λ(x : o × o). b ⟨x2, x1⟩

and choose, as in Definition 2.10, the type B to be Bool and the simply typed λ-term r to be

λ(w : Church2[Bool]). and ⟨w not id true, w id not false⟩ : Church2[Bool] ⇒ Bool .

Just as in Example 2.3, this term can be seen as running two DFAs, both having two states,
over the encoding of an input word.

CSL 2024

40:8 Syntactically and Semantically Regular Languages of λ-Terms Coincide

When restricted to types Churchn for any natural number n, the notion of FinSet-
recognizable and syntactically regular languages coincide, as they both boil down to the
usual notion of regular language of finite words, as seen in Example 2.2 and Theorem 2.11
respectively. One of the contributions of the present paper is to show that these two notions
coincide at every simple type.

3 Syntactic recognition implies semantic recognition

In this section, we state Theorem 3.2 and prove it by extending the semantic evaluation
argument, described by Hillebrand and Kanellakis in their proof of Theorem 2.11 for the
case of languages of words, to the more general case of languages of any type.

▶ Definition 3.1. A CCC C is said to be non-degenerate if there exist two objects c′, c of C
such that there exist two distinct morphisms f, g : c′ → c.

▶ Theorem 3.2. If C is a non-degenerate CCC, then any language of λ-terms which is
syntactically regular is C-recognizable.

Proof. We observe first that the non-degeneracy assumption means that the two projections
π1, π2 : c × c → c are not equal, since they yield different results when pre-composed with
the morphism c′ → c × c obtained by pairing f and g.

Let A be a simple type and L be a language of λ-terms of type A which is syntactically
regular. There exists a simple type B together with a λ-term r ∈ Λ(A[B] ⇒ Bool) such that

L = {t ∈ Λ(A) | r t[B] =βη true} .

In order to show that L belongs to RecJBKc
(A), we work with the interpretation of the simply

typed λ-calculus at the object JBKc of C. By the universal property of the CCC Lam, the
following diagram commutes

Lam

1 Lam CB

J−KJBKc

o

(−)[B]

J−Kc

.

More concretely, this states that, for every simply typed λ-term t, the two morphisms Jt[B]Kc

and JtKJBKc
are equal. By viewing r as a morphism from A[B] to Bool in the category Lam,

the compositionality of the semantic interpretation gives us that

Jr t[B]Kc = JrKc ◦ Jt[B]Kc = JrKc ◦ JtKJBKc
.

By non-degeneracy, the semantic interpretation J−Kc : Λ(Bool) → C(1, JBoolKc) is injective:
indeed, JtrueKc = π1 ̸= π2 = JfalseKc. Therefore, we get the following equivalences

t ∈ L ⇐⇒ r t[B] =βη true ⇐⇒ Jr t[B]Kc = JtrueKc ⇐⇒ JtKJBKc
∈ F

where F is the subset of C(1, JAKJBKc
) defined as {q ∈ C(1, JAKJBKc

) | JrKc ◦ q = JtrueKc}.
This shows that L belongs to RecJBKc

(A), hence that it is a C-recognizable language. ◀

4 Logical relations and the squeezing construction

Sconing in a nutshell

In this paragraph, we recall the construction of a CCC of logical relations from one CCC to
another. We first recall the construction of logical predicates, also called sconing, which will

V. Moreau and L. T. D. Nguyễn 40:9

be general enough to give logical relations as a special case. This method is well-known, see
for instance [20] for an introductory account.

▶ Definition 4.1. Let C be a CCC. The category of logical predicates over C, that we denote
by P(C), is defined as follows:

its objects are the pairs (c, S) of an object c of C together with a subset S ⊆ C(1, c),
its morphisms from (c, S) to (c′, S′) are the morphisms f : c → c′ of C such that f ◦ (−)
restricts to a set-theoretic function S → S′.

▷ Claim 4.2. This category P(C) is a CCC, with exponentiation given by

(c, S) ⇒ (c′, S′) = (c ⇒ c′, {f ∈ C(1, c ⇒ c′) | ∀s ∈ S, evc,c′ ◦⟨f, s⟩ ∈ S′})

The forgetful functor (c, S) 7→ c is a CCC functor.

Proof. See [20, p. 5], where the notation C̃ is used for the category P(C). ◁

▶ Definition 4.3. Let C1 and C2 be two CCCs. The CCC of logical relations from C1 to C2
is the CCC P(C1 × C2), which admits a CCC functor P(C1 × C2) → C1 × C2.

▶ Remark 4.4. We have defined the CCC of logical relations in terms of the logical predicate
construction P(−) of Definition 4.1. More concretely, this construction gives a category that
can be described in the following way:

its objects are triples (c1, c2,⊩) where ci is an object of Ci for i = 1, 2 and ⊩ is a subset
of C1(1, c1) × C2(1, c2), and is thus a relation between the points of c1 and of c2,
its morphisms from (c1, c2,⊩) to (c′

1, c′
2,⊩′) are pairs (f1, f2) ∈ C1(c1, c′

1) × C2(c2, c′
2)

such that for every pair (x1, x2) ∈ C1(1, c1) × C2(1, c2),

if x1 ⊩ x2 , then f1 ◦ x1 ⊩
′ f2 ◦ x2 .

For the proof that this category is a CCC, see [20, Proposition 4.3].
▶ Remark 4.5. The CCC of logical relations from C1 to C2 comes with two projections to C1
and to C2 which are CCC functors. By Remark 2.5, we get that for any relation (c1, c2,⊩),

JAK(c1,c2,⊩) = (JAKc1 , JAKc2 ,⊩A) for some ⊩A ⊆ C1(1, JAKc1) × C2(1, JAKc2).

The interpretation of a λ-term t ∈ Λ(A) at an object (c1, c2,⊩) is a morphism of the form

(JtKc1
, JtKc2

) : 1 −→ JAK(c1,c2,⊩) which means that (JtKc1
, JtKc2

) ∈⊩A .

This is the fundamental lemma of logical relations, see e.g. [2, Lemma 4.5.3].
▶ Remark 4.6. At this stage, the categories C1 and C2 play a symmetric role. However, this
will not always be the case in the rest of the paper, and we therefore say CCC of logical
relations from C1 to C2 to emphasize the order.

The squeezing construction

We describe here a construction, which we call squeezing, which produces a CCC Sqz(C)
from a CCC C equipped with an additional structure that we call a squeezing structure.
Intuitively, the objects of Sqz(C) are objects of C coming with bounds induced by the
structure, inspired by the squeeze theorem of calculus. This construction can be seen as the
proof-irrelevant counterpart to the twisted gluing construction described in [1, Definition 5].

CSL 2024

40:10 Syntactically and Semantically Regular Languages of λ-Terms Coincide

The notion of squeezing structure that is used is related to the hypotheses of [8, Lemma 6];
this pattern also occurs in the older proof theory tradition, see for instance [9, §8.A].

Throughout this paragraph, we fix any CCC C. We recall that a wide subcategory is
a subcategory containing all objects, and can hence be seen as a predicate on morphisms,
closed under finite compositions.

▶ Definition 4.7. A squeezing structure on C is the data of

two wide subcategories Cleft and Cright of C with associated notations l−→ and r−→ for
morphisms, which are stable under finite cartesian products and such that for all u : cl

l−→ c′
l

and v : cr
r−→ c′

r,

v ⇒ u : c′
r ⇒ cl

l−→ cr ⇒ c′
l and u ⇒ v : c′

l ⇒ cr
r−→ cl ⇒ c′

r .

for every object c of C, two objects Lc and Rc of C such that there exists morphisms:

L1
l−→ 1 Lc×c′

l−→ Lc × Lc′ Lc⇒c′
l−→ Rc ⇒ Lc′

1 r−→ R1 Rc × Rc′
r−→ Rc×c′ Lc ⇒ Rc′

r−→ Rc⇒c′ .
(2)

▶ Remark 4.8. As we work in a proof-irrelevant setting, we are merely interested in the
existence of these morphisms. Nonetheless, knowing that they belong to Cleft or Cright gets
us back some precious information, as we will see in Lemma 4.11 and Section 6.

▶ Definition 4.9. Given a squeezing structure on C, the category Sqz(C) is the full subcat-
egory of C whose objects are the objects c of C for which there exist both a left morphism
Lc

l−→ c and a right morphism c
r−→ Rc.

Notice that we write Sqz(C) even though this construction depends both on the CCC C
and on a squeezing structure on C.

▶ Theorem 4.10. For a squeezing structure on C, the category Sqz(C) is a sub-CCC of C.

Partial surjections

Logical relations which are partial surjections, i.e. both functional and surjective relations,
can be a useful tool to obtain partial equivalence relations and to prove semantic results,
see [6, §3], [7, §1.4.2] and [34, Theorem A]. We now show that the squeezing construction
can be applied to get partial surjections for free.

▶ Lemma 4.11. Let C1 and C2 be two CCCs and R be the CCC of logical relations from C1
to C2, whose objects are triples containing relations. Suppose that we are given a squeezing
structure on R such that

the relations in the objects Lc are surjective,
the relations in the objects Rc are functional,
the morphisms (u1, u2) in Rleft are such that C2(1, u2) is a surjective function,
the morphisms (v1, v2) in Rright are such that C2(1, v2) is an injective function,

where, for u ∈ C(a, b), the function C(1, u) : C(1, a) → C(1, b) is the composition u ◦ (−).
Then, the relation of any object belonging to Sqz(R) is a partial surjection.

We end this section by giving a definition which will appear in squeezing structures in
Proposition 6.4 and in the proof of Proposition 5.8.

V. Moreau and L. T. D. Nguyễn 40:11

▶ Definition 4.12. Let R be the CCC of logical relations from C1 to C2. We say that a
morphism (f1, f2) : (c1, c2,⊩) → (c′

1, c′
2,⊩′) is a target-identity if c2 and c′

2 are the same
object and if f2 is the identity morphism.

▶ Remark 4.13. We remark that the target-identities form a wide subcategory and are stable
under products and exponentiation.

5 From well-pointed locally finite CCCs to finite sets

We now recall the definition of the class of CCCs C for which we will show that C-recognizable
languages coincide with our other definitions of regular languages of λ-terms. Recall that in
a CCC C, a point of an object c is a morphism 1 → c from the terminal object to c.

▶ Definition 5.1. A CCC is said to be:
well-pointed if every morphism is determined by its action on points of its domain;
locally finite if all its hom-sets are finite sets.

We start by introducing the following constructions, which will help us to use partial
surjections.

▶ Definition 5.2. Let C be a category with a terminal object. We define the following full
subcategories of C:

C≥1 containing the objects c that have at least one point; we call these objects inhabited,
C≤1 containing the objects c that have at most one point,
C=1 containing the objects c that have exactly one point.

When instantiated to the CCC Lam of simple types and λ-terms, the notion of inhabited
object coincides with the usual notion of inhabited simple type.

▶ Proposition 5.3. If C is a CCC, then the category C≥1 is a sub-CCC of C.

▶ Proposition 5.4. If E is a well-pointed CCC, then the category E≤1 is a sub-CCC of E.
Moreover, the category E=1 is equivalent to the terminal category.

We now prove the interesting fact that inhabited objects characterize the recognized
languages of λ-terms in a well-pointed CCC.

▶ Proposition 5.5. If E is a well-pointed CCC, then a language of λ-terms is E-recognizable
if and only if it is E≥1-recognizable.

Proof. Let E be a well-pointed CCC. By Proposition 5.3, E≥1 is a sub-CCC of E so any
language which is E≥1-recognizable is E-recognizable, as explained in Remark 2.5.

We now show that the only language recognized by E≤1 is the empty and full languages.
Let A be a simple type and c be an object of E≤1. As E is well-pointed and by Proposition 5.4,
we know that JAKc belongs to E≤1, which means that C(1, JAKc) is empty or a singleton,
so Recc(A) contains at most the empty and full languages, which are the same when A is
not inhabited.

The empty and full languages are recognized by any CCC, so in particular by E≥1.
Therefore, all E-recognizable languages are E≥1-recognizable. ◀

▶ Example 5.6. The category FinSet≥1 is the CCC of non-empty finite sets.

CSL 2024

40:12 Syntactically and Semantically Regular Languages of λ-Terms Coincide

An implicative semilattice is a meet-semilattice such that each meet operation has an
upper adjoint. Implicative semilattices are CCCs, however, they are degenerate and so
never distinguish different λ-terms of the same type.
Another way to understand this fact is to remark that their full subcategory of inhabited
objects is the terminal category.

Next, we introduce the basic partial relations at which we will interpret the λ-calculus.

▶ Definition 5.7. Let E be a well-pointed locally finite CCC and R be the CCC of logical
relations from FinSet to E. For any object e of E, we consider the triple

Te := (E(1, e), e, ∼e) where ∼e is the identity relation of E(1, e).

which extends to a functor T : E → R.

We now prove a converse to Lemma 4.11 in the present case.

▶ Proposition 5.8. Let E be a well-pointed locally finite CCC whose objects are all inhabited
and R be the CCC of logical relations from FinSet to E. Then, the full subcategory of partial
surjections is a sub-CCC of R.

The proof is in Appendix B and uses a squeezing structure.

▶ Theorem 5.9 (claimed in [28, Lemma 20]). For every well-pointed locally finite CCC E,
any E-recognizable language is FinSet-recognizable.

Proof. Let A be a simple type and L be a language of λ-terms of type A which is E-
recognizable. By Proposition 5.5, it is E≥1-recognizable. Let e be an object of E≥1 such
that L ∈ Rece(A). We consider the object Te = (E(1, e), e, ∼e) from Definition 5.7, whose
relation is a partial surjection. The object JAKTe is of the form (JAKE(1,e), JAKe, ∼A

e), where
the relation ∼A

e is a partial surjection, as explained in Remark 2.5.
Let F be a subset of E(1, JAKe) such that L is LF . We consider the subset F ′ of JAKE(1,e)

defined as the inverse image

F ′ := {q ∈ JAKE(1,e) | ∃q′ ∈ F s.t. q ∼A
e q′}

By the fundamental lemma of logical relations, for λ-term t of type A, we have

JtKE(1,e) ∼A
e JtKe .

which proves that LF ⊆ LF ′ . Moreover, as ∼A
e is a functional relation, we get the converse

inclusion. This proves that L is FinSet-recognizable. ◀

6 From finite sets to λ-terms

In this section, we apply the squeezing construction of Definition 4.9 on a CCC of logical
relations to show that every FinSet-recognizable language is syntactically regular, through
an encoding of finite sets into the simply typed λ-calculus. To achieve that, we need to
change slightly of setting, by moving from finite sets to finite ordinals. This will make it
possible to define the functor Fin(−) without ambiguity.

Therefore, we consider the category FinOrd whose objects are natural numbers and whose
morphisms are the set-theoretic maps between the associated finite cardinals ⟨n⟩ := {1, . . . , n}.
The inclusion of FinOrd in FinSet is a fully faithful functor that is essentially surjective,
henceforth we get an equivalence between FinOrd and FinSet using the axiom of choice.
In particular, FinOrd is a CCC that recognizes the same languages as FinSet.

V. Moreau and L. T. D. Nguyễn 40:13

The encoding of finite sets and its squeezing structure

We take R to be the CCC of logical relations from Lam to FinOrd. We recall that the
objects of R are therefore triples R = (B, n,⊩) where B is a simple type, n is a natural
number and ⊩ is a subset of the product Λ(B)×⟨n⟩. A morphism of R is a pair of morphisms
of Lam and FinOrd which respect the relations.

▶ Definition 6.1. We define the functor Fin(−) : FinOrd → Lam as Fin(n) := o
n ⇒ o

and, for every f : n → n′, the λ-term Fin(f) : Fin(n) → Fin(n′) is

λ(p : Fin(n)). λ(x : on′
). p ⟨xf(1), . . . , xf(n)⟩ .

▶ Remark 6.2. As FinOrd is equivalent to the free cocartesian category and Lamop is
cocartesian, we get a functor n 7→ o

n. The composition of the two functors

FinOrd Lamop Lamn7→o
n (−)⇒o

is precisely the functor Fin(−).

Our goal is now to exhibit a squeezing structure on R in order to show Theorem 6.5. We
consider the target-identities for the two wide subcategories of the structure. We now define
the following family of objects.

▶ Definition 6.3. For any natural number n, we define the object Bijn as

Bijn := (Fin(n), n,⊩n)

where ⊩n is the bijection between the sets Λ(Fin(n)) and ⟨n⟩ defined as

⊩n := {(πi, i) : 1 ≤ i ≤ n} with πi the λ-term λ(x : on). xi .

This assignment extends to a functor Bij(−) : FinOrd → R.

▶ Proposition 6.4. There is a squeezing structure on the CCC R such that:
the left and right morphisms are the target-identities of R,
for any object c = (B, n,⊩) of R, the objects Lc and Rc are both equal to Bijn.

The proof is in Appendix B. Proposition 6.4 shows that we have a sub-CCC Sqz(C) of
the CCC of logical relations from Lam to FinOrd, whose objects are tuples (B, n,⊩) such
that there exists λ-terms u : Fin(n) → B and v : B → Fin(n) lifting to the two following
target-identities:

(Fin(n), n,⊩n) (B, n,⊩)(u,Idn) and (B, n,⊩) (Fin(n), n,⊩n)(v,Idn)
.

Encoding recognizability by finite sets

We have shown in Proposition 6.4 that we have a squeezing structure on the CCC of logical
relations R from Lam to FinOrd. We now show how to use this structure, culminating in
the link established in Theorem 6.5 between FinOrd-recognizable and syntactically regular
languages.

▶ Theorem 6.5. If a language is FinSet-recognizable, then it is syntactically regular.

CSL 2024

40:14 Syntactically and Semantically Regular Languages of λ-Terms Coincide

Proof. Let A be a simple type and L ⊆ Λ(A) be any FinSet-recognizable language. There
exists a finite set Q and a subset F ⊆ ⟨JAKn⟩ such that

L = {t ∈ Λ(A) | JtKn ∈ F} .

We take n to be the cardinality of Q and note χ : JAKn → 2 the characteristic function
associated to the subset F . By applying the functor Bij(−), we get a morphism of relations

Bijχ := (Fin(χ) , χ) :
(

Fin(JAKn), JAKn,⊩JAKn

)
−→ (Fin(2), 2,⊩2) .

The interpretation JAKBijn
is of the form (A[Fin(n)], JAKn,⊩A

n) as explained in Remark 2.5.
As it is an object of Sqz(R), it has a target-identity into BijJAKn

. By composing this
morphism with Bijχ, we obtain a morphism

(r , χ) : (A[Fin(n)], JAKn,⊩A
n) −→ (Fin(2), 2,⊩2) .

By the fundamental lemma of logical relations, we get that, for every λ-term t of type A,

t[Fin(n)] ⊩A
n JtKn on which we apply (r, χ) to get r t[Fin(n)] ⊩2 χ(JtKn)

which states that r t[Fin(n)] =βη true if and only if χ(JtKn) is 1. This proves that r recognizes
the language LF given by F ⊆ ⟨JAKn⟩, and so that L is syntactically regular. ◀

7 Regular languages

In this section, we want to point out a few consequences of the equivalence previously proved
through Theorem 3.2, Theorem 5.9 and Theorem 6.5. Using these theorems, the following
definition of regular languages is well-defined.

▶ Definition 7.1. Let A be a simple type. A regular language of λ-terms of type A is a
subset L ⊆ Λ(A) such that one of the following equivalent propositions holds:

L is syntactically regular;
L is C-recognizable, for some non-degenerate, well-pointed and locally finite CCC C;
L is FinSet-recognizable.

We denote by Reg(A) the set of regular languages of λ-terms of type A.

▶ Remark 7.2. Note that FinSet recognizes all the regular languages of λ-terms. In that
sense, it plays the same role as the monoid

M := {f : N → N | ∃N ∈ N, ∀n ≥ N, f(n) = n} with the composition of functions

which recognizes all the regular languages of finite words as all finite monoids can be embedded
into M . Such a monoid cannot be finite; however, M is a locally finite monoid, i.e. all its
finitely generated submonoids are finite (this is a standard notion, see e.g. [11, §V.5]).

In the case of finite words, recognizability by finite monoids and locally finite monoids
are equivalent when the alphabet is finite. In the case of λ-terms however, finite CCCs are
all degenerate whereas the locally finite case yields regular languages of λ-terms, with some
additional conditions.

▶ Proposition 7.3. The set Reg(A) of regular languages of λ-terms of some simple type A

is a Boolean algebra.

V. Moreau and L. T. D. Nguyễn 40:15

This fact boils down to stability by union or intersection. It is proved in [27, Theorem 8]
using intersection types and in [34, Proposition 2.5] using logical relations. We provide
another proof, showing that it is a direct consequence of our results.

Proof. Using any of the three conditions of Definition 7.1, it is clear that regular languages
are closed under complement.

The product CCC FinSet × FinSet is non-degenerate, well-pointed and locally finite.
It comes with two projections which are both CCC functors FinSet × FinSet → FinSet.
Let Q and Q′ be two finite sets; we consider the object (c, c′) of FinSet × FinSet. As
explained in Remark 2.5, for any simple type A, we get that RecQ(A) ⊆ Rec(Q,Q′)(A) and
RecQ′(A) ⊆ Rec(Q,Q′)(A).

Moreover, Rec(Q,Q′)(A) is a Boolean algebra. This shows that the intersection of a
language in RecQ(A) with another in RecQ′(A) can be taken in Rec(Q,Q′)(A), so it is still a
regular language. Therefore, Reg(A) is a Boolean algebra. ◀

We now point out two other consequences of the equivalence in Definition 7.1.
As stated in the introduction, Statman’s finite completeness theorem tells us that singleton
languages of λ-terms, taken modulo βη-conversion, are regular languages. It has multiple
proofs, see [32] for proof directly in the finite standard model, [27] using intersection
types, [17] in the model of complete lattices and [29] using Böhm trees.
These results are usually proved in one CCC. Using Theorem 3.2, Theorem 5.9 and
Theorem 6.5, we get that the singleton languages are recognized by any non-degenerate,
well-pointed and locally finite CCC and are also syntactically regular.
Some CCCs satisfying these three conditions are the coKleisli categories of a model of linear
logic, see [18]. In [19], a notion of higher-order automaton is presented, which recognizes
a language of λ-terms of a given simple type. The run-trees for these non-deterministic
automata are defined using an intersection type system, which is an equivalent way
of presenting the semantic interpretation J−K of the simply typed λ-calculus in the
coKleisli category ScottL! of the Scott model of linear logic. Using the equivalence
proved in the present article, a language is recognized by a higher-order automaton, i.e.
ScottL!-recognizable, if and only if it satisfies one of the conditions of Definition 7.1.

8 Conclusion and future perspectives

In this article, we have shown that every non-degenerate, well-pointed and locally finite
CCCs recognizes exactly Salvati’s regular languages of λ-terms [27], and that those also
coincide with syntactically regular languages. This is evidence for the robustness of this
notion, and therefore of the dual notion of profinite λ-term introduced in [34].

Among the aforementioned conditions, non-degeneracy is needed to recognize non-trivial
languages, and local finiteness is clearly crucial: in the case of finite words and trees, regularity
is closely related to recognition by finitary structures. What about well-pointedness? In other
words, one question that remains open is the following: is there a locally finite CCC that
recognizes languages of λ-terms that are not regular, i.e. not recognizable by FinSet? For
example, sequential algorithms famously form a locally finite CCC which is not well-pointed,
cf. [2, Chapter 14]; we would like to understand its recognition power.

As explained in Example 2.2, the regular languages of λ-terms of type Churchn for some
natural number n are exactly the usual regular languages of the finite words associated by the
Church encoding. It is possible to encode words in other calculi, like the non-commutative
affine λ-calculus in which case a syntactic approach analogous to Definition 2.10 yields the

CSL 2024

40:16 Syntactically and Semantically Regular Languages of λ-Terms Coincide

star-free languages, see [22]. Moreover, gluing techniques have been studied for other calculi,
see [12] for the linear case. One can therefore wonder whether it is possible to develop a
semantic approach à la Salvati, analogous to Definition 2.1, for other calculi.

References
1 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of

a reduction free normalization proof. In David H. Pitt, David E. Rydeheard, and Peter T.
Johnstone, editors, Category Theory and Computer Science, 6th International Conference,
CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in
Computer Science, pages 182–199. Springer, 1995. doi:10.1007/3-540-60164-3_27.

2 Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
doi:10.1017/CBO9780511983504.

3 Robert Atkey. Syntax for free: Representing syntax with binding using parametricity. In Pierre-
Louis Curien, editor, Typed Lambda Calculi and Applications, 9th International Conference,
TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, volume 5608 of Lecture Notes in
Computer Science, pages 35–49. Springer, 2009. doi:10.1007/978-3-642-02273-9_5.

4 Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic. CoRR, abs/2008.11635, 2020. arXiv:2008.11635.

5 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

6 Antonio Bucciarelli. Logical relations and lambda theories. In Advances in Theory and Formal
Methods of Computing, proceedings of the 3rd Imperial College Workshop, pages 37–48, 1996.

7 Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational
model. Theoretical Computer Science, 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

8 Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. Mathematical Structures in Computer Science, 32(8):1028–1065, 2022. doi:10.1017/
S0960129522000263.

9 Jean-Yves Girard. The Blind Spot: Lectures on logic. European Mathematical Society,
September 2011. doi:10.4171/088.

10 Charles Grellois. Semantics of linear logic and higher-order model-checking. PhD thesis,
Université Paris 7, April 2016. URL: https://hal.science/tel-01311150.

11 Pierre A. Grillet. Semigroups. An introduction to the structure theory. Chapman & Hall/CRC
Pure and Applied Mathematics. Dekker, 1995. doi:10.4324/9780203739938.

12 Masahito Hasegawa. Logical predicates for intuitionistic linear type theories. In Jean-
Yves Girard, editor, Typed Lambda Calculi and Applications, 4th International Conference,
TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in
Computer Science, pages 198–212. Springer, 1999. doi:10.1007/3-540-48959-2_15.

13 Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and Alexandra Silva.
Tree Automata as Algebras: Minimisation and Determinisation. In Markus Roggenbach
and Ana Sokolova, editors, 8th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2019), volume 139 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 6:1–6:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CALCO.2019.6.

14 Gerd G. Hillebrand and Paris C. Kanellakis. On the expressive power of simply typed and
let-polymorphic lambda calculi. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 253–263. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561337.

15 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3):20:1–20:62,
2013. doi:10.1145/2487241.2487246.

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1017/CBO9780511983504
https://doi.org/10.1007/978-3-642-02273-9_5
https://arxiv.org/abs/2008.11635
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.4171/088
https://hal.science/tel-01311150
https://doi.org/10.4324/9780203739938
https://doi.org/10.1007/3-540-48959-2_15
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://doi.org/10.1109/LICS.1996.561337
https://doi.org/10.1145/2487241.2487246

V. Moreau and L. T. D. Nguyễn 40:17

16 Naoki Kobayashi. 10 years of the higher-order model checking project (extended abstract).
In Ekaterina Komendantskaya, editor, Proceedings of the 21st International Symposium on
Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal, October
7-9, 2019, pages 2:1–2:2. ACM, 2019. doi:10.1145/3354166.3354167.

17 Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Information and
Computation, 243:205–221, 2015. doi:10.1016/j.ic.2014.12.015.

18 Paul-André Melliès. Categorical Semantics of Linear Logic. In P.-L. Curien, H. Herbelin, J.-L.
Krivine, and P.-A. Melliès, editors, Interactive models of computation and program behaviour,
volume 27 of Panoramas et Synthèses. Société Mathématique de France, 2009. URL: https:
//smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire.

19 Paul-André Melliès. Higher-order parity automata. In 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–12, Reykjavik, Iceland, June 2017.
IEEE. doi:10.1109/LICS.2017.8005077.

20 John C. Mitchell and Andre Scedrov. Notes on sconing and relators. In Egon Börger, Gerhard
Jäger, Hans Kleine Büning, Simone Martini, and Michael M. Richter, editors, Computer
Science Logic, 6th Workshop, CSL ’92, San Miniato, Italy, September 28 - October 2, 1992,
Selected Papers, volume 702 of Lecture Notes in Computer Science, pages 352–378. Springer,
1992. doi:10.1007/3-540-56992-8_21.

21 Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory.
PhD thesis, Université Paris XIII, 2021. URL: https://hal.science/tel-04132636.

22 Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1–135:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

23 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

24 C.-H. Luke Ong. Higher-order model checking: An overview. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages
1–15. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.9.

25 Gordon D. Plotkin. Recursion does not always help. In Fairouz Kamareddine, editor, A
Century since Principia’s Substitution Bedazzled Haskell Curry. In Honour of Jonathan Seldin’s
80th Anniversary. College Publications, 2023. arXiv:2206.08413.

26 Simona Ronchi Della Rocca. Intersection Types and Denotational Semantics: An Extended
Abstract (Invited Paper). In Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić, editors,
22nd International Conference on Types for Proofs and Programs (TYPES 2016), volume 97 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:7, Dagstuhl, Germany,
2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2016.
2.

27 Sylvain Salvati. Recognizability in the simply typed lambda-calculus. In Hiroakira Ono,
Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and
Computation, 16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009.
Proceedings, volume 5514 of Lecture Notes in Computer Science, pages 48–60. Springer, 2009.
doi:10.1007/978-3-642-02261-6_5.

28 Sylvain Salvati. Lambda-calculus and formal language theory. Habilitation à diriger des
recherches, Université de Bordeaux, 2015. URL: https://hal.science/tel-01253426.

29 B. Srivathsan and Igor Walukiewicz. An alternate proof of Statman’s finite completeness
theorem. Information Processing Letters, 112(14-15):612–616, 2012. doi:10.1016/j.ipl.
2012.04.014.

CSL 2024

https://doi.org/10.1145/3354166.3354167
https://doi.org/10.1016/j.ic.2014.12.015
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://doi.org/10.1109/LICS.2017.8005077
https://doi.org/10.1007/3-540-56992-8_21
https://hal.science/tel-04132636
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1109/LICS.2015.9
https://arxiv.org/abs/2206.08413
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.1007/978-3-642-02261-6_5
https://hal.science/tel-01253426
https://doi.org/10.1016/j.ipl.2012.04.014
https://doi.org/10.1016/j.ipl.2012.04.014

40:18 Syntactically and Semantically Regular Languages of λ-Terms Coincide

30 Richard Statman. Completeness, invariance and lambda-definability. Journal of Symbolic
Logic, 47(1):17–26, 1982. doi:10.2307/2273377.

31 Richard Statman. On the λY calculus. Annals of Pure and Applied Logic, 130(1-3):325–337,
2004. doi:10.1016/j.apal.2004.04.004.

32 Richard Statman and Gilles Dowek. On Statman’s finite completeness theorem, 1992. arXiv:
2309.03602.

33 Kazushige Terui. Semantic Evaluation, Intersection Types and Complexity of Simply Typed
Lambda Calculus. In 23rd International Conference on Rewriting Techniques and Applications
(RTA’12), pages 323–338, 2012. doi:10.4230/LIPIcs.RTA.2012.323.

34 Sam van Gool, Paul-André Melliès, and Vincent Moreau. Profinite lambda-terms and para-
metricity. Electronic Notes in Theoretical Informatics and Computer Science, Volume 3 –
Proceedings of MFPS XXXIX, November 2023. doi:10.46298/entics.12280.

35 Igor Walukiewicz. Automata theory and higher-order model-checking. ACM SIGLOG News,
3(4):13–31, 2016. doi:10.1145/3026744.3026745.

A The regular language of affine untyped terms

The goal of this appendix is to provide a detailed explaination of Example 2.4. We first
introduce a grammar for the simply typed λ-terms of type UntypedTerms through the following
notion of scoped term.

▶ Definition A.1. We consider untyped terms with de Bruijn indices, given by the grammar

u, v ::= vari for i ∈ N∗ | abs(u) | app(u, v)

where we write abs(−) for the abstraction to distinguish it from the simply typed λ-abstraction.
For any natural number n and untyped term u, we define the judgment n ⊢ u by induction

with the rules

1 ≤ i ≤ n
n ⊢ vari

n + 1 ⊢ u

n ⊢ abs(u)
n ⊢ u n ⊢ v

n ⊢ app(u, v) .

The judgment n ⊢ u has at most one derivation. We call a scoped term any pair of n and u

such that n ⊢ u is derivable.

In the rest of the appendix, we will simply say that n ⊢ u is a scoped term whenever
this judgment is derivable. We now give the encoding of scoped terms into the simply typed
λ-calculus.

▶ Definition A.2. Let us consider a fixed sequence of simply typed variables xk : o for k ∈ N.
We define the context Γn as ℓ : (o ⇒ o) ⇒ o, a : o ⇒ o ⇒ o, x1 : o, . . . , xn : o.

For any natural number n and untyped term u, we consider the encoding n ⊢ u of a scoped
term defined by induction as

n ⊢ vari := xn+1−i

n ⊢ abs(u) := ℓ (λ(xn+1 : o). n + 1 ⊢ u)
n ⊢ app(u, v) := a (n ⊢ u) (n ⊢ v)

which is such that Γn ⊢ n ⊢ u : o.

Using normalization for the simply typed λ-calculus, we can claim the following fact.

https://doi.org/10.2307/2273377
https://doi.org/10.1016/j.apal.2004.04.004
https://arxiv.org/abs/2309.03602
https://arxiv.org/abs/2309.03602
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.46298/entics.12280
https://doi.org/10.1145/3026744.3026745

V. Moreau and L. T. D. Nguyễn 40:19

▷ Claim A.3. For every natural number n, the encoding of scoped terms n ⊢ u into the open
λ-terms n ⊢ u of type o in context Γn, taken modulo βη-conversion, is bijective.

In particular, the encoding induces a bijection between the set Λ(UntypedTerms) and the
set of closed untyped terms, i.e. the u such that 0 ⊢ u is a scoped term.

▶ Definition A.4. For any scoped term n ⊢ u and 1 ≤ i ≤ n, we define the natural number
occi(n ⊢ u), the number of occurences of the ith variable, by induction as:

occi(n ⊢ varj) := 1 if i = j otherwise 0
occi(n ⊢ abs(u)) := occi+1(n + 1 ⊢ u)

occi(n ⊢ app(u, v)) := occi(n ⊢ u) + occi(n ⊢ v) .

When the scoped term n ⊢ u is clear from context, we will simply write occi.

▶ Definition A.5. For any finite set Q and functions fabs : (Q ⇒ Q) → Q and fapp : Q →
Q ⇒ Q, we interpret any scoped term n ⊢ u as its semantics

n ⊢ u ⇝ Ln ⊢ uM : Qn −→ Q

which is the set-theoretic function defined, for q1, . . . , qn ∈ Q, by induction as:

Ln ⊢ vari M[q1, . . . , qn] := qi

Ln ⊢ abs(u)M[q1, . . . , qn] := fabs(q 7→ Ln + 1 ⊢ uM[q, q1, . . . , qn])
Ln ⊢ app(u, v)M[q1, . . . , qn] := fapp(Ln ⊢ uM[q1, . . . , qn])(Ln ⊢ v M[q1, . . . , qn]) .

We write the arguments of the function Ln ⊢ uM between square brackets [and].

▶ Remark A.6. The semantics of Definition A.5 factor through the encoding of Definition A.2
in the simply typed λ-calculus and its semantic interpretation as for all q1, . . . , qn ∈ Q,

Ln ⊢ uM(q1, . . . , qn) =
q

n ⊢ u
y

Q
(fabs)(fapp)(qn, . . . , q1) .

We now instantiate Definition A.5 with the following values of Q, fabs and fapp:
Q is the set {0, 1, ∞} × {⊥, ⊤}, with its product monoid structure. For any q ∈ Q, we
write q1 ∈ {0, 1, ∞} and q2 ∈ {⊥, ⊤} for its two components.
fabs is the function (Q ⇒ Q) → Q defined as

g 7−→ (g(0, ⊤)1 , g(0, ⊤)2 ∧ (g(1, ⊤)1 ̸= ∞))

fapp is the curried monoid product of Q, i.e. the function Q → (Q ⇒ Q) defined as

(n, b) 7−→ (n′, b′) 7→ (n + n′, b ∧ b′) .

▶ Proposition A.7 (Left part of the tuple). For any scoped term n ⊢ u and any elements
k1, . . . kn of {0, 1, ∞}, we have

Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)]1 = occ1 · k1 + · · · + occn · kn

where the product · : N× {0, 1, ∞} → {0, 1, ∞} comes from the monoid structure of {0, 1, ∞}.

CSL 2024

40:20 Syntactically and Semantically Regular Languages of λ-Terms Coincide

Proof. We verify this by induction on the scoped term n ⊢ u.

Ln ⊢ vari M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= ki

= occ1 · k1 + · · · + occn · kn

Ln ⊢ abs(u)M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= fabs ((k, b) 7→ Ln + 1 ⊢ uM[(k, b) , (k1, ⊤) , . . . , (kn, ⊤)])1

= Ln + 1 ⊢ uM[(0, ⊤) , (k1, ⊤) , . . . , (kn, ⊤)]1
= occ1 · k1 + · · · + occn · kn

Ln ⊢ app(u, v)M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= fapp(Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)])(Ln ⊢ v M[(k1, ⊤) , . . . , (kn, ⊤)])1

= Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)]1 + Ln ⊢ v M[(k1, ⊤) , . . . , (kn, ⊤)]1
= occ1 · k1 + · · · + occn · kn

In the abs case, the last equality is obtained by remarking that occ1(n + 1 ⊢ u) is multiplied
by 0 and that occi+1(n + 1 ⊢ u) = occi(n ⊢ abs(u)) for i ≥ 1. ◀

We introduce the following definition.

▶ Definition A.8. We define the property of a scoped term to be affine in its bound variables
by induction as follows:

n ⊢ vari is always affine in its bound variables,
n ⊢ abs(u) is affine in its bound variables if and only if

occ1(n + 1 ⊢ u) ≤ 1 and n + 1 ⊢ u is affine in its bound variables

n ⊢ app(u, v) is affine in its bound variables if and only if

n ⊢ u and n ⊢ v are both affine in their bound variables.

A λ-term t ∈ Λ(UntypedTerms) will said to be affine when the closed untyped term 0 ⊢ u

bijectively associated to t by Claim A.3 is affine in its bound variables.

▶ Proposition A.9 (Right part of the tuple). For any scoped term n ⊢ u, we have

Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)]2 = b

where b is ⊤ if and only if the scoped term n ⊢ u is affine in its bound variables.

Proof. We prove this by induction on the scoped term n ⊢ u.
For any 1 ≤ i ≤ n, n ⊢ vari is always affine in its bound variables, and we always have

Ln ⊢ vari M[(0, ⊤) , . . . , (0, ⊤)]2 = ⊤ .

For any scoped term n + 1 ⊢ u, we have

Ln ⊢ abs(u)M[(0, ⊤) , . . . , (0, ⊤)]2
:= fabs((k, b) 7→ Ln + 1 ⊢ uM[(k, b) , (0, ⊤) , . . . , (0, ⊤)])2

= Ln + 1 ⊢ uM[(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)]2
∧ Ln + 1 ⊢ uM[(1, ⊤) , (0, ⊤) , . . . , (0, ⊤)]1 ̸= ∞

= Ln + 1 ⊢ uM[(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)]2
∧ occ1(n + 1 ⊢ u) ≤ 1 .

V. Moreau and L. T. D. Nguyễn 40:21

where the last step comes from Proposition A.7. By the induction hypothesis on the
scoped term n + 1 ⊢ u, we get that n ⊢ abs(u) is affine in its bound variables if and only
if Ln ⊢ abs(u)M[(0, ⊤) , . . . , (0, ⊤)]2 is ⊤.
For any scoped terms n ⊢ u and n ⊢ v, we have

Ln ⊢ app(u, v)M[(0, ⊤) , . . . , (0, ⊤)]2
:= fapp(Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)])(Ln ⊢ v M[(0, ⊤) , . . . , (0, ⊤)])2

= Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)]2 ∧ Ln ⊢ v M[(0, ⊤) , . . . , (0, ⊤)]2

which shows, by the induction hypotheses on n ⊢ u and n ⊢ v, that n ⊢ app(u, v) is affine
in its bound variables if and only if Ln ⊢ app(u, v)M[(0, ⊤) , . . . , (0, ⊤)]2 is ⊤. ◀

▶ Theorem A.10. The language of closed affine untyped terms is regular in FinSet.

Proof. We consider the language

L := {t ∈ Λ(UntypedTerms) | t is affine} .

By definition, t ∈ Λ(UntypedTerms) is affine if and only if 0 ⊢ u is affine in its bound variables,
where 0 ⊢ u is the unique scoped term such that t = 0 ⊢ u, given by Claim A.3. Moreover,
by Proposition A.9, we have that 0 ⊢ u is affine in its bound variables if and only if

L0 ⊢ uM2 = ⊤

and, by Remark A.6, L0 ⊢ uM2 = JtKQ (fabs)(fapp). Therefore, if we define the subset F of
JUntypedTermsKQ as

F := {s ∈ JUntypedTermsKQ | s(fabs)(fapp)2 = ⊤}

we get that L = LF and therefore that L is FinSet-recognizable. ◀

B Squeezing structures

Proof of Proposition 5.8. There exists a squeezing structure such that
for any object R = (Q, e,⊩) of R, the objects LR and RR are both equal to Te;
the two wide subcategories Rleft and Rright are both taken to be the wide subcategory of
target-identities.

The fact that the point functor T is product-preserving gives us all the target-identities of
the squeezing structure, except for the case of the morphism

(E(1, e), e, ∼e) ⇒ (E(1, e′), e′, ∼e′) −→ (E(1, e ⇒ e′), e ⇒ e′, ∼e⇒e′) .

For this morphism, we will crucially use the fact that we relate FinSet and E, which is
well-pointed. We have a set-theoretic function

i : E(1, e ⇒ e′) −→ E(1, e) ⇒ E(1, e′)

which is injective as E is well-pointed and lifts to a target-identity. As the object e ⇒ e′ of
E is inhabited, the set E(1, e ⇒ e′) is non-empty and the set-theoretic function i admits a
retraction

r : E(1, e) ⇒ E(1, e′) −→ E(1, e ⇒ e′)

which lifts to a target-identity Te ⇒ Te′ → Te⇒e′ . By Lemma 4.11, we know that the objects
of Sqz(R) are partial surjections. Conversely, suppose that R = (Q, e,⊩) is such that ⊩ is a
partial surjection. We the two following target-identities:

CSL 2024

40:22 Syntactically and Semantically Regular Languages of λ-Terms Coincide

The fact that the relation ⊩ is surjective yields a set-theoretic function E(1, e) → Q which
lifts to a target-identity Te → R.
As the relation ⊩ is functional and E(1, e) is non-empty as e is inhabited, there exists a
set-theoretic function Q → E(1, e) extending ⊩, and any such set-theoretic function lifts
to a target-identity R → Te.

This shows that the objects of Sqz(R) are exactly the partial surjections, which then form a
sub-CCC of R by Theorem 4.10. ◀

Proof of Proposition 6.4. It is clear that target-identities are composable and stable under
finite products and exponentials, which is what is asked given that left and right morphisms
are the same in the present case.

We are left with the task to show the existence of the morphisms as described in
Equation (2) in our particular setting. As there exists at most one target-identity whose
Lam component is a given λ-term, we give these λ-terms.

Case Bij1 → 1: The unique morphism Bij1 → 1 is a target-identity.
Case 1 → Bij1: The λ-term λ(y : 1). λ(x : o). x lifts to a target-identity

1 −→ (Fin(1), 1,⊩1) .

Case Bijn×n′ → Bijn × Bijn′ : the fact that Bij(−) is a functor gives us directly such a
morphism which can be verified to be a target-identity.
Case Bijn × Bijn′ → Bijn×n′ : The morphism is given by the λ-term

λ(p : Fin(n) × Fin(n′)). λ(x : on×n′
). p1 ⟨ Fin(1 × Id) p2 x, . . . , Fin(n × Id) p2 x⟩

where i × Id is the function n′ → n × n′ sending j on (i, j), from which we get the λ-
term Fin(i × Id) of simple type Fin(n′) ⇒ Fin(n × n′).
This λ-term lifts to a target-identity

Bijn × Bijn′ −→ Bijn×n′ .

Case Bijn⇒n′ → Bijn ⇒ Bijn′ : We have the target-identity

Bijn⇒n′ × Bijn −→ Bij(n⇒n′)×n

which, when composed with the morphism Bijevn,n′ which has the evaluation mor-
phism evn,n′ as target-component, yields a morphism

Bijn⇒n′ × Bijn −→ Bijn′

which, after curryfication, gets us a target-identity Bijn⇒n′ → Bijn ⇒ Bijn′ .
Case Bijn ⇒ Bijn′ → Bijn⇒n′ : Notice that the equality

n ⇒ n′ = n′ × · · · × n′︸ ︷︷ ︸
n times

shows that the λ-term of type Fin(n) ⇒ Fin(n′) → (Fin(n′))n

λ(F : Fin(n) ⇒ Fin(n′)). ⟨F π1, . . . , F πn⟩

lifts to a target-identity Bijn ⇒ Bijn′ → Bijn′ n. By postcomposing this target-identity
with an iteration of the target-identities Bijm × Bijm′ → Bijm×m′ , we obtain the target-
identity

Bijn ⇒ Bijn′ −→ Bijn⇒n′ .

This finishes the proof that there is a squeezing structure as described in the statement of
the proposition. ◀

Promise and Infinite-Domain Constraint
Satisfaction
Antoine Mottet #

Hamburg University of Technology, Research Group for Theoretical Computer Science, Germany

Abstract
Two particularly active branches of research in constraint satisfaction are the study of promise
constraint satisfaction problems (PCSPs) with finite templates and the study of infinite-domain
constraint satisfaction problems with ω-categorical templates. In this paper, we explore some
connections between these two hitherto unrelated fields and describe a general approach to studying
the complexity of PCSPs by constructing suitable infinite CSP templates. As a result, we obtain
new characterizations of the power of various classes of algorithms for PCSPs, such as first-order
logic, arc consistency reductions, and obtain new proofs of the characterizations of the power of the
classical linear and affine relaxations for PCSPs.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases promise constraint satisfaction problems, polymorphisms, homogeneous
structures, first-order logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.41

1 Introduction

Promise constraint satisfaction problems (PCSPs) are problems of the following form: given
a set of constraints on some variables, each of which coming as a pair of strong/weak
constraints, determine whether the set of strong constraints is satisfiable or not even the set
of weak constraints is satisfiable. Formally, such problems are parametrized by a pair (A,B)
of relational structures such that A admits a homomorphism to B. Typically, both structures
are assumed to be finite. An instance of PCSP(A,B) is a structure X, whose domain are
understood as variables, and whose tuples in relations correspond to constraints in the same
signature as A and B. The problem is to decide whether there exists a homomorphism
X → A, representing a solution to a system of strong constraints, or no homomorphism
X → B, representing the absence of a solution to a weakening of the constraints. When
A = B, one recovers the classical framework of constraint satisfaction problems, for which it
is known that if A is finite, then the associated CSP is either solvable in polynomial time
or is NP-hard [44, 43, 21]. Other refined classifications are known, for instance it is known
which CSPs are definable by a first-order sentence [2, 41], or by a sentence in fixpoint logic
with counting [3], or solvable by Datalog programs [9], or by the basic linear relaxation [35].

The study of PCSPs started recently in the works of [6] and [18], whose motivation was to
define a structurally rich framework dedicated to the study of the complexity of approximation
problems such as approximate graph coloring. These problems form a framework suitable to
the study of a combinatorial, or qualitative, form of approximation, compared to the usual
quantitative form. This combinatorial viewpoint allows for conceptually simpler proofs of
inapproximability results, such as a combinatorial version of the PCP theorem [10].

A powerful algebraic approach to the study of the complexity of PCSPs was given by [8],
building on the existing algebraic tools developed in the context of constraint satisfac-
tion. A plethora of results ensued, providing new polynomial-time algorithms solving such
problems [23, 19, 27] and new tools for proving hardness [42, 34].

© Antoine Mottet;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 41; pp. 41:1–41:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.mottet@tuhh.de
https://orcid.org/0000-0002-3517-1745
https://doi.org/10.4230/LIPIcs.CSL.2024.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Promise and Infinite-Domain Constraint Satisfaction

Another active branch of research in constraint satisfaction is the study of CSPs where
the template is an infinite structure. Here, no dichotomy similar to the Bulatov-Zhuk
theorem is possible, as every computational problem is equivalent to the CSP of an infinite
structure [11, 30]. Nonetheless, a similar algebraic approach has been developed for a class
of infinite structures (so called ω-categorical structures) that is suitable for the study the
complexity of the associated CSPs. We refer to [39] and the introduction of [37] for a
description of the state of the art in the area.

There is until now little to no interplay between these two directions of research. While
the tractability of some PCSPs with a finite template has been shown by a reduction to
infinite-domain CSPs (typically through the use of a linear relaxation or systems of linear
equations over the integers), the infinite templates that arise here are not ω-categorical and
are not subject to the aforementioned algebraic approach. We note that Barto [7] and Barto
and Asimi [1] proved that there are finite PCSP templates (A,B) such that for every finite
structure C such that PCSP(A,B) reduces to CSP(C) by a trivial reduction, then CSP(C) is
NP-hard. Thus, in a sense, the use of infinite-domain CSPs is sometimes necessary.

1.1 Contributions
In this work, we show how the by-now classical tools used to study CSPs with ω-categorical
templates can also be used essentially as black boxes to tackle some questions arising in the
study of PCSPs with finite templates.

Descriptive Complexity of PCSPs

While algorithmic and algebraic questions concerning PCSPs have received much attention in
the past years, the logical aspects pertaining to these problems, and in particular questions
about their descriptive complexity, remain mostly unexplored. Here, one of the questions of
interest is to determine criteria for the existence of a sentence Φ in a given logic L whose
class of finite models separates the yes-instances from the no-instances of a PCSP. More
specifically, we say that PCSP(A,B) is solvable by a sentence Φ if the following holds:

For every finite structure X such that X admits a homomorphism to A, then X |= Φ,
For every finite structure X such that X does not admit a homomorphism to B, then
X ̸|= Φ.

▶ Problem 1 (Separability problem for L). For which promise constraint satisfaction problems
PCSP(A,B) does there exist a sentence Φ ∈ L such that PCSP(A,B) is solvable by Φ?

In the context of finite-domain CSPs, i.e., when A = B, questions of this type have been
answered for several logics including first-order logic [2, 41] and some fixpoint logics [3, 9],
while some important cases remain open, e.g., for the case of CSPs definable in linear
Datalog or in fixpoint logics with a rank operator. Atserias and Dalmau [4] have given
necessary algebraic conditions for a given PCSP to be solvable by a Datalog program, but
no characterization is known at the moment.

We give an answer to Problem 1 in the case that L is first-order logic.

▶ Theorem 2. Let (A,B) be a finite PCSP template. The following are equivalent:
1. PCSP(A,B) is solvable in first-order logic;
2. (A,B) has finite duality;
3. There exists a finite structure C with finite duality and such that A → C → B.

A. Mottet 41:3

Interestingly, although Theorem 2 is a statement purely about finite structures, our proof
uses a combination of techniques coming from the study of CSPs with infinite structures. We
first construct an infinite structure C with the same properties as in Item 3 of Theorem 2,
and using a Ramsey argument we prove that a finite factor of C also satisfies the required
properties. This method appears to be quite flexible and underlies the proofs of the main
results of this paper.

Application to the Search PCSP

Arguably, the variant of the PCSP that is most interesting from an application point of view
is the following: given a structure X with the promise that there exists a homomorphism
X → A, compute a homomorphism X → B. For CSPs, the search version can be solved in
polynomial time, given an oracle deciding the decision version; this is not known to hold for
promise CSPs.

Very little is known in general concerning the search version of promise CSPs: the
tractability of the search version of PCSP(A,B) is currently only known when there exists a
structure C such that A → C → B, such that CSP(C) can be solved in polynomial-time, and
such that a homomorphism C → B can be computed in polynomial time. So far, this is only
used when C is a finite structure.

A straightforward consequence of Theorem 2 is that if PCSP(A,B) is solvable in first-order
logic, then its search version is tractable. We are in the advantageous situation where C can
be taken finite, but in fact the result would already follow from the existence of a suitable
infinite C. Thus, we anticipate that our methods can prove the tractability of the search
version of PCSPs in much more general settings than first-order solvability.

Revisiting Arc Consistency and the Arc Consistency Reduction

Arc consistency is a common heuristic employed in constraint solvers to reduce the search
space and potentially speed up the process of finding a solution to a CSP instance (or to
prove that no solution exists). In this heuristic, one stores for every variable of the instance a
set of possible values that this variable can take in a homomorphism X → A, and one makes
gradual refinements until a fixed point is reached.

Some PCSPs, known as width-1 PCSPs, are in fact completely solved by this heuristic:
whenever the heuristic does not yield conclude the absence of a homomorphism X → A, then
there does actually exist a homomorphism X → B. A characterization of finite width-1 CSPs
was given by Feder and Vardi [29] in their seminal paper, and generalized to the case of
PCSPs [8]. We reprove in Section 4 this characterization by a straightforward adaptation of
the method used to characterize the power of first-order logic for PCSPs. Using the same
methods, we also give in Section 4 an alternative description of the recent arc consistency
reduction proposed in [28].

A current open problem in the theory of PCSPs is to characterize those templates whose
PCSP is solved by a strengthening of the arc consistency heuristic, where information about
tuples of variables of bounded length can be stored. This corresponds to solving Problem 1
in the case of Datalog, or the existential positive fragment of least fixpoint logic. While we
do not solve this problem here, we argue in Section 4 that our method could shed some light
on this problem.

CSL 2024

41:4 Promise and Infinite-Domain Constraint Satisfaction

Revisiting Linear and Affine Relaxations

Another heuristic to solve PCSPs is to consider linear relaxations of CSP instances, where
a CSP instance is mapped to a linear program (known as the basic linear programming
relaxation) or to a system of linear equations over the integers (known as the affine integer
programming relaxation). The class of PCSPs that are correctly solved by these heuristic
have been characterized in [8]. With the methods used in the previous sections, we give
another viewpoint on these classes and reprove those characterizations.

2 Definitions

A signature σ is a set of relation symbols, each of which having an arity. A σ-structure A
consists of a set A, called its domain, together with an interpretation RA ⊆ Ar for each
relation symbol R ∈ σ of arity r ≥ 1. A σ-structure B with B ⊆ A is a substructure of A if
for every R in σ of arity r, we have RB = RA ∩ Br.1 If τ ⊆ σ and A is a σ-structure, the
τ -reduct of A is the τ -structure obtained by forgetting the interpretation of the symbols in
σ \ τ . An expansion of a structure A is a structure in a larger signature obtained by adding
new relations to A. All relational structures in this paper are at most countable and have a
finite signature unless specified otherwise.

A homomorphism h : A → B between two σ-structures is a map A → B such that for
all R ∈ σ of arity r and (a1, . . . , ar) ∈ RA, we have (h(a1), . . . , h(ar)) ∈ RB. We use the
notation A → B to denote the existence of a homomorphism from A to B.

A cycle in a structure A is a set of tuples a1, . . . , ak of length r1, . . . , rk, each of which
appearing in a relation of A, such that the set consisting of all entries of the tuples has size
at most

∑
i(ri − 1). The smallest k for which there exists such a cycle in A is called the girth

of A. A tree is a structure with no cycles.

2.1 Promise Constraint Satisfaction Problems
For every two structures A,B such that there exists a homomorphism A → B, we define
PCSP(A,B) as the problem of deciding, given a finite structure X, if there exists a homo-
morphism X → A or no homomorphism X → B; the promise is that at least one of these
cases holds, and the existence of a homomorphism A → B ensures that at most one case
holds. The pair of structures (A,B) is called the template of the PCSP. The search version
of PCSP(A,B) asks to compute a homomorphism X → B, given a finite structure X that is
promised to admit a homomorphism to A (although a homomorphism X → A is of course
not given). We define CSP(A) as PCSP(A,A). Every tuple (x1, . . . , xk) ∈ RX in an instance
X of PCSP(A,B) is called a constraint.

We say that PCSP(A,B) is first-order solvable if there exists a first-order sentence Φ such
that the following items hold for every finite structure X:

if X has a homomorphism to A, then X |= Φ,
if X |= Φ, then X admits a homomorphism to B.

Thus, the set of finite models of Φ separates the yes-instances of PCSP(A,B) from the
no-instances. If PCSP(A,B) is first-order solvable, one trivially gets a logspace algorithm
solving PCSP(A,B).2

1 As usual in model theory, all substructures are necessarily induced substructures.
2 The truth of a first-order formula with k quantifiers can be checked by iterating over all elements of the

input structure and storing k logarithmically-sized pointers.

A. Mottet 41:5

Let F be a family of finite structures. A structure X is F-free if there does not exist any
F ∈ F such that F admits a homomorphism to X. We say that a PCSP template (A,B) has
duality F if the following hold for every finite X:

if X admits a homomorphism to A, then X is F -free,
if X is F -free, then X admits a homomorphism to B.

We say that (A,B) has finite duality if it has duality F for a finite set F . A structure has
finite tree duality if it has a finite duality consisting only of trees.

An operation f : An → A is a polymorphism of A if it is a homomorphism from An to A,
where An is the structure with domain An, the same signature as A, and with relations

RAn

:=
{

(a1, . . . , ar) | ∀j, (a1
j , . . . , ar

j) ∈ RA}
.

In other words, f is a polymorphism if, whenever a1, . . . , an are in a relation R of A, then
f(a1, . . . , an) is in R, where f is applied componentwise to every tuple ai. We define a
polymorphism of a PCSP template (A,B) similarly, as a homomorphism An → B.

A polymorphism f of a structure A is 1-tolerant if it satisfies that f(a1, . . . , an) is in RA,
whenever all but at most one of a1, . . . , an is in RA. For finite-domain or ω-categorical CSPs,
the following characterization of first-order solvability is known.

▶ Theorem 3 ([36, 2, 41, 12]). Let A be a finite or ω-categorical structure. The following
are equivalent:

A has finite duality,
A has finite tree duality,
CSP(A) is solvable in first-order logic,
A has a 1-tolerant polymorphism.

It is proven in [36] that it is possible to decide, for a finite structure A, whether A has
finite duality.

2.2 ω-categorical structures
An embedding e : A → B is an injective homomorphism such that for every relation R of arity
r and every a1, . . . , ar ∈ A, one has (e(a1), . . . , e(ar)) ∈ RB if, and only if, (a1, . . . , ar) ∈ RA.
An automorphism of a structure A is an embedding α : A → A that is surjective. In other
words, both α and its inverse are homomorphisms A → A.

A structure A if ω-categorical is for all n ≥ 1, the equivalence relation ∼A
n on An defined

by x ∼A
n y iff there exists an automorphism α ∈ Aut(A) with α(x) = y has finitely many

equivalence classes, . These equivalence classes are called orbits under Aut(A). Typical
examples of ω-categorical structures are the “structure with no structure” (N; =), for which
the classes of the equivalence relation ∼n are in 1-to-1 correspondence with partitions of
{1, . . . , n}, and (Q; <), for which the classes of the equivalence relation ∼n correspond to
weak linear orders on {1, . . . , n}.

A structure A is homogeneous if every isomorphism f : B → C between finite substructures
of A extends to an automorphism of A. Thus, in a homogeneous structure, the orbits under
Aut(A) are completely determined by the isomorphism types of n-element substructures of
A, or equivalently by the quantifier-free formulas with n variables up to equivalence over A.

A countable set C of finite structures is said to have the amalgamation property if for
all structures X,Y1,Y2 ∈ C and embeddings fi : X → Yi, there exist a structure Z ∈ C and
embeddings ei : Yi → Z such that e1 ◦ f1 = e2 ◦ f2. We say that Z is an amalgam over
Y1,Y2 over X. We say that Z is a strong amalgam if e1(Y1) ∩ e2(Y2) = e1(f1(X)), and we

CSL 2024

41:6 Promise and Infinite-Domain Constraint Satisfaction

say C has the strong amalgamation property when Z can always be chosen to be a strong
amalgam, regardless of X,Y1,Y2. We say that Z is a free amalgam if it is strong and no tuple
containing entries from both e1(Y1 \ f1(X)) and e2(Y2 \ f2(X)) belongs to a relation of Z. By
a classical result of Fraïssé, for every countable class of finite structures C that is closed under
substructures, there exists a countable homogeneous structure C whose finite substructures
are exactly those structures that are isomorphic to a member of C. The structure C is called
the Fraïssé limit of C.

2.3 Ramsey expansions and canonical polymorphisms
An operation f : An → B is canonical from A to B if it is a homomorphism from the nth
power of (A; ∼A

1 , ∼A
2 , . . .) to (B; ∼B

1 , ∼B
2 , . . .). In other words, f is canonical from A to B if,

and only if, for all m-tuples a1, . . . , an, and all α1, . . . , αn automorphisms of A, the tuples
f(a1, . . . , am) and f(α1(a1), . . . , αn(an)) are in the same orbit under Aut(B). Canonical
functions typically arise by an application of the following result. This result uses the
Ramsey property of some homogeneous structures; we will only use the Ramsey property as
a blackbox in this paper and therefore omit the definition.

▶ Theorem 4 ([16, 40]). Let A be a homogeneous structure with the Ramsey property, let B
be an ω-categorical structure, and let f : An → B be an arbitrary function. Then there exists
g : An → B that is canonical from A to B and such that for every finite subset S of Am, there
exist α1, . . . , αn ∈ Aut(A), β ∈ Aut(B) such that g(a1, . . . , an) = βf(α1(a1), . . . , αn(an))
holds for all a1, . . . , an in S.

In case A = B in Theorem 4, we say that f locally interpolates g modulo Aut(A).

3 PCSPs solvable in First-Order Logic

It was first proven by [2] that a finite structure has finite duality if, and only if, its CSP can
be defined in first-order logic. Another proof of this result was obtained by [41], who proved
the following stronger statement.3 For a first-order sentence Φ, let Mod(Φ) be the class of
all finite structures X such that X |= Φ.

▶ Theorem 5 (Theorem 4.11 in [41]). Let P ⊆ Q be classes of structures, and Φ be a
first-order sentence such that:

for all finite X,Y such that X ∈ P and X → Y, we have Y |= Φ,
for all finite X,Y such that X |= Φ and X → Y, we have Y ∈ Q.

Then there exists an existential positive sentence Ψ such that P ⊆ Mod(Ψ) ⊆ Q.

The following result, initially by Cherlin, Shelah, and Shi [22], and later improved by
Hubička and Nešetřil [32], has found several applications in the study of infinite-domain
CSPs in the recent years [13, 14, 15]. A structure is connected if it is not isomorphic to the
disjoint union of two non-empty structures.

▶ Theorem 6. Let F be a finite set of finite connected structures. There exists an ω-
categorical structure C such that C has duality F . Moreover, C can be chosen to have an
expansion C+ by finitely many relations such that C+ is homogeneous with the Ramsey
property.

3 To see that Theorem 5 implies Atserias’s result, apply the theorem to P = Q = {X | X ̸→ A}.

A. Mottet 41:7

In particular, C+ meets the hypothesis of Theorem 4, and therefore every polymorphism
of C locally interpolates a polymorphism that is canonical with respect to Aut(C+). We now
show that the property of being 1-tolerant is preserved under this local interpolation.

▶ Lemma 7. Let A be an arbitrary structure. Let f be a 1-tolerant polymorphism of A and
let Γ be a subset of Aut(A). Then every operation g that is locally interpolated by f modulo
Γ is a 1-tolerant polymorphism of A.

Proof. Let g be locally interpolated by f modulo Γ, and let R be a relation of A. Let
a1, . . . , an ∈ Ar be such that all but at most one of them are in R. By assumption, there
exist α1, . . . , αn, β ∈ Γ such that g(a1, . . . , an) = βf(α1(a1), . . . , αn(an)). Since α1, . . . , αn

are automorphisms of A, we obtain that for all but at most one j, one has αj(aj) ∈ R. Since
f is 1-tolerant, f(α1(a1), . . . , αn(an)) is in R, and thus g(a1, . . . , an) is in R since β is an
automorphism of A. ◀

In the following, recall that a first-order formula is primitive positive if it only consists of
existential quantifications, conjunctions, and atomic formulas only. Every primitive positive
formula φ(x1, . . . , xn) without equalities corresponds in a canonical way to a relational
structure A, its canonical database, whose domain is the set of variables of the formula, and
whose relations are determined by the conjuncts of the formula.

▶ Theorem 2. Let (A,B) be a finite PCSP template. The following are equivalent:
1. PCSP(A,B) is solvable in first-order logic;
2. (A,B) has finite duality;
3. There exists a finite structure C with finite duality and such that A → C → B.

Proof. (1) implies (2). This is an immediate consequence of Theorem 5. Let P be the
class of finite structures that do not admit a homomorphism to B, and Q be the class of
finite structures that do not admit a homomorphism to A. Let Φ be a first-order sentence
proving that PCSP(A,B) is in FO. Then P ⊆ Mod(¬Φ) ⊆ Q holds by definition. Moreover,
if X ∈ P and X → Y, then Y ̸→ B, hence Y |= ¬Φ. Similarly, if X → Y and X |= ¬Φ, then
X does not admit a homomorphism to A, so Y does not admit a homomorphism to A, i.e.,
Y ∈ Q. Thus, Theorem 5 applies, and there exists an existential positive formula Ψ such that
P ⊆ Mod(Ψ) ⊆ Q, and Ψ is equivalent to a disjunction

∨
Ψi where each Ψi is a primitive

positive sentence. Moreover, each Ψi can be assumed without loss of generality to not contain
any equalities.4 Let F be the set of canonical databases for each Ψi. For any finite X, if
there exists F ∈ F such that F → X, then X |= Ψ, so that X ∈ Q and X does not admit a
homomorphism to A. If X does not admit a homomorphism to B, then X ∈ P so that X |= Ψ,
and therefore there is F ∈ F such that F → X. Thus, F forms a duality for (A,B).

(2) implies (3). Let F be a duality for (A,B). Without loss of generality, we can assume
that F consists of connected structures. Indeed, suppose that F ∈ F is isomorphic to a
disjoint union of non-empty structures F1,F2. Since A is F -free, there is no homomorphism
F → A and therefore one of F1 or F2 does not admit a homomorphism to A, say without
loss of generality that F1 does not. Consider F ′ := (F ∪ {F1}) \ {F}, which we prove is a
duality for (A,B). Suppose that X admits a homomorphism to A. Then X is F -free and also
F1-free since F1 ̸→ A, so that X is F ′-free. If X is F ′-free, then X is F -free, so that X admits
a homomorphism to B.

4 An equality in any Ψi can be removed by merging the corresponding variables.

CSL 2024

41:8 Promise and Infinite-Domain Constraint Satisfaction

By Theorem 6, there exists an ω-categorical structure C that has duality F . Since
A is F-free, we have A → C. Since every finite substructure of C is F-free, there is a
homomorphism from every finite substructure of C to B. By compactness, there exists a
homomorphism C → B.

Since C is ω-categorical and has finite duality, there is an f : Cn → C that is a 1-tolerant
polymorphism of C by Theorem 3. Moreover, C admits a Ramsey expansion C+. By
applying Theorem 4 to C+, f locally interpolates an operation g modulo Aut(C+) that is
canonical with respect to C+. By Lemma 7, g is a 1-tolerant polymorphism of C.

Consider the structure C′ := C/Aut(C+) whose domain consists of the classes of the
equivalence relation ∼1 induced by Aut(C+), and such that for every relation symbol
R of arity r in the signature of C, one has (O1, . . . , Or) ∈ RC′ if, and only if, there
exist a1 ∈ O1, . . . , ar ∈ Or such that (a1, . . . , ar) ∈ RC. Then g induces a 1-tolerant
polymorphism of C′: define g̃(O1, . . . , On) to be the ∼1-class of g(a1, . . . , an), for arbitrary
a1 ∈ O1, . . . , an ∈ On. Since g is canonical with respect to C+, the definition of g̃ does
not depend on the chosen elements a1, . . . , an. One readily checks that g̃ thus defined is a
1-tolerant polymorphism of C′.

Moreover, let h be a homomorphism C → B. By Theorem 4 applied with C+ and B,
there exists a homomorphism h′ : C → B that is canonical from C+ to B. Similarly as above,
h′ induces a homomorphism h̃′ from C′ to B. Thus we get that A → C′ → B. Moreover C′

has a 1-tolerant polymorphism, so by Theorem 3, C′ has finite duality.
(3) implies (1). By Theorem 3, CSP(C) can be defined by a first-order sentence Φ. This

sentence shows that PCSP(A,B) is solvable in first-order logic. ◀

An anonymous reviewer of this paper provided another proof of the implication from
(2) to (3) in Theorem 2 using the sparse incomparability lemma (see, e.g., [29]) to show
directly that the duality F can be taken to consist of trees (which in our case follows from
an application of Theorem 3), and then using the fact that finite families of trees admit a
finite dual structure [38]. Namely, given an arbitrary finite duality F for (A,B), consider
the family G consisting of homomorphic images of structures from F and that are trees. If
X admits a homomorphism to A, then it is F-free and therefore G-free. Suppose now that
X ̸→ B. By the sparse incomparability lemma, one can find a structure X′ such that X′ → X
and X′ ̸→ B, and X′ has girth larger than the size of any structure in F . Since X′ ̸→ B, there
exists F ∈ F and a homomorphism h : F → X′, and the image of F under h must be a tree,
which implies that X′ is not G-free. Since X′ → X, X is not G-free either.

Thus, the construction of an infinite structure C as in our proof of Theorem 2 is not
necessary; however our method here applies to a wider setting as the next sections show.

We obtain as a corollary to Theorem 2 a characterization of the pair (A,B) that have
finite duality, in the case that A is a digraph containing a directed cycle.

▶ Corollary 8. Let (A,B) be a PCSP template where A is a digraph containing a directed
cycle. Then (A,B) has finite duality if, and only if, B contains a loop.

Proof. If B has a loop, then the empty set is a duality for PCSP(A,B). Suppose now that
(A,B) has finite duality. By Theorem 2, there exists a finite C with finite duality and such
that A admits a homomorphism to C and C → B. Since A has a directed cycle, so does C.

Since C has finite duality, its duality must consist of trees. Note that every orientation
of a tree admits a homomorphism to C since C contains a directed cycle, and therefore its
duality must be empty. This implies in particular that C has a loop, and so does B since
C → B. ◀

A. Mottet 41:9

Figure 1 Illustration of the structures A, C, B, and F2 (from left to right) in Proposition 9. The
red dashed arcs correspond to pairs in the relation R, while blue solid arcs correspond to pairs in
the relation B.

We conclude this section by showing that there are proper examples of PCSP templates
with finite duality.

▶ Proposition 9. There exists a PCSP template (A,B) with finite duality such that neither
A nor B has finite duality.

Proof. Consider the structures in a binary relational signature with two binary symbols R

and B displayed in Figure 1. Then A → C → B and C has the duality that consists of the
following structures: an R-path of length 2, a B-path of length 2, a vertex with incoming B-
and R-edges, and a vertex with outgoing B- and R-edges.

We show that the structure A does not have finite duality. Let P be an R-edge followed by
a B-edge. We use the notation + and − to denote the obvious amalgamation of copies of P.
For every n ≥ 1, consider the structure Fn defined by taking P+(P−P)+ · · ·+(P−P)+P+P,
with a total of 2n + 3 copies of P, and removing the first vertex and its adjacent R-edge
and the last vertex and its adjacent B-edge (F2 is showed in Figure 1). No Fn admits a
homomorphism to A, although every structure obtained by removing an edge does. Thus,
every Fn must be in a duality for A. Since all the structures Fn are homomorphically
incomparable, we obtain that A does not have finite duality.

The proof that B does not have finite duality is similar, where this time one defines P to
be an R-path or a B-path of length 2. ◀

Non-sufficient conditions

For finite-domain CSPs, a number of other conditions are known to be equivalent to the fact
that A has finite duality:

as mentioned, the existence of a 1-tolerant polymorphism of A,
the connectivity of a specific graph L(G,A′) for some retract A′ of A and all finite
structures G [20],
the fact that there exists a retract A′ of A is such that (A′)2 dismantles to its diagonal [36].

It is not clear what could be generalizations of the last two items in the case of promise
templates (A,B). However, the first item has a clear candidate for a generalization, namely
the existence of a 1-tolerant polymorphism of (A,B), i.e., a map f : An → B such that for
every relation symbol R, and every a1, . . . , an such that all but at most one are in RA, then
f(a1, . . . , an) is in RB.

We remark that a 1-tolerant polymorphism of arity n of a structure C can be composed
with itself to obtain a 1-tolerant polymorphism of any arity m ≥ n. Thus, in the case of CSPs,
first-order solvability can also be characterized by the existence of 1-tolerant polymorphisms
of all but finitely many arities.

CSL 2024

41:10 Promise and Infinite-Domain Constraint Satisfaction

▶ Proposition 10. Let (A,B) be a PCSP template. If (A,B) has finite duality, then it
has a 1-tolerant polymorphism. However, there exists a PCSP template with 1-tolerant
polymorphisms of all arities but not finite duality.

Proof. Suppose that (A,B) has finite duality. By Theorem 2, there exists a finite structure
C with finite duality and homomorphisms h : A → C and g : C → B. By Theorem 3, C
has a 1-tolerant polymorphism f : Cn → C. The composition g ◦ f ◦ h is then a 1-tolerant
polymorphism of (A,B).

Consider now A := Kc and B := Kc2 to be complete graphs on c and c2 vertices, for any
c ≥ 2. Let n ≥ 1. We simply name the vertices of B by pairs (a, b) of elements of A. Then
the map f : An → B defined by f(a1, . . . , an) := (a1, a2) is a 1-tolerant n-ary polymorphism
of (A,B): if (a1, b1), . . . , (an, bn) are pairs such that aj ̸= bj for all but at most one j, then
(a1, a2) ̸= (b1, b2). However, it follows from Corollary 8 that (A,B) does not have finite
duality, since A has a directed cycle of length 2 and B does not have a loop. ◀

4 Local Consistency for PCSPs

We now apply the same reasoning as in the previous section to characterize the power of the
arc consistency reduction, recently introduced in [28, 33]. For this reduction, we need the
following concepts.

Arc consistency is a polynomial-time algorithm that takes as input a structure X, as
an instance of CSP(A), and that computes for every x ∈ X a set Px ⊆ A, and for every
constraint C of the form (x1, . . . , xn) ∈ RX a set QC ⊆ RA such that:
1. for every constraint C whose ith variable is xi ∈ X, the ith projection of QC is equal to

Pxi ,
2. for every homomorphism h : X → A and every x ∈ X, we have h(x) ∈ Px. In particular,

if Px is empty then X does not admit a homomorphism to A.

A minion is a functor M from finite sets to sets: for every finite set X, one has a set
M X and for every function σ : X → Y , one has a function M σ : M X → M Y , such that
M idX = idMX for all X and M (σ ◦ τ) = M σ ◦ M τ whenever the composition of σ and τ

is well defined.
A minor identity is a formal statement of the form fσ ≈ gτ where f is a symbol of

type X, g is a symbol of type Y , σ : X → Z and τ : Y → Z are functions, and X, Y, Z are
arbitrary finite sets. A minor condition is a set Σ of minor identities. A minor condition Σ
is satisfied in M if the symbols in Σ of any type X can be mapped to elements of M X such
that if fσ ≈ gτ is in Σ, then (M σ)(f) = (M τ)(g). The set Pol(A,B) can be seen to be such
a minion M , where M X consists of the homomorphisms AX → B, and the functions M σ

are obtained by identifying arguments of such homomorphisms according to σ.
The problem PMCN (M) is the problem taking as input a minor condition Σ whose

symbols have sorts of size at most N , whose yes-instances are those Σ that can be satisfied
in every minion, and whose no-instances are those that are not satisfiable in M . It is
known that for N large enough only depending on the size of A and the size of its relations,
PMCN (Pol(A,B)) and PCSP(A,B) are equivalent under logspace reductions [8]. In the
following, we drop the subscript and always take N large enough for this equivalence to hold.
The arc consistency reduction described below is a complete reduction from PCSP(A,B) to
PMC(M) for a minion M , although it is not necessarily sound; by the previous sentence,
this is essentially the same as trying to reduce from one PCSP to another.

This reduction applied to an input X of PCSP(A,B), and whose output is an instance of
PMC(M), works as follows:

A. Mottet 41:11

First, apply the arc consistency algorithm to X, seen as an instance of CSP(A); one
obtains a family of subsets (Px)x∈X and (QC) satisfying the arc consistency condition
above,
Associate a function symbol fx with every x ∈ X, whose arguments are labelled by the
elements in Px; associate a function symbol fC with every constraint C = R(x1, . . . , xk),
whose arguments are labelled by the tuples in QC ;
Output the minor condition containing the identities fxi ≈ fσ

C where σ : QC → Pxi is the
projection on the ith component, as an input to PMC(M).

We turn the set of instances X that are not rejected by this reduction into a class with the
amalgamation property. The additional symbols H(P,f) are indexed by pairs (P, f) where
P is a non-empty subset of A or of RA for some R, and f is an element of M P . Let X
be an arbitrary finite structure such that there exist a family of subsets (Px)x∈X and (QC)
satisfying the arc consistency condition (Item 1) together with a map ξ witnessing the
satisfiability of the corresponding minor condition Σ in M . Let X∗ be the expansion of X
where:

x ∈ H(P,f) iff P = Px and ξ(fx) = f ,
for every constraint (x1, . . . , xn) ∈ RX, we let (x1, . . . , xn) ∈ H(Q,g) iff QC = Q and
ξ(fC) = g.

We say that X∗ is a valid encoding, witnessed by the sets (Px), (QC) and the map ξ. Let Cred

be the class of valid encodings.

▶ Proposition 11. Cred is closed under substructures and has the strong amalgamation
property.

Proof. The fact that Cred is closed under substructures is readily checked.
Let now X∗,Y∗

1,Y∗
2 ∈ Cred and embeddings fi : X∗ → Y∗

i . Without loss of generality,
we can suppose that X ⊆ Y1, Y2 and that fi is the inclusion map. Take Z∗ to be the free
amalgam of Y∗

1 and Y∗
2 over X∗. We write Z for the reduct of Z∗ to the signature of A. Let

(P i
y), (Qi

C), ξi be the witnesses for the fact that Y∗
i is a valid encoding, for i ∈ {1, 2}.

Let Pz := P i
z if z ∈ Yi; this is well defined since if z ∈ Y1 ∩ Y2 = X, then we have

P 1
z = P 2

z . If C is a constraint (z1, . . . , zn) ∈ RZ, then by definition {z1, . . . , zn} ⊆ Yi for
some i ∈ {1, 2}. Let QC := Qi

C , and note again that if {z1, . . . , zn} ⊆ Y1 ∩ Y2 then Q1
C = Q2

C .
Define similarly ξ, where Σ is the minor condition arising from the sets (Pz) and (QC), by
defining ξ(fz) := ξi(fz) and ξ(fC) := ξi(fC) for a suitable i.

We prove that the family of sets (Pz), (QC) satisfies Item 1. If C is a constraint
(z1, . . . , zn) ∈ RZ, then by definition {z1, . . . , zn} ⊆ Yi for some i. Thus, since (P i

y), (Qi
C)

satisfies Item 1, the projection of Qi
C to each component coincides with the corresponding

P i
z , and we are done.

Similarly, it is easy to see that ξ witnesses that Σ is satisfiable in M . Thus, Z∗ is a valid
encoding, witnessed by the sets (Pz), (QC), and ξ. ◀

Consider the Fraïssé limit AC(A, M)∗ of Cred and its reduct AC(A, M) to the signature of
A. One obtains a structure that gives a classification of PCSPs for which the arc consistency
reduction correctly solves the problem.

▶ Theorem 12. Let (A,B) be a PCSP template. The following hold:
There exists a homomorphism A → AC(A, M),
For every finite structure B, arc consistency is a correct reduction from PCSP(A,B) to
PMC(M) if, and only if, there exists a homomorphism AC(A, M) → B.

CSL 2024

41:12 Promise and Infinite-Domain Constraint Satisfaction

Proof. Since A is not rejected by the arc consistency reduction, there exists a valid encoding
A∗ ∈ Cred, and therefore A∗ embeds into AC(A, M)∗. It follows that A embeds into
AC(A, M).

If arc consistency is a correct reduction, then all the structures that have a valid encoding
in Cred admit a homomorphism to B; thus, a compactness argument gives that AC(A, M)
admits a homomorphism to B.

For the other direction, we remark that the reduction is always complete, i.e., every
yes-instance of PCSP(A,B) is mapped to a yes-instance of PMC(M). Conversely, suppose
that the minor condition Σ that is computed by the algorithm on an instance X admits
a solution in M . We give a homomorphism X → B as follows. Let X∗ ∈ Cred be a valid
encoding, which exists since X is not rejected by the reduction. We get an embedding
X∗ → AC(A, M)∗, giving a homomorphism X → AC(A, M), which can then be composed
with the homomorphism AC(A, M) → B that exists by assumption, from which we get a
homomorphism X → B. ◀

Note that if the number of elements in M P is bounded for every subset P of A or
of a relation of A, then AC(A, M)∗ is homogeneous in a finite language, and is therefore
ω-categorical. By [32, Theorem 2.11], the expansion of AC(A, M)∗ by a free linear or-
der is a Ramsey structure. Let G be its automorphism group. Thus, the existence of a
homomorphism AC(A, M) → B is equivalent, by Theorem 4, to the existence of a homo-
morphism AC(A, M)/G → B, which can be effectively tested when AC(A, M)/G is finite.
The domain of D := AC(A, M)/G consists, by homogeneity, of pairs (P, f) where P is a
non-empty subset of A and f is in M P . Moreover, if R is an n-ary relation symbol, then
((P1, f1), . . . , (Pn, fn)) ∈ RD if, and only if, there exists a g ∈ M (RA ∩ (P1 × · · · × Pn)) such
that (M σi)(g) = fi holds for all i ∈ {1, . . . , n}, where σi : RA ∩ (P1 × · · · × Pn) → Pi is
the ith projection. Provided that the elements of M can be presented to an algorithm in
some way, then the structure D can be computed according to the definition above, and the
existence of a homomorphism D → B can be tested. This gives a decision procedure to check
whether the arc consistency reduction to M solves a given PCSP.

It is noted in [28] that arc consistency as an algorithm solving PCSP(A,B) can be seen
as a reduction from PCSP(A,B) to PMC(M0), where M0 is the minion consisting of all
operations of finite arity on a 1-element set (i.e., for every n, M0 contains a single function of
arity n). In this case, the elements of the finite structure D correspond exactly to non-empty
subsets of A, and we obtain another proof of the characterization of the power of the arc
consistency algorithm for PCSPs by means of the powerset structure defined by Feder and
Vardi [29].

The arc consistency procedure can be generalized to the k-consistency algorithm by
computing sets Px1,...,xk

⊆ Ak for every k-tuple of elements from X, and asking for similar
conditions as in Item 1. We say that a PCSP template (A,B) has width k if every instance
X of PCSP(A,B) that is not rejected by the k-consistency algorithm (when seeing X as an
instance of CSP(A)) admits a homomorphism to B.

When a PCSP template has bounded width (i.e., has width k for some k) then the
corresponding PCSP can be solved in polynomial time. It is hitherto not known whether
the search version of the PCSP can then be solved in polynomial time. The existence of a
structure C that would allow us to follow the same line of reasoning as for arc consistency is
open. Atserias and Toruńczyk [5] proved that the class of locally consistent systems of linear
equations over Z2 cannot be turned into a class with the amalgamation property using an
expansion by finitely many relations (i.e., this class is not homogenizable). However, in order
to obtain a structure A′ playing the role of AC(A, M0) in Theorem 12 for any PCSP(A,B)

A. Mottet 41:13

that is solvable by, say, 3-consistency, it is plausible that one only needs the number of orbits
of elements of A′ to be finite, a much weaker condition than homogeneity in a finite relational
language, or even ω-categoricity.

5 The Basic Linear Programming Relaxation

The basic linear programming relaxation of an instance X of CSP(A) is the following linear
program with variables λx(a) for x ∈ X and a ∈ A:

∑
a∈A λx(a) = 1 for all x ∈ X∑

a∈RA λC(a) = 1 for all constraints C := y ∈ RX∑
a:ai=b λC(a) = λx(b) for all x, b, and y s.t. yi = x

λx(a), λC(a) ≥ 0 for all variables

(BLP(X,A))

Note that if X admits a homomorphism to A, then the λ’s can be taken to have values in
{0, 1} and to describe completely a homomorphism X → A. However, there can be proper
solutions to the program BLP(X,A) that do not correspond to any homomorphism.

We say that PCSP(A,B) is solvable by BLP if whenever BLP(X,A) has a solution for
a given X, then X admits a homomorphism to B. Note that if PCSP(A,B) is solvable by
BLP, then it is in particular solvable in polynomial time. It is proven in [8] that PCSP(A,B)
is solvable by BLP if, and only if, a certain structure LP(A) whose domain is the set of
probability distributions on A admits a homomorphism to B. It is unknown whether it is
always true that a PCSP(A,B) that is solvable by BLP is also polynomially solvable in its
search variant. Moreover, it is not known whether the BLP-solvability of a given PCSP is
decidable.

The λ’s represent probability distributions on A and RA that are required to be consistent;
one sees that the supports of any solution to BLP(X,A) forms a family of sets Px, QC

satisfying the arc consistency condition. Thus, the BLP relaxation is more powerful than arc
consistency.

The approach used in the previous sections can be applied here, by encoding the probability
distributions λ’s arising from a solution to BLP(X,A) as suitable relations over X using
additional symbols Pa,q for tuples a from A and q ∈ Q ∩ [0, 1] to encode the probability
distributions λ’s. This gives a class CBLP of structures that has the amalgamation property.
Let C∗

BLP be the Fraïssé limit of CBLP, and let CBLP be its reduct of the signature of A.

▶ Proposition 13. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by BLP,
there exists a homomorphism CBLP → B.

We note that infinitely many new predicates are required for this encoding, and therefore
CBLP is not ω-categorical, just as is the case of LP(A) [8]. In fact, LP(A) can be seen to be
homomorphically equivalent to CBLP, using the natural correspondence between probability
distributions on A and the orbits of C∗

BLP, which are described by the unary predicates Pa,q

for a ∈ A and q ∈ Q ∩ [0, 1].
However, for every N ≥ 1, one can consider the class C(N)

BLP of structures X endowed with
rational probability distributions where no denominator is greater than N . Every C(N)

BLP has
the amalgamation property, and therefore a Fraïssé limit C∗,N

BLP. Since the language is now
finite, each C∗,N

BLP is ω-categorical, and for every N < M we have embeddings C∗,N
BLP ↪→ C∗,M

BLP.
We thus get the following refinement of Proposition 13.

CSL 2024

41:14 Promise and Infinite-Domain Constraint Satisfaction

▶ Proposition 14. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by BLP,
A → C1

BLP → C2
BLP → · · · → CBLP → B.

Once more, [32, Theorem 2.11] applies and gives that each CN
BLP admits a homogeneous

Ramsey expansion by finitely many relations. It is not immediately clear if this observation
and Proposition 14 can be used to derive a decision procedure for solvability of a PCSP by
BLP.

6 The Affine Integer Relaxation

Similarly as in Section 5, we can obtain a limit structure characterizing the power of the
so-called affine integer relaxation (AIP) [8]. Given an input X to CSP(A), the system
AIP(X,A) is like BLP(X,A) except that the variables are integer-valued. If X → A, then the
same {0, 1} solution to BLP(X,A) is a solution to AIP(X,A), and we say that AIP solves
PCSP(A,B) if whenever a solution to AIP(X,A) exists, then X → B. The power of AIP to
solve PCSPs has been characterized in [8] by means of the existence of a structure IP(A),
similarly as LP(A) characterizes the power of BLP.

The class of structures X for which AIP(X,A) has a solution can be expanded by relations
encoding, for each X, a possible solution to AIP(X,A). The resulting class CAIP of structures
has the amalgamation property (where the amalgam is always free), and therefore it has a
Fraïssé limit C∗

AIP, whose reduct CAIP to the signature of A characterizes solvability by AIP.

▶ Proposition 15. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by AIP,
there exists a homomorphism CAIP → B.

7 Further connections to infinite-domain CSPs

We conclude this paper by hinting at further connections between algorithms solving PCSPs
and infinite-domain CSPs.

Sandwiches and Monotone Algorithms

All current polynomial-time algorithms for solving or reducing PCSPs feature the use of
algorithms solving CSPs either via a trivial reduction, via computationally simple many-one
reductions, or as oracles.

In the first case, one solves PCSP(A,B) through a “trivial” reduction to a problem of
the form CSP(C), where the reduction does not transform the input. By definition, this
“do-nothing” reduction is valid if, and only if, there exists a homomorphism from A to C and
from C to B, which we denote by A → C → B. Because of this characterization, characterizing
when a “do-nothing” reduction is a valid reduction from PCSP(A,B) to CSP(C) relies on
studying the templates that are sandwiched between A and B in the homomorphism preorder.
Barto [7] and Barto and Asimi [1] have showed examples of problems of the form PCSP(A,B)
where such a C with CSP(C) polynomial-time tractable exists but cannot be taken to be
a finite structure. As explained in Sections 5 and 6, the tractability of PCSPs that are
solvable by relaxations like the basic linear relaxation and integer affine relaxation can also
be explained by sandwiches, taking C to be a reduct of a given structure whose domain
consists of tuples of rational or integer numbers.

A. Mottet 41:15

A second type of algorithms solving PCSPs consists in having a computationally simple,
but non-trivial, reduction to a CSP. The power of reductions known as gadget reductions
is completely classified (even where the target problem is itself a PCSP). As in the case of
CSPs, the existence of a gadget reduction between two PCSPs is equivalent to the existence
of a certain type of map between the sets of polymorphisms of the corresponding templates.
A more powerful type of reductions, called k-reductions or k-consistency reductions, has
emerged recently [33, 28] and the computational power of such reductions is still unclear.

The computationally more powerful algorithms leverage algorithms for CSPs as blackboxes,
mainly using the solvability of linear programming over Q or of linear diophantine equations
over Z. This is for example the case of CLAP [23], BLP+AIP [19], and cohomological
consistency [27].

For each of the three types of algorithms or reductions proposed above, it is in general
hard to characterize the power of the respective methods, and in particular it is hard to prove
that a given approach does not solve a given PCSP, even in concrete cases. For example,
considerable effort has been put recently into proving that specific polynomial-time algorithms
do not solve PCSP(Ks, Kc) for c ≥ s > 2 [25, 26], which is conjectured to be NP-hard and
therefore should not be solvable by any polynomial-time algorithm if P ̸= NP. Beyond the
main result of this paper, the thesis we put forward here is that the tools from various fields
of logic can be used to study these questions in a more general setting than Theorem 2.

We note that by allowing arbitrary logspace reductions, one can prove the tractability of
every PCSP by a reduction to a CSP (potentially with an infinite template).

▶ Observation 16. For every PCSP template (A,B) such that PCSP(A,B) is in P, there
exists a structure C such that CSP(C) is in P and such that PCSP(A,B) reduces to CSP(C)
in logspace.

Proof. Let L be the set of instances accepted by a given polynomial-time algorithm solving
PCSP(A,B). By [11, Theorem 1], there exists a structure C such that L admits a logspace
reduction to CSP(C), and CSP(C) admits a polynomial-time Turing reduction to L (and
is therefore in P). Since PCSP(A,B) reduces to L (by a trivial reduction), we have that
PCSP(A,B) reduces to CSP(C). ◀

We mention that while every finite-domain PCSP reduces to a problem in NP, this is not
the case for infinite-domain CSPs, even for decidable ones (as there exist, e.g., NEXPTIME-
complete CSPs [31]). Thus, it is probable that structural restrictions can be imposed on the
infinite templates appearing in Observation 16, so that their CSPs are still able to “solve” all
the finite-domain PCSPs. While the assumption that PCSP(A,B) is in P is difficult to use, it
seems that assuming that the tractability of PCSP(A,B) comes from specific polynomial-time
algorithms does allow us to provide better constructions for C, as in the cases explored in
the previous sections.

The power of the sandwich approach

Provided that PCSP(A,B) is solvable by a “natural” algorithm, we even obtain a structure
C such that CSP(C) is in P and such that PCSP(A,B) reduces to CSP(C) by the do-nothing
reduction, i.e., A → C → B. We call an algorithm M natural if it satisfies the following
conditions:
1. for every finite X, M accepts the input X iff M accepts all the connected components of

X,
2. for every finite X,Y such that M accepts Y and such that X admits a homomorphism to

Y, M accepts X.

CSL 2024

41:16 Promise and Infinite-Domain Constraint Satisfaction

Let us call M monotone if it satisfies Item 2.5 If PCSP(A,B) is solvable by a monotone
polynomial-time algorithm M , then there exists a polynomial-time algorithm M ′ satisfying
Item 1, making polynomially many calls to M , and such that M ′ solves PCSP(A,B). Indeed,
on input X, M ′ simply calls M on all the connected components of X and accepts X if all
its connected components are accepted by M . Note that M ′ still solves PCSP(A,B) since
for every X, whether X homomorphically maps to A or B only depends on whether all its
connected components do.

▶ Observation 17. Let (A,B) be a PCSP template. The following are equivalent:
1. There exists a structure C such that A → C → B and such that CSP(C) is in P,
2. PCSP(A,B) is solvable by a monotone polynomial-time algorithm.

Proof. The implication from Item 1 to Item 2 is immediate, as any algorithm solving CSP(C)
must be natural, and PCSP(A,B) reduces to CSP(C) by a trivial reduction. This gives a
monotone algorithm solving PCSP(A,B).

Suppose now that PCSP(A,B) is solvable by a monotone polynomial-time algorithm M .
By the argument above Observation 17, one can even assume that M is natural. Let C be
the disjoint union of all the finite structures X such that M accepts X. Since M needs to
accept A, we have A → C. Moreover, since every accepted structure admits a homomorphism
to B, a compactness argument gives that C → B.

Note that for every finite X, M accepts X iff X → C. Indeed, if X is accepted by M then
it is even an induced substructure of C. Conversely, if X has a homomorphism to M, every
connected component of X admits a homomorphism to a structure Y such that Y is accepted
by M . By assumption, this means that X is accepted by M . Thus, CSP(C) is solved by M .

Finally, note that the trivial reduction X 7→ X is a reduction from PCSP(A,B) to
CSP(C). ◀

It was conjectured in [17] that every tractable PCSP must sandwich a tractable CSP.
By Observation 17, this is equivalent to conjecturing that every polynomial-time tractable
PCSP can be solved by a monotone algorithm running in polynomial time. Since all
the known algorithms for PCSPs satisfy the condition of being natural, we see that the
sandwich approach, although looking at first sight more limited than the other two mentioned
approaches, is in fact currently also the most general.

8 Conclusion

We have provided in Sections 4–7 results relating the power of certain algorithms and
reductions to solve PCSPs that has already been studied in the literature [8, 28, 19] providing
characterizations of the applicability of a given algorithm by properties of the polymorphisms
of the PCSP templates. We give here a logical take on the problem of characterizing the
power of these algorithms. The general approach that we give has the advantage that it
is fairly automatic: given the description of an algorithm, it is quite immediate to encode
the inputs of the algorithm that are accepted as a class of relational structures, and study
the potential generic objects for such a class. Remarkably, the powerful Ramsey theorem
of [32] provides “out-of-the-box” strong combinatorial properties for these objects that can
be potentially be used to prove tractability properties for the search variant of PCSPs, as
well as decidable conditions for the applicability of a given algorithm.

5 This can be seen as a special case of the monotone reductions described in [34].

A. Mottet 41:17

The algorithms that arise as “higher levels” of algorithms described here (e.g., k-
consistency as a higher level of arc consistency, kth level of the Sherali-Adams hierarchy as a
“higher level” version of BLP) escape both the algebraic methods and the methods presented
here. We note that [24] have algebraic characterizations of the instances that are accepted by
a given algorithm, however this does not answer the question of which PCSP templates have
the property that all their instances that are accepted by this algorithm have a solution.

We are thankful for the numerous comments by anonymous reviewers that helped improve
the quality of this paper.

References
1 Kristina Asimi and Libor Barto. Finitely tractable promise constraint satisfaction problems. In

Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume
202 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.MFCS.2021.11.

2 Albert Atserias. On digraph coloring problems and treewidth duality. Eur. J. Comb., 29(4):796–
820, 2008. doi:10.1016/j.ejc.2007.11.004.

3 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and counting
infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009. doi:10.1016/j.tcs.2008.12.
049.

4 Albert Atserias and Víctor Dalmau. Promise constraint satisfaction and width. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9–12, 2022,
pages 1129–1153. SIAM, 2022. doi:10.1137/1.9781611977073.48.

5 Albert Atserias and Szymon Toruńczyk. Non-homogenizable classes of finite structures.
In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on
Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille, France,
volume 62 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CSL.2016.16.

6 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ϵ)-Sat is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.

7 Libor Barto. Promises make finite (constraint satisfaction) problems infinitary. In 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, pages 1–8. IEEE, 2019. doi:10.1109/LICS.2019.8785671.

8 Libor Barto, Jakub Bulin, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.

9 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1):3:1–3:19, 2014. doi:10.1145/2556646.

10 Libor Barto and Marcin Kozik. Combinatorial gap theorem and reductions between promise
CSPs. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 1204–1220. SIAM, 2022. doi:10.1137/1.9781611977073.50.

11 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II – Track
B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations, volume 5126 of Lecture Notes in Computer Science, pages 184–196. Springer,
2008. doi:10.1007/978-3-540-70583-3_16.

12 Manuel Bodirsky, Martin Hils, and Barnaby Martin. On the scope of the universal-algebraic
approach to constraint satisfaction. In Proceedings of the 25th Annual IEEE Symposium on
Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages
90–99. IEEE Computer Society, 2010. doi:10.1109/LICS.2010.13.

CSL 2024

https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://doi.org/10.1016/j.ejc.2007.11.004
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.4230/LIPIcs.CSL.2016.16
https://doi.org/10.1137/15M1006507
https://doi.org/10.1109/LICS.2019.8785671
https://doi.org/10.1145/3457606
https://doi.org/10.1145/2556646
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1109/LICS.2010.13

41:18 Promise and Infinite-Domain Constraint Satisfaction

13 Manuel Bodirsky, Florent R. Madelaine, and Antoine Mottet. A proof of the algebraic
tractability conjecture for monotone monadic SNP. SIAM J. Comput., 50(4):1359–1409, 2021.
doi:10.1137/19M128466X.

14 Manuel Bodirsky, Antoine Mottet, Miroslav Olsak, Jakub Opršal, Michael Pinsker, and Ross
Willard. ω-categorical structures avoiding height 1 identities. Trans. Amer. Math. Soc.,
374:327–350, 2021.

15 Manuel Bodirsky, Antoine Mottet, Miroslav Olšák, Jakub Opršal, Michael Pinsker, and
Ross Willard. Topology is relevant (in a dichotomy conjecture for infinite-domain constraint
satisfaction problems). In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019. doi:
10.1109/LICS.2019.8785883.

16 Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. The
Journal of Symbolic Logic, 78(4):1036–1054, 2013. doi:10.2178/jsl.7804020.

17 Joshua Brakensiek and Venkatesan Guruswami. An algorithmic blend of LPs and ring equations
for promise CSPs. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 436–455. SIAM, 2019. doi:10.1137/1.9781611975482.28.

18 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric boolean dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021.
doi:10.1137/19M128212X.

19 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Zivný. The
power of the combined basic linear programming and affine relaxation for promise constraint
satisfaction problems. SIAM J. Comput., 49(6):1232–1248, 2020. doi:10.1137/20M1312745.

20 Raimundo Briceno, Andrei Bulatov, Víctor Dalmau, and Benoit Larose. Dismantlability,
connectedness, and mixing in relational structures. J. Comb. Theory, Ser. B, 147:37–70, 2021.
doi:10.1016/j.jctb.2020.10.001.

21 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

22 Gregory Cherlin, Saharon Shelah, and Niandong Shi. Universal graphs with forbidden
subgraphs and algebraic closure. Advances in Applied Mathematics, 22:454–491, 1999.

23 Lorenzo Ciardo and Stanislav Živný. CLAP: A new algorithm for promise CSPs. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 1057–1068. SIAM, 2022. doi:10.1137/1.9781611977073.46.

24 Lorenzo Ciardo and Stanislav Zivný. Hierarchies of minion tests for PCSPs through tensors.
CoRR, abs/2207.02277, 2022. doi:10.48550/arXiv.2207.02277.

25 Lorenzo Ciardo and Stanislav Zivný. Approximate graph colouring and crystals. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2256–2267.
SIAM, 2023. doi:10.1137/1.9781611977554.CH86.

26 Lorenzo Ciardo and Stanislav Zivný. Approximate graph colouring and the hollow shadow. In
Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 623–631.
ACM, 2023. doi:10.1145/3564246.3585112.

27 Adam Ó Conghaile. Cohomology in constraint satisfaction and structure isomorphism. In
Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna,
Austria, volume 241 of LIPIcs, pages 75:1–75:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.75.

https://doi.org/10.1137/19M128466X
https://doi.org/10.1109/LICS.2019.8785883
https://doi.org/10.1109/LICS.2019.8785883
https://doi.org/10.2178/jsl.7804020
https://doi.org/10.1137/1.9781611975482.28
https://doi.org/10.1137/19M128212X
https://doi.org/10.1137/20M1312745
https://doi.org/10.1016/j.jctb.2020.10.001
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1137/1.9781611977073.46
https://doi.org/10.48550/arXiv.2207.02277
https://doi.org/10.1137/1.9781611977554.CH86
https://doi.org/10.1145/3564246.3585112
https://doi.org/10.4230/LIPIcs.MFCS.2022.75

A. Mottet 41:19

28 Víctor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint
satisfaction problems. CoRR, abs/2301.05084, 2023. doi:10.48550/arXiv.2301.05084.

29 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

30 Pierre Gillibert, Julius Jonusas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker.
Hrushovski’s encoding and ω-categorical CSP monsters. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 131:1–131:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.131.

31 Pierre Gillibert, Julius Jonusas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker.
When symmetries are not enough: A hierarchy of hard constraint satisfaction problems. SIAM
J. Comput., 51(2):175–213, 2022. doi:10.1137/20m1383471.

32 Jan Hubička and Jaroslav Nešetřil. All those Ramsey classes (Ramsey classes with closures
and forbidden homomorphisms). CoRR, abs/1606.07979, 2016. arXiv:1606.07979.

33 Andrei A. Krokhin and Jakub Opršal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022. doi:10.1145/3559736.3559740.

34 Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Zivný. Topology and
adjunction in promise constraint satisfaction. SIAM J. Comput., 52(1):38–79, 2023. doi:
10.1137/20M1378223.

35 Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Shafi Goldwasser, editor, Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
484–495. ACM, 2012. doi:10.1145/2090236.2090274.

36 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint
satisfaction problems. Log. Methods Comput. Sci., 3(4), 2007. doi:10.2168/LMCS-3(4:6)2007.

37 Antoine Mottet and Michael Pinsker. Smooth approximations and CSPs over finitely bounded
homogeneous structures. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages
36:1–36:13. ACM, 2022. doi:10.1145/3531130.3533353.

38 Jaroslav Nešetřil and Claude Tardif. Duality theorems for finite structures (characterising
gaps and good characterisations). Journal of Combinatorial Theory, Series B, 80(1):80–97,
2000. doi:10.1006/jctb.2000.1970.

39 Michael Pinsker. Current challenges in infinite-domain constraint satisfaction: Dilemmas of the
infinite sheep. In 52nd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2022,
Dallas, TX, USA, May 18-20, 2022, pages 80–87. IEEE, 2022. doi:10.1109/ISMVL52857.
2022.00019.

40 Michael Pinsker and Manuel Bodirsky. Canonical functions: a proof via topological dynamics.
Contributions Discret. Math., 16(2):36–45, 2021. URL: https://cdm.ucalgary.ca/article/
view/71724.

41 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–15:53, 2008.
doi:10.1145/1379759.1379763.

42 Marcin Wrochna and Stanislav Živný. Improved hardness for H -colourings of G-colourable
graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1426–1435.
SIAM, 2020. doi:10.1137/1.9781611975994.86.

43 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

44 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

CSL 2024

https://doi.org/10.48550/arXiv.2301.05084
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2020.131
https://doi.org/10.1137/20m1383471
https://arxiv.org/abs/1606.07979
https://doi.org/10.1145/3559736.3559740
https://doi.org/10.1137/20M1378223
https://doi.org/10.1137/20M1378223
https://doi.org/10.1145/2090236.2090274
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.1145/3531130.3533353
https://doi.org/10.1006/jctb.2000.1970
https://doi.org/10.1109/ISMVL52857.2022.00019
https://doi.org/10.1109/ISMVL52857.2022.00019
https://cdm.ucalgary.ca/article/view/71724
https://cdm.ucalgary.ca/article/view/71724
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029

Local Operators in Topos Theory and Separation of
Semi-Classical Axioms in Intuitionistic Arithmetic
Satoshi Nakata
Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
There has been work on the strength of semi-classical axioms over Heyting arithmetic such as
Σn-DNE (double negation elimination) and Πn-LEM (law of excluded middle). Among other
things, Akama et al. show that Σn-DNE does not imply Πn-LEM for any n ≥ 1 by using Kleene
realizability relativized to Turing degrees. These realizability notions are expressed by subtoposes of
the effective topos Eff and thus by corresponding local operators (a.k.a. Lawvere-Tierney topologies).

Our purpose is to provide a topos-theoretic explanation for separation of semi-classical axioms.
It consists of determining the least dense local operator of a given axiom φ in a topos E , which
completely characterizes the dense subtoposes of E satisfying φ. This idea is motivated by Caramello’s
study of intermediate propositional logics and van Oosten’s study of Lifschitz realizability.

We first investigate sufficient conditions for an arithmetical formula to have a least dense operator.
In particular, we show that each semi-classical axiom has a least dense operator in every elementary
topos with natural number object. This is a generalization of van Oosten’s result for Π1 ∨Π1-DNE in
Eff . We next determine least dense operators of semi-classical axioms in Eff in terms of (generalized)
Turing degrees. Not only does it immediately imply some separation results of Akama et al. but
also explain that realizability notions they used are optimal in the sense of minimality. We finally
point out a negative consequence that Πn-LEM, Σn-LEM and Σn+1-DNE are never separable by
any subtopos of Eff for any n ≥ 0.

2012 ACM Subject Classification Theory of computation → Constructive mathematics

Keywords and phrases local operator, elementary topos, effective topos, realizability, intuitionistic
arithmetic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.42

Funding This work is supported by JST Grant Number JPMJFS2123.

Acknowledgements I would like to thank my supervisor, Kazushige Terui, for careful reading and
many helpful suggestions. I am also grateful to Hisashi Aratake, Yutaka Maita, Takayuki Kihara
and the anonymous referees for their invaluable comments.

1 Introduction

Toposes are useful as semantics for logical systems and programming languages. In this
context, the effective topos of Hyland [10] and its generalization, realizability toposes [11],
have multiple applications. In particular, it is well known that the interpretation of logic and
arithmetic in realizability toposes corresponds to the traditional realizability interpretation
in intuitionistic proof theory. Van Oosten and others deeply investigate this correspondence
and analyze various realizability notions from a topos-theoretic perspective [25].

In this paper, we mainly focus on toposes as models of first-order intuitionistic arithmetic,
which is rich enough to encode and reason about programs and computations.

1.1 Various realizability methods and semi-classical axioms
Since Kleene [15] defined the first realizability interpretation (Kleene realizability) for Heyting
arithmetic HA, many variants have been proposed in the literature. For example,

© Satoshi Nakata;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 42; pp. 42:1–42:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2024.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Local Operators and Separation of Semi-Classical Axioms

(1) Relativization to Turing degree d (d-realizability) [20].
(2) Lifschitz realizability [18, 23].
(3) Kreisel’s modified realizability [16, 24].
These realizability methods are strongly related to the hierarchy of semi-classical axioms
introduced by Akama, Berardi, Hayashi and Kohlenbach [1].

Σn−1-LEM

Πn ∨ Πn-DNE

Πn-LEM

Σn-DNE

Σn-LEM

...

...

Figure 1 The hierarchy of semi-classical axioms.

In Figure 1, DNE and LEM stand for the double negation elimination and the law
of excluded middle, respectively. Of course, DNE is equivalent to LEM in intuitionistic
propositional logic. However, a difference arises when restricted to a class of arithmetical
formulas such as Σn and Πn. Indeed, Σn-LEM implies Σn-DNE in HA but the converse
does not hold. More interestingly, an axiom scheme often corresponds to a semi-constructive
principle such as the lesser limited principle of omniscience, the constant domain axiom, and
even some variant of Ramsey theorem (constructive reverse mathematics over HA) [1, 2, 9].

Akama et al. separate the axioms in Figure 1 by using the realizability notions (1), (2)
and a monotone variant of (3) above [1]. For instance, they show that Σn-DNE is realizable
while Σn-LEM, Πn-LEM and Πn ∨Πn-DNE are not under ∅(n−1)-realizability, meaning
that the former does not imply the latter. Similarly, Lifschitz realizability relativized to
degree ∅(n−1) is used to separate Πn ∨Πn-DNE and Πn-LEM.

It is known that the realizability notions (1), (2) and (3) correspond to subtoposes of
(extensions of) the effective topos Eff [10, 20, 23, 24]. Above all, van Oosten studied the
Lifschitz topos Lif ⊆ Eff , where a first-order arithmetical formula φ is true iff φ is Lifschitz
realizable. This representation leads to a topos-theoretic approach to the separation problem.

1.2 Least dense operators of logical and arithmetical formulas
Given an elementary topos E with subobject classifier Ω, the subtoposes of E are in one-to-one
correspondence with the local operators in E , that is, the meet-preserving closure operators
j : Ω → Ω (a.k.a. Lawvere-Tierney topologies). A typical example is the double negation
operator ¬¬ : Ω → Ω, which exists in every topos. No matter which logic E models, the
corresponding subtopos E¬¬ is always a model of classical logic. This link between the local
operators and the intermediate logics has been further explored by Caramello [5, 6] in the
context of categorical logic. A key notion there is what we call the least dense operator of a
formula φ, that completely determines the dense subtoposes of E which satisfy φ. The same
notion appears in van Oosten’s study of categorical realizability. He showed that the local
operator jLif in Eff corresponding to the Lifschitz topos Lif is the least dense operator of an
arithmetical formula, which is equivalent to Π1 ∨Π1-DNE over HA [23].

S. Nakata 42:3

The specifics of least dense operators are explained in Subsection 3.1. Our emphasis here
is the following observation: given two axioms, if their least dense operators are different,
then it automatically follows that they are separable.

1.3 Contents of this paper
We investigate the least dense operators of arithmetical formulas in relation to the separation
of semi-classical axioms. Throughout the investigation, our aim is to demonstrate the utility
of such a topos-theoretic notion in the study of intuitionistic proof theory. For the readers
interested in proof theory, we try to make this paper as self-contained as possible.

In Section 2, we give some background. In Section 3, we study sufficient conditions for
an arithmetical formula φ to have a least dense operator. For this purpose, we introduce two
properties for formulas: transparency and closedness. Transparency ensures that a formula
has a least dense operator under a mild assumption, while closedness is an intermediary
means to show that a formula is transparent. Our argument here is a reconstruction and
generalization of van Oosten’s [23] for all toposes. The main result of Section 3 is that all
semi-classical axioms in Figure 1 have least dense operators in every elementary topos with
natural number object (Theorem 33, Corollary 34).

In Section 4, we apply the general theory in the previous section to the effective topos
Eff . As shown by Hyland [10], the poset of Turing degrees can be embedded into the poset
of local operators in Eff (Figure 4). This allows us to relate the least dense operators of
semi-classical axioms to (generalized) Turing degrees. For example, the least operator of
Σn-DNE corresponds to Turing degree ∅(n−1), while that of Πn ∨Πn-DNE corresponds
to another degree Lif (n−1) (Theorems 45, 46, Figure 5). Noting that least dense operators
characterize separability by dense subtoposes, these expressions not only immediately imply
some separation results of [1] but also a negative consequence that Πn-LEM, Σn-LEM and
Σn+1-DNE are never separable by any subtopos of Eff for any n ≥ 0 (Corollary 47).

2 Preliminary

In this section, we review some basic facts on first-order intuitionistic arithmetic and
interpretation of first-order logic and arithmetic in a topos. Most of the facts mentioned here
can be found in standard textbooks [22, 21, 13, 19].

2.1 First-order intuitionistic arithmetic
Let LA be the language of arithmetic that consists of constant 0, successor Suc, and
function symbols for all primitive recursive functions. Heyting arithmetic, written as HA,
is a first-order intuitionistic LA-theory consisting of ∀x¬(Suc(x) = 0), defining equations
for all primitive recursive functions, and the induction axiom scheme for all LA-formulas.
Peano arithmetic, written as PA, is defined by PA = HA + LEM. We inductively define
the classes Σn, Πn of LA-formulas as follows: Σ0 = Π0 are the set of all quantifier-free
formulas, while Σn+1, Πn+1 are defined by Σn+1 := { ∃x1 · · · ∃xkφ | φ ∈ Πn, 0 ≤ k } and
Πn+1 := { ∀x1 · · · ∀xkφ | φ ∈ Σn, 0 ≤ k }. Πn ∨Πn denotes the set of formulas of the form
φ ∨ ψ with φ, ψ ∈ Πn.

Given a formula φ, the universal closure of φ is denoted by ∀φ. As in [1], we define some
semi-classical axiom schemes as follows: for a subclass Γ of LA-formulas, let

Γ-DNE := { ∀(¬¬φ→ φ) | φ ∈ Γ }, Γ-LEM := { ∀(φ ∨ ¬φ) | φ ∈ Γ }.

CSL 2024

42:4 Local Operators and Separation of Semi-Classical Axioms

It is well known that HA proves Σ0-DNE and Σ0-LEM, and that for every n, Πn+1-DNE
is equivalent to Σn-DNE over HA. In this paper, a semi-classical axiom refers to either
Γ-DNE or Γ-LEM, where Γ is Σn, Πn, or Πn ∨Πn for some n ≥ 0.

Recall that HA formalizes a bijective primitive recursive pairing function ⟨−,−⟩ : N2 → N.
This allows us to code a finite sequence of natural numbers by a single one. Hence, without
loss of generality, we can assume that each LA-formula φ has at most one free variable.

By formalizing Post’s theorem in HA, we obtain a universal formula φΣn
(e, x) for

Σn with n ≥ 1. That is, for any Σn-formula A(x), there exists a numeral eA such that
∀(A(x)↔ φΣn

(eA, x)) is provable in HA (folklore). The same holds for Πn and Πn ∨ Πn.
For example, universal formulas φΣ1 , φΠ1 for Σ1, Π1 are given by φΣ1(e, x) := ∃wT (e, x, w),
φΠ1(e, x) := ∀w¬T (e, x, w), where T (e, x, w) is Kleene’s T -predicate. Thus, each axiom
scheme in Figure 1 is finitely axiomatizable in HA.

2.2 Interpretation of intuitionistic logic in a topos
An (elementary) topos is a cartesian closed category with all finite limits and subobject
classifier true : 1 ↣ Ω. According to the standard interpretation of many-sorted first-order
logic in a topos, each formula is interpreted by a subobject in a suitable subobject poset. So
let us first review the logical structure of a subobject poset.

For an object X in a topos E , we write U ↣ X for a subobject U of X and write
(SubE(X),≤) for the poset of subobjects of X. Given a morphism f : X → Y , f∗ stands for
the pullback functor along f . In a topos E , (SubE(X),≤) forms a Heyting algebra.
▶ Theorem 1. Let E be a topos.
(1) E is a coherent category. In particular, for any object X, SubE(X) forms a distributive

lattice with meet ∧, join ∨, top 1 and bottom 0. In addition, for any morphism f : X → Y ,
f∗ : SubE(Y)→ SubE(X) has a left adjoint ∃f : SubE(X)→ SubE(Y).

(2) E is further a Heyting category. In particular, for any f : X → Y , f∗ has a right adjoint
∀f : SubE(X)→ SubE(Y).

The last ∀f induces Heyting implication ⇒ on SubE(X). In fact, U ⇒ V can be defined to
be ∀mU

(U ∧V), where mU is a representative of U ↣ X. If f is a projection π : X ×Z → Z,
∀π (resp. ∃π) provides an interpretation of first-order quantification ∀x (resp. ∃x).

Now assume that to each sort A is assigned an object [[A]] and to each function symbol
f : A1 × · · · × An → B a morphism [[f]] : [[A⃗]]→ [[B]], where [[A⃗]] := [[A1]]× · · · × [[An]]. Then
each term t = t(xA1

1 , · · · , xAn
n) : B is interpreted by a morphism [[t]] : [[A⃗]]→ [[B]] and equality

t =B u by the equalizer [[t =B u]] ↣ [[A⃗]] of [[t]], [[u]] : [[A⃗]] ⇒ [[B]]. Interpretation of logical
connectives is as above.

For a formula φ = φ(xA1
1 , · · · , xAn

n), if the interpretation [[φ]] ↣ [[A⃗]] is identical to the
greatest element of SubE([[A⃗]]) (that is the equivalence class of the identity id : [[A⃗]]→ [[A⃗]]),
we say that φ is true in E (under [[−]]) and write E |= φ. Under this interpretation, every
topos satisfies all axioms of first-order intuitionistic logic.

2.3 Local operators and subtoposes
Local operator (a.k.a. Lawvere-Tierney topology) is one of the most important tools for
creating a new topos from a given one.
▶ Theorem 2. In a topos E, there is a one-to-one correspondence among the following
notions:
(1) Local operator j : Ω → Ω, that is an endomorphism on the subobject classifier Ω of E

which is an “internal” nucleus (recall that a nucleus on a lattice is a meet-preserving
closure operator).

S. Nakata 42:5

(2) Universal closure operation c := { cX : SubE(X) → SubE(X) }X∈E , that is a family of
nuclei on subobject posets which is natural in X ∈ E. When it is clear from the context,
we will omit superscript X in cX .

(3) Subtopos F ↪→ E, that is a full subcategory of E which is itself a topos such that the
inclusion functor i : F ↪→ E has a cartesian left adjoint L : E → F . Such an L is called a
sheafification functor (or associated sheaf functor) on F .

Hereafter, Ej , cj and Lj denote the subtopos, the universal closure operation and the
sheafification functor associated with a local operator j, respectively. (Note that the subtopos
is usually denoted by shj(E).) We write Lop(E) for the class of local operators in E .

▶ Example 3.
(1) The identity idΩ : Ω→ Ω and ⊤ := true ◦ ! : Ω→ Ω are local operators in E , where ! is

the unique morphism from Ω to the terminal object 1. The corresponding subtoposes are
E itself and the degenerate topos, respectively. ⊤ is called the degenerate local operator.

(2) For every topos E , the family { ((· ⇒ 0)⇒ 0) : SubE(X)→ SubE(X) }X∈E always forms
a universal closure operation. The associated local operator is called the double negation
operator ¬¬ : Ω→ Ω. The corresponding subtopos E¬¬ is a model of classical logic.

The correspondence in Theorem 2 induces a natural order on Lop(E).

▶ Lemma 4. For j, k ∈ Lop(E), the following are equivalent:
(1) Ek is a subtopos of Ej.
(2) For any object X ∈ E and any subobject U ↣ X, cj(U) ≤ ck(U).

We write j ≤ k if the above equivalent conditions hold. (Lop(E),≤) forms a poset with
the bottom element idΩ and the top element ⊤.

Next, let us introduce two important notions.

▶ Definition 5. Let X be an object of E , U ↣ X a subobject of X and j ∈ Lop(E). We say
that U is j-dense if cj(U) = X, and that U is j-closed if cj(U) = U . Let CljSubE(X) denote
the class of j-closed subobjects of X.

The j-dense elements in SubE(X) are sent to the greatest element in SubEj (LjX) by
Lj : E → Ej .

▶ Lemma 6. For a subobject U ↣ X and a local operator j, U is j-dense if and only if
LjU ↣ LjX is an isomorphism.

On the other hand, the j-closed objects form a subobject lattice in Ej : whenever F is an
object of Ej ⊆ E , we have CljSubE(F) = SubEj

(F). Moreover, the logical operations (∧j , ∨j ,
⇒j , ¬j , ∀jf , ∃jf) on SubEj (F) are derived from (∧, ∨, ⇒, ¬, ∀f , ∃f) on SubE(F) by means
of the closure operation cj as follows:

▶ Lemma 7. Let F , G be objects of Ej , f : F → G a morphism of Ej , and A, B ∈ SubEj
(F) =

CljSubE(F). Then

A ∧j B = A ∧B, A ∨j B = cj(A ∨B), A⇒j B = A⇒ B,

∀jfA = ∀fA, ∃jfA = cj(∃fA), ¬j(A) = A⇒ cj(0).

CSL 2024

42:6 Local Operators and Separation of Semi-Classical Axioms

2.4 Preservation of logical operations and degrees of openness
In this subsection, we have a look at when a sheafification functor Lj preserves a logical
operation. This leads to a distinction of various degrees of openness of local operators. Note
that Lj always preserves finite limits by definition, hence it preserves monomorphisms. Thus
Lj induces a map Lj : (SubE(X),≤)→ (SubEj (LjX),≤) for each object X ∈ E . As is well
known in categorical logic, Lj always preserves ∧, ∨, 0 and ∃f .

▶ Proposition 8 ([19, Chapter IX]). For any j ∈ Lop(E), Lj is a coherent functor. In
particular, for any objects X, Y , morphism f : X → Y and subobjects U , V ∈ SubE(X),

Lj(U ◦ V) = LjU ◦j LjV, Lj0 = 0j , Lj(∃fU) = ∃jLjf
LjU,

where ◦ ∈ {∧,∨} and ◦j, 0j, ∃jLjf
are logical operations on SubEj (LjX).

In addition, the following proposition shows that ∀f and ⇒ are preserved by Lj under
an assumption of closedness.

▶ Proposition 9 ([10, Theorem 5.1]). Let X be an object of E , U , V ↣ X subobjects of X and
j ∈ Lop(E). If V is j-closed, then Lj(∀fV) = ∀jLjf

(LjV) and Lj(U ⇒ V) = LjU ⇒j LjV .

However, Lj does not in general preserve universal quantification ∀f , Heyting implication
⇒ and negation ¬. Preservation of these operations is related to opneness of geometric
morphisms [13, Proposition A4.5.1]. Motivated by this observation, Caramello gave the
following definitions.

▶ Definition 10 ([6, Definition 3.2]). Let j be a local operator in E.
(1) j is open if Lj preserves universal quantification on every subobject lattice.
(2) j is implicationally open if Lj preserves Heyting implication on every subobject lattice.
(3) j is weakly open if Lj preserves negation on every subobject lattice.

We finally introduce another openness notion, denseness. This should not be confused
with the notion of j-dense subobject in Definition 5.

▶ Definition 11 ([6, Proposition 3.1]). For j ∈ Lop(E), we say that j (or the corresponding
subtopos Ej) is dense if it satisfies one of the following equivalent conditions:
(1) The inclusion functor i : Ej ↪→ E preserves the initial object 0.
(2) j ≤ ¬¬, where ¬¬ is the double negation operator.
(3) cj preserves negation on every subobject lattice.
(4) The least subobject 0 of the terminal object 1 is j-closed.

Considering the least element 0 as a subobject V in Proposition 9, the fourth condition
of Definition 11 implies Lj(¬U) = Lj(U ⇒ 0) = (Lj(U)⇒j 0j) = ¬jLj(U) (weak openness).
As a consequence, we have the following implications among the openness notions.

▶ Proposition 12 ([6, Section 3]). The following implications hold for local operators:

open =⇒ implicationally open =⇒ weakly open ⇐= dense.

In fact, the implications are strict as there is a topos in which all the openness notions
are different. The effective topos Eff provides such an example.

S. Nakata 42:7

2.5 Preservation of arithmetical equality
If a topos E has a natural number object (NNO) N , it is possible to interpret LA-terms
and LA-formulas in it. That is, we can assign to each function symbol f ∈ LA a morphism
[[f]] : Nk → N so that the defining equation for f is true in E by the universal property of
NNO. Other axioms of Heyting arithmetic can also be verified ([17, Theorem 4.1]). Thus we
can regard every topos with NNO as a model of HA.

Every sheafification functor Lj : E → Ej preserves NNO ([13, Lemma A2.5.6]). That is, if
N is an NNO in E , then so is Nj := LjN in Ej . It automatically follows that Lj preserves
the interpretation of an atomic formula f(x⃗) = g(x⃗).

▶ Lemma 13. Let f(x⃗) and g(x⃗) be k-ary function symbols. We have

[[f(x⃗) = g(x⃗)]]Ej = θ∗(Lj [[f(x⃗) = g(x⃗)]]E) in SubEj (Nk
j),

where θ : Nk
j → Lj(Nk) is the canonical isomorphism.

Proof. One can show that [[f]]Ej
: Nk

j → Nj coincides with (Lj [[f]]E) ◦ θ by induction on the
construction of primitive recursive functions. The result then follows since the interpretation
of f(x⃗) = g(x⃗) in E (resp. Ej) is given by an equalizer of [[f]]E , [[g]]E : Nk → N (resp. [[f]]Ej

,
[[g]]Ej

), which is preserved by Lj . ◀

3 Least dense operators of arithmetical formulas

Given a topos E and a formula φ, it is often possible to associate a local operator jE
φ that

completely determines the subtoposes of E which validate φ, in the sense that jE
φ ≤ k if and

only if Ek |= φ for any local operator k in E . Our purpose in this section is to develop a
general theory of such local operators. Although the main focus of this paper lies on the
effective topos Eff , we anticipate that our general theory will find a wide range of applications
in future, as will be discussed in Section 5. To achieve this, we need to restrict our treatment
of local operators to dense ones. This restriction is not essential since all nondegenerate
operators are dense in Eff . See Example 16 and Remark 35 for further justifications.

In Subsection 3.1, we introduce the notion of least dense operator and see how it is relevant
to the separation of subclassical axioms. In Subsections 3.2 and 3.3, we look at two properties
of arithmetical formulas: transparency and closedness. Transparent formulas have least dense
operators under a mild assumption, while the class of transparent and closed formulas enjoys
good closure properties. In particular, all Σ2-formulas are transparent and thus have least
dense operators (under a mild assumption). However, there is a non-transparent formula
in Π3 which does not have a least dense operator, so the above result is optimal. These
considerations lead us to a new technique to iterate the transparency argument. We show in
Subsection 3.4 that all axioms in Figure 1 have least dense operators in an arbitrary topos
with natural number object.

Throughout this section, we fix a topos E with natural number object N . By the
assumption that each LA-formula φ has at most one free variable (Subsection 2.1), the
interpretation of φ in E can be simply regarded as subobject [[φ]]E ↣ N .

3.1 Least dense operators
▶ Notation 14. Let DLop(E) := { k ∈ Lop(E) | k ≤ ¬¬} denote the class of dense local
operators in E. For a local operator j, define DLop(E)≥j := { k ∈ DLop(E) | j ≤ k }.
Lop(E)≥j is similarly defined. For an LA-formula φ, let ⟨φ⟩E := { k ∈ DLop(E) | Ek |= φ }.

CSL 2024

42:8 Local Operators and Separation of Semi-Classical Axioms

▶ Definition 15. Let φ be an LA-formula. A dense local operator j in E is called the least
dense operator of φ in E, written jE

φ, if it satisfies

⟨φ⟩E = DLop(E)≥j .

Similarly, for an LA-theory T , we use notations ⟨T ⟩E := { k ∈ DLop(E) | Ek |= T } and jE
T .

The concept of least dense operator is illustrated in Figure 2. The filled region corresponds
to the class of dense operators whose associated subtoposes satisfy φ.

Ek |= φ

Ek′ ̸|= φ

idΩ

¬¬

jE
φ

k

k′

Figure 2 Least dense operator in DLop(E).

▶ Example 16. Similar concepts have been studied in various contexts.
(1) Blass and S̆c̆edrov [4], in their investigation of categorical logic, proved that in any

topos, propositional formula p ∨ ¬p has a unique local operator ¬¬, which is nothing
but the least dense operator in our terminology. It is significant for the study of the
classifying toposes of geometric theories ([12, 4, 5], [7, Section 4.2.3]). Caramello [6]
further investigated least dense operators for more general propositional formulas. She
revealed that propositional formulas have least dense operators in any topos as far as
they are implication-free. The reason for this restriction is that dense local operators are
not implicationally open in general.

(2) Least local operators of arithmetical formulas in Eff are studied by van Oosten [23]. It is
well known that in this topos, all nondegenerate operators are dense [10]. He identified a
certain restricted class of LA-formulas which have least local operators in Eff . He then
showed that the local operator jLif corresponding to the Lifschitz topos Lif ⊆ Eff is the
least operator of an LA-formula (O) in that class. It is known that (O) is equivalent to
Π1 ∨Π1-DNE over HA, so jLif is the least operator of Π1 ∨Π1-DNE in Eff too.

We remark that both lines of work rely on the denseness of local operators, either explicitly
or implicitly.

We also remark that least dense operators provide a good notion of “invariant”, which
is useful for the separation of subclassical axioms. In fact, the subset ⟨φ⟩E ⊆ DLop(E) is
invariant under HA-provable equivalence:

HA ⊢ φ↔ ψ =⇒ ⟨φ⟩E = ⟨ψ⟩E .

If φ and ψ further have least dense operators, we have

jE
φ ̸= jE

ψ =⇒ HA ̸⊢ φ↔ ψ.

S. Nakata 42:9

That is, we can separate two axioms just by showing that their least dense operators are
different. Moreover, even if jE

φ = jE
ψ, we obtain a negative consequence that φ and ψ are

never separable by a dense subtopos of E (Corollary 47). Thus, least dense operators provide
us with sufficient information on separability by dense subtoposes.

All least operators in Example 16 are obtained based on the theorem below due to Joyal.

▶ Theorem 17 ([13, Corollary A4.5.13]). Let X be an object in E and U ↣ X. There is a
unique local operator ℓ in E such that Lop(E)≥ℓ = { j ∈ Lop(E) | U ↣ X : j-dense } holds.

▶ Definition 18. The above ℓ is called the least operator of U in E and written as ℓE
U .

In particular, suppose that X is the natural number object N , U is the interpretation
[[φ]]E ↣ N of an LA-formula φ, and j ∈ Lop(E) satisfies the following condition:

Lj [[φ]]E = [[φ]]Ej . (j-transparency)

Then Lemma 6 implies that Ej |= φ if and only if [[φ]]E is j-dense. Hence by Theorem 17
we have Lop(E)≥ℓE

U = { j ∈ Lop(E) | Ej |= φ }. What is critical here is the assumption of
j-transparency, which will be the subject of the following subsections.

3.2 Transparency and closedness
▶ Definition 19. For a local operator j and an LA-formula φ,
(1) φ is j-transparent if Lj [[φ]]E = [[φ]]Ej holds. Let TrpE

j := {φ | φ is j-transparent }.
(2) φ is j-closed if cj [[φ]]E = [[φ]]E holds. Let ClEj := {φ | φ is j-closed }.
Let TrpE :=

⋂
j≤¬¬ TrpE

j and ClE :=
⋂
j≤¬¬ ClEj . We say φ is transparent in E if φ ∈ TrpE .

As an example, every quantifier-free formula is transparent and closed in E .

▶ Lemma 20. ClE = ClE¬¬ holds. Hence, for every LA-formula φ,
(1) φ ∈ ClE if and only if E |= ¬¬φ→ φ.
(2) Σ0, Π0 ⊆ TrpE ∩ ClE .

Proof. Notice that j ≤ ¬¬ implies cj [[φ]]E ≤ c¬¬[[φ]]E (Lemma 4). This leads to ClE = ClE¬¬.
(1) immediately follows from the fact that E |= ¬¬φ→ φ if and only if φ is ¬¬-closed.

To show (2), suppose that φ ∈ Σ0(= Π0). We then obtain φ ∈ ClE by (1) since
HA ⊢ φ ↔ ¬¬φ. By noting that every quantifier-free formula is equivalent to an atomic
formula in HA, φ ∈ TrpE follows from Lemma 13. ◀

Transparency and closedness are strongly related to the concept of least dense operator.
More precisely, we will show the following correspondence: under a natural assumption,

TrpE is a class of formulas which have least dense operators.
TrpE ∩ ClE is a class of formulas whose least dense operators are trivial.

Let us consider the latter first.

▶ Lemma 21. Let j ∈ DLop(E) and φ ∈ TrpE
j ∩ ClEj . Then Ej |= φ if and only if E |= φ.

Proof. The backward direction is clear since Lj preserves isomorphisms and Lj [[φ]]E = [[φ]]Ej .
For the forward direction, first note that [[φ]]Ej

= Lj [[φ]]E is the greatest element in
SubEj

(Nj). It then follows from Lemma 6 that [[φ]]E is j-dense. Since φ is j-closed, [[φ]]E is
also the greatest element in SubE(N). ◀

Therefore, we obtain the following.

CSL 2024

42:10 Local Operators and Separation of Semi-Classical Axioms

▶ Theorem 22. Let φ be an LA-formula. The following are equivalent:
(1) φ ∈ TrpE ∩ ClE and ⟨φ⟩E is nonempty.
(2) ⟨φ⟩E = DLop(E), that is, jE

φ = idΩ.

Proof. If (1) holds, then we have Ej |= φ for every dense local operator j by Lemma 21.
Hence ⟨φ⟩E = DLop(E). Conversely, assume that (2) holds. By assumption, [[φ]]Ej is the
greatest element in SubEj

(Nj) for any j ∈ DLop(E), so in particular [[φ]]E is also the greatest
in SubE(N). This implies [[φ]]Ej = Lj [[φ]]E since Lj preserves isomorphisms. It is obvious
that φ is in ClE by E |= φ. ◀

▶ Corollary 23. Let φ be an LA-formula.
(1) If φ is provable in HA, φ ∈ TrpE ∩ ClE and jE

φ = idΩ.
(2) If φ is provable in PA, φ ∈ TrpE ∩ ClE iff jE

φ = idΩ.

Proof. If φ is provable in HA, then we have ⟨φ⟩E = DLop(E) since φ is true in any topos.
Hence we also have φ ∈ TrpE ∩ ClE by Theorem 22.

On the other hand, if φ is provable in PA, then the double negation operator ¬¬ is in
⟨φ⟩E since the corresponding subtopos E¬¬ satisfies any classically true formula, including φ.
This implies that ⟨φ⟩E is nonempty. ◀

3.3 Transparency yields least dense operators
We now turn our attention to transparent (but not necessarily closed) formulas. The argument
below is a reconstruction of van Oosten’s [23] in terms of transparency and closedness. The
following lemma (cf. [23, Proposition 2.1]) plays a crucial role.

▶ Lemma 24 (MAIN LEMMA). Let E be an arbitrary topos with natural number object.
(1) Suppose that an LA-formula φ is transparent in E. Then either ⟨φ⟩E = ∅ or φ has least

dense operator jE
φ = ℓE

[[φ]]E
, where ℓE

[[φ]]E
is the least operator of [[φ]]E .

(2) Suppose that LA-formulas φ, ψ are transparent in E and HA ⊢ φ → ψ. Then for
ρ := ψ → φ, either ⟨ρ⟩E = ∅ or ρ has least dense operator jE

ρ .

Proof. By taking an HA-provable formula as ψ, (1) can be regarded as a special case of (2)
(notice Corollary 23 (1)).

Let j be a dense local operator in E . The assumption HA ⊢ φ→ ψ implies that φ→ ψ

is true in any topos, including E and Ej . So [[φ]]E ≤ [[ψ]]E and [[φ]]Ej
≤ [[ψ]]Ej

hold. Now
consider a subobject U := [[φ]]E ↣ [[ψ]]E . Since φ and ψ are transparent, we get the equation
LjU = (Lj [[φ]]E ↣ Lj [[ψ]]E) = ([[φ]]Ej ↣ [[ψ]]Ej). Thus the following equivalence holds:
Ej |= ρ iff LjU = [[φ]]Ej

↣ [[ψ]]Ej
is an isomorphism iff U is j-dense (the last equivalence

follows from Lemma 6).
By Theorem 17, we have the least operator ℓE

U such that U is dense. If ℓE
U /∈ DLop(E),

then ⟨ρ⟩E = ∅. If ℓE
U ∈ DLop(E), ℓE

U is the least dense operator of ρ in E . ◀

The next step of our reconstruction is to examine the closure properties satisfied by TrpE

and ClE . The proof of the case ¬ relies on the restriction to dense local operators.

▶ Lemma 25.
(1) TrpE is closed under ∧, ∨, ∃, ¬.
(2) ClE is closed under ∧, →, ∀, ¬.
(3) Suppose that φ ∈ TrpE ∩ClE and ψ ∈ TrpE . Then ψ → φ and ∀xφ belong to TrpE ∩ClE .

In particular, TrpE ∩ ClE is closed under ∧, →, ∀, ¬.

S. Nakata 42:11

Proof. (1) Closure under ∧, ∨, ∃ is due to Proposition 8. For ¬, just recall that dense local
operators are weakly open (Proposition 12). (2) ClE is closed under ∧, →, ∀ by Lemma 7,
and under ¬ by denseness (Definition 11 (3)). (3) holds by Proposition 9. ◀

Together with Lemma 20, we obtain the following:

▶ Corollary 26. Π1 ⊆ TrpE ∩ ClE and Σ2 ⊆ TrpE .

▶ Corollary 27. Suppose that an LA-formula φ is transparent in E. Then φ ∨ ¬φ and
¬¬φ→ φ have least dense operators in E.

Proof. Note that ⟨φ ∨ ¬φ⟩E and ⟨¬¬φ→ φ⟩E are always nonempty because both formulas
are provable in PA, so true in E¬¬. φ∨¬φ belongs to TrpE by Lemma 25 (1), hence φ∨¬φ
has least dense operator in E by Lemma 24 (1).

For ¬¬φ→ φ, we apply the case (2) of Lemma 24. ◀

This corollary can be extended to semi-classical axioms. Recall that for n ≥ 1, there
exist universal formulas φΣn

and φΠn
for the classes Σn and Πn. Hence axiom scheme

Σn-LEM, for example, is equivalent to formula ∀(φΣn
∨ ¬φΣn

) over HA. Moreover, we have
E |=∀ (φΣn

∨ ¬φΣn
) iff E |= φΣn

∨ ¬φΣn
. Thus we obtain:

▶ Lemma 28. Let Γ be one of Σn, Πn and Πn ∨ Πn and assume that Γ ⊆ TrpE . Then
Γ-LEM and Γ-DNE have least dense operators in E.

As we saw in Corollary 26, Σ2 ⊆ TrpE always holds. This fact ensures that Σ2-DNE and
Σ2-LEM have least dense operators in E . On the other hand, we can show that Π3 ⊆ TrpE

does not hold in general (see Theorem 49 in Appendix A). Therefore, to show the existence
of least dense operators of semi-classical axioms for n ≥ 3, we need another technique, that
is to be discussed in the next subsection.

3.4 Iteration argument and least dense operators of semi-classical
axioms

In this subsection, we prove that all semi-classical axioms have least dense operators in every
topos. The key idea is to iterate the construction of Lemma 28.

▶ Lemma 29. Let n ≥ 0. If E |= Σn-DNE, then Πn+1 ⊆ TrpE ∩ ClE , so Σn+2 ⊆ TrpE .

Proof. By induction on n, recalling that E |= Σn-DNE iff Σn ⊆ ClE (Lemma 20). The base
case is true by Corollary 26. Next assume that Σn+1 ⊆ ClE . By the induction hypothesis
Πn ⊆ Πn+1 ⊆ TrpE ∩ ClE , so Σn+1 ⊆ TrpE by Lemma 25 (1), that is, Σn+1 ⊆ TrpE ∩ ClE .
By Lemma 25 (3), we conclude Πn+2 ⊆ TrpE ∩ ClE . ◀

For the sake of the argument below, let us note a natural correspondence between
Lop(E)≥j and Lop(Ej).

▶ Notation 30. Let j ∈ Lop(E). There is a one-to-one correspondence between Lop(E)≥j

and Lop(Ej). We write kj for the local operator in Lop(Ej) corresponding to k ∈ Lop(E)≥j .
Under this notation we have (Ej)kj

= Ek.

▶ Lemma 31 ([7, Corollary 4.2.9]). If j is a dense local operator in E , ¬¬j is identical to the
double negation operator in Lop(Ej). Thus, the correspondence in Notation 30 holds even if
restricted to the dense local operators (Figure 3).

CSL 2024

42:12 Local Operators and Separation of Semi-Classical Axioms

idΩ

¬¬

j

k

idΩj

¬¬j

kj

Figure 3 Correspondence between DLop(E)≥j and DLop(Ej).

The following lemma allows us to iterate Lemma 28.

▶ Lemma 32. Let T , S be LA-theories such that HA + T ⊢ S. Suppose further that
(1) S has least dense operator jS := jE

S ∈ DLop(E) in E.
(2) T has least dense operator j′

T := j
EjS

T ∈ DLop(EjS
) in EjS

.
Then jT ∈ DLop(E)≥jS corresponding to j′

T is the least dense operator of T in E.

Proof. Let k ∈ DLop(E). We show that Ek |= T if and only if jT ≤ k. Assume that Ek |= T .
jS ≤ k clearly follows from the assumption (1) and HA + T ⊢ S. So k ∈ DLop(E)≥jS and
the corresponding operator kjS

∈ DLop(EjS
) yields a dense subtopos of EjS

that satisfies T .
Hence, by the assumption (2), we get j′

T ≤ kjS
. This implies jT ≤ k.

Conversely, suppose jT ≤ k. Since jT ∈ DLop(E)≥jS , the corresponding operator
j′
T ∈ DLop(EjS

) satisfies j′
T ≤ kjS

. By the assumption (2) again, (EjS
)kjS

= Ek |= T

holds. ◀

▶ Theorem 33. For every topos E with natural number object and n ≥ 0, Σn-DNE has least
dense operator jn := jE

Σn-DNE in E.

Proof. By induction on n. For n = 0, let j0 = idΩ (See Corollary 23).
Next, assume that Σn-DNE has least dense operator jn in E . Then Σn-DNE is true in

Ejn
, hence we have Σn+1 ⊆ Σn+2 ⊆ TrpEjn by Lemma 29. Thus, it follows from Lemma 28

that Σn+1-DNE has least dense operator in Ejn . Since HA + Σn+1-DNE implies Σn-DNE,
all assumptions of Lemma 32 are satisfied. We therefore conclude that Σn+1-DNE has least
dense operator in E . ◀

The local operators { jn } can be used as the “footholds” to obtain least dense operators
of other semi-classical axioms.

▶ Corollary 34. For every topos E with natural number object and n ≥ 0, Σn-LEM, Πn-LEM
and Πn ∨Πn-DNE have least dense operators in E.

Proof. We here focus on Πn+1-LEM. Considering the least dense operator jn of Σn-DNE
in Theorem 33, we have Πn+1 ⊆ Σn+2 ⊆ TrpEjn . Thus, it follows from Lemma 28 that
Πn+1-LEM has least dense operator in Ejn . Since HA + Πn+1-LEM proves Σn-DNE
(Figure 1), it also has least dense operator in E by Lemma 32. ◀

▶ Remark 35. Let us finally discuss (dis)advantages of the restriction to dense operators.
One clear disadvantage is that it forces us to introduce an additional assumption ⟨φ⟩E ̸= ∅
in Lemma 24 (MAIN LEMMA). Although this may appear inconvenient, it does not cause
any problem as long as semi-classical axioms are concerned (See the proof of Corollary 27).

S. Nakata 42:13

On the other hand, the restriction is really essential for Lemma 20. In fact, this lemma
does not hold without the assumption of denseness, as indicated by the following:

▶ Theorem 36. Let j be a local operator. All Σ0-formulas are j-closed iff j is dense.

Proof. The backward direction is shown in Lemma 20. To see the forward direction, consider
Σ0-formula ¬(x = x), whose interpretation is the least element 0 in the subobject poset of
NNO. If it is j-closed, then the least subobject 0 of the terminal object 1 is also j-closed.
The latter condition is equivalent to being a dense local operator (Definition 11 (4)). ◀

Failure of Lemma 20 would affect most of the subsequent theorems in Section 3. For example,
there is no guarantee that all Σ2-formulas are transparent. We would say that denseness is a
price to pay to obtain these theorems in the general setting.

4 Least operators in the effective topos

In this section, we apply the general theory developed in the previous section to the effective
topos Eff . As explained in Example 16, any non-degenerate operator is dense in this topos.
Henceforth, we speak of least operators instead of least dense ones.

In Subsection 4.1, we briefly review the structure of subobjects and that of local operators
in Eff . We also mention that there are local operators corresponding to Turing degrees.
In Subsection 4.2, we express all least dense operators of semi-classical axioms in terms of
(generalized) Turing degrees. This immediately leads to some separation results conforming
to [1]. For details on Eff , the reader is referred to [25].

4.1 Subobjects of NNO and local operators in Eff

Let us first recall the effective topos and associated concepts.

▶ Notation 37. We fix a primitive recursive pairing function ⟨−,−⟩ : N2 → N with the
associated projections (−)0, (−)1 : N → N. For natural numbers e and n, we write e · n
for the result of applying the e-th partial computable function to n, and write e · n ↓ if the
computation terminates. If ψ is a closed LA-formula, n rK ψ means that n realizes ψ under
Kleene realizability. Also we use λ-notation: for a partial computable function t :⊆ N→ N
in variable x, λx.t denotes an index of t. Similarly, for u :⊆ N2 → N in variable x and y,
λxy.u is an abbreviation for λx.(λy.u).

Given a set X, we consider the following operations on P(N)X . For any φ, ψ : X → P(N),

φ ∧ ψ(x) := { ⟨n,m⟩ | n ∈ φ(x) ∧ m ∈ ψ(x) }, ⊤(x) := N,
φ ∨ ψ(x) := { ⟨0, n⟩ | n ∈ φ(x) } ∪ { ⟨1,m⟩ | m ∈ ψ(x) }, ⊥(x) := ∅,
φ→ ψ(x) := { e | ∀n ∈ φ(x) (e · n ↓ ∧ e · n ∈ ψ(x)) }, ¬φ(x) := φ→ ⊥(x).

In addition, we define a preorder ⊑ on P(N)X : φ ⊑ ψ if
⋂
x∈X(φ → ψ(x)) is nonempty.

Then (P(N)X ,⊑) forms a Heyting prealgebra and induces the effective tripos PEff : X 7→
(P(N)X ,⊑). The effective topos Eff is given by the tripos-to-topos construction on PEff . For
example, an object X of Eff is a pair X = (X,=X) where X is a set and =X : X×X → P(N)
is a “P(N)-valued equality” with respect to PEff , and a morphism f : X → Y of Eff is an
(equivalence class of) “P(N)-valued functional relation” F : X × Y → P(N) that respects
=X and =Y ([25, Chapter 2]).

CSL 2024

42:14 Local Operators and Separation of Semi-Classical Axioms

Eff has a natural number object N = (N,=N), where [n =N m] := {n } if n = m and
:= ∅ otherwise. A subobject classifier Ω = (P(N),=Ω) is given by defining [p =Ω q] := (p→
q) ∧ (q → p), where ∧, → are operations on P(N) ∼= P(N){ ∗ }.

Similarly, the structure of subobjects in Eff is determined by PEff . Indeed, a subobject U
of X ∈ Eff can be described by a “strict relational” function U : X → P(N) with respect to
=X . As far as the subobjects of N are concerned, relationality is trivial so that they admit
much simpler descriptions below.

▶ Definition 38. A function U : N→ P(N) is called a (partial) multifunction and written
as U :⊆ N ⇒ N. Let Mfunc denote the set of all multifunctions. A preorder on Mfunc
can be defined by invoking Notation 37 for the case of X = N: U ⊑s V iff U ′ ⊑ V , where
U ′(e) := { ⟨e, n⟩ | n ∈ U(e) }. The latter means that

∃f ∈ N ∀e, n ∈ N (n ∈ U(e) =⇒ f · ⟨e, n⟩ ∈ V (e)).

We write U ≡s V if U ⊑s V and V ⊑s U .

This preorder induces a correspondence between the multifunctions and the subobjects
of N . The reason for using U ′ is that U is not strict with respect to =N in general.

▶ Proposition 39. (Mfunc,⊑s) ≃ (SubEff (N),≤).

We thus think of a multifunction U :⊆ N ⇒ N as a subobject of N . In the sequel, we are
mainly interested in the subobjects of N that are interpretations of LA-formulas. Given an
LA-formula φ, the interpretation [[φ]]Eff corresponds to a multifunction [[φ]]Mfunc as follows:

[[φ]]Mfunc(e) := {n ∈ N | n rK φ(e) }.

Hence, φ is true in Eff iff [[φ]]Eff is the greatest element in SubEff (N) iff ⊤ ⊑s [[φ]]Mfunc iff
∃f ∈ N ∀e ∈ N (f ·e ↓ and f ·e rK φ(e)) iff ∀φ is Kleene realizable [25]. Notice that [[φ]]Mfunc
is coherent with the operations introduced in Notation 37. That is, for each ◦ ∈ {∧,∨,→},

[[φ ◦ ψ]]Mfunc = [[φ]]Mfunc ◦ [[ψ]]Mfunc, [[¬φ]]Mfunc = ¬[[φ]]Mfunc.

Each local operator in Eff has a simple expression as an endofunction on P(N), but we
omit its details here. It is important that there are local operators corresponding to Turing
degrees. Recall Joyal’s theorem (Theorem 17) in the previous section, which shows that every
subobject U ↣ N has least local operator ℓE

U that makes U dense. The following observation
is due to Hyland [10].

▶ Theorem 40 ([10, Theorem 17.2]). Let A, B ⊆ N. A is Turing reducible to B if and only
if jA ≤ jB in Lop(Eff), where jA is the least operator of the characteristic function χA of A
in Mfunc. Hence the poset of Turing degrees can be embedded into (Lop(Eff),≤).

In other words, the local operators in Eff can be regarded as generalized Turing degrees.
For example, the Lifschitz operator jLif in Example 16 is in between j∅ and j∅(1) , but it
is never equal to jd for any Turing degree d (see the notation below and Figure 4). This
connection with degree theory is further extended and refined by Faber and van Oosten [8]
and Kihara [14].

▶ Notation 41. Given a set D ⊆ N with Turing degree d (i.e., D ∈ d), we write jd to denote
the least operator ℓEff

χD
of χD : N → N. For example, when D is a decidable set, we have

jd = ℓEff
χD

= j∅ = idΩ. It is known that a closed formula is true in the subtopos Effjd
if and

S. Nakata 42:15

only if it is realizable under the Kleene realizability relativized to d (d-realizability) [20]. For
n ∈ N, ∅(n) denotes the n-th Turing jump of ∅ and Eff (n) the subtopos Effj∅(n) . By letting r(n)

K

be the ∅(n)-realizability relation, the structure of subobjects in Eff (n) can be described by r(n)
K .

For instance, [[φ]]Eff(n) corresponds to a multifunction [[φ]](n)
Mfunc(e) := {m | m r(n)

K φ(e) }.

idΩ = j∅

j∅(1)

j∅(2)

¬¬
⊤

jLif

...

Turing degrees

Figure 4 Turing degrees embedded in Lop(Eff).

4.2 Turing degrees and least operators of semi-classical axioms
In this subsection, we give concrete representations to the least operators of semi-classical
axioms in terms of generalized Turing degrees. First of all, the following is straightforward
by Corollary 23 and Figure 1.

▶ Lemma 42. For every topos E with natural number object and n ≥ 0,
(1) jE

Σ0-DNE = jE
Π0-LEM = jE

Σ0-LEM = idΩ.
(2) jE

Πn-LEM ≤ jE
Σn-LEM ≤ jE

Σn+1-DNE.

It is well known that Σ1-DNE is Kleene realizable, so the least dense operator of Σ1-DNE
in Eff is just idΩ. Using Notation 41, this can be expressed by Turing degree ∅:

jEff
Π0-LEM = jEff

Σ0-LEM = jEff
Σ1-DNE = j∅. (♣)

This equation (♣) can be extended to any n ≥ 1 (Theorem 45). Here we give only a proof of
the case n = 1 because there is no great difficulty in generalizing the following arguments.
The complete proof can be found in Appendix B.

Let us recall Subsection 2.1 and a primitive recursive function S(e, x) obtained by
formalizing the parameter theorem in HA. S(e, x) has the ability to “shift” a variable, that
is, “S(e, x) · y ↓ iff e · ⟨x, y⟩ ↓” is provable in HA. Then we can describe the universal formula
for Σ2 by φΣ2(e, x) := ∃y φΠ1(S(e, x), y) = ∃y∀w¬T (S(e, x), y, w), which is equivalent to
∃y∀w¬T (e, ⟨x, y⟩, w) in HA.

Now let p1(e, x) := λw.0 and define s2(e, x) := ⟨y0, λw.0⟩, where y0 is the least number
such that N |= φΠ1(S(e, x), y0) holds if it exists. Note that p1 is a total computable function
and s2 a partial ∅(1)-computable one. Then, by the standard definition of realizability
interpretation, we can easily verify that
(1) For any e, x ∈ N, N |= φΠ1(e, x) implies p1(e, x) rK φΠ1(e, x).
(2) For any e, x ∈ N, N |= φΣ2(e, x) implies s2(e, x) r(1)

K φΣ2(e, x).

CSL 2024

42:16 Local Operators and Separation of Semi-Classical Axioms

The second property immediately implies that λex.λm.s2(e, x) realizes ∀(¬¬φΣ2 → φΣ2)
under ∅(1)-realizability, where λm. is a dummy abstraction. Hence Σ2-DNE is true in
Eff (1). This allows us to estimate an upper bound for jEff

Σ2-DNE. This argument can be
straightforwardly extended to jEff

Σn+1-DNE (Lemma 50 in Appendix B). So we have

▶ Lemma 43. For any n ≥ 0, Eff (n) |= Σn+1-DNE. Thus jEff
Σn+1-DNE ≤ j∅(n) .

Next, notice that if a formula φ is transparent in Eff , then we have jEff
φ∨¬φ = ℓEff

[[φ∨¬φ]]Eff
,

where the latter is Joyal’s least operator of subobject [[φ ∨ ¬φ]]Eff (Lemma 24, Corollary 27).
The following lemma gives us a simple description of [[φΠ1 ∨ ¬φΠ1]]Eff .

▶ Lemma 44. Let φ(x) be an LA-formula and let χφ be the characteristic function of
{m ∈ N | N |= φ(m) }. Suppose further that there is a total computable function p(x) such
that the following two conditions hold:
(a) For any m ∈ N, Eff |= φ(m) implies N |= φ(m).
(b) For any m ∈ N, N |= φ(m) implies p(m) rK φ(m).
Then [[¬φ ∨ φ]]Mfunc ≡s χφ in Mfunc ≃ SubEff (N).

Proof. Assume that φ(x) and p(x) satisfy (a) and (b), and let m ∈ N. The assumptions
imply that p(m) rK φ(m) iff N |= φ(m). Because ¬ψ is Kleene realizable by any natural
number iff ψ is not Kleene realizable for a closed formula ψ, we have p(m) rK ¬φ(m)
iff N |= ¬φ(m). Hence we obtain that ⟨i, p(m)⟩ ∈ [[¬φ ∨ φ]]Mfunc(m) iff χφ(m) = i for
any i ∈ { 0, 1 }. Therefore, λx.(x1)0 and λx.⟨x1, p(x0)⟩ witness [[¬φ ∨ φ]]Mfunc ⊑s χφ and
χφ ⊑s [[¬φ ∨ φ]]Mfunc, respectively. ◀

Let us apply Lemma 44 to φ := φΠ1 and p := p1. We have already mentioned that (b) holds.
Moreover, (a) follows from the categorical equivalence Eff¬¬ ≃ Set ([10, Proposition 4.4])
and Lemma 21 (this is another transparency argument). Thus we obtain ℓEff

[[φ∨¬φ]]Eff
= ℓEff

χφ
.

In addition, the subset of natural numbers defined by φΠ1 has Turing degree ∅(1) by Post’s
theorem, so ℓEff

χφΠ1
= j∅(1) holds in the sense of Notation 41. Hence we have the equation:

jEff
Π1-LEM = jEff

φΠ1 ∨¬φΠ1
= ℓEff

[[φΠ1 ∨¬φΠ1]]Eff
= ℓEff

χφΠ1
= j∅(1) .

This argument can also be extended to jEff
Πn-LEM (Lemma 51, 52 in Appendix B). Therefore,

combining this with Lemma 42 (2) and Lemma 43, we obtain

▶ Theorem 45. For any n ≥ 0, jEff
Πn-LEM = jEff

Σn-LEM = jEff
Σn+1-DNE = j∅(n) .

On the other hand, as in van Oosten’s work [23], the least operator of Π1 ∨Π1-DNE is
equal to Lifschitz operator jLif in Eff . His argument can be lifted to Eff (n). We define a
multifunction ULif(n) :⊆ N ⇒ N by

ULif(n)(e) := { ⟨0, e⟩ | N |= φΠn+1(e0) } ∪ { ⟨1, e⟩ | N |= φΠn+1(e1) }.

Following his observation in [23], we see that the least operator of ULif(n) in Eff (n) represents
Lifschitz realizability relativized to degree ∅(n). Hence we write jLif(n) for that least operator.
Recall that jLif is strictly in between j∅ and j∅(1) . This can be generalized to j∅(n) < jLif(n) <

j∅(n+1) for any n ≥ 0 since the proof can be relativized to ∅(n).
By using a “realizer” of φΠn+1 (pn+1 in Lemma 50), we can prove the equivalence of

[[ψ]]Eff(n) ↣ [[¬¬ψ]]Eff(n) and ULif(n) as subobject in Eff (n), where ψ is a universal formula
for Πn+1 ∨Πn+1. By reasoning similarly to the proof of Theorem 45, we conclude

▶ Theorem 46. For any n ≥ 0, jEff
Πn+1∨Πn+1-DNE = jLif(n) .

We have thus determined all least operators of semi-classical axioms in Eff (Figure 5).

S. Nakata 42:17

Σ0-LEM

Π1 ∨ Π1-DNE Π1-LEM

Σ1-DNE

Σ1-LEM

Π2 ∨ Π2-DNE Π2-LEM

Σ2-DNE

Σ2-LEM

Π3 ∨ Π3-DNE Π3-LEM

Σ3-DNE

· · ·

j∅ j∅(1) j∅(2)

jLif jLif(1) jLif(2)

Figure 5 Summary of least operators in Lop(Eff).

5 Conclusion

As we explained in Subsection 3.1, least dense operators behave as “invariants” under HA-
provability. Figure 5 gives us the complete information about separation of semi-classical
axioms in Figure 1 by subtoposes of Eff .

▶ Corollary 47.
(1) Any two axioms belonging to different circles in Figure 5 are separable.
(2) Those in the same circle are never separable by any subtopos of Eff .

While the first part of Corollary 47 is already established in [1], the second part is
genuinely our original contribution. In addition:

We have a complete characterization of separability of semi-classical axioms by a subtopos.
Take Σn-DNE and Πn ∨Πn-DNE as an example. It follows from the nature of least
operator that for any k ∈ Lop(Eff), Effk separates them if and only if j∅(n−1) ≤ k and
jLif(n−1) ̸≤ k. This is a refinement of [1] and indicates that realizability notions they used
are “optimal” in the sense of minimality.
In addition to the separation results explained above, [1] also separates Πn-LEM and
Σn-LEM by using monotone modified realizability. As a by-product of Corollary 47 (2),
we find that this realizability notion cannot be captured by a subtopos of Eff . We are
thus led to look for another suitable topos. A candidate is the topos Eff·→· proposed by
van Oosten [24], that contains the modified realizability topos in addition to Eff . In future
work, we plan to explore such richer toposes and to determine the least dense operators
of various axioms in them.
Our detailed analysis of transparency gives a systematic account on previous work on
least dense operators by Caramello and van Oosten. Since we have worked on an arbitrary
topos, our results in Section 3 may also be applied to another semantics instead of
realizability, sheaf semantics including Kripke frame semantics and Beth semantics [3].
The major advantage of our framework is that we acquire a new methodology to prove
impossibility of separation (Corollary 47 (2)). In further study of intuitionistic arithmetic,
other variants of semi-classical axioms have been proposed, but many of them have not
yet been separated [9]. The least dense operators may allow us to analyze the “difficulty”
of separation from a topos-theoretic point of view.

References

1 Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An arithmetical
hierarchy of the law of excluded middle and related principles. In Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (LICS’04), pages 192–201, 2004.

CSL 2024

42:18 Local Operators and Separation of Semi-Classical Axioms

2 Stefano Berardi and Silvia Steila. Ramsey theorem for pairs as a classical principle in
intuitionistic arithmetic. In 19th International Conference on Types for Proofs and Programs
(TYPES 2013), pages 64–83, 2014.

3 Guram Bezhanishvili and Wesley H. Holiday. A semantic hierarchy for intuitionistic logic.
Indagationes Mathematicae, 30(3):403–469, 2019.

4 Andreas Blass and Andrej S̆c̆edrov. Boolean classifying topoi. Journal of Pure and Applied
Algebra, 28(1):15–30, 1983.

5 Olivia Caramello. De Morgan classifying toposes. Advances in Mathematics, 222(6):2117–2144,
2009.

6 Olivia Caramello. Topologies for intermediate logics. Mathematical Logic Quarterly, 60(4):335–
347, 2014.

7 Olivia Caramello. Theories, Sites, Toposes Relating and studying mathematical theories through
topos-theoretic ’bridges’. Oxford University Press, 2018.

8 Eric Faber and Jaap van Oosten. More on geometric morphisms between realizability toposes.
Theory and Applications of Categories, 29:874–895, 2014.

9 Makoto Fujiwara and Taishi Kurahashi. Refining the arithmetical hierarchy of classical
principles. Mathematical Logic Quarterly, 68(3):318–345, 2022.

10 J. M. E. Hyland. The effective topos. In The L. E. J. Brouwer Centenary Symposium, volume
110 of Stud. Logic Foundations Math. North-Holland, pages 165–216, 1982.

11 J. M. E. Hyland, Peter T. Johnstone, and Andrew M. Pitts. Tripos theory. Math. Proc.
Cambridge Philos. Soc., 88:205–232, 1980.

12 Peter T. Johnstone. Conditions related to De Morgan’s law. Applications of sheaves, 753:479–
491, 1979.

13 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, 2 vols. Oxford
Logic Guides 43, 44. Clarendon Press, 2002.

14 Takayuki Kihara. Lawvere-tierney topologies for computability theorists. Transactions of the
American Mathematical Society, Series B, pages 48–85, 2023.

15 Stephen C. Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic
Logic, 10:109–124, 1945.

16 Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In
A. Heyting, editor, Constructivity in Mathematics, pages 101–128. Amsterdam: North-Holland
Pub. Co., 1959.

17 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986.

18 Vladimir Lifschitz. CT0 is stronger than CT0!. Proceedings of the American Mathematical
Society, 73:101–106, 1979.

19 Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Springer-Verlag, 1992.

20 Wesley Phoa. Relative computability in the effective topos. Mathematical Proceedings of the
Cambridge Philosophical Society, 106:419–422, 1989.

21 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, Vol.I, volume 121
of Lecture Notes in Mathematics. Elsevier, 1988.

22 Anne Sjerp Troelstra (ed.). Metamathematical investigation of intuitionistic arithmetic and
analysis, volume 344 of Studies in Logic and the Foundations of Mathematics. Springer-Verlag,
1973.

23 Jaap van Oosten. Two remarks on the Lifschitz realizability topos. Journal of Symbolic Logic,
61(1):70–79, 1996.

24 Jaap van Oosten. The modified realizability topos. Journal of Pure and Applied Algebra,
116:273–289, 1997.

25 Jaap van Oosten. Realizability: an introduction to its categorical side, volume 152 of Studies
in Logic and the Foundations of Mathematics. Elsevier, 2008.

S. Nakata 42:19

A TrpE and Π3

We here give an example of a Π3-formula that is non-transparent. In fact, non-transparent
formulas are easily found as in the following lemma.

▶ Lemma 48. Let E be a topos and φ a formula such that E |= φ but E¬¬ ̸|= φ. Then
⟨φ⟩E ̸= ∅ and φ has no least dense operator in E. So φ is not transparent in E.

Proof. By assumption, we have idΩ ∈ ⟨φ⟩E , so ⟨φ⟩E ̸= ∅. Now assume that φ has least dense
operator jE

φ in E . Then, jE
φ = idΩ holds by minimality. This leads to ⟨φ⟩E = DLop(E), and

in particular ¬¬ ∈ ⟨φ⟩E , which contradicts the assumption that E¬¬ ̸|= φ. ◀

This suggests that “constructively true” but “classically false” formulas are likely to be non-
transparent. Let us consider the effective topos Eff and recall that for a closed LA-formula
ψ, Eff |= ψ iff ψ is Kleene realizable. With this in mind, define Σ2-formula H(x, y) to be
the graph of the characteristic function of Halting problem. That is,

H(x, y) := ∃v∀u((T (x, x, u)→ y = 1) ∧ (¬T (x, x, v)→ y = 0)).

Furthermore, define Church’s thesis with respect to H by

CTH0 := ∀x∃yH(x, y)→ ∃e∀x∃w(H(x, U(w)) ∧ T (e, x, w)),

where U is Kleene’s U -function. Then Eff |= CTH0 is obtained by the fact that Church’s
thesis is Kleene realizable [22]. However, Eff¬¬ ̸|= CTH0 because Eff¬¬ is equivalent to the
category Set of sets.

▶ Theorem 49. Π3 ̸⊆ TrpEff in the effective topos Eff .

Proof. It is obvious that the antecedent of CTH0 is Π3 and the consequent is equivalent to a
Σ4-formula in HA. In addition, the converse of CTH0 is provable in HA.

Now assume that Π3 ⊆ TrpEff . Then Σ4 ⊆ TrpEff by Lemma 25 (1), hence CTH0 has
least dense operator in Eff by Lemma 24 (2). This contradicts Lemma 48. ◀

B Proof of Theorem 45 in the general case

To show Theorem 45, we provide generalized versions of p1, s2 and Lemma 44 in Subsection 4.2.
Recall that S(e, x) denotes the function from the parameter theorem. Then we can inductively
define universal formulas for Σn and Πn by φΣn+1 := ∃y φΠn

(S(e, x), y) and φΠn+1 :=
∀y φΣn

(S(e, x), y).

▶ Lemma 50. For every n ≥ 0, there are a total ∅(n)-computable function pn+1(e, x) and a
partial ∅(n)-computable function sn+1(e, x) such that the following two conditions hold:
(1) For any e, x ∈ N, N |= φΠn+1(e, x) implies pn+1(e, x) r(n)

K φΠn+1(e, x).
(2) For any e, x ∈ N, N |= φΣn+1(e, x) implies sn+1(e, x) r(n)

K φΣn+1(e, x).

Proof. By induction on n. For n = 0, we have already given p1(e, x) := λw.0. Define a
partial computable function s1 by s1(e, x) := ⟨w0, 0⟩, where w0 is the code of computation
history of e · x when e · x ↓. It is clear from the description of φΣ1(e, x) that (2) holds.

Next assume that the statement holds for n. Let us define pn+2(e, x) := λy.sn+1(S(e, x), y)
and sn+2(e, x) := ⟨y0, pn+1(S(e, x), y0)⟩, where y0 is the least number such that
φΠn+1(S(e, x), y0) is true in N if it exists. Note that pn+2 can be obtained as a total
∅(n)-computable function and sn+2 as a partial ∅(n+1)-computable one. Then, for any
e, x ∈ N,

CSL 2024

42:20 Local Operators and Separation of Semi-Classical Axioms

N |= φΠn+2 (e, x) =⇒ ∀y ∈ N N |= φΣn+1 (S(e, x), y)

=⇒ ∀y ∈ N sn+1(S(e, x), y) r(n)
K φΣn+1 (S(e, x), y)

=⇒ pn+2(e, x) r(n+1)
K ∀y φΣn+1 (S(e, x), y)

N |= φΣn+2 (e, x) =⇒ ∃y ∈ N N |= φΠn+1 (S(e, x), y)

=⇒ ∃y ∈ N (N |= φΠn+1 (S(e, x), y) ∧ pn+1(S(e, x), y) r(n)
K φΠn+1 (S(e, x), y))

=⇒ sn+2(e, x) r(n+1)
K ∃y φΠn+1 (S(e, x), y). ◀

The condition (2) of Lemma 50 implies that λex.λm.sn+1(e, x) realizes
∀(¬¬φΣn+1 → φΣn+1) under ∅(n)-realizability. This means that we have confirmed
Lemma 43.

Next, let us generalize Lemma 44. It is simply given by relativizing to ∅(n), so the proof
is obtained exactly in the same way.

▶ Lemma 51. Let φ(x) be an LA-formula and let χφ be the characteristic function of
{m ∈ N | N |= φ(m) }. Suppose further that there is a total ∅(n)-computable function p(x)
such that the following two conditions hold:
(a) For any m ∈ N, Eff (n) |= φ(m) implies N |= φ(m).
(b) For any m ∈ N, N |= φ(m) implies p(m) r(n)

K φ(m).
Then [[¬φ ∨ φ]](n)

Mfunc ≡s χφ in SubEff(n)(N).

Let φ := φΠn+1 and p := pn+1. Note that φ ∈ Πn+1 is transparent in Eff (n) by Lemma 29
and Lemma 43, so φ ∨ ¬φ has least operator jEff(n)

φ∨¬φ in Eff (n). By Lemma 51 and the same
reasoning as in the proof for n = 0, we have the equation below in Lop(Eff (n)):

jEff(n)

φ∨¬φ = ℓEff(n)

[[φ∨¬φ]]Eff(n)
= ℓEff(n)

χφ
. (♦)

The following lemma is the final piece to establish Theorem 45.

▶ Lemma 52. Let j be a local operator in a topos E and U ↣ X a subobject in E. Further
suppose that j ≤ ℓE

U , where ℓE
U is the least operator of U in E. Then ℓE

U ∈ Lop(E)≥j

corresponds to the least operator ℓEj

LjU
∈ Lop(Ej) of the subobject LjU ↣ LjX in Ej in the

sense of Notation 30.

Proof. Fix k ∈ Lop(E)≥j and the corresponding local operator kj in Lop(Ej). Note that
Lk ≃ Lkj

◦ Lj holds since Ek is equal to the subtopos (Ej)kj
of Ej corresponding kj . Hence

LkU ↣ LkX is an isomorphism if and only if so is Lkj
(LjU) ↣ Lkj

(LjX). Recalling
Lemma 6, we obtain that ℓE

U ≤ k in Lop(E)≥j iff U is k-dense in E iff Lkj (LjU) is kj-dense
in Ej iff ℓ

Ej

LjU
≤ kj in Lop(Ej). This means that ℓE

U corresponds to ℓEj

LjU
. ◀

In particular, considering X := N , U := χφ and j := j∅(n) in Eff , we have the correspond-
ence between ℓEff

U = j∅(n+1) ∈ Lop(Eff) and ℓEff(n)

LjU
∈ Lop(Eff (n)). In addition, ℓEff(n)

LjU
can

be regarded as the least operator ℓEff(n)

χφ
because the subobject LjU ↣ LjN(= Nj) can be

described by a multifunction χφ in Eff (n). So we have the following correspondence:

ℓEff(n)

χφ
∈ Lop(Eff (n)) ←→ j∅(n+1) ∈ Lop(Eff). (♠)

Thus, combining this correspondence (♠) with the equation (♦), we obtain

▶ Theorem 53. For any n ≥ 0, jEff(n)

Πn+1-LEM ∈ Lop(Eff (n)) corresponds to j∅(n+1) ∈ Lop(Eff).

S. Nakata 42:21

Finally, we prove Theorem 45 by using the iteration argument developed in Subsection 3.4.

Proof of Theorem 45. It is sufficient to show that jEff
Πn-LEM = j∅(n) by induction on n. The

base case is already discussed in Subsection 4.2.
Assume that it holds for n; in particular, k := jEff

Σn-LEM = j∅(n) holds. Recall that
Πn+1-LEM implies Σn-LEM over HA (Figure 1). By Lemma 32, the least operator
jEff

Πn+1-LEM of Πn+1-LEM in Eff corresponds to the least operator jEffk

Πn+1-LEM of that in

Effk, which is described as jEff(n)

Πn+1-LEM. Therefore, we conclude jEff
Πn+1-LEM = j∅(n+1) by

Theorem 53. ◀

CSL 2024

Coherence by Normalization for Linear
Multicategorical Structures
Federico Olimpieri # Ñ

School of Mathematics, University of Leeds, UK

Abstract
We establish a formal correspondence between resource calculi and appropriate linear multicategories.
We consider the cases of (symmetric) representable, symmetric closed and autonomous multicategories.
For all these structures, we prove that morphisms of the corresponding free constructions can be
presented by means of typed resource terms, up to a reduction relation and a structural equivalence.
Thanks to the linearity of the calculi, we can prove strong normalization of the reduction by
combinatorial methods, defining appropriate decreasing measures. From this, we achieve a general
coherence result: morphisms that live in the free multicategorical structures are the same whenever
the normal forms of the associated terms are equal. As further application, we obtain syntactic
proofs of Mac Lane’s coherence theorems for (symmetric) monoidal categories.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Categorical semantics

Keywords and phrases Coherence, Linear Multicategories, Resource Calculi, Normalization

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.43

Related Version Full Version: https://arxiv.org/abs/2302.05755

Funding Federico Olimpieri: This work was supported by the US Air Force Office for Scientific
Research under award number FA9550-21-1-0007.

1 Introduction

The basis of the celebrated Curry-Howard-Lambek correspondence is that logical systems,
typed λ-calculi and appropriate categorical constructions are different presentations of the
same mathematical structure. An important consequence of the correspondence is that we
can give syntactical presentations of categories, that can be exploited to prove general results
by means of elementary methods, such as induction. At the same time, we can use categorical
methods to obtain a more modular and clean design of programming languages. The classic
example is given by simply typed λ-calculi and cartesian closed categories [22]. The idea
is well-known: morphisms in free cartesian closed categories over sets are identified with
equivalence classes of λ-terms up to βη-equality. Another important setting is the linear
one, where we consider monoidal categories instead of cartesian ones. In this case, linear
logic [11] enters the scene: symmetric monoidal closed categories correspond to linear λ-calculi.
Computationally, this is a huge restriction, since linear terms can neither copy nor delete
their inputs during computation. A refinement of this picture can be obtained by switching
from categories to multicategories [21]. These structures were indeed first introduced by
Lambek to achieve a categorical framework formally closer to typed calculi/proof systems.
Morphisms of multicategories can have multiple sources f : a1, . . . , an → a, recalling the
structure of a type judgment x1 : a1, . . . , xn : an ⊢ f : a.

We are interested in establishing a Curry-Howard-Lambek style correspondence for
appropriate linear multicategories and then employ it to obtain coherence results. When we
deal with complex structures such as tensor products, it becomes crucial to have a decision
process to establish whether two arrows are equal. This is called a coherence problem. The

© Federico Olimpieri;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 43; pp. 43:1–43:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.olimpieri@leeds.ac.uk
https://lipn.univ-paris13.fr/~olimpieri
https://orcid.org/0000-0003-1485-5360
https://doi.org/10.4230/LIPIcs.CSL.2024.43
https://arxiv.org/abs/2302.05755
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Coherence by Normalization for Linear Multicategorical Structures

main example is Mac Lane’s original result [24], which states that all structural diagrams
in monoidal categories commute. If one considers more complex structures, the class of
commutative diagrams is normally more restrictive. In the case of closed monoidal categories,
Kelly and Mac Lane [17] associated graphs to structural morphisms, obtaining the following
coherence result: two structural arrows between appropriate objects1 are equal whenever
their graph is the same. We aim to achieve coherence results for linear multicategories,
building on Lambek’s and Mints [28] intuition that coherence problems can be rephrased in
the language of proof theory and obtained by exploiting appropriate notions of normalization
for proofs/terms [21]. We do so by establishing a formal connection between resource calculi
and linear multicategorical structures.

Main Results. We study free multicategorical constructions for (symmetric) representable
and closed structures. Representability consists of the multicategorical monoidal structure [12].
We prove that free linear multicategories built on appropriate signatures can be presented by
means of typed resource calculi, where morphisms correspond to equivalence classes of terms
up to a certain equivalence. We handle the tensor product via pattern-matching, presented
as a syntactic explicit substitution. The definition of our type systems is given in natural
deduction style: we have introduction and elimination rules for each type constructor. Our
work is conceptually inspired by an “adjoint functors point-of-view”. A basic fact of the classic
Curry-Howard-Lambek correspondence is that βη-equality can be expressed by means of the
unit (η) and the counit (β) of the adjunction between products and arrow types. We generalize
this observation to the multicategorical setting, thus introducing an appropriate reduction
relation that corresponds to the representable structure. Indeed, a fundamental aspect of
our work consists of the in depth study of resource terms rewriting. We introduce confluent
and strongly normalizing reductions, that express the appropriate equalities. In order to do
so, we exploit action-at-distance to define our operational semantics, that has proven to be a
successful approach to calculi with explicit substitution [18, 1, 2]. An important feature of
this approach is to distinguish the operational semantics, defined by action-at-distance, from
a notion of structural equivalence, that deals with commutations of explicit substitution with
the other syntactic constructors. This approach overcomes the classic difficulties of rewriting
systems with explicit substitution, allowing us to obtain confluence and strong normalization
in an elegant way. In this way, we get a general coherence result: two structural morphisms
of linear multicategories are equal whenever the normal forms of their associated terms are
equal. In the context of (symmetric) representable multicategories, we apply this result to
obtain a syntactic proof of stronger coherence theorems, that can be seen as multicategorical
versions of the classic MacLane coherence theorems for (symmetric) monoidal categories [24].
The coherence theorem for representable multicategories was already proved in [12]. We give
an alternative type-theoretic proof for it. To our knowledge, the other coherence results that
we present are new. Moreover, exploiting the equivalence between monoidal categories and
representable multicategories established by Hermida [12], we are able to obtain the original
Mac Lane’s results as corollaries of our coherence theorems.

Related Work. Building on Lambek’s original ideas, several researchers have advocated
the use of multicategories to model computational structures. Hyland [14] proposed to
rebuild the theory of pure λ-calculus by means of cartesian operads, that is one-object
cartesian multicategories. The idea of seeing resource calculi as multicategories was first

1 A restriction on the type of morphisms is needed due to the presence of the monoidal unit.

F. Olimpieri 43:3

employed by Mazza et al. [26, 25]. We build on their approach, showing that these calculi
correspond to appropriate universal constructions, namely free linear multicategories. The
first resource calculus has been introduced by Boudol [6]. A similar construction was also
independently considered by Kfoury [19]. Resource terms have gained special interest thanks
to the definition by Ehrhard and Regnier of the Taylor expansion for λ-terms [9]. From this
perspective, the resource calculus is a theory of approximation of programs and has been
successfully exploited to study the computational properties of λ-terms [3, 35, 26, 30]. Our
syntax is very close to the one of polyadic calculi or rigid resource calculi [26, 34]. We need
to extend the standard operational semantics, adding an η-reduction and a reduction for
explicit substitution. Our η-reduction is built from an expansion rule instead of a contraction,
since η-expansion naturally fits the adjoint point-of-view, corresponding the the unit of the
considered adjunction. In dealing with the technical rewriting issues, we follow [28, 16, 8],
obtaining a terminating η-reduction. As already discussed, we handle the explicit substitution
following Accattoli and Kesner methodology [18, 2, 1].

The calculi we present are also strongly related to intuitionistic linear logic [20, 4]. It
is well-known that resource calculi can be seen as fragments of ILL [26, 25]. While ILL is
presented via sequent calculus, we chose a natural deduction setting, this latter being directly
connected to the “adjoint functors” point-of-view. Accattoli and Kesner approach to explicit
substitution allows us to bypass the cumbersome commutation rules needed for ILL rewriting.
Moreover, resource calculi are closer to the multicategorical definitions (their constructors
being unbiased [23], i.e., k-ary). Our handling of symmetries is also more canonical and
explicit. We use the properties of shuffle permutations, in a way similar to Hasegawa [29]
and Shulman [33], also inspired by our ongoing work on bicategorical semantics [27]. In this
way, the type system is syntax directed and we are able to prove that, given a term, there
exists at most one type derivation for it. The pioneering work of Mints [28] is very close
to our perspective. Mints introduced a linear λ-calculus to study the coherence problem of
closed category by the means of normalization. We build on that approach, extending it to
several different structures and to the multicategorical setting.

Shulman’s type theory for (symmetric) monoidal categories [33] does not employ explicit
substitutions, being able to handle tensors in way similar to what happens with standard
product types. Our proposal differs considerably from Shulman’s, both in purpose and
in implementation. While Shulman’s goal is to start from the categorical structure and
define a “practical” type theory to make computations, ours consists of establishing a formal
correspondence between two independent worlds: resource calculi and linear multicategories
and then employ it to prove results about the categorical structure.

Proof-theoretic methods to establish coherence results have been widely exploited and
studied also in recent times, see for instance [7, 36]. Graphical approaches to monoidal
structures [31] have been widely developed. Particularly interesting for our work are the
Kelly-Mac Lane graphs [17], This approach has been extended via linear logic, thanks to
the notion of proof-net [5, 13]. However, the handling of monoidal units needs extra care
from this perspective, while the terms calculi approach can account for them without any
particular complication.

2 Preliminaries

We introduce some concepts, notations and conventions that we will use in the rest of the
paper.

CSL 2024

43:4 Coherence by Normalization for Linear Multicategorical Structures

Integers, Permutations and Lists. For n ∈ N, we set [n] = {1, . . . , n} and we denote by
Sn the symmetric group of order n. The elements of Sn are permutations, that we identify
with bijections [n] ∼= [n]. Given σ, τ ∈ Sn, we denote by σ ◦ τ their composition. Given
σ ∈ Sn, τ ∈ Sm we denote by σ ⊕ τ : [n + m] ∼= [n + m] the evident induced permutation.
We now introduce the notion of shuffle permutation, that is crucial to obtain canonical type
derivations for resource terms with permutations (Proposition 32).

▶ Definition 1 (Shuffles). Let n1, . . . , nk ∈ N with n =
∑k

i=1 ni. A (n1, . . . , nk)-shuffle is a
bijection σ :

∑k
i=1[ni] ∼= [n] such that the composite [ni] ↪→

∑k
i=1[ni] ∼= [n] is monotone for

all i ∈ [k]. We denote the set of all (n1, . . . , nk)-shuffles as shu(n1, . . . , nk).

The relevant result on shuffles is the following, that induces canonical decomposition of
arbitrary permutations over sums of integers.

▶ Lemma 2. Every permutation σ ∈ S∑k

i=1
ni

can be canonically decomposed as τ0 ◦(
⊕k

i=1 τi)
with τ0 ∈ shu(n1, . . . , nk) and τi ∈ Sni

for i ∈ [k].

Given a set A and a list of its elements γ = a1, . . . , ak and σ ∈ Sk we set γ ·σ = aσ(1), . . . , aσ(k)
for the symmetric group right action. We write len(γ) for its length. We denote the
stabilisers for this action as Stab(γ) = {σ ∈ Sk | γ · σ = γ}. Given lists γ1, . . . , γk, we set
shu(γ1, . . . , γk) = shu(len(γ1), . . . , len(γk)).

Multicategories. Multicategories constitute the main object of our work. A multicategory
is a multigraph that comes equipped with an appropriate composition operation.

▶ Definition 3. A multigraph G is given by the following data:
A collection of nodes G0 ∋ a, b, c . . .

For every a1, . . . , an, b ∈ G0, a collection of multiarrows G(a1, . . . , an; b) ∋ s, t, u . . .

We denote by arr(G) the set of all multiarrows of G.

▶ Definition 4. A multicategory is a multigraph G equipped with the following additional
structure:

A composition operation − ◦ ⟨−, . . . , −⟩ : G(a1, . . . , an; b) ×
∏n

i=1 G(γi, ai) →
G(γ1, . . . , γn; a).
identities ida ∈ G(a, a).

The former data is subjected to evident associativity and identity axioms. We call objects
the nodes of G and morphisms its multiarrows.

A multicategory can be equipped with structure. We now introduce the notions of
symmetric, closed and representable multicategories.

▶ Definition 5. A multicategory M is symmetric if, for σ ∈ Sk we have a family of bijections
− · σ : M(γ, a1, . . . , ak; a) ∼= M(γ, aσ(1), . . . , aσ(k); a) that satisfies additional axioms [23].

▶ Definition 6. A (right) closed structure for a multicategory M is given by a family of
objects (a1 ⊗ · · · ⊗ ak) ⊸ a ∈ M and arrows eva1,...,ak,a : a1, . . . , ak, (a1 ⊗ · · · ⊗ ak) ⊸ a → a

, for a1, . . . , ak, a ∈ M, such that the maps

ev ◦ ⟨−, ida1 , . . . , idak
⟩ : M(γ; (a1 ⊗ · · · ⊗ ak) ⊸ a) → M(γ, a1, . . . , ak; a)

induce a bijection, multinatural in γ and natural in a. We write λ(−) to denote the inverses
to these maps.

F. Olimpieri 43:5

▶ Definition 7. A representable structure for a multicategory M is given by a family of objects
(a1 ⊗ · · · ⊗ ak) ∈ M and arrows rea1,...,ak

: a1, . . . , ak → (a1 ⊗ · · · ⊗ ak), for a1, . . . , ak ∈ M,

such that he maps

− ◦ ⟨idγ , re, idδ⟩ : M(γ, (a1 ⊗ · · · ⊗ ak), δ; a) → M(γ, a1, . . . , ak, δ; a)

induce a bijection, multinatural in γ, δ and natural in a. We write let(−) to denote the
inverses to these maps.

We use the name autonomous multicategories to denote symmetric representable closed
multicategories. We have categories of representable multicategories (RepM), symmetric
representable multicategories (RepsM), closed multicategories (ClosedM) and autonomous
multicategories (autoM), whose morphisms are functors that preserve the structure on the
nose.

Signatures. We introduce signatures for the structures we consider.

▶ Definition 8. A representable signature is a pair ⟨At, R⟩ where At is a set of atoms At
and R is a multigraph with nodes generated by the following inductive grammar:

R0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) (k ∈ N).

▶ Definition 9. A closed signature L is a pair ⟨At, L⟩ where At is a set of atoms At and L
is a multigraph with with nodes generated by the following inductive grammar:

L0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) ⊸ a (k ∈ N).

▶ Definition 10. An autonomous signature is a pair ⟨At, H⟩ where At is a set of atoms At
and H is a multigraph with nodes generated by the following inductive grammar:

H0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) | (a1 ⊗ · · · ⊗ ak) ⊸ a (k ∈ N).

A signature is discrete whenever the collections of multiarrows are empty. We shall often
identify a signature with its graph. There are categories ClosedSig, RepSig and AutoSig for,
respectively, closed, representable and autonomous signatures. We have forgetful functors
from the categories ClosedM, RepM and autoM, which we denote by (−). One of the main
goals of this paper is to build the left adjoints to those functors via appropriate resource
calculi.

Monoidal Categories vs Representable Multicategories. In order to transport coherence
results from (symmetric) representable multicategories to ordinary (symmetric) monoidal
categories, we shall employ an equivalence result due to Hermida [12, Theorem 9.8]. Let
Mon be the category of monoidal categories and lax monoidal functors.

▶ Theorem 11 ([12]). There is an equivalence of categories RepM ≃ Mon.

rep(−)

mon(−)

The representable structure of a monoidal category (M, ⊗M, 1) is given by (a1 ⊗M · · · ⊗M
ak) = (a1) ⊗M (a2 ⊗M (· · · ⊗M ak) . . .). Then composition needs a choice of structural
isomorphisms of M to be properly defined [12, Definition 9.2]2. The former equivalence can
be extended to the symmetric case in the natural way.

2 If we assume Mac Lane’s Coherence Theorem, the choice is unique. However, we shall not do so, since
we are going to exploit Theorem 11 to transport an appropriate coherence theorem on representable
multicategories to ordinary monoidal categories, thus obtaining the Mac Lane’s result as corollary.

CSL 2024

43:6 Coherence by Normalization for Linear Multicategorical Structures

f ∈ R(a1, . . . , an; b) γ1 ⊢ s1 : a1 . . . γn ⊢ sn : an

(γ1, . . . , γn) ⊢ f(s1, . . . , sn) : b

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak

γ1, . . . , γk ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

a ∈ R0

x : a ⊢ x : a

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ, x1 : a1, . . . , xk : ak, δ′ ⊢ t : b

δ, γ, δ′ ⊢ t[xa1
1 , . . . , x

ak
k := s] : b

C ::= [·] | ⟨s1, . . . , C, . . . , sk⟩ | C[x⃗ := t] | s[x⃗ := C] | f(s1, . . . , C, . . . , sk).
E ::= [·] | ⟨s1, . . . , E, . . . , sk⟩ | E[x⃗ := s] | s[x⃗ := E] (E ̸= [·]) | f(s1, . . . , E, . . . , sk).
L ::= [·] | L[x⃗ := t].

Figure 1 Representable Type System on a signature R and contexts with one hole. Types are
the elements of R0.

Notations and Conventions. Given a set of terms A and a reduction relation →ϵ⊆ A×A, we
denote respectively as ↠ϵ and →∗

ϵ its transitive closure and its transitive and reflexive closure.
We denote by =ϵ⊆ A × A the smallest equivalence relation generated by →ϵ . For a confluent
reduction, we denote by nf(s)ϵ the normal form of s, if it exists. Given an equivalence relation
e ⊆ A × A, and s ∈ A, we denote by [s]e the corresponding equivalence class. We will often
drop the annotation and just write [s]. We fix a countable set of variables V, that we will
use to define each calculi. Terms are always considered up to renaming of bound variables.
Given terms s, t1, . . . , tk and variables x1, . . . , xk we write s{t1, . . . , tk/x1, . . . , xk} to denote
capture-avoiding substitutions. We often use the abbreviation s{t⃗/x⃗}. To define reduction
relations, we rely on appropriate notions of contexts with one hole. Given a context with
hole C and a term s we write C[s] for the capture-allowing substitution of the holes of C
by s. The size of a term size (s) is the number of syntactic constructors appearing in its
body. The calculi we shall introduce are typed à la Church, but we will constantly keep the
typing implicit, to improve readability. Given γ ⊢ s : a we write C[δ ⊢ p : b] = s meaning
that C[p] = s and the type derivation of γ ⊢ p : b contains a subderivation with conclusion
δ ⊢ p : b. Given a typing judgment x1 : a1, . . . , xn : an ⊢ s : a we shall consider variables
appearing in the typing context as bound and we will work up to renaming of those variables.
We write π ▷ γ ⊢ s : a meaning that π is a type derivation of conclusion γ ⊢ s : a. For any
typing rule with multiple typing contexts, we assume those contexts to be disjoint.

3 A Resource Calculus for Representable Multicategories

We present our calculus for representable multicategories. We begin by introducing its
syntax and typing, then we discuss its operational semantics. We prove confluence and
strong normalization for its reduction. We show that equivalence classes of terms modulo
reduction and a notion of structural equivalence define the morphisms of free representable
multicategories over a signature. As an application of this result, we give a proof of the
coherence theorem for representable multicategories.

Representable Terms. Let R be a representable signature. The representable resource
terms over R are defined by the following inductive grammar:

Λrep(R) ∋ s, t ::= x ∈ V | ⟨s1, . . . , sk⟩ | s[xa1
1 , . . . , xak

k := t] | f(s1, . . . , sk)

F. Olimpieri 43:7

for k ∈ N and f ∈ arr(R), ai ∈ R. A term of the shape ⟨s1, . . . , sk⟩ is called a list. A term
of the shape s[x1, . . . , xk := t] is called an (explicit) substitution. Variables under the scope
of an explicit substitution are bound. Given a term s, we denote by ST(s) the set of its
subterms defined in the natural way.
▶ Remark 12. Our calculus follows the linear logic tradition of modelling the tensor product
structure by means of a let constructor [4]. We opted for the syntactic choice of an ex-
plicit substitution s[x1, . . . , xk := t], which stands for the more verbose let expression,
let ⟨x,1 , . . . , xk⟩ := t in s. Terms of the shape f(s1, . . . , sk) are needed to capture the
multiarrows induced by the signature R.

Typing and contexts with hole for representable terms is defined in Figure 1. A context
is atomic when it contains just atomic types. We define the following subset of terms
LT = {L[⟨s1, . . . , sk⟩] | for some context L and terms si}.

▶ Remark 13. The condition about disjoint contexts grants linearity. A term is linear when
each variable appears at most once in its body. It is easy to check that, by construction, all
typed terms are linear. Moreover, given γ ⊢ s : a, the context γ is relevant, meaning that it
contains just the free variables of s.

A type of the shape (a1 ⊗ · · · ⊗ ak) is called a k-ary tensor product. We use a vector
notation to refer to arbitrary tensors, eg., a⃗, b⃗ . . . If k = 0, the type () is also called the unit.
We set Λrep(R)(a1, . . . , an; a) = {s | x1 : a1, . . . , xn : an ⊢rep s : a for some xi ∈ fv(s).}. We
observe that, given a representable term γ ⊢ s : a, there exists a unique type derivation for it.

Terms Under Reduction. We now introduce the reduction relation for representable terms.
This relation consists of the union of two different subreductions: β and η reductions, defined
in Figure 2. The structural equivalence on terms is defined as the smallest congruence on
terms generated by the rule of Figure 2. We assume that the context C does not bind any
variable of t.

▶ Remark 14. Our η-reduction consists of a restricted version of the standard notion of
η-expansion, the restriction is needed to achieve strong normalization. We build on a well-
established tradition in term rewriting [28, 16, 8]. Unrestricted η is trivially non-terminating.
Indeed, for x : (a ⊗ b) ⊢ x : (a ⊗ b) we have the non-terminating chain x →η ⟨x, y⟩[x, y :=
z] →η ⟨x, y⟩[x, y := ⟨v, w⟩[v, w := z]] →η . . . Hence, we need to forbid η-reduction on the
right side of a substitution term, that is exactly what the restricted η-contexts do. Moreover,
there is also a problem of interaction between η and β. Consider s = ⟨x, y⟩ well-typed, then
we can produce the non-terminating chain s →η ⟨v, w⟩[v, w := ⟨x, y⟩] →β s →η . . . For this
reason, the root-step of η has to be restricted too. The presence of a substitution context in
the β-rule is an action-at-distance [2], that allows to “free” possible blocked redexes, as the
following one x[x := (⟨y⟩[y := z])]. In this way, we can bypass traditional commutation rules
and retrieve good rewriting properties. Structural equivalence intuitively says that explicit
substitutions can “freely travel” in the body of a term.

We prove that typings are preserved under reduction and structural equivalence.

▶ Proposition 15 (Subject Reduction and Equivalence). Let s →rep s′ or s ≡ s′ with γ ⊢ s : a.

then γ ⊢ s′ : a.

Proof. The proof is by induction on s →rep s′ and s ≡ s′ and exploits an appropriate
substitution lemma. ◀

We now prove that the structural equivalence is a strong bisimulation for the reduction
→rep . Intuitively, this means that the equivalence does not affect terms rewriting.

CSL 2024

43:8 Coherence by Normalization for Linear Multicategorical Structures

▶ Proposition 16. If s′ ≡ s and s →rep t there exists a term t′ s.t. t′ ≡ t and s′ →rep t′.

We show that we can associate appropriate measures to terms that decrease under
reduction. For β, we just consider the size of terms. For η, we build on Mints approach [28].
We define the size of a type by induction: size (o) = 0, size (⟨a1, . . . , ak⟩) = 1+

∑
size (ai) .

Given γ ⊢ s : a we define a set of typed subterms of s: EST(s) = {δ ⊢ p : a | p ∈
ST(s) \ LT s.t. E[δ ⊢ p : a] = s for some context E}. We set η(s) =

∑
δ⊢p:a∈EST(s) size (a) .

▶ Remark 17. The size of terms decreases under β-reduction as a consequence of linearity.
Redexes cannot be copied nor deleted under reduction, since the substitution is linear. This
fact is trivially false for standard λ-calculi, where the size of terms can possibly grow during
computation. The intuition behind the η measure is that we are counting all subterms of s

on which we could perform the η-reduction. The restrictions on the shape of p ∈ EST(s) is
indeed directly derived from the ones on η-reduction.

▶ Proposition 18. The following statements hold. If s →β s′ then size (s′) < size (s); if
s →η s′ then η(s′) < η(s).

▶ Proposition 19. The reductions →β and →η are separately strongly normalizing and
confluent.

Proof. Strong normalization is a corollary of the former proposition. For confluence, first
one proves local confluence by induction and then apply Newman’s Lemma. ◀

We want to extend the result of separate strong normalization and confluence to the
whole →rep-reduction. To do so, we prove that β and η suitably commutes.

▶ Proposition 20. If s →∗
β t →∗

η t′ there exists s′ s.t. s →∗
η s′ and s′ →∗

β t′.

▶ Theorem 21. The reduction →rep is confluent and strongly normalizing.

Proof. Strong normalization is achieved by observing that any infinite reduction chain of
→rep would trigger, by Proposition 20, an infinite reduction chain for η, that is strongly
normalizing. Confluence is achieved by first proving local confluence and then by applying
Newman’s Lemma. ◀

Given s ∈ Λreps(R)(γ; a), we denote by nf(s) its unique normal form. As a corollary of
subject reduction, we get that nf(s) ∈ Λreps(R)(γ; a). We shall now present an inductive
characterization of →rep-normal terms for the case where R is a discrete signature.

▶ Definition 22. Consider the following set, inductively defined:

nf(Λrep(R)) ∋ s ::= v[x⃗1 := x1] . . . [x⃗n := xn] v ::= ⟨v1, . . . , vk⟩ | x

where k, n ∈ N, γ ⊢ p : o with o being an atomic type and δ ⊢ v : a with δ being atomic.

▶ Proposition 23. A term s ∈ Λrep(R) is a normal form for →rep iff there exists s′ ∈
nf(Λrep(R)) s.t. s ≡ s′.

Proof. (⇒) By induction on s. If s = x then s ∈ nf(Λrep(R)). If ⟨s1, . . . , sk⟩ then si are
normal form. Then we apply the IH and get s′

i ∈ nf(Λrep(R)) s.t. si ≡ s′
i. By definition

s′
i = vi[x⃗i,1 := xi,1] . . . [x⃗i,1 := xi,ni]. We then set s′ = ⟨v1, . . . , vk⟩[x⃗1,1 := x1,n1] . . . [x⃗k,1 :=

xk,nk
]. If s = p[x⃗ := q] we have that p is a normal form and q is a β-normal form. We reason

by cases on q. If q does not have η-redexes, we apply the IH and conclude in a way similar
to the list case. If q has η-redexes, since s is β normal we have that q /∈ LT. We can prove
that q = x[x⃗1 := q1] . . . [x⃗1 := qn] with qi hereditarely of the same shape. Hence we conclude
by pushing out all the substitutions from left to right. ◀

F. Olimpieri 43:9

β Root step: s[xa1
1 , . . . , xak

k := L[⟨t1, . . . , tk⟩]] →β L[s{t1, . . . , tk/x1, . . . , xk}].
η Root step: s →η x⃗[x⃗a⃗ := s] where x⃗ fresh , γ ⊢ s : a⃗, s /∈ LT.

Contextual extensions:
s →β s′

C[s] →β C[s′]
s →η s′

E[s] →η E[s′]
(→rep = →β ∪ →η).

Structural equivalence: C[s[x⃗ := t]] ≡ C[s][x⃗ := t] x⃗ /∈ fv(C).

Figure 2 Representable reduction relations and structural equivalence.

Free Representable Multicategories. Let R be a representable signature. First, we define
a multicategory RM(R) by setting ob(RM(R)) = R0 and RM(R)(γ; a) = Λrep(R)(γ; a)/∼
where ∼ = (≡ ∪ =rep). Composition is given by substitution, identities are given by variables.
The operation is well-defined on equivalence classes and satisfies associativity, identity axioms.
We also have that if s ∼ s′, then nf(s) ≡ nf(s′). We denote by ηR : R → RM(R) the evident
inclusion.

▶ Proposition 24 (Representability). We have a bijection RM(R)(γ, (a1 ⊗ · · · ⊗ ak), δ; a) ∼=
RM(R)(γ, a1, . . . , ak, δ; a) multinatural in γ, δ and natural in a, induced by the map [s] 7→
[s{⟨x1, . . . , xk⟩/x}].

Proof. Naturality follows from basic properties of substitution. Inverses are given by the
maps (−)[x⃗ := x] : RM(R)(γ, a1, . . . , ak, δ; a) → RM(R)(γ, (a1 ⊗ · · · ⊗ ak), δ; a). ◀

▶ Definition 25. Let R be a representable signature and S be a representable multicategory.
Let i : R → S be a map of representable signatures. We define a family of maps RT(i)γ,a :
Λrep(R)(γ; a) → S(i(γ); i(a)) by induction as follows:

RT(i)a,a(x) = idi(a) RT(i)γ1,...,γk,(a1⊗···⊗ak)(⟨s1, . . . , sk⟩) =
k⊗

i=1

RT(i)γi,ai (si)

RT(i)δ1,γ,δ2,a(s[x1, . . . , xk := t]) = let(RT(i)δ1,a1,...,ak,δ2,a(s)) ◦ ⟨idδ1 , RT(i)γ,(a1⊗···⊗ak)(t), idδ2 ⟩

RT(i)γ1,...,γn,a(f(s1, . . . , sn)) = i(f) ◦ ⟨RT(i)(s1), . . . , RT(i)(sn)⟩.

▶ Theorem 26 (Free Construction). Let S be a a representable multicategory and i : R → S a
map of representable signatures. There exists a unique representable functor i∗ : RM(R) → S
such that i = i∗ ◦ ηR.

Proof. The functor is defined exploiting Definition 25. ◀

Coherence Result. We fix a discrete representable signature R. We show that if s, t ∈
RM(R)(γ; a), then s = t. Our proof strongly relies on the characterization of normal forms
given in Proposition 23.

▶ Lemma 27. Let γ, γ′ be atomic contexts. If there exists a type a and normal terms s, s′

such that s, s′ ∈ Λrep(R)(γ; a) then γ = γ′ and s ≡ s′.

▶ Theorem 28. Let s, s′ be normal terms s.t. s, s′ ∈ Λrep(R)(γ; a), then s ≡ s′.

Proof. By Proposition 23, s ≡ t = (v[x⃗1 := x1] . . . [x⃗p := xp]) and s′ ≡ t′ = (v′[y⃗1 :=
x′

1] . . . [y⃗p := x′
p′]). We prove that t ≡ t′ by induction on p ∈ N. If p = 0 then t is

CSL 2024

43:10 Coherence by Normalization for Linear Multicategorical Structures

either a list or a variable. We proceed by cases. If t = x then γ = o and a = o for
some atomic type o. By the former lemma we have that t ≡ t′. If t = ⟨v1, . . . , vk⟩ the
result is again a corollary of the former lemma since, by Definition 22, γ is atomic. If
p = n + 1 then t = v[x⃗1 := x1] . . . [x⃗n+1 := xn+1] and, by definition of typing we have

xn+1 : a⃗ ⊢ xn+1 : a⃗ δ1, x⃗n+1 : a⃗, δ2 ⊢ v[x⃗1 := x1] . . . [x⃗n := xn] : a

δ1, xn+1 : a⃗, δ2 ⊢ s : a

with γ = δ1, xn+1 : a⃗, δ2. Since t′ ∈ nf(Λrep)(γ; a), there exists i ∈ N such that t′ =
v′[y⃗1 := x′

1] . . . [y⃗i := x′
i] . . . [y⃗p := x′

p′] and x′
i = xn+1. By structural equivalence we have that

t′ ≡ v′[y⃗1 := x′
1] . . . [y⃗p := x′

p′] . . . [y⃗i := xi]. By definition of typing and by the hypothesis we
have that

x′
i : a⃗ ⊢ x′

i : a⃗ δ1, x⃗i : a⃗, δ2 ⊢ v′[y⃗1 := x′
1] . . . [y⃗p′ := x′

p′] : a

δ1, xn+1 : a⃗, δ2 ⊢ s′ : a

By IH we have that v[x⃗1 := x1] . . . [x⃗p := xn] ≡ v′[y⃗1 := x′
1] . . . [y⃗p := x′

p′] . We can then
conclude that t ≡ t′, by structural equivalence. ◀

▶ Theorem 29 (Coherence for Representable Multicategories). Let [s], [t] ∈ RM(R)(γ; a). Then
[s] = [t].

▶ Theorem 30 (Coherence for Monoidal Categories). All diagrams in the free monoidal
category on a set commute.

Proof. Corollary of the former theorem and Theorem 11, by noticing that mon(RM(R)) is
the free monoidal category on the underlying set of R. ◀

4 A Resource Calculus for Symmetric Representable Multicategories

The symmetric representable terms have exactly the same syntax and operational semantics
as the representable ones. We first extend the type system in order to account for symmetries.
We then study the free constructions establishing an appropriate coherence result.

The typing is defined in Figure 3. It is easy to see that the representable type system
consists of a fragment of the symmetric one, where we just consider identity permutations.
We write γ ⊢srep s : a when we need to specify that the type judgment refers to the symmetric
representable type system. We set Λreps(R)(a1, . . . , an; a) = {s | x1 : a1, . . . , xn : an ⊢srep s :
a for some xi ∈ fv(s).}.

▶ Remark 31. The role of permutations in the type system of Figure 3 deserves some
commentary. Instead of having an independent permutation rule, variables in contexts can
be permuted only when contexts have to be merged. In this way, the system is syntax
directed. The limitation to the choice of shuffle permutation is needed to get uniqueness of
type derivations for terms. Indeed, consider s = ⟨⟨x, y⟩, z⟩. If we allow the choice of arbitrary
permutations, we could build the following derivations:

x : a ⊢ x : a y : b ⊢ y : b σ

y : b, x : a ⊢ ⟨x, y⟩ : (a ⊗ b) z : a ⊢ z : a id

y : b, x : a, z : a ⊢ s : ((a ⊗ b) ⊗ a)

x : a ⊢ x : a y : b ⊢ y : b id

x : a, y : b ⊢ ⟨x, y⟩ : (a ⊗ b) z : a ⊢ z : a σ ⊕ id

y : b, x : a, z : a ⊢ s : ((a ⊗ b) ⊗ a)

where σ is the swap. Thanks to the shuffle limitation, only the one on the left is allowed.

▶ Proposition 32 (Canonicity of Typing). If π ▷ γ ⊢ s : a and π′ ▷ γ ⊢ s : a′ then a = a′ and
π = π′.

F. Olimpieri 43:11

a ∈ R0

x : a ⊢ x : a

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak σ ∈ shu(γ1, . . . , γk)
(γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ, x1 : a1, . . . , xk : ak, δ′ ⊢ t : b σ ∈ shu(δ, γ′, δ′)
(δ, γ, δ′) · σ ⊢ t[xa1

1 , . . . , xak

k := s] : b

Figure 3 Symmetric Representable Type System on a signature R. We omit the case f(s⃗).

Proof. By induction on s. In the cases where a merging of type contexts happens, such as
the list case, we rely on the properties of shuffle permutations and on the fact that type
contexts are repetitions-free. Hence, the action of non-identity permutations on contexts is
always fixedpoint-free. ◀

▶ Proposition 33. The following rule is admissible:
γ ⊢ s : a σ ∈ Sk

γ · σ ⊢ s : a
.

Proof. Easy induction on the structure of s, exploiting Lemma 2. ◀

The reduction relation is the same as the representable one, that we know to be strongly
normalizing and confluent. We also have preservation of typing under reduction and structural
equivalence. Given s ∈ Λreps(R)(γ; a), we denote by nf(s) its unique normal form. As a
corollary of subject reduction, we get that nf(s) ∈ Λreps(R)(γ; a).

Free Symmetric Representable Multicategories. We now characterize the free symmetric
representable construction. Given a representable signature R, we define a multicategory
by setting ob(SRM(R)) = R0 and SRM(R)(γ; a) = Λreps(R)(γ; a)/(≡ ∪ =rep). Composition
is given by substitution, identities are given by variables. The operation is well-defined on
equivalence classes and satisfies associativity, identity axioms. One can prove that SRM(R) is
representable, by repeating the argument given for Proposition 24. The proof that SRM(R)
is symmetric is a direct corollary of Proposition 33:

▶ Proposition 34 (Symmetry). We have that M(γ, a1, . . . , ak; a) = M(γ; aσ(1), . . . , aσ(k); a).

▶ Example 35. An interesting example of structural equivalence is the following. Let
s = ⟨⟩[− := x][− := y] and s′ = ⟨⟩[− := y][− := x], with s, s′ ∈ Λreps(R)((), (); ()). We
have that ⟨⟩[− := x][− := y] ≡ ⟨⟩[− := y][− := x], with x : (), y : () ⊢ s : () and
y : (), x : () ⊢ s′ : (). This is the way our syntax validates the fact that permutations
of the unit type collapse to the identity permutation, since s corresponds to the identity
permutation, while s′ to the swapping of x with y.

▶ Definition 36. Let R be a representable signature and S be a symmetric representable
multicategory. Let i : R → S be a map of representable signatures. We define a family of
maps RT(i)γ,a : Λreps(R)(γ; a) → S(i(γ); i(a)) by induction as follows:

RT(i)a,a(x) = idi(a) RT(i)(γ1,...,γk)·σ,⟨a1,...,ak⟩(⟨s1, . . . , sk⟩) =

 k⊗
j=1

RT(i)γj ,aj
(sj)

 ◦ σ

RT(i)δ1,γ,δ2·σ,a(s[xa1
1 , . . . , xak

k := t]) = ((RT(i)δ1,a1,...,ak,a(s))∗ ◦ ⟨idδ1 , RT(i)γ,⃗a(t), idδ2⟩) ◦ σ.

CSL 2024

43:12 Coherence by Normalization for Linear Multicategorical Structures

▶ Theorem 37 (Free Construction). Let S be a a symmetric representable multicategory and
i : R → S a map of representable signatures. There exists a unique symmetric representable
functor i∗ such that i = i∗ ◦ ηR.

Coherence Result. Fix a discrete signature R. We shall prove that morphisms in SRM(R)
can by characterized by means of appropriate permutations of their typing context. This
will lead the following coherence result for symmetric representable multicategories: two
morphisms in SRM(R) are equal whenever their underlying permutations are the same.

We start by defining the strictification of a representable type strict(a), by induction as
follows: strict(o) = o, strict((a1 ⊗ · · · ⊗ ak)) = strict(a1), . . . , strict(ak). strict(a) is the list of
atoms that appear in the type a. We extend the strictification to contexts in the natural
way. Let s ∈ nf(Λreps(R))(γ, a) and σ ∈ Stab(strict(γ)). We define the right action of σ on s,
sσ by induction as follows:

xid = x ⟨s1, . . . , sk⟩σ◦(
⊕k

i=1
σi) = ⟨sσ1

1 , . . . , sσk

k ⟩ · σ

(s[x⃗1 := x1] . . . [x⃗n := xn])σ = (sσ)[σ(x⃗1) := x1] . . . [σ(x⃗n) := xn]

where σ(x1, . . . , xk) stands for the image of x1, . . . , xk along the permutation σ.

▶ Theorem 38. Let s ∈ nf(Λreps(R))(γ, a). There exists a unique σ ∈ Stab((strict(γ)) and a
unique non-symmetric representable normal term t such that s = tσ.

Proof. By induction on s, exploiting Proposition 32. If s = x the result is immediate. If
s = ⟨s1, . . . , sk⟩ with γ = (γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak) and γ being atomic,
by IH we have unique σ1, . . . , σk ∈ St(strict(γi)) and t1, . . . , tk ∈ nf(Λrep(A)) s.t. si = tσi

i for
i ∈ [k]. Then, by definition, s = ⟨t1, . . . , tk⟩σ◦(σ1⊗···⊗σk). Uniqueness derives by Proposition
32. If s = p[x⃗1 := x1] . . . [x⃗n := xn], By IH there exists unique σ and t s.t. p = tσ. Then
we can conclude by the fact that the action of non-identity permutations on variables is
fixedpoint-free. ◀

Let s ∈ nf(Λreps(R))(γ; a). We denote by sym(s) the unique permutation given by the
former theorem. Given s ∈ ΛrepsA(γ; a) we set sym(s) = sym(nf(s)). This definition is clearly
coherent with the quotient on terms performed in the free construction.

▶ Theorem 39. Let s, s′ ∈ nf(Λreps(R))(γ; a). If sym(s) = sym(s′) then s ≡ s′.

▶ Theorem 40 (Coherence). Let [s], [s′] ∈ SRM(A)(γ; a). If sym([s]) = sym[s′] then [s] = [s′].

▶ Theorem 41 (Coherence for Symmetric Monoidal Categories). Two morphisms in the free
symmetric monoidal categories are equal if their underlying permutations are equal.

Proof. Corollary of Theorems 11 and 40. ◀

5 A Resource Calculus for Symmetric Closed Multicategories

We consider the case of symmetric closed multicategories, which is orthogonal to the rep-
resentable structures we introduced in the previous sections. This calculus corresponds to
the resource version of linear λ-calculus, where we have unbiased k-ary λ-abstraction and
(linear) application. We begin by defining the terms and their typings, then proceed to
introducing their operational semantics. We conclude by characterizing the free construction
via well-typed equivalence classes of terms.

F. Olimpieri 43:13

a ∈ L0

x : a ⊢ x : a

γ, x1 : a1, . . . , xk : ak ⊢ s : b

γ ⊢ λ⟨xa1
1 , . . . , xak

k ⟩.s : (a1 ⊗ · · · ⊗ ak) ⊸ b

γ0 ⊢ s : (a1 ⊗ · · · ⊗ ak) ⊸ b γ1 ⊢ t1 : a1 . . . γk ⊢ tk : ak σ ∈ shu(γ0, . . . , γk)
(γ, δ) · σ ⊢ s⟨t1, . . . , tk⟩ : b

C ::= C ::= [·] | s⟨s1, . . . , C, . . . , sk⟩ | C⟨s1, . . . , sk⟩ | λ⟨x1, . . . , xk⟩.C | f(s1, . . . , C, . . . , sk).
E ::= [·] | s⟨s1, . . . , E, . . . , sk⟩ | E⟨s1, . . . , sk⟩ (E ̸= [·]) | λ⟨x1, . . . , xk⟩.E | f(s1, . . . , E, . . . , sk).

Figure 4 Symmetric closed type system on a signature L and contexts with one hole. Types are
the elements of L0. We omit the case of f(s⃗).

β Root-Step: (λ⟨xa1
1 , . . . , xak

k ⟩.s)⟨t1, . . . , tk⟩ →β s{t1, . . . , tk/x1, . . . , xk}.

η Root-Step: s →η λx⃗a⃗.(sx⃗) where x⃗ fresh , γ ⊢ s : a⃗ ⊸ a, s /∈ AT.

Contextual extensions:
s →β s′

C[s] →β C[s′]
s →η s′

E[s] →η E[s′]
(→sc=→β ∪ →η).

Figure 5 Symmetric closed reduction relations.

Symmetric Closed Resource Terms. Let L be a closed signature. The symmetric closed
resource terms on L are defined by the following inductive grammar:

Λsc(L) ∋ s ::= x ∈ V | λ⟨xa1
1 , . . . , xak

k ⟩.s | s⟨s1, . . . , sk⟩ | f(s1, . . . , sk)

for k ∈ N and f ∈ arr(L), ai ∈ L. A term of the shape s⟨s1, . . . , sk⟩ is called a (k-linear)
application. A term of the shape λ⟨x1, . . . , xk⟩.s is called a (k-linear) λ-abstraction. Variables
under the scope of a λ-abstraction are bound. We define the following subset of terms
AT = {L[λx⃗.t] | for some substitution context L and term t.}. Typing and contexts with
hole are defined in Figure 4. Given a term γ ⊢ s : a, there exists a unique type derivation
for it.

Terms under Reduction. The reduction relation is defined in Figure 5.

▶ Remark 42. The definition of the β-reduction follows the standard choices for resource
calculi. The novel technicality is the restriction of the η-reduction, that is justified again
by the goal of obtaining a strongly normalizing reduction. Indeed, η-reduction is again not
normalizing. The situation recalls what happens in the standard λ-calculus and we deal with
it adapting to our framework the restrictions introduced in [28, 16].

To study the rewriting, we adapt the method introduced for representable terms. We first
prove that typing is preserved under reduction. Then, we introduce a measure that decreases
under η. We define the size of a type by induction: size (o) = 0, size (⟨a1, . . . , ak⟩ ⊸ a) =
1 +

∑
size (ai) + size (a) . Given γ ⊢ s : a we define a set of typed subterms of s: EST(s) =

{δ ⊢ p : a | p ∈ ST(s) \ AT s.t. E[δ ⊢ p : a] = s for some context E}. We set η(s) =∑
δ⊢p:a∈EST(s) size (a) . The proof of strong normalization and confluence is completely

CSL 2024

43:14 Coherence by Normalization for Linear Multicategorical Structures

symmetrical to the representable case. Given s ∈ Λsc(R)(γ; a), we denote by nf(s) its unique
normal form. As a corollary of subject reduction, we get that nf(s) ∈ Λsc(R)(γ; a).

Free Symmetric Closed Multicategories. Let L be a closed signature, we define a mul-
ticategory SCM(L) by setting ob(SCM(L)) = L0 and SCM(L)(γ; a) = Λsc(L)(γ; a)/∼ where
∼ = =sc. Composition is given by substitution, identities are given by variables. The opera-
tion is well-defined equivalence classes and satisfies associativity and identity axioms. We
also have that if s ∼ s′, then nf(s) = nf(s′). We denote by ηL : L → SCM(L) the evident
inclusion. One can prove that SCM(R) is symmetric, by repeating the argument given in the
previous section. This multicategory is also closed:

▶ Theorem 43. We have a bijection SCM(L)(γ; ⟨a1, . . . , ak⟩ ⊸ a) ∼= SCM(L)(γ, a1, . . . , ak; a)
natural in a and multinatural in γ, induced by the maps [s] 7→ [s⟨x1, . . . , xk⟩].

Proof. Naturality derives from basic properties of substitution. Inverses are given by the
maps [s] 7→ [λ⟨x1, . . . , xk⟩.s]. ◀

▶ Definition 44. Let E be a symmetric closed multicategory and let i : L → E be a map
of closed signatures. We define a family of maps RTγ,a : Λsc(L)(γ, a) → E(i(γ), i(a)) by
induction as follows:

RTa,a(x) = 1i(a) RTγ,⃗a⊸a(λx⃗.s) = λ(RTγ,⃗a,a(s))

RT(γ0,...,γk),a(s⟨t1, . . . , tk⟩) = (ev ◦ ⟨RTγ0,⟨a1,...,ak⟩⊸a(s), RTγ1,a1(t1), . . . , RTγk,a1(tk)⟩) · σ.

▶ Theorem 45 (Free Construction). Let S be a a symmetric closed multicategory and
i : L → S a map of representable signatures. There exists a unique symmetric closed
functor i∗ : SCM(L) → S such that i∗ ◦ ηL = i.

▶ Theorem 46 (Coherence). Let [s], [s′] ∈ SCM(R)(γ; a). Then [s] = [s′] iff nf([s]) ≡ nf([s′]).

6 A Resource Calculus for Autonomous Multicategories

In this section we present our calculus for autonomous multicategories. These structures
bring together representability, symmetry and closure. For this reason, the calculus we
will present is a proper extension of the ones we introduced before. Again, we follow the
same pattern of Sections 3 and 5, first introducing the typing, then studying the operational
semantics and finally characterizing the free constructions.

Autonomous Terms. Let A be an autonomous signature. The autonomous resource terms
on A are defined by the following inductive grammar:

Λaut(A) ∋ s, t ::= x | λ⟨xa1
1 , . . . , xak

k ⟩.s | st | ⟨s1, . . . , sk⟩ | s[xa1
1 , . . . , xak

k := t] | f(s1, . . . , sk)

for k ∈ N and f ∈ arr(A), ai ∈ A. Variables under the scope of a λ-abstraction and of a
substitution are bound. The typing is given in Figure 6. The calculi introduced in the
previous sections can be seen as subsystems of the autonomous one.

Given a subterm p of s we write ty(p)s for the type of p in the type derivation of s. The
mapping is functional as corollary of the former proposition.

F. Olimpieri 43:15

a ∈ A0

x : a ⊢ x : a

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak σ ∈ shu(γ1, . . . , γk)
(γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

γ, x1 : a1, . . . , xk : ak ⊢ s : b

γ ⊢ λ⟨xa1
1 , . . . , xak

k ⟩.s : (a1 ⊗ · · · ⊗ ak) ⊸ b

γ ⊢ s : a⃗ ⊸ b δ ⊢ t : a⃗ σ ∈ shu(γ, δ)
(γ, δ) · σ ⊢ st : b

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ1, x1 : a1, . . . , xk : ak, δ2 ⊢ t : b σ ∈ shu(γ, δ1, δ2)
(γ, δ1, δ2) · σ ⊢ t[xa1

1 , . . . , xak

k := s] : b

Figure 6 Autonomous type system on a signature A. We omit the case of f(s⃗).

Terms under Reduction. The reduction relation →aut, together with its subreductions β

and η are defined by putting together the reductions →rep (Figure 2) and →sc (Figure 5).
The same happens with structural equivalence. The reduction satisfies subject reduction,
strong normalization and confluence. The proofs build on the results of the previous sections.
As decreasing measures, we use the size of a term for β-reduction and the sum of the two η

measures we defined in the previous sections for η-reduction.

Free Autonomous Multicategories. Let A be an autonomous signature, we define a
multicategory AUT(A) by setting ob(AUT(A)) = A0 and AUT(A)(γ; a) = Λaut(A)(γ; a)/∼
where ∼ is the equivalence ≡ ∪ =aut . Composition is given by substitution, identities
are given by variables. The operation is well-defined on equivalence classes and satisfies
associativity and identity axioms. We also have that if s ∼ s′ then nf(s) ≡ nf(s′). We
denote by ηA : A → AUT(A) the evident inclusion. One can prove that this multicategory is
symmetric, representable and closed by importing the proofs given in the previous sections.

▶ Definition 47. Let S be an autonomous multicategory and let i : A → S be a map of
autonomous signatures. We define a family of maps RTγ,a : Λaut(A)(γ, a) → E(i(γ), i(a)) by
induction, extending Definitions 36 and 44 in the natural way.

▶ Theorem 48 (Free Construction). Let S be a an autonomous multicategory and i : A → S a
map of autonomous signatures. There exists a unique autonomous functor i∗ : AUT(A) → S
such that i∗ ◦ ηA = i.

▶ Theorem 49 (Coherence). Let [s], [s′] ∈ AUT(R)(γ; a). Then [s] = [s′] iff nf([s]) ≡ nf([s′]).

7 Conclusion

We established a formal correspondence between resource calculi and appropriate linear
multicategories, providing coherence theorems by means of normalization. As future work,
we consider two possible perspectives. It is tempting to parameterize our construction over
the choice of allowed structural rules on typing contexts. For instance, while the choice of
permutations (i.e., symmetries) gives linear structures, the choice of arbitrary functions
between indexes would give cartesian structures. In this way, we would achieve a general
method to produce type theories for appropriate algebraic theories, in the sense of [15].
For this, the the perspective on multicategories of [32] will be a starting point. Another
perspective is the passage to the second dimension, following the path of [10]. In this way, the
rewriting of terms would become visible in the multicategorical structure itself. Coherence by
normalization could then be upgraded to a method of coherence by standardization, exploiting
a rewriting relation on reduction paths.

CSL 2024

43:16 Coherence by Normalization for Linear Multicategorical Structures

References
1 Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination in linear

logic. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages 49:1–49:15.
ACM, 2022. doi:10.1145/3531130.3532445.

2 Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard
standardization theorem. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 659–670. ACM, 2014. doi:10.1145/2535838.
2535886.

3 Davide Barbarossa and Giulio Manzonetto. Taylor subsumes scott, berry, kahn and plotkin.
Proc. ACM Program. Lang., 4(POPL):1:1–1:23, 2020. doi:10.1145/3371069.

4 Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for
intuitionistic linear logic. In Proceedings of the International Conference on Typed Lambda
Calculi and Applications (TLCA). Springer, January 1993.

5 R.F. Blute, J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble. Natural deduction and coherence
for weakly distributive categories. Journal of Pure and Applied Algebra, 113(3):229–296, 1996.
doi:10.1016/0022-4049(95)00159-X.

6 Gérard Boudol. The lambda-calculus with multiplicities. In Eike Best, editor, CONCUR’93,
pages 1–6, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

7 Pierre-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the categorical inter-
pretation of dependent type theory. Theoretical Computer Science, 546:99–119, 2014. Models
of Interaction: Essays in Honour of Glynn Winskel. doi:10.1016/j.tcs.2014.03.003.

8 Roberto Di Cosmo and Delia Kesner. Combining algebraic rewriting, extensional lambda
calculi, and fixpoints. Theoretical Computer Science, 169(2):201–220, 1996. doi:10.1016/
S0304-3975(96)00121-1.

9 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
λ-terms. Theoretical Computer Science, 403(2-3), 2008. doi:10.1016/j.tcs.2008.06.001.

10 Marcelo Fiore and Philip Saville. Coherence and normalisation-by-evaluation for bicategorical
cartesian closed structure. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale
Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020, pages 425–439. ACM, 2020. doi:10.1145/3373718.
3394769.

11 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

12 Claudio Hermida. Representable multicategories. Advances in Mathematics, 151(2):164–225,
2000. doi:10.1006/aima.1999.1877.

13 Dominic J.D. Hughes. Simple free star-autonomous categories and full coherence. Journal of
Pure and Applied Algebra, 216(11):2386–2410, 2012. doi:10.1016/j.jpaa.2012.03.020.

14 J. M. E. Hyland. Classical lambda calculus in modern dress. Mathematical Structures in
Computer Science, 27(5):762–781, 2017. doi:10.1017/S0960129515000377.

15 J.M.E. Hyland. Elements of a theory of algebraic theories. Theoretical Computer Science,
546:132–144, 2014. Models of Interaction: Essays in Honour of Glynn Winskel. doi:10.1016/
j.tcs.2014.03.005.

16 C. Barry Jay and Neil Ghani. The virtues of eta-expansion. Journal of Functional Programming,
5(2):135–154, 1995. doi:10.1017/S0956796800001301.

17 G.M. Kelly and S. Maclane. Coherence in closed categories. Journal of Pure and Applied
Algebra, 1(1):97–140, 1971. doi:10.1016/0022-4049(71)90013-2.

18 Delia Kesner. The theory of calculi with explicit substitutions revisited. In Jacques Duparc
and Thomas A. Henzinger, editors, Computer Science Logic, pages 238–252, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

https://doi.org/10.1145/3531130.3532445
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/3371069
https://doi.org/10.1016/0022-4049(95)00159-X
https://doi.org/10.1016/j.tcs.2014.03.003
https://doi.org/10.1016/S0304-3975(96)00121-1
https://doi.org/10.1016/S0304-3975(96)00121-1
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1145/3373718.3394769
https://doi.org/10.1145/3373718.3394769
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.1016/j.jpaa.2012.03.020
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1016/j.tcs.2014.03.005
https://doi.org/10.1016/j.tcs.2014.03.005
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1016/0022-4049(71)90013-2

F. Olimpieri 43:17

19 AJ Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic and
Computation, 10(3):411–436, 2000. doi:10.1093/logcom/10.3.411.

20 Yves Lafont. Logiques, Categories & Machines: Implantation de Langages de Programmation
guidée par la Logique Catégorique. Phd thesis, Université Paris VII, 1988.

21 Joachim Lambek. Deductive systems and categories ii. standard constructions and closed
categories. In Peter J. Hilton, editor, Category Theory, Homology Theory and their Applications
I, pages 76–122, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

22 Joachim Lambek and Philip J. Scott. Introduction to Higher Order Categorical Logic. Cam-
bridge University Press, USA, 1986.

23 Tom Leinster. Higher operads, higher categories, 2003. arXiv:math/0305049.
24 Saunders Maclane. Natural associativity and commutativity. Rice Institute Pamphlet – Rice

University Studies, 49:28–46, 1963.
25 Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation thesis,

Université Paris 13, 2017.
26 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and

intersection types. PACMPL, 2018. doi:10.1145/3158094.
27 Paul-André Melliès, Federico Olimpieri, and Lionel Vaux Auclair. An explicit construction of

the homotopy span model of differential linear logic.
28 G. E. Mints. Closed categories and the theory of proofs. Journal of Soviet Mathematics, 1981.

doi:10.1007/BF01404107.
29 Yo Ohta and Masahito Hasegawa. A terminating and confluent linear lambda calculus. In

Frank Pfenning, editor, Term Rewriting and Applications, 17th International Conference, RTA
2006, Seattle, WA, USA, August 12-14, 2006, Proceedings, volume 4098 of Lecture Notes in
Computer Science, pages 166–180. Springer, 2006. doi:10.1007/11805618_13.

30 Federico Olimpieri. Intersection Types and Resource Calculi in the Denotational Semantics of
Lambda-Calculus. PhD thesis, Aix-Marseille Université, 2020.

31 P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289–355. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-12821-9_4.

32 Michael Shulman. Categorical logic from a categorical point of view. Draft for AARMS
Summer School 2016, 2016. URL: https://mikeshulman.github.io/catlog/catlog.pdf.

33 Michael Shulman. A practical type theory for symmetric monoidal categories. Theory and
Applications of Categories, 37(25):863–907, 2021.

34 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource
terms. In Proceedings of the 32rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, 2017. doi:10.1109/LICS.2017.8005093.

35 Lionel Vaux. Taylor expansion, β-reduction and normalization. In Ccomputer Science Logic
2017, 2017. doi:10.4230/LIPIcs.CSL.2017.39.

36 Niccolò Veltri. Coherence via focusing for symmetric skew monoidal categories. In Alexandra
Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information,
and Computation – 27th International Workshop, WoLLIC 2021, Virtual Event, October 5-
8, 2021, Proceedings, volume 13038 of Lecture Notes in Computer Science, pages 184–200.
Springer, 2021. doi:10.1007/978-3-030-88853-4_12.

CSL 2024

https://doi.org/10.1093/logcom/10.3.411
https://arxiv.org/abs/math/0305049
https://doi.org/10.1145/3158094
https://doi.org/10.1007/BF01404107
https://doi.org/10.1007/11805618_13
https://doi.org/10.1007/978-3-642-12821-9_4
https://mikeshulman.github.io/catlog/catlog.pdf
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.4230/LIPIcs.CSL.2017.39
https://doi.org/10.1007/978-3-030-88853-4_12

Conservativity of Type Theory over Higher-Order
Arithmetic
Daniël Otten # Ñ

ILLC, University of Amsterdam, The Netherlands

Benno van den Berg # Ñ

ILLC, University of Amsterdam, The Netherlands
Abstract

We investigate how much type theory can prove about the natural numbers. A classical result in this
area shows that dependent type theory without any universes is conservative over Heyting Arithmetic
(HA). We build on this result by showing that type theories with one level of impredicative universes
are conservative over Higher-order Heyting Arithmetic (HAH). This result clearly depends on the
specific type theory in question, however, we show that the interpretation of logic also plays a major
role. For proof-irrelevant interpretations, we will see that strong versions of type theory prove exactly
the same higher-order arithmetical formulas as HAH. Conversely, for proof-relevant interpretations,
they prove different second-order arithmetical formulas than HAH, while still proving exactly the
same first-order arithmetical formulas. Along the way, we investigate the various interpretations
of logic in type theory, and to what extent dependent type theories can be seen as extensions of
higher-order logic. We apply our results by proving a De Jongh’s theorem for type theory.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Higher order logic; Theory of computation → Constructive mathematics

Keywords and phrases Conservativity, Arithmetic, Realizability, Calculus of Inductive Constructions

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.44

Related Version The master’s thesis of the first author, supervised by the second author, which
proves results for second-order arithmetic: https://eprints.illc.uva.nl/id/document/12640 [31]

Funding This publication is part of the project “The Power of Equality” (with project number
OCENW.M20.380) of the research programme Open Competition Science M 2 which is (partly)
financed by the Dutch Research Council (NWO).

1 Introduction

When studying a theory, we obtain a lot of information by determining the arithmetical
statements that it can prove. This data decides its consistency strength, which functions it
can prove to be recursive, and which other theories it can prove to be consistent. In this
work, we determine this for dependent type theories that have a single level of universes. We
are interested in the general picture: in predicative and impredicative versions of type theory,
intensional and extensional versions, and a wide array of type constructors. We obtain our
results by studying a strong version of type theory and deducing results for weaker theories.
Besides the theory itself, we consider proof-irrelevant and proof-relevant interpretations of
logic, which we think of as black box (•) and white box (◦) interpretations, respectively.

Main Results. Strong versions of type theory with a single level of universes prove:
• the same higher-order arithmetical formulas as HAH for proof-irrelevant interpretations,
◦ the same first-order arithmetical formulas as HAH for proof-relevant interpretations.
Moreover, the proof-relevant result is maximal: type theories differ from HAH on second-order
arithmetical formulas. More precisely, for the proof-relevant interpretation: type theory
proves the axiom of choice which is not assumed in HAH while type theory does not prove
extensionality of sets which is assumed in HAH. The main type theory that we consider is a
version of the Calculus of Inductive Constructions (λC+), specified in Appendix A.

© Daniël Otten and Benno van den Berg;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 44; pp. 44:1–44:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel@otten.co
http://otten.co
https://orcid.org/0000-0003-2557-3959
mailto:bennovdberg@gmail.com
https://staff.fnwi.uva.nl/b.vandenberg3/
https://orcid.org/0000-0002-0469-0788
https://doi.org/10.4230/LIPIcs.CSL.2024.44
https://eprints.illc.uva.nl/id/document/12640
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Conservativity of Type Theory over Higher-Order Arithmetic

Proof Sketch. We prove the two results as follows:
• The proof-irrelevant result is relatively straightforward. We build a model for λC+ based

on subsingletons, partial equivalence relations (PERs), and assemblies. The innovation
is that we only use notions that can be defined in HAH. So, for every type A, we get a
formula Inh(JAK) stating that the type is inhabited in the model. Conservativity follows
by showing that the diagram commutes up to logical equivalence.

HAH

λC+

HAH

•

Inh(J·K)

◦ The proof-relevant result is more involved and is our main contribution. As ◦ only
interprets HAH − ext, we first interpret HAH in HAH − ext. Now, we extend the
model using a choice principle. For this, we conservatively extend HAH: first with
primitive notions for partial recursive functions (HAHP), and then with Hilbert-style
epsilon-constants, which can be seen as partial choice functions (HAHPϵ). To formulate
these extensions, we define a higher-order version of Beeson’s logic of partial terms.
Conservativity follows by showing for first-order formulas that e behaves as the identity
and that the diagram commutes up to logical equivalence.

HAH HAH − ext

λC+

HAHP HAHPϵ

e
◦

Inh(J·K′)

◀

De Jongh’s Theorem. The main application of our results is a proof of De Jongh’s theorem
for type theories. This theorem says that the only propositional formulas that hold in the
theory are those of intuitionistic logic. Here we say that a formula holds when any closed
instance of it is provable. De Jongh has shown this for Heyting arithmetic [12], and with
Smorynski for second-order Heyting arithmetic [13]. This is not the case for any intuitionistic
theory: extensionality, specification, and choice famously imply the law of the excluded
middle [15], but the axioms of ZF already cause more formulas to hold [17]. Recently,
Robert Passmann has shown that De Jongh’s theorem does hold for CZF and IZF (which
are equivalent to ZF classically but not intuitionistically) [32, 33]. Our goal was to prove
this for type theory despite the proof-relevant interpretation satisfying choice.

Related Work.
We give a higher-order version of the following classical theorem: type theory without
universes is conservative over HA. For a proof, see Beeson [3, Chapter XIII, Theorem
7.5.1]. Note that universes are needed to show 0 ̸= 1 in type theory [37], so, without
universes, this should be added as an axiom.
A related question was independently answered by Berardi [4] and Geuvers [18]. They show
that the calculus of constructions is not conservative over higher-order logic. This result
hinges on the fact that domains of quantification and propositions are not distinguished in
the calculus of constructions. We are in a different setting: we only consider arithmetical
formulas, where the only domains are iterated powersets of the natural numbers.
A history of De Jongh’s theorems is given by De Jongh, Verbrugge, and Visser [14].

D. Otten and B. van den Berg 44:3

Structure of the paper. In Section 2 and Section 3 we introduce our arithmetic and type
theory respectively. The type theory is motivated in Section 4 where we consider the various
interpretations of higher-order logic in type theory. In Section 5, we see the other direction:
we build our model of type theory and its interpretation in arithmetic. This is used in
Section 6 and Section 7, where we prove proof-irrelevant and proof-relevant conservativity,
respectively. De Jongh’s theorem is covered in Section 8. Section 9 is the conclusion.

2 Higher-order Arithmetic

We start by stating the various theories of natural numbers. Although they share the same
language and axioms, these theories differ in their underlying logic. First, we explain and
motivate these logics. Then, we will introduce the various theories of arithmetic.

2.1 Higher-order Logic
Motivation. There are many versions of higher-order logic, and the notation is not stand-
ardised. So, before giving a formal introduction, we will first motivate our choices. Our
version of higher-order logic quantifies over relations; this directly generalises n-th-order logic.
There are also versions that quantify over functions. We observe that in intuitionistic logic,
quantifying over relations is more expressive than quantifying over functions:

We can encode an n-ary function f as an (n + 1)-ary relation R satisfying ∀x⃗ ∃!y R(x⃗, y),
see for instance [39, Section 2.7]. This means that we can replace ∃f . . . and ∀f . . . with
∃R (∀x⃗ ∃!y R(x⃗, y) ∧ . . .) and ∀R (∀x⃗ ∃!y R(x⃗, y) → . . .).
In classical logic, if we have terms a ≠ b, then it is also possible to encode an n-ary relation
R as an n-ary function f satisfying ∀x⃗ (f(x⃗) = a ∨ f(x⃗) = b). However, in intuitionistic
logic, this only encodes those R that satisfy ∀x⃗ (R(x⃗) ∨ ¬R(x⃗)).

So, for simplicity, we present higher-order logic using only quantifiers over relations. Our
second observation is that it is often enough to consider only unary relations:

If the theory can encode tuples, then, instead of quantifying over an n-ary relation R, we
can quantify over a unary relation X: we replace R(x0, . . . xn−1) with X(⟨x0, . . . , xn−1⟩).

Arithmetic can encode tuples [8, 25, 7, 21]; we can define for instance: ⟨⟩ := 0, ⟨a0⟩ := a0,
⟨a0, a1⟩ := ((a0 + a1) × S(a0 + a1))/2 + a0, and ⟨a0, . . . , an−1⟩ := ⟨⟨a0, . . . , an−2⟩, an−1⟩. So,
for our purposes, it is sufficient to quantify over subsets (unary relations). Restricting to the
unary case gives us “monadic” versions of logic.

▶ Definition 1. A monadic higher-order logic is a many-sorted logic with a sort for every
numeral n = 0, 1, If we write an, then the term a is of the n-th sort, intuitively a member
of the n-th power set of the domain. Terms are built using function symbols f , which each
have a signature n0 × · · · × nk−1 → m. We also allow relation symbols, which each have a
signature n0 ×· · ·×nk−1. We always assume that the language has relation symbols =n: n×n

and ∈n: n × (n + 1) for every sort n. Formulas are given by:

A, B, . . . ::= R(an0
0 , . . . , a

nk−1
k−1) | ⊥ | ⊤ | A ∨ B | A ∧ B | A → B | ∃xn B[xn] | ∀xn B[xn].

There are classical and intuitionistic versions of higher-order logic. For both we take standard
inference rules for propositional logic, quantifiers, and equality. In addition, we have two
axiom schemes for the element relation; for any n and any formula P [zn] we assume:

∃Xn+1 ∀zn (z ∈ X ↔ P [z]), (specification)
∀Xn+1 ∀Y n+1 (∀zn (z ∈ X ↔ z ∈ Y) → X = Y). (extensionality)

To reduce clutter, we started omitting the sorts in places where they can easily be inferred.

CSL 2024

44:4 Conservativity of Type Theory over Higher-Order Arithmetic

▶ Definition 2. We define monadic n-th-order logic as the restriction of monadic higher-order
logic to the first n sorts: 0, . . . , n − 1.

Defining Logical Connectives. We can also formulate second or higher-order logic in a
more minimalistic way, using only ∈, →, and ∀. This is because, by quantifying over a
proposition Z (a nullary relation), we can define the other logical connectives:

⊥ := ∀Z Z, (false)
⊤ := ∀Z (Z → Z), (true)

A ∨ B := ∀Z ((A → Z) → (B → Z) → Z), (disjunction)
A ∧ B := ∀Z ((A → (B → Z)) → Z), (conjunction)

∃xn B[x] := ∀Z (∀xn (B[x] → Z) → Z). (existential quantifier)

We can use similar definitions in monadic versions of logic by filling in an arbitrary variable
x0. For example, we could define ⊥ as ∀X1 (x ∈ X) and ⊤ as ∀X1 (x ∈ X → x ∈ X).
Similarly, we can define equality using Leibniz’s principle:

(a =n b) := ∀Xn+1 (a ∈ X → b ∈ X). (equality)

It is a good exercise to show that these formulas indeed satisfy the correct inference rules. This
alternative definition will allow us to simplify our proof for proof-irrelevant conservativity.

2.2 Arithmetic

Language and Axioms. The language of our arithmetical theories consists of a zero constant
0 : 0 (a nullary function symbol), a successor function S : 0 → 0, addition + : 0 × 0 → 0, and
multiplication × : 0 × 0 → 0. We have axioms stating that 0 and S are jointly injective:

∀y (S(y) ̸= 0), ∀x ∀y (S(x) = S(y) → x = y).

In addition, we have axioms for addition and multiplication:

∀y (0 + y = y), ∀x ∀y (S(x) + y = S(x + y)),
∀y (0 × y = 0), ∀x ∀y (S(x) × y = (x × y) + y).

And we have an axiom scheme for induction; for every formula A[x] we have the axiom:

A[0] ∧ ∀x(A[x] → A[S(x)]) → ∀x A[x].

▶ Definition 3 (Peano and Heyting arithmetic). We define the following theories, all with the
language and axioms above, and each with different logical inference rules:

classical intuitionistic
n-th-order PAn HAn

higher-order PAH HAH

For PA1 and HA1 we will omit the 1. Note that HAH is stronger than HAω (arithmetic in
finite types), which quantifies over functions instead of relations [38].

D. Otten and B. van den Berg 44:5

3 Type Theory

We formulate a strong version of type theory that allows all our interpretations of higher-order
arithmetic. This theory is impredicative, extensional, and includes inductive types. By
proving conservativity for this strong version, we also obtain conservativity results for weaker
versions: most notably for more predicative, and intensional versions of type theory. Many
of the choices are motivated and explained further in the next section where we discuss these
interpretations. So, we will only give a brief overview and cover the details in Appendix A.

Our type theory, which we call λC+, can be seen as a version of the Calculus of Inductive
Constructions [11, 5, 34] with only one level of universes. We assume an array of type
constructors: ⊬,⊮,⊭, . . . ,N, Σ, Π, W, =, ∥ · ∥, and quotient types. In addition, we assume two
type universes: Prop, Set : Type. The universe Prop is used to interpret propositions while
Set is used to interpret data types. Prop and Set are impredicative which means that they
are closed under products over arbitrary types. So, if we have any type A, and for x : A

a type B[x] : Prop, then we always have Π(x : A) B[x] : Prop, and the same for Set. This
allows for self-referential definitions that define a type in the universe by quantifying over all
types in the universe; for example, the empty type Π(X : Prop) X is a term of Prop. Note
that the universes are both types themselves, so we can use them to construct new types
like Prop × Set and N → Prop. Both universes are at the same level, that is, we do not have
Prop : Set or Set : Prop. However, we do assume that Prop is a subuniverse of Set, so A : Prop
implies A : Set, and we have that A : Set implies A : Type. We assume that the theory is
extensional, so definitional equality and propositional equality coincide, which implies that
we have function extensionality and uniqueness of identity proofs [22]. As we will explain
in the next section: we assume that Prop satisfies the axiom of propositional extensionality
(types in Prop are equal if they are logically equivalent). In particular, in the terminology of
homotopy type theory [41]: all types in Prop are h-propositions (all of their terms are equal)
and all types in Set are h-sets (all equalities between terms are h-propositions).

4 Interpreting Higher-order Arithmetic in Type Theory

An interpretation of HAH-formulas in type theory can be divided into three parts: defining
natural numbers, logical connectives, and power sets in type theory. For each part there
are multiple options, which come with different requirements on the type theory. These
requirements make sure that the type theory satisfies the rules and axioms of HAH for the
interpretation. We systematically consider the three parts in the following subsections, and,
in the end, we will have a clear overview of the various interpretations.

4.1 Interpreting Natural Numbers
To interpret the natural numbers, we use a natural numbers type. That is, that we have a
type N that satisfies the following inference rules:

N-F,
⊢ N : Set

N-I0,
⊢ 0 : N

Γ ⊢ n : N
N-IS,

Γ ⊢ S n : N

Γ, n : N ⊢ C[n] : C Γ ⊢ c : C[0] Γ ⊢ f : Π(n : N) (C[n] → C[S n])
N-E,

Γ ⊢ indN
C c f : Π(n : N) C[n]

N-β0,
indN

C c f 0 ≡ c
N-βS.

indN
C c f (S n) ≡ f n (indN

C c f n)

CSL 2024

44:6 Conservativity of Type Theory over Higher-Order Arithmetic

Such a type can be assumed (as we do in λC+) or defined using other type constructors,
and it is sufficient for the β-reduction rules to be satisfied propositionally. For example, the
definition of natural numbers using W-types [30, 16] satisfies these rules propositionally.

A non-example is the impredicative Church encoding of natural numbers:

N := Π(C : Set) (C → ((C → C) → C)) : Set.

Here we would encode a natural number n as λC λc λf fn c. For 0 := λC λc λf c and
S n := λC λc λf f (n C c f) this indeed satisfies the formation and introduction rules. However,
it only satisfies a weak form of the elimination rule. For recNC c f := λn n C c f we have:

Γ ⊢ C : Set Γ ⊢ c : C Γ ⊢ f : C → C Γ ⊢ n : N
N-E, weak.

Γ ⊢ recNC c f : N → C

This is weaker in two ways: (a) it only gives functions instead of dependent functions, and
(b) the codomain must be in Set. From the perspective of category theory this means that
we only have a weak natural numbers object [2], and crucially, from a logical perspective this
will mean that we cannot prove the axiom scheme of induction.

In the Calculus of Constructions it is not possible to define a type in Prop that satisfies
the strong elimination rule [19]. The same story is true for other inductive types: we can
define types that satisfy the correct introduction rules, however they only satisfy a weak
version of the elimination rules [20]. The work of Awodey, Frey, Speight, and Shulman [1, 36]
shows that we can avoid limitation (a) using some additional assumptions (N, Σ, =, and
function extensionality). However, limitation (b) still applies.

4.2 Interpreting Logical Connectives
Logical connectives are the most influential part: we have a proof-irrelevant (•) and a
proof-relevant (◦) interpretation. For any many-sorted logic, if we pick for every sort s

corresponding types s• and s◦, then the interpretations are defined as follows:

(a =s b)• := (a =s• b), (a =s b)◦ := (a =s◦ b),
(A ∨ B)• := ∥A• + B•∥, (A ∨ B)◦ := A◦ + B◦,

(A ∧ B)• := A• × B•, (A ∧ B)◦ := A◦ × B◦,

(A → B)• := A• → B•, (A → B)◦ := A◦ → B◦,

(∃xs B[x])• := ∥Σ(x : s•) B[x]•∥, (∃xs B[x])◦ := Σ(x : s◦) B[x]◦,

(∀xs B[x])• := Π(x : s•) B[x]•, (∀xs B[x])◦ := Π(x : s◦) B[x]◦.

The difference is that the proof-irrelevant interpretation uses propositional-truncation [41,
Section 3.7]. The propositional truncation ∥A∥ : Prop of a type A removes the distinctions
between terms. For every a : A we get a term |a| : ∥A∥ and if we have A → C for
C : Prop then we get ∥A∥ → C. We can define propositional truncation in λC+ by taking
∥A∥ := Π(Z : Prop) ((A → Z) → Z) : Prop and |a| := λZ λf f a.

To summarise: a term of A• does not give us any information besides the fact that the
formula holds while a term of A◦ contains a reason that the formula is true.

4.3 Interpreting Power Sets
Now we interpret the sorts of higher-order logic: we define n• := Pn

• N and n◦ := Pn
◦ N using

the black box powertype P• A := A → Prop and the white box powertype P◦ A := A → Set.
The element-relation is simply interpreted by (x ∈ X)• := X x and (x ∈ X)◦ := X x.

D. Otten and B. van den Berg 44:7

Recall that the axioms of higher-order logic should hold for a sound interpretation:

∃Xn+1 ∀zn (z ∈ X ↔ P [z]), (specification)
∀Xn+1 ∀Y n+1 (∀zn (z ∈ X ↔ z ∈ Y) → X = Y). (extensionality)

Specification holds for both interpretations: impredicativity of Prop and Set implies that
P [z]• : Prop and P [z]◦ : Set so in both cases we can take X := λz P [z]. Extensionality holds
for ◦ because we have the following in λC+:

funext : Π(f, f ′ : A → Prop) (Π(x : A) (f x = f ′ x) → (f = f ′)),
propext : Π(P, P ′ : Prop) ((P ↔ P ′) → (P = P ′)).

However, it does not hold for •, consider for example X := λz ⊮ and Y := λz ⊭. These
represent the same proposition (the one that holds everywhere) but they are not equal.

So, • interprets HAH while ◦ only interprets HAH − ext. In addition, there exists a
second-order formula that is not provable in HAH [9], but whose proof-relevant interpretation
in type theory is inhabited [41, Section 1.6], namely the axiom of choice:

∀Z1 (∀x0 ∃y0 ⟨x, y⟩ ∈ Z → ∃F 1 (∀x0 ∃!y0 ⟨x, y⟩ ∈ F ∧ ∀x0 ∀y0 (⟨x, y⟩ ∈ F → ⟨x, y⟩ ∈ Z)).

This means that the second-order formulas that are provable in type theory for ◦ are
incomparable with those provable in HAH. Therefore, our best hope is to show that type
theory still proves the same first-order formulas. To do this, we use an interpretation e of
HAH in HAH − ext obtained by redefining = and ∈:

(a =0
e b) := (a =0 b),

(A =n+1
e B) := ∀xn (x ∈n

e A ↔ x ∈n
e B),

(a ∈n
e A) := ∃xn (a =n

e x ∧ x ∈n A).

For a formula A we write Ae for the result of replacing = and ∈ by =e and ∈e respectively.
The definition of =e ensures that we satisfy extensionality and ∈e ensures that we respect
the new equality. Note that this interpretation does not modify first-order formulas.

5 Interpreting Type Theory in Higher-order Arithmetic

To interpret our type theory in arithmetic, we will construct a model of λC+ using only notions
that we can express within HAH. Our model can be seen as an modification of Hyland’s
small complete category [23], which forms a model for the calculus of constructions [35]. Our
description can be incorporated into one of the usual categorical frameworks for type theory,
such as comprehension categories [24], or categories with families [22]. The main idea is that
we interpret our universes using the following categories:

Prop⇝ Subsing (the category of subsingletons),
Set⇝ PER (the category of partial equivalence relations),

Type⇝ Assem (the category of assemblies or K1-sets).

We will show that these categories have the right structure to interpret λC+, namely:
embeddings Subsing ↪→ PER ↪→ Assem, encodings of Subsing and PER as objects of Assem,
definitions for 0, 1, 2, . . . , N, Σ, Π, W, =, ∥ · ∥, /, and elements showing that the axioms are
satisfied. We use this model to interpret every type in λC+ as a formula in HAH: the formula
stating that the type is inhabited in the model. However, first we show why a naive model –
of propositions, sets, and types in λC+ as sets in HAH or ZFC – cannot work. The notions
we define for this naive approach will be useful to define our actual model.

CSL 2024

44:8 Conservativity of Type Theory over Higher-Order Arithmetic

5.1 Sets in HAH
Conventions. The sets in HAH are all subsets of Pn(N) for some n. It will be very
convenient if we can view Pn(N) as a subset of Pn+1(N). Our motivation for this is that we
want to define notions such as Σ(a ∈ A) B[a], Π(a ∈ A) B[a], and W(a ∈ A) B[a]. If we view
the hierarchy as cumulative, then we only need to define these notions for the case where
A and all B[a] are subsets of the same Pn(N). One way to achieve this is by considering
x ∈ N to be equal to {· · · {x} · · · } ∈ Pn(N). This already gives us a cumulative hierarchy.
For example: {0, 2} ∈ P(N) is viewed as {{0}, {2}} ∈ P2(N), and {{{0}}, {{2}}} ∈ P3(N),
and so on. More formally: we define inclusions ιn : Pn(N) → Pn+1(N) by ι0(x) := {x} and
ιn+1(X) := {ιn(x) : x ∈ X}. These are embeddings because they preserve ∈-relation: we
have x ∈ Y iff ιn(x) ∈ ιn+1(Y). From now on, we will use these emdeddings implicitly.

Secondly, it is convenient if we extend our definition of pairs from natural numbers to
sets. We do this using the disjoint union, for A, B ⊆ Pn(N) we inductively define:

⟨A, B⟩ := {p ∈ Pn(N) : ∃(a ∈ A) (p = ⟨0, a⟩) ∨ ∃(b ∈ B) (p = ⟨1, b⟩)} ∈ Pn(N).

Definitions. Now we can inductively define Σ, Π, W inside HAH. If we have a set A ⊆ Pn(N)
and for every a ∈ A a set B[a] ⊆ Pn(N), then we define the dependent Cartesian product
and dependent function space as follows:

Σ(a ∈ A) B[a] := {p ∈ Pn(N) : ∃(a ∈ A) ∃(b ∈ B[a]) (⟨a, b⟩ = p)} ⊆ Pn(N),
Π(a ∈ A) B[a] := {P ⊆ Σ(a ∈ A) B[a] : ∀(a ∈ A) ∃!(b ∈ B[a]) (⟨a, b⟩ ∈ P)} ⊆ Pn+1(N).

To define W(a ∈ A) B[a] we have to define labelled trees in HAH. A tree for A and B must
satisfy the following: every node has a label a ∈ A, and a child for every b ∈ B[a]. We will
encode a tree by describing the set of finite paths starting at the root. So, a tree will be a
set T ⊆ Pn(N) whose elements are of the form ⟨a0, b0, a1, . . . , an−1, bn−1, an⟩ such that for
every i we have ai ∈ A and bi ∈ B[ai]. This set should be:

inhabited: there exists an a ∈ A such that ⟨a⟩ ∈ T ;
downward-closed: if ⟨a0, b0, a1, . . . , an, bn, an+1⟩ ∈ T then ⟨a0, b0, a1, . . . , an⟩ ∈ T ;
complete: if we have ⟨a0, b0, a1, . . . , an⟩ ∈ T and bn ∈ B[an] then there exists an an+1 ∈ A

such that ⟨a0, b0, a1, . . . , an, bn, an+1⟩ ∈ T ;
consistent: if ⟨a0, b0, a1, . . . , bn−1, an⟩, ⟨a0, b0, a1, . . . , bn−1, a′

n⟩ ∈ T then an = a′
n.

For two paths p, q ∈ T , we write p ⊏ q iff p is a strict subpath of q, that is, iff we can
write p = ⟨a0, b0, a1, . . . , an⟩ and q = ⟨a0, b0, a1, . . . , am⟩ where n < m. We call a tree T

well-founded iff the inverse relation ⊐ is well-founded, that is, if we have for any S ⊆ T :

∀(p ∈ T) (∀(q ⊐ p) (q ∈ S) → p ∈ S) → S = T.

Now for A, B[a ∈ A] ⊆ Pn(N) we define:

W(a ∈ A) B[a] := {T ⊆ Pn(N) : T is a well-founded tree for A and B[a]} ⊆ Pn+1(N).

Problems. It is important to note for A, B[a ∈ A] ⊆ Pn(N) that, while Σ(a ∈ A) B[a] is
still a subset of Pn(N), we see that Π(a ∈ A) B[a] and W(a ∈ A) B[a] are both subsets of
Pn+1(N). So Π and W increase the level. This is a problem: if we interpret Prop and Set as
subsets of some Pn(N) then they cannot be closed under Π and W. This problem exists in
general for naive interpretations of impredicative type theory. If we interpret an impredicative
universe as a set U in ZFC, then for A, B ∈ U we must have A → B := Π(a ∈ A) B ∈ U . If U
contains a set A with at least two elements, then we get a contradiction for the cardinality:

D. Otten and B. van den Berg 44:9

|Π(B ∈ U) (B → A)| = |(Σ(B ∈ U) B) → A| (by Currying)
≥ |P(Σ(B ∈ U) B)| (because |A| ≥ 2)
≥ |P(Π(B ∈ U) (B → A))| (because Π(B ∈ U) (B → A) ∈ U)
> |Π(B ∈ U) (B → A)|. (by Cantor’s diagonal argument)

This counterexample comes from lectures of Hyland and Streicher, see [28, 35]. If U only
consists of subsingletons, then we have no contradiction, and we obtain a model for simple
type theories like ML0 and λC [37]. Indeed, we use this approach to interpret Prop as the
set P({∗}). The intuitive idea behind our other interpretations, of Set and Type, is that we
restrict Π(a ∈ A) B[a] and W(a ∈ A) B[a] to the elements that are in some sense computable.

5.2 Subsingletons, PERs, and Assemblies
In this subsection we define the three categories we use to model λC+. We start simple:

▶ Definition 4 (subsingleton). A subsingleton is a subset S ⊆ {∗}. A subsingleton morphism
from S to T is just a function from S to T .

Because we want our model to satisfy propositional extensionality, we always consider subsets
of the same singleton {∗}; by defining for example: ∗ := 0. Note that we cannot prove
intuitionistically for every S ⊆ {∗} that S = ∅ or S = {∗}, so P({∗}) can be large [29].

The next categories are more interesting and use a notion of computation. We use
Kleene’s first algebra [26, 27, 10]: the fact that natural numbers can be seen as codes for
partial computable functions. For f, n ∈ N, we will write f n ↓ iff the partial computable
function encoded by f is defined on the natural number n, and f n for the result. In Section 7
we will consider a conservative extension of HAH where f n and ↓ are primitive notions that
satisfy a computational choice principle. This will be needed to show conservativity in the
proof-relevant case. For now however, think of f n as Kleene-application as described here.

▶ Definition 5 (PER). A partial equivalence relation (PER) is a relation R ⊆ N × N that is
symmetric and transitive. For a PER R we define:

dom(R) := {n ∈ N : ⟨n, n ⟩ ∈ R} = {n ∈ N : ∃(m ∈ N) ⟨n, m⟩ ∈ R}, (domain)
[n]R := {m ∈ N : ⟨n, m⟩ ∈ R}, (equivalence class)
N/R := {[n]R : n ∈ dom(R)}. (quotient)

A PER morphism from R to S is a function F : N/R → N/S that is “tracked” by some
f ∈ N, meaning that a ∈ dom(R) implies f a ↓ and f a ∈ F ([n]R).

The intuition is made clear by the following: suppose that we have a type and and want to
define a PER to model it. The idea is that we view natural numbers as potential codes or
realizers for terms of the type. Consider the relation that relates natural numbers when they
encode the same term. This explains why we consider PER’s: the relation is symmetric and
transitive but not necessarily reflexive as not every natural number has to encode a term.
Using this principle we define PER’s that model ⊬,⊮,⊭, . . ., and N:

n := {⟨i, j⟩ : i = j ∧ i < n}, (for n = 0, 1, 2, . . .) N := {⟨i, j⟩ : i = j}.

The PER morphisms are those functions on equivalence classes (which we view as terms)
that can be implemented as partial computable functions acting on the codes.

CSL 2024

44:10 Conservativity of Type Theory over Higher-Order Arithmetic

The next category generalises these ideas of modelling types:

▶ Definition 6 (assembly). An n-assembly consists of a set A ⊆ Pn(N) and a relation
⊩ ⊆ N × A such that for every A ∈ A there exists a “realizer” a ∈ N such that a ⊩A A.
For an n-assembly A we will write |A| for the set and ⊩A for the relation. An n-assembly
morphism from A to B is a function F from A to B that is “tracked” by some f ∈ N, meaning
that for every A ∈ A and a ∈ N with a ⊩A A we have f a ↓ and f a ⊩B F (A).

The inclusions ιn : Pn(N) → Pn+1(N) also give us a cumulative hierarchy of assemblies.

Cumulativity. We can view any subsingleton S ⊆ {∗} as a PER {⟨i, j⟩ : ∗ ∈ S} and any
PER R as a 1-assembly with domain N/R and realizability relation ∈. This gives us full
embeddings: Subsing ↪→ PER ↪→ Assem which we use to model cumulativity in λC+. In a
similar vein, for any set A ⊆ Pn(N), we get an n-assembly ∇A with domain A and the total
realizability relation N × A; in this way Pn(N) also forms a full subcategory of Assemn.

Universes. We have to show that we can view the sets Subsing and PER as assemblies to
model Prop : Type and Set : Type. For Subsing this is easy, if we take ∗ := 0, then we have
Subsing = P({0}) ⊆ P(N) so we get an 1-assembly ∇Subsing. Similarly, we can consider a
PER to be a subset of N × N := Σ(x ∈ N)N ⊆ N, so we get a 1-assembly ∇PER.

5.3 Modelling Type Constructors
We define Σ, Π, W for assemblies by restricting the definitions for sets to those elements
which are realised. So, for A, B[A ∈ A] ∈ Assemn and Q = Σ, Π, W, we define the assembly
Q(A ∈ A) B[A] by taking |Q(A ∈ A) B[A]| := {Q ∈ Q(A ∈ |A|) |B[A]| : ∃(q ∈ N) (q ⊩ Q)},
where ⊩ ⊆ N × |Q(A ∈ A) B[A]| is defined as follows for Q = Σ, Π, W:
Σ We say p ⊩ P iff we have pr0(p) ⊩A pr0(P) and pr1(p) ⊩B[A] pr1(P).
Π We sayf ⊩ F iff for every A ∈ A and a ⊩A A we have f a ↓ and f a ⊩B[A] F (A).
W We say t ⊩ T iff for every ⟨A0, B0, A1, . . . , An−1, Bn−1, An⟩ ∈ T and b0 ⊩B[A0] B0, . . . ,

bn−1 ⊩B[An−1] Bn−1 we have that for t0, . . . , tn−1 ∈ N given inductively by t0 := t and
ti+1 := (pr1(ti)) bi we have for every i < n + 1 that ti ↓ and pr0(ti) ⊩A Ai.

Now that we have defined Σ, Π, W for assemblies, we use this to define these notions also for
subsingletons and PER’s. This is possible because of the following observation:

▶ Proposition 7. Suppose that A ∈ Assemn and for every A ∈ A that B[A] ∈ Assemn.
If A and all B[A] are isomorphic to a subsingleton/PER, then Σ(A ∈ A) B[A] is as well.
If all B[A] are isomorphic to a subsingleton/PER, then Π(A ∈ A) B[A] is as well.
If A is isomorphic to a subsingleton/PER, then W(A ∈ A) B[A] is as well.

Note that this is precisely what we need to model our formation rules. In particular, we can
model the impredicative rule for products: up to isomorphism, we have that Π(A ∈ A) B[A]
always lives in the same category as the B[A], regardless of A.

For A ∈ Assemn we define equality and propositional truncation as subsingletons:

(A =A A′) := {∗ : A = A′} ∈ Subsing, ∥A∥ := {∗ : ∃A (A ∈ A)} ∈ Subsing.

Lastly, if we have A ∈ Assemn and for every A, A′ ∈ A an R[A, A′] ∈ Assemn, then we define
A/R ∈ Assemn+1 by taking |A/R| := |A|/{⟨A, A′⟩ : ∃(R ∈ R[A, A′])} and q ⊩ Q iff there
exists an A ∈ Q such that q ⊩ A. We can extend this to PER’s and subsingletons using:

▶ Proposition 8. If A ∈ Assemn is isomorphic to a subsingleton/PER, then A/R is as well.

D. Otten and B. van den Berg 44:11

5.4 Interpretation

Model. Now that we have all of the building blocks, we pack everything together to build
our model. Using simultaneous induction on the derivation we define:

for any well-formed context Γ an n-assembly JΓK for some n;
for any judgement Γ ⊢ A : Type a function JΓ ⊢ A : TypeK : JΓK → Assemn for some n;
for any judgement Γ ⊢ a : A a morphism JΓ ⊢ a : AK : JΓK → JΓ ⊢ A : TypeK.

Here contexts are the only part that we have not yet discussed. We define JΓK using Σ:

JK := 1, JΓ, x : AK := Σ(G ∈ JΓK) JΓ ⊢ A : TypeK(G).

The other two judgements use the structure that we have defined in the previous sections:
the embeddings Subsing ↪→ PER ↪→ Assem, the assemblies ∇Subsing and ∇PER, and the
constructions n, N, Σ, Π, W, =, ∥ · ∥, /. The full model is given in Appendix B.

Realizability. Now that we have defined a model for λC+ within HAH, we consider the two
interpretations HAH → λC+ → HAH. The idea is as follows: for a formula A, we get types
ΓA

• ⊢ A• : Prop and ΓA
◦ ⊢ A◦ : Set. By interpreting these in our model we get a subsingleton

JA•K := JΓA
• ⊢ A• : PropK(GA

•) and a PER JA◦K := JΓA◦ ⊢ A◦ : SetK(GA
◦) by defining some

canonical GA
• ∈ JΓA

• K and GA
◦ ∈ JΓA

◦ K that have the same free variables as A. We consider
the HAH-formulas: Inh(JA•K) and Inh(JA◦K) where Inh(A) := ∃x (x ∈ A). These formulas
have the same free variables as A and state the the types are inhabited in the model, that is,
that the model satisfies A.

To make this precise, we consider the context of A∗ for ∗ := •, ◦. If A has free variables
xn0

0 , . . . , x
nk−1
k−1 then the context is ΓA

∗ := (x0 : Pn0
∗ N, . . . , xk−1 : Pnk−1

∗ N). This means that
JΓA

∗ K = JPn0
∗ NK × · · · × JPnk−1

∗ NK where JNK := (N/=) = {{x} : x ∈ N} and we have
JPn+1

• NK := JPn
• NK → ∇Subsing and JPn+1

◦ NK := JPn
◦ NK → ∇PER. We can translate

between P(N) and JPn
∗ NK using gn

∗ : Pn(N) → JPn
∗ NK and hn

∗ : JPn
∗ NK → Pn(N):

g0
∗(x) := {x}, gn+1

∗ (X) := (f ∈ JPn NK) 7→ {z : hn
∗ (f) ∈ X},

h0
∗({x}) := x, hn+1

∗ (F) := {x ∈ Pn(N) : Inh(F (gn
∗ (x)))}.

Now we define GA
∗ := ⟨gn0

∗ (x0), . . . , g
nk−1
∗ (xk−1)⟩.

6 Proof-irrelevant Conservativity

Now that we have defined our interpretations, the proof-irrelevant result follows quickly:

▶ Theorem 9. For any HAH-formula A, we have HAH ⊢ Inh(JA•K) ↔ A.

Proof. We prove this with induction on the formula A. Because the other logical connectives
can be defined using ∈, →, and ∀, and because λC+ satisfies the rules and axioms of HAH,
we only have to check the following cases:

Inh(J(x ∈n Y)•K) ↔ ∗ ∈ Jx : Pn
• N, Y : Pn+1

• N ⊢ Y x : PropK(⟨gn
• (x), gn+1

• (Y)⟩)
↔ ∗ ∈ gn+1

• (Y)(gn
• (x))

↔ hn
• (gn

• (x)) ∈ Y

↔ x ∈n Y,

CSL 2024

44:12 Conservativity of Type Theory over Higher-Order Arithmetic

Inh(J(A → B)•K) ↔ ∗ ∈ JΓA→B
• ⊢ A• → B• : PropK(GA→B

•)
↔ ∗ ∈ Π(h ∈ JΓA

• ⊢ A• : PropK(GA
•)) JΓB

• ⊢ B• : PropK(GB
•)

↔ ∗ ∈ JΓA
• ⊢ A• : PropK(GA

•) → ∗ ∈ JΓB
• ⊢ B• : PropK(GB

•)
↔ A → B,

Inh(J(∀xn B[x])•K) ↔ ∗ ∈ JΓ∀xnB[x]
• ⊢ Π(x : Pn

• N) B[x]• : PropK(G∀xnB[x]
•)

↔ ∗ ∈ Π(f ∈ JPn NK) JΓB[x]
• ⊢ B[x]• : PropK(⟨G∀xnB[x]

• , f⟩)

↔ ∀(f ∈ JPn
• NK) ∗ ∈ JΓB[x]

• ⊢ B[x]• : PropK(⟨G∀xnB[x]
• , f⟩)

↔ ∀(x ∈ Pn
• (N)) ∗ ∈ JΓB[x]

• ⊢ B[x]• : PropK(⟨G∀xnB[x]
• , gn

• (x)⟩)
↔ ∀xn B[x]. ◀

▶ Corollary 10 (proof-irrelevant conservativity). For a higher-order arithmetical formula A,
we have that HAH proves A iff there exists a term a such that λC+ proves ΓA

• ⊢ a : A•.

Proof. We have already seen that λC+ satisfies the axioms and inference rules of HAH, so it is
an extension of HAH. That this extension is conservative will follow from the previous theorem.
Suppose for a formula A in the language of HAH that it is provable in λC+, that is, that we
have ΓA

• ⊢ a : A• for some term a. Then we get JΓA
• ⊢ a : A•K(GA

•) ∈ JΓA
• ⊢ A• : PropK(GA

•)
so we have Inh(JA•K). Using the last theorem we see that A is provable in HAH. ◀

7 Proof-relevant Conservativity

In the proof of Theorem 9, we used the fact that, from second-order logic upwards, we can
define every logical connective using ∈, →, and ∀. Because our conservativity will only hold
for first-order formulas, we cannot use this shortcut. It turns out that ∨ and ∃ are the
difficult cases; luckily, in HA we can define A ∨ B := ∃n0 ((n = 0 → A) ∧ (n ̸= 0 → B)) so we
only have to worry about ∃. Similarly, we can define ⊥ := (0 = 1) and ⊤ := (0 = 0). First
we write out what ⟨z, z′⟩ ∈ JA◦K means by unrolling the definition:

▶ Proposition 11. In HAH, we can prove the following:

⟨z, z′⟩ ∈ J(a =0 b)◦K ↔ a =0 b,

⟨z, z′⟩ ∈ J(A ∧ B)◦K ↔ ⟨pr0 z, pr0 z′⟩ ∈ JA◦K ∧ ⟨pr1 z, pr1 z′⟩ ∈ JB◦K,

⟨z, z′⟩ ∈ J(A → B)◦K ↔ ∀x, x′ (⟨x, x′⟩ ∈ JA◦K → ⟨z x, z′ x′⟩ ∈ JB◦K),
⟨z, z′⟩ ∈ J(∃x0B[x])◦K ↔ pr0 z = pr0 z′ ∧ ⟨pr1 z, pr1 z′⟩ ∈ JB[pr0 z]◦K,
⟨z, z′⟩ ∈ J(∀x0B[x])◦K ↔ ∀x (⟨z x, z′ x⟩ ∈ JB[x]◦K).

Now, we will prove conservativity by using an extra assumption: that we have Hilbert-style
epsilon constants. That is, we assume for every first-order formula A[x⃗, y], that there exists
a choice function ϵy.A ∈ N sending every x⃗ to some y such that A[x⃗, y] if such a y exists:

∀x⃗ (∃y A[x⃗, y] → ϵy.A x⃗ ↓), ∀x⃗ (ϵy.A x⃗ ↓ → A[x⃗, ϵy.A x⃗]).

Unfortunately, this assumption is not true for Kleene-application; however, in the next
sections, we will see that we can conservatively extend HAH with a notion of application
where these constants exist. First, we show how this allows us to prove conservativity:

▶ Theorem 12. Assuming ϵ-constants, for any HA-formula A, we have Inh(JA◦K) ↔ A.

D. Otten and B. van den Berg 44:13

Proof. For any HA-formula A with free variables x⃗, we construct a canonical realizer rA:

ra=0b := λx⃗ 0,

rA∧B := λx⃗ ⟨rA x⃗, rB x⃗⟩,
rA→B := λx⃗ λy (rB x⃗),
r∃y0 B[y] := λx⃗ ⟨ϵy.B x⃗, rB x⃗ (ϵy.B x⃗)⟩,
r∀y0 B[y] := λx⃗ λy (rB x⃗ y).

With induction on A, we can prove Inh(JA◦K) ↔ (rA x⃗ ↓ ∧ ⟨rA x⃗, rA x⃗⟩ ∈ JA◦K) ↔ A. ◀

What remains is proving that we can make this assumption. Here, we translate the approach
of [42] to higher-order logic. First, in Subsection 7.1 we extend our higher-order logic to allow
for partial function symbols. Then in Subsection 7.2 we extend HAH to HAHP by adding
primitive notions for application. This extension is conservative because these notions can
already be defined using Kleene-application. Then in Subsection 7.3, we extend further, to
HAHPϵ by adding ϵ-constants, and show that this is still conservative over HAH.

7.1 Higher-order Logic of Partial Terms
We will consider a higher-order version of the logic of partial terms by Beeson [3, Section
VI.1]. In this logic, function symbols are allowed to correspond to partial functions. So, if
we have a function symbol f then f(x⃗) is not necessarily defined. For every term a we add
a new atomic formula a ↓, which stands for “a is defined”. We add the following inference
rules:

↓-var,
Γ ⊢ xn ↓,

Γ ⊢ f(an0
0 , . . . , a

nk−1
k−1) ↓

↓-fun,
Γ ⊢ ani

i ↓
Γ ⊢ R(an0

0 , . . . , a
nk−1
k−1)

↓-rel.
Γ ⊢ ani

i ↓

Note that we view =n and ∈n as relation symbols so the ↓-rel rule applies. In addition, we
restrict the exists-introduction and forall-elimination rules to terms that are defined:
Γ ⊢ B[an] Γ ⊢ an ↓

∃-I,
Γ ⊢ ∃xn B[xn]

Γ ⊢ ∀xn B[xn] Γ ⊢ an ↓
∀-E.

Γ ⊢ B[an]

The other rules are the same as those of higher-order logic. Any theory in higher-order logic
can be seen as a theory in the higher-order logic of partial terms by adding for every function
symbol f : n0 × · · · × nk → m the axiom ∀xn0

0 . . . ∀xnk

k f(x0, . . . , xk) ↓. Accordingly, we will
view HAH as a theory in this new logic.

In this logic, it is often useful to consider a weaker notion of equality that also holds
when both terms are not defined: an ≃ bn := a ↓ ∨ b ↓ → a = b.

7.2 HAHP: Adding Primitive Application
In HAHP, we extend the language with a binary partial function symbol app : (0, 0) ⇀ 0, and
constants k, s, suc, rec : 0 which stand for natural numbers encoding basic functions: k and s
give a partial combinatory algebra [6], suc computes the successor function, and rec allows
us to do recursion. We abbreviate app(a, b) as a b. For k, s, suc, rec, we add the axioms:

∀x ∀y (k x y = x), ∀x (suc x = S(x)),
∀x ∀y (s x y ↓), ∀x ∀y (rec x y 0 = x),
∀x ∀y ∀z (s x y z ≃ (x z) (y z)), ∀x ∀y ∀z (rec x y (S z) ≃ y z (rec x y z)).

CSL 2024

44:14 Conservativity of Type Theory over Higher-Order Arithmetic

The raison d’être for k and s is that they are used to define λx b[x]:

λx x := s k k, λx S(b[x]) := λx (suc b[x]),
λx c := k c, (if c ̸= x) λx b[x] + c[x] := λx (add b[x] c[x]),

λx (b[x] c[x]) := s (λx b[x]) (λx c[x]), λx b[x] × c[x] := λx (mul b[x] c[x]),

where add := λy rec y (λi λr suc r) and mul := λy rec 1 (λi λr add r y).
These lambda functions are enough to construct our model in HAHP using app as our

application. We write J·K′ : λC+ → HAHP for this modification of J·K : λC+ → HAH.

▶ Theorem 13. HAHP is conservative over HAH.

Proof. Kleene-application satisfies the axioms of HAHP. Here, app(a, b) is the application of
the partial recursive function encoded by a to b. See [40, Proposition 9.3.12] for more. ◀

7.3 HAHPϵ: Adding Computable Choice
In HAHPϵ, we extend the theory even further by adding a constant ϵ∃yA : 0 for every
HAH-formula A[x0

0, . . . , x0
k−1, y0], and adding the following axioms:

∀x⃗ (∃y A[x⃗, y] → ϵ∃y A x⃗ ↓), ∀x⃗ (ϵ∃y A x⃗ ↓ → A[x⃗, ϵ∃y A x⃗]).

Such constants do not exist for Kleene-application, so HAHPϵ is not conservative over HAHP.
However, HAHPϵ is conservative over HAH as we will prove in the remainder of this section.

▶ Proposition 14. Suppose that A[x0, y0] is an HAH-formula and let HAHPF be the extension
of HAHP with a relation symbol F : 0 × 0 and axioms:

∀x !y F (x, y), ∀x (∃y A[x, y] → ∃y F (x, y)), ∀x ∀y (F (x, y) → A[x, y]),

where !y means “at most one y” which is defined by !y B[y] := ∀y ∀y′ (B[y] ∧ B[y′] → y = y′).
Then HAHPF is conservative over HAHP.

Proof. We prove this using forcing. We define a forcing condition P to be a finite ap-
proximation of the relation F : a finite set of pairs {⟨x0, y0⟩, . . . , ⟨xn−1, yn−1⟩} where the
xi are distinct and for every i < n we have A(xi, yi). For a forcing condition P and an
HAHPF -formula A we define a HAHP-formula P ⊩R A with induction on A:

P ⊩R A := A, (if A is an atomic HAHP-formula)
P ⊩R F (x, y) := ∀(P ′ ⊇ P) ∃(P ′′ ⊇ P ′) (⟨x, y⟩ ∈ P ′′),
P ⊩R A ∨ B := ∀(P ′ ⊇ P) ∃(P ′′ ⊇ P ′) ((P ′′ ⊩R A) ∨ (P ′′ ⊩R B)),
P ⊩R A ∧ B := (P ⊩R A) ∧ (P ⊩R B),
P ⊩R A → B := ∀(P ′ ⊇ P) ((P ′ ⊩R A) → (P ′ ⊩R B)),
P ⊩R ∃xn B[x] := ∀(P ′ ⊇ P) ∃(P ′′ ⊇ P ′) ∃xn (P ′′ ⊩R B[xn]),
P ⊩R ∀xn B[x] := ∀(P ′ ⊇ P) ∀xn (P ′ ⊩R B[x]).

As usual, we can prove with induction for every HAHPF -formula A that we have:

HAHP ⊢ ∀P ∀(P ′ ⊇ P) ((P ⊩R A) → (P ′ ⊩R A)),
HAHP ⊢ ∀P (∀(P ′ ⊇ P) ∃(P ′′ ⊇ P ′) (P ′′ ⊩R A) → (P ⊩R A)).

D. Otten and B. van den Berg 44:15

Similarly, for every HAHP-formula B we show with induction on B that:

HAHP ⊢ ∀P ((P ⊩R B) ↔ B).

With this, we prove for every HAHPF -formula A that HAHPF ⊢ A implies HAHP ⊢
∀P (P ⊩R A) with induction on the proof of HAHPF ⊢ A. This is tedious but straightforward.
See also the proof of [42, Proposition 2.5] where they show a similar statement.

This shows that HAHPF is conservative over HAHP: suppose for a HAHP-formula B that
we have HAHPF ⊢ B, then we have HAHP ⊢ ∀P (P ⊩R B) and therefore HAHP ⊢ B. ◀

▶ Proposition 15. Suppose that A[x0, y0] is an HAH-formula and let HAHPf be the extension
of HAHP with a partial function symbol f : 0 ⇀ 0 and axioms:

∀x (∃y A[x, y] → f(x) ↓), ∀x (f(x) ↓ → A[x, f(x)]).

Then HAHPf is conservative over HAHP.

Proof. This follows because every n-ary function symbol f can be encoded as an (n + 1)-ary
relation symbol F and an axiom ∀x⃗ !y F (x⃗, y). The axioms of Proposition 14 are precisely
the axioms of this proposition under this encoding. For a similar translation in more detail,
see [39, Section 2.7]. ◀

▶ Proposition 16. Suppose that A[x0, y0] is an HAH-formula and let HAHPc be the extension
of HAHP with a constant c : 0 and axioms:

∀x (∃y A[x, y] → c x ↓), ∀x (c x ↓→ A[x, c x]).

Then HAHPc is conservative over HAH.

Proof. We work in HAHPf and use our existing evaluation eval(a, b) to define a new
evaluation evalf (a, b), which can use the partial function symbol f as an oracle.

The informal idea to calculate evalf (a, b) is the following. We start by calculating eval(a, b).
If this returns a value ⟨0, x0⟩ then that means that the function a wants to ask the oracle for
the result of applying f to x0. So we supply this value and run the function again, now we
calculate eval(a, ⟨b, f(x0)⟩). If this returns a value ⟨0, x1⟩ then the function a want another
result from the oracle so we calculate eval(a, ⟨b, f(x0), f(x1)⟩). We keep doing this until a

eventually returns a value ⟨1, c⟩ in which case we say evalf (a, b) = c.
More formally, we say that the formula evalf (a, b) = c is true if there exists a sequence

⟨x0, . . . , xn−1⟩ such that:
for every i < n we have eval(a, ⟨b, f(x0), . . . , f(xi−1)⟩) = ⟨0, xi⟩;
and eval(a, ⟨b, f(x0), . . . , f(xn−1)⟩) = ⟨1, c⟩.

For this new evaluation we can define new constants kf , sf , sucf , recf which leads to a new
lambda abstraction λf . For the details, see [43, Theorem 2.2].

We can use this to show that HAHPc is conservative over HAH. For any HAHPc-formula
A we relativize the evaluation and constants to f to get an HAHPf -formula Af , we can prove
with induction that we have HAHPc ⊢ A iff HAHPf ⊢ Af . For an HAH-formula B we see
that Bf is the same as B so HAHPc ⊢ B implies HAHPf ⊢ B which implies HAH ⊢ B. ◀

▶ Theorem 17. HAHPϵ is conservative over HAH.

Proof. Suppose that we have HAHPϵ ⊢ A for an HAH-formula A. Note that the proof for A

can only use a finite amount of choice functions, say ϵ∃y Bi
for i < n. We can modify the proof

of A to use only the choice function ϵ∃y C where C[z, y] :=
∧

i<n ∀x⃗ (z = ⟨i, x⃗⟩ → Bi[x⃗, y]).
So, the theorem follows from the previous proposition. ◀

CSL 2024

44:16 Conservativity of Type Theory over Higher-Order Arithmetic

▶ Corollary 18 (proof-relevant conservativity). For a first-order arithmetical formula A, we
have that HAH proves A iff there exists a term a such that λC+ proves ΓA ⊢ a : A◦.

Proof. This follows from Theorem 12 and Theorem 17 in the same way as Corollary 10. ◀

8 De Jongh’s Theorem for Type Theory

Before proving it for type theory, let us first state De Jongh’s original theorem:

▶ Theorem 19 (De Jongh [12]). Let A[P0, . . . , Pn−1] be a propositional formula with propos-
itional variables P0, . . . , Pn−1. If A is not provable in intuitionistic propositional logic, then
we can construct sentences B0, . . . , Bn−1 in the language of HA such that A[B0, . . . , Bn−1]
is not provable in HA.

De Jongh and Smorynski have shown that this also holds for HA2 [13] and Robert Passmann
has shown it for CZF and IZF [32, 33]. First we observe that we can use Passman’s proof to
obtain a new result for HAH:

▶ Corollary 20. De Jongh’s Theorem holds for HAH.

Proof. This theorem follows from Passmann’s proof for IZF because of the following two
observations: HAH can be seen as a subtheory of IZF, and the sentences B0, . . . , Bn−1 used
by Passmann can already be stated in the language of HAH. See Appendix C. ◀

Now, using our conservativity results, we see the following:

▶ Corollary 21. De Jongh’s Theorem holds for λC+ (and smaller type theories) for both the
proof-relevant and proof-irrelevant interpretations of (higher-order) logic.

In particular, we see that this holds for both predicative and impredicative theories and for
both intuitionistic and extensional theories with at most one level of universes.

9 Conclusion and Future Work

The interpretations of higher-order logic in type theory differ greatly on second-order formulas:
• the proof-irrelevant interpretation satisfies specification and extensionality but not choice,
◦ the proof-relevant interpretation satisfies specification and choice but not extensionality.
However, although having all three of these principles makes the theory classical [15], these
interpretations still prove exactly the same first-order arithmetical formulas: those of the
intuitionistic theory HAH. These results hold for both intensional and extensional versions
of type theory and are sufficient to prove De Jongh’s theorem for both predicative and
impredicative versions.

We have characterised the arithmetical statements provable in type theories with one
level of impredicative universes. This gives two natural directions of future work:

Can we find a characterisation for predicative type theories? For such a type theory
both interpretations do not satisfy specification, so, can we find a corresponding weaker
arithmetical theory?
Can we find a characterisation for type theories with more universes?

D. Otten and B. van den Berg 44:17

References
1 Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive

types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 76–85, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3209108.3209130.

2 Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive types in homotopy type
theory. In 2012 27th Annual IEEE Symposium on Logic in Computer Science, pages 95–104,
2012. doi:10.1109/LICS.2012.21.

3 Michael Beeson. Foundations of Constructive Mathematics. A Series of Modern Surveys in
Mathematics. Springer, Berlin, 1985.

4 Stefano Berardi. Encoding of data types in pure construction calculus: a semantic justification.
In G. Huet and G. Plotkin, editors, Logical Environments, pages 30–60, 1993.

5 Yves Bertot and Pierre Castéran. Interactive theorem proving and program development,
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media, 2013.

6 Ingemarie Bethke. Notes on partial combinatory algebras. PhD thesis, University of Amsterdam,
1988.

7 Andrés Caicedo. How is exponentiation defined in Peano arithmetic? Mathematics Stack
Exchange, 2013. (version: 2017-04-13). URL: https://math.stackexchange.com/q/313049.

8 Georg Cantor. Ein Beitrag zur Mannigfaltigkeitslehre. Journal für die reine und angewandte
Mathematik, 84:242–258, 1877. URL: http://eudml.org/doc/148353.

9 Ray-Ming Chen and Michael Rathjen. Lifschitz realizability for intuitionistic Zermelo–Fraenkel
set theory. Archive for Mathematical Logic, 51(7):789–818, 2012.

10 J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall mathematics
series. Dover Publications, Incorporated, 2012. URL: https://books.google.nl/books?
id=1KAXc5TpEV8C.

11 Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computa-
tion, 76(2):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

12 Dick de Jongh. The maximality of the intuitionistic predicate calculus with respect to Heyting’s
arithmetic. The Journal of Symbolic Logic, 1970.

13 Dick de Jongh and Craig Smorynski. Kripke models and the intuitionistic theory of species.
Annals of Mathematical Logic, 9(1):157, 1976. doi:10.1016/0003-4843(76)90008-5.

14 Dick de Jongh, Rineke Verbrugge, and Albert Visser. Intermediate logics and the de jongh
property. Archive for Mathematical Logic, 50(1-2):197–213, 2011.

15 Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American
Mathematical Society, 51(1):176–178, 1975. URL: http://www.jstor.org/stable/2039868.

16 Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory.
Theoretical Computer Science, 176(1):329–335, 1997. doi:10.1016/S0304-3975(96)00145-4.

17 Harvey Friedman and Andrej Ščedrov. On the quantificational logic of intuitionistic set theory.
Mathematical proceedings of the Cambridge Philosophical Society, 99(1):5–10, 1986.

18 Herman Geuvers. The calculus of constructions and higher order logic, pages 139–191. Cahiers
du centre de logique. Katholieke Universiteit Leuven, Belgium, 1994.

19 Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson
Abramsky, editor, Typed Lambda Calculi and Applications, pages 166–181, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

20 Jean-Yves Girard. Proofs and types, volume 7. Cambridge university press Cambridge, 1989.
21 Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic, volume 3. Cambridge

University Press, 2017.
22 Martin Hofmann. Syntax and Semantics of Dependent Types, pages 79–130. Publications of the

Newton Institute. Cambridge University Press, 1997. doi:10.1017/CBO9780511526619.004.
23 Martin Hyland. A small complete category. Annals of pure and applied logic, 40(2):135–165,

1988.

CSL 2024

https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1109/LICS.2012.21
https://math.stackexchange.com/q/313049
http://eudml.org/doc/148353
https://books.google.nl/books?id=1KAXc5TpEV8C
https://books.google.nl/books?id=1KAXc5TpEV8C
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0003-4843(76)90008-5
http://www.jstor.org/stable/2039868
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1017/CBO9780511526619.004

44:18 Conservativity of Type Theory over Higher-Order Arithmetic

24 Bart Jacobs. Comprehension categories and the semantics of type dependency. Theoretical
Computer Science, 107(2):169–207, 1993. doi:10.1016/0304-3975(93)90169-T.

25 Richard Kaye. Models of Peano arithmetic. Clarendon Press, 1991.
26 S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages 3–42.

Princeton University Press, Princeton, 1956. doi:10.1515/9781400882618-002.
27 D. Kozen. A completeness theorem for kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.
28 Giuseppe Longo and Eugenio Moggi. Constructive natural deduction and its ‘ω-set’ in-

terpretation. Mathematical Structures in Computer Science, 1(2):215–254, 1991. doi:
10.1017/S0960129500001298.

29 Robert S. Lubarsky. Independence results around constructive ZF. Annals of Pure and Applied
Logic, 132(2):209–225, 2005. doi:10.1016/j.apal.2004.08.002.

30 Per Martin-Löf. Intuitionistic type theory. Studies in proof theory. Lecture notes; 1 861180607.
Bibliopolis, Napoli, 1984.

31 Daniël Otten. De Jongh’s theorem for type theory. Master’s thesis, University of Amsterdam,
2022. URL: https://eprints.illc.uva.nl/id/document/12640.

32 Robert Passmann. De Jongh’s theorem for intuitionistic Zermelo-Fraenkel set theory. In
Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer
Science Logic (CSL 2020), volume 152 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 33:1–33:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2020.33.

33 Robert Passmann. The first-order logic of CZF is intuitionistic first-order logic. The Journal
of Symbolic Logic, pages 1–23, 2022. doi:10.1017/jsl.2022.51.

34 Christine Paulin-Mohring. Introduction to the calculus of inductive constructions, 2015.
35 Bernhard Reus. Realizability models for type theories. Electronic Notes in Theoretical

Computer Science, 23(1):128–158, 1999. Tutorial Workshop on Realizability Semantics and
Applications (associated to FLoC’99, the 1999 Federated Logic Conference). doi:10.1016/
S1571-0661(04)00108-2.

36 Mike Shulman. Impredicative encodings, part 3, November 2018. URL: https://
homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/.

37 Jan M. Smith. The independence of Peano’s fourth axiom from Martin-Löf’s type theory
without universes. The Journal of Symbolic Logic, 53(3):840–845, 1988. URL: http://www.
jstor.org/stable/2274575.

38 Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
New York,: Springer, 1973.

39 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume I. North-
Holland Publishing Co., 1988.

40 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume II. North-
Holland Publishing Co., 1988.

41 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

42 Benno van den Berg and Lotte van Slooten. Arithmetical conservation results. Indagationes
Mathematicae, 29:260–275, 2018.

43 Jaap van Oosten. A general form of relative recursion. Notre Dame Journal of Formal Logic,
47(3):311–318, 2006.

https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1017/S0960129500001298
https://doi.org/10.1017/S0960129500001298
https://doi.org/10.1016/j.apal.2004.08.002
https://eprints.illc.uva.nl/id/document/12640
https://doi.org/10.4230/LIPIcs.CSL.2020.33
https://doi.org/10.1017/jsl.2022.51
https://doi.org/10.1016/S1571-0661(04)00108-2
https://doi.org/10.1016/S1571-0661(04)00108-2
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
http://www.jstor.org/stable/2274575
http://www.jstor.org/stable/2274575
https://homotopytypetheory.org/book

D. Otten and B. van den Berg 44:19

A Type Theory

Γ ⊢ A : A
x not free in Γ start,

Γ, x : A ⊢ x : A

Γ ⊢ A : A Γ ⊢ b : B
x not free in Γ weakening,

Γ, x : A ⊢ b : B

axiomP,
⊢ Prop : Type

Γ ⊢ A : Prop
cumulP,

Γ ⊢ A : Set
Γ ⊢ A ≡ A′ : A Γ ⊢ a : A

convers,
Γ ⊢ a : A′

axiomS,
⊢ Set : Type

Γ ⊢ A : Set
cumulS,

Γ ⊢ A : Type
Γ ⊢ p : a =A a′

reflection,
Γ ⊢ a ≡ a′ : A

Rules stating that Γ ⊢ · ≡ · : A is a congruence relation have been omitted for brevity.

*

n numeral ⋉-F,
⊢ ⋉ : Set

k < n ⋉-I,
⊢ k⋉ : ⋉

Γ, i : ⋉ ⊢ C[i] : C Γ ⊢ c0 : C[0⋉] . . . Γ ⊢ cn−1 : C[(n − 1)⋉]
⋉-E,

Γ ⊢ ind⋉
C c0 . . . cn−1 : Π(i : ⋉) C[i]

Γ ⊢ ind⋉
C c0 . . . cn−1 k⋉ : C[k⋉]

k < n ⋉-β,
Γ ⊢ ind⋉

C c0 . . . cn−1 k⋉ ≡ ck : C[k⋉]

N-F,
⊢ N : Set

N-I0,
⊢ 0 : N

Γ ⊢ n : N
N-IS,

Γ ⊢ S n : N

Γ, n : N ⊢ C[n] : C Γ ⊢ c : C[0] Γ ⊢ f : Π(n : N) (C[n] → C[S n])
N-E,

Γ ⊢ indN
C c f : Π(n : N) C[n]

Γ ⊢ indN
C c f 0 : C[0]

N-β0,
Γ ⊢ indN

C c f 0 ≡ c : C[0]
Γ ⊢ indN

C c f (S n) : C[S n]
N-βS,

Γ ⊢ indN
C c f (S n) ≡ f n (indN

C c f n) : C[S n]

Γ ⊢ A : C Γ, x : A ⊢ B[x] : C
Σ-F,

Γ ⊢ Σ(x : A) B[x] : C
Γ ⊢ Σ(x : A) B[x] : C Γ ⊢ a : A Γ ⊢ b : B[a]

Σ-I,
Γ ⊢ ⟨a, b⟩ : Σ(x : A) B[x]

Γ, p : Σ(x : A) B[x] ⊢ C[p] : C Γ ⊢ f : Π(x : A) Π(y : B[a]) C[⟨x, y⟩]
Σ-E,

Γ ⊢ indΣ
C f : Π(p : Σ(x : A) B[x]) C[p]

Γ ⊢ indΣ
C f ⟨a, b⟩ : C[⟨a, b⟩]

Σ-β,
Γ ⊢ indΣ

C f ⟨a, b⟩ ≡ f a b : C[⟨a, b⟩]

Γ ⊢ A : A Γ, x : A ⊢ B[x] : B
Π-F,

Γ ⊢ Π(x : A) B[x] : B
Γ ⊢ Π(x : A) B[x] : B Γ, x : A ⊢ b[x] : B[x]

Π-I,
Γ ⊢ λ(x : A) b[x] : Π(x : A) B[x]

Γ ⊢ f : Π(x : A) B[x] Γ ⊢ a : A
Π-E,

Γ ⊢ f a : B[a]
Γ ⊢ (λ(x : A) b[x]) a : B[a]

Π-β,
Γ ⊢ (λ(x : A) b[x]) a ≡ b[a] : B[a]

CSL 2024

44:20 Conservativity of Type Theory over Higher-Order Arithmetic

Γ ⊢ A : A Γ, x : A ⊢ B[x] : B
W-F,

Γ ⊢ W(x : A) B[x] : A

Γ ⊢ W(x : A) B[x] : A Γ ⊢ a : A Γ ⊢ d : B[a] → W(x : A) B[x]
W-I,

Γ ⊢ tree a d : W(x : A) B[x]

Γ, t : W(x : A) B[x] ⊢ C[t] : C
Γ ⊢ f : Π(a : A) Π(d : B[a] → W(x : A) B[x]) ((Π(b : B[a]) C[d b]) → C[tree a d])

W-E,
indW

C f : Π(t : W(x : A) B[x]) C[t]

Γ ⊢ indW
C f (tree a d) : C[tree a d]

W-β,
Γ ⊢ indW

C f (tree a d) ≡ f a d (λ(b : B a) indW
C f (d b)) : C[tree a d]

Γ ⊢ A : A Γ ⊢ a : A Γ ⊢ a′ : A
=-F,

Γ ⊢ a =A a′ : Prop
Γ ⊢ A : A Γ ⊢ a : A

=-I,
Γ ⊢ refl a : a =A a

Γ, a : A, a′ : A, e : a =A a′ ⊢ C[a, a′, e] : C Γ ⊢ f : Π(x : A) C[x, x, refl x]
=-E,

Γ ⊢ ind=
C f : Π(x, x′ : A) Π(e : x =A x′) C[x, x′, e]

Γ ⊢ ind=
C f a a (refl a) : C[a, a, refl a]

=-β,
Γ ⊢ ind=

C f a a (refl a) ≡ f a : C[a, a, refl a]

Γ ⊢ A : A
∥ · ∥-F,

Γ ⊢ ∥A∥ : Prop
Γ ⊢ ∥A∥ : Prop Γ ⊢ a : A

∥ · ∥-I,
Γ ⊢ |a| : ∥A∥

Γ, t : ∥A∥ ⊢ C[t] : Prop Γ ⊢ f : Π(x : A) C[|x|]
∥ · ∥-E,

Γ ⊢ ind∥·∥
C f : Π(t : ∥A∥) C[t]

Γ ⊢ ind∥·∥
C f h |a| : C[|a|]

∥ · ∥-β,
Γ ⊢ ind∥·∥

C f h |a| ≡ f a : C[|a|]

Γ ⊢ A : A Γ, x : A, x′ : A ⊢ R[x, x′] : B
/-F,

Γ ⊢ A/R : A
Γ ⊢ A/R : A Γ ⊢ a : A

/-I,
Γ ⊢ [a]R : A/R

Γ, q : A/R ⊢ C[q] : C Γ ⊢ f : Π(x : A) C[[x]R]
Γ ⊢ h : Π(x, x′ : A) Π(r : R[x, x′]) ((ax/ x x′ r)∗ (f x) = f x′)

/-E,
Γ ⊢ ind/

C f h : Π(q : A/R) C[q]

Γ ⊢ A/R : A
/-I=,

Γ ⊢ ax/ : Π(a, a′ : A) (R[a, a′] → [a]R = [a′]R)

Γ ⊢ ind/
C f h [a]R : C[[a]R]

/-β,
Γ ⊢ ind/

C f h [a]R ≡ f a : C[[a]R]

propext.
⊢ propext : Π(P, P ′ : Prop) ((P ↔ P) → (P =Prop P ′))

D. Otten and B. van den Berg 44:21

B Model

Using simultaneous induction on the derivation we define:
for any well-formed context Γ an n-assembly JΓK for some n;
for any judgement Γ ⊢ A : Type a function JΓ ⊢ A : TypeK : JΓK → Assemn for some n;
for any judgement Γ ⊢ a : A a morphism JΓ ⊢ a : AK : JΓK → JΓ ⊢ A : TypeK.

For contexts, we define:

JK := 1, JΓ, x : AK := Σ(G ∈ JΓK) JΓ ⊢ A : TypeK(G).

For the start and weakening laws, we define:

JΓ, x : A ⊢ x : AK(G) := pr1(G), JΓ, x : A ⊢ b : BK(G) := JΓ ⊢ b : BK(G).

For the β-conversion law, if Γ ⊢ A ≡ A′ : A, then we define:

JΓ ⊢ a : A′K(G) := JΓ ⊢ a : AK(G),

For the axioms and cumulativity laws, we define:

J ⊢ Prop : TypeK := ∇Subsing, JΓ ⊢ A : Set K(G) := {⟨z, z′⟩ : ∗ ∈ JΓ : PropK(G)},

J ⊢ Set : TypeK := ∇PER, JΓ ⊢ A : TypeK(G) := N/JΓ ⊢ A : SetK(G).

For the finite types, we define:

J ⊢ ⋉ : SetK := n, J ⊢ kn : ⋉K := {k},

JΓ ⊢ ind⋉
C c0 . . . cn−1 : Π(k : ⋉) C[k]K(G)({k}) := JΓ ⊢ ck : C[k]K(G).

For the natural numbers, we define:

J ⊢ N : SetK := N, J ⊢ 0 : NK := {0} JΓ ⊢ S n : NK(G) := S(JΓ ⊢ n : NK(G)),
JΓ ⊢ indN

C c f : Π(n : N) C[n]K(G)({n}) :=
JΓ ⊢ f : Π(n : N) (C[n] → C[S n])K(G)({n − 1})(. . .

JΓ ⊢ f : Π(n : N) (C[n] → C[S n])K(G)({0})(JΓ ⊢ c : C[0]K(G))).

For Σ-types, we define:

JΓ ⊢ Σ (x : A) B[x] : C K(G) := Σ (X ∈ JΓ ⊢ A : C K(G)) JΓ, x : A ⊢ B[x] : C K(⟨G, X⟩),
JΓ ⊢ ⟨a, b⟩ : Σ(x : A) B[x]K(G) := ⟨JΓ ⊢ a : AK(G), JΓ ⊢ b : B[a]K(G)⟩,
JΓ ⊢ indΣ

C f : Π(p : Σ(x : A) B[x]) C[p]K(G)(⟨A, B⟩) :=
JΓ ⊢ f : Π(x : A) Π(y : B[x]) C[⟨x, y⟩]K(G)(A)(B).

For Π-types, we define:

JΓ ⊢ Π (x : A) B[x] : BK(G) := Π (X ∈ JΓ ⊢ A : AK(G)) JΓ, x : A ⊢ B[x] : BK(⟨G, X⟩),
JΓ ⊢ λ(x : A) b[x] : Π(x : A) B[x]K(G)(A) := JΓ, x : A ⊢ b[x] : B[x]K(⟨G, A⟩),
JΓ ⊢ f a : B[a]K(G) := JΓ ⊢ f : Π(x : A) B[x]K(G)(JΓ ⊢ a : AK(G)).

CSL 2024

44:22 Conservativity of Type Theory over Higher-Order Arithmetic

For W-types, we define:

JΓ ⊢ W(x : A) B[x] : AK(G) := W(X ∈ JΓ ⊢ A : AK(G)) JΓ, x : A ⊢ B[x] : BK(⟨G, X⟩),
JΓ ⊢ tree a d : W(x : A) B[x]K(G) := {⟨A0, B0, A1, . . . , An⟩ : A0 = JΓ ⊢ a : AK(G)

∧ ⟨A1, B1, A2, . . . , An⟩ ∈ JΓ ⊢ d : B[a] → W(x : A) B[x]K(G)(B0)},

JΓ ⊢ indW
C f : Π(t : W(x : A) B[x]) C[t]K(G)(T) :=

JΓ ⊢ f : Π(a : A) Π(d : B[a] → W(x : A) B[x]) ((Π(b : B[a]) C[d b]) → C[tree a d])K
(G)(root(T))(B0 7→ {⟨A1, B1, A2, . . . , An⟩ : ⟨root(T), B0, A1, . . . , An} ∈ T})(. . .).

For propositional equality, we define:

JΓ ⊢ a =A a′ : PropK(G) := (JΓ ⊢ a : AK(G) =JΓ⊢A:TypeK(G) JΓ ⊢ a′ : AK(G)),
JΓ ⊢ refl a : a =A a K(G) := ∗,

JΓ ⊢ ind=
C f : Π(x, x′ : A) Π(e : x =A x′) C[x, x′, e]K(G)(A)(A′)(E) :=

JΓ ⊢ f : Π(x : A) C[x, x, refl x]K(G)(A).

For propositional truncation, we define:

JΓ ⊢ ∥A∥ : PropK(G) := ∥JΓ ⊢ A : AK(G)∥,

JΓ ⊢ |a| : ∥A∥K(G) := ∗,

JΓ ⊢ ind∥·∥
C f h : Π(t : ∥A∥) C[t]K(G)(T) := JΓ ⊢ f : Π(x : A) C[|x|]K(G)(A)

for any A ∈ JΓ ⊢ A : TypeK(G).

For quotient types, we define:

JΓ ⊢ A/R : AK(G) := JΓ ⊢ A : AK(G)/JΓ, x : A, x′ : A ⊢ R[x, x′] : BK(G),
JΓ ⊢ [a]R : A/RK(G) := [JΓ ⊢ a : AK(G)],

JΓ ⊢ ind∥·∥
C f h : Π(t : ∥A∥) C[t]K(G)(Q) := JΓ ⊢ f : Π(x : A) C[[x]R]K(G)(A)

for any A ∈ Q.

For propositional extensionality, we define:

J ⊢ propext : Π(P, P ′ : Prop) ((P ↔ P) → (P =Prop P ′))K(S)(S′)(F) := ∗.

We can see with induction that these interpretations are well-defined, so in particular that
every function JΓ ⊢ a : AK is indeed tracked by a natural number and therefore a morphism.

C De Jongh’s Theorem for HAH

▶ Corollary (De Jongh’s theorem for HAH). Let A[P0, . . . , Pn−1] be a propositional formula
with propositional variables P0, . . . , Pn−1. If A is not provable in intuitionistic propositional
logic then we can construct sentences B0, . . . , Bn−1 in the language of HAH such that
A[B0, . . . , Bn−1] is not provable in HAH.

D. Otten and B. van den Berg 44:23

Proof. Firstly, every higher-order arithmetical formula can be seen as a first-order formula
in the language of set theory by interpreting ∃xn as ∃(x ∈ Pn(ω)) and ∀xn as ∀(x ∈ Pn(ω)).
IZF proves the axioms of HAH so we can view HAH as a subtheory of IZF. Now, in the proof
of De Jongh’s theorem for IZF, Passmann [32] constructs suitable B0, . . . , Bn−1 of the form:∨

k(Γk ∧
∧

l ¬(¬∆l ∧ ∆l+1)),

where Γk and ∆l are roughly the following set theoretic formulas:

Γk := (|P(1)| < k), ∆l := (|P(ℵ0)| < ℵl).

More precisely, the formula Γk can be stated in the language of HAH as follows:

Γk := ∀X1
0 · · · ∀X1

k−1 (
∧

i<k(∀y0(y ∈ Xi → y = 0)) →
∨

i<j<k(xi = xj)).

Note that Γk is not trivial in constructive set theory because we cannot prove for every set
of the form {x ∈ 1 | A} that it equal to 0 = ∅ or 1 = {∅}. For ∆l we can take any of the
equivalent definitions for the statement |P(ℵ0)| < ℵl in ZFC. One possible definition of ∆l

in the language of HAH is the following:

∆l := ∀X 2
0 · · · ∀X 2

l (
∧

i<l+1 is-infinite(Xi) →
∨

i<j<l+1(|Xi| = |Xj |)).

Note that the Xi are of level 2 so in IZF they will be interpreted as elements of P2(ω) which
are subsets of P(ω). So ∆l states that for any l + 1 infinite subsets of P(N) there must be
two that have the same cardinality. This means that we have at most l infinite subsets of
P(N) with distinct cardinalities, in which case we would have ω = ℵ0, . . . , ℵl−1 = P(ω). Here
we make use of the following definitions:

|Xn+1| = |Y n+1| := ∃Zn+1 (∀(x ∈ X) ∃!(y ∈ Y) (⟨x, y⟩ ∈ Z) ∧
∀(y ∈ Y) ∃!(x ∈ X) (⟨x, y⟩ ∈ Z)),

is-infinite(Xn+1) := ∃Y n+1 (∃(x ∈ X) (x /∈ Y) ∧ ∀(y ∈ Y) (y ∈ X) ∧ |X| = |Y |).

Note that we use Dedekinds definition of infinity because it is easier to state in the language
of HAH. It is equivalent to the usual notion of infinity in ZFC. Now, suppose that we have a
propositional formula A[P0, . . . , Pn−1] that is not provable in intuitionistic logic. Passmann
shows that there are B0, . . . , Bn−1 such that A[B0, . . . , Bn−1] is not provable in IZF. But we
can view B0, . . . , Bn−1 as HAH-formulas and then A[B0, . . . , Bn−1] is certainly not provable
in HAH because we can view HAH as a subtheory of IZF. ◀

CSL 2024

A Generic Characterization of Generalized Unary
Temporal Logic and Two-Variable First-Order Logic
Thomas Place # Ñ

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

Marc Zeitoun # Ñ

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

Abstract
We study an operator on classes of languages. For each class C, it produces a new class FO2(IC)
associated with a variant of two-variable first-order logic equipped with a signature IC built from C. For
C = {∅, A∗}, we obtain the usual FO2(<) logic, equipped with linear order. For C = {∅, {ε}, A+, A∗},
we get the variant FO2(<, +1), which also includes the successor predicate. If C consists of all Boolean
combinations of languages A∗aA∗, where a is a letter, we get the variant FO2(<, Bet), which includes
“between” relations. We prove a generic algebraic characterization of the classes FO2(IC). It elegantly
generalizes those known for all the cases mentioned above. Moreover, it implies that if C has decidable
separation (plus some standard properties), then FO2(IC) has a decidable membership problem.

We actually work with an equivalent definition of FO2(IC) in terms of unary temporal logic. For
each class C, we consider a variant TL(C) of unary temporal logic whose future/past modalities
depend on C and such that TL(C) = FO2(IC). Finally, we also characterize FL(C) and PL(C), the
pure-future and pure-past restrictions of TL(C). Like for TL(C), these characterizations imply that
if C is a class with decidable separation, then FL(C) and PL(C) have decidable membership.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Classes of regular languages, Generalized unary temporal logic, Generalized
two-variable first-order logic, Generic decidable characterizations, Membership, Separation

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.45

Related Version Extended Version: https://arxiv.org/abs/2307.09349 [29]

1 Introduction

Context. Regular languages of finite words form a robust class: they admit a wide variety
of equivalent definitions, whether by regular expressions, finite automata, finite monoids
or monadic second-order logic. It is therefore natural to study the fragments of regular
languages obtained by restricting the syntax of one of the above-mentioned formalisms. For
each particular fragment, we seek to prove that it has a decidable membership problem: given
a regular language as input, decide whether it belongs to the fragment. Intuitively, doing so
requires a thorough knowledge of the fragment and the languages it can describe.

This approach was initiated by Schützenberger [30] for the class SF of star-free languages.
These are the languages defined by a star-free expression: a regular expression without Kleene
star but with complement instead. Equivalently, these are the languages that can be defined
in first-order logic with the linear order [16] (FO(<)) or in linear temporal logic [11] (LTL).
Schützenberger established an algebraic characterization of SF: a regular language is star-free
if and only if its syntactic monoid is aperiodic. This yields a membership procedure for SF
because the syntactic monoid can be computed and aperiodicity is a decidable property.

Operators. This seminal result prompted researchers to look at other natural classes, spawn-
ing a fruitful line of research (see e.g., [4, 33, 12, 18, 36, 24]). Although there are numerous
classes, they can be grouped into families based on “variants” of the same syntax. Let us

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 45; pp. 45:1–45:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tplace@labri.fr
http://www.labri.fr/perso/tplace
https://orcid.org/0009-0000-2840-9586
mailto:mz@labri.fr
http://www.labri.fr/perso/zeitoun
https://orcid.org/0000-0003-4101-8437
https://doi.org/10.4230/LIPIcs.CSL.2024.45
https://arxiv.org/abs/2307.09349
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 A Generic Characterization of Generalized Unary TL and Two-Variable FO

use logic to clarify this point. Each logical fragment can use several signatures (i.e., sets of
predicates allowed in formulas), each giving rise to a class. For instance, first-order logic
is commonly equipped with predicates such as the linear order “<” [16, 30], the succes-
sor “+1” [3] or the modular predicates “MOD” [2]. While it is worth looking at multiple
variants of prominent classes, doing so individually for each of them has an obvious disad-
vantage: the proof has to be systematically modified to accommodate each change. This can
be tedious, difficult, and not necessarily enlightening. To overcome this drawback, a natural
approach is to capture a whole family of variants with an operator. An operator “Op” takes
a class C as input, and outputs a larger one Op(C). Thus, we can study all classes Op(C)
simultaneously: the question becomes: “what hypotheses about C guarantee the decidability
of Op(C)-membership?”. For example, one can generalize the three definitions of star-free
languages through operators:
1. The star-free closure C 7→ SF(C) has been introduced in [31, 34]. Languages in SF(C) are

defined by “extended” star-free expressions, which can freely use languages from C.
2. A construction associating a signature IC to a class C has been given in [23]. For each L ∈ C,

the set IC contains a binary predicate IL(x, y): for a word w and two positions i, j in w,
IL(i, j) holds if and only if i < j and the infix of w between i and j belongs to L. We get
an operator C 7→ FO(IC) based on first-order logic. It captures many choices of signature.

3. Similarly, an operator C 7→ LTL(C) that generalizes LTL has been defined in [28].
It is shown in [23, 28] that SF(C) = FO(IC) = LTL(C) for any class C (with mild hypotheses).
Moreover, a generic algebraic characterization is proved in [25, 28]. Given a regular language L,
it relies on a construction that identifies monoids inside its syntactic monoid, called the
C-orbits: L ∈ SF(C) if and only if its C-orbits are all aperiodic. This elegantly generalizes
Schützenberger’s theorem and gives a transfer theorem for membership. Indeed, the C-orbits
are connected with a decision problem that strengthens membership: C-separation. Given
two input regular languages L1 and L2, C-separation asks whether there is K ∈ C such that
L1 ⊆ K and L2 ∩K = ∅. The crucial point is that C-orbits are computable if C-separation is
decidable. Thus, SF(C)-membership is also decidable in this case. Similar results are known
for other operators such as polynomial closure [23] or its unambiguous restriction [22, 27].

Unary temporal logic and two-variable first-order logic. The operator we investigate
generalizes another important class admitting multiple definitions [35, 6] (see [8, 7] for
extensions). We are interested in two of them. It consists of languages that can be defined in
two-variable first-order logic with the linear order (FO2(<)) or equivalently in unary temporal
logic (TL) with the modalities F (sometimes in the future) and P (sometimes in the past).
Etessami, Vardi and Wilke [9] have shown that FO2(<) = TL. Its algebraic characterization
by Thérien and Wilke [36] is one of the famous results of this type: a regular language belongs
to FO2(<) = TL if and only if its syntactic monoid belongs to the variety of monoids DA.

Both definitions extend to natural operators. First, the generic signatures IC yield an
operator C 7→ FO2(IC) based on FO2. Second, an operator C 7→ TL(C) has been defined in [27].
It enriches TL with new modalities FL and PL, both depending on the languages L ∈ C. For
example, the formula FL φ holds at a position i in a word w if there is a position j > i in w such
that φ holds at j and the infix between i and j belongs to L. We know that FO2(IC) = TL(C)
when C is closed under Boolean operations [27]. Here, we work with the TL(·) operator, which
encompasses all classic classes based on two-variable first-order logic or unary temporal logic.
This includes the original variants FO2(<) = TL and FO2(<,+1) = TLX, both of which were
studied by Thérien and Wilke [36] (here, “+1” is the successor predicate and TLX is defined
by enriching TL with “next” and “yesterday” modalities). Another example is the variant

T. Place and M. Zeitoun 45:3

FO2(<,MOD) endowed with modular predicates, investigated by Dartois and Paperman [5].
Finally, we capture the variant FO2(<,Bet) = BInvTL equipped with “between” relations,
defined and characterized by Krebs, Lodaya, Pandya and Straubing [13, 14, 15].

Contributions. We prove a generic algebraic characterization of the classes FO2(IC) = TL(C).
We reuse the C-orbits introduced for star-free closure: for any class C (having mild properties)
we show that a regular language belongs to TL(C) if and only if all C-orbits of its syntactic
monoid belong to DA. In particular, this yields a transfer theorem for membership: if C
has decidable separation, then FO2(IC) = TL(C) has decidable membership. Moreover, this
characterization generalizes the characterizations known for all the above instances.

A key feature of our proof is that we use a third auxiliary operator. It combines two other
operators: Boolean polynomial closure (BPol) and unambiguous polynomial closure (UPol).
We have UPol(BPol(C)) ⊆ TL(C) if C has mild properties [27]. In fact, for many natural
classes, UPol(BPol(C)) = TL(C). For example, UPol(BPol({∅, A∗})) is the class UL of unam-
biguous languages defined by Schützenberger [32]. It is known [36] that UL = TL = FO2(<).
More generally, UPol(BPol(C)) = TL(C) for every class C consisting of group languages [27].
Yet, this is a strong hypothesis and the inclusion UPol(BPol(C)) ⊆ TL(C) is strict in general.
For example, the results of [15] imply that UPol(BPol(AT)) ̸= TL(AT), where AT consists
of all Boolean combinations of languages A∗aA∗ (with a ∈ A). Nevertheless, the classes
UPol(BPol(C)) serve as a central ingredient in the most difficult direction of our proof: “If
a language satisfies our characterization on C-orbits, prove that it belongs to TL(C)”. More
precisely, we exploit the known characterization of UPol(BPol(C)) to prove that auxiliary lan-
guages belong to this class, and we then conclude using the inclusion UPol(BPol(C)) ⊆ TL(C).

Finally, we look at two additional operators: C 7→ FL(C) and C 7→ PL(C). They are also
defined in terms of unary temporal logic, as the pure-future and the pure-past restrictions of
C 7→ TL(C). We present generic algebraic characterizations for these two operators as well.
Again, they are based on C-orbits. For every class C (with mild hypotheses), we show that
a regular language belongs to FL(C) (resp. PL(C)) if and only if all the C-orbits inside its
syntactic monoid are L-trivial (resp. R-trivial) monoids. As before, these results yield transfer
theorems: if C has decidable separation, then FL(C) and PL(C) have decidable membership.

Organization of the paper. We recall the notation and background in Section 2. In Section 3,
we present the C-orbits and their properties. In Section 4, we define the operator C 7→ TL(C).
Section 5 is devoted to the generic characterization of TL(C) and to its proof. In Section 6,
finally, we state the characterizations of the pure-future and pure-past restrictions of TL(C).

2 Preliminaries

We fix a finite alphabet A for the paper. As usual, A∗ denotes the set of all finite words
over A, including the empty word ε. A language is a subset of A∗. We let A+ = A∗ \ {ε}.
For u, v ∈ A∗, we write uv for the word obtained by concatenating u and v. We lift the
concatenation to languages as follows: if K,L ⊆ A∗, we let KL = {uv | u ∈ K, v ∈ L}.
If w ∈ A∗, we write |w| ∈ N for its length. A word w = a1 · · · a|w| ∈ A∗ is viewed as
an ordered set Pos(w) = {0, 1, . . . , |w|, |w| + 1} of |w| + 2 positions. In addition, we let
Posc(w) = {1, . . . , |w|} ⊊ Pos(w). Position i ∈ Posc(w) carries label ai ∈ A, which we write
w[i] = ai. On the other hand, positions 0 and |w| + 1 carry no label. We write w[0] = min

and w[|w| + 1] = max. For v, w ∈ A∗, we say that v is an infix (resp. prefix, suffix) of w
when there exist x, y ∈ A∗ such that w = xvy (resp. w = vy, w = xv). Given a word
w = a1 · · · a|w| ∈ A∗ and i, j ∈ Pos(w) such that i < j, we write w(i, j) = ai+1 · · · aj−1 ∈ A∗

(i.e., the infix obtained by keeping the letters carried by positions strictly between i and j).

CSL 2024

45:4 A Generic Characterization of Generalized Unary TL and Two-Variable FO

Classes. A class of languages C is simply a set of languages. Such a class C is a lattice when
∅ ∈ C, A∗ ∈ C and C is closed under both union and intersection: for all K,L ∈ C, we have
K ∪ L ∈ C and K ∩ L ∈ C. Moreover, a class of languages C is a Boolean algebra if it is a
lattice closed under complement: for all L ∈ C, we have A∗ \ L ∈ C. Finally, the class C is
closed under quotients if for all L ∈ C and u ∈ A∗, we have u−1L

def= {w ∈ A∗ | uw ∈ L} ∈ C
and Lu−1 def= {w ∈ A∗ | wu ∈ L} ∈ C. A prevariety is a Boolean algebra closed under
quotients and containing only regular languages. Regular languages are those which can be
equivalently defined by finite automata, finite monoids or monadic second-order logic. We
work with the definition by monoids, which we now recall.

Monoids. A monoid is a set M endowed with an associative multiplication (s, t) 7→ st

having an identity element 1M (i.e., such that 1Ms = s1M = s for every s ∈ M). An
idempotent of a monoid M is an element e ∈ M such that ee = e. We write E(M) ⊆ M for
the set of all idempotents in M . It is folklore that for every finite monoid M , there exists a
natural number ω(M) (denoted by ω when M is understood) such that for every s ∈ M , the
element sω is an idempotent. Finally, we shall use the following Green relations [10] defined
on monoids. Given a monoid M and s, t ∈ M , we write:

s ⩽J t when there exist x, y ∈ M such that s = xty,

s ⩽L t when there exists x ∈ M such that s = xt,

s ⩽R t when there exists y ∈ M such that s = ty.

Clearly, ⩽J, ⩽L and ⩽R are preorders (i.e., they are reflexive and transitive). We write <J,
<L and <R for their strict variants (for example, s <J t when s ⩽J t but t ̸⩽J s). Finally, we
write J, L and R for the corresponding equivalence relations (for example, s J t when s ⩽J t

and t ⩽J s). There are many technical results about Green relations. We will just need the
following easy and standard lemma, which applies to finite monoids (see e.g., [17, 20]).

▶ Lemma 1. Let M be a finite monoid and let s, t ∈ M . If s J t and s ⩽R t, then s R t.

Regular languages and syntactic morphisms. Since A∗ is a monoid whose multiplication is
concatenation (the identity element is ε), we may consider monoid morphisms α : A∗ → M

where M is an arbitrary monoid. That is, α : A∗ → M is a map satisfying α(ε) = 1M and
α(uv) = α(u)α(v) for all u, v ∈ A∗. We say that a language L ⊆ A∗ is recognized by α when
there exists a set F ⊆ M such that L = α−1(F).

It is well known that regular languages are exactly those recognized by a morphism into a
finite monoid. Moreover, every language L is recognized by a canonical morphism, which we
briefly recall. One can associate to L an equivalence ≡L over A∗: the syntactic congruence
of L. Given u, v ∈ A∗, we let u ≡L v if and only if xuy ∈ L ⇔ xvy ∈ L for every x, y ∈ A∗.
One can check that “≡L” is indeed a congruence on A∗: it is an equivalence compatible with
word concatenation. Thus, the set of equivalence classes ML = A∗/≡L is a monoid. It is
called the syntactic monoid of L. Finally, the map αL : A∗ → ML sending every word to
its equivalence class is a morphism recognizing L, called the syntactic morphism of L. It
is known that a language L is regular if and only if ML is finite (i.e., ≡L has finite index):
this is the Myhill-Nerode theorem. In this case, one can compute the syntactic morphism
αL : A∗ → ML from any representation of L (such as an automaton or a monoid morphism).

Decision problems. We consider two decision problems, both depending on an arbitrary
class C. They serve as mathematical tools for analyzing it, as obtaining an algorithm for one
of these problems requires a solid understanding of that class C. The C-membership problem

T. Place and M. Zeitoun 45:5

is the simplest: it takes as input a single regular language L and simply asks whether L ∈ C.
The second problem, C-separation, is more general. Given three languages K,L1, L2, we say
that K separates L1 from L2 if L1 ⊆ K and L2 ∩K = ∅. Given a class C, we say that L1 is
C-separable from L2 if some language of C separates L1 from L2. The C-separation problem
takes as input two regular languages L1, L2 and asks whether L1 is C-separable from L2.

▶ Remark 2. The C-separation problem generalizes C-membership. Indeed, a regular language
belongs to C if and only if it is C-separable from its complement, which is regular.

3 Orbits

Instead of looking at single classes, we consider operators. These are correspondences
C 7→ Op(C) that take as input a class C to build a new one Op(C). We investigate three
operators in Sections 4 to 6. For now, we present general tools for handling such operators.
Given a class C and a morphism α : A∗ → M , we define special subsets of M : the C-orbits for α.
This notion was introduced in [28]. We shall use it to formulate generic characterizations
of the operators C 7→ Op(C) that we consider: for each input prevariety C, the languages in
Op(C) are characterized by a property of the C-orbits for their syntactic morphisms.

C-pairs. Consider a class C and a morphism α : A∗ → M . We say that a pair (s, t) ∈ M2 is
a C-pair for α if and only if α−1(s) is not C-separable from α−1(t). Note that if C-separation
is decidable, then one can compute all C-pairs for an input morphism.

We turn to a useful technical result, which characterizes the C-pairs using morphisms.
Consider two morphisms α : A∗ → M and η : A∗ → N . For every pair (s, t) ∈ M2, we say
that (s, t) is an η-pair for α when there exist u, v ∈ A∗ such that η(u) = η(v), α(u) = s

and α(v) = t. In addition, for each class C, we define the C-morphisms as the surjective
morphisms η : A∗ → N into a finite monoid N such that all languages recognized by η belong
to C. We have the following elementary lemma, proved in [27, Lemma 5.11].

▶ Lemma 3. Let C be a prevariety and α : A∗ → M be a morphism. Then,
1. For every C-morphism η : A∗ → N , all C-pairs for α are also η-pairs for α.
2. There exists a C-morphism η : A∗ → N such that all η-pairs for α are also C-pairs for α.

C-orbits. Consider a class C and a morphism α : A∗ → M . For every idempotent e ∈ E(M),
the C-orbit of e for α is the set Me ⊆ M consisting of all elements ete ∈ M such that
(e, t) ∈ M2 is a C-pair. If C is a prevariety and α is surjective, it is proved in [28, Lemma 5.5]
that Me is a monoid in M : it is closed under multiplication and e ∈ Me is its identity. On
the other hand, Me is not a “submonoid” of M (this is because 1M needs not belong to Me).

▶ Lemma 4. Let C be a prevariety and α : A∗ → M be a surjective morphism into a finite
monoid. For all e ∈ E(M), the C-orbit of e for α is a monoid in M whose identity is e.

As seen above, when C has decidable separation, one can compute the C-pairs associated
with an input morphism. Hence, one can also compute the C-orbits in this case.

▶ Lemma 5. Let C be a class with decidable separation. Given as input a morphism
α : A∗ → M into a finite monoid and e ∈ E(M), one can compute the C-orbit of e for α.

Finally, the following lemma connects C-orbits with C-morphisms.

CSL 2024

45:6 A Generic Characterization of Generalized Unary TL and Two-Variable FO

▶ Lemma 6. Let C be a prevariety and α : A∗ → M be a morphism. Moreover, let η : A∗ → N

be a C-morphism. For every e ∈ E(M), there exists f ∈ E(N) such that the C-orbit of e
for α is contained in the set α(η−1(f)).

Proof. Let t1, . . . , tn ∈ M be all elements of the set {t ∈ M | (e, t) is a C-pair}. By definition,
the C-orbit of e for α is Me = {et1e, . . . , etne}. Since η is a C-morphism, Lemma 3 implies
that (e, ti) is an η-pair for all i ≤ n. This yields xi, yi ∈ A∗ such that η(xi) = η(yi),
α(xi) = e and α(yi) = ti. Let p = ω(N), w = (x1 · · ·xn)p and f = η(w). Note that f
is idempotent by choice of p. We show that etie ∈ α(η−1(f)) for i ≤ n. We define
wi = (x1 · · ·xn)px1 · · ·xi−1yixi+1 · · ·xn(x1 · · ·xn)2p−1. By definition, we have α(wi) = etie.
Now, since η(xi) = η(yi), we get η(wi) = η(w) = f . Hence, etie ∈ α(η−1(f)), as desired. ◀

4 Generalized unary temporal logic

In this section, we define generalized unary temporal logic. We introduce an operator
C 7→ TL(C) that associates a new class of languages TL(C) with every input class C. We first
recall its definition (taken from [27]), and we then complete it with useful properties.

4.1 Definition
Syntax. We associate with any class C a set of temporal formulas denoted by TL[C] as follows.
A TL[C] formula is built from atomic formulas using Boolean connectives and temporal
operators. The atomic formulas are ⊤, ⊥, min, max and “a” for every letter a ∈ A. All
Boolean connectives are allowed: if ψ1 and ψ2 are TL[C] formulas, then so are (ψ1 ∨ ψ2),
(ψ1 ∧ψ2) and (¬ψ1). We associate two temporal modalities with every language L ∈ C, which
we denote by FL and PL: if ψ is a TL[C] formula, then so are (FL ψ) and (PL ψ). For the
sake of improved readability, we omit parentheses when there is no ambiguity.

Semantics. Evaluating a TL[C] formula φ requires a word w ∈ A∗ and a position i ∈ Pos(w).
We define by induction what it means for (w, i) to satisfy φ, which one denotes by w, i |= φ.

Atomic formulas: w, i |= ⊤ always holds, w, i |= ⊥ never holds and for every symbol
ℓ ∈ A ∪ {min,max}, w, i |= ℓ holds when ℓ = w[i].
Disjunction: w, i |= ψ1 ∨ ψ2 when w, i |= ψ1 or w, i |= ψ2.
Conjunction: w, i |= ψ1 ∧ ψ2 when w, i |= ψ1 and w, i |= ψ2.
Negation: w, i |= ¬ψ when w, i |= ψ does not hold.
Finally: for L ∈ C, we let w, i |= FL ψ when there exists j ∈ Pos(w) such that i < j,
w(i, j) ∈ L and w, j |= ψ.
Previously: for L ∈ C, we let w, i |= PL ψ when there exists j ∈ Pos(w) such that j < i,
w(j, i) ∈ L and w, j |= ψ.

When no distinguished position is specified, it is customary to evaluate formulas at the leftmost
unlabeled position. One could also consider the symmetrical convention of evaluating formulas
at the rightmost unlabeled position. The convention chosen does not matter: we end-up with
the same class of languages. However, we shall consider restrictions of TL[C] for which this
choice does matter. This is why we introduce notations for both conventions. Given a formula
φ ∈ TL[C] we let Lmin(φ) = {w ∈ A∗ | w, 0 |= φ} and Lmax(φ) = {w ∈ A∗ | w, |w| + 1 |= φ}.

We are now ready to define the operator C 7→ TL(C). Consider an arbitrary class C. We
write TL(C) for the class consisting of all languages Lmin(φ) where φ ∈ TL[C]. Observe that
by definition, TL(C) is a Boolean algebra. Actually, the results of [27] imply that when C is
a prevariety, then so is TL(C) (we do not need this fact in the present paper).

T. Place and M. Zeitoun 45:7

Classic unary temporal logic. Let ST = {∅, A∗} and DD = {∅, {ε}, A+, A∗}. The modalities
FA∗ and PA∗ have the same semantics as the modalities F and P of standard unary temporal
logic – e.g., w, i |= Fφ when there exists j ∈ Pos(w) such that i < j and w, j |= φ. Similarly,
the modalities F{ε} and P{ε} have the same semantics as the modalities X (next) and Y
(yesterday) – e.g., w, i |= Xφ when i+1 ∈ Pos(w) and w, i+1 |= φ. Using these facts, one can
check that the classes TL(ST) and TL(DD) correspond exactly to the two original standard
variants of unary temporal logic (see e.g., [9]): we have TL = TL(ST) and TLX = TL(DD).

▶ Remark 7 (Robustness of classes to which TL is applied). Note that including ∅ in an input
class does not bring any new modality in unary temporal logic. Similarly, the classes TL(DD)
and TL(DD \ {A+}) are identical. However, in order to use generic results such as those from
Section 3, we require the classes to which the operator C 7→ TL(C) is applied to have robust
properties: they should be prevarieties (hence, they should be closed under complement).

▶ Remark 8 (Connection with FO2). Etessami, Vardi and Wilke [9] have shown that the
variant TL corresponds to the class FO2(<) (two-variable first-order logic equipped with the
linear order), and that TLX corresponds to FO2(<,+1) (which also allows the successor).
In [27], these results are generalized to all classes TL(C) where C is a Boolean algebra. In
this case, we can construct from C a set of predicates IC such that TL(C) = FO2(IC).

▶ Remark 9. Another important input is the class AT of alphabet testable languages. It
consists of all Boolean combinations of languages A∗aA∗, where a ∈ A is a letter. The class
TL(AT) has been studied by Krebs, Lodaya, Pandya and Straubing [13, 14, 15], who worked
with the definition based on two-variable first-order logic (i.e., with the class FO2(IAT), see
Remark 8). In particular, they proved that TL(AT) has decidable membership. We shall
obtain this result as a corollary of our generic characterization of the classes TL(C).

4.2 Connection with unambiguous polynomial closure
It is shown in [27] that C 7→ TL(C) can be expressed by other operators for very specific
inputs: prevarieties of group languages. If G is such a class, then TL(G) coincides with
UPol(BPol(G)), a class built on top of G with the two standard operators UPol and BPol. We
do not use this result here, since we are tackling arbitrary input prevarieties, and in general,
UPol(BPol(C)) is strictly included in TL(C) (it follows from [15] that the inclusion is strict
for the class AT of Remark 9). However, the operators UPol and BPol remain key tools in
the paper: we use two results of [27] about them. Let us first briefly recall their definitions.

Given finitely many languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is
a product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A. A single language L0 is a
marked product (this is the case n = 0). The polynomial closure of a class C, denoted by Pol(C),
consists of all finite unions of marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C.
If C is a prevariety, then Pol(C) is a lattice (this is due to Arfi [1], see also [19, 23] for recent
proofs). However, Pol(C) need not be closed under complement. This is why it is often
combined with another operator: the Boolean closure of a class D, denoted by Bool(D), is
the least Boolean algebra containing D. We write BPol(C) for Bool(Pol(C)). It is standard
that if C is a prevariety, then so is BPol(C) (see [23] for example). Finally, UPol is the
unambiguous restriction of Pol. A marked product L0a1L1 · · · anLn is unambiguous when
every word w ∈ L0a1L1 · · · anLn has a unique decomposition w = w0a1w1 · · · anwn where
wi ∈ Li for 0 ≤ i ≤ n. The unambiguous polynomial closure of a class C, written UPol(C),
consists of all finite disjoint unions of unambiguous marked products L0a1L1 · · · anLn such
that L0, . . . , Ln ∈ C (by “disjoint” we mean that the languages in the union must be pairwise
disjoint). While this is not apparent on the definition, it is known [27] that if the input
class C is a prevariety, then so is UPol(C). Thus, UPol preserves closure under complement.

CSL 2024

45:8 A Generic Characterization of Generalized Unary TL and Two-Variable FO

In the paper, we are interested in the “combined” operator C 7→ UPol(BPol(C)). Indeed, it
is connected to the classes TL(C) by the following proposition proved in [27, Proposition 9.12].

▶ Proposition 10. For every prevariety C, we have UPol(BPol(C)) ⊆ TL(C).

Although the inclusion of Proposition 10 is strict in general, it is essential for proving that
particular languages belong to TL(C). Indeed, we will combine it with the next result [27,
Theorem 6.7] to prove that languages belong to UPol(BPol(C)) – and therefore to TL(C).

▶ Theorem 11. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. Then, L ∈ UPol(BPol(C)) if and only if α satisfies the following property:

(esete)ω+1 = (esete)ωete(esete)ω for every C-pair (e, s) ∈ M2 and every t ∈ M. (1)

5 Algebraic characterization of TL(C)

We present a generic characterization of TL(C) when C is a prevariety. It elegantly generalizes
the characterizations of TL = FO2(<) and TLX = FO2(<,+1) by Thérien and Wilke [36]
and that of TL(AT) = FO2(IAT) by Krebs, Lodaya, Pandya and Straubing [13, 14, 15].

5.1 Statement
The characterization is based on the well-known variety of finite monoids DA (see [35] for a
survey on this class). A finite monoid M belongs to DA if it satisfies the following equation:

(st)ω = (st)ωt(st)ω for every s, t ∈ M. (2)

Thérien and Wilke [36] showed that a regular language belongs to TL if and only if its
syntactic monoid is in DA (strictly speaking, they considered two-variable first-order logic,
the equality FO2(<) = TL is due to Etessami, Vardi and Wilke [9]). We extend this result
in the following generic characterization of TL(C), based on C-orbits introduced in Section 3.

▶ Theorem 12. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ TL(C).
2. For every idempotent e ∈ E(M), the C-orbit of e for α belongs to DA.

Given as input a regular language L ⊆ A∗, one can compute its syntactic morphism
α : A∗ → M . In view of Theorem 12, L ∈ TL(C) if and only if for every e ∈ E(M), the
C-orbit of e for α belongs to DA. The latter condition can be decided by checking all C-orbits,
provided that we are able to compute them. By Lemma 5, this is possible when C-separation
is decidable. Altogether, we obtain the following corollary of Theorem 12.

▶ Corollary 13. If a prevariety C has decidable separation, TL(C) has decidable membership.
▶ Remark 14. Let L ⊆ A∗ be a regular language and α : A∗ → M be its syntactic morphism.
The fact that the C-orbit of e ∈ E(M) for α belongs to DA means that we have,

(esete)ω = (esete)ωete(esete)ω for all s, t ∈ M such that (e, s) and (e, t) are C-pairs. (3)

One can check that (3) follows from (1), which characterizes UPol(BPol(C)) (this is consistent
with Proposition 10 asserting that UPol(BPol(C)) ⊆ TL(C)). Indeed, choosing t = s in (1)
shows that the C-orbit of e is aperiodic, i.e., (ese)ω+1 = (ese)ω if (e, s) is a C-pair. However,
note that the element t is “free” in (1), whereas it must be part of a C-pair (e, t) in (3).

Before proving Theorem 12, we first explain why it generalizes the original characteriza-
tions of the classes TL, TLX and TL(AT), as mentioned at the beginning of the section.

T. Place and M. Zeitoun 45:9

5.2 Application to historical classes
We first deduce the original characterizations of the classes TL = TL(ST) and TLX = TL(DD)
by Thérien and Wilke [36] as simple corollaries of Theorem 12. We start with the former.

▶ Theorem 15 (Thérien and Wilke [36]). Let L ⊆ A∗ be a regular language and let M be its
syntactic monoid. The two following properties are equivalent:
1. L belongs to TL.
2. M belongs to DA.

Proof. Let α : A∗ → M be the syntactic morphism of L. Since TL = TL(ST), Theorem 12
implies that L ∈ TL if and only if every ST-orbit for α belongs to DA. Since ST = {∅, A∗},
every pair (e, s) ∈ E(M) ×M is a C-pair, so that the ST-orbit of e ∈ E(M) for α is eMe. In
particular the ST-orbit of 1M is the whole monoid M . Hence, every ST-orbit for α belongs
to DA if and only if M belongs to DA, which completes the proof. ◀

We turn to the characterization of TLX = TL(DD), also due to Thérien and Wilke [36].
In order to state it, we need an additional definition. Consider a regular language L and let
α : A∗ → M be its syntactic morphism. The syntactic semigroup of L is the set S = α(A+).
Note that for every idempotent e ∈ E(S), the set eSe is a monoid whose neutral element is e.

▶ Theorem 16 (Thérien and Wilke [36]). Let L ⊆ A∗ be a regular language and S be its
syntactic semigroup. The two following properties are equivalent:
1. L belongs to TLX.
2. For every e ∈ E(S), the monoid eSe belongs to DA.

Proof. Let α : A∗ → M be the syntactic morphism of L. For e ∈ E(M), let Me ⊆ M be the
DD-orbit of e for α. Since DD = {∅, {ε}, A+, A∗}, for (e, s) ∈ E(S) ×S, the language α−1(e)
is not DD-separable from α−1(s). Hence, (e, s) is a C-pair, so that Me = eSe for all e ∈ E(S).
Moreover, if 1M ̸∈ E(S) (which means that α−1(1M) = {ε}), then we have M1M

= {1M }
(which clearly belongs to DA). Hence, every DD-orbit for α belongs to DA if and only if
eSe ∈ DA for every e ∈ E(S). In view of Theorem 12, this implies Theorem 16. ◀

Finally, we consider the class TL(AT), defined and characterized by Krebs, Lodaya, Pandya
and Straubing [13, 14, 15]. Let us first present their characterization. It is based on a variety
of finite monoids called MeDA. Let M be a finite monoid. For each e ∈ E(M), let Ne ⊆ M

be the submonoid of M generated by the set {s ∈ M | e ⩽J s}. We say that M belongs to
MeDA if and only if for every idempotent e ∈ E(M), the monoid of eNee belongs to DA.

▶ Theorem 17 (Krebs, Lodaya, Pandya and Straubing [15]). Let L ⊆ A∗ be a regular language
and M be its syntactic monoid. The two following properties are equivalent:
1. L ∈ TL(AT).
2. M belongs to MeDA.

Proof. For w ∈ A∗, let alph(w) ⊆ A be the set of letters occurring in w (i.e., the least set
B ⊆ A such that w ∈ B∗). For e ∈ E(M), let Me be the AT-orbit of e for α. We prove that
Me = eNee for every e ∈ E(M). It will follows that M belongs to MeDA if and only if every
AT-orbit for α belongs to DA. In view of Theorem 12 this implies Theorem 17.

We first consider s′ ∈ eNee and prove that s′ ∈ Me. We have s ∈ Ne such that s′ = ese.
By definition, s = s1 · · · sn where e ⩽J si for every i ≤ n. If n = 0, then s = 1M and
ese = e ∈ Me. Assume now that we have n ≥ 1. Since e ⩽J si, we have qi, ri ∈ M such that
e = qisiri for every i ≤ n. Hence, since e ∈ E(M), we have e = q1s1r1 · · · qnsnrn. For every

CSL 2024

45:10 A Generic Characterization of Generalized Unary TL and Two-Variable FO

i ≤ n, let xi ∈ α−1(qi), yi ∈ α−1(ri) and ui ∈ α−1(si). Finally, let w = x1u1y1 · · ·xnunyn

and w′ = wu1 · · ·unw. By definition, we have e = α(w) and ese = α(w′). Moreover, it is
clear that alph(w) = alph(w′). By definition of AT, it follows that α−1(e) is not AT-separable
from α−1(ese). Thus, (e, ese) is an AT-pair for α, which yields s′ = ese ∈ Me, as desired.

Conversely, let s′ ∈ Me. By definition, there exists an AT-pair (e, s) ∈ M2 with
e ∈ E(M) such that s′ = ese. Therefore, by definition of AT, there exist u, v ∈ A∗ such
that alph(u) = alph(v), α(u) = e and α(v) = s. Let a1 . . . , an ∈ A be the letters such
that v = a1 · · · an. Since alph(u) = alph(v), it is immediate that for each i ≤ n, there
are xi, yi ∈ A∗ such that u = xiaiyi. Hence e = α(u) ⩽J α(ai) and we conclude that
s = α(a1 · · · an) ∈ Ne. Consequently, s′ = ese ∈ eNee, as desired. ◀

5.3 Proof of Theorem 12
We fix a prevariety C, a regular language L ⊆ A∗ and its syntactic morphism α : A∗ → M

for the proof. We prove that L ∈ TL(C) if and only if all C-orbits for α belong to DA. We
start with the left-to-right implication.

From TL(C) to DA. This direction follows from results of [27]. To use them, we need some
preliminary terminology. We introduce equivalence relations connected to the class TL(C)
when C is a prevariety. Given a morphism η : A∗ → N into a finite monoid N , denote by Cη

be the class of all languages recognized by η. The following fact is easy (see [27, Fact 9.3]).

▶ Fact 18. Let C be a prevariety. For every TL[C] formula φ, there exists a C-morphism
η : A∗ → N such that φ is a TL[Cη] formula.

We use the standard notion of rank of a TL[Cη] formula: the rank of φ is defined as the
length of the longest sequence of nested temporal operators within its parse tree. Formally:

Any atomic formula has rank 0.
The rank of ¬φ is the same as the rank of φ.
The rank of φ ∨ ψ and φ ∧ ψ is the maximum between the ranks of φ and ψ.
For every language L ⊆ A∗, the rank of FL φ and PL φ is the rank of φ plus 1.

Two TL[Cη] formulas φ and ψ are equivalent if they have the same semantics. That is,
for every w ∈ A∗ and every position i ∈ Pos(w), we have w, i |= φ ⇔ w, i |= ψ. The following
key lemma is immediate from a simple induction on the rank of TL formulas.

▶ Lemma 19. Let η : A∗ → N be a morphism into a finite monoid and let k ∈ N. There are
only finitely many non-equivalent TL[Cη] formulas of rank at most k.

We now define equivalence relations. Let η : A∗ → N be a morphism into a finite monoid
and let k ∈ N. Given w,w′ ∈ A∗, i ∈ Pos(w) and i′ ∈ Pos(w′), we write, w, i ∼=η,k w

′, i′ when:

For every TL[Cη] formula φ of rank at most k, w, i |= φ ⇐⇒ w′, i′ |= φ.

It is straightforward that ∼=η,k is an equivalence relation. Moreover, it is immediate from
the definition and Lemma 19, that ∼=η,k has finite index. We lift each relation ∼=η,k to A∗

(abusing terminology, we also denote by ∼=η,k the new relation): given w,w′ ∈ A∗, we write
w ∼=η,k w′ when w, 0 ∼=η,k w′, 0. Clearly, ∼=η,k is an equivalence relation of finite index
over A∗. Moreover, we have the following connection between TL(C) and the relations ∼=η,k.

▶ Lemma 20. Let C be a prevariety and L ⊆ A∗. If L ∈ TL(C), then there exists a
C-morphism η : A∗ → N and k ∈ N such that L is a union of ∼=η,k-classes.

T. Place and M. Zeitoun 45:11

Proof. Let L ∈ TL(C). There exists a TL[C] formula φ such that w ∈ L ⇔ w, 0 |= φ for all
w ∈ A∗. By Fact 18, there exists a C-morphism η : A∗ → N such that φ is a TL[Cη] formula.
Let k ∈ N be the rank of φ. We prove that L is a union of ∼=η,k-classes. Given w,w′ ∈ A∗

such that w ∼=η,k w
′, we have to prove that w ∈ L ⇔ w′ ∈ L. By symmetry, we only prove

the left to right implication. Thus, we assume that w ∈ L. By definition of φ, it follows that
w, 0 |= φ. Moreover, since w ∼=η,k w

′ (i.e., w, 0 ∼=η,k w
′, 0) and φ is a TL[Cη] formula of rank

k, we have w′, 0 |= φ by definition of ∼=η,k. Hence, w′ ∈ L by definition of φ, as desired. ◀

In addition to the link stated in Lemma 20 between TL(C) and the equivalence relations
∼=η,k, we use a property of ∼=η,k that follows from [27, Lemma 9.6 and Proposition 9.7].

▶ Proposition 21. Consider a morphism η : A∗ → N into a finite monoid, let f ∈ E(N) be
an idempotent, let u, v, z ∈ η−1(f) and let x, y ∈ A∗. For every k ∈ N, we have:

x(zkuz2kvzk)k(zkuz2kvzk)ky ∼=η,k x(zkuz2kvzk)kzkvzk(zkuz2kvzk)ky.

We are ready to conclude this direction of the proof: assuming that L ∈ TL(C), we show
that all C-orbits for its syntactic monoid belong to DA. Let e ∈ E(M) and Me be its C-orbit.
Proving that Me ∈ DA amounts to proving that any elements s, t ∈ Me satisfy (2). Fix
e, s, t ∈ E(M) ×Me ×Me. Lemma 20 yields a C-morphism η : A∗ → N and k ∈ N such that
L is a union of ∼=η,k-classes. Since η is a C-morphism, Lemma 6 yields f ∈ E(N) such that
Me ⊆ α(η−1(f)). Since e, s, t ∈ Me, we get z, u, v ∈ A∗ such that z, u, v ∈ η−1(f), α(z) = e,
α(u) = s and α(v) = t. Let x, y ∈ A∗ be two arbitrary words. By Proposition 21, we obtain,

x(zkuz2kvzk)k(zkuz2kvzk)ky ∼=η,k x(zkuz2kvzk)kzkvzk(zkuz2kvzk)ky.

Since L is a union of ∼=η,k-classes, the words (zkuzkvzk)2k and (zkuzkvzk)kzkvzk(zkuzkvzk)k

are equivalent for the syntactic congruence of L, so they have the same image under its
syntactic morphism α. Since e ∈ E(M), this yields (esete)2k = (esete)kete(esete)k. Hence,
(st)2k = (st)kt(st)k since e, s, t ∈ Me and e is neutral in Me by Lemma 4. It now suffices to
multiply by enough copies of st on both sides to get (st)ω = (st)ωt(st)ω. Therefore, (2) holds.

From DA to TL(C). Assuming that every C-orbit for the syntactic morphism α : A∗ → M

of L belongs to DA, we have to show that L ∈ TL(C), i.e., to build a TL[C] formula defining L.
Let us start by giving a high-level overview of the proof for this direction.

Since TL(C) is closed under union, it suffices to prove that for all s ∈ M , the language
α−1(s) is in TL(C). We achieve this by inductively constructing a TL[C] formula defining
α−1(s). According to Lemma 3, there exists a C-morphism η : A∗ → N such that the C-pairs
for α are exactly the η-pairs for α. We use η to leverage the assumption that all C-orbits for
α belong to DA. More precisely, η recognizes all the basic languages in C that we shall use
in our TL[C] formulas. The induction proceeds as follows: using η, we define a sequence of
languages K0 ⊇ K1 ⊇ · · · ⊇ K|N | and show by induction on |N | − ℓ that Kℓ ∩ α−1(s) can be
defined by a TL[C] formula for each ℓ ≤ |N |. The induction basis is the case ℓ = |N |, which
is simple because K|N | is a finite language. Furthermore, the case ℓ = 0 gives the desired
result since K0 contains all words. The induction step consists in building a TL[C] formula
describing Kℓ ∩α−1(s) from several TL[C] formulas that describe the languages Kℓ+1 ∩α−1(t)
for all t ∈ M . However, the actual argument is slightly more involved. Indeed, in order to
perform the induction step, we must abstract each word in Kℓ ∩ α−1(s) by considering a
specific decomposition of this word and viewing each infix as a new letter. We then argue
that the resulting word belongs to Kℓ+1 ∩ α−1(s), which allows us to apply induction. Yet,

CSL 2024

45:12 A Generic Characterization of Generalized Unary TL and Two-Variable FO

for this process to work, the letter that we use to abstract an infix must have the same images
as this original infix under both α and η. This is problematic, because such a letter does
not necessarily exist. We solve this issue by considering an extended alphabet B, replacing
α : A∗ → M and η : A∗ → N with two new morphisms β : B∗ → M and δ : B∗ → N

that have the required property. Of course, this involves some preliminary work: we must
reformulate both our objective (proving that all languages α−1(s) can be defined in TL(C))
and our hypothesis (that every C-orbit for α belongs to DA) on the new morphisms β and η.

We now start the proof by first defining β and δ. Recall that η : A∗ → N is the C-
morphism provided by Lemma 3: it is such that the C-pairs for α are exactly the η-pairs
for α. We fix η for the entire proof. We define an auxiliary alphabet B. Let P ⊆ M ×N be
the set of all pairs (α(w), η(w)) ∈ M ×N where w ∈ A+ is a nonempty word. For each pair
(s, r) ∈ P , we create a fresh letter bs,r ̸∈ A and we define B = {bs,r | (s, r) ∈ P}.

Let β : B∗ → M and δ : B∗ → N be the morphisms defined by β(bs,r) = s and δ(bs,r) = r

for (s, r) ∈ P . By definition, we have (β(w), δ(w)) ∈ P for all w ∈ B+. Let Cδ be the class of
all languages over B recognized by δ. One can check that Cδ is a prevariety. We now reduce
membership of inverse images under α to TL(C) to that of inverse images under β to TL(Cδ).

▶ Lemma 22. For every F ⊆ M , if β−1(F) ∈ TL(Cδ), then α−1(F) ∈ TL(C).

Proof. We first define a morphism γ : A∗ → B∗. Consider a letter a ∈ A. By definition,
(α(a), η(a)) ∈ P . Hence, we may define γ(a) = bα(a),η(a) ∈ B. By definition, we have
α(w) = β(γ(w)) ∈ M and η(w) = δ(γ(w)) for every w ∈ A∗. It follows that for every F ⊆ M ,
we have α−1(F) = γ−1(β−1(F)) ⊆ A∗. Consequently, it now suffices to prove that for every
K ⊆ B∗ such that K ∈ TL(Cδ), we have γ−1(K) ∈ TL(C). We fix K for the proof. Since
K ∈ TL(Cδ), it is defined by a formula ψ ∈ TL[Cδ]. We apply two kinds of modifications to
ψ in order to build a new formula ψ′ ∈ TL[C] defining γ−1(K):
1. We replace every atomic subformula “b” for b ∈ B by the TL[C]-formula

∨
{a∈A|γ(a)=b} a.

2. For every temporal modality FH (resp. PH) occurring in ψ, we have H ∈ Cδ by hypothesis.
Hence, H is recognized by δ and there exists G ⊆ N such that H = δ−1(G). Note that
η−1(G) ∈ C since η is a C-morphism. We replace the temporal modality FH (resp. PH)
by Fη−1(G) (resp. Pη−1(G)).

By definition the resulting formula ψ′ belongs to TL[C] and one can verify that for every
w ∈ A∗, we have w, 0 |= ψ′ ⇔ γ(w), 0 |= ψ. Since Lmin(ψ) = K, we get Lmin(ψ′) = γ−1(K),
which implies that K ∈ TL(C). This completes the proof. ◀

In view of Lemma 22, it suffices to prove that any language recognized by β belongs to
TL(Cδ). Since L is recognized by α, this will imply L ∈ TL(C), which is our goal. In the next
lemma, we reformulate on β and δ the assumption that every C-orbit for α belongs to DA.

▶ Lemma 23. For every e ∈ E(M) and every s, t ∈ M , if (e, s) and (e, t) are δ-pairs for β,
then (esete)ω = (esete)ωete(esete)ω.

Proof. By hypothesis, there exist u, v, x, y ∈ B∗ such that δ(u) = δ(v), δ(x) = δ(y),
β(u) = β(x) = e, β(v) = s and β(y) = t. The definitions of β and δ imply that for any
w ∈ B∗, there exists w′ ∈ A∗ such that δ(w) = η(w′) and β(w) = α(w′). Therefore, we obtain
u′, v′, x′, y′ ∈ A∗ such that η(u′) = η(v′), η(x′) = η(y′), α(u′) = α(x′) = e, α(v′) = s and
α(y′) = t. Thus, (e, s) ∈ M2 and (e, t) ∈ M2 are η-pairs for α. By definition of η, it follows
that they are C-pairs for α. Hence, ese and ete both belong to the C-orbit of e for α. Since
all C-orbits for α belong to DA by hypothesis, this gives (esete)ω = (esete)ωete(esete)ω. ◀

T. Place and M. Zeitoun 45:13

We now use the Green relation J over N to associate a number dJ(r) ∈ N with every
element r ∈ N . We let dJ(r) be the maximal number n ∈ N such that there exist n elements
r1, . . . , rn ∈ N satisfying r <J r1 <J · · · <J rn. By definition, 0 ≤ dJ(r) ≤ |N | − 1. In
particular, we have dJ(r) = 0 if and only if r is maximal for ⩽J (i.e., if and only if r J 1N).
Finally, given a word w ∈ B∗, we write dJ(w) ∈ N for dJ(δ(w)). Observe that for all
x, y, z ∈ B∗, we have dJ(y) ≤ dJ(xyz) (as xyz ⩽J y), a fact that we shall use frequently.

In order to argue inductively, we define a family of languages Kℓ ⊆ B∗ for ℓ ∈ N as follows:

Kℓ =
{
w ∈ B∗ | for all k ≤ ℓ and x, y, z ∈ B∗, if w = xyz and |y| = k, then dJ(y) ≥ k

}
.

Note that K0 = B∗ as dJ(y) ≥ 0 for all y ∈ B∗. Also, if ℓ ≥ |N |, then Kℓ is finite (it contains
words of length at most |N | − 1 as dJ(y) < |N | for all y ∈ B∗). We now have the next lemma.

▶ Lemma 24. Let ℓ ∈ N and w ∈ Kℓ. Then dJ(w) ≤ ℓ if and only if for all x, y, z ∈ B∗

such that w = xyz and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ.

Proof. The “only if” direction is immediate since dJ(y) ≤ dJ(w) for every infix y of w.
Conversely, assume that for all x, y, z ∈ B∗ such that w = xyz and |y| ≤ ℓ + 1, we have
dJ(y) ≤ ℓ. We prove that dJ(w) ≤ ℓ. If |w| ≤ ℓ + 1, this is immediate. Assume now that
|w| > ℓ + 1. We get b1, . . . , bn ∈ B and v ∈ B∗ such that |v| = ℓ + 1 and w = vb1 · · · bn.
We use induction on i to prove that δ(v) J δ(vb1 · · · bi) for all i ≤ n. Since dJ(v) ≤ ℓ by
hypothesis, the case i = n yields dJ(w) ≤ ℓ. The case i = 0 is trivial: we have δ(v) J δ(v).
Assume now that i ≥ 1. By induction hypothesis, we know that δ(v) J δ(vb1 · · · bi−1). Let
x, y ∈ B∗ such that |y| = ℓ and xy = vb1 · · · bi−1 (the words x and y exist because |v| = ℓ+1).
Since w ∈ Kℓ, and y is an infix of w such that |y| = ℓ, we know that dJ(y) ≥ ℓ. Moreover,
ybi is an infix of w such that |ybi| = ℓ + 1, which yields dJ(ybi) ≤ ℓ by hypothesis. Since
dJ(y) ≤ dJ(ybi), we get dJ(ybi) = dJ(y) = ℓ, which implies that δ(ybi) J δ(y). Moreover, we
have δ(ybi) ⩽R δ(y). Thus, Lemma 1 yields δ(ybi) R δ(y). This implies that δ(xybi) R δ(xy).
Hence, δ(vb1 · · · bi) J δ(vb1 · · · bi−1) J δ(v). This completes the proof. ◀

We now prove that for all s ∈ M and ℓ ∈ N, we have Kℓ ∩β−1(s) ∈ TL(Cδ). Our objective
(every language recognized by β belongs to TL(Cδ)) follows from the case ℓ = 0, since
K0 = B∗. The proof involves two steps. The first settles the case of elements of Kℓ ∩ β−1(s)
whose image under δ has a dJ value at most ℓ. We do not use induction for this case, which
relies on the inclusion UPol(BPol(Cδ)) ⊆ TL(Cδ). It is also the place where we use Lemma 23,
i.e., the hypothesis that all C-orbits for α are in DA.

▶ Proposition 25. Let (ℓ, s, r) ∈ N×M×N. If dJ(r) ≤ ℓ then Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ TL(Cδ).

Proof. We prove that Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ UPol(BPol(Cδ)), which, by Proposition 10,
will give the desired result Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ TL(Cδ). Let γ : B∗ → Q be the syntactic
morphism of Kℓ ∩ β−1(s) ∩ δ−1(r). By Theorem 11, it suffices to show that given q1, q2 ∈ Q

and f ∈ E(Q) such that (f, q1) ∈ Q2 is a Cδ-pair for γ, the following equation holds:

(fq1fq2f)ω+1 = (fq1fq2f)ωfq2f(fq1fq2f)ω. (4)

Let q1, q2, f ∈ Q be such elements. By definition of Cδ, we know that δ is a Cδ-morphism.
Therefore, Lemma 3 implies that (f, q1) is a δ-pair for γ. We get u′, v′

1 ∈ B∗, such that
δ(u′) = δ(v′

1), γ(u′) = f and γ(v′
1) = q1. Note that if v′

1 = ε, then q1 = 1Q and (4) holds since
it is clear that (fq2f)ω+1 = (fq2f)2ω+1. Therefore, we assume from now on that v′

1 ∈ B+.
Let us also choose v′

2 ∈ B∗ such that γ(v′
2) = q2. We now define p = ℓ×ω(N)×ω(M)×ω(Q),

CSL 2024

45:14 A Generic Characterization of Generalized Unary TL and Two-Variable FO

u = (u′)p, v1 = (u′)p−1v′
1 and v2 = uv′

2u(uv1uv
′
2u)p−1. We compute γ(u) = f , γ(v1) = fq1

and δ(u) = δ(v1). Moreover, since p is a multiple of ω(N), the element δ(u) = δ(v1) is an
idempotent g ∈ E(N). Finally, we have γ(v2) = fq2f(fq1fq2f)p−1 and δ(v2) = (gδ(v′

2)g)p.
In particular, it follows that δ(v2) is an idempotent h ∈ E(N) such that gh = hg = h.

We prove that (uv1uv2u)p and (uv1uv2u)puv2u(uv1uv2u)p are equivalent for the syntactic
congruence of Kℓ ∩ β−1(s) ∩ δ−1(r). This will imply that they have the same image under γ,
which yields (fq1fq2f)ω = (fq1fq2f)ωfq2f(fq1fq2f)2ω−1. One may then multiply by
fq1fq2f on the right to get (4), as desired. For x, y ∈ A∗, let z1 = x(uv1uv2u)py and
z2 = x(uv1uv2u)puv2u(uv1uv2u)py. We have to show that z1 ∈ Kℓ ∩ β−1(s) ∩ δ−1(r) if and
only if z2 ∈ Kℓ ∩ β−1(s) ∩ δ−1(r). We first treat the special case where |u| < ℓ.

Assume that |u| < ℓ. We show that in this case z1 ̸∈ Kℓ and z2 ̸∈ Kℓ (which implies the
desired result). Since u = (u′)p and p ≥ ℓ, the hypothesis that |u| < ℓ yields u = u′ = ε.
Since δ(u) = δ(v1), we get δ(v1) = 1N . Recall that v1 = (u′)p−1v′

1 and v′
1 ∈ B+ by hypothesis.

Thus, v1 ∈ B+, which means that it contains a letter b ∈ B such that δ(b) J 1N . In particular
dJ(b) = 0. Hence, b is an infix of length 1 of both z1 and z2 such that dJ(b) < 1. Now
ℓ > |u| = 0, so that ℓ ≥ 1. This implies z1 ̸∈ Kℓ and z2 ̸∈ Kℓ. This completes the special case.

From now on, we assume that |u| ≥ ℓ. Since δ(u) = δ(v1) = g ∈ E(N), δ(v2) = h ∈ E(N)
and gh = hg = h, we have δ(z1) = δ(z2) = δ(x)hδ(y). Therefore, z1 ∈ δ−1(r) if and only if
z2 ∈ δ−1(r). Let us prove that z1 ∈ Kℓ ⇔ z2 ∈ Kℓ. This is trivial if ℓ = 0 since K0 = B∗.
Assume now that ℓ ≥ 1. Since |u| ≥ ℓ by hypothesis, it follows that for every k ≤ ℓ, z1 and
z2 have the same infixes of length k. This implies that z1 ∈ Kℓ ⇔ z2 ∈ Kℓ, as desired.

It remains to prove that if z1, z2 ∈ Kℓ ∩ δ−1(r), then β(z1) = β(z2). We first show that
our assumptions imply g J h. Again, there are two cases. First, assume that ℓ = 0. Since
dJ(r) ≤ ℓ by hypothesis, we get r J 1N . Thus, since u and v2 are infixes of z1 ∈ δ−1(r), we
have δ(u) J δ(v2) J 1N , which exactly says that g J h J 1N . Assume now that ℓ ≥ 1. Recall
that |u| ≥ ℓ. Since u is an infix of v2, this also implies that |v2| ≥ ℓ. Hence, since u and v2
are infixes of z2 ∈ Kℓ ∩ δ−1(r), we get dJ(u) ≥ ℓ and dJ(v2) ≥ ℓ, r ⩽J δ(u) and r ⩽J δ(v2).
In particular, it follows that dJ(r) ≥ dJ(u) ≥ ℓ and dJ(r) ≥ dJ(v2) ≥ ℓ. Since dJ(r) ≤ ℓ by
hypothesis on r, we get dJ(r) = dJ(u) = dJ(v2) = ℓ. Together with r ⩽J δ(u) and r ⩽J δ(v2),
this yields r J δ(u) J δ(v2), i.e., r J g J h. This completes the proof that g J h. Since we also
know that hg = gh = h, we have h ⩽R g and Lemma 1 yields g R h. We get z ∈ N such
that g = hz. Thus, we have h = hg = hhz = hz = g.

Altogether, we obtain δ(u) = δ(v1) = δ(v2) = g ∈ E(N). This implies that (β(u), β(v1))
and (β(u), β(v2)) are δ-pairs for β. Moreover, recall that u = (u′)p where p is a multiple
of ω(M). Hence, we have β(u) ∈ E(M). Consequently, it follows from Lemma 23 that
β((uv1uv2u)p) = β((uv1uv2u)puv2u(uv1uv2u)p). It now suffices to multiply by β(x) on the
left and β(y) on the right to obtain β(z1) = β(z2), as desired. ◀

We now turn to the second step of the proof, which is formalized in the following statement.

▶ Proposition 26. Let ℓ ≤ |N | and s ∈ M . There exists a TL[Cδ] formula φℓ,s such that for
every w ∈ Kℓ, we have w, 0 |= φℓ,s ⇔ β(w) = s.

Let us first use Proposition 26 to complete the main proof: we have to show that every
language recognized by β belongs to TL(Cδ). Clearly, it suffices to show that β−1(s) ∈ TL(Cδ)
for each s ∈ M . We apply Proposition 26 for ℓ = 0. Since K0 = B∗, this yields a formula
φ0,s ∈ TL[Cδ] such that Lmin(φ0,s) = β−1(s). Thus, β−1(s) ∈ TL(Cδ), as desired.

It remains to prove Proposition 26. We construct φℓ,s ∈ TL[Cδ] by induction on |N | − ℓ.
If ℓ = |N |, we define φℓ,s so that Lmin(φℓ,s) = Kℓ ∩β−1(s). Since K|N | ∩β−1(s) is finite and
TL[Cδ] is closed under disjunction, it suffices to build for every word w ∈ B∗ a TL[Cδ] formula
φw defining {w}. Since B∗ ∈ Cδ, one may use the “F” modality. For w = b1 · · · bn, let

T. Place and M. Zeitoun 45:15

ψw = F (b1 ∧ F (b2 ∧ F (b3 ∧ · · · ∧ F bn))).

One may then choose φw = ψw ∧
∧

u∈B∗,|u|=|w|+1 ¬ψu.
Assume now that ℓ < |N |. We present a construction for splitting the words in Kℓ into

two parts: a prefix mapped to an element r ∈ N such that dJ(r) ≤ ℓ (we handle it with
Proposition 25) and a suffix that we abstract as a word in Kℓ+1 (we handle it by induction).

Let w ∈ Kℓ. For each position i ∈ Pos(w) \ {0} and k ∈ N, we write σk(w, i) ∈ B∗ for the
infix w(i−1, j) where j = min(i+k, |w|+1). In other words, σk(w, i) = w[i] · · ·w[i+k−1] if
i+ k − 1 ≤ |w| and σk(w, i) = w[i] · · ·w[|w|] otherwise. In particular, we have |σk(w, i)| ≤ k.

▶ Lemma 27. Let k ≤ ℓ + 1 and u ∈ B∗ be such that |u| ≤ k. There exists a formula
πk,u ∈ TL[Cδ] such that for all w ∈ Kℓ and i ∈ Pos(w) \ {0}, w, i |= πk,u ⇔ σk(w, i) = u.

Proof. If u = ε, it suffices to define πk,u = ⊤ when k = 0 and πk,u = max when k ≥ 1.
Assume now that |u| ≥ 1. If k ≤ 1, it follows that |u| = 1 = k. Hence, u is a letter b ∈ B and
it suffices to define πk,u = b. Assume now that k ≥ 2. Let C ⊆ B be the set of letters mapped
to 1N under δ, so that H def= δ−1(1N) = C∗. By definition, H ∈ Cδ. Since 2 ≤ k ≤ ℓ+ 1, we
have ℓ ≥ 1, which implies, by definition of Kℓ, that no word of Kℓ can contain a letter b
with dJ(b) = 0. In particular, words of Kℓ cannot contain letters of C. Therefore, if w ∈ Kℓ,
i ∈ Pos(w) and ψ ∈ TL[Cδ], we have w, i |= FH ψ if and only if w, i+ 1 |= ψ. Let u = b1 · · · bn

(with bi ∈ B). We have n = |u| ≤ k by hypothesis. We consider two cases for defining πk,u:
If n = k, we let πk,u = (b1 ∧ FH (b2 ∧ FH (b3 ∧ · · · FH bn))).
If n < k, we let πk,u = (b1 ∧ FH (b2 ∧ FH (b3 ∧ · · · FH (bn ∧ FH max)))).

The above fact on FH implies that this definition fulfills the desired property. ◀

Pointed positions. Consider w ∈ Kℓ. We say that an arbitrary position i ∈ Pos(w) is pointed
when either i ∈ {0, |w| + 1}, or i ∈ Posc(w) and dJ(σℓ+1(w, i)) ≥ ℓ+ 1.

▶ Definition 28 (Detection of pointed positions in TL[Cδ]). Let π = min∨max∨
∨

u∈U πℓ+1,u

where U = {u ∈ B∗ | |u| ≤ ℓ+ 1 and dJ(u) ≥ ℓ+ 1}. By definition of πℓ+1,u in Lemma 27,
we know that for w ∈ Kℓ and i ∈ Pos(w), we have w, i |= π if and only if position i is pointed.

A position i ∈ Pos(w) which is not pointed is said to be safe. We now prove that we may
constrain the evaluation of TL[Cδ] formulas to infixes that only contain safe positions.

▶ Lemma 29. Let ψ ∈ TL[Cδ] and H ∈ Cδ. There exist two formulas Fsa
H ψ and Psa

H ψ of
TL[Cδ] such that for all w ∈ Kℓ and all i ∈ Pos(w), the two following properties hold:

w, i |= Fsa
H ψ if and only if there exists j ∈ Pos(w) such that j > i, w, j |= ψ, w(i, j) ∈ H

and all positions h ∈ Pos(w) such that i < h < j are safe.
w, i |= Psa

H ψ if and only if there exists j ∈ Pos(w) such that j < i, w, j |= ψ, w(j, i) ∈ H

and all positions h ∈ Pos(w) such that j < h < i are safe.

Proof. We begin by characterizing infixes containing only safe positions. Let w ∈ Kℓ and
i, j ∈ Pos(w) be such that i < j. We prove that the following two properties are equivalent:
1. All positions h ∈ Pos(w) such that i < h < j are safe.
2. Either δ(w(i, j)) = 1N or dJ(w(i, j)σℓ(w, j)) ≤ ℓ.
Assume first that all positions h ∈ Pos(w) such that i < h < j are safe. If i+ 1 = j, then
w(i, j) = ε, whence δ(w(i, j)) = 1N . Assume now that i+ 1 < j. Observe that w(i, j)σℓ(w, j)
belongs to Kℓ since it is an infix of w ∈ Kℓ. Moreover, since i+1 < j, there exists at least one
h ∈ Pos(w) such that i < h < j. Combined with the assumption that all such positions h are
safe, this implies that for every x, y, z ∈ B∗ such that xyz = w(i, j)σℓ(w, j) and |y| ≤ ℓ+ 1,
we have dJ(y) ≤ ℓ. Therefore, Lemma 24 entails that dJ(w(i, j)σℓ(w, j)) ≤ ℓ, as desired.

CSL 2024

45:16 A Generic Characterization of Generalized Unary TL and Two-Variable FO

Conversely, assume that either δ(w(i, j)) = 1N or dJ(w(i, j)σℓ(w, j)) ≤ ℓ. We start with
the latter case. Since w(i, j)σℓ(w, j) ∈ Kℓ, Lemma 24 implies that for every x, y, z ∈ B∗ such
that xyz = w(i, j)σℓ(w, j) and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ. In particular, it follows that
every h ∈ Pos(w) such that i < h < j is safe. Assume now that δ(w(i, j)) = 1N . If ℓ = 0,
then σℓ(w, j) = ε and we are back to the previous case. Otherwise, ℓ ≥ 1 and since w ∈ Kℓ,
the fact that δ(w(i, j)) = 1N yields w(i, j) = ε, which completes the argument.

We are now ready to complete the proof of the lemma. Let ψ ∈ TL[Cδ] and H ∈ Cδ.
For every r ∈ N , we let Hr = H ∩ δ−1(r) and Ur = {u ∈ B∗ | |u| ≤ ℓ and dJ(rδ(u)) ≤ ℓ}.
Observe that Hr ∈ Cδ. Now, in view of the preliminary result, it suffices to define,

Fsa
H ψ = FH1N

ψ∨
∨

r∈N

∨
u∈Ur

FHr
(πℓ,u ∧ ψ) and Psa

H ψ = PH1N
ψ∨

∨
r∈N

∨
u∈Ur

(πℓ,u ∧ PHr
ψ) .

This completes the proof. ◀

Pointed decomposition. Let w ∈ Kℓ and let 0 = i0 < i1 < · · · < in < in+1 = |w| + 1
be all the pointed positions of w. The pointed decomposition of w is the decomposition
w = w0b1w1 · · · bnwn where the highlighted letters b1, . . . , bn ∈ B are those carried by the
pointed positions i1, . . . , in. For 0 ≤ j ≤ n, we associate the word f(w, ij) = wj to the pointed
position ij . Moreover, we define a new word ŵ ∈ B∗ built from the suffix b1w1 · · · bnwn. For
1 ≤ j ≤ n, let (tj , qj) = (β(bjwj), δ(bjwj)) ∈ P . By definition of β and δ, we know that
there is a letter btj ,qj

∈ B such that (β(btj ,qj
), δ(btj ,qj

)) = (tj , qj). We let ŵ = bt1,q1 · · · btn,qn
.

Note that by definition, β(b1w1 · · · bnwn) = β(ŵ) and δ(b1w1 · · · bnwn) = δ(ŵ). Finally, we
define a surjective map i 7→ µ(i) associating a position µ(i) ∈ Pos(ŵ) to each pointed position
i ∈ Pos(w): for 0 ≤ j ≤ n + 1, we let µ(ij) = j. We complete this definition with a key
property. For every pointed position i ∈ {0} ∪ Posc(w), one can compute the images of the
word f(w, i) under β and δ with a TL[Cδ] formula. This is where we use Proposition 25.

▶ Lemma 30. Let (t, r) ∈ M×N . There exists Γt,r ∈ TL[Cδ] such that for all w ∈ Kℓ and all
pointed positions i ∈ {0} ∪ Posc(w), we have w, i |= Γt,r ⇔ β(f(w, i)) = t and δ(f(w, i)) = r.

Proof. First observe that by definition, if w ∈ Kℓ and i ∈ {0} ∪ Posc(w) is pointed, the infix
f(w, i) contains only safe positions. Hence, for every x, y, z ∈ B∗ such that f(w, i) = xyz

and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ. By Lemma 24, it follows that dJ(f(w, i)) ≤ ℓ. Therefore,
if dJ(r) > ℓ, then δ(f(w, i)) cannot be equal to r, and it suffices to define Γt,r = ⊥.

We now assume that dJ(r) ≤ ℓ. Proposition 25 implies that Kℓ ∩β−1(t)∩δ−1(r) ∈ TL(Cδ).
We get a formula ψ ∈ TL[Cδ] such that for every u ∈ Kℓ, we have u, 0 |= ψ if and only if
β(u) = t and δ(u) = r. Using Lemma 29, we modify ψ so that given w ∈ Kℓ, the evaluation of
ψ at a pointed position i is constrained to the infix f(w, i). More precisely, we use structural
induction to build two formulas ⟨ψ⟩min and ⟨ψ⟩max such that given w ∈ Kℓ, a pointed
position i ∈ {0} ∪ Posc(w) and j ∈ Pos(f(w, i)), the two following properties hold:

If j ≤ |f(w, i)|, then w, i+ j |= ⟨ψ⟩min ⇔ f(w, i), j |= ψ.
If 1 ≤ j, then w, i+ j |= ⟨ψ⟩max ⇔ f(w, i), j |= ψ.

It will then suffice to define Γt,r = ⟨ψ⟩min. We only describe the construction, and leave it
to the reader to check that it satisfies the above properties. Note that we use the formula
π ∈ TL[Cδ] of Definition 28 that detects pointed positions.

For ψ ∈ B ∪ {⊤,⊥}, we let ⟨ψ⟩min = ⟨ψ⟩max = ψ. If ψ = min, we let ⟨ψ⟩min = π

and ⟨ψ⟩max = ⊥. If ψ = max, we let ⟨ψ⟩min = ⊥ and ⟨ψ⟩max = π. We handle Boolean
operators in the expected way. For instance, we define ⟨ψ′ ∨ ψ′′⟩min = ⟨ψ′⟩min ∨ ⟨ψ′′⟩min,
⟨ψ′ ∧ ψ′′⟩min = ⟨ψ′⟩min ∧ ⟨ψ′′⟩min and ⟨¬ψ′⟩min = ¬⟨ψ′⟩min, and similarly for ⟨·⟩max.

T. Place and M. Zeitoun 45:17

If ψ = FH ψ′ for H ∈ Cδ, we let ⟨ψ⟩min = Fsa
H ⟨ψ′⟩max and ⟨ψ⟩max = ¬π ∧ Fsa

H ⟨ψ′⟩max.
Symmetrically, if ψ = PH ψ′ for some H ∈ Cδ, we define ⟨ψ⟩min = ¬π ∧ Psa

H ⟨ψ′⟩min and
⟨ψ⟩max = Psa

H ⟨ψ′⟩min. This concludes the inductive construction of ⟨ψ⟩min and ⟨ψ⟩max and
the proof of the proposition. ◀

Construction of the formulas φℓ,s. We are ready to complete the proof of Proposition 26.
For every s ∈ M , we build a formula ζs ∈ TL[Cδ] such that for every w ∈ Kℓ, we have
w, 0 |= ζs ⇔ β(ŵ) = s. Given s ∈ M , it will then suffice to define φℓ,s ∈ TL[Cδ] as follows:

φℓ,s =
∨

{(s1,s2)∈M2|s1s2=s}

((∨
r∈N

Γs1,r

)
∧ ζs2

)
.

Indeed, it is straightforward that for every word w ∈ Kℓ, we have β(w) = β(f(w, 0))β(ŵ).
Consequently, by definition of φℓ,s, we get w, 0 |= φℓ,s ⇔ β(f(w, 0))β(ŵ) = s ⇔ β(w) = s for
all w ∈ Kℓ, which concludes the proof of Proposition 26. We now concentrate on building ζs.
This is where we use induction in Proposition 26. Indeed, we have the following lemma.

▶ Lemma 31. For every w ∈ Kℓ, we have ŵ ∈ Kℓ+1.

Proof. Let k ≤ ℓ+ 1 and x, y, z ∈ B∗ such that ŵ = xyz and |y| = k. We have to prove that
dJ(y) ≥ k. Let w = w0b1w1 · · · bnwn be the pointed decomposition of w. By definition of ŵ,
we have δ(y) = δ(bhwh · · · bh+k−1wh+k−1) for some h ≤ n. Let u = bhwh · · · bh+k−1wh+k−1.
We have to show that dJ(y) = dJ(u) ≥ k. Clearly, |u| ≥ k. Hence, if k ≤ ℓ, the hypothesis
that w ∈ Kℓ yields dJ(u) ≥ k. Otherwise, k = ℓ+ 1. Thus, |u| ≥ ℓ+ 1 and since the position
labeled by bh in w is pointed, this yields dJ(u) ≥ ℓ+ 1. In both cases, we get dJ(y) ≥ k. ◀

Let s ∈ M . In view of Lemma 31, induction on |N | − ℓ in Proposition 26 yields a TL[Cδ]
formula ψs such that for every w ∈ Kℓ, we have ŵ, 0 |= ψs ⇔ β(ŵ) = s. Thus, it now suffices
to prove that for every ψ ∈ TL[Cδ], there exists a formula ⌊ψ⌋ ∈ TL[Cδ] such that for every
w ∈ Kℓ and every pointed position i ∈ Pos(w), we have w, i |= ⌊ψ⌋ ⇔ ŵ, µ(i) |= ψ. It will
then follow, for i = 0, that w, 0 |= ⌊ψs⌋ ⇔ β(ŵ) = s, meaning that we can define ζs = ⌊ψs⌋.

We construct ⌊ψ⌋ by structural induction on ψ. If ψ ∈ {min,max,⊤,⊥}, we let ⌊ψ⌋ = ψ.
Suppose now that ψ = bt,q ∈ B for (t, q) ∈ P . Thus, when evaluated in w at a pointed
position i carrying a “b”, we want ⌊ψ⌋ to check that β(b)β(f(w, i)) = t and δ(b)δ(f(w, i)) = q.
Let T =

{
(b, t′, q′) ∈ B ×M ×N | β(b)t′ = t and δ(b)q′ = q

}
. Using the formulas Γt′,q′ from

Lemma 30, we define ψ =
∨

(b,t′,q′)∈T (b ∧ Γt′,q′). Boolean operators are handled as expected.
It remains to deal with temporal modalities, i.e., the case where there exists H ∈ Cδ such
that ψ = FH ψ′ or ψ = PH ψ′. For every b ∈ B, let Fb =

{
r ∈ N | δ(b)r ∈ δ(H)

}
. We define:

⌊FH ψ′⌋ def=
{

Fsa
B∗

(
π ∧

(∨
b∈B

(
b ∧ Fδ−1(Fb) (π ∧ ⌊ψ′⌋)

)))
if ε ̸∈ H,

Fsa
B∗

(
π ∧

(∨
b∈B

(
b ∧ Fδ−1(Fb) (π ∧ ⌊ψ′⌋)

)
∨ ⌊ψ′⌋

))
if ε ∈ H.

⌊PH ψ′⌋ def=
{ ∨

b∈B Pδ−1(Fb) (π ∧ b ∧ Psa
B∗ (π ∧ ⌊ψ′⌋)) if ε ̸∈ H,

Psa
B∗ (π ∧ ⌊ψ′⌋) ∨

∨
b∈B Pδ−1(Fb) (π ∧ b ∧ Psa

B∗ (π ∧ ⌊ψ′⌋)) if ε ∈ H.

We give an intuition when ψ = FH ψ′ and ε /∈ H. Let w0b1w1 · · · bnwn be the pointed
decomposition of w and ŵ = b′

1 · · · b′
n. Let ik ∈ Pos(w) be the position of the distinguished bk,

so that µ(ik) = k. Now, ŵ, k |= FH ψ′ when there exists m > k such that ŵ,m |= ψ′ and
b′

k+1 · · · b′
m−1 ∈ H. The construction ensures that w, ik |= ⌊FH ψ′⌋ when there exists m > k

such that w, im |= ⌊ψ′⌋ and bk+1wk+1 · · · bm−1wm−1 ∈ H . The purpose of using Fsa
B∗ (π∧ . . .)

is to “jump” to bk+1. The remainder checks that the next jump, to a pointed position,
determines a word of δ−1(δ(H)) = H. More generally, one can check that w, i |= ⌊ψ⌋ ⇔
ŵ, µ(i) |= ψ for all w ∈ Kℓ and all pointed positions i ∈ Pos(w). This concludes the proof.

CSL 2024

45:18 A Generic Characterization of Generalized Unary TL and Two-Variable FO

6 Natural restrictions of generalized unary temporal logic

We turn to two natural restrictions of the classes TL(C), which were defined in [26]: the
pure-future and pure-past fragments. For a class C, we write FL[C] ⊆ TL[C] for the set
of all formulas that contain only future modalities (i.e., the modalities PL are disallowed).
Symmetrically, PL[C] ⊆ TL[C] is the set of all formulas in TL[C] that contain only past
modalities (i.e., the modalities FL are disallowed).

We now define the two associated operators C 7→ FL(C) and C 7→ PL(C). For every class C,
let FL(C) be the class consisting of all languages Lmin(φ) where φ ∈ FL[C]. Symmetrically,
we write PL(C) for the class consisting of all languages Lmax(φ), with φ ∈ PL[C].

▶ Remark 32. Note that FL[C] formulas are evaluated at the leftmost unlabeled position
whereas PL[C] formulas are evaluated at the rightmost unlabeled position.

6.1 Connection with left and right polynomial closure
The main ideas to establish decidable characterizations for FL(C) and PL(C) follow the lines
of the proof of Theorem 12. However, there are some differences. First, for the easy direction
(proving that some property on C-orbits is necessary), we have to adapt Lemma 20 to the
operators C 7→ FL(C) and C 7→ PL(C). We prove these adapted properties in the extended
version of this paper [29] as corollaries of results presented in [26].

The proof of the difficult direction is mostly identical to that in Theorem 12. However,
there is a key difference: we have to find a substitute for Proposition 25, whose proof
relied the inclusion UPol(BPol(C)) ⊆ TL(C) from Proposition 10. We replace unambiguous
polynomial closure (UPol) by two variants, called right and left polynomial closure (RPol
and LPol). It is shown [26] that RPol(BPol(C)) ⊆ FL(C) and LPol(BPol(C)) ⊆ PL(C) for
every prevariety C: this serves as a substitute for Proposition 10. Finally, while no simple
generic characterization of the classes RPol(BPol(C)) and LPol(BPol(C)) are known, we are
able to replace Theorem 11 by combining independent characterizations of the operators Pol
and RPol (resp. Pol and LPol) from [23, 21].

We now establish a connection between the operators C 7→ FL(C) and C 7→ PL(C) and
the two weaker variants RPol and LPol of unambiguous polynomial closure. Consider a
marked product L0a1L1 · · · anLn. For 1 ≤ i ≤ n, we write Hi = L1a1L2 · · · ai−1Li−1 and
Ki = Liai+1Li+1 · · · anLn. We say that L0a1L1 · · · anLn is right deterministic (resp. left
deterministic) when we have A∗aiKi ∩Ki = ∅ (resp. HiaiA

∗ ∩Hi = ∅) for every i ≤ n. The
right polynomial closure of a class C, written RPol(C), consists of all finite disjoint unions of
right deterministic marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C (by “disjoint”
we mean that the languages in the union must be pairwise disjoint). Similarly, the left
polynomial closure LPol(C) of C consists of all finite disjoint unions of left deterministic
marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C. While this is not immediate, it
is known [21] that when the input class C is a prevariety, then so are RPol(C) and LPol(C).

As expected, we are interested in the “combined” operators C 7→ RPol(BPol(C)) and
C 7→ LPol(BPol(C)). Indeed, the first one is connected to the classes FL(C) by the following
result proved in [26, Proposition 5].

▶ Proposition 33. For every prevariety C, we have RPol(BPol(C)) ⊆ FL(C).

We have the following symmetrical statement for PL(C).

▶ Proposition 34. For every prevariety C, we have LPol(BPol(C)) ⊆ PL(C).

T. Place and M. Zeitoun 45:19

Propositions 33 and 34 serve as the replacement of Proposition 10 when dealing with
the classes FL(C) and PL(C), respectively. It now remains to replace the generic algebraic
characterization of the classes UPol(BPol(C)) presented in Theorem 11. This is more tricky
as no such characterization is known for the classes RPol(BPol(C)) (nor for the classes
LPol(BPol(C))). Yet, we manage to prove a sufficient condition for a language to belong to
RPol(BPol(C)) or LPol(BPol(C)) by combining results of [27] and [21]. While it does not
characterize these classes in general, it suffices for our needs: proving that particular languages
belong to RPol(BPol(C)) (and therefore to FL(C) by Proposition 33) or to LPol(BPol(C))
(and therefore to FL(C) by Proposition 34).

▶ Proposition 35. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be
its syntactic morphism. Assume that α satisfies the following property:

(esete)ω+1 = ete(esete)ω for every C-pair (e, s) ∈ M2 and every t ∈ M. (5)

Then, L ∈ RPol(BPol(C)).

▶ Proposition 36. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be
its syntactic morphism. Assume that α satisfies the following property:

(esete)ω+1 = (esete)ωese for every C-pair (e, t) ∈ M2 and every s ∈ M.

Then, L ∈ LPol(BPol(C)).

Since Propositions 35 and 36 are symmetrical, we only prove the first one and leave the
second to the reader.

Proof of Proposition 35. We use a generic characterization of the classes RPol(D) proved
in [21]. Let us first present it. For every class D, we define a preorder ⪯D and an equivalence
∼D over M . Given s, t ∈ M , we let,

s ∼D t if and only if s ∈ F ⇔ t ∈ F for every F ⊆ M such that α−1(F) ∈ D,
s ⪯D t if and only if s ∈ F ⇒ t ∈ F for every F ⊆ M such that α−1(F) ∈ D.

Clearly, ⪯D is a preorder on M and ∼D is the equivalence generated by ⪯D. When
α : A∗ → M is the syntactic morphism of L, it is shown in [21, Theorem 4.1] that for
every prevariety D, we have L ∈ RPol(D) if and only if sω+1 = tsω for all s, t ∈ M such
that s ∼D t.

Hence, since BPol(C) is a prevariety, it suffices to prove that for every s, t ∈ M such
that s ∼BPol(C) t, we have sω+1 = tsω. We fix s, t for the proof. Since s ∼BPol(C) t, we
have s ⪯BPol(C) t. Moreover, let co-Pol(C) be the class consisting of all complements of
languages in Pol(C) (i.e., L ∈ co-Pol(C) if and only if A∗ \ L ∈ co-Pol(C)). Clearly, we have
co-Pol(C) ⊆ BPol(C). Hence, the definition implies that s ⪯co-Pol(C) t

Moreover, it is shown in [27, Lemma 6.6] that ⪯co-Pol(C) is the least preorder on M such that
for every x, y, q ∈ M and e ∈ E(M), if (e, q) ∈ M2 is a C-pair, then xeqey ⪯co-Pol(C) xey (the
proof is based on the algebraic characterization of Pol(C), see [23]). This yields s0, . . . , sn ∈ M

such that s = s0, t = sn and, for every i ≤ n, there exist x, y, q ∈ M and e ∈ E(M) such
that (e, q) ∈ M2 is a C-pair, si−1 = xeqey and si = xey. We use induction on i to prove that
sω+1 = sis

ω for every i ≤ n. Since sn = t, the case i = n yields the desired result. When
i = 0, it is immediate that sω+1 = s0s

ω since s0 = s. Assume now that i ≥ 1.

CSL 2024

45:20 A Generic Characterization of Generalized Unary TL and Two-Variable FO

By induction hypothesis, we know that sω+1 = si−1s
ω. Moreover, we have x, y, q ∈ M

and e ∈ E(M) such that (e, q) ∈ M2 is a C-pair, si−1 = xeqey and si = xey. Since
(sω+1)ω+2 = sω+2, we get sω+2 = (xeqeysω)ω+2. Hence, we get

sω+2 = x (eqeysωxe)ω+1 eqeysω

= x eysωxe(eqeysωxe)ω eqeysω by (5) since (e, q) is a C-pair
= xeysω(xeqeysω)ω+1.

This yields, sω+2 = sis
ω(si−1s

ω)ω+1 = sis
ω(sω+1)ω+1 = sis

ω+1. It now remains to multiply
by sω−1 on the right to get sω+1 = sis

ω, as desired. ◀

6.2 Statements

The classes FL(C) and PL(C) admit algebraic characterizations similar to that of TL(C). We
reuse the C-orbits introduced in Section 3. Let X ∈ {L,R, J} be one the Green relations
defined in Section 2. A monoid M is X -trivial when s X t implies s = t for all s, t ∈ M . It
is standard and simple to verify that a finite monoid M is R-trivial (resp. L-trivial) if and
only if for all s, t ∈ M , we have (st)ωs = (st)ω (resp. t(st)ω = (st)ω), see [17, 20] for a proof.
We are now able to present the two symmetrical characterizations of FL(C) and PL(C).

▶ Theorem 37. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ FL(C).
2. Every C-orbit for α is L-trivial.

▶ Theorem 38. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ PL(C).
2. Every C-orbit for α is R-trivial.

Since FL(C) and PL(C) are symmetrical, it is natural to consider a third class denoted
FL(C) ∩ PL(C). It consists of all languages belonging simultaneously to FL(C) and PL(C). It
is standard that the finite monoids which are both L-trivial and R-trivial are exactly the
J-trivial monoids (see [17, 20]). This yields the following corollary of Theorems 37 and 38.

▶ Corollary 39. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ FL(C) ∩ PL(C).
2. Every C-orbit for α is J-trivial.

Recall that given a regular language L ⊆ A∗ as input, its syntactic morphism α : A∗ → M

can be computed. Moreover, Lemma 5 implies that all C-orbits for α can be computed when
C-separation is decidable. Thus, the three above characterizations yield the following corollary.

▶ Corollary 40. Let C be a prevariety with decidable separation. Then, the classes FL(C),
PL(C) and FL(C) ∩ PL(C) have decidable membership.

We leave the proof of Theorem 37 for the extended version of this paper [29] (it omits
the proof of Theorem 38, which is symmetrical).

T. Place and M. Zeitoun 45:21

7 Conclusion

We presented generic characterizations of the classes TL(C), FL(C) and PL(C). While the
proofs are complex, the statements are simple and elegant. They generalize in a natural way
all known characterizations of classes built with these operators. As a corollary, we obtained
that if C is a prevariety with decidable separation, then all classes TL(C), FL(C) and PL(C)
have decidable membership.

The next step is to tackle separation. This question is difficult in general, but it is worth
looking at particular input classes. For instance, one can define the TL-hierarchy of basis C:
level 0 is TL0(C) = C and level n ≥ 1 is TLn(C) = TL(TLn−1(C)). It can be shown that
the hierarchies of bases ST = {∅, A∗} and DD = {∅, {ε}, A+, A∗} are strict. Thus, since
BPol(C) ⊆ TL(C), they both classify the star-free languages (or equivalently the languages
definable in full linear temporal logic). We already know that in both hierarchies, membership
is decidable for levels 1 (i.e., the variants TL and TLX of unary temporal logic) and 2 (which
were studied in [15]). The results of the present paper show that if TL2(ST) and TL2(DD)
have decidable separation, then TL3(ST) and TL3(DD) would have decidable membership.

Finally, all other major operators have language-theoretic counterparts. Another possible
follow-up is to look for such a definition for all three operators C 7→ TL(C),FL(C) and PL(C).

References

1 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science, STACS’87, Lecture Notes in
Computer Science, pages 198–206. Springer, 1987.

2 David A. Mix Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. Regular
languages in NC1. Journal of Computer and System Sciences, 44(3):478–499, 1992.

3 Danièle Beauquier and Jean-Éric Pin. Languages and scanners. Theoretical Computer Science,
84(1):3–21, 1991.

4 Janusz A. Brzozowski and Imre Simon. Characterizations of locally testable events. Discrete
Mathematics, 4(3):243–271, 1973.

5 Luc Dartois and Charles Paperman. Two-variable first order logic with modular predicates
over words. In Proceedings of the 30th International Symposium on Theoretical Aspects of
Computer Science, STACS’13, Leibniz International Proceedings in Informatics (LIPIcs), pages
329–340. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

6 Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-
order logic over finite words. International Journal of Foundations of Computer Science,
19(3):513–548, 2008.

7 Volker Diekert, Martin Horsch, and Manfred Kufleitner. On first-order fragments for
Mazurkiewicz traces. Fundamenta Informaticae, 80(1-3):1–29, 2007.

8 Volker Diekert and Manfred Kufleitner. Fragments of first-order logic over infinite words.
Theory of Computing Systems (ToCS), 48(3):486–516, 2011.

9 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279–295, 2002.

10 James Alexander Green. On the structure of semigroups. Annals of Mathematics, 54(1):163–172,
1951.

11 Hans W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis, Computer Science
Department, University of California at Los Angeles, USA, 1968.

12 Robert Knast. A semigroup characterization of dot-depth one languages. RAIRO – Theoretical
Informatics and Applications, 17(4):321–330, 1983.

CSL 2024

45:22 A Generic Characterization of Generalized Unary TL and Two-Variable FO

13 Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya, and Howard Straubing. Two-variable
logic with a between relation. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS’16, pages 106–115, 2016.

14 Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya, and Howard Straubing. An algebraic
decision procedure for two-variable logic with a between relation. In 27th EACSL Annual Con-
ference on Computer Science Logic, CSL’18, Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

15 Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya, and Howard Straubing. Two-variable
logics with some betweenness relations: Expressiveness, satisfiability and membership. Logical
Methods in Computer Science, Volume 16, Issue 3, 2020.

16 Robert McNaughton and Seymour A. Papert. Counter-Free Automata. MIT Press, 1971.
17 Jean-Éric Pin. Varieties of Formal Languages. North Oxford Academic, 1986.
18 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of

Computing Systems, 30(4):383–422, 1997.
19 Jean-Éric Pin. An explicit formula for the intersection of two polynomials of regular languages.

In Proceedings of the 17th International Conference on Developments in Language Theory,
DLT’13, volume 7907 of Lecture Notes in Computer Science, pages 31–45. Springer, 2013.

20 Jean-Éric Pin. Mathematical foundations of automata theory. Lecture notes, in preparation,
2022. URL: https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf.

21 Thomas Place. The amazing mixed polynomial closure and its applications to two-variable
first-order logic. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS’22, 2022.

22 Thomas Place and Marc Zeitoun. Separating without any ambiguity. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP’18, Leibniz International
Proceedings in Informatics (LIPIcs), pages 137:1–137:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018.

23 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR’17.

24 Thomas Place and Marc Zeitoun. Going higher in first-order quantifier alternation hierarchies
on words. Journal of the ACM, 66(2):12:1–12:65, 2019.

25 Thomas Place and Marc Zeitoun. On all things star-free. In Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming, ICALP’19, Leibniz International
Proceedings in Informatics (LIPIcs), pages 126:1–126:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019.

26 Thomas Place and Marc Zeitoun. How many times do you need to go back to the future in
unary temporal logic? In Proceedings of the 15th Latin American Symposium on Theoretical
Informatics, LATIN’22, Lecture Notes in Computer Science. Springer, 2022.

27 Thomas Place and Marc Zeitoun. All about unambiguous polynomial closure. TheoretiCS,
2(11):1–74, 2023. doi:10.46298/theoretics.23.11.

28 Thomas Place and Marc Zeitoun. Closing star-free closure, 2023. arXiv:2307.09376.
29 Thomas Place and Marc Zeitoun. A generic characterization of generalized unary temporal

logic and two-variable first-order logic, 2023. arXiv:2307.09349.
30 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information

and Control, 8(2):190–194, 1965.
31 Marcel Paul Schützenberger. Sur certaines opérations de fermeture dans les langages rationnels.

Symposia Mathematica, XV:245–253, 1975.
32 Marcel Paul Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum,

13:47–75, 1976.
33 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata

Theory and Formal Languages, pages 214–222. Springer, 1975.
34 Howard Straubing. Aperiodic homomorphisms and the concatenation product of recognizable

sets. Journal of Pure and Applied Algebra, 15(3):319–327, 1979.

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.46298/theoretics.23.11
https://arxiv.org/abs/2307.09376
https://arxiv.org/abs/2307.09349

T. Place and M. Zeitoun 45:23

35 Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In Semigroups,
Algorithms, Automata and Languages, pages 475–500. World Scientific, 2002.

36 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier
alternation. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC’98, pages 234–240. ACM, 1998.

CSL 2024

Concurrent Stochastic Lossy Channel Games
Daniel Stan # Ñ

EPITA, Le Kremlin-Bicêtre, France

Muhammad Najib # Ñ

Heriot-Watt University, Edinburgh, UK

Anthony Widjaja Lin # Ñ

University of Kaiserslautern-Landau, Germany
Max-Planck Institute for Software Systems, Kaiserslautern, Germany

Parosh Aziz Abdulla # Ñ

Uppsala University, Sweden

Abstract
Concurrent stochastic games are an important formalism for the rational verification of probabilistic
multi-agent systems, which involves verifying whether a temporal logic property is satisfied in some
or all game-theoretic equilibria of such systems. In this work, we study the rational verification of
probabilistic multi-agent systems where agents can cooperate by communicating over unbounded lossy
channels. To model such systems, we present concurrent stochastic lossy channel games (CSLCG)
and employ an equilibrium concept from cooperative game theory known as the core, which is the
most fundamental and widely studied cooperative equilibrium concept. Our main contribution is
twofold. First, we show that the rational verification problem is undecidable for systems whose
agents have almost-sure LTL objectives. Second, we provide a decidable fragment of such a class of
objectives that subsumes almost-sure reachability and safety. Our techniques involve reductions to
solving infinite-state zero-sum games with conjunctions of qualitative objectives. To the best of our
knowledge, our result represents the first decidability result on the rational verification of stochastic
multi-agent systems on infinite arenas.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Verification by model checking; Theory of computation → Concurrency;
Theory of computation → Solution concepts in game theory

Keywords and phrases concurrent, games, stochastic, lossy channels, wqo, finite attractor property,
cooperative, core, Nash equilibrium

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.46

Related Version Full Version: http://arxiv.org/abs/2311.17037

Funding Anthony Widjaja Lin: supported by European Research Council under European Union’s
Horizon research and innovation programme (grant agreement no 501100000781).

Acknowledgements We wish to thank Richard Mayr and all anonymous reviewers for their useful
feedback.

1 Introduction

Rational verification concerns the problem of checking which temporal logic properties will
be satisfied in game-theoretic equilibria of a multi-agent system, that is, the stable collective
behaviours that arise assuming that agents choose strategies/policies rationally in order to
achieve their goals [27, 1]. The usual approach to rational verification is to model multi-agent
systems as concurrent games [27, 31]. This involves converting a multi-agent system into a
game where agents are represented by a collection of independent, self-interested players in a
finite-state environment. The game is played over an infinite number of rounds, with each

© Daniel Stan, Muhammad Najib, Anthony Widjaja Lin, and Parosh Aziz Abdulla;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 46; pp. 46:1–46:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.stan@epita.fr
https://www.tudo.re/daniel.stan/
https://orcid.org/0000-0002-4723-5742
mailto:m.najib@hw.ac.uk
https://valvestate.github.io/
https://orcid.org/0000-0002-6289-5124
mailto:awlin@mpi-sws.org
https://anthonywlin.github.io/
https://orcid.org/0000-0003-4715-5096
mailto:parosh@it.uu.se
https://user.it.uu.se/~parosh/
https://orcid.org/0000-0001-6832-6611
https://doi.org/10.4230/LIPIcs.CSL.2024.46
http://arxiv.org/abs/2311.17037
https://doi.org/10.3030/101089343
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Concurrent Stochastic Lossy Channel Games

player/agent (we use these terms interchangeably throughout the paper) choosing an action
to perform in each round. Each player’s goal is typically given by a temporal logic formula,
which the player aims to satisfy. The temporal logic formula may or may not be satisfied
by the infinite plays generated from the game, assuming that the players act rationally to
achieve their goals.

In this paper, unlike much of previous work in rational verification, we consider systems
that give rise to games with probabilistic transitions and infinitely many states. In particular,
we focus on systems that can naturally be modelled by stochastic lossy channel games [8]
in the multi-player and concurrent setting, where there are n ≥ 2 players who can make
concurrent moves. Our setting generalises the two-player turn-based framework presented
in [8]. We call this model Concurrent Stochastic Lossy Channel Games (CSLCG). This
model can be used to analyse a wide class of systems that communicate through potentially
unreliable FIFO channels, such as communication networks, timed protocols, distributed
systems, and memory systems [2, 9, 10, 4]. Stochasticity can be used to represent uncertainty
in both the environment (e.g., branching and message losses) and the behaviour of agents.
Incorporating such uncertainty is desirable from a practical standpoint, as real-world systems
are expected to operate correctly even when communication is not perfect and agents’
behaviour is not deterministic. In the context of memory systems, stochasticity is used as
a fairness condition that prevents unrealistic scenarios where the shared memory is never
updated by the processes [3, 34].

Given the possibility of communication, albeit imperfect, among agents, it seems quite
natural to assume that some form of cooperation may arise in games. Thus, a relevant and
fundamental question within the rational verification framework is: “What temporal logic
property is satisfied by the rational cooperation that emerges in such a setting?” To address
this question, we consider an equilibrium concept from cooperative game theory called the
core [14, 41, 30], which is the most fundamental and widely-studied cooperative equilibrium
concept. With this concept, the standard assumption is that there exists some mechanism1

that the players in a game can use to make binding agreements. These binding agreements
enable players to cooperate and work in teams/coalitions, providing a way to eliminate
undesirable equilibria that may arise in non-cooperative settings [30, 29]. We illustrate
that this is also true in our setting in Example 14. Despite using a cooperative equilibrium
concept, we emphasize that players are still self-interested, meaning they rationally pursue
their individual goals. As such, the games we consider in this work are general-sum games
instead of strictly positive-sum games, which are purely cooperative.

Contributions. We study the rational verification problem in CSLCG with the core as the
key equilibrium concept. It is shown in [30] that the core of a game with qualitative objectives
can never be empty, which also applies to the setting considered in this paper. Thus, two
relevant decision problems pertaining to rational verification in the present work are E-Core
and A-Core. E-Core asks whether there exists a strategy profile in the core satisfying
a given property Γ, whereas A-Core asks whether all profiles in the core satisfy Γ. We
first show that these problems are undecidable for games in which the players’ objectives
and property Γ are almost-sure LTL formulae, i.e., of the form AS(φ), where φ is a LTL
formula. We consider LTL with regular valuations [24] where the set of states/configurations
satisfying an atomic proposition is represented by a regular language. Then, for our main

1 Such mechanism is assumed to be exogenous (e.g., via contracts) and beyond the scope of the present
paper.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:3

Sender

abbc

ReceiverAttacker

abba

bwwa

l0 l1 l2

aw|a!, bw|b!

ab|a!, ba|b!
aa|c!, bb|c!

∗b|c?

∗∗aw|a!, bw|b!

Figure 1 A simple adversarial transmission system from Example 1 (left) and its graphical
representation as a 2-player arena (right). The special action ∗ is a shorthand for any possible action.
The resulting operation f on the channel is written after | and omitted if f = nop.

contribution, we show the following: when players’ goals are given as almost-sure reachability
or almost-sure safety objectives, and the property Γ is given as almost-sure reachability,
almost-sure safety, or almost-sure Büchi, the problems of E-Core and A-Core become
decidable. Our decidability proof is obtained via a reduction to concurrent 2.5-player2 lossy
channel games with conjunction of objectives. This approach differs from previous work in
two ways. First, our reduction considers concurrent plays, in contrast to turn-based 2.5-player
games considered by [8]. Second, we do not assume finite-memory strategies, as opposed
to finite-memory assumption in [7, 16]. This is because finite-memory strategies do not
ensure determinacy [35]: it is possible that none of the players has a winning strategy in a
given concurrent 2.5-player game, even in the finite state case with simple objectives [23].
Therefore, general strategies (which may require infinite memory) are required in equilibrium
concepts such as the core, where players (or coalitions) may try to satisfy their objectives
while simultaneously preventing other players from achieving theirs. However, the main
challenge in using these strategies in the infinite state case is the issue of representation.
To address this, we provide a novel encoding of strategies in our proof of decidability. To
our knowledge, this is the first decidability result on the rational verification of stochastic
multi-player games with infinite-state arenas.

▶ Example 1. To illustrate the model, we consider a simple transmission system depicted
in Figure 1 throughout the article. In this example, Sender (player 1) tries to emit some
message of either type a or b. Attacker (player 2) is trying to scramble the communication
by concurrently choosing the same message type (action a or b). Moreover, Attacker cannot
scramble the communication two times in a row and has to wait (action w) otherwise. The
CSLCG arena is depicted on the right with the corresponding transitions and an extra
location, reachable by a unilateral decision of player 1 by reading a c-letter from the channel,
which is possible only in case of a successful scrambling. Note that although the game
structure is deterministic in this example, some stochastic behaviour will still appear both
from message losses and from players’ strategies, which are played concurrently. As a more
concrete example of Attacker’s objective, one could specify the condition “reaching l2 almost-
surely, while not having more than 3 queued messages with positive probability”. Note that
this is a conjunction of reachability and safety conditions over locations and regular sets of
channel configurations.

2 Henceforth, we use the usual terms 1.5-player and 2.5-player games for, respectively, one-player and
two-player stochastic games.

CSL 2024

46:4 Concurrent Stochastic Lossy Channel Games

Related Work. As already mentioned above, the most relevant work w.r.t. verification of
CSLCG is [8], which shows decidability of two-player turn-based stochastic lossy channel
games with almost-sure reachability or almost-sure Büchi objectives. This work was extended
to parity conditions in [7], where decidability can be shown assuming finite-memory strategies;
otherwise, it is already undecidable for 1.5-player games over lossy channel systems with
almost-sure co-Büchi objectives [16]. We are not aware of any work on rational verification
of concurrent stochastic games over infinite arenas. [26] studies verification of the core in
a probabilistic setting, while [11] presents Probabilistic Strategy Logic, which can be used
to characterize the core. However, both of these works are in a finite state setting only.
Without probability, we mention the work [37, 22] on concurrent (deterministic) pushdown
games with multiple players. In particular, ATL* model checking is decidable in such games,
which allows one to reason about the core. Additionally, there has been work on pushdown
module-checking, which provides some element of non-determinism through an (external)
environment. [12] examines the imperfect information setting, while [21] studies multi-agent
systems with ATL* specifications. Note that lossy channel systems, which are the focus of
our work, are inherently different from the models considered in these studies.

Organization. Section 2 introduces preliminary definitions and notations. Section 3 de-
scribes concurrent lossy channel games and the special case of 2.5-player zero-sum games.
Section 4 presents a characterization of the core, the problems E-Core and A-Core, a
procedure to solve them, and an undecidability result of E-Core and A-Core. Section 5
addresses the computability of winning regions for concurrent 2.5-player zero-sum games and
provides algorithms to compute such regions. Section 6 studies the conjunction of objectives,
while Section 7 presents our main result on the decidability of E-Core and A-Core. Finally,
Section 8 concludes with a discussion and future work.

2 Preliminaries

For a finite alphabet Σ, the set of finite sequences, called words, is written Σ∗. Given
two words u, v ∈ Σ∗, we write u · v for their concatenation and extend this notation to
sets of words. Given L ⊆ Σ∗, L+ denotes the smallest set containing L and closed under
concatenation and L∗ = {ϵ} ∪ L+ with ϵ the empty word. The class of regular languages is
the smallest class containing Σ, closed under difference, union, Kleene star and concatenation.
We refer to [33] for further references about regular expressions and their link to automata
theory.

Let S denote a countable set, for example S = Σ∗. A well-quasi-ordering [25] (wqo) ⪯
over S is a quasi-ordering (i.e. reflexive and transitive binary relation) such that any infinite
sequence (si)i∈N of elements of S contains an increasing pair i < j such that si ⪯ sj . As an
example, Higman’s lemma [32] states that the sub-word ordering ⪯ defined below is a wqo
over Σ∗:

▶ Definition 2. For any w, w′ ∈ Σ∗, w ⊑ w′ if w can be written w = w0 · w1 · · ·wn and
w′ ∈ Σ∗ · {w0} · Σ∗ · · ·Σ∗ · {wn} · Σ∗.

A subset U ⊆ S is upward-closed (UC) if for every s ⪯ t such that s ∈ U , we also have
t ∈ U . Any UC set can be uniquely represented by its set of minimal elements, which is finite
(wqo property). A downward-closed (DC) set is defined in a similar manner. In particular,
any UC or DC set w.r.t. the sub-word ordering is a regular language.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:5

A distribution over S is an array δ ∈ RS
≥0 of values δ[s] ∈ R≥0 for any s ∈ S, such that∑

s∈S δ[s] = 1. If X is finite and non-empty, we write U(X) for the uniform distribution
over X, namely ∀x ∈ X,U(X)[x] = 1/|X|. We use the notation Dist(S) to denote the set of
distributions over S.

Let Sω denote the set of infinite sequences over S, called paths. A set X ⊆ Sω is a cylinder
if it is of the form s0 · · · sn · Sω for some s0 · · · sn ∈ S∗. Such a set is written Cyl(s0 · · · sn).
We introduce F(S) as the smallest family of sets of paths containing all cylinders, closed
under complementation, and countable union. Such sets of F(S) are called measurable.

Given an initial state s0 ∈ S and a mapping η : S+ → Dist(S) from histories to
distributions over S, we define a partial function P : F(S)→ R≥0 such that P(Cyl(s0)) = 1,
∀s ̸= s0,P(Cyl(s)) = 0, and for all h · s ∈ S+ · S, P(Cyl(h · s)) = P(Cyl(h)) · η(h)[s].
Carathéodory’s criterion [40] ensures this definition is well and uniquely defined on all F(S),
and P is therefore called a probability measure.

We describe infinite paths with the logic LTL, whose usual semantics over infinite words
in Sω, leads to measurable sets [17, Remark 10.57]. More precisely, we consider LTL with
regular valuations [24], where atomic propositions are represented by regular languages. We
focus on the fragment without the “until” operator:

▶ Definition 3 (LTL [39]). An LTL(⃝,♢) formula is any φ in the following grammar, where
ν ranges over regular languages over S:

φ ::= ν | φ ∧ φ | φ ∨ φ | ⃝φ | ♢φ | □φ

Here, □φ, ♢φ and □♢φ denote always φ, eventually φ and infinitely often φ, respectively.
Let I be a set of indices and V be a set of values. A profile v⃗ is a mapping from I to V ,

where vi is the value assigned to i. In particular if I = {1 . . . n}, then v⃗ = (v1 . . . vn). We
introduce a fresh symbol ⊥ /∈ V , and define the notation v⃗−i as the profile where vi has been
replaced by ⊥. Given any other value w ∈ V , we write (v⃗−i, w) for the profile where the
value assigned to i has been replaced by w. We extend these notations to a subset Y ⊆ I

in the usual way, i.e., v⃗−Y denotes v⃗ where each vi, i ∈ Y is replaced by ⊥ and (v⃗−Y , v⃗′
Y)

where vi is replaced by v′
i for each i ∈ Y .

3 Lossy Channel Games

In this section, we provide formal definitions for the game model and the equilibrium
concept that we use. While the model definitions are direct generalizations of those in [8],
the concurrent setting requires extra care. In this setting, all players choose their actions
concurrently and independently. The resulting action profile is evaluated on the game graph,
which provides a (distribution of) channel operation to apply and a successor control state.
Message losses are then processed.

3.1 Lossy Channel
For simplicity, this article focuses on a single channel system. The channel configuration is
represented by a word µ ∈M∗, where M is a finite alphabet of messages. This channel is
subject to stochastic message losses, meaning that every message has a fixed probability
λ ∈ (0, 1) of being lost at every round, independently of other messages.

We can derive the following probability values:

▶ Example 4 (Message Losses). For any µ, µ′ ∈M∗, let us write Pλ(µ, µ′) for the probability
of transitioning from channel configuration µ to µ′ after random message losses. For example,
Pλ(µ, µ) = (1 − λ)|µ| (no message loss) and whenever µ′ ̸⪯ µ (not a sub-word), we have
Pλ(µ, µ′) = 0. Moreover, for a single message letter a ∈M , Pλ(an, am) =

(
n
m

)
λn(1− λ)n−m.

CSL 2024

46:6 Concurrent Stochastic Lossy Channel Games

As we will see later in Section 5, the exact value of λ is not relevant for the qualitative
probabilistic objectives considered in Definition 10.

3.2 Channel Operations
▶ Definition 5. A channel operation f is defined as one of these three type of partial
functions:

If f = nop then f(µ) = µ;
If f =!m then f(µ) = m · µ;
If f =?m and µ = w ·m, then f(µ) = w and f(µ) = ⊥ /∈M∗ otherwise.

The set of all such partial functions is denoted opM .

Intuitively, nop, !m, and ?m denote “no action”, “enqueue the message m”, and “dequeue
the message m”, respectively. If the channel configuration does not end with the message m,
then the effect of f =?m is the fresh symbol ⊥, indicating that the operation is not allowed.

3.3 Lossy Channel Arena
Players choose channel operations through an arena, which specifies a control state (location)
that defines the actions allowed by the players and the resulting effects on the channel:

▶ Definition 6. A n-player concurrent stochastic lossy channel arena (CSLCG arena) is a
tuple A = (Agt, L, M, {Acti}i∈Agt, Tab, l0) where:

Agt = {1 . . . n} is the set of agents;
L is the set of locations;
l0 ∈ L is the initial location;
M is the message alphabet;
For each i ∈ Agt, Acti is a finite set of actions available to agent i and require these sets
to be pairwise disjoint. We write Act for

∏
i∈Agt Acti;

Tab : L×Act→ Dist(L× opM).
A configuration, or state of a CSLCG arena A is a word s = l · µ composed of a location
and a channel configuration. The state space is denoted by S = L ·M∗ and the initial state
is s0 = l0 · ϵ ∈ S.

In the rest of the section we assume A to be fixed.

3.4 Concurrent Actions and Strategies
Since actions are taken concurrently, players must be prevented from taking certain actions
that could result in illegal channel operations. In general, the set of allowed actions and
strategy decisions will depend on the state (location and channel) of the arena, as formalized
below:

▶ Definition 7 (Allowed Actions and Strategies). For a configuration s = l · µ and a player
i ∈ Agt, we define Acti(s) as the set of allowed actions α such that if ∃β⃗ ∈ Actn :
Tab(l, (β⃗−i, α))[l′, f] > 0, then f(µ) ̸= ⊥. A strategy for player i is a mapping σi from
sequences of states (histories), to distributions of allowed actions. Namely, for all h · s ∈ S+,
we have σi(h · s) ∈ Dist(Acti(s)). We write σi(α | h · s) as a shorthand for σi(h · s)[α]. The
set of strategies of i is written Si and S⃗ =

∏
i∈Agt Si is the set of strategy profiles.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:7

l0 l1c

l1a

l1bl1

l0a

l0b

ab aa, bb

ba

wa

wb

aw, bw
. . .

aw, bw
. . .

aw, bw
. . .

ab, bb

l2

Figure 2 Fragment of the semantics of the CSLCG arena of Figure 1 as a concurrent arena.
Stochastic behaviours such as message losses are represented by the • nodes and probability values
are omitted.

▶ Remark 8. A strategy profile σ⃗ can be seen as a strategy of a single player taking any
(distribution of) action(s) α⃗ ∈ Act from history h · s ∈ S+ with probability

σ⃗(α⃗ | h · s) =
∏

i∈Agt
σi(αi | h · s)

However the converse does not always hold: for example if Acti(s) = {a, b} for i ∈ {1, 2},
there exist no pair of strategies σ1, σ2 such that σ⃗(aa | s) = σ⃗(bb | s) = 1/2 and σ⃗(ab | s) =
σ⃗(ba | s) = 0.

3.5 Semantics
The semantics of a CSLCG arena can be understood as an n-player, infinite-state, concurrent
stochastic game arena (S, Agt, {Acti}i∈Agt, s0, p) where p : S × Act→ Dist(S). Intuitively,
from any state s = l · µ: (1) Every player picks an allowed action from Acti(s) based on
the probability given by its strategy on the current history; (2) A new location l′ and a
channel operation are then sampled according to Tab(l, α⃗). Since players only play allowed
actions, the new channel configuration f(µ) is guaranteed to be defined; (3) Message losses
finally occur from f(µ) to some channel configuration µ′, resulting in state s′ = l′ · µ′. This
is formally defined below. An example of such a semantics is provided in Figure 2.

▶ Definition 9 (Semantics of CSLCG). For an initial state s0 ∈ L ·M∗ and a strategy profile
σ⃗ = (σi)i∈Agt in the CSLCG arena A = (Agt, L, M, {Acti}i∈Agt, Tab, l0), we define Pσ⃗

s0
as

the probability measure on F(S) uniquely defined by its values on cylinders:
Pσ⃗

s0
(Cyl(s0)) = 1;

∀s ̸= s0,Pσ⃗
s0

(Cyl(s)) = 0;
For every pair of states s = l · µ ∈ S and s′ = l′ · µ′ ∈ S, and any history h ∈ S∗,

Pσ⃗
s0

(Cyl(h · s · s′)) = Pσ⃗
s0

(Cyl(h · s))
∑
α⃗,f

σ⃗(α⃗ | h · s)︸ ︷︷ ︸
(1)

×Tab(l, α⃗)[(l′, f)]︸ ︷︷ ︸
(2)

×Pλ(f(µ), µ′)︸ ︷︷ ︸
(3)

.

When s0 = l0 · ϵ, we simply write Pσ⃗ = Pσ⃗
s0

.

We now define qualitative objectives, that will be used to express players’ goals and the
(global) properties to be checked:

▶ Definition 10. Let φ be a measurable set of paths.For any strategy profile σ⃗ and state s,
we define the property NZ(φ) and AS(φ) by:

A, σ⃗, s ⊨ NZ(φ) for Pσ⃗
s (φ) > 0 and A, σ⃗, s ⊨ AS(φ) for Pσ⃗

s (φ) = 1.

CSL 2024

46:8 Concurrent Stochastic Lossy Channel Games

We omit A or s when they are clear from context.
We extend the definition to any conjunction of objectives: For a conjunction of NZ and

AS objectives Ψ1 ∧ . . . ∧Ψk, we have

A, σ⃗, s ⊨ Ψ1 ∧ . . . ∧Ψk if and only if for all i A, σ⃗, s ⊨ Ψi.

We consider for φ reachability or safety conditions of regular sets of states, namely LTL
with regular valuations [24], and identify a formula φ with its semantics L(φ) ⊆ (L ·M∗)ω.
For example, to specify the objective “reaching l2 almost-surely, while not having more than
3 queued messages with positive probability”, one would write:

Γ = AS(♢l2 ·M∗) ∧NZ(□L ·M≤3)

▶ Definition 11. A CSLCG is defined as an n-player arena together with such properties,
called objectives, for every players: G = (A, Φ1 . . . Φn). In particular, when n = 2, and
Φ1 = ¬Φ2, we say that G is a 2.5 player zero-sum game. A strategy σi ∈ Si such that
∀σ⃗′, (σ⃗′

−i, σi), s ⊨ Φ is called a winning strategy of Φ for i.

▶ Definition 12. For a game G, strategy profile σ⃗, and state s, we define the set of winners
and losers by WG(σ⃗, s) = {i ∈ Agt : (σ⃗, s) |= Φi} and LG(σ⃗, s) = Agt \WG(σ⃗, s). When s is
the initial state we simply write WG(σ⃗) and LG(σ⃗).

4 Verifying the Core

We consider a cooperative equilibrium concept called the core [14, 41, 30]. Analogous to a
Nash equilibrium (NE) [38], a member of the core can be characterized by (the absence of)
beneficial deviations. However, unlike a Nash equilibrium where only one player can deviate,
with the core, a group or coalition of players can deviate together. The notion of beneficial
coalitional deviation is formally defined as follows.

▶ Definition 13. For a strategy profile σ⃗, we say that a joint strategy σ⃗′
C , C ⊆ Agt, C ̸= ∅,

is a beneficial coalitional deviation from σ⃗ if C ⊆ LG(σ⃗) and for all σ⃗′
−C , we have C ⊆

WG((σ⃗′
C , σ⃗′

−C)).

The core of a game G is defined to be the set of strategy profiles that admit no beneficial
coalitional deviation3. We write Core(G) to denote the set of strategy profiles in the core of
G. We focus on two decision problems related to the core: E-Core and A-Core. These
problems are formally defined below.

Given: (G, Γ) with game G and property Γ.
E-Core: Does there exists some σ⃗ ∈ Core(G) such that G, σ⃗ |= Γ?
A-Core: Is it the case that for all σ⃗ ∈ Core(G) we have G, σ⃗ |= Γ?

Note that, due to the duality of these problems, it is enough to provide a procedure for
E-Core.

▶ Example 14. Consider a transmission system with one channel similar to the one discussed
in Example 1. Now, suppose there are three players, S (sender), R (receiver), and A (attacker).
S/R decides to send/request a message, a or b. A message is delivered successfully if R reads

3 An alert reader may notice the similarities between the core and strong NE [13] and coalition-proof
NE [18]. The main difference is that these non-cooperative equilibrium concepts do not assume the
existence of binding agreements. We refer to [29] for a more detailed discussion on this matter.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:9

l0
lalb

lF

aaa|!c, bab|!c
aab|!a, baa|!a

aba|!c, bbb|!c

abb|!a, bba|!b

− ∗ ∗−reset−

−dequeue−|?b

−reset−

−dequeue−|?a

−−−

Figure 3 A graphical representation of a 3-player arena. Joint actions are ordered by SRA, for
example, xyz indicates that players S, R, A choose actions x, y, z respectively.

(dequeues) the same type of message as she requested. An attack is successful if A chooses
the same type of message being sent, and this turns the message into a c. We model this
game as a CSLCG where ActS = ActA = {a, b,−}, ActR = {a, b, dequeue, reset}. The arena
is depicted in Figure 3. The goals of S and R are given as ΦS = AS(□(L ·M≤k)) for some
k ∈ N (almost surely the channel never exceeds size k), and ΦR = AS(♢(lF ·M∗)) (almost
surely a correct message is delivered). The goal of A is ΦA = ¬(ΦS ∧ ΦR).

Consider the following strategy profile: if the channel contains fewer than k messages,
S and R play aa and bb uniformly at random. Otherwise, S plays action −. This profile
satisfies both ΦS and ΦR, and is therefore in the core. In fact, all strategy profiles in the
core satisfy both ΦS and ΦR. As a result, if we query E-Core with Γ = ΦA = ¬(ΦS ∧ ΦR),
it returns a negative answer. This is in contrast to NE: since with NE S and R do not act as
a coalition, there exists a (undesirable) NE in which there is a non-zero probability that the
channel will exceed size k or a correct message will never be delivered (i.e., Γ is satisfied). ⌟

To address E-Core, we first introduce the notion of concurrent two-player coalition game
(TPCG) as follows.

▶ Definition 15. Let G = (A, (Φi)i∈Agt) be a CSLCG and C ⊆ Agt, with the underlying
arena A = (Agt, L, M, {Acti}i∈Agt, Tab, l0). The concurrent two-player coalition game arena
is defined as AC = ((1, 2), L, M, {Acti}i∈Agt, Tab′, l0) where for all actions α⃗, β⃗ ∈ Act, the
transition is determined by the projections on C and −C = Agt \ C, respectively for player
1 and 2: Tab′(l, (α⃗, β⃗)) = Tab(l, (α⃗C , β⃗−C)). The TPCG with respect to G, C, and objective
ΨC is thus defined as GC,ΨC = (AC , (ΨC ,¬ΨC)).

Observe that the ability of a coalition C to satisfy an objective ΨC depends on whether it
has a winning strategy in TPCG GC,ΨC from the initial state of the game (thus, the existence
of beneficial deviation). With this observation, we restate the characterization of E-Core
from [26] as follows.

▶ Proposition 16 ([26]). A pair (G, Γ) is a yes-instance of E-Core if and only if there exists
W ⊆ Agt such that
(a) there exists some σ⃗ such that G, σ⃗ |= ΦW , and
(b) for all C ⊆ Agt \W , C has no winning strategy in GC,ΨC ,
where ΦW =

∧
i∈W Φi ∧

∧
i/∈W ¬Φi ∧ Γ and ΨC =

∧
i∈C Φi.

Using Proposition 16, we provide the following procedure for determining whether some
(G, Γ) is a yes-instance of E-Core.

CSL 2024

46:10 Concurrent Stochastic Lossy Channel Games

1. Guess a set of winning players W ⊆ Agt;
2. Check if there is a winning strategy σ⃗ in TPCG GAgt,ΦW = (A, (ΦW ,¬ΦW));
3. Check if there is a coalition C ⊆ Agt \W with a winning strategy σ⃗′

C in TPCG GC,ΨC =
(AC , (ΨC ,¬ΨC));

4. If the answers to Step 2 is “Yes” and Step 3 is “No”, then (G, Γ) is a yes-instance of
E-Core. Otherwise, it is not.

Observe that above procedure corresponds to Proposition 16. In particular, Steps 2 and 3
correspond precisely to (a) and (b) in Proposition 16, respectively. Thanks to this procedure,
the problem of checking whether (G, Γ) is a yes-instance of E-Core can be reduced to solving
a collection of concurrent 2.5-player zero-sum games.

Note that if we consider almost-sure LTL objectives, we can construct a CSLCG G with
one player whose goal is Φ = AS((□♢R1) ∧ (♢□R2)). Then, we can set Γ = Φ and query
E-Core. This reduces to a 1.5-player game over a lossy channel with objective Φ, which is
already undecidable [16, Lemma 5.12]. Therefore, we obtain the following result.

▶ Proposition 17. For a pair (G, Γ) where players’ objectives and Γ are given by almost-sure
LTL formulae, the problems of E-Core and A-Core are undecidable.

In the following sections, we study the technical machineries required to solve concurrent
2.5-player zero-sum games with almost-sure safety and almost-sure reachability objectives.
As motivated by Proposition 16 and its corresponding procedure for E-Core, we further
solve concurrent 2.5-player zero-sum games with a conjunction of objectives. These provide
the necessary foundation for the main decidability result presented later in Section 7.

5 The Zero-Sum case is Effective

In this section, we focus on solving concurrent 2.5-player zero-sum CSLCG as a crucial
step towards our main decidability result for E-Core. We assume that the CSLCG G
with arena A is fixed, and R represents a set of states, which may be infinite. While [23]
provides an approach for solving concurrent stochastic games with AS(♢R), AS(□R), NZ(♢R)
and NZ(□R) objectives in the finite-state setting, here we extend their approach to the
infinite-state setting. We note that the infinite-state setting has been previously examined
for turn-based games in [19, 5, 15].

Our approach can be summarized as follows: First, we provide algorithms to symbolically
compute one-step reachability for regular set of states. Then, we prove that the algorithms
from [23] remain valid (in terms of termination and correctness) for this class. More precisely,
we fix a regular set R ⊆ (L ·M∗)∗ and a 2.5-player zero-sum CSLCG G with Agt = {1, 2}. For
i ∈ Agt, the objective Φi is of the form NZ(♢R) or AS(♢R). Furthermore, by instantiating
games for the opponent −i, setting R′ = S\R, and by determinacy of such games [35], we
also solve the game for objectives of the form AS(□R′) or NZ(□R′). To this end, we focus on
the existence of winning strategies (Definition 11) and the computation of winning regions.

▶ Definition 18. For an objective Φ of player i, the winning region of Φ for player i in G is
given by: JΦKi(G) = {s ∈ S | ∃σi ∈ Si, ∀σ⃗′ ∈ S⃗, (σ⃗′

−i, σi), s ⊨ Φ}.

As previously mentioned, moving from a finite to an infinite state setting presents a
challenge in the representation of winning strategies. To address this, in what follows, we
provide a novel encoding of different classes of winning strategies necessary for ensuring a
win.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:11

l0 µ0 = m0
1 . . . m0

k0
l1 µ1 ln µn. . .

location

Channel state

state

Last state (P)

Distribution δ of actions
(D if δ[α] = 1)

History in S+ = (L ·M∗)+, FM if finitely many regular sets.

σ :

Figure 4 Summary of strategy classes.

5.1 Regularity Properties of CSLCG
We begin by revisiting the regularity results of lossy channel systems from [19, 5] to later
design algorithms for computing winning regions. In this context, the predecessor function
and the finite attractor [15] are essential notions that need to be adapted to the concurrent
case.

▶ Definition 19 (Predecessor Function). For a given player i ∈ Agt and a set of states B ⊆ S,
we write Prei(B) the set of states from which player i can enforce reaching B with positive
probability, no matter the actions of the other players:

Prei(B) = {s ∈ S | ∃σi∀σ⃗′P(σ⃗′
−i,σi)

s (⃝B) > 0}

We summarize the properties below, which are all consequences of the lossy nature of the
system.

▶ Proposition 20. The order ⊑ defined for all s = (l · µ), s′ = (l′ · µ′) by s ⊑ s′ if s ⪯ s′

(sub-word) and µ, µ′ are equal or have the same last letter, is a wqo. Further, given X ⊆ S,
1. Prei(X) is upward-closed for ⊑, hence regular;
2. If X is regular, then Prei(X) can be computed;
3. (Finite Attractor [15]) There exists a finite set A ⊆ S, such that ∀σ⃗ ∈ S⃗ Pσ⃗(□♢A) = 1.

Proof sketch.
1. If s ⊑ t, and s ∈ Prei(X), then an action from s leads to X with positive probability.

Since s ⊑ t entails the same last letter in s and t’s channel, Acti(s) = Acti(t) and the
same action can be played by i from t as with positive probability the extra messages in
t and not in s can then be dropped.

2. We refer to the computability section of [7], and argue that the concurrent setting can be
simulated by a turn-based game where the first player i commits to an action α, then
moves to a new state where the rest of the players provide their action, and move to a
stochastic state where messages are actually dropped. Prei can therefore be simulated by
three calls to the predecessor function of [7].

3. We refer to Corollary 5.3 in [19] or Lemma 5.3 in [5]. Intuitively, having more messages
on the channel increases the likelihood of a decrease in message count, hence the set L · ϵ
(any location, empty channel) is shown to a finite attractor. ◀

We provide the following regular encoding of strategies, which allows for a more precise
description of classes of strategies and enables their finite representation:

▶ Definition 21. Let σi ∈ Si be a strategy for player i. σi is positional (P) if it depends
only on the last state (location and channel): ∀h, h′ ∈ S∗, ∀s ∈ S, σi(hs) = σi(h′s).

σi is finite memory (FM) if
The set {σi(h) | h ∈ S+} ⊆ Dist(Acti) is finite;
For every δ ∈ Dist(Acti), the set of histories σ−1(δ) ⊆ (L ·M∗)∗ is regular.

CSL 2024

46:12 Concurrent Stochastic Lossy Channel Games

Figure 4 illustrates how a FM strategy can be represented finitely. It determines which
action to play by running a finite number of automata on the history, reading every location
and channel configuration. In contrast, a strategy that depends only on the last state may
not be representable in the infinite state case, as infinitely many different decisions might
be taken. Therefore, we avoid using the usually synonymous term memoryless and instead
refer to these strategies as positional. A convenient representation is therefore the positional
and finite memory (PFM) strategies, meaning that the action depends only on the last state,
which must belong to one of finitely many regular sets.

5.2 Positive Reachability
In the positive reachability case, player i tries to enforce that some finite prefix reaches the
target set R. This can be achieved by a backward-reachability algorithm instantiated on
well-quasi-ordered sets [6]:

▶ Lemma 22. Given a regular set R ⊆ S∗, the algorithm that computes
⋃

k≥0 Prek
i (R)

converges in a finite number of steps and returns a set R ∪ V , where V is upward-closed and
R ∪ V = JNZ(♢R)Ki. Moreover, PFM winning strategies are sufficient for both players.

▶ Example 23. Consider the example from Figure 1. A winning strategy for player 2/Attacker
to achieve the objective NZ(♢l2 · c) (eventually reaching state l2 · c with positive probability)
consists in playing U({a, b}) from any state in l0 ·M∗, then b from any state in l1 ·M∗ · c2.
With positive probability, the state l1 · cc is reached after 3 steps, regardless of Sender’s
strategy, and then l2 · c is reached.

This algorithm can also be used to compute almost-sure safety of R by applying the
determinacy result: JAS(□R)Ki = JNZ(♢R)K−i. As shown in Lemma 22, the optimal strategy
is PFM, and in the safety case, it can be further restricted without compromising the safety
property. More precisely, we define the most general action restriction for player i that
preserves safety as follows:

▶ Definition 24. For any set R ⊆ S, StayG
i (R) is the mapping that restricts the allowed

actions on R to stay in R:

s ∈ R 7→ {α ∈ Acti(s) | ∀σ⃗,P(σ⃗−i,α)(⃝R) = 1}

5.3 Almost-Sure Reachability
In contrast to the turn-based case in [8], concurrent actions require a careful analysis of the
allowed actions. The intuition is as follows: As the player with reachability objective tries
to avoid “being trapped” in bad states, he may choose not to play some actions based on
the previously defined Stay operator (Definition 24). This limits the available actions and
gives more power to his opponent, which then reduces the winning region. This idea was
proposed in the algorithm for almost-sure reachability in finite state games described in [23].
We follow here this approach by implementing the algorithm symbolically as depicted in
Algorithm 1 which boils down to providing effective procedures for Prei and Stayi, when
the input is a regular set of states. As the algorithm in [23] actually solves almost-sure
repeated reachability, the authors assumed that the target set R is absorbing, meaning that
once a state in R is reached, the game cannot exit R, regardless of the players’ actions. This
assumption is also made here as adjusting the Prei operator is sufficient to guarantee this
property in our setting. Termination of the algorithm can be shown using the wqo property,
similar to that described in [8], resulting in the following lemma:

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:13

Algorithm 1 Almost-Sure Reachability.
Input: An arena A, i ∈ Agt and a regular set R

Output: Dk = JAS(□♢R)Ki

k ← 0; D0 ← S; A0 ← A
repeat

Ck = JAS(□(Dk\R))K−i(Ak)
Yk = JNZ(♢R)Ki(Ak)
Dk+1 = JAS(□(Yk))Ki(Ak)
Ak+1 ← Ak where ActAk+1

i = StayAk
i (Dk+1)

until Dk = Dk+1

▶ Lemma 25. The almost-sure reachability algorithm of [23], instantiated symbolically on
2.5-player CSLCG in Algorithm 1, terminates and returns a downward-closed set.

To prove the correctness of Algorithm 1, we must provide a winning strategy from every
state in the computed set Dk, and a strategy for the opponent from every state in the
complement set Dk. At this point, it is important to note that positional strategies may
not be sufficient, especially for the opponent player. As illustrated by the Hide-or-Run
game presented in [23], non-positional may be needed. More precisely, the authors noticed
that Markov strategies –where decisions depend on the current state and on the clock value
only– are sufficient for winning with positive safety objectives. They further introduced the
sufficient subclass of so-called counting strategies, where a sequence of probability values is
fixed, so that the strategy can be finitely represented. We generalise this notion of counting
strategies to the infinite state case as follows:

▶ Definition 26. For any k, let pk = 2−1/(2k). A strategy σi ∈ Si is counting (C) if
there exist two PFM strategies σv

i , σu
i ∈ Si such that for every k ∈ N, h · s ∈ Sk and any

α ∈ Acti(s),

σi(α | h · s) = pkσu
i (α | h · s) + (1− pk)σv

i (α | h · s)

Note that pk is fixed a sequence of reals between 0 and 1, such that the infinite product∏∞
i=1 pi = p is between 0 and 1. This means that the strategy σu

i always has some positive
probability of being played, but overall cannot be played forever. Since the sequence (pk)k is
fixed, a counting strategy requires infinite memory but can be finitely represented by two
PFM strategies.

▶ Example 27. Consider again the example shown in Figure 1. We provide two examples of
winning strategies in the AS case:

If Φ1 = AS(♢(l1 · {a}3 ∪ l2 ·M∗)) –namely Sender can almost-surely eventually force
a valid transmission of 3 consecutive a’s, assuming that the game continues forever–
Sender has a winning strategy by playing U({a, b}) from all states. For any strategy σ2 of
Attacker, either the game eventually reaches l2, or there is a state s = l · µ ∈ {l0, l1} ·M∗

visited infinitely often. From this state, there is a fixed probability p > 0 to produce
three consecutive a’s and that all b’s are dropped, so this event eventually happens
almost-surely.
If Φ1 = AS(♢L ·M∗{a}M∗) –namely a message a is eventually sent almost-surely– we
argue that Sender cannot achieve her objective. To observe this, one can exhibit a winning
strategy for Attacker, whose objective is then Φ2 = NZ(□L · {b, c}∗). Such a strategy
consists of the counting strategy playing action w with probability pk at round k and

CSL 2024

46:14 Concurrent Stochastic Lossy Channel Games

U({a, b}) otherwise. At any round still in l0, Sender cannot risk playing a since there is a
small probability for Attacker to scramble the communication and then reach l2. The
overall probability to stay in l0 · b∗ is therefore

∏
k pk > 0.

On the other hand, any PFM strategy by Attacker can be defeated, which proves that
counting strategies are required. Indeed by playing b from all states in l0 · b∗, Sender
ensures that she will never lose since either σA eventually plays w with probability 1, and
Sender can then play a and win, or there is a fixed positive probability (FM) that the
game moves to l1 · b∗, which happens almost-surely.

This allows us to conclude on the almost-sure reachability case by adapting the correctness
proof of the almost-sure reachability algorithm in [23] mentioned in Lemma 25. As a matter
of fact, the finite attractor property seen in Proposition 20 allows us to refer back to the
finite state case and derive sufficient strategies for both players. We conclude this subsection
with the following:

▶ Lemma 28. Using Algorithm 1, one can compute:
The winning set W = JAS(♢R)Ki;
A PFM winning strategy for i, σi : h · s ∈ S∗ ·W 7→ U(Stayi(W));
A counting (C) winning strategy for his opponent −i (objective NZ(□R)).

6 Conjunction of Objectives

In this section, we stay in the 2.5-player zero-sum setting, and address the computation of
winning regions for objectives composed as a conjunction of qualitative objectives. Note that
contrary to the previous section, games are in general not determined for such conjunctive
objectives [43], so we focus now on the winning strategies for the player whose objective is a
conjunction of objectives.

As discussed in Section 5, positive reachability and almost-sure safety/reachability can
be achieved using PFM strategies, while positive safety may require the use of counting
strategies. The rest of this section is dedicated to proving the following theorem by combining
PFM and counting strategy classes.

▶ Theorem 29. Let Φ be a conjunction of NZ and AS objectives for safety and reachability
path specifications. Then the winning region JΦKi(G) is computable.

We first notice that conjunction of objectives usually enjoys some convexity properties,
namely randomization between individual optimal strategies is sometimes sufficient to achieve
the conjunctive objective. This is the case when the conjunction Φ does not contain a positive
safety objective. Following this observation, we get:

▶ Lemma 30. If Φ is a conjunctive objective containing only NZ(♢·), AS(□·) and AS(♢·)
objectives of regular sets, then JΦKi(G) is computable, and there exists a winning FM strategy
for player i.

Sketch.
If all reachability objective sets are absorbing –that is to say cannot be left once satisfied–
we prove that a PFM winning strategy exists for player i.
For every objective Ψ = AS(□R) or Ψ = AS(♢R) appearing in Φ, we restrict the set of
available actions to Stayi(JΨKi), as a winning strategy necessarily plays actions from this
set only. States where no actions are available are removed. Finally, we solve the game
on the restricted arena for each NZ(♢·) objective, and take the intersection of winning
regions. A sufficient winning strategy consists in playing all actions uniformly at random.

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:15

In the general case, we build a new game G′ keeping track of the already satisfied
reachability objectives. Each reachability objective can therefore be rewritten to be
absorbing by referring to the extra information bit stored in every state. A PFM winning
strategy in G′ is then translated back to a FM strategy in G, at the expense of a 1-bit
memory per objective. ◀

The treatment of positive safety objectives requires more attention, as winning strategies
may require infinite memory, as seen in Lemma 28. We notice however that any positive
safety objective can be replaced by a simple positive reachability property as it is sufficient
for a winning strategy to wait for all almost-sure reachability objectives to be met, then play
the counting strategy for NZ(□·). It is therefore sufficient and necessary, for at least one
state in JNZ(□·)Ki to be reachable with positive probability. This is summarized by the final
lemma below:

▶ Lemma 31 (From NZ(□) to NZ(♢)). If Φ ≡ Θ ∧ NZ(□R), then JΦKi = JΘ ∧ NZ(♢R′)Ki

where Θ is some conjunctive condition (as defined in Definition 10) and

R′ = JNZ(□R)Ki ∩
⋂

AS(♢R′′)∈Φ

R′′.

Theorem 29 is then obtained by applying Lemma 31 for every NZ(□·) objective, then
applying Lemma 30.

7 Decidability of E-Core and A-Core

In this section, we present our main decidability result. We begin by recalling that E-Core
and A-Core are undecidable when players’ goals are given by almost-sure LTL formulae
(Proposition 17). To obtain decidability, we focus on two types of objectives: almost-sure
reachability and almost-sure safety objectives. Consider a CSLCG G = (A, (Φi)i∈Agt) in
which for each Φi = AS(φi), either φi ≡ ♢Ri or φi ≡ □Ri. Then the formula used in Step 2
of the procedure for solving E-Core in Section 4 is given as:

ΦW =
∧

i∈W

AS(φi) ∧
∧

i/∈W

NZ(¬φi) ∧ Γ.

The formula used in Step 3 is given as ΨC =
∧

i∈C AS(φi).
Observe that the TPCG GAgt,ΦW in Step 2 is, in fact, a 1.5-player game, since player

1 consists of all players in the original game. Thus, solving Step 2 amounts to finding a
scheduler that satisfies ΦW . This problem is decidable if Γ = AS(φ) and φ is of the form∧

i ♢Ri,
∧

i □Ri, or
∧

i □♢Ri [16]. Furthermore, if such a scheduler exists, then there is one
that is deterministic and has finite memory. To solve Step 3, we reduce it to solving, for
each C ⊆ Agt, a 2.5-player zero-sum game in which the goal of player 1 is ΨC . As shown in
Theorem 29, this problem is decidable. Therefore, we obtain the following theorem.

▶ Theorem 32. For a pair (G, Γ) where players’ objectives are almost-sure reachability or
almost-sure safety objectives, and property Γ = AS(φ) with φ of the form

∧
i ♢Ri,

∧
i □Ri,

or
∧

i □♢Ri, the problems of E-Core and A-Core are decidable.

8 Concluding Remarks

This paper presents the first result on rational verification of concurrent stochastic games
on infinite arenas, specifically for lossy channel games. Our focus is on the decidability of
verifying the core of multi-player concurrent stochastic lossy channel games. To this end, we

CSL 2024

46:16 Concurrent Stochastic Lossy Channel Games

provide an approach for solving concurrent 2.5-player zero-sum games with a conjunction of
almost-sure safety and almost-sure reachability objectives, and infinite state arenas. Our
approach extends previous methods, which were limited to either finite state arenas or
turn-based games, to work on concurrent settings and infinite state arenas.

It is worth mentioning that most of the algorithms described in this work have non-
elementary complexity in the worst case, as they address problems that can be reduced to the
reachability problem in lossy channel systems [42]. One might wonder if it is possible to trade
stochasticity for non-determinism in the model to obtain an easier problem. Surprisingly,
although the winning region for non-deterministic reachability (i.e., equivalent to NZ(♢·)) is
computable, the winning region for non-deterministic safety (“does there exists an infinite
path . . .”) is non-computable, due to undecidability results by [36].

Finally, an obvious direction for future work is to consider the NE concept and its
related variants, such as strong NE and coalition-proof NE. However, addressing questions
related to NE in concurrent games with probabilistic qualitative objectives is challenging,
even in the finite state case. There are two main challenges: Firstly, because NE are
strategy profiles where players do not behave as a coalition, limiting their ability to prevent
deviations (see Remark 8), finding the appropriate joint strategies is not straightforward.
Secondly, encoding stability against any deviation in the NE setting produces more complex
conjunctions of objectives, requiring significant extensions of the techniques presented in
Section 6. Reductions from concurrent to turn-based two-players games, have been used in
previous work. For instance, in suspect games [20] one player proposes a NE while the second
attempts to disprove it. Another approach is by sequentializing games in order to compute
punishing strategies/regions to characterize NE [28, 31]. However, these approaches encounter
similar challenges above when stochastic behaviours are introduced. We conjecture that in
order to capture the NE concept in its generality, the reduction to 2.5-player games should
feature concurrent actions to account for randomized actions and even counting strategies in
the NE.

References

1 Alessandro Abate, Julian Gutierrez, Lewis Hammond, Paul Harrenstein, Marta Kwiatkowska,
Muhammad Najib, Giuseppe Perelli, Thomas Steeples, and Michael Wooldridge. Rational
verification: game-theoretic verification of multi-agent systems. Applied Intelligence, 51(9):6569–
6584, 2021.

2 Parosh Aziz Abdulla, C. Aiswarya, and Mohamed Faouzi Atig. Data communicating processes
with unreliable channels. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 166–175. ACM, 2016. doi:10.1145/2933575.
2934535.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Raj Aryan Agarwal, Adwait Godbole, and
Shankara Narayanan Krishna. Probabilistic total store ordering. In Ilya Sergey, editor,
Programming Languages and Systems – 31st European Symposium on Programming, ESOP
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes
in Computer Science, pages 317–345. Springer, 2022. doi:10.1007/978-3-030-99336-8_12.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. A
load-buffer semantics for total store ordering. Logical Methods in Computer Science, 14(1),
2018. doi:10.23638/LMCS-14(1:9)2018.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1007/978-3-030-99336-8_12
https://doi.org/10.23638/LMCS-14(1:9)2018

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:17

5 Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Moshe Rabinovich, and Philippe
Schnoebelen. Verification of probabilistic systems with faulty communication. Inf. Comput.,
202(2):141–165, 2005. doi:10.1016/j.ic.2005.05.008.

6 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidability
theorems for infinite-state systems. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561359.

7 Parosh Aziz Abdulla, Lorenzo Clemente, Richard Mayr, and Sven Sandberg. Stochastic
parity games on lossy channel systems. Log. Methods Comput. Sci., 10(4), 2014. doi:
10.2168/LMCS-10(4:21)2014.

8 Parosh Aziz Abdulla, Noomene Ben Henda, Luca de Alfaro, Richard Mayr, and Sven Sandberg.
Stochastic games with lossy channels. In Roberto M. Amadio, editor, Foundations of Software
Science and Computational Structures, 11th International Conference, FOSSACS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29 – April 6, 2008. Proceedings, volume 4962 of Lecture Notes in
Computer Science, pages 35–49. Springer, 2008. doi:10.1007/978-3-540-78499-9_4.

9 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In
Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS ’93),
Montreal, Canada, June 19-23, 1993, pages 160–170. IEEE Computer Society, 1993. doi:
10.1109/LICS.1993.287591.

10 Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with many identical timed
processes. Theor. Comput. Sci., 290(1):241–264, 2003. doi:10.1016/S0304-3975(01)00330-9.

11 Benjamin Aminof, Marta Kwiatkowska, Bastien Maubert, Aniello Murano, and Sasha Rubin.
Probabilistic strategy logic. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pages 32–38, 2019.

12 Benjamin Aminof, Axel Legay, Aniello Murano, Olivier Serre, and Moshe Y Vardi. Pushdown
module checking with imperfect information. Information and Computation, 223:1–17, 2013.

13 Robert J Aumann. Acceptable points in general cooperative n-person games. Contributions to
the Theory of Games, 4(40):287–324, 1959.

14 Robert J. Aumann. The core of a cooperative game without side payments. Transactions
of the American Mathematical Society, 98(3):539–552, 1961. URL: http://www.jstor.org/
stable/1993348.

15 Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the attractor-property
of infinite-state Markov chains. Inf. Process. Lett., 97(2):58–63, 2006. doi:10.1016/j.ipl.
2005.09.011.

16 Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying nondeterministic
probabilistic channel systems against ω-regular linear-time properties. ACM Trans. Comput.
Log., 9(1):5, 2007. doi:10.1145/1297658.1297663.

17 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
18 B Douglas Bernheim, Bezalel Peleg, and Michael D Whinston. Coalition-proof Nash equilibria

i. concepts. Journal of economic theory, 42(1):1–12, 1987.
19 Nathalie Bertrand and Philippe Schnoebelen. Model checking lossy channels systems is

probably decidable. In Andrew D. Gordon, editor, Foundations of Software Science and
Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of
the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, volume 2620 of Lecture Notes in Computer Science,
pages 120–135. Springer, 2003. doi:10.1007/3-540-36576-1_8.

20 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
equilibria in concurrent deterministic games. Log. Methods Comput. Sci., 11(2), 2015. doi:
10.2168/LMCS-11(2:9)2015.

CSL 2024

https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.2168/LMCS-10(4:21)2014
https://doi.org/10.2168/LMCS-10(4:21)2014
https://doi.org/10.1007/978-3-540-78499-9_4
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1016/S0304-3975(01)00330-9
http://www.jstor.org/stable/1993348
http://www.jstor.org/stable/1993348
https://doi.org/10.1016/j.ipl.2005.09.011
https://doi.org/10.1016/j.ipl.2005.09.011
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.2168/LMCS-11(2:9)2015

46:18 Concurrent Stochastic Lossy Channel Games

21 Laura Bozzelli, Aniello Murano, and Adriano Peron. Module checking of pushdown multi-
agent systems. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, volume 17, pages 162–171, 2020.

22 Taolue Chen, Fu Song, and Zhilin Wu. Global model checking on pushdown multi-agent
systems. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
pages 2459–2465. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/11984, doi:10.1609/AAAI.V30I1.10124.

23 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.
Theor. Comput. Sci., 386(3):188–217, 2007. doi:10.1016/j.tcs.2007.07.008.

24 Javier Esparza, Antonín Kucera, and Stefan Schwoon. Model checking LTL with regu-
lar valuations for pushdown systems. Inf. Comput., 186(2):355–376, 2003. doi:10.1016/
S0890-5401(03)00139-1.

25 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

26 Julian Gutierrez, Lewis Hammond, Anthony W. Lin, Muhammad Najib, and Michael J.
Wooldridge. Rational verification for probabilistic systems. In Meghyn Bienvenu, Gerhard
Lakemeyer, and Esra Erdem, editors, Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2021, Online event, November
3-12, 2021, pages 312–322, 2021. doi:10.24963/kr.2021/30.

27 Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. From model checking to equilib-
rium checking: Reactive modules for rational verification. Artificial Intelligence, 248:123–157,
2017.

28 Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. Expresiveness and complexity
results for strategic reasoning. In Luca Aceto and David de Frutos-Escrig, editors, 26th
International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September
1.4, 2015, volume 42 of LIPIcs, pages 268–282. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.268.

29 Julian Gutierrez, Szymon Kowara, Sarit Kraus, Thomas Steeples, and Michael Wooldridge.
Cooperative concurrent games. Artificial Intelligence, 314:103806, 2023.

30 Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative concurrent games. In
Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors, Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, Montreal, QC, Canada, May 13-17, 2019, pages 1198–1206. International Foundation
for Autonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.
cfm?id=3331822.

31 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. Automated
temporal equilibrium analysis: Verification and synthesis of multi-player games. Artif. Intell.,
287:103353, 2020. doi:10.1016/j.artint.2020.103353.

32 Graham Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc.,
volume 2, pages 326–336, 1952.

33 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 2nd Edition. Addison-Wesley series in computer science. Addison-
Wesley-Longman, 2001.

34 Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis.
Making weak memory models fair. Proc. ACM Program. Lang., 5(OOPSLA):1–27, 2021.
doi:10.1145/3485475.

35 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. URL:
http://www.jstor.org/stable/1971035.

36 Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci.,
297(1-3):337–354, 2003. doi:10.1016/S0304-3975(02)00646-1.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11984
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11984
https://doi.org/10.1609/AAAI.V30I1.10124
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.24963/kr.2021/30
https://doi.org/10.4230/LIPIcs.CONCUR.2015.268
http://dl.acm.org/citation.cfm?id=3331822
http://dl.acm.org/citation.cfm?id=3331822
https://doi.org/10.1016/j.artint.2020.103353
https://doi.org/10.1145/3485475
http://www.jstor.org/stable/1971035
https://doi.org/10.1016/S0304-3975(02)00646-1

D. Stan, M. Najib, A. W. Lin, and P. A. Abdulla 46:19

37 Aniello Murano and Giuseppe Perelli. Pushdown multi-agent system verification. In Qiang
Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1090–1097. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/158.

38 John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1):48–49, 1950.

39 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October – 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

40 Halsey L. Royden and Patrick M. Fitzpatrick. Real Analysis. Prentice Hall, 2010. URL:
https://books.google.fr/books?id=H65bQgAACAAJ.

41 Herbert E Scarf. The core of an n person game. Econometrica: Journal of the Econometric
Society, pages 50–69, 1967.

42 Philippe Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.
Inf. Process. Lett., 83(5):251–261, 2002. doi:10.1016/S0020-0190(01)00337-4.

43 Tobias Winkler and Maximilian Weininger. Stochastic games with disjunctions of multiple
objectives. In Pierre Ganty and Davide Bresolin, editors, Proceedings 12th International
Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2021, Padua,
Italy, 20-22 September 2021, volume 346 of EPTCS, pages 83–100, 2021. doi:10.4204/EPTCS.
346.6.

CSL 2024

http://ijcai.org/Abstract/15/158
https://doi.org/10.1109/SFCS.1977.32
https://books.google.fr/books?id=H65bQgAACAAJ
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.4204/EPTCS.346.6
https://doi.org/10.4204/EPTCS.346.6

Towards Univalent Reference Types
The Impact of Univalence on Denotational Semantics

Jonathan Sterling #

University of Cambridge, UK

Daniel Gratzer #

Aarhus University, Denmark

Lars Birkedal #

Aarhus University, Denmark

Abstract
We develop a denotational semantics for general reference types in an impredicative version of
guarded homotopy type theory, an adaptation of synthetic guarded domain theory to Voevod-
sky’s univalent foundations. We observe for the first time the profound impact of univalence on the
denotational semantics of mutable state. Univalence automatically ensures that all computations are
invariant under symmetries of the heap – a bountiful source of program equivalences. In particular,
even the most simplistic univalent model enjoys many new equations that do not hold when the
same constructions are carried out in the universes of traditional set-level (extensional) type theory.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Categorical semantics; Theory of computation → Type structures; Theory of
computation → Type theory

Keywords and phrases univalent foundations, homotopy type theory, impredicative encodings,
synthetic guarded domain theory, guarded recursion, higher-order store, reference types

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.47

Related Version Full Version: https://arxiv.org/abs/2307.16608

Funding This work was supported in part by a Villum Investigator grant (no. 25804), Center for
Basic Research in Program Verification (CPV), from the VILLUM Foundation.
Jonathan Sterling: Jonathan Sterling was funded in part by the European Union under the Marie
Skłodowska-Curie Actions Postdoctoral Fellowship project TypeSynth: synthetic methods in program
verification, and in part by AFOSR under grant FA9550-23-1-0728, New Spaces for Denotational
Semantics (Tristan Nguyen, program manager). Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union, the European
Commission, nor AFOSR. Neither the European Union nor the granting authority nor AFOSR can
be held responsible for them.

Acknowledgements We are thankful to Carlo Angiuli, Steve Awodey, and Robert Harper for teaching
us the importance of realizability methods in homotopy type theory. We thank Zhixuan Yang for
proof-reading. Finally, we are grateful to the anonymous referees for their comments and suggestions.

1 Introduction

Moggi [32] famously distinguished three semantics-based approaches to proving equivalences
between programs: operational, denotational, and logical. Operational semantics studies
programs indirectly by investigating the properties of a transition function that executes
programs qua code on a highly specific idealized computer; in contrast, denotational semantics
views programs directly as functions on highly specialized kinds of spaces, without making
any detour through transition functions. Moggi’s departure is to advance a logical approach
to program equivalence, in which a programming language is an equational theory equipped
with a category of denotational models for which it is both sound and complete.

© Jonathan Sterling, Daniel Gratzer, and Lars Birkedal;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 47; pp. 47:1–47:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:js2878@cl.cam.ac.uk
https://orcid.org/0000-0002-0585-5564
mailto:gratzer@cs.au.dk
https://orcid.org/0000-0003-1944-0789
mailto:birkedal@cs.au.dk
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.CSL.2024.47
https://arxiv.org/abs/2307.16608
https://doi.org/10.3030/101065303
https://doi.org/10.3030/101065303
http://www.jonmsterling.com/jms-008K.xml
http://www.jonmsterling.com/jms-008K.xml
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Towards Univalent Reference Types

Moggi’s logical approach to program equivalence therefore subsumes traditional denota-
tional semantics: both the general and the particular necessarily exude their own depth and
sophistication, but they are now correctly situated in relation to each other so that workers
in semantics can reap the greatest benefits from the theory–model dialectic:
1. Even if there is a distinguished “standard” model of a given programming language (e.g .

the Scott model of PCF), any non-trivial investigation of the syntax of that language
necessarily involves non-standard models – if only because induction can always be seen
as a model construction. These non-standard models include the generic model, built
from the theory itself, as well as models based on logical relations; thus the need for clear
thinking about many models via logical semantics cannot be bypassed.

2. Conversely, the discovery of a new model of a programming language can inspire and
justify the refinement of its equational theory: for instance, parametric models have been
used to justify equational theories for data abstraction and local store. In the other
direction, the discovery of a “non-model” that nonetheless has desirable properties can
open up new semantic vistas by motivating a relaxed equational theory.

1.1 State and reference types: static and dynamic allocation
One of the oldest programming constructs is state: the ability to read from and write to
the computer’s memory as a side effect. Theories of state delineate themselves along two
axes: (1) the kinds of data that can be stored, and (2) the kinds of allocations allowed. On
the first axis, languages range from being able to store integers and strings (first-order
store) all the way to being able to store elements of arbitrary types, including closures
(higher-order store). On the second axis, we have static allocation on one end, where
the type of a function specifies exactly what kind of state it uses, and dynamic allocation
on the other end, where the types and quantity of memory cells allocated are revealed only
during execution. Under dynamic allocation, one has reference types whose elements are
pointers to memory cells storing elements of a given type.

1.2 Equational theories of dynamic storage: between local and global
The semantics of state are only difficult under dynamic allocation; indeed, computations that
interact with a statically known heap configuration ℓi : σi can be classified by Moggi’s state
monad σ → σ ×− where σ :≡

∏
i σi, and it is reasonable to define the equational theory of

static allocation by means of this interpretation. The equational theory of dynamic storage is
by contrast far from solidified: the introduction of dynamic allocation opens up a spectrum
of abstraction between what may be called local store and global store.

Global store is the least abstract theory of dynamic allocation: in a model of global
store, it is permitted that allocations be globally observable regardless of their impact on
the results of computations. For instance, global store models are allowed to distinguish the
program (ℓ← alloc “hello”; ret 10) from the simpler program ret 10. By contrast, models of
local store validate equations resembling an idealized garbage collector, in which the heap
is only observable through its abstract read/write interface; in a model of local store, we
necessarily have (ℓ← alloc “hello”; ret 10) = ret 10 as well as many other equations.

The abstraction offered by local store is highly desirable. Moreover, Staton [42] has
shown that Plotkin and Power’s algebraic theory of first-order local store [38] is complete
in the extremely strong sense that it derives any consistent equation. Beyond first-order
references, the very definition of the local store theory becomes less clear, and so a landscape

J. Sterling, D. Gratzer, and L. Birkedal 47:3

of intermediate theories has emerged in the search for well-behaved models. For example,
Kammar et al. [27] have constructed a compelling model of local full ground store, going
beyond first-order store by allowing pointers to pointers. On the other hand, Levy [28, 29, 30]
has given a domain theoretic model of the global allocation theory of higher-order store.

1.3 Semantic worlds and guarded models of higher-order store

Denotational models of full dynamic allocation, such as those of Plotkin and Power [38],
Levy [28], and Kammar et al. [27], tend to share an important limitation: in the model, a
semantic program can only allocate a memory cell with a syntactic type. This restriction is
quite unnatural and impractical in the context of higher-order store, where many important
program equivalences actually follow from the presence of exotic semantic types lying outside
the image of the interpretation function (e.g. in relational models à la Girard and Reynolds).

The search for models of general references closed under allocation of cells with semantic
types has been major motivation of current work in guarded domain theory, expressed in
operational semantics by step-indexing [8, 3] and in denotational semantics by means of
various generalizations of metric space [10, 6, 21, 17]. The problem solved by guarded domain
theory is the following famous circularity described in several prior works [3, 9, 17]:
1. A semantic type needs to be some kind of covariant family of predomains indexed in the

possible configurations of the heap (“worlds”); a single predomain won’t do, because the
elements of type IORef σ vary depending on what cells have been allocated.

2. A semantic world should be a finite mapping from memory locations to semantic types.

Guarded domain theory approximates a solution to the domain equation evoked above
by decreasing precision at every recursive occurrence. Although it may be possible to find a
fully precise solution to this domain equation using traditional domain theory, Birkedal et
al. [18, §5] have presented evidence that such a fixed point will not brook the interpretation of
reference types by a continuous function on the domain of all types, ruling out semantics for
recursive types. Thus guarded domain theory or step-indexing would seem to be mandatory
for functional models of general reference types with semantic worlds.1

Models of guarded domain theory can be embedded into topoi whose internal language is
referred to as synthetic guarded domain theory or SGDT ; the most famous of these topoi
is the topos of trees [17] given by presheaves on ω. The idea of using synthetic guarded
domain theory as a setting for the naïve denotational semantics of programming languages
with general recursion was first explored by Paviotti, Møgelberg, and Birkedal [36, 31, 35].

Sterling, Gratzer, and Birkedal [43] have recently extended the program of Paviotti et al. to
the general case of full higher-order store with polymorphism and recursive types: in particular,
op. cit. have shown how to model general reference types in synthetic guarded domain theory
assuming an impredicative universe (as can be found in realizability models [25, 26]). This
model is the starting point of the present paper: by adapting the construction of Sterling et
al. to the setting of univalent foundations, we obtain a new suite of equational reasoning
principles that we refer to as the theory of univalent reference types.

1 A non-functional approach to compositionality for reference types would be the expression of Reynolds’
capability interpretation of references [39] in game semantics by Abramsky, Honda, and McCusker [2].

CSL 2024

47:4 Towards Univalent Reference Types

1.4 Univalent reference types and data abstraction in the heap

The thesis of this paper is that Voevodsky’s univalence principle leads to simpler models of
general reference types that nonetheless validate extraordinarily strong equations between
stateful programs. To examine this claim, we consider the type of object-oriented counters
in a Haskell-like language:

Counter :≡ {incr : IO (); read : IO Int}

The most obvious implementation of the Counter interface simply allocates an integer
and increments it in memory as follows:

posCounter : IO Counter
posCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}

Another implementation might count backwards and then negate the stored value on read
using the functorial action map of IO on neg : Int→ Int:

negCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

By intuition, the posCounter and negCounter implementations of the counter interface
should be “observationally equivalent” in the sense that no context of ground type should be
able to distinguish them: indeed, even though negCounter is writing negative numbers to the
heap instead of positive numbers, the only way a context can observe the allocated cell is
using the read method. The observational equivalence posCounter ≃ negCounter is typically
proved using a relational model, as both Birkedal et al. [18, §6.3] and Sterling et al. [43] did.

Observational equivalence is not the same as equality, neither in syntax nor semantics.
Indeed, typical equational theories of (local or global) dynamic allocation do not derive the
equation ⊢ posCounter ≡ negCounter, as can be seen easily by means of a countermodel: we
have JposCounterK ̸= JnegCounterK in both the relational models of op. cit., although it is true
that JposCounterK RIO Counter JnegCounterK holds. The observational equivalence posCounter ≃
negCounter is deduced in the relational models because the relation on observations is discrete.

What distinguishes our univalent reference types from ordinary reference types is
that the former actually derive equations like ⊢ posCounter ≡ negCounter, as shown in
Theorem 2.1. We substantiate this equational theory by constructing a model (Theorem 3.27)
in univalent foundations [46] in which the equation ⊢ posCounter ≡ negCounter follows
immediately from the univalence principle of the metalanguage. Although it may be possible
to validate this equation using non-standard parametric models (or less scrupulously by an
extensional collapse), our contribution is to show that it also holds in a “standard” model,
provided that this standard model is constructed in a univalent metatheory.

2 A higher-order language with (univalent) reference types

We begin by giving a description of the syntax and the equational theory of a simple language
with references. The language is meant to be as simple as possible, but no simpler. In
particular, it contains several problematic constructs (higher-order store, dynamic allocations,
etc.) that have been historically difficult to model in denotational semantics.

J. Sterling, D. Gratzer, and L. Birkedal 47:5

types τ, σ ::= σ → τ | IO τ | IORef τ | . . .

terms e, e′ ::= x | rec f x in e | ret e | x← e; e′ | alloc e | get e | set e e′ | step | . . .

Γ ⊢ e : σ

Γ ⊢ alloc e : IO (IORef σ)
Γ ⊢ e : IORef σ

Γ ⊢ get e : IO σ

Γ ⊢ e : IORef σ Γ ⊢ e
′ : σ

Γ ⊢ set e e
′ : IO () Γ ⊢ step : IO ()

Γ, f : σ → IO τ, x : σ ⊢ e : IO τ

Γ ⊢ rec f x in e : σ → IO τ

Γ, f : σ → IO τ, x : σ ⊢ e : IO τ Γ ⊢ e
′ : σ

Γ ⊢ (rec f x in e) e
′ ≡ step; [(rec f x in e)/f, e

′
/x]e : IO τ

e : IORef σ, e
′ : σ ⊢ set e e

′; get e ≡ step; set e e
′; ret e

′ : IO σ

e : σ, e
′ : σ ⊢ (x← alloc e; set x e

′; ret x) ≡ alloc e
′ : IO (IORef σ)

e : IORef σ, e
′ : σ, e

′′ : σ ⊢ set e e
′; set e e

′′ ≡ set e e
′′ : IO ()

e : IORef σ, e
′ : IORef τ ⊢ (x← get e; y ← get e

′; ret ⟨x, y⟩) ≡ (y ← get e
′; x← get e; ret ⟨x, y⟩) : IO (σ × τ)

e : IORef σ ⊢ (x← get e; set e x; ret x) ≡ get e : IO σ

e : IORef σ, e
′ : IO τ ⊢ get e; e

′ ≡ step; e
′

Figure 1 Syntax and selected typing and equational rules for a higher-order monadic language
with general reference types. We assume standard notational conventions for monadic programming,
e.g. writing e; e′ for _ ← e; e′. We assume the standard β/η-equational theory of function and
product types, as well as the monadic laws. We also assume that step lies in the center [22] of the
monad IO, i.e. commutes with all monadic operations.

2.1 The equational theory of monadic general reference types
Although there are many different ways to present programming languages with side effects,
for the sake of familiarity we have chosen to focus on a variant of Moggi’s monadic met-
alanguage [32].2 Essentially, this is a simply-typed lambda calculus supplemented with a
strong monad IO and further equipped with a type of references IORef τ along with a suite
of effectful operations for interacting with references. Like in Haskell, all side effects are
confined to the monad; unlike Haskell, general recursion is treated as a side effect.

One non-standard aspect of our language bears special attention, namely the nullary side
effect step : IO (). This effect can be thought of as the “exhaust” left behind in the equational
theory by unfolding any kind of recursively defined construct, including not only the unfolding
of recursive functions but also accesses to the heap. In particular, for a given recursive function
g :≡ rec f x in e, we do not have ⊢ g e′ ≡ [g/f, e′/x]e but rather only ⊢ g e′ ≡ step; [g/f, e′/x]e.
Likewise, our equational theory does not equate ⊢ (ℓ← alloc e; get ℓ) ≡ ret e but rather only
⊢ (ℓ← alloc e; get ℓ) ≡ step; ret e. The presence of step in our equational theory is forced by
the guarded denotational semantics that we will later employ in Section 3 and Theorem 3.27.

2.2 The equational theory of univalent reference types
The equational theory of univalent reference types strengthens Figure 1 by quotienting
under symmetries of the heap, expressed in the two rules depicted in Figure 2.

2 When developing our denotational semantics in Section 3, we will refine the monadic point of view by
passing to an adjoint call-by-push-value resolution of the computational monad [29].

CSL 2024

47:6 Towards Univalent Reference Types

allocation permutation
Γ ⊢ e : σ Γ ⊢ e′ : τ

Γ ⊢ ℓ← alloc e; ℓ′ ← alloc e′; ret ⟨ℓ, ℓ′⟩ ≡ ℓ′ ← alloc e′; ℓ← alloc e; ret ⟨ℓ, ℓ′⟩ : IO (IORef σ × IORef τ)

representation independence
Γ ⊢ e : σ Γ ⊢ f+ : σ → τ Γ ⊢ f− : τ → σ

Γ, x : τ ⊢ f+(f−x) ≡ x : τ Γ, x : σ ⊢ f−(f+x) ≡ x : σ

Γ ⊢ ℓ← alloc e; ret ⟨get ℓ, set ℓ⟩ ≡ ℓ← alloc (f+e); ret ⟨map f− (get ℓ), set ℓ ◦ f+⟩ : IO (Cell σ)

Figure 2 The equational theory of univalent reference types, extending that of Figure 1; we
define Cell σ :≡ IO σ × (σ → IO ()) to be the “abstract interface” of a reference cell. Here we write
map f : IO A→ IO B for the functorial action of IO on a function f : A→ B.

1. The allocation permutation rule states that the order in which references are allocated
does not matter; this is a kind of nominal symmetry built into the theory of univalent
reference types, expressing that the layout of the heap is viewed up to isomorphism.

2. The representation independence rule states that the observable interface of a
reference cell is invariant under isomorphisms of that cell’s contents.

The allocation permutation rule is common to theories of local dynamic allocation,
but less common in theories of global dynamic allocation. The representation indepen-
dence rule is, however, a new feature of univalent reference types that goes beyond existing
local theories of dynamic allocation: as we have discussed in Section 1.4, such a law typically
holds up to observational equivalence but almost never “on the nose” at higher type. It is
therefore worth going into more detail.

The idea of representation independence is that allocating a cell of type σ and then
only interacting with it by means of its (get, set) methods should be the same as allocating a
cell of a different type τ and interacting with it by conjugating its (get, set) interface by an
isomorphism e : σ ∼= τ . In particular, it is allowed that σ ≡ τ and e : σ ∼= σ be nonetheless a
non-trivial automorphism: and so we may derive from representation independence our
case study involving imperative counters that count forward and backwards.

▶ Theorem 2.1. Let Counter, posCounter, and negCounter be as in Section 1.4:

Counter :≡ {incr : IO (); read : IO Int}
posCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}
negCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

We may derive ⊢ posCounter ≡ negCounter : Counter.

Proof. The function neg : Int→ Int sending an integer to its negation is a self-dual automor-
phism; we therefore calculate from left to right.

ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}
by representation independence
≡ ℓ← alloc (neg 0); ret {incr ↪→ i← map neg (get ℓ); set ℓ (neg (i + 1)), read ↪→ map neg (get ℓ)}
by simplification and neg 0 ≡ 0
≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (neg (neg i+ 1)), read ↪→ map neg (get ℓ)}
by neg (neg i+ 1) ≡ neg (neg i) + neg 1 ≡ i− 1
≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

Thus we have posCounter ≡ negCounter. ◀

J. Sterling, D. Gratzer, and L. Birkedal 47:7

3 Denotational semantics in univalent foundations

We now turn to the construction of a model of univalent reference types. At the coarsest
level, this model follows the standard template for a model with mutable state: types are
interpreted by covariant presheaves on a certain category of worlds with each world describing
the collection of references available and the (semantic) type associated to each. The type of
references IORef τ assigns each world to the collection of locations of appropriate type while
the monad IO is then interpreted by a certain store-passing monad.

This simple picture is quickly complicated by the need to model general store: semantic
types must reference worlds which in turn reference semantic types. This naturally leads
us to synthetic guarded domain theory (SGDT) in order to cope with the circularity. This
alone, however, is insufficient. While SGDT allows us to define the category of worlds, the
resulting solution is a large type – at least the size of the universe of semantic types. This
becomes a problem when it comes time to model the state monad, which must quantify
over all possible worlds for its input and return a new world for its output. To model these
large products and sums of worlds, we will base our model on an impredicative universe:
impredicativity implies that the category of covariant presheaves on our large category of
worlds is (locally) cartesian closed and supports all the structure of our language.

We present some of the prerequisites for our model in Section 3.1. In Section 3.2 we
construct the model of univalent reference types.

3.1 Univalent impredicative synthetic guarded domain theory
We work informally in the language of homotopy type theory [40, 46]; in this section, we
briefly describe some of our preferred conventions. When we speak of “existence”, we shall
always mean mere existence. Categories are always assumed to be univalent 1-categories;
given a category X, we will write |X| for its underlying 1-type of objects. Rather than fixing
a global hierarchy of universes, we assume universes locally where needed. In this paper, all
universes are assumed to be univalent; when we wish to assume that a universe is closed
under the connectives of Martin-Löf type theory (dependent products, dependent sums,
finite coproducts, W-types, etc.) we will refer to it as a Martin-Löf universe. We will not
belabor the difference between codes and types.

3.1.1 Impredicative subuniverses in univalent foundations
Recall that a type A is called U-small if and only if there exists a (necessarily unique)
code Â : U together with an equivalence [Â] ≃ A, and a family is U-small when each of its
fibers are. A reflection of A in a universe U is, by contrast, defined to be a (necessarily
unique) function η : A→ AU with AU ∈ U such for any type C ∈ U , the precomposition map
Cη : CAU → CA is an equivalence. When a reflection of A in U exists (necessarily uniquely),
we shall say that A is reflected in U .

A subuniverse of a universe U is defined to be a dependent type A : U ⊢ PA type
such that each PA is a proposition. We may write UP for the universe

∑
A:U PA obtained

by restricting U to the elements satisfying P . We will frequently abuse notation implicitly
identifying the predicate coding a subuniverse with its comprehension as an actual type. A
subuniverse S ⊆ U is said to be reflective if every A : U is reflected in S. A subuniverse of
U is said to be “small” when its comprehension as a type is U -small.

Let U be a universe closed under dependent products. A subuniverse S ⊆ U is said to
be a dependent exponential ideal if for every A : U and B : A → S, the dependent
product

∏
x:A Bx lies in S. An impredicative subuniverse of U is defined to be a small,

CSL 2024

47:8 Towards Univalent Reference Types

dependent exponential ideal S ⊆ U . It is proved by Rijke, Shulman, and Spitters [41] that
any reflective subuniverse of U is a dependent exponential ideal of U . We will refer to a
subuniverse S such that SetS is impredicative in U as set-impredicative; we will refer to
S ⊆ U as set-reflective when SetS is reflective in U . Under suitable assumptions, these two
conditions are in fact equivalent:

▶ Theorem 3.1. A small Σ-closed subuniverse S of a Martin-Löf universe U is set-
impredicative and closed under identity types if and only if it is set-reflective.

Proof. This can be shown using the methods of Awodey, Frey, and Speight [13]. ◀

By virtue of Theorem 3.1, we see that small reflective subuniverses are just another
presentation of the impredicative universes that appear in the Calculus of Constructions.

3.1.2 The Hofmann–Streicher universe
Let S be a small subuniverse of a Martin-Löf universe U , and let X be a U-small category;
we can define the Hofmann–Streicher lifting [24, 12] of SetS as co-presheaf of 1-types on
X. Formally, this means constructing a functor from the 1-category X to the (2,1)-category
1TypeU of 1-types in U ; thus we depend technically on the account of bicategories in univalent
foundations due to Ahrens et al. [4].3

▶ Remark 3.2. The purpose of introducing the Hofmann–Streicher lifting in such detail is
give some structure to the otherwise bewildering Construction 3.4, which plays a crucial
technical role in the definition of univalent reference types.

▶ Construction 3.3 (The Hofmann–Streicher lifting). Let S be a small subuniverse of a
Martin-Löf universe U , and let X be a U-small category. We may define a 2-functor
⌊SetS⌋ : X→ 1TypeU called the Hofmann–Streicher lifting of SetS as follows:

⌊SetS⌋U :≡ |Fun(U/X, SetS)|
⌊SetS⌋(f : U → V) (E : U/X→ SetS) :≡ E ◦ (f/X)

When X is viewed as a 2-category, the 2-cells are given by identifications. Thus the
2-functoriality of ⌊SetS⌋ and all related coherences are defined by path induction.

▶ Construction 3.4 (Restricting co-presheaves). Let S be a small subuniverse of a Martin-Löf
universe U , and let X be a U-small category. Every co-presheaf E : X→ SetS determines a
global element 1→ ⌊SetS⌋ of the Hofmann–Streicher universe; in particular, we may define
⌈E⌉U : ⌊SetS⌋U natural in U ∈ X by setting ⌈E⌉U (f : U → V) :≡ EV .

3.1.3 (Higher) synthetic guarded domain theory
We adapt Birkedal et al.’s formulation [19] of dependently typed guarded recursion to the
setting of homotopy type theory. In particular, we introduce a new syntactic sort of delayed
substitutions ⊢ ξ ⇝ Ξ simultaneously with a new type former ⊢ ▶[ξ].A type called the later

3 We differ from the conventions of Ahrens et al. [4]: we will say “2-category” to mean univalent bicategory
in the sense of op. cit., as we are not at all concerned with the strict notions considered there. Therefore,
a “(2,1)-category” in our sense refers to a 2-category whose 2-cells are given by identifications.

J. Sterling, D. Gratzer, and L. Birkedal 47:9

ξ ⇝ Ξ A type
▶[ξ].A type

ξ ⇝ Ξ a : A
next[ξ].a : ▶[ξ].A ·⇝ ·

ξ ⇝ Ξ a : ▶[ξ].A
(ξ, x← a)⇝ Ξ, x : A

f : ▶A→ A

fix▶ f : A
f : ▶A→ A

fix▶ f ≡ f (next (fix▶ f))

Figure 3 Summary of delayed substitutions and the later modality; there are a number of
equational rules governing the delayed substitutions, e.g. ▶[ξ, x← a].A ≡ ▶[ξ].A for any A in which
x does not appear; we also assume (▶[ξ].a = b) ≃ (next[ξ].a = next[ξ].b), making ▶ left exact. We
will write ▶A and next a for ▶[·].A and next[·].a respectively. For the remaining rules, we refer the
reader to the description of Bizjak and Møgelberg [20].

modality,4 whose introduction form is written next[ξ].a; we summarize the rules for the
later modality in Figure 3. The raison d’être for the later modality is to form guarded
fixed points: in particular, if we have f : ▶A→ A, there is a unique element fix▶f : A such
that f (next (fix▶f)) = fix▶f . In particular, this gives unique fixed points for any function
f : A→ A factoring on the left through next : A→ ▶A.

▶ Definition 3.5. A guarded (n-)domain is an (n-)type A equipped with the structure of
a ▶-algebra, i.e. a function ϑA : ▶A→ A.

We will refer to a (sub)universe closed under later modalities as a guarded (sub)universe.
For any universe S, we may consider the category 0DomS of guarded 0-domains in S, i.e.
sets A : SetS equipped with a mapping ϑA : ▶A→ A.

▶ Lemma 3.6. If S is a guarded universe closed under binary coproducts, then the forgetful
functor R : 0DomS → SetS has a left adjoint L : SetS → 0DomS .

Proof. We define LA by solving the domain equation LA ∼= A+▶LA via the following guarded
fixed point construction in SetS , using both guarded structure and binary coproducts:

LA :≡ fix▶(λX : ▶SetS .A+▶[Y ← X].Y) ◀

▶ Notation 3.7. We will write now : A→ RLA for the unit of the adjunction L ⊣ R.

▶ Lemma 3.8 (Later modality in presheaves). Given a guarded set-reflective small subuniverse
S ⊆ U and a U-small category X, the later modality from S lifts (with all its operations) into
Fun(X, SetS) pointwise, i.e. for any A ∈ Fun(X, SetS) we may define (▶A)U :≡ ▶(AU).

3.2 Models of univalent general reference types
To construct our model of higher-order store (Section 3.2.3), we must construct a suitable
category of recursively defined semantic worlds (Section 3.2.1) whose co-presheaves admit
reference types (Construction 3.13) and a strong monad for higher-order store (Section 3.2.2).

4 The “later modality” is not a modality in the sense of Rijke, Shulman, and Spitters [41], but rather in
the older and more general sense of modality in type theory or logic.

CSL 2024

47:10 Towards Univalent Reference Types

3.2.1 Worlds as univalent heap configurations

Let Inj be the category of finite sets and embeddings; by univalence, any two equipollent
finite sets are identified. We now define the basic elements of worlds qua heap configurations.

▶ Definition 3.9 (The displayed category of families). For any 1-type X, we define the
displayed category [5] IFamX of Inj-families in X over Inj as follows:
1. over a finite set I : Inj, a displayed object of IFamX is a function ∂I : I → X;
2. over a function f : I → J between finite sets, a displayed morphism from ∂I to ∂J is a

path ∂f : ∂J ◦ f = ∂I in I → X.

▶ Definition 3.10 (The category of bags). For any 1-type X, the category of Inj-bags in
X is defined to be the total category IBagX :≡

∫
Inj IFamX of the displayed category of finite

families in X. We will write U ≡ (|U |, ∂U) for an object of IBagX .

▶ Definition 3.11. For a universe S, we define the category CS of worlds simultaneously
with its category of SetS-valued co-presheaves on CS to be the unique solution to the guarded
recursive domain equation CS = IBag▶|Fun(CS ,SetS)|.

Construction. The system of equations above is solved internally [16] by Löb induction in
any guarded Martin-Löf universe S+ containing S.

E :≡ fix▶(λR : ▶S+.|Fun(IBagϑS+ R, SetS)|) CS :≡ IBag▶E

Of course, E is the 1-type of objects of the functor category Fun(CS , SetS). ◀

We shall require the following technical observation:

▶ Lemma 3.12 (Structure identity principle for presheaves). Let S be a universe and let X

be a category; for any A,B : Fun(X, SetS), let A ∼= B be the type of natural isomorphisms
between presheaves. Then the canonical map A = B → A ∼= B is an equivalence.

We now come to the construction of the univalent reference type constructor.

▶ Construction 3.13 (Univalent references). Let S be a small, guarded, Σ-closed set-reflective
subuniverse of a guarded Martin-Löf universe U containing Inj. We define the univalent
reference type constructor as a mapping IORef : |Fun(CS , SetS)| → |Fun(CS , SetS)|:

IORef : |Fun(CS , SetS)| → |Fun(CS , SetS)|
IORef AU :≡

∑
ℓ:|U |▶[X ← ∂U ℓ]. ⌈X⌉U = ⌈A⌉U

Above, we have used the ⌈−⌉ operator from Construction 3.4. We define the functorial
action of IORef A on f : U → V by path induction on the identification ∂f : ∂V ◦ |f | = ∂U :

IORef A (|f |, refl) (ℓ, ϕ) :≡ (|f |ℓ, next[X ← ∂V (|f |ℓ), ψ ← ϕ]. ap⌊SetS⌋fψ)

Proof. That the identification ⌈X⌉U = ⌈A⌉U is S-small follows from Lemma 3.12, using the
fact that U/CS is U -small because S is assumed U -small. ◀

J. Sterling, D. Gratzer, and L. Birkedal 47:11

3.2.2 A strong monad for general store
Rather than constructing the monad for general store all at once by hand, we take a more
bite-sized approach by decomposing it into a simpler call-by-push-value adjunction following
Levy [29]. In fact, we go quite a bit further than this and decompose the call-by-push-
value adjunction itself into three separate and simpler adjunctions; the advantage of our
decomposition is that it reveals the simple and elegant source of the admittedly complex
explicit constructions of op. cit. All these adjunctions will be suitably enriched so as to
give rise to a strong monad.5 To get started, we will first require the concept of a heaplet,
which is the valuation of a heap configuration at a particular world, assigning each specified
location to an element of the prescribed semantic type at that world.

▶ Construction 3.14 (The heaplet distributor). Let S be guarded universe closed under finite
products. We may define a distributor HS : Cop

S × CS → SetS like so:

HS : Cop
S × CS → SetS

HS (U, V) :≡
∏

ℓ:|U | ϑ|Fun(CS ,SetS)| (∂U ℓ)V

Then we will write H̃S for the dependent sum
∑

U :|CS |HS U U classifying heaps. We will
write πH : H̃S → |CS | for the first projection of a packed heap; given H : H̃S and ℓ : |πHH|,
we will write H @ ℓ : ▶[X ← ∂πHHℓ]X(πHH) for the element stored by H at location ℓ.

Presheaf categories and unenriched adjunctions

Let S be a guarded universe closed under finite products. As H̃S is a 1-type, we can equally
well view it as a category whose hom sets are given by identity types, i.e. a groupoid. From
this point of view, the projection πH : H̃S → |CS | extends to functors πH : H̃S → CS and
π̄H : H̃S ∼= H̃S

op
→ C

op
S . We will use these projections to construct a network of adjunctions

between the following presheaf categories:

PS :≡ Fun(CS , SetS)
P̄S :≡ Fun(Cop

S , SetS)
NS :≡ Fun(Cop

S , 0DomS)
QS :≡ Fun(H̃S , SetS)

▶ Exegesis 3.15. PS is the category on which our higher-order state monad is defined; this
monad arises from a call-by-push-value adjunction [29] in which PS is the category of “value
types and pure functions” and NS is the category of “computation types and stacks”. A
computation type differs from a value type in two ways, as it is both contravariantly indexed
in worlds and valued in 0-domains rather than sets. We will treat these differences modularly
by factoring the adjunction F ⊣ U : NS → PS through further adjunctions. Our first adjoint
resolution, to deal strictly with variance, is described in Lemma 3.16; later on in Lemma 3.19,
we will lift the adjunction between sets and 0-domains to the world of presheaves.

▶ Lemma 3.16. Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf
universe U containing Inj. Then the unenriched base change functors ∆πH

: PS → QS and
∆π̄H

: P̄S → QS has left and right adjoints ∃π̄H
⊣ ∆π̄H

and ∆πH
⊣ ∀πH

respectively.

Proof. As H̃S is both discrete and U-small, the Kan extensions exist because SetS has all
U -small coproducts and products as a reflective subuniverse of U . ◀

5 The purpose of strength, as ever, to transform the global Kleisli extension operation of the monad into
a binding-operation that applies in arbitrary contexts.

CSL 2024

47:12 Towards Univalent Reference Types

The unenriched adjunctions of Lemma 3.16 can be computed on objects as follows, where
� : U → SetS is the assumed reflection:

∃π̄H
AU = �

∑
H:H̃S

∑
f :hom

C
op
S

(πHH,U) AH

∀πH
AU =

∏
H:H̃S

∏
f :homCS (U,πHH) AH

We draw attention to the fact that codomain of ∃π̄H
is P̄S while the codomain of ∀π̄H

is
PS , hence the appearance of homC

op
S

in the former and homCS in the latter.

Enrichments and enriched adjunctions

Let S be a guarded universe closed under finite products. We now impose a common
enrichment on PS , P̄S ,NS ,QS so as to lift Lemma 3.16 to the enriched level, making all these
categories locally indexed in PS in the sense of [29]. Given a co-presheaf Γ ∈ PS , we will
write πΓ : Γ̃→ C

op
S for the discrete cartesian fibration corresponding to Γ. With this in hand,

we impose the following additional notations:

PΓ
S :≡ Fun(Γ̃op, SetS)

P̄Γ
S :≡ Fun(Γ̃, SetS)

NΓ
S :≡ Fun(Γ̃, 0DomS)

QΓ
S :≡ Fun(Γ̃op ×CS H̃S , SetS)

Above, we note that PΓ
S is equivalent to the slice PS/Γ; in the definition of QΓ

S , the

expression Γ̃op ×CS H̃S refers to the pullback of the span {Γ̃op πop
Γ−−→ CS

πH←−− H̃S}. We have
the following base change functors for any co-presheaf Γ ∈ PS :

∆Γ : PS → PΓ
S

∆ΓA (U, γ) :≡ AU

∆Γ : P̄S → P̄Γ
S

∆ΓX (U, γ) :≡ XU

∆Γ : NS → NΓ
S

∆Γ X (U,Γ) :≡ XU

∆Γ : QS → QΓ
S

∆Γ A (U,Γ, H) :≡ A(U,H)

▶ Construction 3.17 (Enrichments). We extend PS , P̄S , NS , and QS to P̂S -enriched categories
PS , P̄S , NS , and QS respectively, regarding P̂S with its cartesian monoidal structure:

homPS (A,B)Γ :≡ homPΓ
S

(∆ΓA,∆ΓB)
homP̄S

(X,Y)Γ :≡ homP̄Γ
S

(∆ΓX,∆ΓY)
homNS (X,Y)Γ :≡ homNΓ

S
(∆ΓX,∆ΓY)

homQS (A,B)Γ :≡ homQΓ
S

(∆ΓA,∆ΓB)

These enrichments agree with those given by Levy [29] in terms of dinatural transforma-
tions as one can see using the formula for a natural transformation as an end. The purpose
of imposing these enrichments was to be able to state Lemmas 3.18 and 3.19 below.

▶ Lemma 3.18. Under the assumptions of Lemma 3.16, the unenriched adjunctions ∆πH
⊣

∀πH
and ∃π̄H

⊣ ∆π̄H
extend to P̂S-enriched adjunctions ∆πH

⊣ ∀πH
and ∃π̄H

⊣ ∆π̄H
.

▶ Lemma 3.19. Let S be a guarded universe closed under binary coproducts. Then the
adjunction L ⊣ R : 0DomS → SetS between sets and guarded 0-domains (Lemma 3.6) can be
lifted pointwise to an enriched adjunction L ⊣ R : NS → P̄S .

J. Sterling, D. Gratzer, and L. Birkedal 47:13

P̄S QS PSNS

∆π̄H
∀πH

∆πH
∃π̄H

R

L
⊥ ⊥⊥

U

F

Figure 4 A diagram of P̂S -enriched adjunctions, together comprising a call-by-push-value adjunc-
tion F ⊣ U : NS → PS resolving an enriched (and thus strong) monad IO = U ◦ F on PS .

The call-by-push-value adjunction and resulting strong monad

Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf universe U
containing Inj. We can compose the enriched adjunctions obtained in Lemma 3.18 to obtain a
single enriched adjunction F ⊣ U : NS → PS , setting F :≡ L◦∃π̄H

◦∆πH
and U :≡ ∀πH

◦∆π̄H
◦R

as depicted in Figure 4. We will write ret for the unit of this adjunction. Our adjunction is
an adjoint decomposition of Levy’s possible worlds model of general storage [29], with Levy’s
syntactic Kripke worlds replaced by recursively defined univalent semantic worlds, as
can be seen from Computation 3.20 below.

▶ Computation 3.20 (Description of adjoints and monad). For the sake of concreteness, we
compute the action of the left and right adjoints on objects as follows:

FAU = L�
∑

H:H̃S

∑
f :homCS (U,πHH) A(πHH)

UX U =
∏

H:H̃S

∏
f :homCS (U,πHH) R(X(πHH))

Composing the above, we describe the action of the monad IO = U ◦ F on objects:

IOAU =
∏

H:H̃S

∏
f :homCS (U,πHH) RL�

∑
H′:H̃S

∑
f :homCS (πHH,πHH′) A(πHH ′)

▶ Lemma 3.21. Under the assumptions of Lemma 3.8, each UX is a guarded domain.

3.2.3 The model of univalent reference types
We have now defined all the basic elements of our model.

3.2.3.1 General recursion and stepping

Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf universe
U containing Inj. Abstract steps in our model are encoded in terms of a global element
step : IO 1, defined using the guarded domain structure of IO 1 as step :≡ ϑIO 1(next (ret ∗)).

▶ Lemma 3.22. For any u : IOA, we have step;u = ϑIO A(nextu).

Proof. By unfolding the definition of the ▶-algebra structure pointwise in the model. ◀

CSL 2024

47:14 Towards Univalent Reference Types

get : IORef A→ IOA

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ψ∗x)

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

let Ha/ℓ :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)] in

now (η�(Ha/ℓ, 1πHH , ∗))

alloc : A→ IO (IORef A)
allocU aH (f ≡ (|f |, refl)) :≡

let Ha :≡
{

inl ℓ ↪→ next[X ← ∂πHHℓ, x← H @ ℓ]. X inlx
inr ∗ ↪→ next (A inr a)

in

now (η�(Ha, inl, (inr ∗, next refl)))

Figure 5 Summary of the store operations in PS when S is a small, Σ-closed, set-reflective,
guarded subuniverse of a guarded Martin-Löf universe U containing Inj.

Using fix▶, we can define a monadic fixed point combinator satisfying the equation
rech a = step;h (rech) a.

rec : ((A→ IOB)→ A→ IOB)→ A→ IOB

rech :≡ fix▶ (λf. λx. ϑIO B(next[g ← f].h g x))

▶ Lemma 3.23. We have rech a = step;h (rech) a.

Proof. We compute as follows:

rech a

by unfolding definitions
≡ fix▶ (λf. λx. ϑIO B(next[g ← f].h g x)) a
by fix▶ computation rule
≡ ϑIO B(next[g ← next (rech)].h g a)
by rules of delayed substitutions
≡ ϑIO B(next (h (rech) a))
by Lemma 3.22
= step;h (rech) a

We are done. ◀

3.2.3.2 Store operations: getting, setting, and allocation

Let S be a small, Σ-closed, set-reflective, guarded subuniverse of a guarded Martin-Löf
universe U containing Inj. In this section, we explicitly construct the store operations in PS ,
which we summarize in Figure 5.

J. Sterling, D. Gratzer, and L. Birkedal 47:15

▶ Construction 3.24 (Detailed construction of the getter). For any A ∈ PS , we can interpret
the getter as a natural transformation get : IORef A→ IOA in PS . Because the definition is
a little subtle, we will do it step-by-step.

get : IORef A→ IOA

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H f :≡ ? : FA (πHH)

We proceed by based path induction on the singleton (∂U , ∂f : ∂πHH ◦ |f | = ∂U), setting
U :≡ (|U |, ∂πHH ◦ |f |) and f :≡ (|f |, refl):

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)V (f ≡ (|f |, refl)) :≡ ? : FA (πHH)

Next, we use the guarded domain structure of the goal:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH) ? : ▶FA (πHH)

Using the introduction rule for the later modality, we may unwrap the delayed identification
ϕ to assume ψ : ⌈X⌉U = ⌈A⌉U , as well as the delayed element H@|f | ℓ to assume x : X(πHH):

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ]. ? : FA (πHH)

Applying the unit of the reflection � : U → SetS and splitting the resulting goal, we have
three holes:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].

η�(?0 : H̃S , ?1 : homCS (πHH,πH?0) , ?2 : A(πH?0))

A read-operation does not change the heap; therefore, we fill in the first hole with the
existing heap H and the second hole with the identity map.

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ? : A(πHH))

Recall that we have an identification ψ : ⌈X⌉U = ⌈A⌉U in the type ⌊SetS⌋U of co-
presheaves on U/CS ; transporting by this identification in the family Z : ⌊SetS⌋U ⊢
Z (πHH) f : SetS , we have a mapping from ⌈X⌉U (πHH) f ≡ X(πHH) to ⌈A⌉U (πHH) f ≡
A(πHH), which we use to fill the final hole:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ψ∗x)

This completes the definition of the getter.

▶ Construction 3.25 (Detailed construction of the setter). For each A ∈ PS , we define the
setter as a natural transformation IORef A×A→ IO 1 in PS .

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡ ? : F1 (πHH)

CSL 2024

47:16 Towards Univalent Reference Types

We apply the unit now of the lifting monad, followed by the unit of the reflection
� : U → SetS , and then split the goal:

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

now (η�(?0 : H̃S , ?1 : homCS (πHH,πH?0) , ∗))

We want to replace the contents of H at the location |f | ℓ with the reindexed element
next(Af a) : ▶A(πHH); for this to make sense, we need to transport along the (delayed)
identification ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U . We define the updated heap as follows, noting
that ∂U ℓ ≡ ∂πHH |f | ℓ:

?0 :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)]

The updated heap can be so-defined because its set of locations is finite, and thus has
decidable equality. Because the updated heap has the same underlying configuration, we can
fill our remaining hole ?1 :≡ 1πHH , completing the definition of the setter as follows:

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

let Ha/ℓ :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)] in

now (η�(Ha/ℓ, 1πHH , ∗))

▶ Construction 3.26 (The allocator). For each A ∈ PS , we define the allocator as a natural
transformation A→ IO (IORef A) in PS .

alloc : A→ IO (IORef A)
allocU aH (f ≡ (|f |, refl)) :≡

let Ha :≡
{

inl ℓ ↪→ next[X ← ∂πHHℓ, x← H @ ℓ]. X inlx
inr ∗ ↪→ next (A inr a)

in

now (η�(Ha, inl, (inr ∗, next refl)))

Above, we have defined a new heap Ha whose underlying finite set of locations is the
coproduct |πHH|+ 1, filling the new location with a and return the pointer to this location.

3.2.3.3 The main theorem

We now come to the main result of this paper, which obtains a model of univalent reference
types from a suitably structured small set-reflective subuniverse.

▶ Theorem 3.27. Let S be a small, Σ-closed, set-reflective, guarded subuniverse of a guarded
Martin-Löf universe U containing Inj such that S is additionally closed under the type of
natural numbers. Then there is a model of the monadic language from Section 2 satisfying
the equational theory of univalent reference types (Figures 1 and 2), in which:
1. contexts, types, and terms are interpreted in the category PS = Fun(CS , SetS);
2. the reference type connective is interpreted as in Construction 3.13;
3. the computational monad is given by IO = U ◦ F as defined in Figure 4;
4. general recursion and the store operations are interpreted as in Sections 3.2.3.1 and 3.2.3.2.

J. Sterling, D. Gratzer, and L. Birkedal 47:17

Proof. We note that PS = Fun(CS , SetS) is locally cartesian closed in spite of the fact
that CS is as large as SetS is: local cartesian closure nonetheless follows because SetS is
reflective in U and CS is U-small. Everything except the two laws of univalent reference
types (Figure 2) follows in the same way as in the non-univalent model given by Sterling et
al. [43]. The allocation permutation law holds under the interpretations given because
the two heaps resulting from allocations in different orders are identified under univalence.
The representation independence law holds for similar reasons, considering the effect of
transporting along an identification between equivalent heaps on the getter and the setter. ◀

4 Models of guarded HoTT with impredicative universes

Our main result (Theorem 3.27) is contingent on there existing a model of guarded homotopy
type theory in which there can be found a suitably small, Σ-closed, set-reflective, guarded
subuniverse of a guarded Martin-Löf universe containing Inj. It is by no means obvious that
such a model exists, but in this section we will provide some preliminary evidence.

1. Sterling, Gratzer, and Birkedal [43] have constructed models of impredicative guarded
dependent type theory (iGDTT), a non-univalent version of our metalanguage.

2. Awodey [11] has constructed a model of impredicative homotopy type theory in cubi-
cal assemblies, i.e. internal cubical sets in the category of assemblies. Uemura [45]
subsequently described a variant of this model in the style of Orton and Pitts [34].

3. Birkedal et al. [15, 14] have constructed an Orton–Pitts model of guarded cubical type
theory in presheaves on the product of a cube category with the ordinal ω. This model
was revisited in the context of multi-modal type theory by Aagaard et al. [1].

The methods of the papers above are essentially modular, and are furthermore not
particularly sensitive to the choice of cube category or ordinal, so long as these can be defined
in assemblies without resorting to quotients.

▶ Conjecture 4.1 (Soundness). There is a non-trivial model of guarded homotopy type theory
in guarded cubical assemblies in which there is a small, set-reflective, guarded Martin-Löf
subuniverse S ⊆ U of a guarded Martin-Löf universe U containing Inj.

5 Conclusions and future work

We have demonstrated the impact of a univalent metalanguage on the denotational semantics
of higher-order store, extending the guarded global allocation model of Sterling et al. [43] with
new program equivalences: invariance under permutation and representation independence
in the heap. We believe that we have only scratched the surface of the potential for univalent
denotational semantics in general, and univalent reference types in particular; we describe a
few potential areas for further development beyond substantiating Conjecture 4.1.

1. Sterling et al. [43] have given non-univalent denotational semantics of polymorphic λ-
calculus with recursive types and general reference types. It is within reach to adapt this
model to the univalent setting, obtaining even more program equivalences than before.
In particular, many data abstraction theorems for existential packages that typically hold
only up to observational equivalence are expected to hold on the nose.

CSL 2024

47:18 Towards Univalent Reference Types

2. Our case study, an equation between two object-oriented counters, involves invariance
of the heap under isomorphisms between data representations – whereas parametricity
is often employed in cases of correspondences that are not isomorphisms. Angiuli et
al. [7] have shown that many such applications of parametricity are nonetheless subsumed
by univalence in the presence of quotient types, and thus many more observational
equivalences can be replaced with honest equations in univalent denotational semantics.
We are eager to put the wisdom of op. cit. into practice in the context of imperative and
object-oriented programming by incorporating quotients into our theory and model.

3. Although our theory validates many more desirable equations than the global store theory
of Sterling et al. [43], we do not come close to modeling full local store: for example, two
programs that allocate different numbers of cells cannot be equal. We hope that it will
be possible to adapt the methods of Kammar et al. [27] to the guarded, univalent, and
impredicative setting in order to develop even more abstract models of mutable state.

4. Our language does not allow for references to be directly compared (nominal references)
and no such equality testing function exists in our model. Prior work [44, 33] has given
models of such references using the theory of nominal sets [23, 37]. We hope that these
methods may be adapted to our model in order to support nominal univalent references.

References

1 Frederik Lerbjerg Aagaard, Magnus Baunsgaard Kristensen, Daniel Gratzer, and Lars Birkedal.
Unifying cubical and multimodal type theory. Unpublished manuscript, 2022. doi:10.48550/
arXiv.2203.13000.

2 S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general
references. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science,
pages 334–344, USA, 1998. IEEE Computer Society. doi:10.1109/LICS.1998.705669.

3 Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004. URL: http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf.

4 Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. Bicat-
egories in univalent foundations. Mathematical Structures in Computer Science, 31(10):1232–
1269, 2021. doi:10.1017/S0960129522000032.

5 Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed categories. Logical Methods in
Computer Science, 15, March 2019. doi:10.23638/LMCS-15(1:20)2019.

6 Pierre America and Jan J. M. M. Rutten. Solving reflexive domain equations in a category of
complete metric spaces. In Proceedings of the 3rd Workshop on Mathematical Foundations of
Programming Language Semantics, pages 254–288, Berlin, Heidelberg, 1987. Springer-Verlag.

7 Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing representation
independence with univalence.Proceedings of the ACM on Programming Languages, 5(POPL):1–
30, January 2021. doi:10.1145/3434293.

8 Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems, 23(5):657–
683, September 2001. doi:10.1145/504709.504712.

9 Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A very
modal model of a modern, major, general type system. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 109–122,
Nice, France, 2007. Association for Computing Machinery.

10 A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non
deterministic recursive programs. Theoretical Computer Science, 11(2):181–205, 1980. doi:
10.1016/0304-3975(80)90045-6.

https://doi.org/10.48550/arXiv.2203.13000
https://doi.org/10.48550/arXiv.2203.13000
https://doi.org/10.1109/LICS.1998.705669
http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf
https://doi.org/10.1017/S0960129522000032
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1145/3434293
https://doi.org/10.1145/504709.504712
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1016/0304-3975(80)90045-6

J. Sterling, D. Gratzer, and L. Birkedal 47:19

11 Steve Awodey. Impredicative encodings in HoTT (or: Towards a realizability ∞-topos).
Slides from a talk given the Big Proof meeting, Isaac Newton Institute, Cambridge. URL:
https://www.andrew.cmu.edu/user/awodey/talks/BigProofs.pdf.

12 Steve Awodey. On Hofmann–Streicher universes. Unpublished manuscript, 2022. doi:
10.48550/arXiv.2205.10917.

13 Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive
types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 76–85, Oxford, United Kingdom, 2018. Association for Computing Machinery.
doi:10.1145/3209108.3209130.

14 Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and
Andrea Vezzosi. Guarded Cubical Type Theory: Path Equality for Guarded Recursion. In
Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.23.

15 Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea
Vezzosi. Guarded cubical type theory. Journal of Automated Reasoning, 63(2):211–253, 2019.
doi:10.1007/s10817-018-9471-7.

16 Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive
types qua fixed points on universes. In Proceedings of the 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 213–222, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/LICS.2013.27.

17 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: Step-indexing in the topos of trees. In Proceedings
of the 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pages 55–64,
Washington, DC, USA, 2011. IEEE Computer Society. doi:10.1109/LICS.2011.16.

18 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realisability semantics of parametric
polymorphism, general references and recursive types. Mathematical Structures in Computer
Science, 20(4):655–703, 2010. doi:10.1017/S0960129510000162.

19 Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In Bart Jacobs and
Christof Löding, editors, Foundations of Software Science and Computation Structures: 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–
8, 2016, Proceedings, pages 20–35, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
doi:10.1007/978-3-662-49630-5_2.

20 Aleš Bizjak and Rasmus Ejlers Møgelberg. Denotational semantics for guarded dependent
type theory. Mathematical Structures in Computer Science, 30(4):342–378, 2020. doi:10.
1017/S0960129520000080.

21 Franck Breugel and Jeroen Warmerdam. Solving domain equations in a category of compact
metric spaces. Technical report, CWI (Centre for Mathematics and Computer Science), NLD,
1994.

22 Titouan Carette, Louis Lemonnier, and Vladimir Zamdzhiev. Central submonads and notions
of computation: Soundness, completeness and internal languages. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, Los Alamitos, CA,
USA, June 2023. IEEE Computer Society. doi:10.1109/LICS56636.2023.10175687.

23 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3):341–363, July 2002. doi:10.1007/
s001650200016.

24 Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. Unpublished note,
1997. URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf.

CSL 2024

https://www.andrew.cmu.edu/user/awodey/talks/BigProofs.pdf
https://doi.org/10.48550/arXiv.2205.10917
https://doi.org/10.48550/arXiv.2205.10917
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1017/S0960129510000162
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1109/LICS56636.2023.10175687
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

47:20 Towards Univalent Reference Types

25 J. M. E. Hyland. The effective topos. In A. S. Troelstra and D. Van Dalen, editors, The L.E.J.
Brouwer Centenary Symposium, pages 165–216. North Holland Publishing Company, 1982.

26 J. M. E. Hyland, E. P. Robinson, and G. Rosolini. The Discrete Objects in the Effective
Topos. Proceedings of the London Mathematical Society, s3-60(1):1–36, January 1990. doi:
10.1112/plms/s3-60.1.1.

27 Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton. A monad for full ground reference
cells. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
Reykjavik, Iceland, June 2017. IEEE Press. doi:10.1109/LICS.2017.8005109.

28 Paul Blain Levy. Possible world semantics for general storage in call-by-value. In Julian
Bradfield, editor, Computer Science Logic, pages 232–246, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

29 Paul Blain Levy. Adjunction models for call-by-push-value with stacks. Electronic Notes in
Theoretical Computer Science, 69:248–271, 2003. CTCS’02, Category Theory and Computer
Science. doi:10.1016/S1571-0661(04)80568-1.

30 Paul Blain Levy. Call-by-Push-Value: A Functional/Imperative Synthesis. Kluwer, Semantic
Structures in Computation, 2, January 2003.

31 Rasmus Ejlers Møgelberg and Marco Paviotti. Denotational semantics of recursive types in
synthetic guarded domain theory. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 317–326, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2933575.2934516.

32 Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer Science. doi:
10.1016/0890-5401(91)90052-4.

33 Andrzej Murawski and Nikos Tzevelekos. Nominal game semantics. Foundations and Trends
in Programming Languages, 2(4):191–269, 2016. doi:10.1561/2500000017.

34 Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. In
Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:19, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.24.

35 Marco Paviotti. Denotational semantics in Synthetic Guarded Domain Theory. PhD thesis,
IT-Universitetet i København, Denmark, 2016.

36 Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. A model of PCF in Guarded
Type Theory. Electronic Notes in Theoretical Computer Science, 319(Supplement C):333–349,
2015. The 31st Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXI). doi:10.1016/j.entcs.2015.12.020.

37 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

38 Gordon D. Plotkin and John Power. Notions of computation determine monads. In Proceedings
of the 5th International Conference on Foundations of Software Science and Computation
Structures, pages 342–356, Berlin, Heidelberg, 2002. Springer-Verlag.

39 John C. Reynolds. The essence of algol. In Peter W. O’Hearn and Robert D. Tennent,
editors, Algol-like Languages, pages 67–88. Birkhäuser Boston, Boston, MA, 1997. doi:
10.1007/978-1-4612-4118-8_4.

40 Egbert Rijke. Introduction to homotopy type theory. To appear, Cambridge University Press,
2022. doi:10.48550/arXiv.2212.11082.

41 Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical
Methods in Computer Science, 16, January 2020. doi:10.23638/LMCS-16(1:2)2020.

42 Sam Staton. Completeness for algebraic theories of local state. In Luke Ong, editor, Foundations
of Software Science and Computational Structures, pages 48–63, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

https://doi.org/10.1112/plms/s3-60.1.1
https://doi.org/10.1112/plms/s3-60.1.1
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1561/2500000017
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.48550/arXiv.2212.11082
https://doi.org/10.23638/LMCS-16(1:2)2020

J. Sterling, D. Gratzer, and L. Birkedal 47:21

43 Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Denotational semantics of general store
and polymorphism. Unpublished manuscript, July 2022. doi:10.48550/arXiv.2210.02169.

44 Nikos Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer
Science, Volume 5, Issue 3, September 2009. doi:10.2168/LMCS-5(3:8)2009.

45 Taichi Uemura. Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of
Propositional Resizing. In Peter Dybjer, José Espírito Santo, and Luís Pinto, editors, 24th
International Conference on Types for Proofs and Programs (TYPES 2018), volume 130 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:20, Dagstuhl, Germany,
2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2018.
7.

46 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

CSL 2024

https://doi.org/10.48550/arXiv.2210.02169
https://doi.org/10.2168/LMCS-5(3:8)2009
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://homotopytypetheory.org/book

Guarded Hybrid Team Logics
Marius Tritschler #

Technische Universität Darmstadt, Germany

Abstract
Team logics are extensions of first-order logic where formulae are not evaluated over assignments, but
over sets (“teams”) of assignments. In its most basic form, this does not increase the expressiveness
of the logic because we can only form statements about the common properties of all assignments
(“flatness”). Therefore, additional “team atoms” are introduced to allow for assertions about
interdependencies between the assignments like dependence or inclusion. We propose to consider
binders known from hybrid logic to increase the expressiveness, where the bound teams may then be
referenced as regular relations. We call this hybrid team logic (HTL). Additionally, we define the
positive and negative fragments of HTL (HTL+ and HTL−) by requiring that relations that arise
from binding only occur positively or negatively, respectively.

We find that HTL and its positive and negative fragments are equivalent to prominent team
logics: HTL+ is eqivalent to inclusion logic, HTL− is equivalent to exclusion/dependence logic
and HTL itself is equivalent to independence or inclusion/exclusion logic. This classifies HTL as
equivalent to existential second order logic and HTL+ as equivalent to the positive fragment of
greatest fixpoint logic.

Binders also enhance the expressiveness of guarded team logics because they enable access to
information that normally is obscured by the built-in limitations of these logics. We will take a
closer look at guarded hybrid team logics and establish a finite model property for the guarded
fragment of HTL using model checking games. More precisely, we encode winning strategies of
model checking games as relations, a process that is a natural fit for binders. Further, we notice
that the hierarchy of guarded team logics is more complex than the hierarchy of non-guarded team
logics, and we establish a hierarchy of prominent union-closed guarded team logics.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Team semantics, guarded logics, expressiveness, model checking games

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.48

1 Introduction

Team semantics is a generalization of Tarski semantics in which logical formulae are not
evaluated for single assignments, but for sets of assignments called teams. This opens new
avenues to reason about interdependencies between assignments, which are relevant e.g. for
large sets of data. In fact, most prominent team logics feature notions that have been studied
in database theory like dependence [3], independence [14], inclusion [9] or exclusion [10].

Team semantics was originally conceived by Hodges [22] to provide a compositional,
model theoretic semantics for independence-friendly logic [21]. Since then, it has been
established as a basis for logics of imperfect information. Here, it is prevalent to view the
aforementioned interdependencies as atomic properties of teams, an approach that emerged
with Väänänen’s dependence logic [29] and includes (conditional) independence logic [20]
and inclusion/exclusion logic [12]. The expressiveness of these logics is well understood. On
sentences, dependence, independence and exclusion logic are all equivalent to existential
second order logic Σ1

1 and inclusion logic is eqivalent to positive greatest fixpoint logic νFO+.
On formulae, independence and inclusion/exclusion logic are again equivalent to Σ1

1, while
dependence logic, exclusion logic and inclusion logic are equivalent to specific fragments of

© Marius Tritschler;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 48; pp. 48:1–48:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tritschler@mathematik.tu-darmstadt.de
https://orcid.org/0009-0000-8765-2404
https://doi.org/10.4230/LIPIcs.CSL.2024.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Guarded Hybrid Team Logics

Σ1
1 and νFO+, respectively (see Proposition 8 for more details). When including additional

propositional connectives like strong negation, even dependence logic reaches the expressive
power of full second order logic [24].

However, the expressive power comes at the cost of a comparatively high complexity.
Therefore, it seems natural to explore variants of the mentioned team logics that are inspired
by logics with desirable algorithmic and model-theoretic properties. One promising direction
is the study of guarded logics with team semantics. The basic guarded logic, i.e. the guarded
fragment GF of first-order logic, was introduced by Andréka, van Benthem and Németi [1] to
explain and generalise the good model theoretic properties of modal logics (for an overview
over modal logics, see [7, 8]). GF is defined by restricting first-order quantification in such a
way that formulae can only be evaluated with respect to guarded tuples, which are tuples of
elements that occur together in some atomic fact. This yields a logic that is decidable [1]
and where every formula has a finite model [16], amongst other convenient properties. For a
more in-depth survey, see e.g. [18]. Many variations and extensions of GF have been studied,
for example guarded fixpoint logic, guarded second order logic or the guarded fragment over
finite models (see e.g. [4, 5, 6, 17, 27]).

In particular, there exist explorations of guarded team logics by Grädel and Otto [19]
and Lück [26]. These focus mostly on the analysis of guarded team logics with additional
propositional connectives like strong negation, and establish guarded bisimulation as a
suitable tool to analyse the expressiveness of these logics. More specifically, a core feature
commonly found with guarded logics is invariance under guarded bisimulation. However, the
addition of team atoms will, in general, interfere with bisimulation invariance.

This work aims to provide further insight into guarded team logics that cannot be
characterised by guarded bisimulation invariance. For this, a novel team logic called “hybrid
team logic” (HTL), as well as its positive and negative fragment, are introduced. We show
that in their non-guarded version, these are equivalent to independence logic, inclusion logic
and dependence logic, respectively. Further, we notice that guarded hybrid team logics are
uniquely suited for a type of reduction that encodes winning strategies in model checking
games as formulae in the basic guarded fragment, thus reducing the satisfiability problem to
the satisfiability problem of GF and thereby providing an easy proof for decidability and a
finite model property for guarded fragments of HTL. We then establish a partial expressive
hierarchy of guarded team logics, which is more complex than the hierarchy of non-guarded
team logics. Due to space limitations, we mainly focus on union closed logics.

2 First-Order Team Logic

In this section, we lay the foundation for the coming sections by providing basic definitions
and recalling relevant results from the study of first-order team logic and its extensions.

2.1 Basic definitions
▶ Definition 1. We use the following conventions throughout the paper.

Let A be a set and a = (a1, . . . , an) ∈ An be a tuple. We write [a] := {a1, . . . , an} for the
set of components, |x| := n for the length, and a ∈ A∗ if n is irrelevant.
An assignment to variables x into a set A ≠ ∅ is a map t : [x] → A. We write dom(t) = [x].
For any tuple y = (y1, . . . , yk) ∈ dom(t)k, we write t(y) := (t(y1), . . . , t(yk)), and similarily
t(X) := {t(x) | x ∈ X} for X ⊆ dom(t).
An update t

[
a
x

]
: dom(t) ∪ {x} → A of an assignment t is the assignment that maps x to

a, and agrees with t everywhere else. Further, t
[
a
x

]
= t
[
a1
x1

]
. . .
[
an

xn

]
.

M. Tritschler 48:3

▶ Definition 2. We use the following conventions with regard to teams.
A team T is a set of assignments with a shared domain dom(T). A team may be empty.
If dom(T) = ∅, it may only contain the empty assignment.
For tuples x ∈ dom(T)∗ and sets X ⊆ dom(T), we write T (x) := {t(x) | t ∈ T} and
T (X) = {t(X) | t ∈ T}.
Let F : T → P(A) \ ∅. The update of T (along F) is the team T

[
F
x

]
:= {t

[
a
x

]
| t ∈ T, a ∈

F (t)}. For any set B ⊆ A, we write T
[
B
x

]
for the special case where F (t) = B for all

t ∈ T .

Now, we can inductively provide team semantics for formulae of first-order logic in
negation normal form. We are only using relational signatures σ.

▶ Definition 3 (Team semantics for FO). Let A be a σ-structure with universe A. Let T be a
team in A and φ ∈ FOσ. We assume that free(φ) ⊆ dom(T).

If φ is a literal then A, T |= φ iff A, t |= φ for all t ∈ T .
If φ = φ1 ∧ φ2 then A, T |= φ iff A, T |= φ1 and A, T |= φ2.
If φ = φ1 ∨φ2 then A, T |= φ iff there are T1, T2 ⊆ T with T1 ∪T2 = T so that A, T1 |= φ1
and A, T2 |= φ2. We call T1, T2 a split of T .
If φ = ∃xψ then A, T |= φ iff there is an update T

[
F
x

]
so that A, T

[
F
x

]
|= ψ.

If If φ = ∀xψ then A, T |= φ iff A, T
[
A
x

]
|= ψ. We call T

[
A
x

]
the universal update of T

in A.

In addition to the syntax and semantics presented here, other propositional connectives
can be considered. However, most of them (like intuitionistic disjunction, implication or
strong negation) do not preserve some of the following convenient properties:

▶ Proposition 4. FO with team semantics satisfies the following properties:
Flatness: A, T |= φ if and only if for all t ∈ T,A, {t} |= φ.
Union-closure: A, T1 |= φ and A, T2 |= φ implies A, T1 ∪ T2 |= φ.
Downward closure: A, T |= φ and T ′ ⊆ T implies A, T ′ |= φ

Locality: A, T |= φ if and only if A, T↾free(φ)|= φ.
Empty team property: A, ∅ |= φ.

One could argue whether flatness is a desirable property, as it essentially reduces FO
with team semantics to classical FO. Still, this version of FO with team semantics provides
a clear base for the addition of team atoms.

2.2 Team Atoms
Team atoms are added to first-order team logic to describe atomic team properties that
correspond to interdependencies between the assignments in a team. The first and probably
best-known resulting logic was dependence logic [29]. Other notable team logics include
independence logics [20], inclusion logic and exclusion logic [12] and its combinations, which
extend FO with team semantics by one or more of the following team atoms:

▶ Definition 5 (Team atoms). Let A be a structure, let T be a team in A and let x, y, z ∈
dom(T)∗ be tuples of variables, where x and y have the same length.

Dependence: A, T |= = (x, z) if and only if the assignments to z depend on the
assignments to y, in the sense that for all t, t′ ∈ T , t(x) = t′(x) implies t(z) = t′(z).
Independence: A, T |= (x⊥zy) if and only if for all t, t′ ∈ T with t(z) = t′(z), there is a
t′′ ∈ T with t(x) = t′′(x) and t′(y) = t′′(y).
Inclusion: A, T |= (x ⊆ y) if and only if for all t ∈ T there is a t′ ∈ T with t(x) = t′(y).
Exclusion: A, T |= (x|y) if and only if for all t, t′ ∈ T we have t(x) ̸= t′(y).

CSL 2024

48:4 Guarded Hybrid Team Logics

FO(inc)νFO+ FO(exc)

FO(inc, exc)

FO with team semantics

FO(dep)

FO(indep)Σ1
1

Figure 1 An overview over the hierarchy of team logics. L → L′ means that L′ is at least as
expressive as L, with dotted arrows for sentences.

All of these are proper extensions of FO with team semantics, which can be seen by
analysing which of the properties in Proposition 4 are preserved.

▶ Proposition 6. FO(dep, indep, inc, exc) satisfies locality and has the empty team property.
FO(dep) and FO(exc) are downward closed, but not union closed. FO(inc) is union-closed,
but not downward closed. FO(indep) is neither downward nor union-closed. (cf. [12, 20, 29])

To further describe the expressive power of these logics, we can, on one hand, compare
them amongst themselves.

▶ Proposition 7.
FO(dep) ≡ FO(exc) [12].
FO(dep) ≡ FO(indep) for sentences [29],[20].
FO(inc, exc) ≡ FO(indep) [12].

On the other hand, it may be desirable to compare a team logic L to another logic L′ that
is not designed to handle teams. This can be achieved by interpreting the evaluation of a
team over given variables as a relation. For example, for any given formula φ(x) ∈ L, we can
then ask whether there is a corresponding φ′(R) ∈ L′ with a new relation symbol R so that
for every structure A and team T , we have that A, T |= φ(x) if an only if (A, T (x)) |= φ′(R).

In particular, all standard variations of first-order team logic are fragments of existential
second order Σ1

1 in this sense. To be more precise:

▶ Proposition 8.
For every formula φ ∈ FO(indep), there is a corresponding sentence φ(R) ∈ Σ1

1 and vice
versa [12].
For every formula φ ∈ FO(dep), there is a corresponding sentence φ(R) ∈ Σ1

1 where R
only appears negatively, and vice versa [25].
For every formula φ ∈ FO(inc), there is a corresponding sentence ∀x(Rx → ψ(R, x)) ∈
νFO+ (positive greatest fixpoint logic) and vice versa [13].

▶ Note. Positive greatest fixpoint logic νFO+ is an extension of first-order logic by positive
occurrences of greatest fixpoint operators [gfpS,x ψ(S, x)]y, thus being a fragment of least
fixed point logic. More details can be found e.g. in [23] for fixed point logics in general, and
in [13] for νFO+ in particular.

See Figure 1 for a summary of this section.

M. Tritschler 48:5

3 Hybrid Team Logics

We introduce a new team logic called hybrid team logic. The name is inspired by hybrid
modal logics, a collection of extensions of modal logic by first-order machinery that was first
introduced in 1967 by Prior in [28] to deal with specific issues in temporal logics. For a
detailed account of the fundamentals of hybrid logics, see e.g. [2].

One of the main features of modal hybrid logics is the ↓ binder, which was introduced by
Goranko in [15] to “bind” the current world as the interpretation of a constant. This concept
can be transferred to team logics in the sense that teams can be bound as interpretations of
new relational variables.

▶ Definition 9. Hybrid team logic (HTL) is an extension of first-order logic with team
semantics by binders ↓ with the following semantics: for all structures A, teams T , variables
x ∈ dom(T)∗ and formulae φ(X) ∈ HTL where X is a new relation symbol of arity |x|,

A, T |=↓xXφ(X) ⇔ (A, T (x)), T |= φ(X).

The variables in x are considered free variables, i.e. free(↓xXφ(X)) = free(φ) ∪ [x].
The positive (negative) fragment HTL+ (HTL−) is the fragment of HTL where bound relations
may only occur positively (negatively).

We immediately notice that inclusion and exclusion atoms can be expressed in hybrid
team logic on an elementary level.

▶ Lemma 10. FO(inc) ⊆ HTL+, FO(exc) ⊆ HTL− and FO(inc, exc) ⊆ HTL.

Proof. We need to show that for every φ ∈ FO(inc) (FO(exc), FO(inc, exc)), there is a
φ′ ∈ HTL+ (HTL−, HTL) so that for all structures A and teams T ,

A, T |= φ ⇔ A, T |= φ′.

Recall that X is a relational variable, i.e. A, T |= Xx if and only if T (x) ⊆ XA and
A, T |= ¬Xx if and only if T (x) ∩XA = ∅. With that, it is straightforward to verify that

A, T |= (x ⊆ y) ⇔ A, T |=↓yX(Xx)

and

A, T |= (x|y) ⇔ A, T |=↓yX(¬Xx).

With that, we can replace every occurrence of an inclusion or exclusion atom in φ to get
the desired φ′. ◀

Taking a closer look at the positive fragment HTL+ of hybrid team logic, we shall see
that it is equivalent to inclusion logic FO(inc) and positive greatest fixpoint logic νFO+.
Considering Lemma 10, it is enough to show that HTL+ is a fragment of νFO+ in the sense
of Proposition 8.

One way to think about this equivalence is that each of the logics in question provides its
own tools (independence atoms, binders, teams, fixpoints), which can be simulated by the
other logics. For example, in the proof of FO(inc) ≡ νFO+ in [13], fixpoints are simulated in
FO(inc) by expanding any given team to a cartesian product, i.e. introducing a second team
(over fresh free variables) that represents the fixpoint and can be handled independently.

Another example already occurred in Proposition 8, where νFO+ could be used to
simulate teams via an additional relation. In general, this team will be manipulated when
evaluating a formula, e.g. by splitting or updating. This can be simulated with the help of
fixpoints.

CSL 2024

48:6 Guarded Hybrid Team Logics

▶ Theorem 11. For every φ(x) ∈ HTL+ there is a φ∗(R, x) ∈ νFO+ so that R only appears
positively and

A, T |= φ(x) ⇔ (A, T (x)), t |= φ∗(R, x) for all t ∈ T.

Proof. We use syntactic induction and retrace the proof of Theorem 15 in [13] regarding
everything except binders. If φ =↓xSψ(S, xy), by induction we have ψ∗(R,S, xy) and use

φ∗ = ψ∗(R, ∃yR_y, xy),

i.e. ∃yR_y is supposed to replace S in the sense that every instance of Sx is replaced by
∃yRxy. This way, we have

A, T |= φ

⇔ (A, T (x)), T |= ψ(S, xy)
⇔ (A, T (xy), T (x)) , t |= ψ∗(R,S, xy) for all t ∈ T

⇔ (A, T (xy)) , t |= φ∗ for all t ∈ T,

because (A, T (x)), t |= Sx if and only if (A, T (xy)), t |= ∃yRxy. ◀

▶ Corollary 12. HTL+ ≡ FO(inc) ≡ νFO+

The question of whether the unique features available in some logic can be simulated in
another logic will be revisited in Section 5.

For the sake of completeness, we mention that the other team logics are also equivalent
to their respective counterparts from Lemma 10. A proof can be found in Appendix A.

▶ Proposition 13. HTL− ≡ FO(exc) and HTL ≡ FO(inc, exc).

4 Guarded Team Logics

In classical first-order logic, there are several equivalent ways to define the guarded fragment.
In particular, there are syntactic and semantic definitions. In the former case, we add guards
to quantification in the sense that, if quantification appears in a formula, it has to have the
form ∃x(α(xy) ∧ ψ(xy)) or ∀x(α(xy) → ψ(xy)) for some guard α. In the latter case, we
require the images of all assignments to be guarded.

Here, we work with one of the least restrictive variations of guarded logics, similar to [18].

▶ Definition 14. Let σ be a relational signature and A be a σ-structure with universe A.
The set of guards G(A) is defined as

G(A) := {G ⊆ A | G ⊆ [a], a ∈ RA, R ∈ σ ∪ {=}}.

As we can see, the set of guards in A contains all sets that are completely “covered” by a
tuple that occurs in a relation. The inclusion of “=” in the selection of guards entails that
all singleton sets are guarded.

▶ Definition 15. Let A be a relational structure.
A tuple a is guarded in A if [a] ∈ G(A).
An assignment t is guarded if t(dom(t)) ∈ G(A).
A team T is guarded if T (dom(T)) ⊆ G(A).

M. Tritschler 48:7

It is clear that, in general, not all updates of guarded teams are guarded. However, there
always is a universal guarded update, i.e. a unique maximal guarded update that can take the
place of universal updates in guarded semantics. With this, we can define a guarded variant
of team logic by replacing the classical quantification of FO with guarded quantification.

▶ Definition 16. Guarded team logic GTL is defined analogously to standard FO with team
semantics, where quantification is replaced by guarded quantification in the following sense:

A, T |= ∀gxψ iff A, T ′ |= ψ for the universal guarded update T ′ of T↾free(ψ)\{x}.
A, T |= ∃gxψ iff A, T ′ |= ψ for some guarded update T ′ of T↾free(ψ)\{x}.

For tuples x = (x1, . . . , xn), we write ∃gxψ instead of ∃gx1 . . . ∃gxnψ (similarly for ∀).
Extending GTL by adding binders, inclusion atoms etc. yields guarded hybrid team logic

GHTL, guarded inclusion logic GTL(inc) etc. respectively. Binding teams with the ↓-operator
does not change the set of guards.

One of the features of guarded logics is the fact that quantification can be thought of as
moving from guarded patch to guarded patch. This is reflected by the evaluation of guarded
quantification through the restriction of T to those variables that are relevant for the inner
formula.
▶ Note. In general, there are several options to design guarded team logics. One obvious
candidate would be to use team semantics with the standard guarded fragment of FO, which
would entail guarding each quantification with a relational atom. However, this would
prohibit mixed teams, i.e. teams that contain assignments that are guarded by different
relations. In the non-team case, there is no tangible difference between both versions as all
assignments are considered independently, anyway. With teams, however, there are cases
where extensions of GF with team semantics are strictly weaker than extensions of GTL as
defined above (see Appendix B.2 for details).
▶ Note. GTL is technically not a fragment of FO with team semantics. The reason is that
guarded quantification implicitly introduces a disjunction over all relations in the signature.
For infinite signatures, this is not reproducible in FO. For any finite signature however, we
can find a translation between GTL and FO with team semantics (and their extensions).
For the rest of this paper, we therefore assume that all signatures are finite if not explicitly
stated otherwise (see Appendix B for details).

4.1 Properties of Guarded Team Logics
In Sections 2 and 3, we introduced several team logics and mentioned their properties in
Proposition 4. It is straightforward to verify that these properties translate to the respective
guarded variants of these logics. (See Appendix B for more details.)

This leaves the question whether we can lift desirable properties of classical guarded logic
to the team setting. We take a closer look at two specific properties.

▶ Proposition 17 ([1, 16]). The guarded fragment of classical first-order logic is decidable
since it has the finite model property, i.e. every satisfiable formula has a finite model.

▶ Remark 18. All logics with team semantics that are examined here have the empty team
property, i.e. all formulae are satisfied by the empty team across all structures. A sensible
notion of decidability and finite model property for team logics would therefore only regard
satisfaction by non-empty teams.
We can immediately show that guarded dependence logic GTL(dep) cannot have the finite
model property:

CSL 2024

48:8 Guarded Hybrid Team Logics

▶ Lemma 19. Let E be a binary relation symbol. The sentence

φ := ∃gx(∀gy¬Eyx) ∧
∀gz(∃gw(z ̸= w ∧ Ezw) ∧

∀gw(¬Ezw ∨ (Ezw ∧ =(z, w) ∧ =(w, z))))

is a satisfiable formula in GTL(dep) that is satisfied by a structure A only if A contains at
least one infinite simple E-path.

Proof. If A |= φ, then there is at least one element a without any E-predecessor. We
also know that every element has exactly one successor and at most one predecessor. This
implies that A consists of only cycles or infinite paths with or without starting point. The
vertex a cannot lie on a circle, so it has to be the starting point of an infinite path. Clearly,
(N, {(n, n+ 1) | n ∈ N}) satisfies φ. ◀

In contrast, guarded hybrid team logic GHTL has the finite model property and is
decidable. Both can be shown by reducing the satisfiability of formulae in GHTL to the
satisfiability of the classical guarded fragment.

▶ Theorem 20. Let σ be a relational signature and φ(x) ∈ GHTLσ. There is a signature
τ ⊇ σ ∪ {Rφ} and a formula φ∗(Rφ) ∈ GFτ so that all σ-structures A and guarded teams T
satisfy φ if and only if there is a expansion of A to a τ -structure A∗ so that (A∗, T (x)) |=
φ∗(Rφ).

Proof. The general strategy is to expand σ by relation symbols Rψ for all instances of
subformulae ψ of φ. Then, we include clauses in φ∗ that are only satisfied if the interpretations
of the Rψ provide a winning strategy for a basic model checking game that is similar to the
one presented in [29, section 5.2].

Let S(φ) be the set of (instances of) subformulae of φ, including φ itself, and let X (φ)
be the set of relational variables that are bound in φ. We define τ = σ ∪ {Rψ}ψ∈S(φ) ∪ X (φ)
and formulae φ∗(ψ) according to Appendix C.1 and define

φ∗ :=
∧

ψ∈S(φ)

φ∗(ψ).

There are a few technical details that have to be considered (see Appendix C.2), but overall,
it is straightforward to verify by syntactic induction that this is as required. ◀

We see that guarded hybrid team logic is uniquely suited for this type of translation,
because the concept of interchangeability between teams and relations that is at the core of
the proof is already included in the logic itself.

Moreover, we get a glimpse of why guarded dependence logic loses the finite model
property: the dependence atom is fundamentally non-guarded in the sense that it cannot be
defined by a formula in classical guarded logic. Another explanation would be the similarity
of GF(dep) to guarded logic with counting quantifiers, which also does not have the finite
model property and is undecidable [16].

▶ Corollary 21. GHTL has the finite model property and is decidable in the sense of
Remark 18.

Proof. From Theorem 20, we know that any φ ∈ GHTL is satisfied by some (possibly
infinite) structure A and non-empty team T with domain x if and only if φ∗ ∧ ∃xRφx is
satisfied by an appropriate expansion A∗ of A with RA∗

φ = T (x).

M. Tritschler 48:9

Due to the finite model property of GF, we find a finite model (B∗, T ′(x)) satisfying
φ∗ ∧ ∃xRφx. Using Theorem 20, we get a finite model B, T ′ of φ with non-empty T ′

which proves the finite model property.
The translation from φ to φ∗ ∧ ∃xRφx ∈ GF is computable in linear time, so decidability
of GHTL follows directly from the decidability of GF. ◀

5 A Hierarchy of Union-Closed Team Logics

One takeaway from Lemma 19 and Corollary 21 is that the hierarchy of team logics in the
guarded case differs from the hierarchy in the non-guarded case.

▶ Corollary 22. GTL(dep) ̸⊆ GHTL−.

Of course, all the obvious inclusions like GTL(exc) ⊆ GTL(inc, exc) still hold, and the
translations of Lemma 10 work on an atomic level and are therefore unaffected by changes
to quantification.

▶ Corollary 23. GTL(inc) ⊆ GHTL+, GTL(exc) ⊆ GHTL−, GTL(inc, exc) ⊆ GHTL.

This also implies that there are formulae in guarded dependence logic that cannot be expressed
in guarded exclusion logic, contrary to the non-guarded case.

In this section, we further investigate the relative expressiveness of union-closed guarded
team logics, i.e. guarded inclusion logic GTL(inc), positive guarded hybrid team logic GHTL+

and guarded positive greatest fixpoint logic νGF+.
An upper bound for the expressiveness of these logics is GHTL. It is clear that GTL(inc) ⊆

GHTL+ ⊆ GHTL. The proof for νGF+ ⊆ GHTL can roughly be outlined as follows:
1. As mentioned towards the end of Section 3, in the non-guarded case, we could simulate

fixpoints by introducing them as new teams over fresh variables. This way, we could
effectively handle more than one team simultaneously. However, this strategy is not
available any more because in general, it would require a shared guard for all teams.

2. Let L be a team logic and R a relation symbol that may occur both positively and
negatively. For all tuples x of appropriate length and ψ ∈ L with free(ψ) ⊆ [x], we can
define a sentence φ(R,ψ) that is satisfied in a structure A if and only if RA, interpreted
as a team with domain [x], satisfies ψ.

3. We can bind a team, introduce a fixpoint, bind the fixpoint, and then “recover” the team
(using the sentence in 2.) and check whether it is in the fixpoint. This circumvents the
problem in 1.

However, the same strategy cannot be employed in GHTL+ or GHTL−, because the sentence
in 2. uses both positive and negative instances of R. Neither νGF+ nor GHTL− contains
the other because the former is union-closed and the latter is downward closed, but not vice
versa. By contrast, Theorem 11 can be easily adapted.

▶ Lemma 24. For every φ(x) ∈ GHTL+ there is a formula φ∗(R, x) ∈ νGF+ in which R

only appears positively and

A, T |= φ(x) ⇔ (A, T (x)), t |= φ∗(R, x) for all t ∈ T.

Proof. The proof is very similar to the one of Theorem 11. In most steps, quantification
does not matter, so we focus on the ones where it does:

CSL 2024

48:10 Guarded Hybrid Team Logics

If φ = ∃gyψ(xy), let

φ∗ = ∃gy[gfpS,xy ∃gzRxz ∧ ψ∗(S, xy)]xy,

where the length of xz is equal to the arity of R. The tuple z is supposed to represent the
variables that are dropped from the domain of the team when evaluating the quantification.
An identical argument can be made for universal quantification.
If φ =↓xSψ(S, xy), let

φ∗ = ψ∗(R, ∃gyR_y, xy),

matching the non-guarded case. ◀

We shall see that we have GHTL+ ≡ νGF+ for sentences but GHTL+ ⊊ νGF+ for
arbitrary formulae.

5.1 GHTL+ ≡ νGF+ on Sentences
To simplify notation, we introduce some abbreviations:

We write [gfpψ] instead of [gfpS,x ψ(S, x)] whenever the variables are not in focus.
For all structures A and fixpoints [gfpψ], we write [gfpψ]A for the interpretation of [gfpψ]
in A.

One direction of GHTL+ ≡ νGF+ is already included in Lemma 24. To show νGF+ ⊆
GHTL+, we provide a translation φ∗ ∈ GHTL+ for any sentence φ ∈ νGF+. To do that, we
design φ∗ so that first, all necessary fixpoints are simulated and bound, and then the sentence
is evaluated as usual, with the bound pseudo-fixpoints replacing the actual fixpoints.

In the process of applying the translation, we transition from νGF+ to GHTL+ fixpoint
by fixpoint. This leads to intermediate steps that involve the syntax of both logics. To
handle this combined logic, we need team semantics for νGF+, which we get by extending
the semantics of guarded team logic GTL by a clause for fixpoints:

▶ Definition 25. For all structures A, teams T and fixpoints [gfpψ],

A, T |= [gfpψ]x :⇔ T (x) ⊆ [gfpψ]A.

▶ Lemma 26. Let ψ ∈ νGF+ and let R be a new relation symbol.
1. A, T |= [gfpψ]x iff (A, [gfpψ]A), T |= Rx.
2. νGF+ with team semantics has the flatness property.
3. A, {t} |= ψ iff A, t |= ψ.
4. If (A, T (x)), T |= ψ(S, x), then A, T |= [gfpψ]x.
5. If T is maximal so that A, T |= [gfpψ]x, then (A, T), T |= ψ(S, x).

Proof. 1. follows directly from Definition 25. The proofs for 2. and 3. are identical to the
proofs for non-guarded team logic, using 1. The proofs of 4. and 5. can then be reduced to
the respective proofs of [13, Lemma 14]. ◀

▶ Note. Lemma 26, part 2, does not imply flatness for GHTL+, even though it is a fragment
in the sense of Lemma 24. For this, the translations φ∗ would have to be flat with regard to
the relational encoding of the team, i.e.

for all t ∈ T : (A, T (x)), t |= φ∗ ⇔ for all t′ ∈ T : (A, {t′(x)}), t′ |= φ∗.

M. Tritschler 48:11

As is, fixpoints may contain non-guarded tuples because the inner formulae are satisfiable
by non-guarded tuples (e.g. [gfpS,x1x2 ⊤]A contains every pair in the universe of A). However,
there are ways to replace these fixpoints without changing the guarded parts.

▶ Lemma 27. Let φ ∈ νGF+, let A be a structure and a be a tuple in A.
1. There is a formula φg ∈ νGF+ such that A, a |= φg if and only if A, a |= φ and a ∈ G(A).
2. [gfpφg]A = [gfpφ]A ∩ G(A).

Proof.
1. We can construct φg using trivial quantification, e.g. φg(x) := ∃gx′(x′ = x ∧ φ(x′)).
2. To show [gfpφg]A ⊆ [gfpφ]A ∩ G(A), we use the first part of this lemma twice. First, we

immediately get [gfpφg]A ⊆ G(A) because φg is only satisfiable by guarded tuples. Second,
for all a ∈ [gfpφg]A, we have (A, [gfpφg]A), a |= φg(x, S) and therefore (A, [gfpφg]A), a |=
φ(x, S) and with an argument similar to [13, Lemma 14] we get A, a |= [gfpφ]x.
For the other direction, let a ∈ [gfpφ]A ∩G(A), so we have (A, [gfpφ]A), a |= φ(x, S) and
therefore (A, [gfpφ]A), a |= φg(x, S) because a is guarded. When evaluating φg(x, S),
every occurrence of Sy will be evaluated by a guarded tuple (because a and every update of
a due to quantification is guarded). The non-guarded part of [gfpφ]A is therefore irrelevant
for the evaluation and can be omitted, which yields (A, [gfpφ]A ∩ G(A)), a |= φg(x, S).
Again, we refer to [13, Lemma 14] to get A, a |= [gfpφg]x and are done. ◀

We can now provide a tool to replace fixpoints by bound teams. To this end we allow
the creation of formulae that may contain both binders and fixpoints, as long as no fixpoint
contains a binder (bound relations are allowed). This way, we can always find a fixpoint with
a first-order inner formula, which is key for the translation to work.

▶ Lemma 28. Let φ([gfpψ]) be a sentence in νGF+ so that [gfpψ] appears in φ and ψ itself
does not contain fixpoints. Then

φ([gfpψ]) ≡ ∃gx ↓xX(ψ(X, x) ∧ φ(X)).

Proof. We show the equivalence for an arbitrary structure A. Without loss of generality,
we can assume that fixpoints are guarded because they are always evaluated by guarded
teams. As such, only the guarded part of the fixpoint matters, and we can always find a
corresponding fixpoint due to Lemma 27.

For one direction, assume A |= φ([gfpψ]). Because we can assume that fixpoints are
guarded, it suffices to show

(A, [gfpψ]A), [gfpψ]A |= ψ(X, x) ∧ φ(X).

For (A, [gfpψ]A), [gfpψ]A |= ψ(X,x), we use Lemma 26, part 5, as [gfpψ]A obviously is
maximal. Also, we can use the assumption and Lemma 26, part 1, to replace every instance
of [gfpψ]x in φ with Xx to get (A, [gfpψ]A), [gfpψ]A |= φ(X).

For the other direction, let T be a witness for the existential claim. From (A, T (x)), T |=
ψ(X,x), it follows that T ⊆ [gfpψ]A according to Lemma 26, part 4, and Definition 25.
We also have (A, T (x)) |= φ(X), and because X occurs only positively in φ, satisfaction
of φ is preserved whenever the interpretation of X is replaced by a superset. This yields
(A, [gfpψ]A) |= φ(X). We replace all instances of Xx with [gfpψ]x using Lemma 26, part 1,
and are done. ◀

▶ Theorem 29. νGF+ ≡ GHTL+ for sentences.

CSL 2024

48:12 Guarded Hybrid Team Logics

Proof. GHTL+ ⊆ νGF+ is already established for formulae in Lemma 24. Towards νGF+ ⊆
GHTL+, let σ be a signature and φ ∈ νGF+ be a sentence. We start by applying Lemma 28
on one of the “innermost” fixpoints [gfpψ1] of φ, i.e. one that does not contain other fixpoints,
to get

φ1 := ∃gx ↓xX1(ψ1(X1, x) ∧ φ(X1)).

We notice that φ(X1) is again a sentence in νGF+ over the signature σ ∪ {X1} that now
contains one fixpoint less. This allows for repeated application of Lemma 28 until all fixpoints
are eliminated and we get a formula of the form

φn :=∃gx1 ↓xX1(ψ1(X1, x1)
∧ ∃gx2 ↓xX2(ψ2(X2, x2)
. . .

∧ ∃gxn ↓xXn(ψn(Xn, xn) ∧ φ(X1, . . . , Xn)) . . .)),

where φ(X1, . . . , Xn) is a first-order sentence. All instances of bound relations are positive,
because they only replace fixpoints or relation variables in fixpoints, which only appear
positive in νGF+. Therefore, φn ∈ GHTL+ and we are done. ◀

5.2 GF(inc) ⊊ GHTL+ ⊊ νGF+ on Formulae
The aim of this section is to show that on formulae, guarded positive greatest fixpoint logic
is more expressive than positive guarded hybrid team logic, which in turn is more expressive
than guarded inclusion logic. For this, we take a closer look at the nature of quantification
in guarded logics.

Quantification in guarded logics can either be local or global, which means that the new
assignment or team either has to be guarded together with (parts of) the old assignment or
team, or the previous team can be “forgotten”. More specifically, we say that a subformula
Qgxψ (where Q ∈ {∀, ∃}) corresponds to a global move if free(ψ) ⊆ [x], i.e. Qgxψ is a
sentence. This motivates the following definitions :

▶ Definition 30.
For all formulae φ, any subformula of φ that is a sentence on its own is called a
subsentence of φ. In general, there will be subsentences that do contain other subsentences.
Gaifman-neighbourhoods [11]: For any σ-structure A with universe A and subset B ⊆ A,
we inductively define the l-neighbourhood n(B, l) according to n(B, 0) = B and

n(B, l + 1) =
{
a ∈ A

∣∣∣∣∣ ∃a ∈
⋃
R∈σ

RA s.t. a ∈ [a] and [a] ∩ n(B, l) ̸= ∅

}
.

For any assignment t with domain dom(t) = X, we write n(t, l) := n(t(X), l). For any
team T with domain dom(T) = X, we define

n(T, l) := n

(⋃
t∈T

t(X), l
)
, or equivalently n(T, l) :=

⋃
t∈T

n (t, l) .

Let T be a team in A with dom(T) = X and T ′ ⊆ T . We say that T ′ is an l-local cluster
in T if, for all t ∈ T , we have t ∈ T ′ or

n(t, l) ∩ n(T ′, l) = ∅.

M. Tritschler 48:13

Let A,B be structures, TA, TB be teams with domain X and CA, CB be l-local clusters in
TA, TB respectively. We say that CA and CB are l-locally isomorphic (A, CA ≃l B, CB)
if there is a bijection π : CA → CB that can be extended to an isomorphism ι : n(CA, l) →
n(CB, l) on the induced substructures in the sense that for all x ∈ X and tA ∈ TA, we
have ι(tA(x)) = π(tA)(x).
The local rank lr(φ) is defined inductively, identically to the standard quantifier rank for
guarded logics, with one essential difference: lr(φ) = 0 if φ is a (sub)sentence.

The concept of local clusters and local isomorphism gives us a strong criterion for local
indistinguishability.

5.2.1 GHTL+ ̸⊆ GF(inc)
If there are two teams in the same structure that cannot be distinguished locally, both teams
satisfy the same GF(inc)-formulae.

▶ Lemma 31. Let A be a σ-structure and l ∈ N. Let T1 and T2 be teams in A such that
for every (l + 1)-local cluster C2 in T2, there is an (l + 1)-local cluster C1 in T1 such that
A, C1 ≃l+1 A, C2. Let φ ∈ GF(inc) be a formula with locality rank lr(φ) ≤ l. Then A, T1 |= φ

implies A, T2 |= φ.

Proof. The full proof can be found in Appendix D. In short, we use syntactic induction.
For (sub)sentences, the current teams are irrelevant and we have A, T1 |= φ if and only if
A |= φ if and only if A, T2 |= φ. For everything else, we mainly have to make sure that we
can match every local move (or split) in T1 by a local move (or split) in T2 that preserves
the preconditions. This is always provided by the local isomorphism. ◀

It is clear that the precision of this invariance is not comparable to results like bisimulation
invariance of GF or GTL. Still, it is a strong enough tool so show our intended result by
providing an example of an inexpressible property using a specific class of structures.

▶ Definition 32. For n ≥ 3, let Bn consist of an n-cycle and an n-line, i.e. Bn is an
{E}-structure with universe Bn := {b1, . . . , bn, c1, . . . , cn} and

EBn = {(bi, bi+1) | 1 ≤ i < n)} ∪ {(ci, ci+1) | 1 ≤ i < n} ∪ {(cn, c1)}.

▶ Lemma 33. Let ℓ ∈ N and φ ∈ GF(inc) with lr(φ) ≤ ℓ. Let B2ℓ+4 be as defined in
Definition 32 and let TC := {x 7→ cℓ+2} and TL := {x 7→ bℓ+2} be two teams with domain
{x} consisting of just one assignment each. Then

B2ℓ+4, TC |= φ ⇔ B2ℓ+4, TL |= φ.

Proof. If we can show that the prerequisites of Lemma 31 are fulfilled in both directions, we
are done. Obviously, both TC and TL consist of only one (ℓ+1)-local cluster, for which we only
have to show that there is an isomorphism ι : n(TC , ℓ+1) → n(TL, ℓ+1) so that ι(cℓ+2) = bℓ+2.
We notice that n(TC , ℓ+ 1) = {c1, . . . , c2ℓ+3} and n(TL, ℓ+ 1) = {b1, . . . , b2ℓ+3}. It is then
straightforward to check that ι(ci) = bi fulfils the requirements. ◀

▶ Theorem 34. GHTL+ ̸⊆ GF(inc).

Proof. In Lemma 33, we saw that there cannot be a formula separating Bn, TL from Bn, TC
for all n ∈ N. However, there is such a formula in GHTL+, namely

φ(x) :=↓xX(∃gyz(Eyz∧ ↓yzY (∃gw(Ezw ∧ Y zw) ∧ ∃guv(Euv ∧ Y uv ∧Xu)))),

CSL 2024

48:14 Guarded Hybrid Team Logics

which is always satisfied by TC but not by TL. After binding the starting team to X, we
move to a binary team Tyz with the property that for each edge in Tyz, we can move one
step further on the graph and still be in Tyz. This can only be the case if Tyz consists exactly
of all edges of the cycle. We bind this team and then move to another team Tuv that may
only consist of edges on the cycle where the first node is in X. This can only be possible if
the vertex in the original team was on the cycle. ◀

5.2.2 νGF+ ̸⊆ GHTL+

This section builds upon the previous one. In particular, we want to provide an inexpressibility
result for GHTL+ similar to Lemma 31. All the observations about local behaviour in guarded
logics still apply, but we now have to account for the fact that teams can be bound with ↓
and then “carried” through global moves. To handle this, we can make use of the fact that
these bound teams appear only positively, which means that a subsentence is still satisfied
when replacing bound teams by supersets.

▶ Lemma 35. Let τ = σ ∪ σ+ be a signature and l ∈ N. Let A be a σ-structure and let
A1, A2 be expansions of A to τ so that for all R ∈ σ+, we have RA1 ⊆ RA2 . Let T1 ⊆ T2
be teams in A2 such that T1 is an (l + 1)-local cluster in T2 (with respect to A2) and for
every (l + 1)-local cluster C2 in T2, there is a (l + 1)-local cluster C1 in T1 ⊆ T2 so that
A1, C1 ≃l+1 A2, C2.
Let φ ∈ GHTL+ be a formula with locality rank lr(φ) ≤ l such that all relations in σ+ appear
only positively. Then A1, T1 |= φ implies A2, T2 |= φ.

▶ Note. Even though local clusters are supposed to capture the intuition of locally isolated
partitions, the union of two or more disjoint local clusters is still a local cluster and a union
of local isomorphisms is still a local isomorphism.

Proof of Lemma 35. Overall, the proof is very similar to the proof of Lemma 31. Concerning
local behaviour, it is identical except for the case φ =↓xRψ. Here we need to show that
(A1, T1(x)), T1 |= ψ implies (A2, T2(x)), T2 |= ψ. If we can show that (A1, T1(x)), T1 and
(A2, T2(x)), T2 satisfy the preconditions of the lemma, we are done by induction.

First, we notice that T1(x) ⊆ T2(x) because T1 ⊆ T2.
T1 is still an (l + 1)-local cluster in T2: else, the neighbourhoods of T1 and T2 \ T1 in
(A2, T2(x)) would overlap. This means there is a short path from T1 to T2, i.e. a tuple of
guarded sets (G1, . . . , Gn) so that n ≤ 2l+ 2, G1 ∈ T1(X) and Gn ∈ T2(X) \ T1(X) with
dom(T2) = dom(T1) = X. We can assume that this path is minimal, which in particular
means that no Gi is guarded by T2(x) for 1 ≤ i < n. But this means this path would
already exist in A2 without the expansion by T2(x), and T1 would not have been a cluster
in T2 in the first place.
The same argument can be extended to all other clusters in T2 and T1 in the sense that
they still are clusters after the expansion, so we can keep the correspondence of clusters
between T1 and T2.
For every pair of corresponding cluster A1, C1 ≃l+1 A2, C2, with local isomorphism
(ι, π), we have to show (A1, T1(x)), C1 ≃l+1 (A2, T2(x)), C2. For this, it suffices to
show that for all tuples a with [a] ⊆ n(C1, l + 1) we have a ∈ T1(x) if and only if
ι(a) ∈ T2(x). But a ∈ T1(x) if and only if there is a t1 ∈ T1 with a = t(x), so
ι(a) = ι(t1(x)) = π(t1)(x) ∈ C2(x) ⊆ T2(x) (the other direction is similar).

M. Tritschler 48:15

As soon as we reach a subsentence ψ, we can ignore the team, which leaves the interpret-
ations of relations in σ+ as the only remaining difference between A1 and A2. But these
relations only appear positively, and all interpretations of these relations in A2 are supersets
of the interpretations in A1. So any evaluation that satisfies ψ in A1 can be applied to A2 as
well. ◀

▶ Lemma 36. Let ℓ ∈ N and φ ∈ GHTL+ with lr(φ) ≤ ℓ. Let B2ℓ+4 be as defined in
Definition 32 and let TB := {x 7→ bℓ+2, x 7→ cℓ+2} and TC := {x 7→ cℓ+2} be two teams with
domain {x}. Then

B2ℓ+4, TC |= φ ⇒ B2ℓ+4, TB |= φ.

Proof. Again, it is enough to show that Lemma 35 is applicable. We assume σ+ = ∅. We
have TC ⊆ TB and each assignment in TB is its own (ℓ+ 1)-local cluster, both of which are
locally isomorphic to the cluster in TC . ◀

▶ Theorem 37. νGF+ ̸⊆ GHTL+.

Proof. Similar to the proof of Theorem 34, we provide a formula φ ∈ νGF+ in the required
format (see Proposition 8) that is satisfied by all (Bn, TC) but not by (Bn, TB):

φ := ∀gx(Rx → [gfpS,x ∃gy(Exy ∧ Sy)]x)

is satisfied in Bn if and only if all elements in the teams are part of the cycle, so exactly as
required. ◀

6 Closing Remarks

We have seen that guarded team logics bring together many desirable properties of guarded
logics and team logics. Hybrid team logics in particular not only offer a new perspective on
well-known team logics as seen in Section 3, we could also easily show in Corollary 21 that
the guarded variants are decidable and have the finite model property. In Section 5 we also
showed that positive guarded hybrid team logic provides an intermediate step in the hierarchy
of expressiveness between guarded inclusion logic and guarded positive greatest fixpoint logic.
An important ingredient for this was the separation of local and global behaviour of guarded
formulae, which we used to establish a strict hierarchy through Lemma 31 and Lemma 35.

It remains an open question whether GF(inc) ≡ GHTL+ for sentences. Further, the
expressiveness of downward closed guarded team logics like guarded dependence logic, was
largely set aside for this paper. This also extends to related questions, e.g. which fragments of
existential second order logic correspond to guarded independence logic and guarded hybrid
team logic, respectively. It might also be worthwhile to revisit basic design questions for
guarded team logics such as which notion of guardedness is appropriate in which contexts, or
what effect the addition of further propositional connectives would have.

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded frag-

ments of predicate logic. J. Philos. Log., 27(3):217–274, 1998. doi:10.1023/A:1004275029985.
2 Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn, J. F. A. K. van

Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic
and practical reasoning, pages 821–868. North-Holland, 2007. doi:10.1016/s1570-2464(07)
80017-6.

CSL 2024

https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1016/s1570-2464(07)80017-6
https://doi.org/10.1016/s1570-2464(07)80017-6

48:16 Guarded Hybrid Team Logics

3 William Ward Armstrong. Dependency structures of data base relationships. In Jack L. Rosen-
feld, editor, Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm,
Sweden, August 5-10, 1974, pages 580–583. North-Holland, 1974.

4 Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 1–10. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.26.

5 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. In Luca Aceto,
Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th
International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part II, volume 6756 of Lecture Notes in Computer Science, pages 356–367. Springer, 2011.
doi:10.1007/978-3-642-22012-8_28.

6 Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. Characterizing definability in
decidable fixpoint logics. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 107:1–107:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
107.

7 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/
CBO9781107050884.

8 Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Handbook of Modal Logic,
volume 3 of Studies in logic and practical reasoning. North-Holland, 2007. URL: https:
//www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/
vol/3/suppl/C.

9 Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. In Jeffrey D. Ullman and Alfred V. Aho, editors,
Proceedings of the ACM Symposium on Principles of Database Systems, March 29-31, 1982,
Los Angeles, California, USA, pages 171–176. ACM, 1982. doi:10.1145/588111.588141.

10 Marco A. Casanova and Vânia Maria Ponte Vidal. Towards a sound view integration meth-
odology. In Ronald Fagin and Philip A. Bernstein, editors, Proceedings of the Second ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, March 21-23, 1983, Colony
Square Hotel, Atlanta, Georgia, USA, pages 36–47. ACM, 1983. doi:10.1145/588058.588065.

11 Haim Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics,
pages 105–135. Elsevier, 1982. doi:10.1016/S0049-237X(08)71879-2.

12 Pietro Galliani. Inclusion and exclusion dependencies in team semantics - on some logics of
imperfect information. Ann. Pure Appl. Log., 163(1):68–84, 2012. doi:10.1016/j.apal.2011.
08.005.

13 Pietro Galliani and Lauri Hella. Inclusion logic and fixed point logic. In Simona Ronchi Della
Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy, volume 23 of LIPIcs, pages 281–295. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.281.

14 Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving
probabilistic independence. Inf. Comput., 91(1):128–141, 1991. doi:10.1016/0890-5401(91)
90077-F.

15 Valentin Goranko. Temporal logic with reference pointers. In Dov M. Gabbay and Hans Jürgen
Ohlbach, editors, Temporal Logic, First International Conference, ICTL ’94, Bonn, Germany,
July 11-14, 1994, Proceedings, volume 827 of Lecture Notes in Computer Science, pages
133–148. Springer, 1994. doi:10.1007/BFb0013985.

16 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
doi:10.2307/2586808.

https://doi.org/10.1109/LICS.2010.26
https://doi.org/10.1109/LICS.2010.26
https://doi.org/10.1007/978-3-642-22012-8_28
https://doi.org/10.4230/LIPIcs.ICALP.2017.107
https://doi.org/10.4230/LIPIcs.ICALP.2017.107
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://doi.org/10.1145/588111.588141
https://doi.org/10.1145/588058.588065
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.1016/0890-5401(91)90077-F
https://doi.org/10.1016/0890-5401(91)90077-F
https://doi.org/10.1007/BFb0013985
https://doi.org/10.2307/2586808

M. Tritschler 48:17

17 Erich Grädel, Colin Hirsch, and Martin Otto. Back and forth between guarded and modal
logics. ACM Trans. Comput. Log., 3(3):418–463, 2002. doi:10.1145/507382.507388.

18 Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In Alexandru Baltag
and Sonja Smets, editors, Johan van Benthem on Logic and Information Dynamics, pages
3–31. Springer, 2014. doi:10.1007/978-3-319-06025-5_1.

19 Erich Grädel and Martin Otto. Guarded teams: The horizontally guarded case. In Maribel
Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Science
Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages 22:1–
22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CSL.
2020.22.

20 Erich Grädel and Jouko A. Väänänen. Dependence and independence. Stud Logica, 101(2):399–
410, 2013. doi:10.1007/s11225-013-9479-2.

21 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantical phenomenon.
In Jens Erik Fenstad, Ivan T. Frolov, and Risto Hilpinen, editors, Logic, Methodology and
Philosophy of Science VIII, volume 126 of Studies in Logic and the Foundations of Mathematics,
pages 571–589. Elsevier, 1989. doi:10.1016/S0049-237X(08)70066-1.

22 W. Hodges. Compositional semantics for a language of imperfect information. Logic Journal
of the IGPL, 5(4):539–563, 1997. doi:10.1093/jigpal/5.4.539.

23 Neil Immerman. Relational queries computable in polynomial time. Inf. Control., 68(1-3):86–
104, 1986. doi:10.1016/S0019-9958(86)80029-8.

24 Juha Kontinen and Ville Nurmi. Team logic and second-order logic. In Hiroakira Ono,
Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and
Computation, 16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009.
Proceedings, volume 5514 of Lecture Notes in Computer Science, pages 230–241. Springer,
2009. doi:10.1007/978-3-642-02261-6_19.

25 Juha Kontinen and Jouko A. Väänänen. On definability in dependence logic. J. Log. Lang.
Inf., 18(3):317–332, 2009. doi:10.1007/s10849-009-9082-0.

26 Martin Lück. Team logic: axioms, expressiveness, complexity. PhD thesis, University of
Hanover, Hannover, Germany, 2020. URL: https://www.repo.uni-hannover.de/handle/
123456789/9430.

27 Martin Otto. Highly acyclic groups, hypergraph covers, and the guarded fragment. J. ACM,
59(1):5:1–5:40, 2012. doi:10.1145/2108242.2108247.

28 Arthur Prior. Past, Present and Future. Oxford,: Clarendon P., 1967.
29 Jouko A. Väänänen. Dependence Logic - A New Approach to Independence Friendly Logic,

volume 70 of London Mathematical Society student texts. Cambridge University Press, 2007.
URL: http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE.

A Proposition 13: Negative and Full Hybrid Team Logic

We outline a proof for Proposition 13. In both cases, one part of the equivalence is already
shown in Lemma 10. The other part uses syntactic induction, which poses one particular
challenge: when we evaluate a formula that contains binders, we may accumulate bound
relations over the course of this evaluation. In the proof of Theorem 11, the translation from
φ to φ∗ “records” each change of the team using fixpoints, which automatically makes the
bound teams available if needed. Therefore, we do not have to deal with the afromentioned
accumulation in the induction.

In the proofs of Proposition 13 (and also if we wanted to prove HTL+ ⊆ FO(inc) directly),
this strategy is not available. Instead, we want to save bound teams over fresh free variables
and refer to them using exclusion (or inclusion) atoms. This results in a slightly more general
statement.

CSL 2024

https://doi.org/10.1145/507382.507388
https://doi.org/10.1007/978-3-319-06025-5_1
https://doi.org/10.4230/LIPIcs.CSL.2020.22
https://doi.org/10.4230/LIPIcs.CSL.2020.22
https://doi.org/10.1007/s11225-013-9479-2
https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-3-642-02261-6_19
https://doi.org/10.1007/s10849-009-9082-0
https://www.repo.uni-hannover.de/handle/123456789/9430
https://www.repo.uni-hannover.de/handle/123456789/9430
https://doi.org/10.1145/2108242.2108247
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE

48:18 Guarded Hybrid Team Logics

▶ Theorem 38. Let σ be a signature and Γ be a set of relational variables with σ ∩ Γ = ∅.
Let (xX)X∈Γ be a family of pairwise disjoint tuples of variables such that |xX | is equal to the
arity of X, and let y be a tuple of additional fresh variables.

For every φ(x,Γ) ∈ HTL− so that all X ∈ Γ appear only negatively, there is a
φ+(x, (xX)X∈Γ) ∈ FO(exc) such that

(A, (XA)X∈Γ), T |= φ(y,Γ) ⇔ A, T

[
XA

xX

]
X∈Γ

|= φ+(y, (xX)X∈Γ).

Proof. Literals in σ, ∧, and quantification are straightforward. If φ = ¬Xy for some X ∈ Γ,
we use φ+ = (xX⊥y) as both formulae are satisfied if and only if T (y) ∩XA = ∅. This leaves
disjunctions and binders. In both cases, we make use of the fact that we may use dependence
atoms because FO(exc) ≡ FO(exc, dep).

If φ = α ∨ β, let

φ+ = ∃zz′ww′(=(y, zz′) ∧ =(y, ww′) ∧ (z = z′ ∨ w = w′)
∧ (z ̸= z′ ∨ (z = z′ ∧ α+)) ∧ (w ̸= w′ ∨ (w = w′ ∧ β+))).

In short, a team S satisfies φ+ if and only if it can be split into two subteams Sα∪Sβ = S

so that Sα satisfies α∗ and Sβ satisfies β∗. In particular, this split only depends on
the assignments to y, so if S has the form S↾y ×S′ with dom(S′) = dom(S) \ [y], the
subteams have the form Sα↾y ×S′ and Sβ↾y ×S′.
Because y and all xX are supposed to be disjoint, T

[
XA

xX

]
X∈Γ

has this form and we

have A, T
[
XA

xX

]
X∈Γ

|= φ+ if and only if there is some split Tα ∪ Tβ = T such that

A, Tα
[
XA

xX

]
X∈Γ

|= α+ and A, Tβ
[
XA

xX

]
X∈Γ

|= β+. By induction, this is equivalent to
A, Tα |= α and A, Tβ |= β, which is equivalent to A, T |= φ as required.
If φ =↓y′Y ψ(y,Γ, Y) for some [y′] ⊆ [y], let

φ+ = ∀xY ∃zz′(=(xY , zz′) ∧ ((z = z′ ∧ ψ+(y, (xX)X∈Γ, xY)) ∨ (z ̸= z′ ∧ (xY |y′)))).

Similar to the above case, a team S satisfies φ+ if and only if there is a superset S′ of
S(y′) so that S

[
S′

xY

]
satisfies ψ+. (†)

Applying (†) in one direction, if A, T
[
XA

xX

]
X∈Γ

|= φ+, there is a superset T ′ of T (y′) so

that A, T
[
XA

xX

]
X∈Γ

[
T ′

xY

]
|= ψ+. Because exclusion logic is downward closed, this implies

A, T
[
XA

xX

]
X∈Γ

[
T (y′)
xY

]
|= ψ+, which by induction is equivalent to (A, (XA)X∈Γ, T (y′)), T |=

ψ. Using the definition of binders, we get (A, (XA)X∈Γ), T |= φ as required.
For the other direction, we can trace the same steps backwards, except for the one using
downward closure. Considering (†), we know that A, T

[
XA

xX

]
X∈Γ

[
T (y′)
xY

]
|= ψ+ directly

implies A, T
[
XA

xX

]
X∈Γ

|= φ+ and we are done. ◀

▶ Theorem 39. Let σ be a signature and Γ be a set of relational variables with σ ∩ Γ = ∅.
Let (xX)X∈Γ be a family of pairwise disjoint tuples of variables such that |xX | is equal to the
arity of X, and let y be a tuple of additional fresh variables.

For every φ(x,Γ) ∈ HTL there is a φ#(x, (yX)X∈Γ) ∈ FO(inc, exc) such that

(A, (XA)X∈Γ), T |= φ(y,Γ) ⇔ A, T

[
XA

xX

]
X∈Γ

|= φ#(y, (xX)X∈Γ).

M. Tritschler 48:19

Proof. Again, ordinary literals, ∧, and quantification is straightforward. Negative literals in
Γ and ∨ are exactly as in the proof above, which does not rely on any properties that are
specific to FO(exc). This leaves binders.

In the proof above, we approximated the bound team with a superset, which was sufficient
because of downward closure. Here, we can identify the team directly using both inclusion
and exclusion atoms. So if φ =↓y′Y ψ(y,Γ, Y) for some [y′] ⊆ [y], let

φ# = ∀xY ∃zz′(=(xY , zz′) ∧ ((z = z′ ∧ (xY ⊆ y′) ∧ ψ#) ∨ (z ̸= z′ ∧ (xY |y′)))).

A team S satisfies φ# if and only if S
[
S(y′)
xY

]
satisfies ψ#. With that, we can adapt the above

proof to not require downward closure and are done. ◀

Proposition 13 follows from these theorems for Γ = ∅ and Lemma 10.

B Syntactic Definitions of Guarded Team Logics

Proof that for a given finite signature, every formula in guarded logics is expressible as a
formula in non-guarded logics:

▶ Lemma 40. Let σ be a finite signature. Let L be a first-order team logic and let GL be
the guarded variant in the sense of Definition 16, i.e. quantification is replaced by guarded
quantification. Then for all φ ∈ GL there is a φσ ∈ L so that for all σ-structures A with
team T we have

A, T |= φ ⇔ A, T |= φσ.

Proof. It suffices to show that quantification is replaceable. For this, we use an auxilliary
formula Gσ(x) ∈ FO that is satisfied by a team T if and only if T (x) is guarded. With this,
for all formulae ψ with free(ψ) = [xy], we have

∃gxψ ≡ ∃x(Gσ(xy) ∧ ψσ) and ∀gxψ ≡ ∀x(¬Gσ(xy) ∨ (Gσ(xy) ∧ ψσ),

where ¬Gσ(xy) is the negated formula in negation normal form. As Gσ is in FO and
therefore flat, any formula with the same purpose for GF can be used (see for example [17,
Section 3]). ◀

In particular, this proves that the properties of Proposition 6 transfer to their guarded
variants, which we show for union-closed logics as an example.

▶ Lemma 41. Let L be a union-closed team logic and GL be the guarded variant of L. Then
GL is also union-closed.

Proof. Let φ ∈ GL, and let A be a σ-structure with teams T1 and T2 such that A, T1 |= φ

and A, T2 |= φ. By Lemma 40, there exists a φσ ∈ L that is equivalent to φ on σ-structures,
so A, T1 |= φσ and A, T2 |= φσ. The union-closure of L yields A, T1 ∪ T2 |= φσ and therefore
A, T1 ∪ T2 |= φ as required. ◀

We see that this same strategy can be applied to all properties in Proposition 4.

CSL 2024

48:20 Guarded Hybrid Team Logics

B.1 A Note on Structures with Infinite Signature
Over infinite signatures, there are formulae in GTL that cannot have an equivalent formula
in FO with team semantics, which we prove by giving a counterexample:

Let σ = {E1, E2, . . .} consist of infinitely many binary relations, and let A be a σ-structure
with universe N × {0, 1} and ((n, b), (m, c)) ∈ Ei if and only if n = m = i and b ̸= c, i.e. each
relation consist of exactly one (symmetric) edge and each element in the universe has exactly
one partner. The sentence φ := ∀gx∃gy(x ̸= y) is satisfied if and only if each element has
a partner, so it is satisfied in A, but not in any reduct of A. But as we know, any formula
ψ ∈ FO can only contain a finite set of relations σψ ⊂ σ, and is therefore satisfied in A if
and only if it is satisfied in the reduct of A to σψ. Therefore, ψ cannot be equivalent to φ.

B.2 The Standard Guarded Fragment with Team Semantics
We take a closer look at GF with team semantics, i.e. FO with team semantics where each
quantification in a formula is accompanied by a guard that only consists of one atom (see [1]).
We provide an example for a property that is expressible in GTL(inc), but not in GF(inc). In
GTL(inc), the sentence φ := ∃gxy((Exy ∨ Fxy) ∧ (y ⊆ x)) is satisfied by a (directed) graph
with coloured edges if and only if there is an infinite walk along E- and F -edges. This is
impossible to express in GF(inc), as can be seen by comparing the following two structures.

Let A be a structure with universe A = {(n,m) ∈ N × N | m ≤ n} and relations
EA := {((n, i), (n, i+ 1)) | i ≡ 0 mod 2} and FA := {((n, i), (n, i+ 1)) | i ≡ 1 mod 2}, i.e.
A consists of finite paths of increasing length that alternate between E- and F -edges. Let B

be a structure with universe B := A ⊎ {∞} × N and relations similar to A so that we again
have an infinite number of alternating paths, but now including a path of infinite length. We
have B |= φ, but A ̸|= φ in GTL.

In both A and B, every E(F)-edge is disjoint from every other E(F)-edge. This means
that for every GF-guarded team T in one of the structures, T |= (x ⊆ y) if and only if
T |= x = y. Therefore, A and B can only be distinguished by a sentence in GF(inc) if they
can be distinguished by a sentence in GF. Due to flatness, this is only possible if they can
be distinguished by a sentence in the standard GF, which is known to be impossible.

C The Proof of Theorem 20 in Detail

C.1 Translations
In Table 1, we provide a detailed account of all translations used in the proof of Theorem 20.
For better readability, we use a few abbreviations:

Let x, y, z be tuples. If [y] ⊆ [x], we use α(y) ⊆ β(x) as an abbreviation for ∀gy(α(y) →
∃gz(β(x))) with [x] = [y] ⊎ [z]. If [x] ⊆ [y], we use α(y) ⊆ β(x) as an abbreviation for
∀gy(α(y) → β(x)). Correspondingly (α(y) = β(x)) := (α(y) ⊆ β(x)) ∧ (β(x) ⊆ α(y)).

C.2 Further Details
We provide a proper account of the model checking game that is referenced in the proof.

For all structures A, team T and φ ∈ GHTL, we can inductively define a model checking
game G(A, T, φ) as a two player game with perfect information. Player II (“Verifier”) wants
to show that A, T |= φ, while player I (“Falsifier”) tries to spoil it for II. During the game,
both players may move to positions (S, ψ)A with S being a team in A and ψ ∈ GHTL. The
starting position for the game G(A, T, φ) is (T, φ)A.

M. Tritschler 48:21

Table 1 Translations used in the proof of Theorem 20.

ψ = φ∗(ψ) :=

α(x) for some literal α in σ ∪ X (φ) Rψx ⊆ α(x)
ψ1(y1) ∧ ψ2(y2) with [x] = [y1] ∪ [y2] (Rψx = Rψ1y1) ∧ (Rψx = Rψ2y2)

ψ1(y1) ∨ ψ2(y2) with [x] = [y1] ∪ [y2] (Rψx ⊆ (Rψ1y1 ∨Rψ2y2))
∧ (Rψ1y1 ⊆ Rψx) ∧ (Rψ2y2 ⊆ Rψx)

∃gyϕ(xy) with [x] = free(ϕ) \ [y] ∀gx(Rψx ↔ ∃gyRϕxy)
∀gyϕ(xy) with [x] = free(ϕ) \ [y] ∀gx(Rψx ↔ ∀gyRϕxy)

↓xXϕ(xy) (Xx = Rψxy) ∧ (Rψxy = Rϕxy)

In any position (S, ψ)A, the rules of the game are as follows:

If ψ is a literal, II wins if A, S |= ψ, else I wins.

If ψ = ψ1 ∧ ψ2, then I decides whether the game proceeds from (S, ψ1)A or (S, ψ2)A.

If ψ = ψ1 ∨ ψ2, then II chooses a split S1 ∪ S2 = S and I decides whether the game
proceeds from (S1, ψ1)A or (S2, ψ2)A.

If ψ = ∃gxϕ, then II chooses a guarded update S′ of S and the game proceeds from
(S′, ϕ)A.

If ψ = ∀gxϕ, then let S′ be the universal guarded update of S and the game proceeds
from (S′, ϕ)A.

If ψ =↓xXϕ, then the game proceeds from (S, ϕ)(A,S(x)).
As we can see, the definition of the game mirrors the semantics of GHTL. As such, it is clear
that a winning strategy for II in the game G(A, T, φ) is equivalent to A, T |= φ.

In the proof, we use the fact that II has a winning strategy in the game G(A, T, φ(x)) if
and only if there is an expansion A∗ of A with RA∗

φ = T (x) so that A∗ |= φ∗. This strategy
is provided by the Rψ in the sense that each of the translations in Appendix C.1 corresponds
to a winning strategy in one of the positions of the game. For example, if II has a winning
strategy in position (RA∗

ϕ , ϕ)A, then A∗ |= ∀gx(Rψx ↔ ∃gyRϕxy) if and only if II has a
winning strategy in position (RA∗

ψ , ψ)A for ψ = ∃gyϕ(xy).
As already stated at the end of the proof, there are a few technical details that have to

be considered:

1. In general, the arity of Rψ should correspond to the number of free variables in ψ. If ψ is
a sentence, then Rψ would be 0-ary. We circumvent this by choosing Rψ to be unary.
This way, the winning strategy should include the position (∅, ψ)A if RA∗

ψ is empty, and
({∅}, ψ)A else. In the latter case, the specific interpretation of Rψ does not matter, as it
only serves as a distinction between the empty assignment {∅} and the empty team.

2. This also requires a modification of the translation in the case that ψ is a sentence that
starts with a quantification.
If ψ = ∃gxϕ(x), then φ∗(ψ) = ∃gyRψy → ∃gxRϕx.
If ψ = ∀gxϕ(x), then φ∗(ψ) = ∃gyRψy → ∀gxRϕx.
This prevents false positives by making sure that the interpretation of Rϕ is non-empty if
the interpretation of Rψ is non-empty.

CSL 2024

48:22 Guarded Hybrid Team Logics

D Proof of Lemma 31

Recall Lemma 31:
Let A be a σ-structure and l ∈ N. Let T1 and T2 be teams in A such that for every (l+ 1)-

local cluster C2 in T2, there is a (l+ 1)-local cluster C1 in T1 such that A, C1 ≃l+1 A, C2. Let
φ ∈ GF(inc) be a formula with locality rank lr(φ) ≤ l. Then A, T1 |= φ implies A, T2 |= φ.

Proof. We use syntactic induction.
For classical literals, 1-local isomorphisms imply atomic equivalence.
Inclusion atoms are also handled by 1-local isomorphism: we assume A, T1 |= (x ⊆ y)
and t ∈ T2. Then there is a 1-local cluster C2 in T2 containing t and a corresponding
1-local cluster C1 in T1 with bijection π from C1 to C2. We then find some t′ ∈ T1 so that
t′(y) = π−1(t)(x) by assumption. Because C1 is a 1-local cluster, we also have t′ ∈ C1
and by commutativity of the maps this yields π(t′)(y) = t(x).
Conjunctions are straightforward. For disjunctions, we show that every split T 1

1 ∪T 2
1 = T1

can be used to find a split T 1
2 ∪ T 2

2 = T2 that preserves the preconditions of the lemma.
For this, let C2 be a cluster in T2 and C1 be the corresponding cluster in T1 with local
isomorphism (ι, π). Clearly, C1

1 = C1 ∩ T 1
1 and C2

1 = C1 ∩ T 2
1 form a split of C1, and thus

C1
2 = π(C1

1) and C2
2 = π(C2

1) form a split of C2. Let T 1
2 be the union of all C1

2 and T 2
2

be the union of all C2
2 . Then T 1

2 ∪ T 2
2 = T2. For all i, j ∈ {1, 2}, Cji is a cluster in T ji and

A, Cj1 ≃l+1 A, Cj2 . By construction, we find a corresponding Cj1 for all Cj2 and are done.
For local universal quantification, the guarded universal update of each (l + 1)-local
cluster is still a l-local cluster, and the guarded universal update of two (l + 1)-locally
isomorphic clusters are still l-locally isomorphic.
For local existential quantification, we can argue similarly to the local universal case. For
any cluster C2 in T2, there might be several l + 1-locally isomorphic clusters C1

1 , C
2
1 , . . .

in T1 which might not be l-locally isomorphic in the update of T1 anymore. However, we
just have to update C2 in a way so that there is some corresponding cluster in the update
of T1, for which we can choose any of the possible candidates, e.g. C1

1 , and update C2
according to the image of C1

1 under the local isomorphism.
For global quantification, when evaluating a (sub)sentence, the current teams are irrelevant
and we have A, T1 |= φ if and only if A |= φ if and only if A, T2 |= φ. ◀

	p000-Frontmatter
	Preface
	Program Committee
	External Reviewers

	p001-Fernandez
	1 The Ackermann Award
	2 Citation
	2.1 Background to the thesis
	2.2 Contributions of the thesis
	2.3 Biographical sketch

	3 Jury
	4 Previous winners

	p002-TenCate
	p003-Gottlob
	p004-Konig
	p005-Kwiatkowska
	p006-Vardi
	p007-Accattoli
	1 Introduction
	2 Head and Leftmost Reductions and Normal Forms
	3 Multi Types, Head Reduction, and Bounds From Type Derivations
	4 Bounds From Derivations Via (Unitary) Shrinking
	5 Bounds from Types
	6 Dissecting Bounds From Types via Skeletons and Dry Judgements
	7 Bounds From Composable Types
	8 The Less Satisfying Head Case
	9 Conclusions

	p008-Acclavio
	1 Introduction
	2 Preliminary notions
	2.1 Derivations and coderivations

	3 Parsimonious Linear Logic
	4 Non-wellfounded Parsimonious Linear Logic
	4.1 From infinitely branching proofs to non-wellfounded proofs
	4.2 Consistency via a progressing criterion
	4.3 Recovering (weak forms of) regularity

	5 Continuous cut-elimination
	5.1 Approximating coderivations
	5.2 Domain-theoretic approach to continuous cut-elimination

	6 Relational semantics for non-wellfounded proofs
	7 Conclusion and future work

	p009-Ahvonen
	1 Introduction
	2 Preliminaries
	2.1 Discrete time series
	2.2 Modal substitution calculus MSC and Boolean network logic BNL
	2.3 Link to self-feeding circuits

	3 Arithmetic with BNL
	3.1 Integer arithmetic
	3.2 Floating-point arithmetic

	4 Descriptive complexity for general neural networks
	4.1 General neural networks
	4.2 Equivalence and time series problems
	4.3 From NN to BNL
	4.4 From BNL to NN

	5 Conclusion

	p010-Antonelli
	1 Introduction
	2 On the Enumeration of Complexity Classes
	3 Bounded Arithmetic and Polytime Random Functions
	3.1 From Arithmetic to Randomized Computation, Subrecursively
	3.2 Characterizing Polytime Random Functions

	4 Semantic Characterizations of BPP
	5 Provably BPP Problems
	6 Polynomial Zero Testing is Provably BPP
	7 On Jeřábek's Characterization of BPP
	8 Future Work
	9 Conclusion

	p011-Aristote
	1 Introduction
	2 Categorical approach to learning minimal automata
	2.1 Automata and languages as functors
	2.2 Factorization systems and the minimal automaton recognizing a language
	2.3 Learning

	3 The category of monoidal transducers
	3.1 Monoids
	3.2 Monoidal transducers as functors
	3.3 The initial and final monoidal transducers recognizing a function
	3.4 Factorization systems

	4 Active learning of minimal monoidal transducers
	5 Summary and future work
	A Why Vilar's algorithm is not enough for monoidal transducers
	B The learning algorithm

	p012-Badyl
	1 Introduction
	2 Preliminaries
	3 The WMSOU+tup logic
	4 Decidability of model-checking
	5 Expressivity

	p013-Balbiani
	1 Introduction
	2 A natural intuitionistic modal logic
	3 A bi-nested sequent calculus
	4 Termination and completeness for C_{FIK}
	5 Conclusion and future work
	A Appendix

	p014-Barbarossa
	1 Introduction
	2 A Bridge between Metric and Differential Aspects
	3 Tropical Polynomials and Power Series
	4 Tropical Semantics and First Order Effectful Programs
	5 Tropical Semantics of Higher-Order Programs
	6 On Tropical Power Series
	7 Lipschitz Meets Taylor
	8 Generalized Metric Spaces and #1 L-Modules
	8.1 #1 L-Modules and Cocomplete #1 L-Categories
	8.2 Exponential and Differential Structure of #1 LMod simeq#1 LCCat

	9 Related Work
	10 Conclusion and Future Work

	p015-Barbero
	1 Introduction
	2 Logics with causal multiteam semantics
	3 Expressive power of fragments of PCO
	3.1 Monic and signed monic probability sets: P^-, P, and P(cf)
	3.2 Signed binary probability sets: P(supset) and PCO

	4 Definability of probabilistic and dependence atoms
	5 Conclusion

	p016-Berardi
	1 Introduction: Higman's Lemma in Constructive Mathematics
	2 Lists, Words and Sequences
	2.1 Lists and Operations on Lists
	2.2 Alphabet, Words and Sequences
	2.3 Anticone and Slice of a Word

	3 Bars: Definition and Properties
	3.1 Quasi-orders, Labels, Well-founded Relations and Bars
	3.2 Basic Properties of Bars

	4 Higman's Lemma for Bars
	5 A Constructive Proof of Higman's Lemma for Bars
	5.1 Essential Properties of Wqo (bar)
	5.2 The Anticone of a Word is a Wqo (bar)
	5.3 A Decomposition of Finite Lists of Words over a Finite Language
	5.4 Proof of the Main Theorem

	p017-Blanc
	1 Introduction
	2 On graphs reachability and perturbated TMs
	2.1 Some considerations from complexity theory
	2.2 The case of Turing machines

	3 Embedding TMs into dynamical systems
	4 Discrete-Time Dynamical Systems
	4.1 The case of rational systems
	4.1.1 Robustness versus decidability and delta-decidability
	4.1.2 Complexity issues

	4.2 The case of computable systems
	4.2.1 Some basics of computable analysis
	4.2.2 Computable systems
	4.2.3 Complexity issues

	5 Relating robustness to drawability
	6 Continuous-time systems
	7 Other perturbations
	8 Conclusion and future work

	p018-Bordais
	1 Introduction
	2 Preliminaries and game forms
	3 Concurrent games
	3.1 Concurrent arenas and games
	3.2 Markov chains and sufficient condition for optimality

	4 Local environment and local game
	5 Local environment and global strategy
	5.1 Overview of the proof
	5.2 Extracting an environment function from a parity game
	5.3 Local operator
	5.4 Faithful coloring function
	5.5 Computing a completely faithful pair

	6 Discussion on positionally optimizable game forms

	p019-Brinke
	1 Introduction
	2 Semiring semantics
	3 m-turn Ehrenfeucht–Fraïssé games
	3.1 Soundness of the games and counting in semirings
	3.2 Completeness and incompleteness

	4 Characterising elementary equivalence
	5 The homomorphism game
	6 Conclusion

	p020-Clement
	1 Introduction
	2 Vanilla quantum circuits
	2.1 Graphical languages
	2.2 Vanilla quantum circuits and their equational theory
	2.3 Reasoning on quantum circuits
	2.4 Completeness

	3 Quantum circuits for isometries
	4 Quantum circuits with ancillae
	5 Quantum circuits with discard for completely positive map
	6 Concluding remarks
	A Derivations of the equations of QCold

	p021-Cruttwell
	1 Introduction
	2 Forward Tangent Categories and Differential Bundles
	3 Reverse Tangent Categories
	4 Some Theory of Reverse Tangent Categories
	5 Future Work

	p022-Das
	1 Introduction
	2 Preliminaries on (classical) modal logic
	2.1 Language and semantics
	2.2 Axiomatisations and Gödel-Löb logic
	2.3 Labelled calculi and the standard translation

	3 Recovering a proof theoretic account for GL
	3.1 A standard calculus for GL, via non-wellfounded proofs
	3.2 Soundness and completeness

	4 Recovering intuitionistic versions of GL from syntax and semantics
	4.1 An intuitionistic GL, via syntax
	4.2 An intuitionistic GL, via semantics

	5 Soundness
	6 From birelational models to Kripke predicate models
	7 Completeness of a multi-succedent calculus via determinacy
	8 Completeness of intlabGL via (partial) cut-elimination
	9 Conclusions

	p023-Dawar
	1 Introduction
	2 Preliminaries
	2.1 Generalized quantifiers
	2.2 CSP and polymorphisms

	3 Partial polymorphisms
	4 Pebble game for P-closed quantifiers
	5 Playing the game
	6 Conclusion

	p024-VanDijk
	1 Introduction
	2 Preliminaries
	3 Generalized symmetric strategy improvement
	4 Counterexample for worst-case complexity
	5 Adapted counterexample for generalization of symmetric strategy improvement
	6 Concluding the proof
	7 Discussion

	p025-Earnshaw
	1 Introduction
	1.1 Protocol Description
	1.2 Types for Message Passing
	1.3 Reasoning with Contexts
	1.4 The Produoidal Algebra of Monoidal Context
	1.5 Related Work
	1.6 Contributions

	2 Preliminaries: Profunctors and Dinaturality
	3 Parallel-Sequential Context
	3.1 Produoidal Categories
	3.2 Monoidal Contour of a Produoidal Category
	3.3 Produoidal Category of Spliced Monoidal Arrows
	3.4 Representable Parallel Structure

	4 Interlude: Normalization
	5 Monoidal Context: Mixing vartriangleleft and by normalization
	5.1 The Category of Monoidal Contexts
	5.2 The Normal Produoidal Algebra of Monoidal Contexts

	6 Monoidal Lenses
	6.1 The Normal Symmetric Produoidal Algebra of Monoidal Lenses
	6.2 Protocol Analysis

	7 Conclusions
	7.1 Further Work

	p026-Fischer
	1 Introduction
	2 Background in logic
	3 The original Specker-Blatter Theorem
	4 Previous limitations and extensions
	5 Main new results
	6 More details about C-finite and MC-finite sequences of integers
	7 Proving the reduction
	7.1 Introduction
	7.2 The base constructions
	7.3 Boolean connectives
	7.4 First order quantifiers
	7.5 Modular counting quantifiers
	7.6 Monadic second order quantifiers

	8 Handling relations of other arities
	8.1 Nullary relations and a many-one version of the reduction
	8.2 Handling higher arity relations and extended logics

	9 An FOL-definable class C where f_{C}(n) is not MC-finite
	9.1 Using one hard-wired constant
	9.2 The first construction
	9.3 Setting up and referring to an order over the vertex pairs
	9.4 Making the ordered pairs correspond to an iterated matching
	9.5 Adapting the example to other primes
	9.6 Reducing the example further to have a single relation

	10 Conclusions and open problems

	p027-Fluck
	1 Introduction
	2 Preliminaries
	3 Graph Decompositions Accounting for Treewidth and Treedepth Simultaneously
	3.1 Four Characterisations for {T_{q}^{k}}
	3.2 Separating T_{q}^{k} from TW_k cap TD_q Syntactically

	4 Homomorphism Indistinguishability
	4.1 Homomorphism Indistinguishability over T_{q}^{k} is C^k_q-Equivalence
	4.2 Guarded Fragments
	4.3 Separating T_{q}^{k} from TW_{k-1} cap TD_q Semantically

	5 Outlook

	p028-Fontanella
	1 Introduction
	2 Realizability algebras
	3 The theory ZFepsilon
	4 Construction of realizability models
	5 Reish Names and Pairing
	6 Relativization over transitive sets
	7 Realizing Inaccessibles
	8 Realizing Mahlo cardinals
	9 Extending Realizability to Classes
	10 Realizing measurable and Reinhardt cardinals
	11 Conclusion

	p029-Forster
	1 Introduction
	2 Preliminaries
	3 Oracle Computability and Turing Reducibility
	4 Enumeration Axiom for Synthetic Oracle Computability
	5 The Kleene-Post Theorem
	6 The Turing Jump
	7 The Arithmetical Hierarchy
	8 An Arithmetical Hierarchy of Classical Axioms
	9 Post's Theorem
	10 The Syntactic Arithmetical Hierarchy
	11 Conclusion

	p030-Goubault
	1 Introduction
	2 Two-level chromatic hypergraph logic 2CH
	2.1 Syntax
	2.2 Semantics
	2.3 Examples
	2.4 Safe and unsafe knowledge

	3 Axiomatics
	3.1 Playing with the logic 2CH
	3.2 Completeness

	4 Links to related work
	4.1 Equivalence with partial epistemic frames
	4.2 Translation from KB4_n to 2CH
	4.3 Correspondence with neighborhood frames

	5 Conclusion
	A Proofs
	A.1 Proof of Proposition 14
	A.2 Proof of Proposition 15
	A.3 Proof of Theorem 26

	p031-Grobler
	1 Introduction
	2 Preliminaries
	2.1 Finite and infinite words
	2.2 Regular and omega-regular languages
	2.3 Semi-linear sets
	2.4 Parikh-recognizable languages
	2.5 Graphs

	3 Parikh automata on infinite words
	4 Büchi-like characterizations
	4.1 Characterization of Büchi Parikh automata
	4.2 Characterization of {L _PA, Reg^omega}
	4.3 Characterization of L_PA, PA^omega and L_Reg, PA^omega

	5 Blind counter machines and epsilon-elimination
	5.1 Equivalence of blind counter machines with Büchi PA
	5.2 epsilon-elimination for Parikh automata

	6 Decision problems
	7 Conclusion

	p032-Gutierrez
	1 Introduction
	2 Preliminaries
	3 Characterising the core
	4 Decision problems
	5 Concluding remarks
	A Appendix: Proofs
	A.1 Proof of Theorem 16
	A.2 Proof of Theorem 14
	A.3 Proof of Theorem 19

	p033-Herrmann
	1 Introduction
	2 Preliminaries
	3 Syntax and Semantics of ωMSO⋈BAPA
	4 Mildly Extending ωMSO⋈BAPA Leads to Undecidability
	5 Transformation into Normal Form
	6 Parikh-Muller Tree Automata
	7 Decidability over Tree-Interpretable Classes of Structures
	8 Incorporating Two-Variable-Logics without Width Restrictions
	9 Showcase: Decidability of Tame Satisfiability of the Fully Enriched µ-Calculus with Global Presburger Counting
	10 Conclusion

	p034-Kozachinskiy
	1 Introduction
	2 Preliminaries
	3 Definition of Energy Games over Totally Ordered Groups
	4 Bi-positionality of Energy Conditions over Totally Ordered Groups
	5 Refuting Kopczyński's conjecture
	6 Discussing Conjecture 1

	p035-Laroussinie
	1 Introduction
	2 Model and Logic
	2.1 Kripke Structures and Labelled Executions
	2.2 Syntax and (Structure) Semantics of QLTL

	3 What can we express with QLTL?
	4 Model checking
	4.1 The model-checking problem
	4.2 Upper bound for the QLTL model-checking problems
	4.3 Lower bound for the QLTL model-checking problems
	4.4 Relation with QCTL*

	5 Model Checking Paths and Flat Structures
	5.1 Path Model Checking
	5.2 Flat Kripke Structures and Path Schemas
	5.3 Stuttering Result for QLTL
	5.4 Algorithm for Flat Kripke Structures

	6 Conclusion

	p036-Lichter
	1 Introduction
	2 Preliminaries
	3 Homomorphisms to CFI-Like Graphs over Finite Abelian Groups
	4 Invertible-Map Equivalence and Homomorphism Indistinguishability
	5 Comonads
	6 Modular Homomorphism Indistinguishability
	7 Conclusion

	p037-Lucas
	1 Introduction
	2 Preliminaries
	3 Abstract analysis of confluence of rewriting modulo
	4 Equational Generalized Term Rewriting Systems
	5 Analysis of local confluence modulo E of - > _{cR^rm,E} with - > _{cR^rm}
	6 Analysis of local coherence modulo E of - > _{cR^rm,E}
	7 Conditional pairs for proving E-confluence of EGTRSs
	7.1 Logic-based conditional critical pairs
	7.2 Conditional variable pairs
	7.3 Down conditional critical pairs

	8 Proving and disproving E-confluence
	9 Related work
	10 Conclusion and future work
	A Conditional pairs for the main running example
	A.1 LCCP(cR) for cR in Example 1
	A.2 LCCP(E,cR) for cR in Example 1
	A.3 DCCP(cR) for cR in Example 1

	p038-Mahboubi
	1 Introduction
	2 Preliminaries
	2.1 Quivers
	2.2 Diagrams
	2.3 Category congruences, path relations and quotient categories
	2.4 A finite characterization of commutative diagrams
	2.5 Many-sorted logic, categorical interpretation

	3 A theory for diagrams in small categories
	3.1 Axioms
	3.2 Models

	4 Duality
	5 A theory for diagrams in abelian categories
	6 Decidability of the commerge problem
	7 Conclusion

	p039-Mogelberg
	1 Introduction
	1.1 Combining the Delay Monad With Other Effects

	2 Monads and Algebraic Theories
	2.1 Distributive Laws

	3 Guarded Recursion and the Delay Monad
	3.1 Algebraic Theories in Cubical Type Theory
	3.2 Multi-Clocked Guarded Recursion
	3.3 Guarded Recursive Types
	3.4 Encoding Coinductive Types

	4 Specific Combinations with Delay
	5 Parallel and Sequential Distribution of Operations
	5.1 Preservation of Equations

	6 Idempotent Equations
	7 Semi-Go Theorem: Up to Weak Bisimilarity
	8 Related Work
	9 Conclusion and Future Work

	p040-Moreau
	1 Introduction
	2 Languages of λ-terms
	3 Syntactic recognition implies semantic recognition
	4 Logical relations and the squeezing construction
	5 From well-pointed locally finite CCCs to finite sets
	6 From finite sets to λ-terms
	7 Regular languages
	8 Conclusion and future perspectives
	A The regular language of affine untyped terms
	B Squeezing structures

	p041-Mottet
	1 Introduction
	1.1 Contributions

	2 Definitions
	2.1 Promise Constraint Satisfaction Problems
	2.2 omega-categorical structures
	2.3 Ramsey expansions and canonical polymorphisms

	3 PCSPs solvable in First-Order Logic
	4 Local Consistency for PCSPs
	5 The Basic Linear Programming Relaxation
	6 The Affine Integer Relaxation
	7 Further connections to infinite-domain CSPs
	8 Conclusion

	p042-Nakata
	1 Introduction
	1.1 Various realizability methods and semi-classical axioms
	1.2 Least dense operators of logical and arithmetical formulas
	1.3 Contents of this paper

	2 Preliminary
	2.1 First-order intuitionistic arithmetic
	2.2 Interpretation of intuitionistic logic in a topos
	2.3 Local operators and subtoposes
	2.4 Preservation of logical operations and degrees of openness
	2.5 Preservation of arithmetical equality

	3 Least dense operators of arithmetical formulas
	3.1 Least dense operators
	3.2 Transparency and closedness
	3.3 Transparency yields least dense operators
	3.4 Iteration argument and least dense operators of semi-classical axioms

	4 Least operators in the effective topos
	4.1 Subobjects of NNO and local operators in Eff
	4.2 Turing degrees and least operators of semi-classical axioms

	5 Conclusion
	A Trp^{E} and Pi_3
	B Proof of Theorem 45 in the general case

	p043-Olimpieri
	1 Introduction
	2 Preliminaries
	3 A Resource Calculus for Representable Multicategories
	4 A Resource Calculus for Symmetric Representable Multicategories
	5 A Resource Calculus for Symmetric Closed Multicategories
	6 A Resource Calculus for Autonomous Multicategories
	7 Conclusion

	p044-Otten
	1 Introduction
	2 Higher-order Arithmetic
	2.1 Higher-order Logic
	2.2 Arithmetic

	3 Type Theory
	4 Interpreting Higher-order Arithmetic in Type Theory
	4.1 Interpreting Natural Numbers
	4.2 Interpreting Logical Connectives
	4.3 Interpreting Power Sets

	5 Interpreting Type Theory in Higher-order Arithmetic
	5.1 Sets in HAH
	5.2 Subsingletons, PERs, and Assemblies
	5.3 Modelling Type Constructors
	5.4 Interpretation

	6 Proof-irrelevant Conservativity
	7 Proof-relevant Conservativity
	7.1 Higher-order Logic of Partial Terms
	7.2 HAHP: Adding Primitive Application
	7.3 HAHPε: Adding Computable Choice

	8 De Jongh's Theorem for Type Theory
	9 Conclusion and Future Work
	A Type Theory
	B Model
	C De Jongh's Theorem for HAH

	p045-Place
	1 Introduction
	2 Preliminaries
	3 Orbits
	4 Generalized unary temporal logic
	4.1 Definition
	4.2 Connection with unambiguous polynomial closure

	5 Algebraic characterization of TL (C)
	5.1 Statement
	5.2 Application to historical classes
	5.3 Proof of Theorem 12

	6 Natural restrictions of generalized unary temporal logic
	6.1 Connection with left and right polynomial closure
	6.2 Statements

	7 Conclusion

	p046-Stan
	1 Introduction
	2 Preliminaries
	3 Lossy Channel Games
	3.1 Lossy Channel
	3.2 Channel Operations
	3.3 Lossy Channel Arena
	3.4 Concurrent Actions and Strategies
	3.5 Semantics

	4 Verifying the Core
	5 The Zero-Sum case is Effective
	5.1 Regularity Properties of CSLCG
	5.2 Positive Reachability
	5.3 Almost-Sure Reachability

	6 Conjunction of Objectives
	7 Decidability of E-Core and A-Core
	8 Concluding Remarks

	p047-Sterling
	1 Introduction
	1.1 State and reference types: static and dynamic allocation
	1.2 Equational theories of dynamic storage: between local and global
	1.3 Semantic worlds and guarded models of higher-order store
	1.4 Univalent reference types and data abstraction in the heap

	2 A higher-order language with (univalent) reference types
	2.1 The equational theory of monadic general reference types
	2.2 The equational theory of univalent reference types

	3 Denotational semantics in univalent foundations
	3.1 Univalent impredicative synthetic guarded domain theory
	3.1.1 Impredicative subuniverses in univalent foundations
	3.1.2 The Hofmann–Streicher universe
	3.1.3 (Higher) synthetic guarded domain theory

	3.2 Models of univalent general reference types
	3.2.1 Worlds as univalent heap configurations
	3.2.2 A strong monad for general store
	3.2.3 The model of univalent reference types

	4 Models of guarded HoTT with impredicative universes
	5 Conclusions and future work

	p048-Tritschler
	1 Introduction
	2 First-Order Team Logic
	2.1 Basic definitions
	2.2 Team Atoms

	3 Hybrid Team Logics
	4 Guarded Team Logics
	4.1 Properties of Guarded Team Logics

	5 A Hierarchy of Union-Closed Team Logics
	5.1 GHTL^+equiv nu GF^+ on Sentences
	5.2 GF(inc) subsetneq GHTL^+ subsetneq nu GF^+ on Formulae
	5.2.1 GHTL^+ not subseteq GF(inc)
	5.2.2 nu GF^+ not subseteq GHTL^+

	6 Closing Remarks
	A Proposition 13: Negative and Full Hybrid Team Logic
	B Syntactic Definitions of Guarded Team Logics
	B.1 A Note on Structures with Infinite Signature
	B.2 The Standard Guarded Fragment with Team Semantics

	C The Proof of Theorem 20 in Detail
	C.1 Translations
	C.2 Further Details

	D Proof of Lemma 31

