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Abstract
We show that termination proofs by a version of the dependency pair method can be simulated by
semantic labeling plus multiset path orders. By incorporating a flattening technique into multiset
path orders the simulation result can be extended to the dependency pair method for relative
termination, introduced by Iborra et al. This result allows us to improve applicability of their
dependency pair method.
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1 Introduction

Arts and Giesl’s dependency pair method [4] and Zantema’s semantic labeling [29] are powerful
techniques for analyzing termination of term rewrite systems (TRSs). In this paper we show
that the former can be simulated by the latter combined with a restricted version of multiset
path orders [8, Definition 5] (also known as recursive path orders).

Let us give an informal outlook of the idea by means of examples. The first example is a
termination proof by the dependency pair method. Dependency pairs are rewrite rules that
represent dependencies of recursive function calls in a TRS. Termination of the TRS boils
down to the problem of finding a suitable well-founded algebra with interpretations that
weakly orient all rules in the TRS and strictly orient all dependency pairs.

▶ Example 1. We show the termination of the TRS for division of Peano numbers:

x − 0 → x s(x) − s(y) → x − y 0 ÷ s(y) → 0 s(x) ÷ s(y) → s((x − y) ÷ s(y))

There are three dependency pairs:

s(x) −♯ s(y) → x −♯ y s(x) ÷♯ s(y) → x −♯ y s(x) ÷♯ s(y) → (x − y) ÷♯ s(y)

Here −♯ and ÷♯ are fresh function symbols. Consider the algebra A comprising polynomial
interpretations over natural numbers:

0A = 0 sA(a) = a + 1 a −A b = a −♯
A b = a ÷A b = a ÷♯

A b = a
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13:2 Simulating Dependency Pairs by Semantic Labeling

Under the interpretations, all rules in the TRS are weakly oriented, and all dependency
pairs are strictly oriented. For instance, orientation of the last dependency pair is verified as
follows: sA(a) ÷♯

A sA(b) = a + 1 > a = (a −A b) ÷♯
A sA(b). Hence the termination is concluded

by the dependency pair method.

Semantic labeling is a transformation method that labels function symbols in rewrite
rules with values of their function arguments. Termination of the resulting TRS is equivalent
to that of the original TRS.

▶ Example 2 (continued from Example 1). The termination of the TRS R can also be shown
by semantic labeling. We use the same algebra A to label − and ÷ with values of their first
arguments. The resulting labeled TRS consists of the rewrite rules

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x −a y) ÷a s(y))

for all a ∈ N and the auxiliary rules x −a y → x −b y and x ÷a y → x ÷b y for all a, b ∈ N
with a > b. For instance, the label a + 1 in s(x) ÷a+1 s(y) is the value of s(x) in A when x is
assigned to a. The termination of this TRS is easily verified by the multiset path order with
the (quasi-)precedence ÷a+1 ≈ −a+1 ≻ ÷a ≈ −a ≻ s ≻ 0 for all a ∈ N.

In this paper we show that any termination proof by the dependency pair method can
be effectively simulated by the combination of semantic labeling and a multiset path order.
By incorporating a flattening technique (cf. [6]) in multiset path orders, this simulation
result can be extended to Iborra et al.’s dependency pair method for relative termination [15].
Exploiting the simulation result, we improve applicability of this method.

An obstacle to the simulation results is a discrepancy between the two formalisms: the
basic theorem of the dependency pair method is based on order pairs called reduction pairs,
while Zantema’s semantic labeling is based on well-founded algebras. We overcome this by
reformulating semantic labeling and multiset path orders in forms suited for order pairs.

Interestingly, prior to the seminal paper [4], Arts [3] proved a restricted version of
the dependency pair method by using Zantema’s semantic labeling [29]. This is the first
simulation result, and our work can be considered a revisit of the earlier attempt. This time
we use Geser’s generalized version [12]. Simulations by semantic labeling are not only of
theoretical/historical interest but also of practical interest. In fact, based on the simulation
result we relax a precondition of the result of Iborra et al. In addition, having proofs of the
dependency pair method in a different route might ease formalization in proof assistants or
extension to different rewrite formats.

The remaining part of the paper is organized as follows: In Section 2 we recall basic
notions for term rewriting and multiset path orders based on order pairs. In order to simulate
dependency pairs by Iborra et al. we introduce a variant of semantic labeling for relative
termination in Section 3. In Section 4 we show how Arts and Giesl’s dependency pair
method can be simulated by the combination of semantic labeling and multiset path orders.
In Section 5 we do the same for Iborra et al.’s dependency pair method, using a relative
termination criterion that originates from multiset path orders and flattening. Correctness
of the criterion is proved in Section 6. Exploiting this simulation result, we improve the
applicability of the dependency pair method by Iborra et al. in Section 7. Section 8 concludes
the paper by discussing experimental results and related work.
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2 Preliminaries

Throughout the paper, we assume familiarity with term rewriting [5, 23].

Term Rewriting

Let F be a signature and V a countable set of variables with F ∩ V = ∅. The set of all
terms built from F and V is referred to as T (F , V). When we need to indicate the arity of
a function symbol f , we write f (n) for f . A term t is a function application if t is of the
form f(t1, . . . , tn), and the root symbol f is denoted by root(t). The size |t| of a term t is
the number of function symbols and variables occurring in t. The set of function symbols or
variables occurring in a term t is denoted by Fun(t) or Var(t), respectively.

Let □ be a constant with □ /∈ F . Contexts are terms over F ∪ {□} that contain exactly
one □. The term resulting from replacing □ in a context C by a term t is denoted by C[t].
We write s Q t if there is a context C with s = C[t]. The strict part of Q is denoted by ▷. A
substitution is a mapping σ from variables to terms such that {x ∈ V | σ(x) ̸= x} is finite.
The application tσ of a substitution σ to a term t is inductively defined as follows:

tσ =
{

σ(t) if t is a variable
f(tσ1, . . . , tσn) if t = f(t1, . . . , tn)

We say that a substitution σ is grounding for a set T of terms if tσ is ground for all t ∈ T .
The grounding target T may be omitted when T is clear from the context. A pair (ℓ, r)
of terms is said to be a rewrite rule if ℓ is not a variable and every variable in r occurs in
ℓ. Rewrite rules (ℓ, r) are written as ℓ → r. A set of rewrite rules is called a term rewrite
system (TRS). Let R be a TRS. The relation →R is defined on terms as follows: s →R t if
there exist a rewrite rule ℓ → r ∈ R, a context C, and a substitution σ such that s = C[ℓσ]
and t = C[rσ] hold. In particular, when C = □ we may write s

ϵ−→R t, which indicates that
the rewriting happens at the root position. A term s is called a normal form with respect
to a relation ⇝ if there is no term t with s ⇝ t. The set of normal forms is denoted by
NF(⇝). The TRS R is said to be terminating if →R is well-founded. Relative termination
is a generalized notion of termination [11]. Given TRSs R and S, we write →R/S for the
relation →∗

S · →R · →∗
S . If →R/S is well-founded, we say that R is (relatively) terminating

with respect to S (or R/S is terminating).
A pair (≳, >) of a preorder and a strict order on the same set is called an order pair if

a > b holds whenever a ≳ · > · ≳ b. Here > need not be the strict pair of ≳. The order pair is
well-founded if > is well-founded. Relative termination is often shown by using well-founded
order pairs on terms. A relation ⇝ on terms is closed under contexts (or monotone) if
C[s]⇝ C[t] holds whenever s⇝ t and C is a context, and it is closed under substitutions if
sσ ⇝ tσ holds whenever s⇝ t and σ is a substitution. We say ⇝ has the subterm property
if s⇝ t whenever s▷ t. A relation closed under contexts and substitutions is called a rewrite
relation. A rewrite relation ≳ is a rewrite preorder if it is a preorder. A rewrite relation
> is a reduction order if it is a well-founded order. Moreover, the pair (≳, >) is called a
monotone reduction pair if in addition they form an order pair. Reduction pairs (≳, >) are
akin to monotone reduction pairs, but the only difference is that > may lack monotonicity.

▶ Proposition 3. Let R, S be TRSs. Then R/S is terminating if and only if there exists a
monotone reduction pair (≳, >) such that S ⊆ ≳ and R ⊆ >. ◀
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13:4 Simulating Dependency Pairs by Semantic Labeling

Ordered Algebras

Ordered algebras are key ingredients for constructing orders including ones for reduction
pairs. An F-algebra (or simply an algebra) is a pair A = (A, {fA}f∈F ), where A is a set
called a carrier, and fA is an n-ary function on A, called the interpretation function of a
function symbol f (n) ∈ F . A mapping from V to A is called an assignment for A. The
interpretation [α]A(t) of a term t under an assignment α is inductively defined as follows:

[α]A(t) =
{

α(t) if t is a variable
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

In this paper we are interested in algebras equipped with order pairs. Let A = (A, {fA}f∈F )
be an algebra with A a non-empty set and (≳, >) an order pair on A. The triple (A,≳, >)
is called an ordered algebra. We say that the ordered algebra is

weakly monotone if fA(a1, . . . , ai, . . . , an) ≳ fA(a1, . . . , b, . . . , an) for all f (n) ∈ F , argu-
ment positions 1 ⩽ i ⩽ n, and a1, . . . , an, b ∈ A with ai ≳ b;
well-founded if > is well-founded.

Remark that monotonicity with respect to > is not imposed on the interpretations fA. We
write s ≳A t if [α]A(s) ≳ [α]A(t) holds for all assignments α. Similarly, we write s >A t if
[α]A(s) > [α]A(t) for all assignments α. The following facts are known:

(≳A, >A) is an order pair and both ≳A and >A are closed under substitutions;
if A is weakly monotone then ≳A is closed under contexts; and
if A is well-founded then >A is well-founded.

Therefore, if A is weakly monotone and well-founded then (≳A, >A) is a reduction pair.

Multiset Path Orders

We use multiset path orders (MPOs) [8, Definition 5] based on precedence pairs, namely
order pairs on the signature. The definition employs multiset extensions of order pairs [25]
in a recursive way.

Let (≳, >) be a pair of relations. For multisets X and Y we write X ≳mul Y if there
are partitions X = {x1, . . . , xn} ⊎ X ′ and Y = {y1, . . . , yn} ⊎ Y ′ such that xi ≳ yi for all
1 ⩽ i ⩽ n, and for every y ∈ Y ′ there exists x ∈ X ′ with x > y. Furthermore, if in addition
X ′ ̸= ∅, we write X >mul Y . If (≳, >) is an order pair, so is (≳mul, >mul). Moreover, if > is
well-founded, so is >mul.

▶ Definition 4. Let (≿, ≻) be a precedence pair on F . The order pair (≿mpo, ≻mpo) of the
multiset path orders is inductively defined on terms over F as follows:

s ≻mpo t if s = f(s1, . . . , sm) and one of the following conditions holds.
1. si ≿mpo t for some 1 ⩽ i ⩽ m.
2. t = g(t1, . . . , tn), f ≻ g, and s ≻mpo tj for all 1 ⩽ j ⩽ n.
3. t = g(t1, . . . , tn), f ≿ g, and {s1, . . . , sm} ≻mul

mpo {t1, . . . , tn}.
s ≿mpo t if either s and t are the same variable, or s = f(s1, . . . , sm) and one of the
following conditions holds.

1. si ≿mpo t for some 1 ⩽ i ⩽ m.
2. t = g(t1, . . . , tn), f ≻ g, and s ≻mpo tj for all 1 ⩽ j ⩽ n.
3. t = g(t1, . . . , tn), f ≿ g, and {s1, . . . , sm} ≿mul

mpo {t1, . . . , tn}.
Here (≿mul

mpo, ≻mul
mpo) stands for the multiset extension of (≿mpo, ≻mpo).

A small remark is that the definition above is based on mutual recursion (cf. [26, Defini-
tion 4]). Basic properties of MPOs are readily proved.

▶ Theorem 5. For every well-founded precedence pair the induced order pair (≿mpo, ≻mpo)
is a monotone reduction pair. ◀
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3 Semantic Labeling for Relative Termination

We introduce semantic labeling for relative termination. As stated in the introduction, the
original version of semantic labeling [29, Theorem 8] (see also [23, Section 6.5.4]) employs
a well-founded algebra and labeling functions to reduce termination of a given TRS into
termination of the labeled TRS. Using the notion of relative rewriting, Geser [12] got rid of
the well-foundedness requirement from employed ordered algebras. Our variant of semantic
labeling is a straightforward adaptation of his result to our setting.

Let A = (A, {fA}f∈F ) be an algebra, {Lf }f∈F a family of non-empty subsets of A, and
{labf }f∈F a family of functions where labf is a mapping from An to Lf for each f (n) ∈ F .
The pair ({Lf }f∈F , {labf }f∈F ) (denoted by L in this paper) is called a labeling for A.
Elements in Lf are called labels. For each f (n) ∈ F and a ∈ Lf we introduce a fresh function
symbol fa if |Lf | > 1, and if Lf = {a} we reuse the original symbol, namely define fa = f .
The labeled signature {f

(n)
a | f (n) ∈ F and a ∈ Lf } is denoted by Flab. Note that, in our

formulation, symbols f not subject to labeling (i.e., |Lf | = 1) are still included in Flab. The
labeling function lab for terms t ∈ T (F , V) under an assignment α : V → A is defined as

lab(t, α) =
{

t if t is a variable
fa(lab(t1, α), . . . , lab(tn, α)) if t = f(t1, . . . , tn)

where in the second case a = labf ([α]A(t1), . . . , [α]A(tn)). The resulting term lab(α, t) is a
term over Flab. Let R be a TRS over F . The labeled TRS Rlab is defined as follows:

Rlab = {lab(ℓ, α) → lab(r, α) | ℓ → r ∈ R and α is an assignment}

▶ Example 6. Consider the one-rule TRS R = {f(f(x)) → f(g(f(x)))} and also consider the
following algebra A = ({0, 1}, {fA, gA}) and labeling L = ({Lf , Lg}, {labf , labg}):

fA(x) = 1, gA(x) = 0 Lf = {0, 1}, Lg = {0} labf(x) = x, labg(x) = x

The labeling results in the TRS Rlab = {f1(f0(x)) → f0(g(f0(x))), f1(f1(x)) → f0(g(f1(x)))}.

Our variant of semantic labeling employs weakly monotone algebras and weakly monotone
labelings. Let (A,≳, >) be an ordered algebra. We say that a labeling ({Lf }f∈F , {labf }f∈F )
is weakly monotone if labf (a1, . . . , ai, . . . , an) ≳ labf (a1, . . . , b, . . . , an) for all f (n) ∈ F ,
argument positions 1 ⩽ i ⩽ n, and a1, . . . , an, b ∈ A with ai ≳ b. We define the TRS of
decreasing rules with respect to a binary relation ⇝ on L as follows:

Dec(⇝) = {fa(x1, . . . , xn) → fb(x1, . . . , xn) | f (n) ∈ F and a, b ∈ Lf with a⇝ b}

Here x1, . . . , xn are pairwise different variables.
We are ready to state the main theorem of semantic labeling for relative termination. The

theorem speaks about weakly monotone algebras (A,≳, >) but actually their strict orders >

are irrelevant for this theorem. In other words, the theorem holds regardless of how > is
like. Therefore, for brevity we may write (A,≳) instead of (A,≳, >). The proof is found in
Appendix A.

▶ Theorem 7. Let R and S be TRSs and (A,≳) a weakly monotone algebra with R∪S ⊆ ≳A,
and let L be a weakly monotone labeling for (A,≳). Then R/S is terminating if and only if
Rlab/(Slab ∪ Dec(≳)) is terminating.

FSCD 2024



13:6 Simulating Dependency Pairs by Semantic Labeling

Note that until Section 4 we only use the theorem with S = ∅, which coincides with
Geser’s semantic labeling [12, Corollary 1]. With a small example we illustrate a termination
proof based on the theorem.

▶ Example 8 (continued from Example 6). Let ≳ be the quasi-order on {0, 1} with 1 ≳ 0. Then
(A,≳) and L are weakly monotone. Since the inequality fA(fA(a)) = 1 ≳ 1 = fA(gA(fA(a)))
holds for all a ∈ {0, 1}, the inclusion R ⊆ ≳A follows. The TRS Dec(≳) consists of the
four rules: Dec(≳) = {f0(x) → f0(x), f1(x) → f0(x), f1(x) → f1(x), g(x) → g(x)}. By
taking the MPO with the precedence f1 ≻ f0 ≻ g we obtain the inclusions Rlab ⊆ ≻mpo and
Dec(≳) ⊆ ≿mpo. Therefore, Rlab/Dec(≳) is terminating by Theorem 5. Hence, by applying
Theorem 7 we conclude termination of R.

The original statement of (quasi-model based) semantic labeling [29, Theorem 8] can
be seen as a special case of Theorem 7, which relies on termination rather than relative
termination. To see this, recall that a term rewrite system R ∪ S is terminating if and only
if R/S and S are terminating [11].

▶ Corollary 9 ([29, Theorem 8]). Let (A,⩾) be a weakly monotone well-founded algebra with
⩾ a partial order, L a weakly monotone labeling for (A,⩾), and R a TRS with R ⊆ ⩾A.
Then R is terminating if and only if Rlab ∪ Dec(>) is terminating.

Proof. By Theorem 7 termination of R is equivalent to that of Rlab/Dec(⩾). Because
→Dec(⩾) and →=

Dec(>) coincide, the latter is equivalent to termination of Rlab/Dec(>). Since
> is well-founded, Dec(>) is terminating. Therefore, Rlab/Dec(>) is terminating if and only
if Rlab ∪ Dec(>) is terminating. ◀

4 Simulating Dependency Pairs for Termination

We recall a basic form of Arts and Giesl’s dependency pair method. Let G be a subset of the
signature F . Given an n-ary function symbol f in G, we introduce a fresh n-ary function
symbol f ♯ called a marked symbol. The set of marked symbols is denoted by G♯. Given a
term t = f(t1, . . . , tn), we write t♯ for the term f ♯(t1, . . . , tn). For a TRS R the set DR of
defined symbols are defined by DR = {f | f(t1, . . . , tn) → r ∈ R}. The difference F \ DR is
denoted by CR, and the symbols in CR are called constructor symbols or just constructors.

▶ Definition 10. Let R be a TRS over the signature F and let G ⊆ F . The TRS DPG(R) over
F ∪ G♯ is defined by DPG(R) = {ℓ♯ → t♯ | ℓ → r ∈ R, r Q t, root(ℓ), root(t) ∈ G, and ℓ ⋫ t}.
The TRS DPDR(R) is abbreviated to DP(R), and its rules are called dependency pairs of R.

Note that the non-subterm condition ℓ ⋫ t is due to Dershowitz [9], and it was not
included in the original definition of DP(R) [4].

▶ Theorem 11 ([4, 13]). A TRS R is terminating if and only if R ⊆ ≳ and DP(R) ⊆ > for
some reduction pair (≳, >).

▶ Remark 12. Today the termination condition in the theorem is stated as finiteness of
(DP(R), R); see [13] for the definition. Whenever (P, R) is finite, the relation →∗

R and the
restriction of →+

P/R to R-terminating terms form a reduction pair; the restriction takes care
of the so-called minimality condition of chains. So finiteness and existence of a suitable
reduction pair are equivalent.
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For any weakly monotone well-founded algebra (A,≳, >) the induced order pair (≳A, >A)
forms a reduction pair. Conversely, for every reduction pair (≳, >) the ordered algebra
(A,≳, >) fulfills the desired properties where A is the term algebra (T (F ∪ D♯

R, V), {fA}f∈F )
defined by fA(t1, . . . , tn) = f(t1, . . . , tn). Therefore, in the remaining part of the paper we
investigate Corollary 13 below instead of Theorem 11.

▶ Corollary 13. A TRS R is terminating if and only if R ⊆ ≳A and DP(R) ⊆ >A for some
weakly monotone well-founded (F ∪ D♯

R)-algebra (A,≳, >). ◀

▶ Example 14. Example 1 is an example of termination proofs by Corollary 13. The algebra
A uses the standard orders on N, and its interpretations are weakly monotone. Therefore
(⩾A, >A) is a reduction pair. Since R ⊆ ⩾A and DP(R) ⊆ >A we conclude the termination
by Corollary 13.

We exemplify how proofs based on the dependency pair method can be simulated by
semantic labeling with MPOs, introducing a few necessary definitions.

▶ Definition 15. Let R be a TRS over the signature F and (A,≳, >) an ordered (F ∪ D♯
R)-

algebra on a carrier A. Fix an arbitrary element • ∈ A. We define the A-induced labeling
LA = ({Lf }f∈F , {labf }f∈F ) as follows:

Lf =
{

A if f ∈ DR

{•} otherwise
labf (a1, . . . , an) =

{
f ♯

A(a1, . . . , an) if f ∈ DR

• otherwise

We also define the precedence pair (≿, ≻), called A-induced precedence pair, on the labeled
signature as follows:

fa ≿ gb if either f, g ∈ DR and a ≳ b, or g ∈ CR
fa ≻ gb if either f, g ∈ DR and a > b, or f ∈ DR and g ∈ CR

So in the precedence pair, constructors are smaller than (labeled) defined symbols.

▶ Example 16 (continued from Example 14, see also Example 2). The A-induced labeling
gives the labeled TRS Rlab consisting of the rules

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x − y) ÷a s(y))

for all a ∈ N. The TRS Dec(⩾) is also the infinite set consisting of the rules

x −a y → x −b y x ÷a y → x ÷b y

for all a, b ∈ N with a ⩾ b. By Theorem 7 the termination of R follows if we show that of
Rlab/Dec(⩾). The A-induced precedence pair (≿, ≻) satisfies ÷a+1 ≈ −a+1 ≻ ÷a ≈ −a ≻
s ≻ 0 for all a ∈ N. Here f ≈ g stands for f ≿ g and g ≿ f . It is easy to see Rlab ⊆ ≻mpo
and Dec(⩾) ⊆ ≿mpo. Hence, R is terminating by Theorem 5.

Although a multiset path order is used in the last example, other path orders such as
lexicographic path orders (LPOs) [17] can also be used for showing termination of Rlab/Dec(≳).
In order to manifest this fact, we introduce a minimalistic termination criterion, inspired by
precedence termination (cf. [20, Lemma 1]).

▶ Definition 17. Let (≿, ≻) be a precedence pair and G ⊆ F . The relation ≻G on terms
is inductively defined as follows: s ≻G t if s = f(s1, . . . , sm), f ∈ F \ G, and one of the
following two conditions holds.

FSCD 2024



13:8 Simulating Dependency Pairs by Semantic Labeling

(1) s▷ t.
(2) t = g(t1, . . . , tn), f ≻ g, and s ≻G tj for all 1 ⩽ j ⩽ n.
The relation ≿G on terms is defined as follows: s ≿G t if s = f(t1, . . . , tn), t = g(t1, . . . , tn),
f ∈ F \ G, and f ≿ g.

Due to the minimalistic definition, rules like commutativity f(x, y) → f(y, x) cannot be
ordered by ≿G .

▶ Lemma 18. If s ≻G t or s ≿G t then s ≻mpo t or s ≿mpo t, respectively. ◀

In general, ≻G and ≿G do not form a monotone reduction pair. However, they give the
following simple criterion for relative termination.

▶ Proposition 19. Let (≿, ≻) be a well-founded precedence pair. Then R/S is terminating
if there exists a subset G of F such that R ⊆ ≻G and S ⊆ ≿G.

Proof. By Lemma 18 and Theorem 5. ◀

We establish the main result of this section, using Proposition 19 with G = CR. Note
that CR is included in Flab because LA do not label constructor symbols of R.

▶ Lemma 20. Suppose DP(R) ⊆ >A and G = CR, and consider the A-induced labeling and
the A-induced precedence (≿, ≻). If ℓ → r ∈ R then lab(ℓ, α) ≻G lab(t, α) for all subterms t

of r and assignments α.

Proof. Suppose ℓ → r ∈ R and r Q t. Let α be an assignment. We show lab(ℓ, α) ≻G lab(t, α)
by structural induction on t. Because ℓ → r is a rewrite rule, ℓ must be of form f(ℓ1, . . . , ℓm)
with f ∈ DR. If ℓ▷ t then lab(ℓ, α)▷ lab(t, α) and thereby lab(ℓ, α) ≻G lab(t, α). Otherwise,
t is not a variable because ℓ ▷ t follows from t ∈ Var(r) ⊆ Var(ℓ) and ℓ /∈ V. So suppose
t = g(t1, . . . , tn). By the induction hypothesis lab(ℓ, α) ≻G lab(tj , α) for all j ∈ {1, . . . , n}.
We have lab(ℓ, α) = fa(lab(ℓ1, α), . . . , lab(ℓm, α)) where a = f ♯

A([α]A(ℓ1), . . . , [α]A(ℓm)). We
distinguish two cases, depending on g.

If g /∈ DR then fa ≻ g. Therefore lab(ℓ, α) ≻G g(lab(t1, α), . . . , lab(tn, α)) = lab(t, α).
If g ∈ DR then ℓ♯ → t♯ ∈ DP(R) because of ℓ ⋫ t. From DP(R) ⊆ >A we obtain ℓ♯ >A t♯.
So by the definition of >A we obtain a > b for b = g♯

A([α]A(t1), . . . , [α]A(tn)), and thus
fa ≻ gb follows. Therefore lab(ℓ, α) ≻G gb(lab(t1, α), . . . , lab(tn, α)) = lab(t, α). ◀

▶ Theorem 21. Let R be a TRS and (A,≳, >) a weakly monotone well-founded algebra with
R ⊆ ≳A. The following statements hold for G = CR.
1. The A-induced labeling is a weakly monotone labeling for (A,≳).
2. The A-induced precedence pair (≿, ≻) is well-founded.
3. If DP(R) ⊆ >A then Rlab ⊆ ≻G.
4. Dec(≳) ⊆ ≿G.

Proof. The third claim follows from Lemma 20. The other claims are straightforward. ◀

Theorem 21 states that, given any termination proof by the basic dependency pair method
(Corollary 13), one can construct a corresponding termination proof by semantic labelling
(Theorem 7) and precedence-based termination (Proposition 19). This simulation result is
conceivable as an alternative proof for Theorem 11. While the standard correctness proof of
the dependency pair method relies on the notion of minimal non-terminating term [4], the
one via semantic labeling directly captures the decreasing measure (i.e., labels of defined
symbols) by recursive path orders such as MPOs and LPOs.
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We conclude the section by stating why we adopted Geser’s version of semantic labeling.
Since the original semantic labeling (Corollary 9) employs a weakly monotone well-founded
algebra, from a given reduction pair (≳, >) we need to construct a single well-founded partial
order that plays both roles of ≳ and >. Geser’s version resolves this discrepancy, hiding >

behind the relative termination condition of labeled systems.

5 Simulating Dependency Pairs for Relative Termination

Iborra et al. [15] developed a natural extension of the dependency pair method to relative
termination. We show that this extension can also be simulated by semantic labeling. First
we recall their main theorem.

▶ Definition 22. Let R and S be TRSs. We say that R dominates S if Fun(r) ∩ DR = ∅
for all ℓ → r ∈ S. Let |t|x denote the number of occurrences of a variable x in a term t.
A pair (ℓ, r) of terms is called non-duplicating if |ℓ|x ⩾ |r|x for all variables x, and a rule
ℓ → r is non-duplicating if (ℓ, r) is so. Finally, a TRS R is non-duplicating if every rule in
R is non-duplicating.

▶ Theorem 23 ([15, Theorem 2]). Suppose that a TRS R dominates a non-duplicating TRS
S. Then R/S is terminating if and only if DP(R) ⊆ >A and R ∪ S ⊆ ≳A for some weakly
monotone well-founded algebra (A,≳, >).

Theorem 23 is a generalization of the basic dependency pair method (Corollary 13), since
the empty TRS is non-duplicating and dominated by any TRS.

▶ Example 24. Recall the TRS R of division from Example 1. We show the relative
termination of R with respect to the TRS S = {rand(x) → x, rand(x) → rand(s(x))}.
Since the TRS S is non-duplicating and R dominates S, we may use Theorem 23 to show
termination of R/S. The set DP(R) consists of the three rules, see Example 1. Let (A,⩾, >)
be the weakly monotone well-founded algebra, where the carrier consists of ordinal numbers
below ω2 and the interpretations are given by the equations:

0A = 0 sA(a) = a + 1 randA(a) = a + ω a −A b = a −♯
A b = a ÷A b = a ÷♯ b = a

It is easy to verify R ∪ S ⊆ ⩾A and DP(R) ⊆ >A. For instance, the last rules in DP(R) and
S are oriented as the inequalities

sA(a) ÷♯
A sA(b) = a + 1 > a = (a −A b) ÷♯

A sA(b)
randA(a) = a + ω = a + 1 + ω = randA(sA(a))

hold for all ordinals a, b < ω2. Hence, R is terminating.

For showing an analog of Theorem 21 in a relative termination setting, from a given
reduction pair (⩾A, >A) we construct the A-induced labeling and precedence in the same way.
However, existing syntactical termination methods, such as precedence-based termination
(Proposition 19) and MPOs, are still incapable of showing termination of labeled systems
due to problematic rules in relative systems like rand(x) → rand(s(x)).

▶ Example 25 (continued from Example 24). Following the construction of Theorem 21, we
obtain the TRS Rlab consisting of

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x − y) ÷a s(y))
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for all ordinals a < ω2. The TRS Slab is the same as S since we do not label constructors,
and the TRS Dec(⩾) consists of

x −a y → x −b y x ÷a y → x ÷b y

for all ordinals a, b < ω2 with a ⩾ b. The inclusions Rlab ⊆ ≻mpo and Dec(⩾) ⊆ ≿mpo hold,
but Slab ⊆ ≿mpo does not. Actually, any monotone reduction pair (≳, >) satisfying the
subterm property ▷ ⊆ > is unable to orient Slab.

We overcome this problem by flattening inspired by [6] and [15, Definition 3]. For each
k ∈ N we introduce a fresh k-ary function symbol ck, called compound symbols. The set of
all compound symbols is referred to as Fc.

▶ Definition 26. Let G be a set of function symbols in F . The flattening TRS F(G) over the
signature F ∪ Fc consists of the rules f(x1, . . . , xn) → cn(x1, . . . , xn), c1(x) → x and

ck+n+1(x1, . . . , xk, cm(y1, . . . , ym), z1, . . . , zn) → ck+m+n(x1, . . . , xk, y1, . . . , ym, z1, . . . , zn)

for all k, m, n ∈ N and f (n) ∈ G. Since the TRS is terminating and confluent, every term t

admits exactly one normal form, which we denote by t↓G. Such a normal form is called a
flattened term. We abbreviate t↓G to t↓ whenever G is clear from the context.

▶ Example 27 (continued from Example 25). Let G = CR = {0, s, rand}. For example, the
term t = s(rand(0)) −ω+1 s(0) admits the following rewrite sequence of F(G):

s(rand(0)) −ω+1 s(0) → c1(rand(0)) −ω+1 s(0) → rand(0) −ω+1 s(0) →∗ c0 −ω+1 c0

Thus, we obtain t↓ = c0 −ω+1 c0.

▶ Example 28. To see what happens if binary symbols and constant symbols are flattened,
let us consider the signature F = {a(0), b(0), f(2)} and its subset G = {a, f} of F . The terms
f(f(a, x), a), f(f(a, x), b), f(f(b, x), b) are flattened into x, c2(x, b), c3(b, x, b), respectively.

Since flattening introduces compound symbols in Fc, we extend the A-induced precedence
pair (≿, ≻) on Flab by adjoining all compound symbols as minimal elements. To be precise,
the extended precedence pair (≿′, >′) is given by the following conditions:

f ≿′ g if f ≿ g or g ∈ Fc.
f ≻′ g if f ≻ g, or f ∈ Flab and g ∈ Fc.

Obviously, the pair (≿′, ≻′) is a precedence pair satisfying ≿ ⊆ ≿′ and ≻ ⊆ ≻′, and
well-founded if (≿, ≻) is so.

The key observation is that, any rewrite sequence of Rlab/Slab gives rise to a corresponding
rewrite sequence of (≿′

mpo, ≻′
mpo).

▶ Example 29 (again continued from Example 25). Consider the rewrite sequence:

s(rand(0)) −ω+1 s(0) →Rlab rand(0) −ω 0 →Slab rand(s(0)) −ω 0

Let G = CR = {rand, s, 0}. Flattening turns the rewrite sequence into the descending sequence
of MPO, namely c0 −ω+1 c0 ≻′

mpo c0 −ω c0 ≿′
mpo c0 −ω c0.

For formally discussing the correspondence above, we introduce a relative termination
criterion akin to Proposition 19 in Section 4. This criterion exploits the fact that s ≻G t

implies s↓G ≻′
mpo t↓G when R ⊆ ≻G . The proof is discussed in the next section.
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▶ Theorem 30. Let R and S be TRSs over a signature F . Then R/S is terminating if
there exist a well-founded precedence pair (≻,≿) and a subset G of F such that R ⊆ ≻G, S
is non-duplicating, and we have ℓ ≿G r or r ∈ T (G, V) for all ℓ → r ∈ S.

We arrive at the simulation result for the relative version of the dependency pair method.

▶ Theorem 31. Let R be a TRS and (A,≳, >) a weakly monotone well-founded algebra with
R ∪ S ⊆ ≳A. The following statements hold for G = CR.
1. The A-induced labeling is a weakly monotone labeling for (A,≳).
2. The A-induced precedence pair (≿, ≻) is well-founded.
3. If DP(R) ⊆ >A then Rlab ⊆ ≻G.
4. If S is non-duplicating then so is Slab.
5. If R dominates S then Rlab also dominates Slab.
6. Dec(≳) ⊆ ≿G.

Proof. Analogous to the proof of Theorem 21. ◀

Theorem 31 is indeed an analog of Theorem 21. Suppose that relative termination
is shown by the dependency pair method with a reduction pair (Theorem 23). Relative
termination of the labeled systems resulting from semantic labeling is shown by the precedence-
based termination criterion (Theorem 30). The employed labeling and precedence pair are
constructible from the reduction pair (Definition 15).

6 Multiset Path Orders with Flattening

This section is devoted to proving Theorem 30, which is obtained as a corollary of two
key theorems. Let (≿, ≻) be a well-founded precedence pair on F , (≿′, ≻′) the extended
precedence pair (introduced in Section 5), and G a set of function symbols that are flattened.
Hereafter, we consider the signature F ∪ Fc until the end of the section. For example,
substitutions are those of terms over F ∪ Fc. Moreover, for brevity we omit the prime
symbol ′ from ≿′ and ≻′.

The first key theorem states that s →R t implies s↓ ≻mpo t↓, when R ⊆ ≻G . To this
end, we show that the relation ≻G is closed under substitutions and flattening. The point is
that, in contrast to MPOs, Definition 17 demands a greater term to be headed by a function
symbol that is not flattened. For example, when σ = {x 7→ a} and f(2), a(0) ∈ G, it holds
that f(x, y) >mpo y by any MPO >mpo but f(x, y)σ↓ = y = yσ↓.

▶ Lemma 32. If s ≻G t then sσ ≻G tσ for all substitutions σ.

Proof Sketch. Show sσ ≻mpo tσ by induction on the derivation of s ≻G t. ◀

▶ Lemma 33. If s ≻G t then s↓ ≻mpo t↓.

The proof of Lemma 33 is in Appendix B.
The implication s↓ ≻G t↓ =⇒ C[s]↓ ≻G C[t]↓ does not hold in general, as witnessed

by f(x) ≻G x but g(f(x)) ̸≻G g(x) for G = ∅. However, its super-relation ≻mpo satisfies the
corresponding property s↓ ≻mpo t↓ =⇒ C[s]↓ ≻mpo C[t]↓. Note that ≻mpo is closed under
contexts but not flattening (consider c1(x) ≻mpo x). We prepare auxiliary lemmata.

▶ Lemma 34. The inequality t ≿mpo t↓ holds for all terms t.

Proof. It follows immediately from the fact that ≿mpo is a rewrite relation (Theorem 5) and
ℓ ≿mpo r holds for all ℓ → r ∈ F(G). ◀
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We say that a term t is root-rigid if t is a variable or t = f(t1, . . . , tn) with f ∈ F \ G. It
is easy to see that if t↓ = cn(t1, . . . , tn) then t1, . . . , tn are root-rigid.

▶ Lemma 35. Let C = f(u1, . . . , ui−1,□, ui+1, . . . , un). If s↓ ≻mpo t↓ then C[s]↓ ≻mpo C[t]↓.

Proof. Suppose s↓ ≻mpo t↓. We show C[s]↓ ≻mpo C[t]↓ by well-founded induction on C[s]
with respect to →+

F(G). If f ∈ F \ G then the claim immediately follows by mpo (3). So
assume f ∈ G ∪Fc. The case when C↓ = □ is trivial. If C is F(G)-reducible, we can construct
a context C ′ such that C[s] →+

F(G) C ′[s], and the induction hypothesis yields the desired
inequality C[s]↓ = C ′[s]↓ ≻mpo C ′[t]↓ = C[t]↓. Otherwise, C is already a flattened context,
namely C = cn(u1, . . . ,□, . . . , un) with n ⩾ 2 and u1, . . . , un root-rigid. An easy case is
when C[s]↓ = C[s↓], which can be easily handled by Lemma 34 and closure under contexts
of ≻mpo. The remaining case is when s↓ = cm(s1, . . . , sm). Since c0 is minimal with respect
to ≻mpo and c1(s1) is not flattened, we have m ⩾ 2, which leads to m + n − 1 ⩾ 2. Since
s1, . . . , sm are root-rigid, C[s]↓ = cm+n−1(u1, . . . , ui−1, s1, . . . , sm, ui+1, . . . , un) is obtained.
We further distinguish three cases.
1. If s↓ ≻mpo t↓ is derived by mpo (1), si ≿mpo t↓ holds for some 1 ⩽ i ⩽ m. Because m ⩾ 2,

we have {s1, . . . , sm} ≻mul
mpo {t↓}. So we obtain

{u1, . . . , ui−1, s1, . . . , sm, ui+1, . . . , un} ≻mul
mpo {u1, . . . , ui−1, t↓, ui+1, . . . , un}

from which C[s]↓ ≻mpo C[t↓] follows by mpo (3).1 Because C[t↓] ≿mpo C[t]↓, the compati-
bility of ≿mpo and ≻mpo entails the claim.

2. If s↓ ≻mpo t↓ is derived by mpo (2), the root symbol of t is smaller than cm. This
contradicts the minimality of cm.

3. If s↓ ≻mpo t↓ is derived by mpo (3), t↓ is of the form ck(t1, . . . , tk) and the inequality
{s1, . . . , sm} ≻mpo {t1, . . . , tk} holds. So C[s]↓ = cn+m−1(u1, . . . , s1, . . . , sm, . . . , un) and
C[t]↓ = cn+k−1(u1, . . . , t1, . . . , tk, . . . , un). Thus, C[s]↓ ≻mpo C[t]↓ follows by mpo (3). ◀

▶ Lemma 36. If s↓ ≻mpo t↓ then C[s]↓ ≻mpo C[t]↓ for all contexts C.

Proof. The claim is shown by straightforward structural induction on C using Lemma 35. ◀

Combining these properties, we obtain the first key theorem.

▶ Theorem 37. Let R be a TRS with R ⊆ ≻G and let s and t be terms. If s →R t then
s↓ ≻mpo t↓.

Proof. Let s →R t. There exist a rule ℓ → r ∈ R, a substitution σ, and a context C such
that s = C[ℓσ] and t = C[rσ]. Since ℓ ≻G r holds by assumption, we obtain the implications:

ℓ ≻G r
32=⇒ ℓσ ≻G rσ

33=⇒ ℓσ↓ ≻mpo rσ↓ 36=⇒ C[ℓσ]↓ ≻mpo C[rσ]↓

Here the numbers indicate the employed lemmata. Thus, s↓ ≻mpo t↓ holds. ◀

The second key theorem states that s →S t implies s↓ ≿mpo t↓, provided that S is
non-duplicating and ℓ ≿G r or r ∈ T (G, V) holds for all ℓ → r ∈ S. To this end we show
that, if ℓ → r ∈ S then ℓσ↓ ≿mpo rσ↓. The next lemma addresses the case when s →S t

employs a rule ℓ → r with ℓ ≿G r.

1 For example, consider C = c2(□, y), s = c2(x, x), and t = x. The inequality s↓ = c2(x, x) ≻mpo x = t↓
is derived by mpo (1), while C[s]↓ = c3(x, x, y) ≻mpo c2(x, y) = C[t]↓ is derived by mpo (3).
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▶ Lemma 38. If ℓ ≿G r then ℓσ↓ ≿mpo rσ↓ for all substitutions σ.

Proof. The proof is analogous to Lemma 32 and Lemma 33. ◀

The other case when s →S t uses a rule ℓ → r with r ∈ T (G, V) is more difficult. Actually
s↓ ≿mpo t↓ does not hold in general. Consider the case that s = ℓ = f(x, a) and t = r = a with
f, a ∈ G. Because s↓ = x and t↓ = c0, the inequality s↓ ≿mpo t↓ does not hold. Fortunately,
the claim holds when s is ground.

▶ Lemma 39. If s is ground and s Q t then s↓ ≿mpo t↓.

The proof is in Appendix B. It is essential for Lemma 39 that s is ground, as seen by the
example above.

▶ Lemma 40. Let t = f(t1, . . . , tn). If Fun(t) ∩ G = ∅ and t ∈ NF( ϵ−→F(G)) then t↓ =
f(t1↓, . . . , tn↓). ◀

▶ Lemma 41. Let (s, t) be a non-duplicating pair with t ∈ T (G ∪ Fc, V) and σ a grounding
substitution for s and t. The relation sσ↓ ≿mpo tσ↓ holds.

Proof. We show the claim by induction on sσ with respect to →+
F(G). The case when t↓ is a

variable is routine. So suppose t↓ = cn(x1, . . . , xn). Depending on reducibility of sσ by F(G),
we distinguish several cases.
1. If s is not flattened then sσ →+

F(G) s↓σ. Since |s↓|x = |s|x ⩾ |t|x for all variables x, the
induction hypothesis yields sσ↓ = (s↓σ)↓ ≿mpo tσ↓.

2. If xσ is not flattened for some x ∈ Var(s) then sσ →+
F(G) sτ , where τ is given by τ(y) = yσ↓

for each variable y. By the induction hypothesis sσ↓ = sτ↓ ≿mpo tτ↓ = tσ↓ follows.
3. If the last two conditions are not satisfied and sσ /∈ NF( ϵ−→F(G)) then s = cm(s1, . . . , sm)

with si a variable and siσ↓ = ck(u1, . . . , uk). Recall t↓ = cn(x1, . . . , xn).
If si = xj for some 1 ⩽ j ⩽ n then consider the terms

s′ = cm+k−1(s1, . . . , si−1, y1, . . . , yk, si+1, . . . , sm)
t′ = cn+k−1(x1, . . . , xj−1, y1, . . . , yk, xj+1, . . . , xn)

and the substitution τ given by τ(yh) = uh for h ∈ {1, . . . , k} and τ(z) = σ(z) for other
variables z, where y1, . . . , yk are fresh variables. Since sσ →+

F(G) s′τ and |s′|x ⩾ |t′|x
for all variables x, by the induction hypothesis we obtain sσ↓ = s′τ↓ ≿mpo t′τ↓ = tσ↓.
Otherwise, consider the term s′ = cm+k−1(s1, . . . , si−1, u1, . . . , uk, si+1, . . . , sm). We
have sσ →+

F(G) s′σ and |s′|x ⩾ |t|x for all variables x. By the induction hypothesis
sσ↓ = s′σ↓ ≿mpo tσ↓ follows.

4. Otherwise, s and xσ for all x ∈ Var(s) are flattened, and sσ ∈ NF( ϵ−→F(G)). Since the
former condition guarantees Fun(sσ)∩G = ∅, Lemma 40 yields sσ↓ = f(s1σ↓, . . . , smσ↓).
Recalling t↓ = cn(x1, . . . , xn), we further distinguish two cases.
(a) If f ∈ F \ G then f ≻ cn. In addition, s↓ ≻G xj holds for all j. Since ≻G is closed

under substitutions and flattening (Lemmata 32 and 33), sσ↓ ≻G xjσ↓ is obtained.
Thus, sσ↓ ≻mpo xjσ↓. Hence, mpo (2) entails the claim.

(b) Otherwise, f = cm and siσ are root-rigid for all i. Let Yi denote the multiset of
variables in si. Since |s|x ⩾ |t|x for all variables x, the multiset {x1, . . . , xn} can be
represented by X1 ⊎ · · · ⊎ Xm with Xi ⊆ Yi for each 1 ⩽ i ⩽ m. First we show the
subgoal {siσ↓} ≿mul

mpo {xσ↓ | x ∈ Xi}:
If Xi = ∅ then the claim is trivial.
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If Xi = {x} for some variable x then si Q x, and thus siσ Q xσ. By Lemma 39
the claim follows.
Otherwise, |Yi| ⩾ |Xi| ⩾ 2. As si contains at least two variables, si is not a
variable. So for every x ∈ Xi we have si ▷ x. As root(si) ∈ F \ G, the relation
si ≻G x holds. As in Case (a), we can deduce siσ↓ ≻mpo xσ↓. Thus, the claim
holds.

The subgoal results in {s1σ↓, . . . , smσ↓} ≿mul {x1σ↓, . . . , xnσ↓}. Thus, the inequali-
ties

sσ↓ = cm(s1σ↓, . . . , smσ↓) ≿mpo cn(x1σ↓, . . . , xnσ↓) ≿mpo tσ↓

are obtained by mpo (3) and Lemma 34. ◀

As in the case of ≻mpo (Lemmata 35 and 36), one can verify that ≿mpo is preserved under
the combination of context application and flattening.

▶ Lemma 42. If s↓ ≿mpo t↓ then C[s]↓ ≿mpo C[t]↓ for all contexts C. ◀

We arrive at the second key theorem for S-steps.

▶ Theorem 43. Let S be a non-duplicating TRS such that ℓ ≿G r or r ∈ T (G, V) for all
ℓ → r ∈ S. Let s and t be ground terms. If s →S t then s↓ ≿mpo t↓.

Proof. Let s →S r. There exist a rule ℓ → r ∈ S, a grounding substitution σ for s and t,
and a context C such that s = C[ℓσ] and t = C[rσ]. We have the following implications:

ℓ → r ∈ S =⇒ ℓσ↓ ≿mpo rσ↓ 42=⇒ C[ℓσ]↓ ≻mpo C[rσ]↓

The first implication follows from Lemma 38 or Lemma 41. Thus, s↓ ≿mpo t↓ holds. ◀

Theorem 30 is a consequence of Theorems 37 and 43.

Proof of Theorem 30. It suffices to show termination of R/S under the extended signature
F ∪ Fc. Since Fc contains the constant c0, every infinite rewrite sequence of terms can turn
into an infinite rewrite sequence of ground terms by instantiating variables to c0. Therefore,
our task boils down to proving termination on ground terms. Consider ground terms s and t.
By Theorems 37 and 43 we obtain the implications:

s →R/S t =⇒ s →∗
S · →R · →∗

S t =⇒ s↓ ≿mpo · ≻mpo · ≿mpo t↓ =⇒ s↓ ≻mpo t↓

As ≻mpo is well-founded, →R/S is terminating on ground terms. ◀

7 Improving Applicability

Theorem 23 is a simple and elegant adaptation of the original method (Theorem 11). However,
the dominance condition can be a severe restriction, for example, in confluence analysis based
on relative termination.

▶ Example 44. Consider the confluence problem of the following TRS:

1: x + s(y) → s(x) + y 6: x × s(y) → x + (x × y)
2 : s(x) + y → x + s(y) 7 : s(x) × y → (x × y) + y

3: x + y → y + x 8: x × y → y × x

4: (x + y) + z → x + (y + z) 9 : sq(x) → x × x

5: x + (y + z) → (x + y) + z 10: sq(s(x)) → (x × x) + s(x + x)
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By the rule labeling technique by Zankl et al. (see [28, Example 17]) the confluence problem
boils down to the relative termination problem of R/S, where R is the set of all duplicating
rules in the above TRS and S is the set of the non-duplicating rules; namely R = {6, 7, 9, 10}
and S = {1, 2, 3, 4, 5, 8}. In order to use Theorem 23 it is necessary that S is non-duplicating
and R dominates S. The former is satisfied, but the latter does not hold. In fact, DR =
{×, sq} and × occurs in the right-hand side of rule 8. So Theorem 23 is not applicable to
this example.

Multiset path orders are capable of dealing with termination modulo commutative (or
permutative) axioms, where Theorem 23 fails due to absence of dominance. Using our
simulation technique, we incorporate this advantage into the dependency pair method for
relative termination.

We introduce a generalized notion of dominance. We say that a rule is transitional if it
is of the form f(x1, . . . , xn) → f(y1, . . . , yn) with x1, . . . , xn, y1, . . . , yn variables. Note that
the variables need not be different from each other.

▶ Definition 45. Let R and S be TRSs over the same signature and G = CR. We say that R
almost dominates S if for every ℓ → r ∈ S either r ∈ T (CR, V) or ℓ → r↓G is a transitional
rule with root(ℓ) ∈ DR.

We incorporate DPDR(S) (see Definition 10) into Theorem 23. We denote this set by
DP(S). When a rule ℓ → r ∈ S satisfies the second condition in Definition 45, it gives rise to
exactly one dependency pair.

▶ Theorem 46. Suppose that a TRS R almost dominates a non-duplicating TRS S. Then
R/S is terminating if there is a reduction pair (≳, >) with DP(R) ⊆ > and R∪S∪DP(S) ⊆ ≳.

▶ Remark 47. As discussed in Remark 12, if Theorem 46 is applicable, relative termination
follows from finiteness of (DP(R), R ∪ S ∪ DP(S)). So all methods for the dependency pair
framework [13], including the iterative use of reduction pairs [14] and dependency graph
techniques [4], are available for showing relative termination.

For proving the theorem we need an improved version of Theorem 30.

▶ Theorem 48. Let R and S be TRSs over a signature F . Then R/S is terminating if
there exist a well-founded precedence pair (≿, ≻) and a subset G of F such that R ⊆ ≻G, S
is non-duplicating, and every ℓ → r ∈ S satisfies one of the following alternatives:
1. ℓ ≿G r

2. r ∈ T (G, V)
3. ℓ = f(x1, . . . , xm) ≿mpo g(y1, . . . , yn) = r↓G for some variables x1, . . . , xm, y1, . . . , yn and

f, g ∈ F \ G
Here ≻G, ≿G and ≿mpo are the relations induced by the precedence pair (≿, ≻).

Proof. The proof is analogous to that of Theorem 30, but we need to extend Theorem 43
to cover the case when ℓ → r ∈ S satisfies the third condition. This is archived by showing
ℓσ↓ ≿mpo rσ↓ for all substitutions σ. The inequality is verified by easy case distinction. ◀

Proof of Theorem 46. The proof follows the simulation result of Section 5. Given a reduction
pair (⩾A, >A), we label R and S with the A-induced labeling. By taking the A-induced
precedence and G = CR termination of Rlab/(Slab ∪ Dec(⩾A)) follows from Theorem 48.
Hence the claim holds. Note that DP(S) ⊆ ⩾A guarantees fa ≿ gb in the case of transitional
rules in Definition 45, and therefore handled by the third case of Theorem 48. ◀
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▶ Example 49 (continued from Example 44). Now we switch from Theorem 23 to Theorem 46.
Recalling DR = {×, sq}, we can easily see that R almost dominates S. The set DP(R) of
dependency pairs consists of the four rules

x ×♯ s(y) → x ×♯ y s(x) ×♯ y → x ×♯ y sq♯(x) → x ×♯ x sq♯(s(x)) → x ×♯ x

and DP(S) = {x ×♯ y → y ×♯ x}. Take the following weakly monotone algebra A on N:

sA(x) = x + 1 x +A y = 0 x ×A y = x ×♯
A y = x + y sqA(x) = sq♯

A(x) = 2x + 1

The reduction pair (⩾A, >A) satisfies DP(R) ⊆ >A and R ∪ S ∪ DP(S) ⊆ ⩾A, and therefore
R/S is terminating. Observe that the proof via Theorem 46 only uses linear polynomials,
but a termination proof of R/S by polynomial interpretation over N demands quadratic
ones.

8 Conclusion

We conclude the paper by discussing experimental results and related work.

Evaluation by experiments. In order to assess practicality we have implemented a prototype
tool for relative termination based on the improved dependency pair method (Theorem 46).2
Following Remark 47, the tool attempts to prove finiteness of the corresponding dependency
pair problem by iterative application of reduction pairs based on ordinal interpretations below
ω3 as in Example 24. The tool shows relative termination of 48 problems in the TRS_Relative
category of TPDB 11.3 [24], which consists of 98 problems. There are 8 problems that satisfy
the relaxed preconditions (non-duplicatingness and almost dominance) of Theorem 46 but
not dominance of Theorem 23 due to Iborra et al. Among them, 6 problems are proved
terminating. While all the 6 problems are solved by at least one of existing tools, the use
of the dependency pair method (Theorem 46) often makes proofs easier. For example, the
problem Relative_05/rt2-1 asks to show the relative termination of {T(I(x), y) → T(x, y)}
with respect to {T(x, y) → T(x, I(y))}. Since the almost dominance condition holds, the
dependency pair method with the linear polynomial interpretation TA(x, y) = T♯

A(x, y) = x

and IA(x) = x + 1 proves the relative termination. In contrast, the 2023 version of AProVE
and TTT2 solve this problem by using two- and five-dimensional matrix interpretations,
respectively.

Correctness proofs for dependency pairs. Using a model-based version of semantic label-
ing [29, Theorem 4], Arts showed correctness of an earlier version of the dependency pair
method [3, Theorem 9]. In contrast to Theorem 21, this proof is involved and restricted to
constructor TRSs. Later, the proof was simplified by switching to a direct proof based on
the notion of minimal non-terminating term [4]. This became the standard proof method. In
the presented work we re-introduced semantic labeling. A key difference is that our work
adopts the one based on quasi-models ([29, Theorem 8] and [12, Corollary 1]).

Potential future work is to extend the presented simulation methodology to dependency
pair methods for other rewriting formats. We anticipate that, with suitable semantic labeling,
AC-dependency pairs [1, 27] can be simulated by Rubio’s AC-RPO [21] and that dependency

2 The tool and the experimental data (including comparison to existing termination tools) are available
at: https://www.jaist.ac.jp/project/saigawa/24fscd/.
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pairs based on strong computability [18, 10] can be simulated by higher-order RPO [16].
This is not only of theoretical interest, since thus-obtained proofs might ease formalization in
proof assistants, provided signatures extension (caused by labeling) can be smoothly handled,
see [2, 7, 22] for related discussions.

Completeness of semantic labeling and precedence termination. It is known that semantic
labeling with precedence termination (cf. Proposition 19) is a complete method for showing
termination of TRSs [19, Theorem 4], meaning that if a TRS is terminating then the
termination is shown by semantic labeling and a simpler version of precedence termination.
We remark that the combination of Theorems 11 and 21 yields a similar result. As for
relative termination, the combination of Theorems 23 and 31 shows completeness of semantic
labeling for TRSs with dominance and non-duplicatingness. It is future work to extend this
result to a wider class of TRSs.
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Proof. We show the statement by induction on |s| + |t|. Let s →R t and let α be an
assignment. Depending on the rewrite position of s →R t, we distinguish two cases.

If the rewrite position is root then there exist ℓ → r ∈ R and a substitution σ such that
s = ℓσ and t = rσ. From Lemma 50 we obtain lab(s, α) →Rlab lab(t, α) as follows:

lab(s, α) = lab(ℓσ, α) = lab(ℓ, β)τ →Rlab lab(r, β)τ = lab(rσ, α) = lab(t, α)

Suppose that s = f(s1, . . . , si, . . . , sn) and the i-th argument si is rewritten. In this
case, we have t = f(s1, . . . , t′, . . . , sn) and si →R t′. The induction hypothesis yields
lab(si, α) →Rlab/Dec(≳) lab(t′, α). Let a = labf ([α]A(s1), . . . , [α]A(si), . . . , [α]A(sn)) and
b = labf ([α]A(s1), . . . , [α]A(t′), . . . , [α]A(sn)). From R ⊆ ≳A and that ≳A is a rewrite
preorder, we have si ≳A t′. Moreover, since L is weakly monotone, the inequality a ≳ b

holds. So fa(x1, . . . , xn) → fb(x1, . . . , xn) ∈ Dec(≳). Finally, we obtain the claim as
follows:

lab(s, α) = fa(lab(s1, α), . . . , lab(si, α), . . . , lab(sn, α))
→Rlab/Dec(≳) fa(lab(s1, α), . . . , lab(t′, α) . . . , lab(sn, α))
→Dec(≳) fb(lab(s1, α), . . . , lab(t′, α), . . . , lab(sn, α))
= lab(t, α)

This case concludes the proof. ◀

▶ Lemma 52. If s →S t then lab(s, α) →Slab/Dec(≳) lab(t, α) for all assignments α.

Proof. The same argument as Lemma 51 goes through. ◀

Proof of Theorem 7. The “if” direction follows from Lemmata 51 and 52. In order to show
the “only if” direction we consider the contraposition. Suppose that Rlab/(Slab ∪ Dec(≳))
has an infinite rewrite sequence. Unlabeling each term in the sequence, we obtain an infinite
rewrite sequence of R/S. ◀

B Omitted Proofs in Section 6

Lemma 33 claims that if s ≻G t then s↓ ≻mpo t↓. This follows from that s Q t and
root(t) ∈ F \ G imply s↓ Q t↓.

▶ Lemma 53. If root(t) ∈ F \ G, s →F(G) s′, and s Q t then root(t′) ∈ F \ G, t →=
F(G) t′,

and s′ Q t′ for some t′.

Proof. Suppose s
p−→F(G) s′ and s Q t. We perform induction on p.

If s = t then p > ϵ because of root(t) ∈ F \ G. By taking t′ = s′ the claim holds.
If p = ϵ then s = ℓσ and s′ = rσ for some rule ℓ → r ∈ F(G). By assumption we have
root(t) /∈ Fun(ℓ), so there exists x ∈ Var(ℓ) such that xσ Q t. Since Var(ℓ) = Var(r)
holds, we obtain s′ Q xσ.
Otherwise, s is of form f(s1, . . . , sn), si Q t, and p = jq for some indexes 1 ⩽ i, j ⩽ n

and position q.
If i = j then by the induction hypothesis we obtain t →=

F(G) t′ and s′|i Q t′ for some t′.
If i ̸= j then by setting t′ = t we have t →=

F(G) t′ and s′|i = si Q t′.
In either case t′ is a subterm of s′. Therefore, the claim holds. ◀

▶ Lemma 54. If s Q t and root(t) ∈ F \ G then s↓ Q t↓.
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Proof. Suppose s Q t and s →n
F(G) s↓. By using Lemma 54 n times we derive s↓ Q t′ for

some term t′ with t →∗
F(G) t′. Since subterms of flattened terms are flattened, t′ is flattened.

Hence, s↓ Q t′ = t′↓ = t↓. ◀

Proof of Lemma 33. Suppose s ≻G t with s = f(s1, . . . , sm). We have f ∈ F \ G and
s↓ = f(s1↓, . . . , sn↓). By induction on the derivation of s ≻G t we show s↓ ≻mpo t↓.
(1) If s ≻G t is derived by Definition 17(2) then t = g(t1, . . . , tn), f ≻ g, and s ≻G tj for all

j. Since f ≻ g guarantees f ∈ F \ G, the identity s↓ = f(s1↓, . . . , sm↓) holds. Moreover,
the induction hypothesis yields s↓ ≻G tj↓ for all j. Thus, the inequalities

s↓ = f(s1↓, . . . , sm↓) ≻mpo g(t1↓, . . . , tn↓) ≿mpo t↓

follow by mpo (2) and Lemma 34.
(2) If s ≻G t is derived by Definition 17(1) then si Q t. We distinguish three subcases on

the shape of t.
If t is a variable then t ∈ Var(si) = Var(si↓). As we have s↓ ▷ t↓. Thus, the claim
follows by Definition 17(1).
If t = g(t1, . . . , tn) and g ∈ F \ G then Lemma 54 yields si↓ Q t↓, which leads to
s↓▷ t↓. Thus, the claim follows by Definition 17(1).
If t = g(t1, . . . , tn) and g ∈ G ∪ Fc then s ▷ tj for all j. So s ≻G tj holds for all j.
Therefore, the proof for case (1) goes through. ◀

Lemma 39 claims that if s is ground and s Q t then s↓ ≿mpo t↓. To facilitate its inductive
proof, we show the following lemma.

▶ Lemma 55. Let C = f(s1, . . . , si−1,□, si+1, . . . , sn). If C[t] is ground then C[t]↓ ≿mpo t↓.

Proof. Suppose C[t] is ground. We perform induction on C[t] with respect to →+
F(G). If

t↓ = c0 then C[t]↓ ≿mpo t↓ holds because C[t]↓ is ground and c0 is the minimum ground
term. Suppose t↓ ≠ c0. We proceed with analyzing f and whether sj are flattened.
1. If f ∈ F \G then C[t]↓ = f(s1↓, . . . , t↓, . . . , sn↓). So C[t]↓ ≿mpo t↓ is obtained by mpo (1).
2. If f ∈ G then take D = cn(s1, . . . , si−1,□, si+1, . . . , sn). We have C[t] →F(G) D[t]. Thus,

we obtain C[t]↓ = D[t]↓ ≿mpo t↓ by the induction hypothesis.
3. Similarly, if sj →+

F(G) sj↓ for some j ̸= i, take D = cn(s1↓, . . . , si−1↓,□, si+1↓, . . . , sn↓).
The same argument applies.

4. If f ∈ Fc and sj = cm(u1, . . . , un) for some j ̸= i, by taking the context

D =
{

cn(s1, . . . , sj−1, u1, . . . , um, sj+1, . . . , si−1, C ′, si+1, . . . , sn) if j < i

cn(s1, . . . , si−1, C ′, . . . , si+1, sj−1, u1, . . . , um, sj+1, . . . , sn) if j > i

the claim is verified as in the last two cases.
5. Otherwise, f = cn and sj↓ = sj for all 1 ⩽ i ⩽ m. If n = 1, we immediately obtain

C[t]↓ = t↓. So hereafter we assume n ⩾ 2. Furthermore we distinguish two cases,
depending on t↓.

If t↓ = cm(t1, . . . , tn) then m ̸= 1. As t↓ ≠ c0, we have m ⩾ 2. Thus, m + n − 1 > m

holds. Therefore, by mpo (3) the inequality

C[t]↓ = cm+n−1(s1, . . . , si−1, u1, . . . , um, si+1, . . . , sn) ≻mpo t↓

is derived.
Otherwise, C[t]↓ = cm+n−1(s1, . . . , t↓, . . . , sn) ≻mpo t↓ follows by mpo (1). ◀

Proof of Lemma 39. The claim is shown by induction on s together with Lemma 55. ◀
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