
Left-Linear Rewriting in Adhesive Categories
Paolo Baldan #

Department of Mathematics, University of Padua, Italy

Davide Castelnovo #

Department of Mathematics, University of Padua, Italy

Andrea Corradini #

Department of Computer Science, University of Pisa, Italy

Fabio Gadducci #

Department of Computer Science, University of Pisa, Italy

Abstract
When can two sequential steps performed by a computing device be considered (causally) independent?
This is a relevant question for concurrent and distributed systems, since independence means that
they could be executed in any order, and potentially in parallel. Equivalences identifying rewriting
sequences which differ only for independent steps are at the core of the theory of concurrency of many
formalisms. We investigate the issue in the context of the double pushout approach to rewriting
in the general setting of adhesive categories. While a consolidated theory exists for linear rules,
which can consume, preserve and generate entities, this paper focuses on left-linear rules which may
also “merge” parts of the state. This is an apparently minimal, yet technically hard enhancement,
since a standard characterisation of independence that – in the linear case – allows one to derive a
number of properties, essential in the development of a theory of concurrency, no longer holds. The
paper performs an in-depth study of the notion of independence for left-linear rules: it introduces a
novel characterisation of independence, identifies well-behaved classes of left-linear rewriting systems,
and provides some fundamental results including a Church-Rosser property and the existence of
canonical equivalence proofs for concurrent computations. These results properly extends the class
of formalisms that can be modelled in the adhesive framework.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Semantics and reasoning

Keywords and phrases Adhesive categories, double-pushout rewriting, left-linear rules, switch
equivalence, local Church-Rosser property

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.11

Related Version Full Version: https://arxiv.org/abs/2407.06181

Funding The research has been partially supported by the EuropeanUnion – NextGenerationEU
under the National Recovery and Resilience Plan (NRRP) – Call PRIN 2022 PNRR – Project
P2022HXNSC “Resource Awareness in Programming: Algebra, Rewriting, and Analysis”, by the
Italian MUR – Call PRIN 2022 – Project 20228KXFN2 “Spatio-Temporal Enhancement of Neural
nets for Deeply Hierarchical Automatised Logic” and by the University of Pisa – Call PRA 2022 –
Project 2022_99 “Formal Methods for the Healthcare Domain based on Spatial Information”.

1 Introduction

One of the key pay-off of concurrency theory is the idea that the behaviour of a computational
device can be modelled by abstracting its sequences of steps via a suitable equivalence.
Intuitively, the equivalence captures when steps are causally unrelated and thus could be
executed in any order, and possibly in parallel. Two seminal contributions to this line of
research have been Mazurkiewicz’s traces [37] and Winskel’s event structures [39]. Concerning

© Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baldan@math.unipd.it
https://orcid.org/0000-0001-9357-5599
mailto:davide.castelnovo@math.unipd.it
https://orcid.org/0000-0002-5926-5615
mailto:andrea.corradini@unipi.it
https://orcid.org/0000-0001-6123-4175
mailto:fabio.gadducci@unipi.it
https://orcid.org/0000-0003-0690-3051
https://doi.org/10.4230/LIPIcs.CONCUR.2024.11
https://arxiv.org/abs/2407.06181
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Left-Linear Rewriting in Adhesive Categories

1

w

2
s 12

s

ρw

1

b

2
s

12

s

ρb

1

c

s

1

r

s

ρr

Figure 1 Rewriting rules for the coffee example.

formalisms based on the rewriting paradigm, concurrency often boils down to having a notion
of independence between two consecutive steps. Noteworthy examples are the interchange
law [38] in term rewriting and permutation equivalence [35] in λ-calculi.

Among rewriting-based formalisms, those manipulating graph-like structures proved
useful in many settings for representing the dynamics of distributed systems: the graph
is used to represent the entities and their relations within states, while rewriting steps,
modifying the graph, model computation steps that result in changes to the system state.
The DPO (double-pushout) approach [25] is nowadays considered a standard one for these
structures, thanks to its locality (rule application has a local effect on a state, differently
from more recent approaches like SqPO [17] or PBPO+ [40]) and to its flexibility: the rules
allow to specify that, in a rewriting step, some entities in the current state are removed,
some others are needed for the rewriting step to occur but remain unaltered, and some
new entities can be generated. Concerning concurrency, the chosen notion is switch (also
referred to as shift) equivalence, and independence is formally captured by what is called the
Church-Rosser theorem of DPO rewriting [16, Chapter 3, Section 3.4].

A noteworthy advantage of DPO rewriting is that it can be formulated over adhesive
categories and their variants [26,32], which include, among others, toposes [31] and string
diagrams [9]. Operating within the framework of adhesive categories allows one to devise the
foundations of a rewriting theory that can be then instantiated to the context of interest,
thus avoiding the need of repeatedly proving similar ad-hoc results for each specific setting.

So far, most of the theoretical results focused on linear rules: intuitively, a step is required
only to consume, preserve and generate entities. However, in some situations it is also
necessary to “merge” parts of the state. This happens in the context of string diagrams
mentioned above, but also in graphical implementations of nominal calculi where, as a result
of name passing, the received name is identified with a local one at the receiver [18,27], or in
the visual modelling of bonding in biological/chemical processes [41]. A similar mechanism is
at the core of e-graphs (equality graphs), used for rewrite-driven compiler optimisations [42]:
rather than merging nodes corresponding to equal expressions, the idea – conceptually and,
as we will see, also mathematically similar – is to maintain an equivalence over the nodes.

Technically, to acquire the expressiveness needed for capturing fusions, i.e. the merge of
some elements in the state, requires to move from linear to left-linear rewriting rules. While
left-linear rules have been considered in various instances (mainly in categories of graphs) and
some results concerning the corresponding rewriting theory have been put forward [6, 23, 24],
the phenomena arising when devising a theory of independence and concurrency for rewriting
with left-linear rules in the general setting of adhesive and quasi-adhesive categories have not
been systematically explored, even if an investigation in the setting of quasi-topoi, considering
non-linear rules yet restricting their applicability, has been presented in [7, 8].

Just to get some basic intuition about left-linear rewriting systems, their capabilities and
the problems that can arise, assume we want to model a situation in which a coffee comes
with a bag of white sugar and a bag of brown sugar. The situation is represented by the
graph G0 in Fig. 2: the loop c is the coffee, the two loops b and w represent the white and

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:3

1

w

b

2

c
s

G0

12

b

c

s

G1

12

c

s

G2

12

r

s

G3

ρw ρb ρr

Figure 2 A sequence of rewriting steps.

brown sugar. The corresponding nodes are connected to the coffee node by an s-labelled
edge to indicate that they can be possibly added to the coffee. The available rules are in
Fig. 1. Rules ρw and ρb model the addition of white and brown sugar, respectively, to the
coffee. Note that adding one kind of sugar, say x, to the coffee is realised by deleting loop x

and merging the corresponding node with the coffee node so that a self-loop s is created.
Once some sugar has been added, the coffee is ready for drinking. This is represented by
rule ρr, which checks for the presence of sugar, represented by the loop s, in the coffee, and
brings it to the r state, ready for drinking.

A rewriting sequence is depicted in Fig. 2, applying ρw, ρb, and ρr in sequence, thus
producing a coffee with both white and brown sugar, ready for drinking. A first interesting
observation is that after applying rule ρw to G0, thus producing graph G1, we can still apply
rule ρb, with a non-injective match. Intuitively, once the coffee is ready for drinking because
some sugar has been added, adding more sugar will not change its state. Indeed, the rules
could also be applied in reverse order. Should they be considered independent? Moreover,
since rule ρr just requires the presence of sugar, it could be applied immediately after ρw.
This might lead to think that ρb and ρr are independent. However, this is not completely
clear, since in absence of ρw, the application of ρb would be essential to enable ρr.

In this paper we perform a systematic exploration of these phenomena at the level of
M-adhesive categories, which encompass a large family of DPO-based formalisms.

As an initial step, we observe that for left-linear rules some fundamental properties that
play a role in the concurrency theory of linear rewriting need to be deeply revised, or plainly
do not hold. Firstly, the notion of sequential independence and the Church-Rosser theorem,
ensuring that sequential independent steps can be performed in reverse order, does not hold
out of the box. Even worse, given two independent steps it might be possible to switch them
in several different ways. As we will observe, this prevents the development of a sensible
theory of concurrency, since switches are used as a basis for equating sequences of rewriting
steps that differ only in the order of independent steps.

We single out a class of left-linear rewriting systems, referred to as well-switching rewriting
systems, where sequential independence ensures existence and uniqueness of the switch, and
argue that this is the right setting for dealing with left-linear rewriting systems.

On the one hand, they capture most categories of interest for rewriting. Indeed, we
identify general classes of left-linear rewriting systems on graph-like structures that are
well-switching. As a sanity check, we prove that linear rewriting systems are well-switching.

On the other hand, we argue that a concurrency theory of rewriting can be developed for
well-switching rewriting systems, recovering, sometimes in weakened form, most of the results
that hold in the linear case. The development faces a main technical obstacle. In the literature
on linear rewriting systems, a central result is the characterisation of switch equivalence of
sequences of steps based on what are called processes or consistent permutations [2, 4, 15, 30].
In turn this is the key to derive some fundamental properties for linear rewriting, namely

CONCUR 2024

11:4 Left-Linear Rewriting in Adhesive Categories

1. globality of independence: if two independent steps are moved forward or backward due
to the application of switchings to a sequence, they remain independent;

2. consistency of switching: when transforming sequences of rewriting steps into equivalent
ones by switching independent steps, the result does not depend on the order in which
switchings are applied, but only on the associated permutation.

Properties (1) and (2) allow one to deduce a canonical form for equivalence proofs between
sequences of rewriting steps seen as concurrent computations.

The fact that for left-linear rewriting systems the characterisation of switch equivalence
via consistent permutations fails, and thus cannot be used for proving (1) and (2), leads to
asking if these properties hold. We show that much of the theory can be retained: globality
of independence holds in a weaker form, conceptually linked to the fact that fusions introduce
a form of disjunctive causality, while consistency of switching holds unchanged. Finally, we
prove that a canonical form for switching sequences can also be recovered. These results
represent a solid basis for developing a satisfactory theory of concurrency for left-linear rules.

Synopsis. In §2 we recall the basic definitions of DPO rewriting for M-adhesive categories.
In §3 we present the key novelties of our proposal, introducing the standard notion of
independence and a novel axiomatic notion of switchability, showing that the former fails to
imply the latter for left-linear rewriting systems. We then define well-switching rewriting
systems, a subclass of left-linear rewriting systems, and we prove that the classical results for
linear rewriting systems are recovered for such a class. Finally, in §4 we outline directions
for future work. Appendix A recalls basic results on adhesive categories and Appendix B
presents strong enforcing rewriting systems, a class of systems where the local Church-Rosser
Theorem holds. Appendix C of the extended version provides the proofs of our results.

2 M-adhesive categories and rewriting systems

This section recalls the basic theory of M-adhesive categories [1, 20, 21, 30, 32]. Given a
category X we will not distinguish notationally between X and its class of objects, so “X ∈ X”
means that X is an object of X. We let Mor(X), Mono(X) and Reg(X) denote the class
of all arrows, monos and regular monos of X, respectively. Given an integer n ∈ Z, [0, n]
denotes the set of natural numbers less than or equal to n; in particular, [0, n] = ∅ if n < 0.

2.1 M-adhesivity
The key property of M-adhesive categories is the Van Kampen condition [10, 31, 32]. Let X
be a category. A subclass A of Mor(X) is called

stable under pushouts (pullbacks) if for every pushout (pullback) square as the one below,
if m ∈ A (n ∈ A) then n ∈ A (m ∈ A);
closed under composition if h, k ∈ A implies h ◦ k ∈ A whenever h and k are composable.

A
f
//

m

��

B

n

��

C
g
// D

▶ Definition 2.1 (Van Kampen property). Let X be a category and consider the diagram
below. Given a class of arrows A ⊆ Mor(X), we say that the bottom square is an A-Van
Kampen square if
1. it is a pushout square;
2. whenever the cube above has pullbacks as back and left faces and the vertical arrows belong

to A, then its top face is a pushout if and only if the front and right faces are pullbacks.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:5

Pushout squares that enjoy only the “if” half of item (2) above are called A-stable.
A Mor(X)-Van Kampen square is called Van Kampen and a Mor(X)-stable square stable.

A′

a
��

f ′
//

m′

{{

B′

b

��

n′

{{

C ′

c

��

g′
// D′

d

��

A
f
//

mzz

B

nzz
C

g
// D

We can now define M-adhesive categories.

▶ Definition 2.2 (M-adhesive category). Let X be a category and M a subclass of Mono(X)
including all isomorphisms, closed under composition, and stable under pullbacks and pushouts.
The category X is said to be M-adhesive if
1. it has M-pullbacks, i.e. pullbacks along arrows of M;
2. it has M-pushouts, i.e. pushouts along arrows of M;
3. M-pushouts are M-Van Kampen squares.

A category X is said to be strictly M-adhesive if M-pushouts are Van Kampen squares.

We write m : X↣Y to denote that an arrow m : X → Y belongs to M.

▶ Remark 2.3. Adhesivity and quasiadhesivity [28,32] coincide with strict Mono(X)-adhesivity
and strict Reg(X)-adhesivity, respectively.

▶ Example 2.4. Every category X is I(X)-adhesive, where I(X) is the class of isomorphisms.

M-adhesivity is well-behaved with respect to the construction of slice and functor
categories [36], as shown by the following theorems [19,32].

▶ Theorem 2.5. Let X be an M-adhesive category. Given an object X the category X/X

is M/X-adhesive with M/X := {m ∈ Mor(X/X) | m ∈ M}. Similarly, X/X is X/M-
adhesive with X/M := {m ∈ Mor(X/X) | m ∈ M}.

Moreover for every small category Y, the category XY of functors Y → X is MY-
adhesive, where MY := {η ∈ Mor(XY) | ηY ∈ M for every Y ∈ Y}.

We can list various examples of M-adhesive categories (see [12,13,33]).

▶ Example 2.6. Set is adhesive, and, more generally, every topos is adhesive [33]. By the
closure properties above, every presheaf [X, Set] is adhesive, thus the category Graph =
[E ⇒ V, Set] is adhesive where E ⇒ V is the two objects category with two morphisms
s, t : E → V . Similarly, various categories of hypergraphs can be shown to be adhesive, such as
term graphs and hierarchical graphs [14]. Note that the category sGraphs of simple graphs,
i.e. graphs without parallel edges, is Reg(sGraphs)-adhesive [8] but not quasiadhesive.

A number of properties of adhesive categories that play a role in the theory of rewriting
generalise to M-adhesive categories. These include M-pushout-pullback decomposition and
uniqueness of pushouts complements (details and proofs are in Appendix A).

CONCUR 2024

11:6 Left-Linear Rewriting in Adhesive Categories

2.2 DPO rewriting systems derivations
M-adhesive categories are the right context in which to perform abstract rewriting using
what is called the Double-Pushout (DPO) approach.

▶ Definition 2.7 ([29,30]). Let X be an M-adhesive category. A left M-linear rule ρ is a
pair of arrows ρ = (l : K → L, r : K → R) such that l belongs to M. The rule ρ is M-linear
if r ∈ M too. The object L is the left-hand side, R the right-hand side, and K the interface.

A left-linear rewriting system is a pair (X, R) where X is an M-adhesive category and R
a set of left M-linear rules. It is called M-linear if every rule in R is M-linear.

Given two objects G and H and a rule ρ = (l, r) in R, a direct derivation D from G to
H applying rule ρ is a diagram as the one below, in which both squares are pushouts. The
arrow m is called the match of the derivation, while h is its co-match. We denote a direct
derivation D from G to H as D : G Z⇒ H.

L

m

��

K

k
��

ooloo r // R

h
��

G Doo
f
oo

g
// H

A derivation can now be defined simply as a sequence of direct derivations.

▶ Definition 2.8 (Derivation). Let X be an M-adhesive category and (X, R) a left-linear
rewriting system. Given G, H ∈ X, a derivation D with source G and target H, written
D : G Z⇒ H, is defined as a sequence {Di}n

i=0 of direct derivations such that Di : Gi Z⇒ Gi+1
is a direct derivation for every index i and G0 = G, Gn+1 = H. Moreover, we have an empty
derivation G : G Z⇒ G for each G ∈ X. We denote by lg(D) the length of a derivation D .

Given a derivation D = {Di}n
i=0, we define r(D) = {ρi}n

i=0 as the sequence of rules such
that every Di applies rule ρi ∈ R.

Derivations naturally compose: given D : G Z⇒ H and E : H Z⇒ F , we can consider their
composition D · E : G → F , defined in the obvious way.

Often, we are interested in derivations only up to some notion of coherent isomorphism
between them. This leads us to the following definition.

▶ Definition 2.9 (Abstraction equivalence). Let X be an M-adhesive category and (X, R) a
left-linear rewriting system. An abstraction equivalence between derivations D and D ′ with
the same length and r(D) = r(D ′) is a family of isomorphisms {ϕX}X∈{Gi,Di} such that the
diagram below commutes for i ∈ [0, min(0, lg(D) − 1)]. We say that D are D ′ are abstraction
equivalent, written D ≡a D ′, if there exists an abstraction equivalence between them.

G′
i D′

i

g′
i //oo

f ′
ioo G′

i+1

Li

m′
i

OO

mi

��

Ki

k′
i

OO

ki

��

ri //oo
lioo Ri

h′
i

OO

hi

��

Gi

ϕGi

WW

Di
oo

fi

oo

ϕDi

WW

gi

// Gi+1

ϕGi+1

WW

M-adhesivity ensures the uniqueness of the result of applying a rule to an object: two
direct derivations using the same match are abstraction equivalent (see Proposition C.1 of
the extended version).

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:7

3 Independence in rewriting

In this section we discuss the notion of independence between two consecutive rewriting
steps, a fundamental ingredient of the rewriting theory, which comes into play when viewing
a sequence of steps as a concurrent computation. We observe that moving from linear to
left-linear rules leads to the failure of various basic properties of the classical notion of
independence used in the linear setting and we single out a framework in which these can be
re-established, possibly in a weakened form.

3.1 Sequentially independent and switchable derivations
Sequential independence is the canonical notion of independence in the DPO approach.

▶ Definition 3.1 (Sequential independence). Let X be an M-adhesive category and (X, R) a
left-linear rewriting system. Let also D = {Di}1

i=0 be a derivation of length 2, with Di using
rule ρi = (li, ri). We say that D0 and D1 are sequentially independent if there is a pair of
arrows i0 : R0 → D1 and i1 : L1 → D0 such that the following diagram commutes. In this
case (i0, i1) is called an independence pair.

L0

m0
��

K0

k0
��

oo
l0oo

r0 // R0
i0

$$h0

L1
i1

zz m1~~

K1

k1
��

oo
l1oo

r1 // R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

Intuitively, the existence of the independence pair captures the possibility of switching the
application of the two rules: f0 ◦ i1 is a match for ρ1 in G0 and the existence of i0 : R0 → D1
means that ρ1 does not delete items in the image of K0, thus ρ0 can be applied after ρ1.
▶ Remark 3.2. It is worth mentioning that if (X, R) is a linear rewriting system then two
derivations D0 and D1 can have at most one independence pair. Indeed if (i0, i1) and (i′

0, i′
1)

are independence pairs, then

g0 ◦ i1 = g0 ◦ i′
1 f1 ◦ i0 = f1 ◦ i′

0

But in linear systems g0 and f1 are both monos, entailing i0 = i′
0 and i1 = i′

1.
We next formalise what it means for a derivation being the switch of another.

▶ Definition 3.3 (Switch). Let X be an M-adhesive category and (X, R) a left-linear re-
writing system. Let also D = {Di}1

i=0 be a derivation made of two sequentially independent
derivations D0, D1 with independence pair (i0, i1), as in the diagram on the left below. A
switch of D along (i0, i1) is a derivation E = {Ei}1

i=0, between the same objects and using
the same rules in reverse order, as in the diagram on the right below

L0

m0

��

K0oo
l0oo

r0 //

k0
��

R0

h0 ��

i0

%%

L1

m1��

i1

zz

K1oo
l1oo

r1 //

k1
��

R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1
// G2

L1

m′
0
��

K1oo
l1oo

r1 //

k′
0
��

R1

h′
0 ��

i′
0

$$

L0

m′
1��

i′
1

zz

K0oo
l0oo

r0 //

k′
1
��

R0

h′
1
��

G0 D′
0

oo

f ′
0

oo

g′
0

// G′
1 D′

1
oo

f ′
1

oo

g′
1

// G2

such that there is an independence pair (i′
0, i′

1) between E0 and E1 and

m0 = f ′
0 ◦ i′

1 h1 = g′
1 ◦ i′

0 m′
0 = f0 ◦ i1 h′

1 = g1 ◦ i0.

If a switch of D0 and D1 exists we say that they are switchable.

CONCUR 2024

11:8 Left-Linear Rewriting in Adhesive Categories

1

L0

1

K0

ρ0

1 2

R0

1

L1

1

K1

ρ1

1

R1

1 2

L2

1 2

K2

ρ2

12

R2

Figure 3 A rewriting system in Graph.

1 1

ρ0

1 2 2 2

ρ1

2 1 2 1 2

ρ2

12

1 1 1 2 1 2 1 2 1 2 12

G0 D0 G1 D1 G2 D2 G3

Figure 4 The derivation D .

It can be shown that switches along the same independence pair are unique up to
abstraction equivalence (see Proposition C.3 of the extended version).

▶ Example 3.4. Consider a rewriting system in Graph, the category of directed graphs and
graph morphisms, which is adhesive. The set of rules R = {ρ0, ρ1, ρ2} is in Fig. 3, where
numbers are used to represent the morphisms from the interface to the left- and right-hand
sides. Rules ρ0 and ρ1 are linear: ρ0 generates a new node and a new edge, while ρ1 creates
a self-loop edge. Instead, ρ2 is left-linear but not linear, as it “merges” two nodes.

A derivation D consisting of three steps D0, D1, and D2, each applying the corresponding
rule ρi, is depicted in Fig. 4. Note that the numbers in ρ1 were changed consistently to
represent the vertical morphisms. Steps D1 and D2 are clearly sequential independent via
the independence pair (R1 → D2, L2 → D1), mapping nodes according to their numbering.
A switch of D along such independence pair is the derivation E in Fig. 5. Instead, in D the
first two steps applying ρ0 and ρ1 are not sequential independent, intuitively because ρ1 uses
the node produced by ρ0 for attaching a self-loop.

1 1

ρ0

1 2 1 2 1 2

ρ2

12 12 12

ρ1

12

1 1 1 2 1 2 12 12 12

G0 D0 G1 D′
1 G′

2 D′
2

G3

Figure 5 The derivation E .

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:9

0

1

2

b c

a

(a) Poset (P, ⊑).

a

⊑
��

a

⊑
��

oo
idaoo

⊑
// 0 ..

id0

!!

��

id0
��

a

⊑

}}
⊑

��

a

⊑
��

oo
idaoo

⊑
// b

⊑
��

c coo
idc

oo
⊑

// 0 0oo
id0

oo //
id0

// 0

(b) Two rewriting steps.

a

⊑
��

a

⊑
��

oo
idaoo

⊑
// b

c coo
idc

oo

(c) No rewriting step.

Figure 6 Sequential independence does not imply switchability.

As we mentioned, for linear rewriting systems it is canonical to identify derivations that
are equal “up to switching”, i.e. that differ only in the order of independent steps. The same
notion can be given for left-linear rewriting systems by relying on the notion of switch.

We recall some notations on permutations. A permutation on [0, n] is a bijection σ :
[0, n] → [0, n]. It is a transposition ν if there are i, j ∈ [1, n], i ̸= j such that σ(i) = j,
σ(j) = i, and σ(k) = k otherwise; it is denoted as (i, j). Given a permutation σ, an inversion
for σ is a pair (i, j) such that i < j and σ(j) < σ(i); inv(σ) denotes the set of inversions of σ.

Switch equivalence is now defined as the equivalence relating derivations that can be
obtained one from another by a sequence of switches. Moreover, intermediate graphs can be
taken up to isomorphism according to abstraction equivalence.

▶ Definition 3.5 (Switch equivalence). Let (X, R) be a left-linear rewriting system. Let also
D , E : G Z⇒ H be derivations with the same length, D = {Di}n

i=0 and E = {Ei}n
i=0. If

Di · Di+1 is a switch of Ei · Ei+1 for some i ∈ [0, n − 1] and Dj = Ej for each j ̸∈ {i, i + 1}
then we write D ↭(i,i+1) E . A switching sequence is a sequence {Dk}m

k=0 of derivations
such that D0 ↭ν1 D1 ↭ν2 . . . ↭νm Dm with νk = (ik, ik + 1).

Let us denote by νk,h the composition νh ◦νh−1 ◦ . . . νk. We say that the switching sequence
consists of inversions if for all k ∈ [0, m] the transposition νk is an inversion for ν1,m.

Two derivations D , E : G Z⇒ H are switch equivalent, written D ≡sh E , if there is a
switching sequence {Dk}m

k=0 such that D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νm
Dm ≡a E . To

point out a chosen permutation of rewriting steps, we will also write D ≡sh
σ E , where σ is

the composition of the transposition appearing in a chosen switching sequence.

▶ Remark 3.6. The possibility of an empty switching sequence assures that two abstraction
equivalent derivations are switch equivalent.

3.2 Church-Rosser: Sequential independence and switchability
The fact that sequential independence implies switchability always holds for linear rules (see
Proposition C.8 of the extended version). The result is so indispensable that typically, in the
literature, it is not even stated, in the sense that switchability is not introduced axiomatically
as in Definition 3.3, but it is based on the explicit construction of a switch.

For left-linear rewriting systems sequential independence does not imply switchability
(while the converse implication clearly holds), as shown by the next example.

▶ Example 3.7. Consider the poset (P, ⊑) in Fig. 6a where P = N∪{a, b, c} and ⊑ is defined
by m ⊑ n if m ≥ n, a ⊑ x for all x ∈ P and b, c ⊑ n for all n ∈ N. Let X be the category
associated with this order, which by Example 2.4 is I(X)-adhesive. Consider a rewriting
system whose set of rules contains the following

a a
⊑
//oo

idaoo 0 a a
⊑
//oo

idaoo b

CONCUR 2024

11:10 Left-Linear Rewriting in Adhesive Categories

We can then consider the derivation D = {Di}1
i=0 in Fig. 6b. Note that the two direct

derivations are sequential independent. However there is no switch since the rule applied by
D1 cannot be applied to c. In fact, there is a unique morphism a → c, yielding the diagram
in Fig. 6c. But b and c do not have a supremum in the poset underlying X, thus the arrows
a → b and a → c do not have a pushout. Hence we do not get a direct derivation from c.

The conditions guaranteeing switchability are inspired by the notion of canonical filler [30].

▶ Definition 3.8 (strong independence pair). Let X be an M-adhesive category and (X, R)
a left-linear rewriting system. Let also (i0, i1) be an independence pair between two direct
derivations D0, D1 as in the solid part of the diagram below

L0

m0
��

K0

k0
��

oo
l0oo

r0 //

u0
��

R0
i0

%%h0 !!

L1
i1

yy m1}}

K1

k1
��

oo
l1oo

r1 //

u1
��

R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

Pnnp0

aa

p1

==

Consider the pullback of g0 and f1, which yields pi : P → Di for i ∈ {0, 1} and the
mediating arrows ui : Ki → P for i ∈ {0, 1} into the pullback object (see Proposition C.4
of the extended version for details). We say that (i0, i1) is a strong independence pair if
the first two squares depicted below are pushouts and if the pushout of r1 : K1 → R1 and
u1 : K1 → P exists

K0
r0 //

u0
��

R0

i0
��

K1 //
l1 //

u1
��

L1

i1
��

K1
r1 //

u1
��

R1

j0
��

P
p1
// D1 P

p0
// D0 P

q1
// Q1

We can now prove a Local Church-Rosser Theorem for strong independence pairs.

▶ Proposition 3.9 (Local Church-Rosser Theorem). Let (i0, i1) be a strong independence pair
between D0 and D1. Then D0 and D1 are switchable.

The correspondence between sequential independence and switchability is fundamental.
We name the class of rewriting systems where this property holds.

▶ Definition 3.10 (Strong enforcing rewriting systems). A left-linear rewriting system is strong
enforcing if every independence pair between two direct derivations is strong.

We can identify a large class of adhesive categories such that all left-linear rewriting
systems over such categories are strong enforcing. This class includes Set and it is closed
under comma and functor category constructions. As such, it includes essentially all categories
(e.g., presheaves over set) that are typically considered for modelling purposes. Notably,
it contains the category Graph of directed graphs. This is a natural generalisation from
adhesive to M-adhesive categories of a class studied in [6] (see Appendix B for details).

Still, there are M-adhesive rewriting systems that are not strong enforcing.

▶ Example 3.11 (Non-strong enforcing left-linear rewriting system). In light of Proposition 3.9,
Example 3.7 provides an example of an independence pair that is not strong. This gives an
example of a left-linear rewriting system in a M-adhesive category that is quite pathological
since M = I(X). However, this is expected, since all natural examples seem to belong to the
well-behaved class mentioned above.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:11

1 1

ρ0

1 2 1 1

ρ1

1 1 2 1 2

ρ2

12

1 1 1 2 1 2 1 2 1 2 12

G0 D0 G1 D′′
1 G′′

2 D′′
2 G3

Figure 7 The derivation D ′.

▶ Remark 3.12. By Proposition 3.9 the existence of a strong independence pair entails
switchability, which in turn entails sequential independence by construction. Strong enforcing
rewriting systems are exactly those rewriting systems in which these three notions coincide.

Consistency with the theory of linear rewriting systems is ensured by the fact that all
linear rewriting systems are strong enforcing (see Proposition C.8 of the extended version).

3.3 Well-switching rewriting systems
Even if we work in strong enforcing rewriting systems where sequential independence ensures
switchability, when dealing with left-linear rules there is a further, possibly more serious issue,
namely that there can be more than one independence pair between the same derivations
(cfr. Remark 3.2). This hinders the very idea of using sequential independence as a basis
of a theory of concurrency for rewriting systems, since exchanges performed using different
independence pairs may lead to derivations that are not abstraction equivalent, thus equating
computations that should definitively be taken apart, as shown in the example below.

▶ Example 3.13. Consider the derivation E from Example 3.4 (see Fig. 5). The last two
steps are sequential independent, but one easily sees that there are two distinct independence
pairs, as the left-hand side of ρ1 can be mapped either to node 1 or to node 2 in D′

1.
Correspondingly, there are two switches of E : one is the derivation D in Fig. 4 we started
from, the other is the derivation D ′ in Fig. 7.

As a consequence, D and D ′ would be switch equivalent, but this is not acceptable when
viewing equivalence classes of derivations as concurrent computations: in D the first two
steps are not sequential independent, while in D ′ they are, intuitively because in D rule ρ1
uses the node generated by ρ0 (adding a self-loop to it), while in D ′ rule ρ1 uses the node that
was in the initial graph. Also observe that the graphs G2 and G′

2 produced after two steps
in D and D ′ are not isomorphic. From the technical point of view, the property of being
switch equivalent is not closed by prefix, and this prevents deriving a sensible concurrent
semantics: In fact D = D0 · D1 · D2 and D ′ = D ′

0 · D ′
1 · D ′

2 are switch equivalent, while if we
consider the first two steps, derivations D0 · D1 and D ′

0 · D ′
1 are not switch equivalent.

For these reasons we believe a theory of rewriting for left-linear rules in adhesive categories
should be developed for systems where the uniqueness of the independence pair is ensured.

▶ Definition 3.14 (Well-switching rewriting systems). A left-linear rewriting system (X, R) is
well-switching if it is strong enforcing and, for every derivation D := {Di}1

i=0, there is at
most one independence pair between D0 and D1.

CONCUR 2024

11:12 Left-Linear Rewriting in Adhesive Categories

Clearly, linear rewriting systems are well-switching (see Proposition C.10 of the extended
version). Moreover, we next observe that various classes of rewriting systems, comprising all
the ones used in modelling the applications to the encoding of process calculi or of bio and
chemical systems mentioned in the introduction, are actually well-switching.

A first class consists of those rewriting systems over possibly hierarchical graphical
structures obtained as algebras of suitable signatures where rules are constrained not to
merge elements of top level sorts in the hierarchy (for graphs, nodes can be merged while
edges cannot). The idea here is to consider graph structures as presheaves on categories in
which there are objects that play the role of roots, i.e. objects that are not the codomain of
any arrow besides the identity.

▶ Definition 3.15 (Root-preserving graphical rewriting systems). Let X be a category, an
object X ∈ X is a root if the only arrow with codomain X is idX . The category X-Graph of
X-graphs is the category SetX. A root-preserving graphical rewriting system is a left-linear
rewriting system (X-Graph, R) such that for each rule (l : K → L, r : K → R) in R it holds
1. for every X ∈ X and x ∈ L(X), there exists a root Y and an arrow f : Y → X such that

x belongs to the image of L(f) : L(Y) → L(X);
2. r : K → R is mono on the roots, i.e. for every root X ∈ X the component rX : K(X) →

R(X) is injective.

For instance, the category Graph can be obtained by taking as X the category generated
by E ⇒ V . In this case E is the only root, hence, condition 1 asks that in the left-hand side
of each rule there are no isolated nodes, while condition 2 asks that the morphism r : K → R

is injective on edges, i.e. it can only merge nodes.

▶ Lemma 3.16. All root-preserving graphical rewriting systems are well-switching.

Another interesting class of well-switching rewriting systems is given by e-graphs.

▶ Example 3.17 (E-graphs). Consider the category EGraphs, where objects are (directed)
graphs endowed with an equivalence over nodes, and arrows are graph morphisms that
preserve the equivalence, as considered in [5], closely related to e-graphs [42]. Formally,
EGraphs can be seen as the subcategory of the presheaf [E ⇒ V → Q, Set] where objects
are constrained to have the component V → Q surjective.

Explicitly, an e-graph G is a triple ⟨sG, tG, qG⟩ where sG, tG : EG ⇒ VG provides the
graphical structure, while the surjective function qG : VG → QG maps each node to the
corresponding equivalence class. Notice that the inclusion functor into [E ⇒ V → Q, Set]
creates pullbacks and pushouts [36], so that they are computed component-wise.

A morphism in EGraph is mono if the components over E and V are mono, i.e. if it is
mono as a morphism in Graph. It is regular mono if also the component on Q is mono,
i.e. if it reflects equivalence classes besides preserving them. This characterisation of regular
monos and the fact that pullbacks and pushouts are computed component-wise allows us to
prove quasi-adhesivity of EGraphs at once. Moreover, one can deduce that every rewriting
system (X, R) that is left-linear with respect to Reg(EGraphs) is strong enforcing: this is
done exploiting again the inclusion functor into [E ⇒ V → Q, Set].

Left-linear rewriting systems with respect to Reg(EGraphs) are well-switching. They
have been used in [5] for the graphical implementation of nominal calculi, where, differently
from [27], as a result of name passing the received name is not merged with a local one, but
put in the same equivalence class, better tracing the causal dependencies among reductions.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:13

3.4 A canonical form for switch equivalences
As discussed in the introduction, in the linear case a number of basic properties of switch
equivalence, i.e. the globality of independence, the consistency of switching, and the existence
of a canonical form for equivalence proofs, can be derived from a characterisation of switch
equivalence in terms of consistent permutations or processes.

When dealing with left-linear rules, such a characterisation fails. Leaving aside the formal
details (the interested reader can refer to Definition C.12 of the extended version), the
intuition is quite simple. In the linear case one proves that two derivations using the same
rules in different orders are switch equivalent when the colimits of the two derivations, seen
as diagrams, are isomorphic and the isomorphism properly commutes with the embeddings
of the rules. When considering left-linear derivations, this is no longer true. Intuitively this
is due to the fact that a rewriting step can merge parts of an object thus making the colimit
little informative. This effect can be seen for derivations D in Fig. 4 and D ′ in Fig. 7. They
are not abstraction equivalent but the colimit of both derivations is a single node with two
self-loops, in a way that all commutativity requirements are trivially satisfied.

In this section we show that, despite the failure of such characterisation, actually much of
the theory can be retained, taking a different and sensibly more complex route for the proofs:
globality of independence holds in a weak form, conceptually linked to the fact that fusions
introduce a form of disjunctive causality, while consistency of switching holds unchanged.
Finally, a canonical form for switching sequences can also be recovered.

We start by proving two lemmas dealing with derivations of length 3. Despite being
technical, these lemmas are fundamental building blocks for obtaining our results.

The first lemma is at the core of globality for independence. It shows that if we have
a derivation consisting of three rewriting steps, say D0 · D1 · D2 where D0 and D1 are
independent, then if we switch D2 to the first position, obtaining a derivation D ′′

2 · D ′
0 · D ′

1,
as in the diagram below where vertical lines represent permutations, the steps D ′

0 and D ′
1

are still independent.

D0 D1 D2

D0 D ′
2 D ′

1

D ′′
2 D ′

0 D ′
1

If instead D1 and D2 are independent in D0 ·D1 ·D2 and we switch D0 to the last position,
obtaining a derivation D ′

1 · D ′
2 · D ′′

0 , as in the diagram below, the steps D ′
1 and D ′

2 could
be no longer independent. Intuitively, this is due to the fact that dealing with left-linear
rewriting systems introduces disjunctive forms of causality. Hence, if in D0 · D1 · D2 we have
that D0 and D1 are disjunctive causes of D2, at least one of the two is needed to enable the
application of D2 and this explain why in D ′

1 · D ′
2 · D ′′

0 we have that D ′
1 and D ′

2 are no longer
independent. This is exemplified below.

D0 D1 D2

D ′
1 D ′

0 D2

D ′
1 D ′

2 D ′′
0

▶ Example 3.18. Consider the rewriting system in Graph consisting of the rules λ0, λ1, and
λ2 in Fig. 8. Consider the derivation F in Fig. 9. Note that rule λ2 needs the black self-loop
on node 12 to be applied. This can be generated either by λ0 or by λ1 merging nodes 1 and 2,

CONCUR 2024

11:14 Left-Linear Rewriting in Adhesive Categories

1 2

L0

1 2

K0

λ0

12

R0

1 2

L1

1 2

K1

λ1

12

R1

1

L2

1

K2

λ2

1

R2

Figure 8 A new rewriting system in Graph.

1 2 1 2

λ0

12 12 12 12 12

λ1

12 12 12

λ2

12

1 2 1 2 12 12 12 12 12

G0 D0 G1 D1 G2 D2 G3

Figure 9 The derivation F .

hence at least one of them must precede the application of λ2. Indeed, in F it is easily seen
that the second and the third step applying λ1 and λ2 are independent. However, we could
switch twice the application of λ0, bringing it in the last position, obtaining a derivation F ′

as depicted in Fig. 10, where the applications of λ1 and λ2 are no longer independent.

▶ Lemma 3.19 (Globality of independence). Let X be an M-adhesive category and (X, R) a
well-switching rewriting system. Let D0 · D1 · D2 be a three-steps derivation.
1. If D0 and D1 are switchable and there is a switching sequence D0 · D1 · D2 ↭(1,2)

D0 · D ′
2 · D ′

1 ↭(0,1) D ′′
2 · D ′

0 · D ′
1 then in the last derivation D ′

0 and D ′
1 are switchable;

2. Suppose that D1 and D2 are switchable, hence D0 ·D1 ·D2 ↭(1,2) D0 ·D ′
2 ·D ′

1 and D0 and
D ′

2 are switchable. If there is a switching sequence D0 · D1 · D2 ↭(0,1) D ′
1 · D ′

0 · D2 ↭(1,2)
D ′

1 · D ′
2 · D ′′

0 then in the last derivation D ′
1 and D ′

2 are switchable.

The second lemma captures the essence of the consistency of switchings. If in a derivation
of three rewriting steps, say D0 · D1 · D2, we invert them leading to a sequence reordered as
D2 · D1 · D0, we obtain the same derivation, independently from the order of switchings.

▶ Lemma 3.20 (Consistency of switchings). Let X be an M-adhesive category and (X, R) a
well-switching rewriting system. Consider a derivation D = {Di}2

i=0 and suppose that we
have the following two switching sequences

D ↭(0,1) D ′ ↭(1,2) D ′′ ↭(0,1) D ′′′ D ↭(1,2) E ′ ↭(0,1) E ′′ ↭(1,2) E ′′′

Then D ′′′ and E ′′′ are abstraction equivalent.

The lemmas above open the way to the key result of this section, which establishes a
canonical form for switching derivations.

The first result shows that when equating two derivation sequences by performing a series
of switchings, we can limit ourselves to switchings that invert the order of steps that in the
target derivation has to be reversed, i.e. we can limit ourselves to applying inversions.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:15

12 12 12 12

λ1

12 12 12

λ2

12 12 12 12 12

λ0

12

1 2 1 2 12 12 12 12 12

G0 D′
0 G′

1 D′
1 G′

2 D′
2 G3

Figure 10 The derivation F ′.

▶ Theorem 3.21 (No need of useless switches). Let D and D ′ be derivation sequences. If
D ≡sh D ′ then there is a switching sequence D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νn

Dn ≡a D ′

consisting only of inversions.

While inversions can be performed in any order in the case of linear rewriting systems,
this is no longer true for left-linear rewriting systems due to the fact that, as already observed,
globality of independence holds in a weak form. For instance, if we get back to Example 3.18
and consider derivation F in Fig. 9, the last two steps applying rules λ1 and λ2 can be
switched, thus leading to a derivation, call it F ′′, applying λ0, λ2, λ1. This F ′′ is switch
equivalent to F ′ in Fig. 10, hence starting from F ′′ we can obtain F ′ via a switching
sequence, but we cannot start by switching λ0 and λ2, even if this is an inversion.

Still, we can identify a canonical form for switching derivations: at each step one can
apply a switch to the inversion with largest index.

▶ Corollary 3.22 (Canonical form). Let D and D ′ be derivation sequences. If D ≡sh
σ D ′ then

there is a switching sequence

D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νn
Dn ≡a D ′

where for i ∈ [1, n] we have νi = (k, k + 1) with k = max{j | (j, j + 1) ∈ inv(νi,n)}.

4 Conclusions and further work

We performed an in-depth investigation of the notion of independence between rewriting steps
in the setting of left-linear rewriting systems over M-adhesive categories, which encompasses
most of the structures commonly used in analysing and modelling applications.

We showed that the canonical notion of independence adopted for linear systems does
not enjoy some properties that are essential for developing a sensible theory of concurrency,
notably a Church-Rosser theorem, and we identified a subclass of left-linear rewriting
systems, which we call well-switching, as an appropriate setting where many key results can
be re-established. Specifically, a Church-Rosser theorem, i.e. the possibility of performing
independent steps in any order, is fully recovered. Moreover, the switch construction and
correspondingly the switch equivalence, at the core of a theory of concurrency for rewriting
systems, enjoy a number of fundamental properties: a weak form of globality of independence,
consistency of switching and the existence of a canonical form for switch equivalence proofs.

The class of well-switching M-adhesive rewriting systems is large. Generalising a result
in [6], we showed that one of its defining properties (the fact that sequential independence
implies switchability) holds for a general class of M-adhesive categories that include all

CONCUR 2024

11:16 Left-Linear Rewriting in Adhesive Categories

presheaves over Set. Moreover, the second property, uniqueness of switching, is ensured when
rewriting possibly hierarchical graphical structures, as long as elements belonging to the sorts
of the roots are not merged (e.g., one can consider rewriting systems over directed graphs
where only nodes are merged, as it happens in most of the approaches to the modelling of
calculi and biological systems that we cited in the introduction, as well as in string diagrams).

In the DPO approach to rewriting, the notion of sequential independence, identifying
consecutive rewriting steps that can be performed in reverse order is typically closely linked to
that of parallel independence [21]. Parallel independence relates two rewriting steps starting
from the same object, which can be applied in any order producing, up to isomorphism,
the same resulting object. Parallel independent steps, when applied in sequence, lead to
sequential independent steps and, conversely, from two sequential independent steps, as a
byproduct of the switch construction, one can get two parallel independent steps.

Under mild additional conditions, one can have a notion of parallel rule in a way that
two parallel independent steps can be also combined in a single rewriting step. Even if this is
not discussed explicitly in the paper, our theory can be easily accommodated to encompass a
notion of parallel independence and parallel rule application, enjoying the properties outlined
above. To ensure this, however, one must require that the underlying category X has binary
coproducts and that the class M is closed under them.

The results in this paper open the way to the development of a concurrent semantics for
left-linear rewriting systems over M-adhesive categories. In [3] the authors argue that for
computational systems that allow one to express merging or fusions, the right semantical
models are weak prime domains, a generalisation of prime domains, a staple in concurrency
theory, and connected event structures, their event-based counterpart. The mentioned paper
discusses only the case of graph rewriting and does not focus into the problems induced
by the occurring of “merges” to the theory of rewriting (the systems considered there are
implicitly assumed to be well-switching). We plan to consolidate the statement that weak
prime domains are “the” model for systems with fusions by showing that they allow to
provide a semantics for left-linear rewriting systems in M-adhesive categories.

On the practical side, the present paper just surveyed the possibility of modelling e-graphs.
This appears to be quite interesting as concurrent rewriting on such structures is an active
area of research [34]. We plan to make the correspondence precise and investigate how the
analysis techniques enabled by a concurrent semantics of rewriting can impact on e-graphs.

References
1 G. G. Azzi, A. Corradini, and L. Ribeiro. On the essence and initiality of conflicts in M-

adhesive transformation systems. Journal of Logical and Algebraic Methods in Programming,
109:100482, 2019.

2 P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Concurrent
semantics of algebraic graph transformation systems. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformation. Volume 3: Concurrency, pages
107–187. World Scientific, 1999.

3 Paolo Baldan, Andrea Corradini, and Fabio Gadducci. Domains and event structures for
fusions. In LICS 2017, pages 1–12. IEEE Computer Society, 2017.

4 Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawel Sobocinski.
Processes for adhesive rewriting systems. In Luca Aceto and Anna Ingólfsdóttir, editors,
FOSSACS 2006, volume 3921 of LNCS, pages 202–216. Springer, 2006.

5 Paolo Baldan, Fabio Gadducci, and Ugo Montanari. Concurrent rewriting for graphs with
equivalences. In Christel Baier and Holger Hermanns, editors, CONCUR 2006, volume 4137
of LNCS, pages 279–294. Springer, 2006.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:17

6 Paolo Baldan, Fabio Gadducci, and Pawel Sobocinski. Adhesivity is not enough: Local
Church-Rosser revisited. In Filip Murlak and Piotr Sankowski, editors, MFCS 2011, volume
6907 of LNCS, pages 48–59. Springer, 2011.

7 Nicolas Behr, Russ Harmer, and Jean Krivine. Concurrency theorems for non-linear rewriting
theories. In Fabio Gadducci and Timo Kehrer, editors, ICGT 2021, volume 12741 of LNCS,
pages 3–21. Springer, 2021.

8 Nicolas Behr, Russ Harmer, and Jean Krivine. Fundamentals of compositional rewriting theory.
Journal of Logical and Algebraic Methods in Programming, 135:100893, 2023.

9 F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. String diagram rewrite
theory I: rewriting with Frobenius structure. Journal of the Association for Computing
Machinery, 69(2):1–58, 2022.

10 R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms in
lextensive categories. Journal of Pure and Applied Algebra, 119(3):255–263, 1997.

11 Aurelio Carboni, Stephen Lack, and Robert FC Walters. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra, 84(2):145–158, 1993.

12 D. Castelnovo. Fuzzy algebraic theories and M, N -adhesive categories. PhD thesis, University
of Udine, 2023.

13 D. Castelnovo, F. Gadducci, and M. Miculan. A new criterion for M, N -adhesivity, with an
application to hierarchical graphs. In P. Bouyer and L. Schröder, editors, FOSSACS 2022,
volume 13242 of LNCS, pages 205–224. Springer, 2022.

14 Davide Castelnovo, Fabio Gadducci, and Marino Miculan. A simple criterion for M, N -
adhesivity. Theoretical Computer Science, 982:114280, 2024.

15 A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae,
26:241–265, 1996.

16 A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches
to graph transformation - Part I: Basic concepts and double pushout approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformations. Volume 1:
Foundations, pages 163–246. World Scientific, 1997.

17 Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-pushout
rewriting. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz
Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 30–45. Springer, 2006.

18 S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel extrusion in the
π-calculus. In L. Birkedal, editor, FOSSACS 2012, volume 7213 of LNCS, pages 225–239.
Springer, 2012.

19 H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transform-
ation. Springer, 2006.

20 H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. M-adhesive transformation systems
with nested application conditions. Part 2: Embedding, critical pairs and local confluence.
Fundamenta Informaticae, 118(1-2):35–63, 2012.

21 H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. M-adhesive transformation systems
with nested application conditions. Part 1: Parallelism, concurrency and amalgamation.
Mathematical Structures in Computer Science, 24(4):240406, 2014.

22 H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement categories
and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G Rozenberg, editors, ICGT
2004, LNCS, pages 144–160. Springe, 2004.

23 Hartmut Ehrig, Annegret Habel, and Francesco Parisi-Presicce. Basic results for two types of
high-level replacement systems. In Michel Bauderon and Andrea Corradini, editors, GET-
GRATS Closing Workshop 2001, volume 51 of ENTCS, pages 127–138. Elsevier, 2001.

24 Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations in multidimensional
information structures. In Antoni W. Mazurkiewicz, editor, MFCS 1976, volume 45 of LNCS,
pages 284–293. Springer, 1976.

CONCUR 2024

11:18 Left-Linear Rewriting in Adhesive Categories

25 Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic
approach. In SWAT 1973, pages 167–180. IEEE Computer Society, 1973.

26 Hartmut Ehrig and Ulrike Prange. Weak adhesive high-level replacement categories and
systems: A unifying framework for graph and Petri net transformations. In Kokichi Futatsugi,
Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning, and Computation,
Essays Dedicated to Joseph A. Goguen, volume 4060 of LNCS, pages 235–251. Springer, 2006.

27 F. Gadducci. Graph rewriting and the π-calculus. Mathematical Structures in Computer
Science, 17(3):1–31, 2007.

28 R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories. Theory and
Applications of Categories, 27(3):27–46, 2012.

29 A. Habel and D. Plump. M, N -adhesive transformation systems. In H. Ehrig, G. Engels,
H.-J. Kreowski, and G. Rozenberg, editors, ICGT 2012, volume 7562 of LNCS, pages 218–233.
Springer, 2012.

30 T. Heindel. A category theoretical approach to the concurrent semantics of rewriting. PhD
thesis, Universität Duisburg–Essen, 2009.

31 P.T. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhesive categories and Artin
glueing. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, CALCO 2007, volume
4624 of LNCS, pages 312–326. Springer, 2007.

32 S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO-Theoretical
Informatics and Applications, 39(3):511–545, 2005.

33 S. Lack and P. Sobociński. Toposes are adhesive. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 184–198.
Springer, 2006.

34 Henrich Lauko, Lukás Korencik, and Peter Goodman. On the optimization of equivalent
concurrent computations. CoRR, abs/2208.06295, 2022.

35 J.J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and J.R. Hindley, editors,
To H.B. Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 159–191.
Academic Press, 1980.

36 S. MacLane. Categories for the working mathematician. Springer, 2013.
37 Antoni W. Mazurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz

Rozenberg, editors, Advances in Petri Nets 1986, volume 255 of LNCS, pages 279–324. Springer,
1986.

38 J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

39 M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains, Part 1.
Theoretical Computer Science, 13:85–108, 1981.

40 Roy Overbeek, Jörg Endrullis, and Aloïs Rosset. Graph rewriting and relabeling with PBPO+:
A unifying theory for quasitoposes. Journal of Logical and Algebraic Methods in Programming,
133:100873, 2023.

41 I. Phillips, I. Ulidowski, and S. Yuen. Modelling of bonding with processes and events. In
Gerhard W. Dueck and D. Michael Miller, editors, RC 2013, volume 7948 of LNCS, pages
141–154. Springer, 2013.

42 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. egg: Fast and extensible equality saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):1–29, 2021.

A Properties of M-adhesive categories

This first appendix is devoted to the proofs of a few well-known results about M-adhesive
categories. Observe that our notion of M-adhesivity follows [20, 21] and is different from
the one of [1]. What is called M-adhesivity in the latter paper corresponds to our strict
M-adhesivity. Moreover, in [1] the class M is assumed to be only stable under pullbacks.
However, if M contains all split monos, then stability under pushouts can be deduced from
the other axioms [12, Prop. 5.1.21].

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:19

A.1 Some results on A-stable and A-Van Kampen squares
We start proving some general results regarding A-Van Kampen and A-stable squares. Let
us begin recalling some classical results about about pullbacks and pushouts [36].

▶ Lemma A.1. Let X be a category, and consider the diagram below, then the following hold
1. if the right square is a pullback, then the whole rectangle is a pullback if and only if the

left square is one;
2. if the left square is a pushout, then the whole rectangle is a pushout if and only if the

right square is one.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h
// B

k
// C

The following proposition establishes a key property of A-Van Kampen squares with a
mono as a side: they are not only pushouts, but also pullbacks [8, 22,32].

▶ Proposition A.2. Let A be a class of arrows stable under pushouts and containing all the
isomorphisms. If the square below is A-Van Kampen and m : A → C is mono and belongs to
A, then the square is a pullback and n is a monomorphism.

A
g
//

m

��

B

n

��

C
f
// D

The previous proposition allows us to establish the following result.

▶ Lemma A.3. Let A be a class of arrows stable under pullbacks, pushouts and containing
all isomorphisms. Suppose that the left square below is A-Van Kampen, while the vertical
faces in the right cube are pullbacks. Suppose moreover that m : A → C and d : D′ → D are
mono and that d belongs to A. Then d ≤ n if and only if c ≤ m.

A′

a
��

g′
//

m′

}}

B′

b

��

n′

}}

A

m

��

g
// B

n

��

C ′

c

��

f ′
// D′

d

��

A
g
//

m}}

B

n||
C

f
// D C

f
// D

▶ Remark A.4. Recall that, given two monos m : M → X and n : N → X with the
same codomain, m ≤ n means that there exists a, necessarily unique and necessarily mono,
k : M → N fitting in the triangle below.

Notice, moreover, that if m ≤ n and n ≤ m, then the arrow k : M → N is an isomorphism.

M
k //

m
��

N

n
��

X

CONCUR 2024

11:20 Left-Linear Rewriting in Adhesive Categories

Finally, we show that A-stable pushouts enjoy a pullback-pushout decomposition property.

▶ Proposition A.5. Let X be a category and A a class of arrows stable under pullbacks.
Suppose that, in the diagram below, the whole rectangle is an A-stable pushout and the right
square a pullback. If the arrow k is in A and it is a monomorphism, then both squares are
pushouts.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h
// B

k
// C

A.2 Useful properties of M-adhesive categories
We are now going to apply the results of the previous section to M-adhesive categories in
order to establish some high-level replacement properties [19, 21, 22]. A first important result
that can be immediately established, with the aid of Proposition A.2, is the following one.

▶ Proposition A.6. Let X be an M-adhesive category. Then M-pushouts are pullbacks.

From Proposition A.6, in turn, we can derive the following corollaries.

▶ Corollary A.7. In a M-adhesive category X, every m ∈ M is a regular mono.

The following result now follows at once noticing that a regular monomorphism which is
also epic is automatically an isomorphism.

▶ Corollary A.8. If X is an M-adhesive categories, then every epimorphism in M is an
isomorphism. In particular, every adhesive category X is balanced: if a morphism is monic
and epic, then it is an isomorphism.

▶ Lemma A.9 (M-pushout-pullback decomposition). Let X be an M-adhesive category and
suppose that, in the diagram below, the whole rectangle is a pushout and the right square a
pullback. Then the following statements hold
1. if a belongs to M and k is a mono, then both squares are pushouts and pullbacks;
2. if f and k are in M, then both squares are pushouts and pullbacks.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h
// B

k
// C

Let us turn our attention to pushout complements.

▶ Definition A.10 (Pushout complement). Let f : X → Y and g : Y → Z be two composable
arrows in a category X. A pushout complement for the pair (f, g) is a pair (h, k) with
h : X → W and k : W → Z such that the square below is a pushout.

X
f
//

h
��

Y

g

��

W
k
// Z

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:21

Working in an M-adhesive category guarantees that pushout complements are unique.

▶ Lemma A.11. Let f : X → Y be an arrow in an M-adhesive category X and suppose that
the left square below is a pushout while the right one is a pullback, with m : M ↣ X and
n : N ↣ Y in M. Then n ≤ k if and only if p2 ≤ m.

M��

m

��

h // Q
��

k

��

P
p1 //

��

p2

��

N��

n

��

X
f
// Y X

f
// Y

▶ Corollary A.12 (Uniqueness of pushout complements). Let X be a M-adhesive category.
Given m : X↣Y in M and f : Y → Z, let (h1, k1) and (h2, k2) be pushout complements of
m and f depicted below. Then there exists a unique isomorphism ϕ : W1 → W2 making the
diagram below commutative.

X //
m //

h1
��

h2

��

Y

f

��

W2))

k2

66W1
ϕ
oo //

k1 // Z

B M-adhesivity is not enough

In Section 3 we introduced the notion of strong enforcing left-linear rewriting system, a class
that contains all the linear rewriting systems. This result can be further refined: in [6] a class
B of (quasi-)adhesive category is defined for which the local Church-Rosser Theorem holds
for left-linear rewriting system. In our language, this means that every left-linear rewriting
system based on a category in B is strong enforcing. This section is devoted to repropose,
and slightly generalise, the results of [6] to our context.

▶ Definition B.1. Let M be a class of monos in a category X, closed under composition,
containing all isomorphisms and stable under pullbacks and pushouts. Suppose that the
diagram below is given and the whole rectangle is a pushout. We say that X satisfies

the M-mixed decomposition property if, whenever k belongs to M and the right half of
the diagram below is a pullback, then the left one is a pushout;
the M-pushout decomposition property if whenever a, b and c belongs to M and the right
half of the diagram below is a pushout, then its left half is a pushout too.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h
// B

k
// C

The class of categories of type B is closed under the same constructions of Theorem 2.5.
This can be deduced at once from the fact that in such categories pullbacks and pushouts
are computed component-wise.

▶ Lemma B.2. Let X be a category satisfying the M-mixed and M-pushout decomposition
properties, then the following hold
1. for every object X, X/X satisfies the M/X-mixed and the M/X-pushout decomposition

properties, while X/M-adhesive satisfies their X/M variants, where

M/X := {m ∈ A(X/X) | m ∈ M} X/M := {m ∈ A(X/X) | m ∈ M}

CONCUR 2024

11:22 Left-Linear Rewriting in Adhesive Categories

2. for every small category Y, the category XY satisfies the MY-mixed and the MY-pushout
decomposition properties, where

MY := {η ∈ A(XY) | ηY ∈ M for every Y ∈ Y}

The following result shows that the mixed and pushout decomposition properties guarantee
that every independence pair is strong.

▶ Theorem B.3. Let X be an M-adhesive category with all pushouts and satisfying the
M-mixed and the M-pushout decomposition properties. Then every left-linear rewriting
system on X is strong enforcing.

Proof. Let D = {Di}1
i=0 be the derivation made by two sequentially independent derivations

L0

m0

��

K0

k0

��

oo
l0oo

r0 // R0
i0

##
h0

��

L1
i1

{{
m1

��

K1

k1

��

oo
l1oo

r1 // R1

h1

��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

We have to show that (i0, i1) is a strong independence pair. Now, by hypothesis X has
all pushouts, thus the only thing to show is that the squares below are pushouts (the third
one is the usual pullback of f1 : D1↣G0 along g0 : D0 → G1)

K0
r0 //

u0

��

R0

i0

��

K1 //
l1 //

u1

��

L1

i1

��

P //
p0 //

p1

��

D0

g0

��

P
p1
// D1 P

p0
// D0 D1 //

f1

// G1

To see this, consider the following two diagrams

K0

k0

((

r0

��

u0
// P //

p0
//

p1

��

D0

g0

��

K1

k1

((

��

l1

��

u1
// P

p1
//

��

p0

��

D1��

f1

��

R0

h0

66
i0 // D1 //

f1 // G1 L1

m1

66
i1 // D0

g0 // G1

The thesis now follows from the M-mixed and the M-pushout decomposition property. ◀

Our next step is to identify sufficient conditions for a category X to satisfy the mixed
and M-pushout decomposition properties.

▶ Definition B.4. Let X be an M-adhesive category, the pair (X, M) is of type B if
1. every arrow in M is a coproduct coprojection;
2. X has all pushouts;
3. X has strict initial objects and for every X the unique arrow ?X : 0 → X belongs to M;
4. all pushouts are M-stable.

▶ Remark B.5. It is worth to examine more closely conditions 1 and 3 of the above definition.
Let m0 : X0 ↣ Y be in M, the first condition means that there exists m1 : X1 → Y

such that (Y, {mi}1
i=0) is a coproduct. This, together with property 3, entails that every

coprojection in a coproduct is in M. This follows since any coproduct (X1 +X2, {ιXi}1
i=0)

fits in a pushout diagram as the one below.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:23

X has strict initial objects if it has initial objects and every arrow f : X → 0 is an
isomorphism. Notice that if initial objects are strict, then ?X : 0 → X is mono for every
X: indeed for every pair f, g : Y ⇒ 0 then, by strictness, Y is initial and so f = g.

0 //
?X1 //

��

?X2
��

X1��

ιX1

��

X2 // ιX2
// X1 + X2

▶ Example B.6. The category Set of sets and functions is of type B. Similarly, the category
Inj of sets and injective functions is quasiadhesive and, with regular monos, of type B.

Categories of type B satisfy a property resembling extensivity [11].

▶ Proposition B.7. Let (X, M) be a pair of type B. Then for every diagram as the one
below, in which the bottom row is a coproduct cocone and the vertical arrows are in M, the
top row is a coproduct if and only if the two squares are pullbacks.

A
f

//
��

r

��

C��

s

��

B��

t

��

g
oo

X
ιX

// X + Y Y
ιY

oo

Proof. Consider the cube below, in which the back faces are pullbacks. The bottom faces is
an M-Van Kampen pushout, thus the top face is a pushout if and only if the front faces are
pullbacks. By strictness of 0, a : I → 0 is an isomorphism, so that I is initial, therefore the
M-Van Kampen condition reduces to the request that (C, {f, g}) is a coproduct cocone if
and only if the front faces are pullbacks, as claimed.

I��

a
��

k //
h
��

B��

t

��

g

zz
A��

r

��

f
// C��
s

��

0 // ?Y //
��

?X
��

Yzz

ιY
zz

X //
ιX

// X + Y

◀

The previous result entails the following one, needed to show that in any pair (X, M) of
type B, the category X satisfies the M-mixed and M-pushout decomposition properties.

▶ Proposition B.8. Let (X, M) be a pair of type B, and suppose that the square below is
an M-pullback. Then there exists E ∈ X, e : E↣C in M, ϕ : E → B1 such that (C, {m, e})
is a coproduct and g = f + ϕ. Moreover, such a square is a pushout if and only if ϕ is an
isomorphism.

A
f
//

��

m

��

B0��

ιB0

��

C
g
// B0 + B1

CONCUR 2024

11:24 Left-Linear Rewriting in Adhesive Categories

▶ Lemma B.9. Let (X, M) be a pair of type B, then X satisfies the M-mixed and M-pushout
decomposition properties.

Proof. M-mixed decomposition property. This follows at once from Proposition A.5.
M-pushout-decomposition property. Using Propositions B.7 and B.8 and the fact that

arrows in M are coproduct coprojections, we can reduce to prove the property for diagrams
as the one below. By hypothesis and Proposition B.8, φ and φ ◦ ϕ are both isomorphisms,
therefore ϕ is an isomorphism too and we can conclude again using Proposition B.8.

X
f

//
��

ιX

��

Y
g

//
��

ιY

��

Z��

ιZ

��

X + A

(g◦f)+(φ◦ϕ)

33

f+ϕ
// Y + B

g+φ
// Z + C

◀

▶ Definition B.10. Let X be an M-adhesive category, we say that the pair (X, M) is of
type B+ if (at least) one of the following holds
1. (X, M) is of type B;
2. X is Y/Y and M = N /Y for some (Y, N) of type B+ and Y ∈ Y;
3. X is Y/Y and M = Y/N for some (Y, N) of type B+ and Y ∈ Y:
4. X is YA and M = N A for some category category A and (Y, N) of type B+.

▶ Example B.11. The pair (Graph, Mono(Graph)) of graphs and their monos is of type B+

but not of type B. Indeed, not every monomorphism of graphs is a coproduct coprojection.

From Lemmas B.2 and B.9 we can now deduce at once the following.

▶ Corollary B.12. For every (X, M) of type B+, the category X has the M-mixed and
M-pushout decomposition properties.

Using Theorem B.3 we finally get the main result of our appendix.

▶ Corollary B.13. Let (X, M) be a pair of type B+, then every left-linear rewriting system
is strong enforcing.

	1 Introduction
	2 M-adhesive categories and rewriting systems
	2.1 M-adhesivity
	2.2 DPO rewriting systems derivations

	3 Independence in rewriting
	3.1 Sequentially independent and switchable derivations
	3.2 Church-Rosser: Sequential independence and switchability
	3.3 Well-switching rewriting systems
	3.4 A canonical form for switch equivalences

	4 Conclusions and further work
	A Properties of M-adhesive categories
	A.1 Some results on A-stable and A-Van Kampen squares
	A.2 Useful properties of M-adhesive categories

	B M-adhesivity is not enough

