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Abstract
In a disk graph, every vertex corresponds to a disk in R2 and two vertices are connected by an
edge whenever the two corresponding disks intersect. Disk graphs form an important class of
geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study
a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as
Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete
a minimum number of vertices from the input graph such that the resulting graph is bipartite. A
folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from
the classical framework of Goemans and Williamson [Combinatorica’98] for cycle-hitting problems.
For over two decades, this result has remained the best known approximation for the problem (in
fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement
upon this result, by giving a (3 − α)-approximation algorithm for Bipartization on disk graphs, for
some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs.
Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of
the input graph to be given.
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1 Introduction

Disk graphs refer to intersection graphs of disks in the plane R2. Formally, in a disk graph,
every vertex corresponds to a disk in R2 and two vertices are connected by an edge whenever
the two corresponding disks intersect. As a rather general class of geometric intersection
graphs, disk graphs simultaneously generalize two important graph classes, unit-disk graphs
and planar graphs, both of which have been extensively studied over decades. Many central
problems in algorithmic graph theory have been considered on disk graphs, including Vertex
Cover [8, 28, 41], Independent Set [8], Maximum Clique [5], Feedback Vertex
Set [26, 28], Dominating Set [13], etc.
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6:2 Bipartizing (Pseudo-)Disk Graphs

In this paper, we investigate a fundamental optimization problem on the class of disk
graphs, called Bipartization. In this problem, the input is a graph G and the goal is
to delete a smallest number of vertices from G such that the resulting graph is bipartite.
There has been a long line of work studying Bipartization (e.g., see [10, 20, 34, 36, 37] and
citations therein). Observe that the edge counterpart of the Bipartization problem, Edge
Bipartization, where we need to find fewest edges whose deletion results in a bipartite graph,
is equivalent to the classical Maximum Cut problem (which has been studied for over five
decades [14, 39]). It is known that Edge Bipartization (and Maximum Cut) reduces to
Bipartization [42], and both problems find applications in computational biology [42, 38],
VLSI chip design [18], genome sequence assembly [32], and more. Bipartization is of
particular interest also due to the following observation: a graph is bipartite if and only if it
does not contain any odd cycle. As such, it can be formulated as hitting all odd cycles in the
graph (using fewest vertices). For this reason, the Bipartization problem is also known
as Odd Cycle Transversal, and belongs to the family of cycle-hitting problems, one of
the most well-studied topics in algorithmic graph theory. Besides Bipartization, other
important cycle-hitting problems that have been studied on disk graphs include Feedback
Vertex Set, Triangle Hitting, Short Cycle Hitting, etc.

There is no surprise that Bipartization is NP-complete. In fact, it is NP-complete even
on graphs of maximum degree 3 and planar graphs of maximum degree 4 [6]. As such, the
study of the problem is mainly in the context of approximation algorithms and parameterized
algorithms. On the parameterized front, it was known that Bipartization can be solved in
2O(k) · nO(1) time where k is the solution size [20, 25, 35]. On planar graphs and unit-disk
graphs, there exist improved algorithms with running time kO(

√
k) ·nO(1) [2, 3, 29, 31], which

are almost tight assuming the Exponential-Time Hypothesis (ETH). On disk graphs, it was
not known whether Bipartization admits a subexponential-time parameterized algorithm,
until very recently Lokshtanov et al. gave a kO(k27/28) · nO(1)-time algorithm [26].

From the perspective of approximation algorithms (which is the focus of this paper),
Bipartization is one of the trickiest problems in the sense that no polynomial-time ap-
proximation scheme (PTAS) was known on any (nontrivial) graph classes, but at the same
time no inapproximability results was known except for general graphs. On general graphs,
Bipartization cannot admit any (polynomial-time) constant-approximation algorithm
assuming the Unique Games Conjecture [4], and the best known approximation ratio is
O(
√

log opt) due to Kratsch and Wahlström [24], improving the earlier bounds of O(log n) [9]
and O(

√
log n) [1]. It has been a long-standing open question whether Bipartization

admits a PTAS on planar graphs or unit-disk graphs. On planar graphs, the currently best
approximation for Bipartization is still the 9

4 -approximation algorithm given in the seminal
work of Goemans and Williamson [15] more than two decades ago. This result immediately
gives a 3-approximation algorithm for Bipartization on disk graphs (and in particular,
unit-disk graphs) by the well-known fact that triangle-free disk graphs are planar [22].

▶ Theorem 1 (folklore). There exists a polynomial-time 3-approximation algorithm for
Bipartization on the class of disk graphs.

Proof. Let G be the input disk graph. We repeat the following step until G contains no
triangles: find a triangle in G, add its three vertices to the solution, and remove them
from G. Denote by S the set of vertices added to the solution and by G′ = G − S the
resulting triangle-free graph, which is planar [22]. Now apply the algorithm of Goemans
and Williamson [15] on G′ to obtain a 9

4 -approximation solution S′. Note that S ∪ S′ is
a 3-approximation solution (for G). Indeed, any solution of Bipartization must hit all
triangles in G and thus contains at least |S|/3 vertices in S. Also, it contains at least |S′|/ 9

4
vertices in V (G′). So its size is at least |S|/3 + |S′|/ 9

4 ≥ |S ∪ S′|/3. ◀
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For over two decades, this has remained the best approximation algorithm for Biparti-
zation on disk graphs (in fact, even on unit-disk graphs). Thus, there is a natural question
to be asked: can we achieve an approximation ratio better than 3 for the problem? Note
that one cannot achieve this by improving the approximation ratio 9

4 for Bipartization
on planar graphs. Indeed, even if we had a PTAS on planar graphs, the above argument
still only gives us a 3-approximation algorithm on disk graphs. Therefore, the number 3
here is truly a bottleneck of the approximation ratio of the problem. In this paper, we break
this bottleneck and answer the above question affirmatively by giving the first algorithm for
Bipartization on disk graphs with an approximation ratio better than 3. Specifically, our
main result is the following.

▶ Theorem 2. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of disk graphs, for some constant α > 0.

We remark that Theorem 2 should be viewed as a proof of concept, rather than the
quantitative improvement. Our algorithm in Theorem 2 is robust in the sense that it does
not require the geometric realization of the input disk graph to be given. Furthermore,
our algorithm directly generalizes to the broader class of pseudo-disk graphs, which are
the intersection graphs of topological disks in which the boundaries of every two of them
intersect at most twice. (Note that the 3-approximation algorithm in Theorem 1 also works
for pseudo-disk graphs as triangle-free pseudo-disk graphs are planar [22].) Again, this
generalized algorithm is robust.

▶ Theorem 3. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of pseudo-disk graphs, for some constant α > 0.

Finally, we observe that our technique not only works for the Bipartization problem.
In fact, it can be applied to a large category of vertex-deletion problems on (pseudo-)disk
graphs, resulting in (3− α)-approximation algorithms. Although at this point it only yields
interesting results for Bipartization (mainly because most well-studied problems in the
category already have algorithms on disk graphs with approximation ratio better than 3),
this demonstrates that our technique could possibly have further applications in the future.
We shall briefly discuss this part in Section 4.

Other related work

NP-complete optimization problems on disk graphs and other geometric intersection graphs
have received considerable attention over years. Here we only summarize some recent
work on this topic. The work of de Berg et al. [7] gave a framework for designing ETH-
tight exact algorithms on (unit-)disk graphs or more generally (unit-)ball graphs, which
works for a variety of classical optimization problems. Bonamy et al. [5] presented the first
EPTAS and subexponential-time algorithm for Maximum Clique on disk graphs. Fomin
et al. [11] designed almost ETH-tight parameterized algorithms for various cycle-packing
and cycle-hitting problems on unit-disk graphs; in a follow-up paper [12], the same authors
improved some of their algorithms to be ETH-tight. Recently, Lokshtanov et al. [26, 28]
proposed frameworks for subexponential parameterized algorithms and EPTASes for various
vertex-deletion problems on disk graphs (the framework for EPTASes does not work for
Bipartization, while the one for subexponential parameterized algorithms works). A very
recent work by the same authors [27] gave a 1.9999-approximation for Vertex Cover on
string graphs (i.e., intersection graphs of arbitrary connected geometric objects in the plane),
which has the same flavor as this paper.

APPROX/RANDOM 2024



6:4 Bipartizing (Pseudo-)Disk Graphs

Besides the aforementioned algorithmic research on Bipartization, the problem was
also studied in the context of kernelization complexity. The seminal work by Kratsch and
Wahlström [23] showed that Bipartization admits a randomized polynomial kernel with
respect to k. Later, for planar graphs, it was shown to admit a deterministic polynomial
kernel by Jansen et al. [17]. Moreover, the kernelization complexity of Bipartization was
studied also with respect to some structural parameterizations [16].

On a related note, we remark that structural properties of odd cycles in a graph has also
received significant attention from various combinatorial points of view. While the survey of
these results is beyond the scope of this paper, as an illustrative example, let us mention the
study of Erdős–Pósa properties for odd cycles (see e.g., [10, 19, 33, 40]).

2 Preliminaries

Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge set of G,
respectively. For a subset V ⊆ V (G), denote by G[V ] the subgraph of G induced by V , and
by G− V the subgraph of G induced by V (G)\V . For a vertex v, we use NG(v) to denote
the set {x ∈ V (G) \ {v} : (x, v) ∈ E(G)}. For a vertex subset S, we use NG(S) and NG[S]
to denote the sets

⋃
z∈S NG(z) \ S and S ∪ NG(S), respectively. For a vertex v in G, we

use dG(v) to denote the degree of v (i.e., |NG(v)|) in G. A vertex subset I ⊆ V (G) is a
distance-d independent set in G, if for any two distinct vertices x and y in I, the distance
between x and y in G is strictly more than d. Here, the distance between two vertices is the
number of edges in a shortest path between those vertices. Let S be a collection of subsets
of V (G). A packing of S is a sub-collection S ′ such that S ∩ S′ = ∅ for all S, S′ ∈ S ′ with
S ̸= S′. We say a packing S ′ ⊆ S is maximal if any S ′′ ⊆ S satisfying S ′ ⊊ S ′′ is not a
packing of S, and is maximum if any subset S ′′ ⊆ S satisfying |S ′| < |S ′′| is not a packing of
S. Any maximum packing of S has the same size.

An odd cycle transversal (or OCT for short) of G is a subset S ⊆ V (G) such that G− S

is a bipartite graph. A triangle in G refers to a set T = {u, v, w} of three vertices of G such
that (u, v), (v, w), (w, u) ∈ E(G). We use ∆(G) to denote the family of all triangles in G.
For a set T of triangles in G, we denote by V (T ) the set of vertices of all triangles in T , i.e.,
V (T ) =

⋃
T ∈T T . The notation tri(T ) denotes the size of a maximum packing of T .

3 Our algorithm

In this section, we present our approximation algorithm for Bipartization on disk graphs.
Our algorithm first takes a simple preprocessing step, which reduces the general problem
to the problem on K4-free disk graphs (i.e., disk graphs without cliques of size 4). Then
in the main part of our algorithm, we solve Bipartization on K4-free disk graphs. For a
cleaner exposition, we shall present a randomized version of our algorithm, as it is more
intuitive and yields a better approximation ratio. The derandomization can be found in the
full version of the paper.

3.1 Preprocessing: reducing to the K4-free case
For a graph G, let K4(G) be the set of all K4’s in G. The following lemma allows us to
reduce the problem to Bipartization on K4-free disk graphs.

▶ Lemma 4. Let G be a graph and C be a packing of K4(G). Let S be a ρ-approximation
solution for Bipartization on G − V (C). Then, S ∪ V (C) is a max{2, ρ}-approximation
solution for Bipartization on G.
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Proof. First, it is clear that S ∪V (C) is an OCT of G, since G−S ∪V (C) = (G−V (C))−S

contains no odd cycles. Let S∗ be an optimal OCT of G. For every K4 in C, S∗ must contain
at least 2 vertices in the K4 (for otherwise G− S∗ contains a triangle). Since the K4’s in C
are disjoint, we have |S∗ ∩ V (C)| ≥ 2|C| = |V (C)|/2. Furthermore, S∗ ∩ (V (G)\V (C)) is an
OCT of G− V (C), which implies |S∗ ∩ (V (G)\V (C))| ≥ |S|/ρ. Therefore,

|S∗| = |S∗ ∩ V (C)|+ |S∗ ∩ (V (G)\V (C))| ≥ |V (C)|
2 + |S|

ρ
≥ |S|+ |V (C)|

max{2, ρ}
.

As |S ∪ V (C)| = |S|+ |V (C)|, we have |S ∪ V (C)| ≤ max{2, ρ} · |S∗|. ◀

One reason for why this reduction helps us is the degeneracy of a K4-free disk graph.
Recall that a graph G is c-degenerate if we can sort its vertices as v1, . . . , vn such that each
vi is neighboring to at most c vertices in {v1, . . . , vi−1}. A c-degenerate graph of n vertices
has at most cn edges and thus has average degree at most 2c. We prove that every K4-free
disk graph is 11-degenerate. To prove this we use the following known result.

▶ Lemma 5 ([30]). Let D be a disk of radius r. Let S be a set of pairwise non-overlapping
disks of radius r such that every disk in S intersects with D. Then, |S| ≤ 5.

▶ Lemma 6. Every K4-free disk graph is 11-degenerate.

Proof. To prove the lemma, it is enough to prove that for any K4-free disk graph, there is a
vertex of degree at most 11. Let G be a K4-free disk graph with a realization D, and let
Dv ∈ D be the disk representing the vertex v ∈ V (G). Let u be a vertex in G such that disk
Du has the smallest radius among the disks in D. We will prove that dG(u) ≤ 11. Let r be the
radius of Du. Notice that for each v ∈ NG(u), the radius of Dv is at least r. Now we construct
a graph H with vertex set NG[u] such that H is a unit disk graph, H is a subgraph of G (and
hence K4-free), and dG(u) = dH(u). The construction of H is as follows. For each v ∈ NG(u),
construct a disk D′

v of radius r which is fully contained in the disk Dv and intersects Du.
The graph H is the geometric intersection graph of D′ = {Du} ∪ {D′

v : v ∈ NG(u)}. It is
easy to see that H is a unit disk graph, H is a subgraph of G and dG(u) = dH(u). For
each v ∈ V (H) \ {u}, let Lv be the line segment between the centers of Du and D′

v. Let
{v1, . . . vt} = NG(u) such that the line segments Lv1 , Lv2 , . . . , Lvt

are in the clockwise order.
We claim that t ≤ 11. For the sake of contradiction assume that t ≥ 12. Suppose there
exists two distinct i, j ∈ {1, 3, 5, 7, 9, 11} such that D′

vi
intersects with D′

vj
. This implies that

D′
vi+1

or D′
vj+1

intersects both D′
vi

and D′
vj

. Let w ∈ {vi+1, vj+1} be the vertex such that
D′

w intersects both D′
vi

and D′
vj

. Then, H[{u, w, vi, vj}] is a complete graph on 4 vertices,
which is a contradiction because H is K4-free. Then, the disks D′

v1
, D′

v3
, D′

v5
, D′

v7
, D′

v9
, D′

v11

are pairwise non-overlapping, which is a contradiction to Lemma 5. Thus, we proved that
t ≤ 11 and hence dH(v) = dG(v) ≤ 11. That is, the degeneracy of G is at most 11. ◀

3.2 The main algorithm
Our main algorithm for Bipartization on K4-free disk graphs is presented in Algorithm 1.
At the beginning, it takes an arbitrary maximal triangle packing T of G (line 1) and defines
O as the triangles in G that have at least one vertex outside V (T ). In a high-level, our
algorithm computes three different solutions S1, S2, S3 and returns the best one.

The first solution S1 is computed in exactly the same way as the 3-approximation
algorithm described in the introduction. Specifically, we include in S1 all vertices in the
triangle packing T , and an OCT X1 of G− V (T ) computed by a sub-routine PlanarBip
(line 3), which is an algorithm for Bipartization on planar graphs.

APPROX/RANDOM 2024



6:6 Bipartizing (Pseudo-)Disk Graphs

The second solution S2 is constructed in a more involved way. First, in each triangle
T ∈ T , we randomly sample one vertex vT ∈ T (line 6); here the function random(T ) returns
each vertex in T with probability 1

3 and different calls of random are independent. Let R

be the vertices in V (T ) not sampled (line 7). Then we include in S2 all vertices in R, all
vertices in an arbitrary maximal triangle packing T ′ of G−R (line 8), and an OCT X2 of
G− (R ∪ V (T ′)) computed by PlanarBip.

If O is nonempty, we need to construct our third solution S3. We take a maximal packing
T ′′ of the triangles in O (line 12). Then we include in S3 all vertices in V (T ′′) ∩ V (T ) and
an OCT X3 of G− (V (T ′′) ∩ V (T )) recursively computed by our algorithm (line 13).

Finally, we return the best one among S1, S2, S3 (line 15); here min{S1, S2, S3} returns
the set of smallest size among S1, S2, S3. If S3 is not computed, we simply return min{S1, S2}.
It is obvious that each of S1, S2, S3 is an OCT of G and thus the algorithm always returns a
correct solution. The quality of the solution obtained will be analyzed in the next section.
Also, one can easily see that Algorithm 1 runs in polynomial time. Indeed, except the
recursive call of OCT in line 13, all the other steps can be done in polynomial time. Line 13
will only be executed when O ≠ ∅. In this case, T ′′ ̸= ∅ and V (T ′′) ̸= ∅. Thus, the graph
G− (V (T ′′) ∩ V (T )) has at most n− 1 vertices where n = V (G), and the running time of
Algorithm 1 satisfies the recurrence T (n) ≤ T (n− 1) + nO(1) which solves to T (n) = nO(1).

Algorithm 1 Bipartization(G). ▷ G is a K4-free disk graph

1: T ← a maximal packing of ∆(G)
2: O ← {T ∈ ∆(G) : T ⊈ V (T )}

3: X1 ← PlanarBip(G− V (T )) ▷ construct the first solution S1
4: S1 ← V (T ) ∪X1

5: for every T ∈ T do ▷ construct the second solution S2
6: vT ← random(T )
7: R←

⋃
T ∈T (T\{vT })

8: T ′ ← a maximal packing of ∆(G−R)
9: X2 ← PlanarBip(G− (R ∪ V (T ′)))

10: S2 ← R ∪ V (T ′) ∪X2

11: if O ≠ ∅ then ▷ construct the third solution S3
12: T ′′ ← a maximal packing of O
13: X3 ← Bipartization(G− (V (T ′′) ∩ V (T )))
14: S3 ← (V (T ′′) ∩ V (T )) ∪X3

15: return min{S1, S2, S3} ▷ if S3 is undefined, simply return min{S1, S2}

3.3 Analysis
In this section, we analyze the (expected) approximation ratio of Algorithm 1. We denote
by ρ this ratio and aim to establish an upper bound for ρ. Consider a given disk graph G

which is K4-free. Let opt be the minimum size of an odd cycle transversal of G, and T ,O
be the two sets of triangles as in Algorithm 1. The output of Algorithm 1 is the best one
among three OCT solutions S1, S2, S3. Therefore, to analyze the approximation ratio of our
algorithm, we have to consider the approximation ratios of S1, S2, S3. It turns out that each
solution Si individually may be of size 3opt or even larger in worst case. However, as we will
see, the best one among them always admits an approximation ratio strictly smaller than 3.
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In order to analyze the three solutions, we define two important parameters: a = |T |/opt
and b = tri(O)/opt (recall that tri(O) is the size of a maximum packing of O). Note that
a, b ∈ [0, 1] because both |T | and tri(O) are at most the size of a maximum triangle packing
in G, which is smaller than or equal to opt. The analysis of S1, S2, S3 will be done in terms
of a and b, that is, we shall represent the approximation ratios of S1, S2, S3 as functions of a

and b. Roughly speaking, we shall show that S1 is good when a is small, S2 is good when b

is small, and S3 is good when both a and b are large. For convenience, we use the notation
ρ0 to denote the approximation ratio of the PlanarBip sub-routine used in Algorithm 1.

3.3.1 The quality of S1

The solution S1 is computed using exactly the 3-approximation algorithm described in the
introduction. A more careful analysis shows that its approximation ratio is related to the
parameter a: the smaller a is, the better S1 is.

▶ Lemma 7. |S1| ≤ (3a + ρ0(1− a)) · opt.

Proof. Since a = |T |/opt, and T is a triangle packing, we get that |V (T )| = 3|T | = 3a · opt.
Since T is a triangle packing, any odd cycle transversal contains at least |T | vertices from
V (T ), the size of a minimum odd cycle transversal in G−V (T ) is at most opt−|T | = (1−a)opt.
Therefore, |S1| = |V (T )|+ |X1| ≤ (3a + ρ0(1− a)) · opt. ◀

3.3.2 The quality of S2

Figuring out the quality of S2 is the most involved part in our analysis. Basically, what
we shall show is that whenever the parameter b is sufficiently small, S2 always gives us a
better-than-3 approximation no matter what the value of a is. The analysis in this section
shall explicitly use the fact that G is K4-free. Let vT , R, and T ′ be as in Algorithm 1. We
first need the following simple observation, which will allow us to bound the expected size of
S2 using the expected size of T ′.

▶ Observation 8. E[|R ∩ Sopt|] ≥ 1
3 |R| and |V (T ′) ∩ Sopt| ≥ |T ′|.

Proof. Since Sopt is an OCT of G, it contains at least one vertex in every triangle T ∈ T .
Thus, E[|(T\{vT }) ∩ Sopt|] ≥ 2

3 . By the linearity of expectation, we have

E[|R ∩ Sopt|] =
∑
T ∈T

E[|(T\{vT }) ∩ Sopt|] ≥
2
3 |T | =

1
3 |R|.

The fact |V (T ′) ∩ Sopt| ≥ |T ′| follows from the fact that T ′ is a triangle packing: Sopt
contains at least one vertex in every triangle T ∈ T ′. ◀

The above observation implies that E[|(R∪V (T ′))∩Sopt)|] ≥ 1
3 |R|+E[|T ′|]. Therefore, we

have E[|Sopt\(R∪V (T ′))|] ≤ opt− 1
3 |R|−E[|T ′|] and hence E[|X2|] ≤ ρ0 ·(opt− 1

3 |R|−E[|T ′|]).
It follows that

E[|S2|] = |R|+ E[|V (T ′)|] + E[|X2|]

≤ |R|+ 3 · E[|T ′|] + ρ0 ·
(

opt− 1
3 |R| − E[|T ′|]

)
=

(
1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) · E[|T ′|]

(1)

APPROX/RANDOM 2024



6:8 Bipartizing (Pseudo-)Disk Graphs

We say a vertex v ∈ V (T ) is dead if v /∈ R and v is not contained in any triangle in
G[V (T )\R]. Let D denote the set of all dead vertices, which is a random subset of V (T )
as it depends on the random vertices vT . For each v ∈ V (T ), let deg(v) denote the degree
of v in G[V (T )]. Recall that a = |T |/opt and b = tri(O)/opt. It is easy to see the following
relation between |T ′| and |D|.

▶ Observation 9. |T ′| ≤ (a + b) · opt− |R|
3 −

|D|
3 .

Proof. Since T ′ is a triangle packing, we have |T ′ ∩ O| ≤ tri(O) = b · opt. On the other
hand, all elements in T ′\O are triangles in G[V (T )\R]. However, dead vertices cannot be
the vertex of any triangle in G[V (T )\R]. Thus, the vertices of the triangles in T ′\O must
lie in V (T )\(R ∪D). We have |V (T )\(R ∪D)| = 3 · |T | − |R| − |D| = 3a · opt− |R| − |D|,
which implies |T ′\O| ≤ a · opt− |R|

3 −
|D|
3 . Because |T ′| = |T ′ ∩ O|+ |T ′\O|, we have the

inequality in the observation. ◀

Combining the above observation with Equation 1, we have

E[|S2|] ≤
(

1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) · E[|T ′|]

=
(

1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) ·

(
(a + b) · opt− |R|3 −

E[D]
3

)
= (ρ0 + (3− ρ0)(a + b)) · opt− (3− ρ0) · E[|D|]

3 .

(2)

To show that S2 has an approximation ratio below 3 when b is small, the crucial observation
is that we have a large number of dead vertices in expectation.

▶ Observation 10. Pr[v is dead] ≥ ( 1
3 ) 3

8 deg(v)+ 1
4 for all v ∈ V (T ). Thus, we have E[|D|] ≥

( 1
3 ) 3

8 d+ 1
4 (3a · opt), where d is the average degree of G[V (T )].

Proof. Let v ∈ V (T ) and T0 ∈ T be the triangle containing v. Denote by N(v) the
set of neighbors of v in V (T ) (excluding v itself). We then have |N(v)| = deg(v) and
|N(v)\T0| = deg(v)− 2. Observe that the graph G[N(v)] is triangle-free. Indeed, if G[N(v)]
contains a triangle T , then T ∪ {v} forms a clique in G of size 4, which contradicts with the
fact that G is K4-free. As G[N(v)] is triangle-free, it is planar. In particular, G[N(v)\T0] is
planar. It was known that every n-vertex planar graph has a vertex cover of size at most 3

4 n

(indeed, a planar graph is 4-colorable, so it has an independent set of size at least n
4 and

thus a vertex cover of size at most 3
4 n). Thus, G[N(v)\T0] has a vertex cover C ⊆ N(v)\T0

with |C| ≤ 3
4 |N(v)\T0| = 3

4 (deg(v)− 2).
Next, we notice that if v /∈ R and C ⊆ R, then v is a dead vertex. Indeed, if v is contained

in a triangle {v, u, w} in G[V (T )\R], then at least one of u and w must be in C, since C is a
vertex cover of N(v)\T0 (note that u, w /∈ T0 for otherwise v ∈ R). Let T1 ⊆ T (resp., T2 ⊆ T )
consist of the triangles that contain one vertex (resp., two vertices) in C. Note that no triangle
in T can contain three vertices in C because G[C] is triangle-free. Therefore, C ⊆ R if and
only if vT /∈ C for all T ∈ T1 ∪ T2. The events vT /∈ C for all T ∈ T1 ∪ T2 are independent,
and happen with probability 2

3 if T ∈ T1 and with probability 1
3 if T ∈ T2. It follows that

Pr[C ⊆ R] = ( 2
3 )|T1| · ( 1

3 )|T2|. We have the inequality |T1| + 2|T2| = |C| ≤ 3
4 (deg(v) − 2).

Subject to |T1| ≥ 0, |T2| ≥ 0, and |T1|+ 2|T2| ≤ 3
4 (deg(v)− 2), the quantity ( 2

3 )|T1| · ( 1
3 )|T2|

is minimized when |T1| = 0 and |T2| = 3
8 (deg(v)− 2), and is equal to ( 1

3 ) 3
8 (deg(v)−2). Thus,

we have Pr[C ⊆ R] ≥ ( 1
3 ) 3

8 (deg(v)−2). Furthermore, the events v /∈ R and C ⊆ R are
independent because whether v /∈ R happens only depends on the choice of vT0 ∈ T0. We
have Pr[v /∈ R] = 1

3 and Pr[C ⊆ R] ≥ ( 1
3 ) 3

8 (deg(v)−2). Since v is a dead vertex if both
v /∈ R and C ⊆ R happen, we finally have Pr[v is dead] ≥ ( 1

3 ) 3
8 deg(v)+ 1

4 . By the linearity of
expectation and the fact |V (T )| = 3|T | = 3a · opt, we then have



D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:9

E[|D|] =
∑

v∈V (T )

Pr[v is dead] ≥
∑

v∈V (T )

(
1
3

) 3
8 deg(v)+ 1

4

≥
(

1
3

) 3
8 d+ 1

4

(3a · opt).

where d =
∑

v∈V (T ) deg(v)/|V (T )|. ◀

At the end, we can establish the bound for E[|S2|].

▶ Lemma 11. E[|S2|] ≤ (ρ0 + (1− ( 1
3 ) 3

8 d+ 1
4 )(3− ρ0)a + (3− ρ0)b) · opt, where d denotes the

average degree of G[V (T )].

Proof. Combining Observation 10 with Equation 2 completes the proof. ◀

According to Lemma 6, we have d ≤ 22, and thus the above lemma gives us a good
bound for E[|S2|]: as long as b is sufficiently small, no matter what a is, we can have that
E[|S2|] ≤ (3− α) · opt for some constant α > 0.

3.3.3 The quality of S3

Finally, we analyze the quality of S3. Given S1 is good when a is small and S2 is good when
b is small, we clearly want S3 to be good when both a and b are large.

▶ Lemma 12. If ρ ≥ 2, then E[|S3|] ≤ ( 2b
3 + ρ(2− a− b

3 )) · opt.

Proof. Let r = |T ′′|/opt. Since T ′′ is a maximal packing in O, V (T ′′) is a hitting set of O,
which implies 3|T ′′| = |V (T ′′)| ≥ tri(O) and thus r ≥ tri(O)

3·opt = b
3 .

▷ Claim 13. E[|X3|] ≤ ρ(2− a− r)opt.

Proof. Let S∗ be an optimal OCT of G. So |S∗| = opt. We call a triangle T ∈ T ′′ bad
if S∗ contains a vertex from V (T ) \ V (T ). Since T is a triangle packing, we also know
that |S∗ ∩ V (T )| ≥ |T | = a · opt. Thus, the number of bad triangles in T ′′ is at most
(1− a)opt, because S∗ contains at most (1− a)opt vertices outside of V (T ), and any such
vertex can be part of at most one triangle in T ′′. That is, the number of good triangles
in T ′′ is at least (r − (1 − a))opt. For each good triangle T ∈ T ′′, S∗ contains a vertex
from V (T ) ∩ V (T ). This implies that |S∗ ∩ (V (T ′′) ∩ V (T ))| ≥ (r − (1 − a))opt, and
hence |S∗ \ (V (T ′′) ∩ V (T ))| ≤ opt − (r − (1 − a))opt = (2 − a − r)opt. Also, notice that
S∗ \ (V (T ′′) ∩ V (T )) is an OCT of G− (V (T ′′) ∩ V (T )). Thus, the size of an optimal OCT
of G− (V (T ′′) ∩ V (T )) is at most (2− a− r)opt, which implies E[|X3|] ≤ ρ(2− a− r)opt.

◁

Since each triangle T ∈ T ′′ is also in O, we have |V (T ) ∩ V (T )| ≤ 2. This implies that
|V (T ′′) ∩ V (T )| ≤ 2r · opt. Now we are ready to deduce

E[|S3|] = E[|V (T ′′) ∩ V (T )|+ |X3|]
= |V (T ′′) ∩ V (T )|+ E[|X3|]
≤ (2r · opt) + ρ(2− a− r)opt (By Claim 13 and |V (T ′′) ∩ V (T )| ≤ 2r · opt)
= (2− ρ)r · opt + ρ(2− a)opt

≤ (2− ρ) b

3opt + ρ(2− a)opt (Because r ≥ b

3 , and 2− ρ < 0)

≤
(

2b

3 + ρ

(
2− a− b

3

))
· opt.

This completes the proof of the lemma. ◀
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3.3.4 Putting everything together
Given the analyses for S1, S2, and S2 in the previous sections, we are ready to bound
the (expected) approximation ratio ρ of the entire algorithm. Let ρ1 = 3a + ρ0(1 − a),
ρ2 = ρ0 + (1− ( 1

3 ) 3
8 d+ 1

4 )(3− ρ0)a + (3− ρ0)b, ρ3 = 2b
3 + ρ(2− a− b

3 ) be the approximation
ratios of S1, S2, S3 given in Lemmas 7, 11, 12, respectively1. As the output is the best one
among S1, S2, S3, we have

ρ ≤ E[min{|S1|, |S2|, |S3|}]
opt ≤ min{E[|S1|],E[|S2|],E[|S3|]}

opt ≤ min{ρ1, ρ2, ρ3}.

Note that ρ1, ρ2, ρ3 can be viewed as linear functions of a and b, when the other numbers d,
ρ0, ρ are all fixed. So we first figure out the values of a and b that maximizes min{ρ1, ρ2, ρ3}.
With calculation, we have

min{ρ1, ρ2, ρ3} ≤
(3− ρ0)(2ρ− ρ0)

(3− ρ0 + ρ) + (ρ− 2) · 3−( 3
8 d+ 5

4 ) + ρ0, (3)

and the upper bound is achieved when

a = (2ρ− ρ0)
(3− ρ0 + ρ) + (ρ− 2) · 3−( 3

8 d+ 5
4 ) and b = (2ρ− ρ0) · 3 3

8 d+ 1
4

(3− ρ0 + ρ) + (ρ− 2) · 3−( 3
8 d+ 5

4 ) ,

in which case ρ1 = ρ2 = ρ3. Now combine Equation 3 with the inequality ρ ≤ min{ρ1, ρ2, ρ3}
and re-arrange the terms in the inequality, we deduce

(3−( 3
8 d+ 5

4 ) + 1) · ρ2 − ((2 + ρ0) · 3−( 3
8 d+ 5

4 ) + 3) · ρ + (2ρ0 · 3−( 3
8 d+ 5

4 )) ≤ 0.

The left-hand side of the above inequality is a quadratic function of ρ in which the coefficient
of the quadratic term is positive. Therefore, in order to make the quadratic function
non-positive, ρ must be smaller than its larger root, i.e.,

ρ ≤
((2 + ρ0) · 3−( 3

8 d+ 5
4 ) + 3) +

√
((2 + ρ0) · 3−( 3

8 d+ 5
4 ) + 3)2 − (3−( 3

8 d+ 5
4 ) + 1)(8ρ0 · 3−( 3

8 d+ 5
4 ))

2 · (3−( 3
8 d+ 5

4 ) + 1)
.

By Lemma 6, G[V (T )] is 11-degenerate and thus d ≤ 22. Furthermore, using the 9
4 -

approximation algorithm [15] for planar bipartization, we can set ρ0 = 9
4 . Plugging in these

values to the above inequality, we have ρ ≤ 2.99993033741.
Our entire algorithm first applies Lemma 4 with a maximal packing C of K4(G) to reduce

the problem to G− V (C), which is a K4-free disk graph, and then applies Algorithm 1 on
G− V (C). By Lemma 4 and the above analysis, this algorithm solves Bipartization on
disk graphs with an expected approximation ratio at most 2.99993033741. By repeating the
algorithm polynomial number of times, we can also obtain a randomized algorithm that
achieves the same approximation ratio with high probability.

▶ Theorem 14. There exists a polynomial-time randomized algorithm for Bipartization
on the class of disk graphs that gives a (3− α)-approximation solution with high probability,
for some α > 10−5.

1 In Lemma 12, the bound for E[|S3|] has a condition ρ ≥ 2. But we can assume this is always the case,
for otherwise our algorithm is already a 2-approximation algorithm.
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With some efforts, we can derandomize our algorithm to obtain a deterministic (3− α)-
approximation algorithm for Bipartization on disk graphs. In fact, in Algorithm 1, only
the construction of the set R is randomized. We show in the full version how to construct
R deterministically while still guaranteeing the nice properties of R (the key point is to
guarantee that there are many dead vertices). The approximation ratio of our deterministic
algorithm is slightly worse than the randomized one (while it is still smaller than 3).

▶ Theorem 2. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of disk graphs, for some constant α > 0.

4 Generalizations

In this section, we discuss some generalizations of our result. First, we observe that our
algorithm directly generalizes to pseudo-disk graphs. A set of geometric objects in the plane
are called pseudo-disks if each of them is homeomorphic to a disk and the boundaries of any
two objects intersect at most twice. A graph is a pseudo-disk graph if it can be represented
as the intersection graph of a set of pseudo-disks.

In our Bipartization algorithm, we only exploit two properties of disk graphs: (i)
triangle-free disk graphs are planar, and (ii) K4-free disk graphs are c-degenerate for some
constant c. In fact, pseudo-disk graphs also satisfy these two properties.

▶ Fact 15 ([22]). Triangle-free pseudo-disk graphs are planar.

▶ Fact 16. K4-free pseudo-disk graphs are c-degenerate for some constant c.

Proof. We show that any Kr-free pseudo-disk graph of n vertices only has O(rn) edges, which
implies the fact. Let G be a Kr-free pseudo-disk graph realized by a set S of pseudo-disks.
We say an edge (S, S′) of G is an inclusion edge if S ⊆ S′ or S′ ⊆ S. We first observe that
G has O(rn) inclusion edges. Indeed, a pseudo-disk S ∈ S cannot be contained in r − 1 (or
more) other pseudo-disks in S, for otherwise there is a copy of Kr in G. Thus, if we charge
every inclusion edge (S, S′) to the smaller one of S and S′, every pseudo-disk is charged at
most r− 2 times. This implies that G has O(rn) inclusion edges. Now we bound the number
of other edges in G. Note that if (S, S′) is a non-inclusion edge in G, then the boundaries
of S and S′ intersect. So it suffices to bound the total number of intersection points of the
boundaries of the pseudo-disks in S. The depth of an intersection point x is the number of
pseudo-disks in S containing x. It is well-known that in a set of n pseudo-disks, the number
of boundary intersection points of depth at most d is bounded by O(dn) [21]. Since G is
Kr-free, every intersection point is of depth at most r. Thus, the total number of boundary
intersection points is O(rn), implying that G has O(rn) edges. ◀

Therefore, our algorithm directly generalizes to pseudo-disk graphs.

▶ Theorem 3. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of pseudo-disk graphs, for some constant α > 0.

Next, we observe that our techniques apply to not only the specific problem of Biparti-
zation. In fact, it works for a wide class of vertex-deletion problems on (pseudo-)disk graphs.
Recall that in a vertex-deletion problem, the goal is to delete a minimum set S of vertices
from a graph G such that G− S satisfies some desired property P. In Bipartization, the
property P is “being bipartite”. Our technique applies to any vertex-deletion problem that is
(i) hereditary, i.e., if a graph satisfies P then all its induced subgraphs also satisfy P, and
(ii) triangle-conflicting, i.e., a graph satisfies P only if it is triangle-free.
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▶ Theorem 17. If a hereditary and triangle-conflicting vertex-deletion problem admits a
(3− δ)-approximation algorithm on the class of planar graphs for some δ > 0, then it admits
a (3− α)-approximation algorithm on the class of (pseudo-)disk graphs for some α > 0.

Proof. We just replace the PlanarBip sub-routine in Algorithm 1 with the (3 − δ)-
approximation algorithm for the problem on planar graphs. As one can easily verify,
our analysis only depends on the fact that the vertex-deletion problem is hereditary and
triangle-conflicting. Thus, the same analysis shows that this is a (3 − α)-approximation
algorithm for the problem on (pseudo-)disk graphs. ◀

Well-studied instances of hereditary and triangle-conflicting vertex-deletion problems
(other than Bipartization) include Vertex Cover, Feedback Vertex Set, Triangle
Hitting, etc. Most of these problems already have (3 − δ)-approximation algorithms on
disk graphs, and some of them do not have known (3 − δ)-approximation algorithms on
planar graphs. Thus, at this point, we can only obtain interesting results for Bipartization.
However, we believe that this is not the full power of Theorem 17. To provide some evidences,
let us consider a vertex-deletion problem, Planarization&Bipartization, in which the
desired property P is “being planar and bipartite”. This problem is clearly hereditary and
triangle-conflicting. On planar graphs, it is equivalent to Bipartization and thus admits
a (3− δ)-approximation algorithm. Therefore, Theorem 17 gives a (3− α)-approximation
algorithm for Planarization&Bipartization on (pseudo-)disk graphs. Although this
problem itself is somehow artificial and not well-studied, it reveals that Theorem 17 could
possibly have further applications in the future.
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