
Efficient Analysis of Pipeline Models for WCET Computation

Stephan Wilhelm
AbsInt GmbH and Saarland University

Saarbr̈ucken, Germany
sw@absint.com

Abstract

Worst-case execution time (WCET) prediction for mod-
ern CPU’s cannot make local assumptions about the im-
pact of input information on the global worst-case because
of the existence of timing anomalies. Therefore, static anal-
yses on the hardware level must consider a large subset of
the reachable states of the underlying hardware model. As
the number of states grows, WCET prediction can become
infeasible because of the increase in computation time and
memory consumption. This paper presents a solution for
this problem by defining the static analysis of processor
pipelines for WCET computation in terms of operations on
binary decision diagrams (BDD’s).

1. Introduction

Finding the worst-case execution time (WCET) for all
tasks of a software is an important requirement in the design
of hard real-time systems. Because the execution time de-
pends on the underlying processor hardware, WCET com-
putation requires a detailed analysis of the hardware behav-
ior for the analyzed task. For CPU’s using modern tech-
niques for reducing the average execution time, such as
caches, pipelined execution, branch prediction, speculative
execution, and out-of-order execution, the WCET cannot be
obtained by measurements because it is usually not possible
to determine the worst-case inputs manually.

A proven approach for obtaining tight upper bounds of
the WCET has been presented in [8]. It employs sev-
eral semantics-based static program analyses on the assem-
bly level control flow graph (CFG) of the input program.
First, thevalue analysiscomputes the address ranges for
instructions accessing memory. In a second step, an inte-
gratedcache-andpipeline-analysispredicts the cache be-
havior [7] and the behavior of the program on the proces-
sor pipeline [13]. The result of the pipeline analysis is the
WCET for each basic block from which a subsequentpath
analysis[12] computes the global worst-case path.

Pipeline analysis computes sets of pipeline states that
can occur at any point in the program. Imprecisions in its in-
put information, arising from unknown memory accesses or
unknown cache behavior (may be cache hit or miss), cause
situations where the pipeline analysis must consider sev-
eral possible successor states for each incoming pipeline
state. Unfortunately, it has been proven that for CPU’s,
using modern techniques for reducing the average execu-
tion time, it is not possible to decide locally which element
from the input set triggers the global worst-case behavior.
E. g. a cachehit might contribute to the global worst-case.
Such cases have been termedtiming anomalies[9]. Be-
cause of the presence of timing anomalies, pipeline analy-
sis must consider all possible successor states. For complex
pipelines with large state spaces, the analysis can become
infeasible because of the increase in memory consumption
and computation time [13]. This problem is known asstate
explosionand it is also a well known phenomenon in the
area of model checking. The use of ordered binary deci-
sion diagrams (OBDD’s) [4] for symbolic set operations has
significantly reduced the state explosion problem for model
checking and the size of systems that have been successfully
verified by model checking has increased ever since [5].
The key idea of this paper is to define pipeline analysis
in terms of BDD1 operations, similar to symbolic model
checking. It can be expected, that this will reduce runtime
and memory consumption of pipeline analyses, making the
analysis of complex pipelines feasible, even for large pro-
grams.

2. Finite state machines

Processor pipelines can be regarded as finite state ma-
chines (FSM’s) and pipeline analysis can be defined as
a computation on sets of states of the FSM for the ana-
lyzed pipeline. The efficiency of the presented approach for
pipeline analysis relies on the BDD-based representation of
FSM’s which is introduced in this section.

1The terms BDD and OBDD are used interchangeably in this text.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 37 of 49

ECRTS 2005
5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/814



Definition 1 A Finite State Machine (FSM)M is a triple,
(Q, I, T ), whereQ is the set of states,I is the set of input
values, andT = (Q× I ×Q) is the transition relation.

Each set of FSM statesA ⊆ Q can be associated to its
characteristic functionA : Q → {0, 1}; A(x) = 1 ⇔
x ∈ A. In the same way, the transition relationT can
be associated to the functionT : Q × I × Q → {0, 1};
T(x, i, y) = 1 ⇔ (x, i, y) ∈ T . It is common practice
to represent FSM state sets and the FSM transition relation
by their characteristic functions encoded as BDD’s. This
representation has the advantage of compactly representing
a large number of commonly encountered functions. Use-
ful operations such as negation, conjunction and existential
quantification can be efficiently performed using BDD’s.

A hardware designconsists of a set of interconnected
latches and gates. A design withn latches andm in-
put wires is characterized by an associated FSM with state
spaceQ = {0, 1}n and input spaceI = {0, 1}m. The tran-
sition relation is defined by the corresponding logic. For
such models, the variables of BDD’s for encoding the char-
acteristic functions of states sets represent the latches of the
design.

Definition 2 Given a FSM(Q, I, T ) and a set of statesA ⊆
Q. Theimageof A, Img(A) ⊆ Q, is the set of states that is
reachable fromA underT .

Image computation is the core operation of symbolic
model checking algorithms [10]. Section 4 shows that it
can also be used for dataflow analysis of pipeline models.

Image computation can become infeasible for large de-
signs if the transition relation is given as a single BDD [3]
but there are efficient algorithms for image computation that
avoid building the monolithic transition relation by exploit-
ing the fact that the FSM transition relation can be factored
into the transition relations of the involved latches [10].
This technique is known asconjunctive partitioningof the
transition relation.

3. Specifying pipeline models

Hardware description languages like VHDL or Verilog
have been designed for writing concise descriptions of hard-
ware designs in terms of latches and update logic. It has
been shown that such specifications can be compiled into
(timed) finite state machines [6]. TheVISsystem for model
checking and synthesis of hardware designs supports a sub-
stantial subset of Verilog extended by an expression for
specifying non-deterministic behavior. Specifications in
Verilog are compiled using thevl2mvcompiler and the re-
sulting description of the system as a finite automaton can
be used for CTL modelchecking and reachability analy-
sis [11].

reg [0:3] cycles;
reg [0:1] instr;
reg [0:1] delay;

initial cycles = 0;
initial instr = 0;
initial delay = 0;

always @(clk_first) begin
if (cycles == 7)

cycles = 0;
else

cycles = cycles + 1;
end

always @(clk_second) begin
if (delay == 0)

delay = get_delay();
else

delay = delay - 1;
end

always @(clk_third) begin
if (delay == 0)

instr = get_next_instr();
end

Figure 1. Example Verilog code for simple
FSM.

Low-level HDL specifications, including detailed mod-
els of pipeline states and the corresponding logic, are read-
ily available for many CPU’s and can be compiled into fi-
nite automata by vl2mv. The resulting automata are often
too large for most kinds of analyses but the problem can
be overcome by applying suitable abstractions to the origi-
nal description. Automatic abstraction from HDL models is
a field of ongoing research [2]. HDL’s also support behav-
ioral descriptions of hardware which can be used to describe
the (timing) behavior of a design as specified by the man-
ual. Such descriptions are usually more compact and the
resulting automata are smaller.

Figure 1 shows an example of Verilog code for a FSM
with a two bit delay counter. Note that the declaration
reg[k:l] denotes a set of(l − k) + 1 variables of
the FSM state with value0 or 1. Let us assume that
this FSM is a simplified pipeline model2. It has an
instruction pointer,instr , for 3 instructions and a de-
lay counter,delay , that is initialized with the delay for

2Although the FSM of figure 1 is not a pipeline model, it is sufficient for
illustrating the principles of the presented approach for pipeline analysis.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 38 of 49



instruction delay
0 1
1 2
2 {0,1}

Table 1. Example program input for analyzing
the model from figure 1.

each instruction. Thecycle counter counts execution cy-
cles of basic blocks with at most7 cycles. Execution of
one cycle is done in three steps, indicated by the signals
clk first , clk second andclk third . Whenever
the delay counter reaches0 and the signalclk second
is active, a new value fordelay is read using the func-
tion get delay() . Similarly, the new value forinstr
is obtained from the functionget next instr() when
delay is 0 and the signalclk third is active.

When generating a FSM for this description, the in-
put functions are modeled as non-deterministic transitions.
Thus, image computation for a state wheredelay is 0 will
yield the3 possible successor states wheredelay takes the
values0, 1 or 2.

4. Pipeline analysis

Given a hardware model by an FSM, pipeline analysis
performs a fixed point iteration on the domainP (Q) of
pipeline states. The least fixed point (LFP) is the solution
to the data flow problem containing all FSM states that are
reachable for a given program point and also containing the
WCET state. Note that the FSM state comprises a counter
for execution cycles of basic blocks (the number of execu-
tion cycles per basic block is clearly finite). The WCET for
each basic blockB is found by selecting the state with the
highest value for the execution cycle counter from all states
where the last instruction belonging toB has finished.

4.1. Transfer functions

The transfer functions for pipeline analysis compute the
next states for each FSM transition in all current states. In
general, this is an image computation with the restriction
that program analysis is only interested in the set of reach-
able states under theconcreteinputs of the program. Image
computation as defined in section 2 determines the set of
reachable states forall possible inputs. LetA0 be the set
of initial states of the FSM(Q, I, T ). Then, the following
fixed point calculation computes the set of reachable FSM
states:

Ak+1 = Ak ∪ Img(Ak)

The problem of encoding concrete inputs of the analyzed
program can be solved by constructing BDD’s for the states
where inputs are read and BDD’s for the concrete inputs
themselves. Remember that the BDD variables for a hard-
ware design are the latches of the design. Let· denote the
conjunction of BDD variables and¬ is the negation of a
variable. For the example of figure 1, the state where the de-
lay for instruction1 is read by the functionget delay()
can be encoded as follows:

J1 = instr<0> · ¬instr<1> · ¬delay<0> ·

¬delay<1> · clk second

This is the state where the instruction pointer is1, the value
of the delay counter is0 and the signalclk second is
active. Table 1 specifies that the delay for instruction1 is 2.
This concrete input can be encoded as follows:

C1 = ¬delay<0> · delay<1>

The BDD’sJ1 andC1 can be regarded as the characteristic
functions of the state setsJ1 andC1 where the variables
have the values encoded in the BDD’s. For a setAk of FSM
states, the next states for the concrete input at this program
point are then computed by the following formula:

Ak+1,1 = (Img(Ak ∩ J1)) ∩ C1

For n concrete inputs, the next states for the set of states
whereno concrete input information is required is calcu-
lated as follows:

Ak+1,− = Img(Ak\
⋃

0≤l≤n

Jl)

Finally, the fixed point iteration for pipeline analysis under
n concrete input informations from the input program can
be computed as:

Ak+1 = (
⋃

0≤l≤n

Ak+1,l) ∪Ak+1,−

Please note that imprecise input information can also easily
be encoded as a BDD. E. g. the delay information for in-
struction2 in Table 1 is either0 or 1. The BDD for this in-
put is simplyC2 = ¬delay<1> . The sequence in which
instructions are analyzed is also an input to the model of
figure 1. This input can be determined from the program’s
CFG and encoded in the same way as the delay input.

The success of BDD based algorithms depends on the
size of the involved BDD’s, which is very sensitive to
the ordering of the BDD variables. Finding a minimum
sized BDD for a given logic function is algorithmically in-
tractable. However, there are many heuristics for finding
good variable orderings [10]. A good variable ordering
must only be found once for each pipeline model.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 39 of 49



5. Work in progress

A prototype of the presented approach for pipeline anal-
ysis has been implemented for a simple pipeline similar to
the ARM7 pipeline. This prototype is currently being inte-
grated with the aiT [1] framework for WCET analyses. For
the future, we are planning to model more complex CPU’s
like the Infineon Tricore and the Motorola Power PC family
of processors (MPC5xx and MPC755). The MPC755 is the
most challenging and interesting target because of the huge
state space of the pipeline model. We expect to achieve a
significant reduction of computation time and memory con-
sumption compared to the existing implementation.

6. Conclusion

We have shown that the application of well-known
techniques for handling large state sets from the area of
model checking to the program semantics-based analysis of
pipeline models, can help to handle the increasing complex-
ity of modern processor hardware for WCET computation.
For large state sets, BDD based algorithms are more space
efficient and faster than implementations using an explicit
representation of pipeline states.

Furthermore, we have established a connection between
pipeline analysis implementation and pipeline specifica-
tions written in Verilog or VHDL. Generating the pipeline
analysis from the same specification used for hardware syn-
thesis is faster and less error-prone than the difficult way
of manual implementation. Finally, the important task of
verification of the analysis is also simplified for analyses
generated from HDL specifications.

References

[1] http://www.absint.com/aiT/.
[2] http://www.avacs.org.
[3] A. Aziz, S. Tasiran, and R.K. Brayton. BDD Variable Order-

ing for Interacting Finite State Machines. In31st ACM/IEEE
Design Automation Conference (DAC), San Diego, CA,
1994.

[4] R. Bryant. Graph based algorithms for boolean function ma-
nipulation. InIEEE Transactions on Computers, 1986.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang.
Symbolic model checking:1020 states and beyond. IEEE
Comp. Soc. Press, 1990.

[6] S.-T. Cheng. Compiling Verilog into Automata, 1994.
[7] C. Ferdinand.Cache Behavior Prediction for Real-Time Sys-

tems. PhD thesis, Saarland University, 1997.
[8] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,

M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and precise WCET determination for a real-life proces-
sor. InProceedings of EMSOFT 2001, LNCS 2211, 2001.

[9] T. Lundquist and P. Stenström. Timing Anomalies in Dy-
namically Scheduled Microprocessors. InProceedings of the
20th IEEE Real-Time Systems Symposium, 1999.

[10] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley.
Efficient BDD algorithms for FSM synthesis and verifica-
tion, 1995.

[11] The VIS Group. VIS user’s manual.
[12] H. Theiling. ILP-based Interprocedural Path Analysis. In

Proceedings of the Workshop on Embedded Software, Greno-
ble, France, 2002.

[13] S. Thesing.Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 40 of 49




