Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis

Page 41 of 49

Classification of Code Annotations and Discussion of
Compiler-Support for Worst-Case Execution Time Analysis *

Raimund Kirner, Peter Puschner
Institut fiir Technische Informatik
Technische Universitat Wien
Treitlstrae 3/182/1
A-1040 Wien, Austria
{raimund,peter }@vmars.tuwien.ac.at

Abstract

Tools for worst-case execution time (WCET) anal-
ysis request several code annotations from the user.
However, most of them could be avoided or being anno-
tated more comfortably if the compilers would support
WCET analysis.

This paper provides a clear categorization of code
annotations for WCET analysis and discusses the pos-
itive impact on code annotations a compiler-support on
WCET analysis would have.

1 Introduction

The knowledge of the worst-case execution time
(WCET) is a mandatory prerequisite for the design of
safety-critical embedded systems, since embedded sys-
tems have to fulfill the temporal requirements imposed
by their physical environment.

Current research on compilers for embedded sys-
tems mainly focuses on issues like reduction of energy
consumption, resource-aware code generation, or re-
targetable code generators. Program execution time
is typically covered - as in traditional compiler con-
struction - by performance-oriented code optimiza-
tions. The real-time behavior of programs is rarely
covered.

As a consequence, a WCET analysis tool has to re-
quest the user for numerous code annotations, mostly
at object code level, which could be avoided if the com-
pilers explicitly support WCET analysis. Furthermore,

*This work has been partially supported by the FIT-IT re-
search project “Model-Based Development of distributed Em-
bedded Control Systems (MoDECS)” and the ARTIST2 Network
of Excellence of IST FP6.

ECRTS 2005

5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis

http://drops.dagstuhl.de/opus/volltexte/2007/815

the compiler-support would allow to specify code an-
notations at the source code level instead of burdening
the user with object code annotations. Existing mech-
anisms like debug information is not sufficient in case
of code optimizations performed by the compiler.

This paper categorizes in Section 2 the code annota-
tions used by WCET analysis frameworks. Methods for
providing such annotations are described in Section 3.
The positive impact a compiler providing explicit sup-
port for WCET analysis would have on usage of these
code annotations is discussed in Section 4.

2 Code Annotations for WCET Analy-
sis

The calculation of the worst-case execution time
(WCET) for a piece of code in general requires fur-
ther information about the possible execution context
or runtime behavior of the code. For example, the cho-
sen configuration of the hardware platform has to be
specified. Furthermore, the program analysis method
may fail to predict the full execution behavior of a pro-
gram with complex control flow and therefore, explicit
assertions about the program behavior are required.
These examples give an idea of what information is re-
quired by a WCET analysis tool additionally to the
input program code. The specification of this addi-
tional information is done by code annotations. This
section categorizes the different classes of code annota-
tions required for WCET analysis and discusses possi-
ble methods to specify them.

Due to limitations on computability, a WCET anal-
ysis framework that is capable to analyze industrial
code within a realistic software production process re-
quires interfaces for the explicit specification of miscel-
laneous parameters. Some of these parameters are not

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis

directly related to the WCET calculation itself, but
are required to parse and interpret the program code.
Therefore, we also looked at code annotation mecha-
nisms provided by commercial WCET analysis tools
like aiT! [3, 6] or Bound-T? [8, 7).

The code annotations for WCET analysis can be
categorized as follows:

1. Platform Property Annotations (PPA)

2. CFG Reconstruction Annotations (CRA)
3. Program Semantics Annotations (PSA)
4. Auxiliary Annotations (AA)

Auxiliary annotations are constructs of annotation
languages that are used to reference certain locations
or control-flow edges in a program code. For exam-
ple, a symbolic name that will be used later on within
other code annotations, is assigned to a specific code
location. The other categories of code annotations are
described in the following subsections.

2.1 Platform Property Annotations

Platform Property Annotations (PPA) are
application-independent — annotations, which are
used to characterize the target platform. A WCET
analysis framework supports one or more target
platforms. In case of a strictly static WCET analysis
tool, it uses a built-in hardware model for each target
platform. However, a computing platform typically
can be configured in many ways. For example, there
may be caches available with different layouts, or,
as another example, the assignment of data and
code to the available memory configuration can be
done in different ways. Furthermore, to represent
the calculated WCET bound as real time instead of
processor cycles it is required to annotate the selected
clock frequency for the processor.

The PPA annotations described above are used,
for example, to parameterize the hardware models of
caches and pipelines. Since in this case the annota-
tions are not directly bound to the application code,
there is no need of compiler support for such annota-
tions. However, PPA annotations may be attached to
the program code for the sake of code optimizations.
For example, annotations about the use of read-only
or write-only memory regions can be combined with
annotations about their assignment to program code.
This may allows a compiler to optimize the access op-
erations for these data areas.

Thttp://www.absint.de
2http://www.bound-t.com

Page 42 of 49

2.2 CFG Reconstruction Annotations

The CFG Reconstruction Annotations (CRA) are
used as guidelines for the analysis tool to construct
the control flow graph (CFG) of a program. Without
these annotations it may not be possible to construct
the CFG from the object code of a program.

On the one side, annotations are used for the con-
struction of syntactical hierarchies within the CFG, i.e.
to identify certain control-flow structures like loops or
function calls. For example, a compiler might emit or-
dinary branch instructions instead of specific instruc-
tions for function call or return. In such cases it might
be required to annotate a branch instruction whether
it is a call or return instruction. A work around that
sometimes helps avoiding code annotations is to match
code patterns generated by a specific version of a com-
piler. However, such a “hack” cannot cover all situa-
tions and may also have the risk of incorrect classifica-
tions, for example, if a different version of the compiler
is used.

On the other side, annotations may be needed for
the construction of the CFG itself. This may be the
case for branch instructions where the address of the
branch target is calculated dynamically. Of course,
static program analysis may identify a precise set of po-
tential branch targets for those cases where the branch
target is calculated locally. In contrast, if the static
program analysis completely fails to bind the branch
target, it has to be assumed that the branch potentially
precedes each instruction in the code, which obviously
is too pessimistic to be able to obtain a useful WCET
bound. In such a case, code annotations are required
that describe the possible set of branch targets.

2.3 Program Semantics Annotations

Program Semantics Annotations (PSA) are used to
guide the calculation of a program’s dynamic behav-
ior. In contrast, the annotations of Section 2.2 and 2.1
provide mostly static information about the program
to be analyzed and its intended target platform.

To obtain a precise WCET bound, it is mandatory
to accurately calculate the possible dynamic behavior
of the program. For example, a static WCET analysis
tool calculates the dynamic behavior of the program
by ezec-time modeling and by performing path analysis
(as described in Chapter 2 of [10]). Exec-time modeling
means the assignment of execution time to instructions
for a given execution context.

To calculate a WCET bound, it is at least neces-
sary to get iteration bounds for every loop or recur-
sive call structure in the program. A quality improve-

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis

ment of the resulting WCET bound is possible if in-
feasible paths can be excluded from the calculation of
the longest path. Annotation languages that allow the
explicit specification of flow constraints are described
in [9, 1] (also aiT and Bound-T allow the specification
of flow constraints). However, in case the static analy-
sis of the WCET tool performs a semantic analysis of
the program, it may be sufficient to indirectly specify
the feasible paths by describing properties like value
constraints or invariants of program variables.

Another kind of PSA annotation is the description
of possible addresses of memory references. Such an-
notations may improve the path analysis as well as the
exec-time modeling.

3 Annotation Methods

This section discusses different methods how to an-
notate the code. First of all, to get precise results,
it is important that WCET analysis is performed at
a program representation level close to the executable
program format. We call the program representation
level where the analysis is performed object code level.
Following the ongoing trend in embedded systems de-
velopment, the representation level where the program
is developed is much more abstract. By source code,
we denote the representation level of program develop-
ment. The whole tool chain that transforms the pro-
gram from source code to object code is summarized as
compiler. Following these definitions we can describe
things in common terms without loosing generality.

3.1 Separate Annotation Files

One way to annotate code is to use a separate an-
notation file. This is especially useful for annotating
the object code, as there are no common tools to add
such information to the object code. Since aiT and
Bound-T are primarily designed to analyze object code,
they both support the use of separate annotation files.
Both tools have to provide such an annotation tech-
nique, due to the missing compiler-support for WCET
analysis. Another reason is that the WCET analysis
framework should also be able to analyze code that is
only available as object code. The obvious drawback of
this procedure is that the developer has to look at and
understand the object code, which is only an interme-
diate representation where code locations might change
each time the source code is modified and re-compiled.

The support of annotations referring to code loca-
tions relative to symbolic labels reduces the amount of
code annotations that have to be checked again when-
ever a single module has been re-compiled.

Page 43 of 49

A more practical way to refer to the program code
is to describe the referring code location structurally.
For example, aiT allows to refer to loops by their order
within a function. aiT also allows to annotate loops at
the source code, but this represents the same mecha-
nism, since the source code locations of these annota-
tions are translated into structural locations. Further,
Bound-T provides a quite generic pattern matching lan-
guage that allows to refer to code locations based on
various criteria. Using structural references allow the
user to annotate for the object code while looking at
the source code. However, the drawback of this tech-
nique is that it fails in case that the code optimizations
performed by the compiler change the structure of the
code.

3.2 Annotations within Program Code

Code annotations within the program code provide
the advantage that the developer can annotate the pro-
gram behavior directly where the program is coded.
The preferred annotation method from the developer’s
point of view is to directly annotate the source code.

The concrete syntactical realization of these code
annotations is not of stringent importance within this
paper. Even the approach of extending the program-
ming language with code annotation constructs allows
the compilation by conventional compilers that do not
support these language extensions. This can be real-
ized by deactivating the annotations by a preprocess-
ing pass prior to compilation [9]. The more relevant
question is whether the compiler provides support for
maintaining the consistency of code annotations in case
of code optimizations that change the structure of the
code. As shown by Exler, the consistency of code an-
notations may not be maintained without the help of
the compiler in case of code optimizations that change
the structure of the code [2].

The code annotation within the source code is es-
pecially interesting for PSA annotations since this pro-
vides the most seamless annotation interface for ana-
lyzing and annotating the code manually by the user.
PPA annotations are natural candidates for separate
annotation files since they refer to the low-level details
of the target platform. As a further argument, the PPA
annotations are often application independent.

4 Compiler Support for WCET Analy-
sis

The compiler (and all related tools as defined in
Section 3.2) transforms the code from the source code
representation level to the object code level, at which

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis

WCET analysis is applied. There are several reasons
why a compiler can contribute to and improve the cal-
culation of a WCET bound:

e The compiler has the control and knowledge over
all code transformations that are performed before
emitting the object code. For a number of code op-
timizations it is not possible to recognize the effect
of the optimization by comparing the structure of
the object code with that of the source code.

e The compiler has the view on both, the source
code and the object code. Typically, the execu-
tion behavior of a program is easier to obtain from
the source code than from the object code. This
is because the instructions in the object code re-
flect low-level implementation issues enforced by
the characteristics of the target hardware opti-
mized for low resource consumption. For example,
distinct variables in the source code can become
aliased as spilled registers in the object code.

However, due to their lack of support for WCET
analysis, compilers are currently not considered as a
helpful tool for calculating a WCET bound. Instead,
the policy often is to turn off most of the features of
a compiler for the sake of generating object code that
maintains properties found in the source code. The
result is an object code that shows a poor runtime per-
formance and a WCET that is typically much higher
than in the fully optimized code.

The intention of having a compiler supporting
WCET analysis is to get WCET analyzable code with
a seamless interface for code annotations. The support
by the compiler can be twofold. First, a seamless inte-
gration of code annotations into the source code repre-
sentation level can be provided. Second, the need for
code annotations can be reduced by emitting properties
about the object code by the compiler. The following
lists several possibilities how compilers could support
WCET analysis.

Emit Description of CFG Structure: A static
WCET analysis tool has to use CRA annotations
at the object code level for reconstructing the
CFG of a program. Using such code annotations
is a burden for the user of the tool since it forces
him to look at the object code level of a program,
maybe each time the code is re-compiled.

The compiler knows about the CFG structure at
the same precision as it is given by the syntactic
structure of the source code. Therefore, the com-
piler could automatically annotate the generated
object code by CRA annotations that will guide

Page 44 of 49

the WCET analysis tool to reconstruct the CFG
of the program.

Currently, there is an initiative under way by
the cluster Compilers and Timing Analysis of the
ARTIST2 Network of Excellence of the IST FPG6.
The aim of this group is to define a common for-
mat for the specification of object code and code
annotations. As a natural consequence, compilers
could be extended to directly generate such a code
specification file.

Maintain Consistency for Code Annotations:
The natural interface for PSA annotations is the
source code representation level, because this
would allow the developer to do the implementa-
tion of the program logic and the code annotation
at the same representation level.

A framework that allows to maintain consistency
of control-flow annotations in case of code opti-
mizations performed by the compiler is described
in [10]. This framework maintains the consis-
tency of the annotations for arbitrary code trans-
formations. Such a framework can be comple-
mented by static program analysis as a prepro-
cessing step to calculate control-flow annotations
from the code semantics and the provided annota-
tions about code invariants. An example for such
a static program analysis based on abstract inter-
pretation has been described by Gustafsson and
Ermedahl [4].

Emit Properties of Execution Behavior: PSA
annotations provide hints about the execution
behavior of a program. This information can be
used for the ezxec-time modeling and path analysis
phase of a WCET analysis tool (see Section 2.3).

The compiler may reduce the amount of required
PSA code annotations by automatically calculat-
ing and emitting some of these code properties.
For example, the compiler may know the memory
area potentially referenced by a specific pointer op-
eration. Research on compiler extensions to emit
code annotations about control flow and memory
access addresses is described in [11, 5].

Improve Predictability of Code: A compiler may
indirectly support WCET analysis by features not
directly related to code annotations. For example,
by using the single path conversion the execution-
time jitter of real-time programs may be reduced
while at the same time the WCET analyzability
of the program will be improved [12]. This con-
version may be also applied to local program seg-

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis

ments instead of the whole program, giving an ef-
fect similar to weet-oriented programming [13].

4.1 Using Optimizing Compilers to Produce
Safety-Critical Code

There is often the argument that code optimizations
have to be prohibited for the production of safety-
critical code. This argument is strengthened by the
fact that it is very hard to prove formal correctness
of a compiler. However, recent research is focusing on
analysis techniques to verify the semantic equivalence
between the original and the optimized version of a
program [14]. Maybe, such verification techniques in
the future can be used to weaken the prohibition of
code optimizations on safety-critical software, and at
the same time providing a stronger argument for the
support of WCET analysis by optimizing compilers.

5 Summary and Conclusion

This paper provides an analysis of how compiler-
support would improve the use of WCET analysis
tools.

First, a categorization of code annotations for
WCET analysis has been done, resulting into four cat-
egories: platform property annotations (PPA), CFG
reconstruction annotations (CRA), program semantics
annotations (PSA), and auxiliary annotations (AA).

Second, it has been discussed what impact compiler-
support could have on these annotations. PPA annota-
tions are program-independent, therefore no compiler-
support is needed to support WCET analysis. How-
ever, the compiler may use PPA annotations for
platform-dependent code optimizations. The CRA an-
notations address the object code level. A compiler
may be extended to output additional program prop-
erties in order to reduce the need for manual CRA an-
notations. The most important impact a compiler sup-
porting WCET analysis provides, is for PSA annota-
tions. It will free the user from the burden of manually
analyzing and annotating the behavior of the object
code (provided that the source code of the program is
available).

Acknowledgments

The authors would like to thank C. Ferdinand,
R. Heckmann, and H. Theiling from AbsInt and N. Hol-
sti from Tidorum for fruitful discussions about code
annotations for WCET analysis.

(1]

2]

3]

(6]

[10]

(11]

[12]

(13]

(14]

Page 45 of 49

References

J. Engblom and A. Ermedahl. Modeling complex
flows for worst-case execution time analysis. In Proc.
21st IEEE Real-Time Systems Symposium (RTSS),
Orlando, Florida, USA, Dec. 2000.

M. Exler. Propagierung von Pfadinformation fiir die
Analyse von Programmlaufzeiten. Master’s thesis,
Technische Universitat Wien, Vienna, Dec. 1999.

C. Ferdinand, R. Heckmann, and H. Theiling. Conve-
nient user annotations for a WCET tool. In Proc. 8rd
Euromicro International Workshop on WCET Analy-
sis, pages 17-20, Porto, Portugal, July 2003.

J. Gustafsson and A. Ermedahl. Automatic derivation
of path and loop annotations in object-oriented real-
time programs. Parallel and Distributed Computing

Practices, 1(2), June 1998.

C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley,
and M. G. Harmon. Bounding Pipeline and Instruc-
tion Cache Performance. IEEE Transactions on Com-
puters, 48(1), Jan. 1999.

R. Heckmann and C. Ferdinand. Combining automatic
analysis and user annotations for successful worst-case
execution time prediction. In Embedded World 2005
Conference, Niirnberg, Germany, Feb. 2005.

N. Holsti. Bound-T Application Note ERC32. Space
Systems Finland Ltd, Espoo, Finland, 1 edition, Jan.
2002.

N. Holsti. Bound-T User Manual. Space Systems Fin-
land Ltd, Espoo, Finland, 2 edition, Mar. 2003.

R. Kirner. The programming language WCETC. Tech-
nical report, Technische Universitat Wien, Institut fir
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2002.

R. Kirner. Extending Optimising Compilation to Sup-
port Worst-Case Execution Time Analysis. PhD the-
sis, Technische Universitdit Wien, Vienna, Austria,
May 2003.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, S.-M. Moon, and
C.-S. Kim. An accurate worst case timing analysis
for RISC processors. Software Engineering, 21(7):593—

604, 1995.

P. Puschner. Transforming execution-time boundable
code into temporally predictable code. In B. Kleinjo-
hann, K. K. Kim, L. Kleinjohann, and A. Rettberg,
editors, Design and Analysis of Distributed Embedded
Systems, pages 163-172. Kluwer Academic Publishers,
2002. IFIP 17th World Computer Congress - TC10
Stream on Distributed and Parallel Embedded Sys-
tems (DIPES 2002).

P. Puschner. Algorithms for Dependable Hard Real-
Time Systems. In Proc. 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems, Jan. 2003.

R. van Engelen, D. Whalley, and X. Yuan. Automatic
validation of code-improving transformations on low-
level program representations. Science of Computer
Programming, 52:257-280, Aug. 2004.

