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Message from the Workshop Chair 
 

You have in front of you the proceedings of the 5th International Workshop on Worst-Case 
Execution Time (WCET) Analysis. The workshop was held on the 5th of July 2005 as a satellite event 
to the 17th Euromicro Conference on Real-Time Systems (ECRTS 2005) in Palma de Mallorca, Spain. 

It was the fifth event in the series after the successful meetings in Delft (Holland) in 2001, Vienna 
(Austria) in 2002, Porto (Portugal) in 2003 and Catania (Italy) in 2004. The goal of these workshops is 
to bring together people from academia, tool vendors and users in industry that are interested in all 
aspects of timing analysis for real-time systems. The workshops provide a relaxed forum to present and 
discuss new ideas, new research directions, and to review current trends in this area. It consisted of short 
presentations that should encourage discussion by the attendees. The topics of the 2005 workshop 
included paper on the following topics: 

 Measurement-based timing-analysis methods, 
 Experience from industrial case studies, 
 Architectural issues, and 
 Timing analysis in real-time education. 

In addition, there was an invited talk by Lothar Thiele, ETH Zuerich, on Composable Real-Time 
Analysis. There is no paper about this talk contained in the proceedings. 

The industrial case studies showed that the techniques have matured to industrial applicability. 
Better results are achieved if the methods and tools are integrated into the development process. 
Measurement-based methods were controversially discussed. Further talks showed that much support is 
needed to deal with architectural features that endanger timing predictability. 

 
Reinhard Wilhelm (Workshop Chair) 
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Issues using the Nexus Interface for Measurement-Based
WCET Analysis

Adam Betts and Guillem Bernat
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

{abetts, bernat}@cs.york.ac.uk

Abstract

Hardware debug interfaces such as Nexus have
the power to unleash the full potential of
measurement-based WCET approaches due to the
passive nature in which timing data are collected
from the processor. However, difficulties arise as a
result of their restrictive nature, thus disallowing
true user freedom in the selection of instrumenta-
tion point placement. This paper elaborates on the
problems encountered when using the Nexus inter-
face in our measurement-based WCET framework,
and how some of these issues can be resolved, par-
ticularly that of irreducibility.

1 Introduction

Measurement-based (MB) WCET analysis tech-
niques are being embraced as the predictability of
state-of-the-art processors diminishes due to mod-
ern speed-up features, e.g. cache, branch predic-
tion, out-of-order execution, etc. Real-time hard-
ware architects are increasingly looking towards
such features as the thirst for performance en-
hancement grips the embedded market [5]. How-
ever, the resulting effect is instruction latencies
that are difficult to model statically, thus result-
ing in pessimistic assumptions about speed-up fea-
tures’ behaviour that ultimately leads to loose
WCET estimates. MB approaches, on the other
hand, permit tighter WCET estimates [2] by test-
ing the program on its actual hardware platform.

The main hindrance in using MB approaches is
that timing data need to be collected whilst the
program executes: either processor simulation or
software probing performs the desired task. Cycle-
accurate simulators capture both functional and
temporal aspects of a processor, which are usually
constructed by scrutinising the processor’s user
manual. Many factors render themselves crucial
in the accurate design of a processor simulator for

which failure can produce unsafe WCET estimates.
Engblom [3] has cited potential sources of error in
simulator construction and he concludes that user
manuals are generally not trustworthy and that
complex processors do not lend themselves to ease
of construction. Alternatively, software monitoring
inserts instrumentation points (ipoints) in the pro-
gram in order to accumulate timing data during its
execution. The clear advantage of this technique is
program execution on its intended hardware, thus
overcoming intrinsic difficulties in modelling the
processor and peripheral hardware. However, a
negative phenomenon widely known as the probe

effect ensues whereby ipoints disturb the temporal
nature of the program, i.e. the execution time of
the program differs when the software ipoints are
removed.

A solution for the seemingly unavoidable probe
effect has arrived in the form of hardware debug
interfaces, such as Nexus [6] which is discussed in
section 3, and the ARM embedded trace macro-
cell (ETM) [4]. The fundamental aspect of these
interfaces is that data are collected passively from
the processor during program execution. Problems
do arise through the restrictive nature that is im-
posed on data collection, which restricts true user
freedom in the selection of instrumentation point
placement, thus requiring new techniques to han-
dle these hurdles. In this paper we discuss such
problems and techniques in the context of Nexus,
primarily because it is now an IEEE-ISTO stan-
dard, although they are equally applicable to the
ETM.

In this paper we discuss how this restriction
naturally leads to the problem of irreducibility
in the data structure that is employed in our
measurement-based framework, the instrumenta-
tion point graph (IPG), which is briefly introduced
in the next section. We will show how some ir-
reducible issues can be resolved by the relation-
ship that exists between the program’s control flow

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 9 of 49

ECRTS 2005
5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/807



graph (CFG) and the IPG. We further discuss how
trace data loss and out-of-order execution affects
the computation of WCET estimates. Finally, we
outline some conclusions and future areas of work.

2 Instrumentation Point Graphs

Our approach combines timing data collected dur-
ing measurement through high-level static tech-
niques that reconstruct the longest path through
the program, independent of the type of monitor-
ing employed. This is accomplished using the IPG
in which the atomic unit of computation is the time
that is observed between ipoints, instead of basic
blocks, which is the case of the CFG. In essence,
the IPG arranges the possible transitions among
ipoint pairs in the CFG into structural form. The
transitions among ipoints in the IPG thus repre-
sent sequences of code exercised when a particular
edge is followed. Timing measurements for these
sequences are obtained by executing the program
using test-data generation algorithms.

Once the IPG has been built, we adopt tra-
ditional calculation methods found in the litera-
ture, i.e. tree-based, path-based and IPET, re-
vising them accordingly so that they pertain to
the IPG. As hierarchical representations have dif-
ficulty modelling irreducible regions of code, the
reducibility property of an IPG is a central issue in
tree-based methods. Software instrumentation can
guarantee the reducibility of the resultant IPG, de-
tails of which can be found elsewhere [1]; however,
as true user freedom in ipoint placement is disal-
lowed in Nexus-monitored programs, this property
is only in evidence in trivial CFGs. An example
later in the paper will help clarify this issue.

3 The Nexus Standard

Nexus has been introduced in response to the ever-
increasing subtle nature of software and hardware
bugs [6, 7]. This subtlety has arisen as a result of
the complexity of modern processors: more tran-
sistors, faster clock-rates, multiple-level on-chip
caches, multi-core processors, etc. All these intri-
cacies mask the visibility of bugs and render tra-
ditional methods of debugging, e.g. in-circuit em-
ulators and logic analysers, inappropriate. Nexus
uses JTAG ports to communicate between a debug
tool and the processor, and is increasingly being
supported by chip manufacturers such as Motorola
and STMicroelectronics.

The principal way to extract WCET data
through the Nexus interface is by utilising its

program trace feature, branch trace messaging

(BTM). This allows time stamps to be recorded
when sequential program flow discontinues, i.e. at
taken branches and exceptions. In the case of taken
direct branches, Nexus includes the number of se-
quential instructions that were executed since the
last taken branch or exception, including those di-
rect branches that resolved to untaken and indirect
branches. The address of the branch target and
branch-condition predicate bits can also be derived
by using the more refined historical BTM feature
[7]. At first sight it would appear that only moni-
toring taken branches in unnecessarily restrictive.
The motivating factor for this is to lower the bur-
den placed on the Nexus interface: too many re-
quested debug reports results in trace buffer over-
flow. The BTM feature is the principal means of
extracting WCET data, so we now qualify how its
restrictive properties impacts the computation of
MB WCET estimates.

Irreducible IPGs

In optimising compilers and WCET analysis, the
reducibility of a CFG is a key property as loop
identification techniques, for example, are greatly
simplified. A loop is irreducible when there are
multiple entries into the loop [9], so that no sin-
gle node dominates all nodes in the loop body.
In these cases it is often difficult to compute the
nodes that are contained in the body, the nesting
relationship among loops, and even the number of
loops. However, using the Nexus interface in our
framework ensures a much higher prevalence rate
of irreducibility in the IPG, even for relatively sim-
ple CFGs. Worse yet, the irreducibility properties
are vastly more complex than an optimising com-
piler would typically introduce on a CFG, in the
sense that reducibility encapsulates much larger
subgraphs of the IPG.

The cause of irreducibility emanates from the
virtual nature of Nexus ipoints in contrast to the
physical nature of software probes. In the latter,
all executions of a program that invoke a set of
basic blocks include the execution of ipoints be-
longing to those basic blocks. This is not the case
in the BTM, in which only the invocation of a tran-
sition among basic blocks triggers the time stamp.
Therefore, unless an edge e that includes a virtual
ipoint dominates all other edges E including vir-
tual ipoints on each path to exit in the CFG, it is
possible that the flow of control skips around e to
each edge in E. This point is illustrated in figure
1: there is a CFG with virtual ipoints on all transi-

2
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tions for which Nexus would record a time stamp1,
as well as the resulting IPG that consists of ipoints
as nodes. The edge that includes ipoint i1 clearly
dominates edges that include ipoints i2 and i3 in
the CFG, thus ensuring that all paths from start
pass through this edge to reach i2 and i3. On the
other hand, there is no dominance relation among
i5 and i6 and they both reside in a natural loop
structure. Therefore, the set of ipoints on paths
from start to this loop have a corresponding edge
to i5 and i6 if start is their immediate dominator;
the complexity evidently intensifies as the size of
this set increases as well as the number of ipoints in
the loop body. Another complexity that emerges
from figure 1 is that of misidentification of loop
nesting structures. The natural loop structure con-
taining i5 and i6 might incorrectly be identified as
a nested loop whereby i5 is the outer loop header
and i6 is the inner loop header. In fact, all edges
i5 → i6, i6 → i5 and i6 → i6 are loop backedges
since they correspond to another iteration of the
loop in the CFG. This problem is also in evidence
in the while loop structure that contains i2 and i3.

We utilise two interlinked techniques in han-
dling IPG irreducibility that is generated by virtual
ipoint placement. Firstly, by using the relation-
ship between the CFG and the IPG it is relatively
straightforward to ascertain when simulated nested
loops actually conform to a single loop. This is
primarily carried out by inspection of the domi-
nance relation that exists among basic blocks in
the CFG with respect to that of the ipoints in
the IPG. Secondly, we can reduce the intricacy of
IPG irreducibility, and complexity in general, by
means of edge pruning. The relationship between
the CFG and the IPG is yet again central to the
accomplishment of this task, as well as the familiar
WCET principle that a program’s WCET occurs
under maximum loop iteration. In general, any
edge in the IPG that bypasses the execution of a
loop in the CFG can be pruned. Although both
of these techniques reduce some irreducibility as-
pects, the general case remains an open problem.

Trace data loss

As we discussed above, Nexus attempts to prevent
trace data loss through its BTM scheme by record-
ing data when program flow discontinues. This
does not completely guarantee fulfilment of this re-
quirement since tightly grouped sequences of con-
trol flow changes might still overwhelm the JTAG
port. The problem is accentuated by the pulsat-
ing increase in microprocessor performance that re-

1We include start and exit nodes as ipoints

(A) (B)

exit

start start

exit

i1
i1

i2i2

i3i3

i4

i4

i5

i5
i6

i6

Figure 1: (A) CFG with virtual ipoints on edges
Nexus monitors and (B) Resultant IPG generated

sults in higher instruction throughput. Multiple-
issue processors, more accurate branch prediction
schemes, and more elaborate speculative execution
techniques ensure a faster turnover of branch in-
structions. In sharp contrast to this, nobody is
suggesting that the average size of basic blocks,
typically six instructions, is on the verge of increas-
ing.

The loss of trace data has varying consequences
on the computation of WCET estimates. Incom-
plete information about the branch target address
will evidently result in difficulties in reconstruct-
ing the path that was executed in the program.
Consequently, the time that is observed between
recorded pairs of ipoints can lead to inaccurate
WCET estimates as it will include the execution
of a path that includes another unrecorded ipoint.
If measurement is being used to ascertain loop
bounds then data loss inevitably leads to the pos-
sibility of underestimation since fewer iterations
will be observed than the actual number. The ir-
reducibility problem of IPGs further complicates
trace data loss: others [10] have shown that it is
possible to reconstruct the path through a program
by instrumenting the leaves of the CFG’s domina-
tor tree. However, the dominator tree of the IPG is
extremely shallow as a result of irreducibility, thus
eliminating this possibility.

The key to reducing trace data loss is to min-
imise the data rate out of the CPU. In particular,
Nexus does permit the monitoring of a set of ad-
dresses within a specified range. Hence it is pos-
sible to guide the instrumentation process given
static and dynamic properties of the program. For
example, some studies [8] have shown that only a

3
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small number of branches are dynamically invoked,
thus it may be more pertinent to observe these lo-
cations. Other properties such as whether a branch
appears on the worst path, the size of the program
etc., have equal bearing.

Out-of-order execution

Of all the contemporary hardware features, out-of-
order execution causes the greatest distress within
the field of WCET due to the sheer complexity
required in the analysis - it has also inhibited MB
analysis [2]. The crux of the problem is that out-of-
order execution permits instructions to execute in
a different order to that described in the program,
thus it is difficult to determine the correspondence
between timing data and the instructions it encom-
passes. This obstacle is independent of the basic
unit of computation employed, so it equally applies
to the IPG. Moreover, since Nexus targets modern
microprocessors there is a greater likelihood that
out-of-order execution problems arise as this tech-
nique creeps into the embedded market.

Finding solutions for the out-of-order problem
that do not result in undue pessimism is a diffi-
cult task. However, as we indicated above, Nexus
does provide additional information that might dis-
ambiguate some of these issues. Knowledge such
as the number of sequential instructions executed
since the last program flow discontinuity could pro-
vide valuable insight.

4 Conclusions and Future work

Hardware debug interfaces such as Nexus appeal
greatly to MB WCET analysis techniques due to
the passive collection of timing data from the pro-
cessor, thus eliminating the probe effect. However,
new problems surface as a result of the restrictions
imposed by these interfaces on the placement of
virtual instrumentation points.

In particular, we have demonstrated how irre-
ducibility quickly becomes problematic even for
relatively small CFGs, and that irreducibility is de-
cidedly more complex. On the other hand, we have
highlighted how the relationship between the CFG
and our underlying data structure, the instrumen-
tation point graph, can be exploited to overcome
some of these issues. The focus of future work is
to formalise these techniques and to extend them
in order to handle a larger subset of irreducible
graphs. We also showed how trace data loss and
out-of-order execution negatively impacts the com-
putation of WCET estimates. Future work in this

area will quantify these effect and propose some
solutions.
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Safe measurement-based WCET estimation

Jean-François Deverge and Isabelle Puaut
Université de Rennes 1 - IRISA

Campus Universitaire de Beaulieu
35042 Rennes Cedex, France

{Jean-Francois.Deverge|Isabelle.Puaut}@irisa.fr

Abstract

This paper explores the issues to be addressed to provide
safe worst-case execution time (WCET) estimation methods
based on measurements. We suggest to use structural test-
ing for the exhaustive exploration of paths in a program.
Since test data generation is in general too complex to be
used in practice for most real-size programs, we propose
to generate test data for program segments only, using pro-
gram clustering. Moreover, to be able to combine execution
time of program segments and to obtain the WCET of the
whole program, we advocate the use of compiler techniques
to reduce (ideally eliminate) the timing variability of pro-
gram segments and to make the time of program segments
independent from one another.

1. Motivation

Computation of WCET is an important issue for hard
real-time systems. Common approaches for WCET com-
putations deal with static analysis of program structures.
They rely on hardware models to produce execution time
estimations. Latest processors have performance increas-
ing features like caches, branch predictors or multiple-issue
pipelines that maintain an internal state that is difficult to
predict. As a consequence, these complex hardware mod-
els are harder and harder to design [7], leading to safe but
pessimistic estimations.

An alternative approach is to use measurements on real
hardware (or a cycle accurate simulator) to obtain WCET
estimates. However, exhaustive enumeration of all program
inputs is intractable for most programs. Heuristics, like evo-
lutionary algorithms [16], might be used to generate input
test data that may cover the worst case path of the pro-
gram. While yielding realistic WCET estimations, there is
no guarantee to measure the worst case execution path of
the program. Therefore, these methods have almost been
used to increase confidence of static WCET analysis meth-
ods only [13].

On one hand, program testing may produce unsafe but
realistic results. On the other hand, static WCET analy-
sis approaches produce safe but pessimistic WCET estima-
tions. However, safe and tight estimations of the WCET are
highly desirable. Ideally, one would desire WCET tools that

produce safe and tight results without harness development
of timing models for the next generation processors.

This paper explores the issues to be addressed to design a
measurement-based method that produces safe results. We
propose to rely on structural testing [20] methods to gen-
erate input test data and to exhaustively measure the ex-
ecution time of program paths. We advocate the use of
compiler techniques to reduce (ideally eliminate) the tim-
ing variability of program measurements. In Section 2, we
outline our method for WCET timing analysis and we give
some properties on hardware measurements our method re-
lies on. Section 3 describes how the properties are met,
through the control of the unpredictability of some hard-
ware mechanisms, and contains some preliminary results
of path measurements on a PowerPC 7450. Related work,
some concluding remarks and directions of our ongoing
work are given in Section 4.

2. Method outline

One would obtain the program’s WCET by measuring all
program executions with any of the possible input data for
this program. However, exhaustive enumeration of a pro-
gram input is unfeasible for most programs. Another ap-
proach is to measure all paths of the program. This reduces
the number of measurements because a set of possible in-
put data may activate the same program path. However, the
path coverage is impracticable for program with unbounded
loops, yielding an infinite number of paths [20].

In this paper, we propose to employ structural testing
methods [8, 18, 20] to automatically generate input data. A
key assumption we make is that the measurement of the ex-
ecutions of the same program path, with different data val-
ues, yields the same timing results. Meeting this assumption
requires to control the hardware: this issue is discussed in
Section 3.

Program clustering. Test data generation methods are
mostly based on equations [8] or constraint solving tech-
niques [18]. Due to solver tools and their potentially lack of
scalability, the analysis of complete paths of the whole pro-
gram could be unachievable in practice. Moreover, number
of paths could be exponential even for small program. As
a consequence, we suggest splitting paths into segments to
lower the complexity of test data generation.
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An example, the program of Figure 1 contains
paths. For small values of (for example

), it is conceivable to exhaustively make measurements
of this code.

A

B

op

op

op

op op: observation point

3

7

9

10

Figure 1. Path clustering.

However, for greater values of , it would be suit-
able to split the program and apply measurements on seg-
ments. This process is called program clustering. An in-
tuitive solution to tackle test data generation complexity of
the code of Figure 1 is to build two clusters and . In
this configuration, there are only two paths in cluster and
a single path on cluster .

We propose to cluster the program as follows. The auto-
mated test data generation is first applied to the whole pro-
gram. If it produces too many results or if it does not termi-
nate before a limited amount of time, we stop it. We then
launch test data generation on smaller parts of the program
(e.g. sub trees of the program syntax tree). This iterative
process is repeated until segments are small enough to make
exhaustive path enumeration inside a segment tractable. We
obtain leaf cluster like .

Program measurement. We focus on the exploitation of
program measurements but we don’t address methods to ob-
tain program execution times: there exist multiple hardware
and software methods described in [11, 14]. Observations
points provide execution traces and give the execution times
of the program units observed [11]. In our approach, we
have to place observations points at the cluster boundaries.
For example, there are four observation points , ,
and on Figure 1.

We first measure the two paths of cluster and we ob-
tain values and cycles for instance. The worst value
is the WCET of the cluster and is . Then,
we execute and we measure the single path of cluster .
Table 1 contains the measurement trace of this execution.

The value of is not the WCET for the whole
program, because this execution could have covered the
shortest path of cluster . Consequently, we have to add the
difference between and each measured
during the execution of cluster . In this way, we obtain an
upper bound of the global WCET. Program clustering en-
ables automated test data generation on subprogram paths
or program segments. The longer the program segments
will be, the tighter the WCET estimation will be.

In this section, we have proposed to assemble WCET
of leaves clusters using measurement. We could also in-
vestigate for hybrid approach that couples testing and static
WCET analysis. In such an approach, we should measure

Observation point Time stamp Observation interval

. . . . . .

Table 1. Measurement trace of the path exe-
cution of the cluster .

program segments using testing methods and we should use
static methods to combine these context-independent seg-
ments timings.

3. Obtaining safe program segment measure-
ments

In previous section, we have assumed that any measure-
ments of the different executions of the same program path
gives the same results. In this section, we focus on obtain-
ing such safe and context-independent measurements.

There are three main sources of unpredictability in com-
plex processor architectures:

1. Global mechanisms, like caches, virtual memory trans-
lation (TLB) or branch predictors. Their internal state
and the contents of their tables have direct impact on
the execution time of future instructions of the whole
program [5, 9].

2. Variable latency instructions. Some operations, as the
integer multiplication instruction, may have variable
timing behaviour because the result should be com-
puted faster on small valued input data operands.

Processor may partially implement some operations,
as the float division or the square root instruction. This
means that, in order to support unimplemented opera-
tions in hardware, an exception is raised and operation
should be computed by an exception handler provided
by the operating system.

3. Statistic execution interference phenomenon [12], due
to unpredictability introduced by DRAM refresh. Sim-
ilarly to variable latency instructions, load/store oper-
ations to the main memory may have varying timing
behaviour. Moreover, processors have a built-in multi-
ple level cache hierarchy, and some cache clock speeds
may be different to the clock speed of the core proces-
sor. A tiny deviation on timings may occur if a load
request is received immediately or on the next clock
cycle of the slower cache level.

Gaining control of processor unpredictability. Obtain-
ing safe and context-independent measurements requires to
eliminate (or at least drastically decrease) the sources of
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timing variability. For that purpose, we are currently con-
sidering a few approaches relying on hardware control and
compilation methods.

Regarding the first source of unpredictability, global
mechanisms might be disabled or we should clear their his-
tory tables before the execution of each program segment.
Cache conscious data placement [4] and cache locking [15]
reduce varying timings of memory accesses. Likewise,
static branch prediction enable to fix behaviour of specu-
lative execution at compilation time [3].

In order to support variable latency operations, [19] pro-
poses to add the difference between the BCET and the
WCET of all the operations of the program path. Another
approach consists in avoiding the use of these operations
and to replace them by predictable instructions.

We could forbid the varying timing behaviour of partially
unimplemented instruction by disabling the execution of the
exception handler. However, this may affect operational
semantics of instructions [10]. It should be preferable to
rewrite temporally predictable exception handler and to ap-
ply the same strategies as those applied for variable latency
operations.

It is not possible to control variability on latency of mem-
ory access. However, we feel that such a fluctuation in mea-
surements follows a true statistical distribution. Models to
quantify pessimism to apply on results of measurements are
related in [2]. In addition, variability of load/store opera-
tions latency may be due to the input-dependent memory
accesses of the program.

Figure 2. Single path program with unpre-
dictable timings of data access.

The sample code from Figure 2 is a single path program.
Nevertheless, the number of cache misses on array de-
pends on the contents of . To make this code temporally
deterministic, we could disable the cache feature before the
memory access to contents of [15]. We could also set the
whole array as non cachable introducing program perfor-
mance penalty. In order to enhance data access latency, we
could employ data cache locking [15] or to do scratchpad
memory allocation [1] of data subject to unknown memory
access patterns.

Preliminary experiments. In order to evaluate if the tim-
ing variability of program segments can be controlled by
software, we conducted experiments on a PowerPC 7450
processor [10]. This 32-bit processor is able to dispatch 3
instructions per cycles on an in-order, seven stage pipeline.
It features two dynamic branch prediction mechanisms: a
2-bit prediction scheme with a branch target buffer, and a
return stack predictor. Our chip has a 64-Kbyte level-one

(L1) cache, and a 256-Kbyte L2 cache. A load will take 3
cycles if the data is in the L1 cache. There is a maximum
latency of 9 processor cycles for L1 data cache miss that
hits in the L2.

For our preliminary evaluation, we evaluated the impact
of hardware control on the execution time of a program seg-
ment (SNU-RT jfdctint) made of a single path. We achieved
these experiments in isolation from asynchronous activities
by disabling operating system’s context switches and dis-
abling external interrupts.

Figure 3 shows the timings of two sets of 25 mea-
surements. Before each jfdctint execution measurement,
we first executed one of twenty-five pollution codes: the
program itself, random generator, load and writes of big
amount of memory, intensive control code, and some
code taken from http://www.c-lab.de/home/en/
download.html.
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Figure 3. Measurements of jfdctint execution
times.

The first set of measurements are made with hard-
ware control. After execution of the pollution code, we
have cleared branch predictor buffers, and we have flushed
caches (TLB, L1 and L2). The second set of measurements
is made without any hardware control.

We can note that the variability of program running times
is largely reduced with hardware control. We observe that
measurement variability is decreased from cycles to

cycles. Without hardware control, the best case exe-
cution time is obtained after the execution of the program
itself (warm caches effect). The worst case execution time
is due to a pollution code that fills the entire data cache with
dirty lines. Consequently, for many data accesses of the
measured program, the processor had to update the mem-
ory with the victim cache contents before its replacement
with program data.

We have investigated the sources of variability on
measurement with hardware control. The memory
performance-monitoring counters on the PowerPC 7450 re-
veal that main sources of variability, for program measure-
ments with hardware control, are due to main memory and
L2 variable access latency.

It can be remarked that average program running times
are almost the same with or without hardware control.
There is no performance degradation on that specific exper-
iment because we did neither deactivate the cache nor the
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branch predictor. This suggests that long program segments
can take advantage of dynamic mechanisms if history tables
or related internal states could be cleared before execution.

4. Conclusion and future work

In this paper, we have proposed to compute the WCET
from execution measurements. We advocate the use of
structural testing methods and program clustering to en-
able measurements of the worst case execution path. This
measurement-based approach would produce safe and tight
results.

Recently, the use of another software unit test approach
has been proposed in [17]. Model checking methods pro-
duce input data to exhaustively cover paths of automatically
generated programs from MatLab/Simulink specifications.
This approach enables to measure WCET of straight-line C
programs with no loops.

Previously, [19] has used data flow analysis to detect
single feasible path segments of the program. In their ap-
proach, only single path segments are measured, and static
WCET analysis is employed on the rest of the program. [19]
gives conditions to obtain safe measurements on processors
with cache.

Clustering techniques have been applied to static WCET
analysis methods to enhance their scalability [6]. The clus-
tering is applied on the syntax tree of the program and the
main criterion used is a limit on the number of generated
constraints. We propose to apply a similar strategy in our
approach, our objective being to reduce the complexity of
test data generation.

Traditional static WCET analysis and measurement are
combined in [2]. There is no control of the hardware and
statistical models are applied, thus providing a probabilistic
safety on the global WCET [2]. The combination of test
data generation methods and these techniques would repre-
sent a fruitful area of study.

Our method has to control any processor features like
cache or branch prediction to reduce the unpredictability
of these advanced processors mechanisms. We plan to fur-
ther study the balance between hardware control, necessary
yielding negative performance impact on execution time,
and the benefit with respect to measurements variability.
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Abstract

This paper presents how the timing analyser aiT is used for 
computing the Worst-Case Execution Time (WCET) of two 
safety-critical avionics programs. The aiT tool has been devel-
oped by AbsInt GmbH as a static analyser based on Abstract 
Interpretation

1 Introduction

In the field of safety-critical avionics applications, verifying 
that a program exhibits the required functional behavior is not 
enough. Indeed, it must also be checked that its timing con-
straints are satisfied. Generally these constraints are expressed 
in terms of the Worst Case Execution Times (WCETs) of 
program tasks. 

The WCET of a program (or piece of a program, like a rou-
tine, a task, etc) is the maximum of the execution times of all 
program runs. Unfortunately, finding the program run that leads 
to the WCET is impossible for real-life programs. What is 
achievable is computing an upper bound of the WCET, i.e., a 
time greater than the real but incomputable WCET. In that case, 
the WCET bound is said to be sound, and the less it is away 
from the real WCET – from above – the better it is. A good 
method for estimating the WCET of a program must be sound 
and precise, i.e. yield tight results, with the ability to demon-
strate both properties. 

For the most safety-critical avionics programs, a pure 
measurement-based method is not acceptable, especially if the 
dynamic structure of the program was not made as deterministic 
as possible, by design.  

This paper will show how it became almost impossible to 
compute the WCET of two safety-critical avionics programs by 
Airbus’ traditional method, due to the complexity of the modern 
processor they execute on (sections 2 and 3). Section 4 presents 
AbsInt’s aiT for PowerPC MPC755, a tool that computes the 
WCET of a program by analyzing its binary file. Section 5 de-
scribes how aiT is currently used for computing the WCET of 
the two avionics programs we take as examples along the paper. 
Finally, section 6 mentions future work and con-
cludes.Instructions

2 A challenging hardware 

Sometime ago, processors behaved in a very deterministic 
way. The latency of an instruction was a constant, i.e., it did not 
depend on what happened before the execution of that instruc-
tion. This was the case for internal instructions (add, mul, or, 
etc.) as well as for those that access external devices like mem-
ory or IO. In order to increase their average computation power, 
modern processors are endowed with accelerating mechanisms 
causing variable execution times of instructions. Hence, the 
duration of an instruction depends on what was executed before 
it. This “effect of history” can be very deep and without logical 
correlation to the instruction it affects. One example of such a 
mechanism is the cache. Indeed, depending on the execution 
path leading to, say, a load instruction, the memory line contain-
ing the data to be loaded may already be in the data cache 
(HIT), or not, be it that it was not yet loaded (MISS) or already 
removed (MISS due to replacement). There are many other ac-
celerating mechanisms like out-of-order execution, branch pre-
diction, speculative accesses,  “superscalarity”, duplication of 
processing units (e.g., two Integer Units), Store Buffers, pipelin-
ing of addresses, etc. 
The board on which the analysed programs execute is made of a 
PowerPC MPC755, SDRAM, and IO peripherals connected to a 
PCI bus. The MPC755 is a “modern” processor in the sense that 
it employs the kind of accelerating mechanisms mentioned 
above. SDRAM is also modern because of the sort of cache 
associated to each bank of memory: The SDRAM page contain-
ing the most recently accessed memory address is kept “open”, 
allowing for faster access in the future. The chipset making 
these components “talk” to each other is modern as well, since, 
for instance, it optimizes accesses to SDRAM by buffering 
certain kinds of writes or by taking profit of the address pipelin-
ing mechanism of the MPC755. 
As if this was not enough, the refresh of the SDRAM and the 
so-called Host Controller (connected to the PCI bus) steal cy-
cles from the processor asynchronously. 

3 A traditional method very hard to apply now 

Before the new method based on aiT for PowerPC MPC755 
was introduced, Airbus used some “traditional” method for 
computing the WCETs of previous generations of the two avi-
onics programs. This method was a mix of measurement and 
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intellectual analysis. Let’s briefly describe how it worked for 
each of the two programs.  
First avionics program. Basically, the way the WCET is ob-
tained takes profit of the structure of the program, which is 
produced by an automatic code generator taking a graphical 
specification (SCADE) as input. The generated program almost 
entirely consists of instances (or routine calls to) a rather lim-
ited set of small snippets like logical and comparison operators 
(multiple input AND, OR, Level Detector), arithmetical opera-
tors (ADD, MUL, ABS, etc), digital filtering operators, etc. The 
small size of these basic components makes it possible to meas-
ure their WCETs, as long as the initial execution environment 
for each measurement is the worst possible with respect to exe-
cution time. One must also notice that the generated program is 
very linear since all conditionals and loops occur in the small 
snippets, thus being very local. The program being made of 
instances of (or calls to) code snippets, the WCETs of which are 
available after the measurement campaign, a simple formula 
(more or less a sum) is applied for inferring the whole WCET, 
knowing that each (instance of a) code snippet is executed once 
and only once. 

Second avionics program. The second program also consists, 
for the main part, of basic processing units, each based on a 
small number of patterns. The size and limited execution paths 
inside these patterns make it also possible to measure their 
WCETs in the same conditions as for the first program. But the 
main difference to the first program is that the basic units form 
the implementations of some abstract machine instructions col-
lected in an instruction table (also called configuration table). 
The execution of the program is driven by a high-level loop, 
reading instructions and parameters from the configuration 
table, and then calling the appropriate basic processing units 
implementing the instructions. Each basic processing unit being 
called multiple times, the resulting WCET is the sum of the 
basic WCETs of the instructions present in the configuration 
table.

The traditional approach is correct with “deterministic 
processors”. As stated in section 1, the computed WCET must 
be sound, i.e., an upper bound of the real WCET, and tight, i.e., 
not too far from the real WCET. With processors having no – or 
few – history-based accelerating mechanisms, both criteria are 
met without too much difficulty since finding the worst possible 
initial environment for the measurement of the WCET of each 
snippet and producing a – non-formal – demonstration that the 
computed WCET is an upper bound of the real WCET is acces-
sible to a human being, and the overestimation is acceptable. 

Modern processors. But even for such deterministic programs, 
the legacy methods are no more applicable when using hard-
ware components like the ones mentioned in section 2. The first 
reason is that it is a lot harder to find the worst possible initial 
environment for measuring the WCETs of the small snippets, 
and also to get sure that combining these WCETs for computing 
the WCET of the entire program is safe. The second reason is 
that even if we could solve the first difficulty (worst initial envi-
ronment and safe combination), the resulting WCET would be 
too much overestimated for being useful. Both reasons originate 
from the history-dependent execution time of each instruction 
that makes it impossible to deduce a good global WCET from 
any local measurements or computations. 

3.1 Asynchronous extra time (SDRAM refresh and Host 
Controller (for Input/outputs) activity). When measuring the 
WCET of the small snippets the whole program is made of, 

only the effect of SDRAM refreshes is measured. It is therefore 
not possible to infer a WCET of the program that encompasses 
the effect of the Host controller

4 aiT for PowerPC MPC755 

 AbsInt's aiT tools form a family of WCET tools for differ-
ent processors, including PowerPC MPC755. aiT tools get as 
input an executable, an .ais file containing user annotations, an 
.aip file containing a description of the (external) memories and 
buses (i.e. a list of memory areas with minimal and maximal 
access times), and a task (identified by a start address). A task 
denotes a sequentially executed piece of code (no threads, no 
parallelism, and no waiting for external events). The names of 
the various input files and other basic parameters are bundled in 
a project file (.apf file) that can be loaded into a graphical user 
interface (GUI). 

All instances of aiT determine the WCET of a task in sev-
eral phases: CFG building decodes, i.e. identifies instructions, 
and reconstructs the control-flow graph (CFG) from a binary 
program. User annotations may help aiT in identifying the tar-
gets of computed calls and branches. Value analysis computes 
value ranges for registers and address ranges for instructions 
accessing memory. Loop bound analysis determines upper 
bounds for the number of iterations of simple loops. Such upper 
bounds are necessary to obtain a WCET. Loop bounds that 
cannot be determined automatically must be provided by user 
annotations. Cache analysis classifies certain memory refer-
ences as cache hits. Pipeline analysis predicts the behavior of 
the program on the processor pipeline and so obtains the 
WCETs of the basic blocks. Path analysis determines a worst-
case execution path of the program. 

Value analysis is based on an abstract interpretation of the 
operations of the analyzed task, taking into account variable 
values specified by the user (e.g. to restrict the analysis to a 
certain operation mode of the analyzed software). The results of 
value analysis are used to determine loop bounds, to predict the 
addresses of data accesses and to find infeasible paths caused 
by conditions that always evaluate to true or always evaluate to 
false. Knowledge of the addresses of data accesses is important 
for cache analysis. Value analysis usually works so good that 
only a few indirect accesses cannot be determined exactly. Ad-
dress ranges for the remaining accesses can be provided by user 
annotations.

Cache Analysis uses the results of value analysis to predict 
the behavior of the (data) cache. The results of cache analysis 
are used within pipeline analysis allowing the prediction of 
pipeline stalls due to cache misses. The combined results of the 
cache and pipeline analyses are the basis for computing the 
execution times of program paths. Separating WCET determi-
nation into several phases makes it possible to use different 
methods tailored to the subtasks. Value analysis, cache analysis, 
and pipeline analysis are done by abstract interpretation. Integer 
linear programming is used for path analysis. 

5 WCET computation with aiT for PowerPC MPC755 

First avionics program. We first present some more details 
about the structure of the program. It consists of 24 uninterrup-
tible tasks that are activated one-by-one by a real time clock in 
a fixed schedule: task 1 to task 24, then task 1 again, and so on 
until the electrical power of the aircraft is switched off. This 
time-triggered scheduling method requires that the WCET of 
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each task must be less than the period of the real-time clock. 
The call graph of each task is basically organized in three lay-
ers. The first layer contains 4 calls to so-called sequencers, 
which for each task are selected from a list of 38 possibilities. 
These sequencers allow for the activation of pieces of code at 
different rates, i.e., 1 over 2 ticks, 4 ticks, 8 ticks or 24 ticks. 
Still in this highest layer, some system routines are called be-
fore and after the four sequencer calls. The second layer con-
sists of the routines containing the actual operation code com-
posed of “calls” to code macros, which form the basic compo-
nents referred to in section 3. The third layer consists of the 
input/output routines called by some of the basic components 
present in the second layer.  
As described in section 4, aiT requires some global parameter 
settings in the graphical user interface, in a project file (.apf 
file), or in a parameter file (.aip file), and user annotations in an 
annotation file (.ais file). Global parameters are quite basic and 
mainly describe the hardware, so let us concentrate on the work 
involved in writing the annotations. As described in section 4, 
annotations are mandatory when value analysis fails to find the 
iteration bound of some loop or the computed address range for 
an external access (load or store) is too imprecise. We now 
present the annotations required in the analysis of the first avi-
onics program. As stated above, its functional code consists of 
operators implemented as macros and a few input/output and 
“system” routines. 
Annotations in operators:

cos(x) and sin(x): The values of these functions are ex-
tracted from some table. The index into this table is com-
puted from the floating-point number x given as argument. 
As aiT does not “cover” floating-point calculus, its safe re-
action is not to compute any bounds for the value of the in-
dex. Hence the address range of the table lookup is un-
known. This range, which is in fact a function of the size of 
the table, is provided by a user annotation.

delay family (4 operators): These operators are called once 
in the course of each task to store a value into some array. 
They also update a static variable containing an index to 
this array. Since the periodic updates of the index are trig-
gered by the real time clock and not by a loop inside the 
code, aiT cannot compute the range of addresses for this 
index. Thus an annotation has to be provided.

If the basic operators were implemented as routines, the num-
ber of annotations as described above would have been very 
limited and, thus, affordable easily. Yet the operators are im-
plemented as code macros. Consequently, what would be a 
single annotation in case of a routine splits into as many annota-
tions as there are instances of the macro in the code, which is 
quite huge.
An automatic generator of annotations. For solving this in-
dustrial problem, it was decided to use the same technique for 
annotating as for the coding itself, namely automatic genera-
tion. Indeed, an automatic generator of annotations has been 
implemented that reads a generic description of an annotation in 
a given macro (basic operator) and produces the actual in-
stances of this annotation for all occurrences of the macro in the 
binary.   
Annotations in I/O or “system” routines:

 Communication drivers (USB, AFDX): a few pointers in-
volved in the data exchanges via these communication 
channels are too dynamic for being computed by aiT auto-

matically. The relevant address ranges must be provided 
via annotations. 

 Loops: Annotations are required for a small number 
of loops whose iteration bounds cannot be determined by aiT. 

The second avionics program is also based on uninterrup-
tible tasks activated by a real time clock. The tasks must com-
plete in the allowed time to guarantee proper functioning of the 
program. Each task consists of a high-level loop that reads a list 
of operation codes with parameters from a configuration table, 
and for each operation code, calls the basic blocks implement-
ing the operation. These basic blocks are highly dependent on 
parameterisations provided by the configuration table. The 
parameterisations influence the timing behaviour because they 
may induce specific processing or affect loop bounds and ad-
dresses of external accesses.  

Therefore, it is of first importance for aiT to keep track of 
these parameters as they are copied from the configuration table 
to temporary variables and registers. In the first place, the con-
figuration table has to be recognized by aiT. The configuration 
table is located in a specific area of a binary file. aiT supports 
an annotation saying that a data area in the analyzed binary is 
“read-only” so that the values found there can be used by value 
analysis. However, in the program considered here, this con-
stant area is provided as a separate binary because the configu-
ration tables are separate loadable parts. Since aiT can analyse 
only single binaries, the binary with the configuration table (this 
is Mbytes of data) is translated into .ais file annotations specify-
ing the contents of the table. As the same basic blocks are called 
multiple times in one task activation, either directly from the 
main loop, or because they are low-level shared services, some 
instruction cache hits can be guaranteed. However these cache 
hits depend on the ordering of the operation codes in the con-
figuration table and cannot be taken into account by the stand-
alone basic block WCET measurements of Airbus’ “traditional” 
approach (simple sum of basic block execution times). Hence 
this method cannot take advantage of the improvements of 
modern processors, and thus cannot provide WCET results 
compatible with the allowed execution time. 

The major part of the factors affecting the WCET (condi-
tions, loop bounds, pointers, etc) is found automatically by aiT, 
either by code inspection or from the annotations describing the 
configuration table. Yet some factors are outside aiT’s knowl-
edge and capacities, and annotations have to be provided to 
bound the analysis and achieve a result. These factors are lower 
and upper bounds on input data, static data from previous task 
activations, or data provided by devices outside of processor 
knowledge (DMA for example). For these, maximum loop it-
erations, values read from memory, branch exclusions, etc, have 
to be specified to aiT. 

There are 256 different configuration tables, corresponding 
to different tasks of the same computer, and of different com-
puters in the aircraft. One objective of the separation of soft-
ware in configuration tables (lists of operation codes with pa-
rameters) and the code for interpreting these tables is to shorten 
(in terms of delay between specification and deliveries) the 
development and validation cycles for the software. This objec-
tive requires an automatic computation of the WCET without 
direct human involvement. 
WCET determination for the combination of the interpreter 
code with each of the 256 configuration tables consists of de-
termining the longest execution path in a quite complex piece of 
code. These WCET analyses are to be performed in a period of 
time compatible with the industrial constraints associated with 
the short development cycle. This however is possible due to 
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the fact that the analyses for the 256 tables are independent 
from each other and can be performed in parallel on many com-
puters.

6 Considerations about the results 

The WCETs of the two programs are not yet publishable for 
general confidentiality reasons; the authors apologize for that 
and hope the reader will understand. 
Nevertheless some considerations about the results and how 
they were obtained are presented in this section. 
First avionics program. This program has a very linear struc-
ture and limited sources of jitters (in number and amplitude). 
This allows for valid comparisons between the figures obtained 
by measurement during real executions of the tasks and those 
produced by using aiT. The comparison shows that the WCET 
of a task typically is about 25% higher than the measured time 
for the same task, the real but non-calculable WCET being in 
between.
Another comparison is worth to mention: the one between aiT’s 
results and those of Airbus’ “traditional” method. As predicted 
when the decision for using aiT was made, the figures obtained 
by the traditional approach are a lot higher than those produced 
by the aiT-based method. Actually the overestimation is such 
that the “traditional” figures are useless. 
Second avionics program. Despite the fact that this program 
has not a linear structure and contains a great number of loops 
and branches, the sources of jitter are limited. Most of the loop 
and branch conditions can be evaluated knowing the configura-
tion table. There are still more sources of jitter than in the first 
program, but comparisons between the figures obtained by 
measurement of real executions and results produced by aiT are 
still possible. The WCETs computed by aiT are about 50% 
higher than the corresponding measured execution times. These 
higher margins can be explained (at least in part) by the diffi-
culties to set up an environment for running the task that is suf-
ficiently close to the environment leading to the real WCET.  
More importantly, the WCETs computed by aiT are much 
lower than the results from the “traditional” method and are 
compatible with the program’s timing constraints. 
Status with respect to some general acceptance criteria.

Soundness: First of all, aiT was developed in the frame-
work of Abstract Interpretation [2], which is very good for 
the soundness of the underlying principles. The soundness 
of the actual implementation of the tool, as used on the real 
avionics programs, cannot be assessed formally. The way 
of getting confident in the tool and its method of use is the 
Validation/Qualification process sketched in section 7.
Ease of use: Users, i.e., normal engineers, always worked 
with aiT in an autonomous way. Furthermore, they were 
able to develop utilities for making aiT easier to use in the 
industrial context, like the automatic generator of annota-
tions (see section 5). 
Resource needs: The WCET computations for the second 
avionics program (the most demanding one) take an aver-
age of 12 hours (on a 3+ Ghz Pentium 4) per task (there are 
256 tasks). But this workload is dispatched on many com-
puters and is not a real problem. The main concern is about 
the space requirement that is, for some analyzed tasks, 
close to the current 3 Gbytes limit of the 32-bit architec-
ture. To address this point, a migration to the 64-bit archi-
tecture is under investigation.

7 future work  

Validation. By this term the authors mean “getting a high level 
of confidence” in the results produced by aiT as used on the 
avionics programs referred to in this paper. Although some data 
collected during the first industrial usage of aiT are already 
available for validation, most of the work is still do be done. It 
will have four basic objectives: soundness of the underlying 
principles (a), correctness of the models (b), soundness of the 
method of use (c), and validity of the results (d). 
(a) and (b): most of the analyses performed by aiT (see section 

3) have theoretical principles (models and sometimes 
proofs) precisely described in theses or scientific papers. 
Some effort has already been spent in reading this docu-
mentation. This process will carry on together with some 
checking against hardware manuals, e.g., the PowerPC 
MPC755 manual [3]. 

(c): the objective here is mainly to check that the annotations 
(loop bounds, register contents at certain program points, 
etc) do not make aiT compute an unsafe WCET.   

(d): the very detailed results produced by aiT make it possible 
to perform useful and automated checks. An example of 
such checks is whether real execution traces (got via a 
logic analyzer) belong to the set of those computed by aiT.  

Qualification. This term comes from DO178B. In the case of 
aiT, it is about the qualification of a verification tool. Current 
practices consider that the qualification is twofold: in-service 
history and qualification tests. Both items of the qualification 
will be built from the outputs of the validation process. Also, 
one should notice that the qualification of a tool is per avionics 
program the tool is used on.
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Abstract

Static Worst-Case Execution Time (WCET) ana-
lysis is currently taking a step from research to indus-
trial use. We present a summary of three case studies
where static WCET analysis has been used to analyse
production code for embedded real-time systems. The
primary purpose has not been to test the accuracy of
the obtained WCET estimates, but rather to investi-
gate the practical and methodological difficulties that
arise when applying current WCET analysis methods
to these particular kind of systems.

In particular, we have been interested in how labor-
intensive the analysis becomes, for instance by estimat-
ing the efforts to study the analysed code in detail, and
measuring the number of manual annotations necessary
to perform the analysis. From these observations, we
draw some conclusions about what would be needed to
turn static WCET analysis into a useful tool for em-
bedded and real-time systems software development.

1 Introduction

To give timing guarantees for embedded and real-
time systems, a key parameter is the worst-case ex-
ecution time (WCET) of the executing tasks. Until
now, the common method (if any) in industry to de-
rive WCET values has been by measurements. A wide
variety of measurement tools are employed in indus-
try, including emulators, logic analyzers, oscilloscopes,
and software profiling tools [14]. This is labor-intensive
and error-prone work, and even worse, it is difficult to
guarantee that the WCET has been found.

Static WCET analysis is an alternative method to
determine the WCET of a program, relying on mathe-
matical models of the software and hardware involved.
The analysis avoids the need to run the program by
considering the effects of all possible inputs, including
possible system states, together with the program’s in-
teraction with the hardware. Given that the models

are correct, the analysis will derive a timing estimate
that is safe, that is greater than or equal to the actual
WCET. The static WCET analysis research commu-
nity has developed a number of prototype tools dur-
ing the last couple of years, for example SWEET [18]
and Heptane [10]. Recently also commercial WCET
tools, such as aiT from AbsInt GmbH, Germany [1] and
Bound-T from Tidorum, Finland [3], have appeared.

In this paper, we present experiences from three case
studies where WCET analysis tools have been used.
In the two first case studies, we analysed time-critical
parts in a real-time operating system (Sections 3, 4).
The third case study targeted code controlling automo-
tive data communication (Section 5). We also report
from two on-going case studies (Section 6).

All of these case studies have been performed as
MSc theses works. The students can spend about five
months on their work, and they are no experts on the
code at the beginning. This means that these results
can be seen as typical for WCET analysis made by
an well-educated but external person; the work should
probably have taken less time if an expert or the pro-
grammer had performed it.

We believe that doing case studies, with careful eval-
uations, provides valuable input both for WCET re-
search and WCET tool development. Our hypothesis
is that the studied software is representative for a large
class of industrial embedded real-time code, making
our results applicable to similar systems.

There are only a few other case studies of using
WCET analysis in practice known to us; reporting on
the use of Heptane [6], aiT [15], and Bound-T [11].

To make static WCET analysis industrially useful,
it is desirable to automate the process on a “one-click-
analysis” basis. Consequently, one of the main topics
has been to investigate how labour-intense practical
WCET analysis actually becomes.

We were also interested in the characteristics of the
obtained WCET values. Most scheduling theories as-
sume that each task has a single fixed WCET, and we
wanted to find out whether this assumption is valid in

1
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real industrial settings.
The rest of the paper is organized as follows. In

Section 2, we present the used tools. In Section 3, we
describe a case study with our own research prototype,
SWEET (SWEdish Execution time Tool). Sections 4
and 5 describe two case studies where we used aiT to
analyse commercial code. Section 6 presents two on-
going case studies. In Section 7 we draw some conclu-
sions, and in Section 8, we point out further research.

2 Tools Used

SWEET is a prototype WCET tool developed at
Uppsala and Mälardalen University [18]. SWEET con-
sists of three main parts; a flow analysis which de-
tects program flow constraints, a low-level analysis,
and a final WCET calculation. The flow analysis
part of SWEET analyses intermediate code produced
by a research compiler. Our current focus is to de-
velop automatic flow analysis methods, such as ab-
stract interpretation-based methods [9].

The aiT tool is a commercial WCET analysis tool
from AbsInt GmbH [1]. In contrast to SWEET, aiT
does not rely on any specific compiler, but analyses ex-
ecutable binaries, with support for a number of target
architectures. The tool also includes an automatic loop
bound analysis, which can catch simple cases.

3 Case Study 1: Using SWEET to Find
Time Bounds For DI Regions

This case study was performed with the low-level
and calculation parts of an earlier version of SWEET.
The purpose was to find upper bounds of the execution
time for a number of Disable Interrupts (DI) regions in
the delta kernel (ARM9 version) of the Enea OSE op-
erating system [7]. The OSE operating system is a
real-time operating system used in embedded applica-
tions, for example in mobile phones and aircrafts. The
case study is described in closer detail in [4].

Having short DI regions is important, since the exe-
cution of these regions can potentially delay any other
activity in the system. The goal of the study was to
investigate if WCET analysis could provide a feasible
way to bound the execution times of the DI regions at
a reasonable cost.

The study was done in the following steps:

1. The DI regions was extracted from the binaries.
2. The control flow graph for these regions was con-

structed.
3. The WCET tool was used to calculate upper

bounds for the WCET of each region.

We identified 612 DI regions in the Delta OSE ker-
nel. Most of these were very simple. We selected ten
DI regions that were potentially challenging for WCET
analysis for a closer investigation. These regions had
a more complex control structure than the others, and
several contained loops. To find upper loop iteration
bounds sometimes posed a problem, since no automatic
loop bound analysis was available, and it was hard to
deduce loop bounds manually from the code.

Experiences and conclusions. A lot of effort was
used to identify DI regions and construct their con-
trol flow graphs. The tools developed to do this had
some shortcomings. Even with these problems, there
are some interesting conclusions we can draw:

• The problem of defining upper loop iteration bounds
depends on the special type of code analysed here.
Operating systems are often run in certain modes
which may affect loop bounds, and therefore the
WCET is typically mode-dependent. One would
thus like to have different, tight WCET bounds for
different modes, rather than a single WCET bound
valid for all modes.

• The usefulness of analyses such as WCET analysis
grows fast with the level of automation. In our ex-
periment, even simple means of automation made a
huge difference in the amount of engineering work.

4 Case Study 2: Using aiT to Find
Time Bounds For Time Critical Code

The Enea OSE operating system for the ARM pro-
cessor was studied also here. Some of the tools devel-
oped in the first case study were re-used in this case
study. 180 of the previous DI regions were analysed,
as well as four system calls. In this study, we used the
aiT tool [1]. This commercial tool has a richer set of
processor timing models, and a better user interface,
than our prototype tool. The case study is described
in closer detail in [13].

The aiT ARM7 tool analyses executables. This in-
formation is, however, often not sufficient to yield a
good WCET bound for the analyzed code. In partic-
ular, information about program flow, such as bounds
to loop iteration counts not caught by the loop bounds
analysis, and knowledge of infeasible paths, has to be
provided by the user. Therefore, aiT supports a set
of user annotations to provide external information to
the analysis [8]. Some of the more important annota-
tions are: loop bounds, maximal recursion depth, dead
code, and (static) values of conditions.

2
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Experiences and conclusions. We soon discovered
that the execution time of the system calls depended on
many parameters. A global WCET bound, valid for all
possible parameter values, could become very poor for
for actual configurations and standard running modes.

We dealt with this problem in our experiments by
assuming some “typical” scenarios for parameters af-
fecting the WCET (after correspondance with the OSE
designers). We also excluded uninteresting execution
paths from the analysis by manual annotations.

We made the following observations:
• A significant amount of annotations were required

for each system call; for the analysed routines of
sizes between 78 and 143 instructions, the number
of annotations were between 10 and 33.

• Another observation is that excluding the error
handling code in the OSE system calls yielded sig-
nificantly smaller code to analyze.

• Many loops in the OSE kernel depends on dynamic
data structures. This had the consequence that the
aiT loop bound analysis did not perform well for
these loops.

• Providing upper bounds manually for these loops
required a deep understanding of the code. Con-
sequently, the analysis was quite labor-consuming,
even if the analyzed code was small. Also, the ana-
lysis relied on information from the OSE designers.

We conclude that the usefulness of WCET analysis
would improve with a higher level of automation and
support from the tool. Especially, it would be impor-
tant be to develop advanced flow analysis methods,
that could find complex loop bounds automatically.
Another important conclusion made is that absolute
WCET bounds are not always appropriate for real-time
operating system code. The reason is, as mentioned,
that the WCET often depends on dynamic system pa-
rameters. An absolute WCET bound, covering all pos-
sible situations, will provide a gross overapproximation.

5 Case Study 3: Using aiT for Time-
Critical Parts of Automotive Code

This case study targeted automotive code, namely
the Volcano Tool Suite for design and implementation
of in-vehicle communication over CAN and/or LIN net-
works. The company Volcano Communications Tech-
nologies AB (VCT) [16] provides tools for embedded
network systems, principally used within the car indus-
try. The Volcano LIN Target package (LTP) was se-
lected as a suitable part of the Volcano LIN tool suite
to analyse. The work is described in closer detail in
[12].

The microcontroller used in this study was a

MC9S12DP256 from Motorola, which includes a 16-bit
Star12 CPU of the MC68HC12 family.

Results from analysis of nine different LIN API func-
tions were presented. We were able to obtain WCET
values for all analyzed functions. However, these values
were often not a constant single value, but depended
on some system parameters. Also, all functions needed
manual annotations to be analysed. The number of
annotations ranged between 6 and 14 for functions of
sizes between 2 kb and 14 kb.

Experiences and conclusions. As for the OSE
code, the WCET for the studied LIN functions often
depends on some specific system configuration parame-
ters and modes. Similarly, a single WCET bound valid
for all parameter values would provide a very poor es-
timate in most situations. A mode- and input-sensitive
WCET analysis would obtain a better resource utiliza-
tion and provide better understanding of the system’s
timing characteristics.

For many parts of the LIN API it was possible
to manually create parametrical WCET formulas. It
seems interesting to develop methods to automatically
derive these parametrical formulas.

Much work was required to set annotations manu-
ally. To do this required an understanding of the mean-
ing of the code.

There is a need for ways to automate the analysis.
For example, better flow analysis methods would be
useful to avoid manual calculation of loop bounds.

After discussions with the VCT employees it turned
out that not only the WCET, but also the jitter of a
piece of code, is of large interest. (The jitter is the
largest execution time variation a function can experi-
ence, that is the difference between the best-case exe-
cution time (BCET) and the WCET.)

6 On-going work

We are currently performing two case studies which
are summarized below.

Comparison of Different Methodologies for Ob-
taining WCET Values. Two MSc students are cur-
rently studying real-time embedded systems code from
CC-Systems [5], using aiT for the Infineon C167 pro-
cessor. CC-Systems develops embedded software and
hardware for welding machinery, as well as for trucks,
ships, trains and other vehicles. This case study will
compare the different methodologies for obtaining tim-
ing values, that is static analysis and measurement-
based methods.

3
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Evaluation of static WCET Analysis Methods
for Time-Critical Real-Time Embedded Code.
We have also just started a new case study at Volvo
Construction Equipment (Volvo CE) [17]. Volvo CE
uses the Rubus real-time operating system from Arcti-
cus [2] in their embedded, time-critical systems for
trucks and other vehicles. The target processor will
be Infineon C167 and (if possible) Infineon XC161.
The precision of the WCET analysis will be evaluated
against the measurements which are performed regu-
larly by Volvo CE.

7 Conclusions

Sections 3 to 5 provided a number of detailed results
and experiences. Some common conclusions can be
drawn from our case studies.

It is possible to apply static WCET analysis to code
with properties similar to the analysed code. The
tools used performs well, once the necessary prepara-
tory work, such as defining annotations, has been done.
However, the WCET analysis process is not automated
on a ’one-click-analysis’ basis. Much manual interven-
tion, and detailed knowledge of the analyzed code, is
required to perform the analysis.

A higher degree of support from the tool, for exam-
ple with automatic loop bounds calculation, would be
desirable. A graphical interface is also valuable, to ob-
tain an overview of the analysed code and see how it
executes.

Absolute WCET bounds are not always sufficient.
Support for some type of parametrical WCET calcula-
tion is sometimes needed.

8 Future Work

We intend to continue with WCET analysis case
studies. One direction is to use the flow analysis devel-
oped in our own tool, SWEET, both as a stand-alone
tool and used in cooperation with the commercial tools.
We are members of the Compilers and Timing Analysis
cluster in the ARTIST2 Network of Excellence on Em-
bedded Systems Design. One of the aims of the work in
this group is to define common formats for cooperation
between different parts of WCET tools.
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Abstract

To reach a more widespread use, WCET analysis tools
need to be a standard part in the education of embedded
systems developers. Many real-time courses in academia
use Lego Mindstorms, an off-the-shelf kit of Lego bricks
for building and controlling small prototype robots. We
describe work on porting the Bound-T WCET analysis
tool to the Lego Mindstorms microprocessor; the Renesas
H8/3292. We believe that this work will make students, and
indirectly the industry of tomorrow, aware of the benefits of
WCET analysis tools.

We also present the real-time laboratory framework in
which this WCET analysis tool will be used. The frame-
work has been developed with schedulability and timing
predictability in mind, and is already used in a number of
real-time courses given at Mälardalen University in Swe-
den. The developed WCET tool and the real-time labora-
tory framework will be freely available for academic use.

1 Introduction

Today, tools for static Worst-Case Execution Time
(WCET) analysis, such as Bound-T [4] and aiT [1], are
starting to be used in embedded system development and
timing verification [9, 10, 14, 15, 18]. We believe that such
tools have a potential to be part of the embedded real-time
developer’s tool chest, in the same way as profilers, hard-
ware emulators, compilers, and source-code debuggers al-
ready are today. By providing easier verification of tim-
ing behavior they should provide improvements in product
quality and safety, as well as reduced development time.

Unfortunately, too few embedded system developers are
yet aware of WCET analysis tools and the functionality they

• This research has been supported by the Advanced Software Tech-
nology Center (ASTEC) in Uppsala [2]. ASTEC is a Vinnova (Swedish
Agency for Innovation Systems) initiative [19].

offer. This article describes an attempt to improve this sit-
uation. We are currently porting an existing WCET analy-
sis tool, Bound-T, to the Renesas H8/3292 microprocessor.
This microprocessor is used in Lego Mindstorms [11], an
off-the-shelf kit of Lego bricks for building and controlling
small prototype robots. This kit is used in many real-time
courses in academia. Thereby static WCET analysis could
be regularly used in the education of the embedded system
developers of tomorrow.

However, for achieving system predictability and to
make best use of calculated WCET estimates, the complete
system needs to be developed with timing predictability in
mind. To make students aware of this fact, the developed
WCET analysis tool will be used in a real-time laboratory
framework targeting such system predictability. This frame-
work is already used in a number of real-time courses given
at Mälardalen University in Sweden. It consists of a small
real-time micro-kernel and an operating system called As-
terix [16], a configuration tool called Obelix, and a GNU
GCC cross-compiler for the H8/3292.

Both the WCET analysis tool and the real-time labora-
tory framework will be freely available for academic use.
This should provide a valuable foundation for teaching stu-
dents how to construct better and safer real-time systems.

2 WCET Analysis for Mindstorms

Lego Mindstorms is an off-the-shelf kit of Lego bricks
for building and controlling small prototype robots. The
simplicity in the design of Lego Mindstorms makes it suit-
able for educational purposes in ages from 12 years and up.
Out of the box, the Mindstorms kit is not considered to be
a platform for real-time systems. However, the set of Lego
bricks includes sensors and actuators such as pressure sen-
sors, a light sensor and small motors, i.e., the fundamental
necessities for real-time systems. Also, the sparse hardware
resources and few interfaces for hardware access places the
Mindstorms construction in the embedded system category.

The RCX, illustrated in Figure 1, is the processing unit
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Figure 1. The Lego Mindstorms RCX unit

of Lego Mindstorms. The RCX is based on the single-chip
H8/3292 [8], a RISC microcomputer running at 16 MHz. It
features a H8/300 CPU core and a complement of on-chip
supporting modules. The H8/3292 has 16 kBytes of read-
only memory (ROM) and 512 bytes of on-chip random-
access memory (RAM) and an additional 16 kBytes of ex-
ternal RAM in a separate circuit. The ROM includes sev-
eral functions for reading of sensors, controlling the motors,
display segments and numbers on a LCD-display. Located
on-chip are one 16-bit timer, two 8-bit timers, a watchdog-
timer, a serial communication interface and an 8-channel
10-bit analog-digital converter. The RCX also contains an
IR-transceiver, useful for downloading programs and for
communicating with other RCX units.

2.1 H8/300 Hardware Timing

Instructions in the H8/300 architecture generally have
a fixed execution time, the exception being the EEPMOV
instruction that copies a block of data in memory. There
is no cache (at least not on-chip) and no visible pipeline.
The fastest instructions take two clock cycles; for example
an ADD.B or ADD.W executed from the on-chip memory
using register operands. Complex instructions that access
external memory may have execution times of 20 or more
cycles, depending on the length of the instruction, the ad-
dressing mode, the data width and the memory areas that
are accessed. The time does not depend on execution his-
tory. Two instructions, MOVFPE and MOVTPE, synchronize
with the ”peripheral” clock and have somewhat variable ex-
ecution time.

The simple instruction timing means that the high-level
flow-path analysis becomes the main problem in WCET
analysis for Lego Mindstorms. We chose the Bound-T
WCET tool [4] as the basis for our work because its low-
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Figure 2. The Bound-T WCET analysis tool

level analysis is sufficient for the H8/300, it has a fairly
powerful high-level analysis, and its modular structure let
us divide the porting work between the WCET analysis
group at Mälardalen University and the company behind
Bound-T, Tidorum Ltd [4].

2.2 The Bound-T WCET Analysis Tool

Bound-T, see Figure 2, performs WCET analysis from
machine code (binary, linked executables). To find loop
bounds Bound-T models the computations and branch con-
ditions with Presburger arithmetic. Bound-T examines the
model to find loop-counter variables and computes a bound
on loop iterations from the counter’s initial value, its final
value implied by the exit condition, and its change (step) in
the loop body.

Loop bounds can be context-sensitive, i.e., dependent on
the call-path. The Presburger model is used also to resolve
dynamic jumps, for example from switch/case statements,
and to compute stack usage bounds. The worst-case path is
found with implicit path enumeration (IPET).

Bound-T is implemented as a single Ada program with a
strict division into modules specific to the target processor
(e.g., instruction decoding) and modules independent of the
target processor (e.g., analysis of loop bounds). For Pres-
burger analysis Bound-T uses the Omega Calculator [13].
For IPET the lp solve program [3] is used. Control-flow and
call graphs can be emitted in DOT form [6]. The automatic
loop analysis can be supported or replaced by user asser-
tions in a separate input file (not as source annotations).

Target processors supported by Bound-T include Intel
8051 [9], SPARC V7 (in its ERC32 implementation) and
Analog Devices 21020 DSP [10]. Ports to ATMEL AVR
and ARM7 are under way.

2.3 Porting Bound-T to the H8/300

Bound-T is based on an internal model of the target pro-
gram as a set of control-flow graphs (one for each subpro-
gram) connected into a call-graph. The flow-graph nodes
have attributes for the execution time and the arithmetic
(computational) effect of the node. The structure of the
program model is independent of the target processor but
the model is parameterized by target-specific types and op-
erations that are defined in target-specific Ada packages.
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Figure 3. The real-time laboratory framework

To port Bound-T to a new target processor, one must
implement these target-specific types and operations. The
main operation is the one that decodes instructions and in-
serts them in the program model. This operation is given
the address of an instruction and must ”fetch” the binary in-
struction from the program’s memory image (a COFF file
from GCC in our case), decode the instruction to find out
the instruction type and the operands, and call Bound-T op-
erations that create new nodes and edges in the control-flow
graph.

The porting of the H8/300 to Bound-T took about five
months and was performed by the first author, Samuel Pe-
tersson, as an MSc project in his computer science stud-
ies [12]. The instruction decoding process was divided into
two steps: first from the binary instruction to an ”abstract”
instruction, and then from the abstract instruction to the
Bound-T model. The abstract instruction is a model of the
H8/300 architecture built from Ada types. This model de-
pends only on the H8/300, not on Bound-T.

The decoding from binary instructions to abstract in-
structions included a lot of processor manual reading. It
was a considerable job because there are 57 different in-
structions which can execute in eight different addressing
modes. Furthermore, no instructions allow all the address-
ing modes.

The next step was the conversion of abstract instructions
to the Bound-T model. This included creation of flow-graph
nodes with timing information and arithmetic effects of the
included instructions. The decoding process expands the

(abstract) EEPMOV instruction into three flow-graph nodes
that model the block-copy loop. Bound-T’s usual loop-
bound analysis applies here. For the MOVFPE and MOVTPE
instructions we assume the worst-case execution time.

The first version of Bound-T for the H8/300 supports the
H8/3297 chip series (which includes the 3292). Tidorum
plans to support other H8/300 chips and perhaps other mem-
bers of the H8 family such as the 32-bit H8/300H processor.

3 Mindstorms in RT Systems Education

The Bound-T tool will be used in a real-time laboratory
framework, see Figure 3(a), developed at Mälardalen Uni-
versity. The framework replaces the software architecture
and programming environment that are delivered together
with the Lego Mindstorms kit. It consists of a small real-
time micro-kernel and operating system called Asterix [16],
a configuration tool called Obelix, and a GNU GCC cross-
compiler for the H8/3292.

3.1 Asterix - the Real-Time Kernel

The Asterix real-time kernel handles execution strategies
ranging from strictly statically scheduled systems via fixed
priority scheduled systems to event-triggered systems, or
any combination of these. To fulfill the needs for embedded
systems we have minimized the kernel and the application
memory footprints.

A built-in monitoring function facilitates the use of state-
of-the-art testing and debugging tools like deterministic
testing, replay debugging, and visualization [17]. The ker-
nel also provides on-line facilities for measuring execu-
tion times (via testing). For every system reconfiguration
the kernel must be recompiled, leading to an efficient us-
age of memory and other limited resources. Task proper-
ties (e.g., deadline, priority, offset) are defined outside the
source code in an Obelix configuration file.

3.2 Obelix - the System Configuration Tool

The Obelix system configuration tool allows static off-
line definition of system resource demands. The de-
mands are set in a configuration file separated from the
source code, clearly separating the system functionality
from the system configuration and requirements. Further-
more, Obelix allows cleaner source code in the sense that
no special tags and system calls are needed for initialisa-
tion and system set up. This gives the possibility of moving
the code to the target development environment after testing
without modifications.

The configuration files include descriptions of all neces-
sary resource requirements as well as configuration infor-
mation for e.g., the task schedule, synchronization of tasks,
inter-task communication and inter-node communication.
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In addition, the configuration files contain all necessary in-
formation of task attributes and time resolution. Examples
of a configuration file and implemented task functionality
are depicted in Figure 3(b) and Figure 3(c) respectively.

3.3 The Real-Time System Student Assignments

On a yearly basis, the laboratory framework is used
in two real-time courses (a regular course and a distance
course) given at Mälardalen University. For each course,
two student assignments are given: a preparatory assign-
ment and a robot project. Because of the straightforward
programming (basic C-programming) the preparatory as-
signments are easily done in a few hours, giving the pro-
gramming knowledge required for the subsequent robot
project. Since the start approximately 500 students have
performed 200 robot projects using Lego Mindstorms and
Asterix.

Due to the separation of functionality and configuration
in the Asterix framework, the students may implement their
application in a late stage, and focus more on the theoretical
aspects of designing a robust real-time system (e.g., tim-
ing analysis, scheduling, etc.). Furthermore, the simplic-
ity of configuring and programming leaves room for proper
software design. However, students have previously expe-
rienced difficulties to estimate proper execution times by
measurements. By instead using Bound-T for this purpose,
we believe that the students will be able to derive more ac-
curate timing bounds.

In order to perform response-time analysis and to derive
overall system timing guarantees the students need WCET
bounds both for tasks and for OS services. To simplify the
assignment, WCET bounds for all OS calls will be derived
beforehand, and presented in an off-line table. However, the
students will be required to use Bound-T to derive WCET
bounds for their own robot application task code.

4 Conclusions, Related and Future Work

We have described work on porting the Bound-T WCET
analysis tool to the Lego Mindstorms and the H8/3292 mi-
croprocessor. The tool will initially be used in assignments
in real-time systems courses given at Mälardalen Univer-
sity. This should allow students to get familiar with WCET
analysis and should provide valuable feedback on the func-
tionality required for WCET tools to be applicable in real-
time system development. The developed WCET tool and
the real-time laboratory framework will be freely available
for academia and under license for industry.

An alternative OS for Lego Mindstorms, and the de-
veloped WCET analysis tool, is BrickOS from Source-
forge [5]. BrickOS supports preemptive multitasking, dy-
namic memory management, POSIX semaphores, as well

as native to display, buttons, IR communication, motors and
sensors. However, compared to Asterix, BrickOS is not a
hard real-time OS, making it more difficult to provide over-
all system timing guarantees.

The H8/300 has previously been ported to the Heptane
WCET tool [7] and the BrickOS. However, we have not
seen any reports on using the tool in education.

Future work includes a systematic validation of the de-
veloped Bound-T H8/300 timing model using measurement
tools such as oscilloscopes and logic analyzers. This will
minimize the possibility of implementation faults and ver-
ify that the timing given in the H8/300 processor manual [8]
actually corresponds to the real hardware timing.
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Abstract

Predicting timing behavior is key to efficient embed-
ded real-time system design and verification. Current ap-
proaches to determine end-to-end latencies in parallel het-
erogeneous architectures focus on performance analysis ei-
ther on task or system level. Especially memory accesses,
basic operations of embedded application, cannot be accu-
rately captured on a single level alone: While task level
methods simplify system behavior, system level methods
simplify task behavior. Both perspectives lead to overly pes-
simistic estimations.

To tackle these complex interactions we integrate task
and system level analysis. Each analysis level is provided
with the necessary data to allow precise computations,
while adequate abstraction prevents high time complexity.

1 Introduction

Memory is a critical bottleneck in embedded systems,
as the gap between processor speed and memory access
time is increasing. Current chip designs use hierarchical
memory architectures with caches, multi-threading and co-
processors to reduce memory latency time. Embedded ap-
plications often require real time constraints, but perfor-
mance verification of complex systems is a challenge.

State-of-the-art in industrial practice is using functional
test and simulation. Simulation times are often too long for
a complete code coverage, which would need exponential
time. Therefore, only critical paths are tested, and safe tim-
ing bounds cannot be given.

Formal analysis is an alternative. With simplified as-
sumptions the analysis complexity is reduced and safe up-
per and lower performance bounds are calculated. One
such assumption is a constant memory latency, even though
it is influenced by the memory hierarchy, bus arbitration,
and buffer sizes as well as the background memory latency.
Static analysis approaches for single tasks assume constant

memory access time, such as [5]. The behavior of caches
has been studied as well [5] [3] [8], but these approaches
assume a constant cache miss penalty. A small overestima-
tion of memory access time will lead to a high overestima-
tion for worst case execution time of single tasks.

This overestimated task execution time is used for
higher level system analysis for resource scheduling or for
throughput estimation of heterogeneous multi-processor ar-
chitectures. Such analyses have been proposed by [7] [6].
Compositional performance analysis methodologies com-
bine local techniques on the system level by connecting
their input and output event streams according to the overall
application and communication structure [4] [1].

Crowley and Baer propose in [2] an analysis for multi-
threaded processors. They identify parallelism in the exe-
cution of individual threads on a processor and use special
nodes with a negative execution time to model the gain of
multithreading.

While task level methods simplify system behavior, sys-
tem level methods simplify task behavior. Both perspec-
tives lead to overly pessimistic estimations, one reason for
the marginal influence of formal methods in industrial sys-
tem design. To tackle these complex interactions task level
and system level analysis are integrated. Each analysis level
is provided with the necessary data to allow precise compu-
tations, while adequate abstraction prevents state space.

The paper is structured as follows. Section 2 describes
the problem statement and Section 3 reviews previous work.
Section 4 describes the integrated task and system level
analysis approach. Finally, we conclude in Section 6.

2 Problem Statement

A simple multi-processor architecture is given in Fig 1.
Two processors are connected by a shared bus with mem-
ory and a co-processor. For example, suppose that on CPU1

runs a heat control application. A sensor on CPU2 peri-
odically transmits temperature values, which are saved in
the shared memory. The application on CPU1 checks this
value but also loads its instructions and other data from this
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memory device. The heat control is managed by the co-
processor, which is triggered by the application on CPU1.

BUS

CPU1 CPU2

MemoryCo-Proc.

Figure 1. Multi-processor design example.

This simple setup already shows the analysis complexi-
ties: Memory traffic by the CPU1 and CPU2 uses a shared
bus. The memory access time depends on the system state,
including bus state, buffers and memory state. We will call
a memory or co-processor request latency of a resource as
transaction latency in this paper. This denotes the end-
to-end latency, including the time for requesting the data,
transmission over the bus, processing on the remote com-
ponent and transmission to its source.

The objective is to compute the worst case execution
time (WCET) of a task, e.g. the heat control on CPU1, while
analyzing transaction times on system level.

3 Previous Work

3.1 Single Task Analysis

The timing analysis of tasks is separated in two stages:
program path analysis and micro-architecuture modeling.
Program path analysis is used to determine the path which
is executed in the worst case. To derive all the possible pro-
gram paths the program is transformed into a control-flow
graph. Based on this control-flow graph the worst case path
which starts at the beginning node and ends at an terminat-
ing node of the control-flow graph is determined.

Micro-architectural modeling is understood as the timing
analysis of sequences of instructions. Li and Malik [5] in-
tegrate program path analysis and micro-architecture mod-
eling to analyze the worst case execution time of tasks un-
der the influence of instruction caches. They use an Integer
Linear Programm (ILP) to avoid an explicit enumeration of
all program paths. The micro-architectural model is used
to derive execution-time of individual basic-blocks and the
ILP is used to find the path through the control-flow graph
which maximizes the execution time spent. In [8] means are
proposed for identifying infeasible paths in the program and
the timing analysis is based on single-feasible-paths instead
of basic-blocks.

In this paper we use this analysis framework, called
SymTA/P, to transform a program into its control flow graph

and to compute the WCET by solving the ILP. We assume
that the execution time of single-feasible paths are given in-
cluding micro-architectural influences. SymTA/P assumes
that a conservative memory access time, either as cache
miss penalty or general memory access time, must be spec-
ified a priori. A more precise estimation of the worst case
memory access time should rather be done at system level,
where timing properties of all other components are avail-
able.

3.2 System Level Analysis

In SymTA/S [4] a compositional performance analysis
methodology is proposed which integrates different local
scheduling analysis techniques through event stream prop-
agation. The local techniques are composed on the system
level by connecting their input and output event streams ac-
cording to the application and communication structure. In-
stead of considering each event individually, as simulation
does, the formal scheduling analysis abstracts from individ-
ual events to event streams. The analysis requires only a few
simple characteristics of event streams, such as an event pe-
riod, a maximum jitter and minimum distance. From these
parameters, the analysis systematically derives worst case
scheduling scenarios.

One way to extend the compositional analysis to memory
accesses would be to model each access as an event. How-
ever, this would require splitting the task into many smaller
atomic tasks and it would lead to a complex task descrip-
tion.

4 Integrated Analysis Approach

Our approach integrates the single task analysis and
global system analysis. Fig. 2 shows the workflow of the
integrated analysis. The global system analysis consists of
tasks and event streams. A task i consumes tokens from an
input event stream, Ein

i and produces tokens for the output
event stream Eout

i . The event streams are connected to tasks
according to the overall application.

Memory access are modeled with additional communi-
cation between task and system level. The task requests
a number of memory transactions, Tmem from the system
level (dashed arrow). The memory request is propagated
via a system path. Based on the event model of the remain-
ing tasks, the end-to-end latency of this request L(Tmem)
is computed by the system level analysis. This latency is
used by the task level analysis to compute the worst case
response time (WCRT), which finally determines its output
event model Eout

i . All tasks of the system which share event
streams on this path, or which are directly affected by the
memory access, have to be re-analyzed in the next iteration
loop. The analysis will stop when a fixed point is found.
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Figure 2. Workflow of integrated analysis.

This abstract modeling allows several compositional im-
plementations. From task level only the memory requests
need to be specified. This means any task level analysis
which can determine the memory access patterns can be
used here. In the next section we describe in detail how we
extend our single task analysis. In Section 4.2 we present
an extension to our system level analysis, which implements
this general framework.

4.1 Extension of Single Task Analysis

Worst case execution time analysis is based on the
control-flow graph (CFG) of an application. To include
compiler optimizations, the assembly code is parsed and the
corresponding CFG is constructed. At this stage we assume
that the core execution time has been computed. For each
basic block (or single-feasible pathes) the number of mem-
ory accesses is extracted. For example, if a basic block i
requests three 32 byte memory blocks, then the transaction
request is Tmem(bi) = (32,32,32). For each basic block such
a request is generated. In the second step all requests are
collected and propagated to the system level analysis where
the transaction latency L(Tmem(bi)) considering the system
state is computed. This is described in Section 4.2.

The worst case execution time is computed by solving
the ILP, which is constructed from the control flow graph.
The general ILP consists of an objective function and sev-
eral structural and functional constrains. Structural con-
strains represent possible control flow and functional con-
straints describe loop bounds or denote infeasible pathes.
The sum-of-basic blocks, as proposed by Li and Malik [5]
is given by the following objective function: max∑n

i=1 ci ·xi

where ci denotes the core execution time of basic block i,
n the maximum number of basic blocks of the task and xi

the execution count of basic block i. We extend the objec-

tive function to max∑n
i=1(ci + L(Tmem(bi))) · xi to include

the memory access time of Tmem(bi) memory access during
the basic block. Further below we omit bi and use only the
term Tmem for simplicity reasons. The ILP is then solved to
find the longest execution path in the program.

4.2 System-Level Analysis of Transaction
Latency

The basic SymTA/S model of [4] is composed of tasks
and event streams. In the following we show how to extend
the SymtTA/S framework to compute L(Tmem). A transac-
tion starts at some task τi and is transmitted via a chain of
intermediate tasks and ends at the same task τi. The total
latency of this transaction is denoted by L(Tmem).

A request Tmem has to be translated into some event
stream, which SymTA/S supports. An event stream is a
tuple E = {P ,J ,dmin}, where P denotes the period, J the
jitter and dmin the minimum distance between two events.
Given these parameters, the system level analysis calculates
the worst case response time R(E) for this event stream E
along the chain considering every other event stream of the
system, which relates to this chain. In this paper we assume
that the transactions of other ressources are given and are
independent of system behavior. From the response time
R(E) the response time of the transaction L(Tmem) is calcu-
lated. First, we give a translation for single transactions. In
a second step we translate multiple transactions.

4.2.1 Single Transaction

The idea for a single transaction, such as Tmem = {32}, is
to restrict an event stream to a single event by choosing
a period greater than the jitter. If the period were smaller
then the jitter the second event of the event stream could ar-
rive together with the first one. We define the event stream
E for a single transaction by P = J ′, J = 0 and dmin = 0.
The minimum distance is zero because this parameter is not
used. The jitter is set to zero, to exclude any future events.
As period we choose a large number, e.g. J ′. If the jitter
along the chain, J max, is larger than the initially assumed
J ′, the period will be adjusted to J max + 1 and the system
analysis is called for a second time.

4.2.2 Multiple Transaction

Multiple events, such as Tmem = {32,32,32}, are modeled
as a burst, this means all requests are issued at the same
time instant. As period P we start with a great value, J ′.
The jitter is set to P · (|Tmem|−1) to guarantee that exactly
|Tmem| events arrive together. Future events will be excluded
if the period is greater than the total jitter J max on the chain.
Unfortunately, J max is only available after the first system
level analysis iteration. So possibly a second iteration is
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necessary. We define E for multiple transactions by P = J ′,
J = P · (|Tmem|−1) and dmin = 1.

We assume a minimum distance of one instruction to be
conservative. In the future we will analyze the minimum
distance between memory accesses within basic blocks to
increase analysis precision. We also restrict each event to
request the same amount of data for simplicity reasons. For
instruction caches this is not a limitation, since entire cache
lines are requested.

Now the system analysis can compute the response time
R(E) for single and multiple events. In case of single
events this is equal to the response time of the transaction
L(Tmem) = R(E). In the case of multiple events the R(E)
denotes the response time of that event, which possesses
the worst case response time among all events of this event
stream. This includes latencies of previous events. Because
it is unknown which event caused the worst case response
time, we have to assume that it is the last one. Therefore

L(Tmem) = (|Tmem|−1) ·dmin + R(E) (1)

The first term denotes the time until the last event is ac-
tivated. This completes the description of system chain
analysis. All tasks belonging to this chain need to be re-
analyzed, since their input event model might have changed
due to the transaction.

5 Experiments

We applied the analysis to the architecture as shown in
Fig. 1. For comparison, we use a simulation environment
for a network processor and an isolated approach, where
every transaction is assumed to take the maximum time ob-
served during the simulation.

Eight applications are executed on CPU1. For simplic-
ity we provided some background traffic for CPU2 and the
the Co-processor. Figure 3 compares the worst case re-
sponse times for constant memory access time (isolated),
the WCRT of the analysis described in this paper (inte-
grated) and the maximum WCRT observed in simulation.

The analysis provides a significantly reduced WCRT
compared to constant memory access times. As simulation
cannot provide the worst case scenario we cannot evaluate
the accuracy using simulation.

6 Conclusions and Future Work

In this paper we have integrated a static timing analy-
sis on task level and a schedulability analysis on system
level. Current approaches focus only on one level which
assume a constant delay for each memory access. In this
approach several memory transactions within a basic block

Figure 3. Experiment for WCRT analysis.

are grouped together. In a second step, the total access time
of these transactions is determined by system level schedu-
lability analysis. The experiment shows that the analysis
precision increases significantly compared to the isolated
approach.

Future research includes to consider the type and size
of a memory transaction as well as as a greater minimum
distance of memory accesses beyond basic blocks.
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Abstract

Worst-case execution time (WCET) prediction for mod-
ern CPU’s cannot make local assumptions about the im-
pact of input information on the global worst-case because
of the existence of timing anomalies. Therefore, static anal-
yses on the hardware level must consider a large subset of
the reachable states of the underlying hardware model. As
the number of states grows, WCET prediction can become
infeasible because of the increase in computation time and
memory consumption. This paper presents a solution for
this problem by defining the static analysis of processor
pipelines for WCET computation in terms of operations on
binary decision diagrams (BDD’s).

1. Introduction

Finding the worst-case execution time (WCET) for all
tasks of a software is an important requirement in the design
of hard real-time systems. Because the execution time de-
pends on the underlying processor hardware, WCET com-
putation requires a detailed analysis of the hardware behav-
ior for the analyzed task. For CPU’s using modern tech-
niques for reducing the average execution time, such as
caches, pipelined execution, branch prediction, speculative
execution, and out-of-order execution, the WCET cannot be
obtained by measurements because it is usually not possible
to determine the worst-case inputs manually.

A proven approach for obtaining tight upper bounds of
the WCET has been presented in [8]. It employs sev-
eral semantics-based static program analyses on the assem-
bly level control flow graph (CFG) of the input program.
First, the value analysis computes the address ranges for
instructions accessing memory. In a second step, an inte-
grated cache- and pipeline-analysis predicts the cache be-
havior [7] and the behavior of the program on the proces-
sor pipeline [13]. The result of the pipeline analysis is the
WCET for each basic block from which a subsequent path
analysis [12] computes the global worst-case path.

Pipeline analysis computes sets of pipeline states that
can occur at any point in the program. Imprecisions in its in-
put information, arising from unknown memory accesses or
unknown cache behavior (may be cache hit or miss), cause
situations where the pipeline analysis must consider sev-
eral possible successor states for each incoming pipeline
state. Unfortunately, it has been proven that for CPU’s,
using modern techniques for reducing the average execu-
tion time, it is not possible to decide locally which element
from the input set triggers the global worst-case behavior.
E. g. a cache hit might contribute to the global worst-case.
Such cases have been termed timing anomalies [9]. Be-
cause of the presence of timing anomalies, pipeline analy-
sis must consider all possible successor states. For complex
pipelines with large state spaces, the analysis can become
infeasible because of the increase in memory consumption
and computation time [13]. This problem is known as state
explosion and it is also a well known phenomenon in the
area of model checking. The use of ordered binary deci-
sion diagrams (OBDD’s) [4] for symbolic set operations has
significantly reduced the state explosion problem for model
checking and the size of systems that have been successfully
verified by model checking has increased ever since [5].
The key idea of this paper is to define pipeline analysis
in terms of BDD 1 operations, similar to symbolic model
checking. It can be expected, that this will reduce runtime
and memory consumption of pipeline analyses, making the
analysis of complex pipelines feasible, even for large pro-
grams.

2. Finite state machines

Processor pipelines can be regarded as finite state ma-
chines (FSM’s) and pipeline analysis can be defined as
a computation on sets of states of the FSM for the ana-
lyzed pipeline. The efficiency of the presented approach for
pipeline analysis relies on the BDD-based representation of
FSM’s which is introduced in this section.

1The terms BDD and OBDD are used interchangeably in this text.
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Definition 1 A Finite State Machine (FSM) M is a triple,
(Q, I, T ), where Q is the set of states, I is the set of input
values, and T = (Q × I × Q) is the transition relation.

Each set of FSM states A ⊆ Q can be associated to its
characteristic function A : Q → {0, 1}; A(x) = 1 ⇔
x ∈ A. In the same way, the transition relation T can
be associated to the function T : Q × I × Q → {0, 1};
T(x, i, y) = 1 ⇔ (x, i, y) ∈ T . It is common practice
to represent FSM state sets and the FSM transition relation
by their characteristic functions encoded as BDD’s. This
representation has the advantage of compactly representing
a large number of commonly encountered functions. Use-
ful operations such as negation, conjunction and existential
quantification can be efficiently performed using BDD’s.

A hardware design consists of a set of interconnected
latches and gates. A design with n latches and m in-
put wires is characterized by an associated FSM with state
space Q = {0, 1}n and input space I = {0, 1}m. The tran-
sition relation is defined by the corresponding logic. For
such models, the variables of BDD’s for encoding the char-
acteristic functions of states sets represent the latches of the
design.

Definition 2 Given a FSM (Q, I, T ) and a set of states A ⊆
Q. The image of A, Img(A) ⊆ Q, is the set of states that is
reachable from A under T .

Image computation is the core operation of symbolic
model checking algorithms [10]. Section 4 shows that it
can also be used for dataflow analysis of pipeline models.

Image computation can become infeasible for large de-
signs if the transition relation is given as a single BDD [3]
but there are efficient algorithms for image computation that
avoid building the monolithic transition relation by exploit-
ing the fact that the FSM transition relation can be factored
into the transition relations of the involved latches [10].
This technique is known as conjunctive partitioning of the
transition relation.

3. Specifying pipeline models

Hardware description languages like VHDL or Verilog
have been designed for writing concise descriptions of hard-
ware designs in terms of latches and update logic. It has
been shown that such specifications can be compiled into
(timed) finite state machines [6]. The VIS system for model
checking and synthesis of hardware designs supports a sub-
stantial subset of Verilog extended by an expression for
specifying non-deterministic behavior. Specifications in
Verilog are compiled using the vl2mv compiler and the re-
sulting description of the system as a finite automaton can
be used for CTL modelchecking and reachability analy-
sis [11].

reg [0:3] cycles;
reg [0:1] instr;
reg [0:1] delay;

initial cycles = 0;
initial instr = 0;
initial delay = 0;

always @(clk_first) begin
if (cycles == 7)

cycles = 0;
else

cycles = cycles + 1;
end

always @(clk_second) begin
if (delay == 0)

delay = get_delay();
else

delay = delay - 1;
end

always @(clk_third) begin
if (delay == 0)

instr = get_next_instr();
end

Figure 1. Example Verilog code for simple
FSM.

Low-level HDL specifications, including detailed mod-
els of pipeline states and the corresponding logic, are read-
ily available for many CPU’s and can be compiled into fi-
nite automata by vl2mv. The resulting automata are often
too large for most kinds of analyses but the problem can
be overcome by applying suitable abstractions to the origi-
nal description. Automatic abstraction from HDL models is
a field of ongoing research [2]. HDL’s also support behav-
ioral descriptions of hardware which can be used to describe
the (timing) behavior of a design as specified by the man-
ual. Such descriptions are usually more compact and the
resulting automata are smaller.

Figure 1 shows an example of Verilog code for a FSM
with a two bit delay counter. Note that the declaration
reg[k:l] denotes a set of (l − k) + 1 variables of
the FSM state with value 0 or 1. Let us assume that
this FSM is a simplified pipeline model 2. It has an
instruction pointer, instr, for 3 instructions and a de-
lay counter, delay, that is initialized with the delay for

2Although the FSM of figure 1 is not a pipeline model, it is sufficient for
illustrating the principles of the presented approach for pipeline analysis.
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instruction delay
0 1
1 2
2 {0,1}

Table 1. Example program input for analyzing
the model from figure 1.

each instruction. The cycle counter counts execution cy-
cles of basic blocks with at most 7 cycles. Execution of
one cycle is done in three steps, indicated by the signals
clk first, clk second and clk third. Whenever
the delay counter reaches 0 and the signal clk second
is active, a new value for delay is read using the func-
tion get delay(). Similarly, the new value for instr
is obtained from the function get next instr() when
delay is 0 and the signal clk third is active.

When generating a FSM for this description, the in-
put functions are modeled as non-deterministic transitions.
Thus, image computation for a state where delay is 0 will
yield the 3 possible successor states where delay takes the
values 0, 1 or 2.

4. Pipeline analysis

Given a hardware model by an FSM, pipeline analysis
performs a fixed point iteration on the domain P (Q) of
pipeline states. The least fixed point (LFP) is the solution
to the data flow problem containing all FSM states that are
reachable for a given program point and also containing the
WCET state. Note that the FSM state comprises a counter
for execution cycles of basic blocks (the number of execu-
tion cycles per basic block is clearly finite). The WCET for
each basic block B is found by selecting the state with the
highest value for the execution cycle counter from all states
where the last instruction belonging to B has finished.

4.1. Transfer functions

The transfer functions for pipeline analysis compute the
next states for each FSM transition in all current states. In
general, this is an image computation with the restriction
that program analysis is only interested in the set of reach-
able states under the concrete inputs of the program. Image
computation as defined in section 2 determines the set of
reachable states for all possible inputs. Let A0 be the set
of initial states of the FSM (Q, I, T ). Then, the following
fixed point calculation computes the set of reachable FSM
states:

Ak+1 = Ak ∪ Img(Ak)

The problem of encoding concrete inputs of the analyzed
program can be solved by constructing BDD’s for the states
where inputs are read and BDD’s for the concrete inputs
themselves. Remember that the BDD variables for a hard-
ware design are the latches of the design. Let · denote the
conjunction of BDD variables and ¬ is the negation of a
variable. For the example of figure 1, the state where the de-
lay for instruction 1 is read by the function get delay()
can be encoded as follows:

J1 = instr<0> · ¬instr<1> · ¬delay<0>·
¬delay<1> · clk second

This is the state where the instruction pointer is 1, the value
of the delay counter is 0 and the signal clk second is
active. Table 1 specifies that the delay for instruction 1 is 2.
This concrete input can be encoded as follows:

C1 = ¬delay<0> · delay<1>
The BDD’s J1 and C1 can be regarded as the characteristic
functions of the state sets J1 and C1 where the variables
have the values encoded in the BDD’s. For a set Ak of FSM
states, the next states for the concrete input at this program
point are then computed by the following formula:

Ak+1,1 = (Img(Ak ∩ J1)) ∩ C1

For n concrete inputs, the next states for the set of states
where no concrete input information is required is calcu-
lated as follows:

Ak+1,− = Img(Ak\
⋃

0≤l≤n

Jl)

Finally, the fixed point iteration for pipeline analysis under
n concrete input informations from the input program can
be computed as:

Ak+1 = (
⋃

0≤l≤n

Ak+1,l) ∪ Ak+1,−

Please note that imprecise input information can also easily
be encoded as a BDD. E. g. the delay information for in-
struction 2 in Table 1 is either 0 or 1. The BDD for this in-
put is simply C2 = ¬delay<1>. The sequence in which
instructions are analyzed is also an input to the model of
figure 1. This input can be determined from the program’s
CFG and encoded in the same way as the delay input.

The success of BDD based algorithms depends on the
size of the involved BDD’s, which is very sensitive to
the ordering of the BDD variables. Finding a minimum
sized BDD for a given logic function is algorithmically in-
tractable. However, there are many heuristics for finding
good variable orderings [10]. A good variable ordering
must only be found once for each pipeline model.
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5. Work in progress

A prototype of the presented approach for pipeline anal-
ysis has been implemented for a simple pipeline similar to
the ARM7 pipeline. This prototype is currently being inte-
grated with the aiT [1] framework for WCET analyses. For
the future, we are planning to model more complex CPU’s
like the Infineon Tricore and the Motorola Power PC family
of processors (MPC5xx and MPC755). The MPC755 is the
most challenging and interesting target because of the huge
state space of the pipeline model. We expect to achieve a
significant reduction of computation time and memory con-
sumption compared to the existing implementation.

6. Conclusion

We have shown that the application of well-known
techniques for handling large state sets from the area of
model checking to the program semantics-based analysis of
pipeline models, can help to handle the increasing complex-
ity of modern processor hardware for WCET computation.
For large state sets, BDD based algorithms are more space
efficient and faster than implementations using an explicit
representation of pipeline states.

Furthermore, we have established a connection between
pipeline analysis implementation and pipeline specifica-
tions written in Verilog or VHDL. Generating the pipeline
analysis from the same specification used for hardware syn-
thesis is faster and less error-prone than the difficult way
of manual implementation. Finally, the important task of
verification of the analysis is also simplified for analyses
generated from HDL specifications.
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Abstract

Tools for worst-case execution time (WCET) anal-
ysis request several code annotations from the user.
However, most of them could be avoided or being anno-
tated more comfortably if the compilers would support
WCET analysis.

This paper provides a clear categorization of code
annotations for WCET analysis and discusses the pos-
itive impact on code annotations a compiler-support on
WCET analysis would have.

1 Introduction

The knowledge of the worst-case execution time
(WCET) is a mandatory prerequisite for the design of
safety-critical embedded systems, since embedded sys-
tems have to fulfill the temporal requirements imposed
by their physical environment.

Current research on compilers for embedded sys-
tems mainly focuses on issues like reduction of energy
consumption, resource-aware code generation, or re-
targetable code generators. Program execution time
is typically covered - as in traditional compiler con-
struction - by performance-oriented code optimiza-
tions. The real-time behavior of programs is rarely
covered.

As a consequence, a WCET analysis tool has to re-
quest the user for numerous code annotations, mostly
at object code level, which could be avoided if the com-
pilers explicitly support WCET analysis. Furthermore,

∗This work has been partially supported by the FIT-IT re-
search project “Model-Based Development of distributed Em-
bedded Control Systems (MoDECS)” and the ARTIST2 Network
of Excellence of IST FP6.

the compiler-support would allow to specify code an-
notations at the source code level instead of burdening
the user with object code annotations. Existing mech-
anisms like debug information is not sufficient in case
of code optimizations performed by the compiler.

This paper categorizes in Section 2 the code annota-
tions used by WCET analysis frameworks. Methods for
providing such annotations are described in Section 3.
The positive impact a compiler providing explicit sup-
port for WCET analysis would have on usage of these
code annotations is discussed in Section 4.

2 Code Annotations for WCET Analy-
sis

The calculation of the worst-case execution time
(WCET) for a piece of code in general requires fur-
ther information about the possible execution context
or runtime behavior of the code. For example, the cho-
sen configuration of the hardware platform has to be
specified. Furthermore, the program analysis method
may fail to predict the full execution behavior of a pro-
gram with complex control flow and therefore, explicit
assertions about the program behavior are required.
These examples give an idea of what information is re-
quired by a WCET analysis tool additionally to the
input program code. The specification of this addi-
tional information is done by code annotations. This
section categorizes the different classes of code annota-
tions required for WCET analysis and discusses possi-
ble methods to specify them.

Due to limitations on computability, a WCET anal-
ysis framework that is capable to analyze industrial
code within a realistic software production process re-
quires interfaces for the explicit specification of miscel-
laneous parameters. Some of these parameters are not
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directly related to the WCET calculation itself, but
are required to parse and interpret the program code.
Therefore, we also looked at code annotation mecha-
nisms provided by commercial WCET analysis tools
like aiT1 [3, 6] or Bound-T2 [8, 7].

The code annotations for WCET analysis can be
categorized as follows:

1. Platform Property Annotations (PPA)

2. CFG Reconstruction Annotations (CRA)

3. Program Semantics Annotations (PSA)

4. Auxiliary Annotations (AA)

Auxiliary annotations are constructs of annotation
languages that are used to reference certain locations
or control-flow edges in a program code. For exam-
ple, a symbolic name that will be used later on within
other code annotations, is assigned to a specific code
location. The other categories of code annotations are
described in the following subsections.

2.1 Platform Property Annotations

Platform Property Annotations (PPA) are
application-independent annotations, which are
used to characterize the target platform. A WCET
analysis framework supports one or more target
platforms. In case of a strictly static WCET analysis
tool, it uses a built-in hardware model for each target
platform. However, a computing platform typically
can be configured in many ways. For example, there
may be caches available with different layouts, or,
as another example, the assignment of data and
code to the available memory configuration can be
done in different ways. Furthermore, to represent
the calculated WCET bound as real time instead of
processor cycles it is required to annotate the selected
clock frequency for the processor.

The PPA annotations described above are used,
for example, to parameterize the hardware models of
caches and pipelines. Since in this case the annota-
tions are not directly bound to the application code,
there is no need of compiler support for such annota-
tions. However, PPA annotations may be attached to
the program code for the sake of code optimizations.
For example, annotations about the use of read-only
or write-only memory regions can be combined with
annotations about their assignment to program code.
This may allows a compiler to optimize the access op-
erations for these data areas.

1http://www.absint.de
2http://www.bound-t.com

2.2 CFG Reconstruction Annotations

The CFG Reconstruction Annotations (CRA) are
used as guidelines for the analysis tool to construct
the control flow graph (CFG) of a program. Without
these annotations it may not be possible to construct
the CFG from the object code of a program.

On the one side, annotations are used for the con-
struction of syntactical hierarchies within the CFG, i.e.
to identify certain control-flow structures like loops or
function calls. For example, a compiler might emit or-
dinary branch instructions instead of specific instruc-
tions for function call or return. In such cases it might
be required to annotate a branch instruction whether
it is a call or return instruction. A work around that
sometimes helps avoiding code annotations is to match
code patterns generated by a specific version of a com-
piler. However, such a “hack” cannot cover all situa-
tions and may also have the risk of incorrect classifica-
tions, for example, if a different version of the compiler
is used.

On the other side, annotations may be needed for
the construction of the CFG itself. This may be the
case for branch instructions where the address of the
branch target is calculated dynamically. Of course,
static program analysis may identify a precise set of po-
tential branch targets for those cases where the branch
target is calculated locally. In contrast, if the static
program analysis completely fails to bind the branch
target, it has to be assumed that the branch potentially
precedes each instruction in the code, which obviously
is too pessimistic to be able to obtain a useful WCET
bound. In such a case, code annotations are required
that describe the possible set of branch targets.

2.3 Program Semantics Annotations

Program Semantics Annotations (PSA) are used to
guide the calculation of a program’s dynamic behav-
ior. In contrast, the annotations of Section 2.2 and 2.1
provide mostly static information about the program
to be analyzed and its intended target platform.

To obtain a precise WCET bound, it is mandatory
to accurately calculate the possible dynamic behavior
of the program. For example, a static WCET analysis
tool calculates the dynamic behavior of the program
by exec-time modeling and by performing path analysis
(as described in Chapter 2 of [10]). Exec-time modeling
means the assignment of execution time to instructions
for a given execution context.

To calculate a WCET bound, it is at least neces-
sary to get iteration bounds for every loop or recur-
sive call structure in the program. A quality improve-
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ment of the resulting WCET bound is possible if in-
feasible paths can be excluded from the calculation of
the longest path. Annotation languages that allow the
explicit specification of flow constraints are described
in [9, 1] (also aiT and Bound-T allow the specification
of flow constraints). However, in case the static analy-
sis of the WCET tool performs a semantic analysis of
the program, it may be sufficient to indirectly specify
the feasible paths by describing properties like value
constraints or invariants of program variables.

Another kind of PSA annotation is the description
of possible addresses of memory references. Such an-
notations may improve the path analysis as well as the
exec-time modeling.

3 Annotation Methods

This section discusses different methods how to an-
notate the code. First of all, to get precise results,
it is important that WCET analysis is performed at
a program representation level close to the executable
program format. We call the program representation
level where the analysis is performed object code level.
Following the ongoing trend in embedded systems de-
velopment, the representation level where the program
is developed is much more abstract. By source code,
we denote the representation level of program develop-
ment. The whole tool chain that transforms the pro-
gram from source code to object code is summarized as
compiler. Following these definitions we can describe
things in common terms without loosing generality.

3.1 Separate Annotation Files

One way to annotate code is to use a separate an-
notation file. This is especially useful for annotating
the object code, as there are no common tools to add
such information to the object code. Since aiT and
Bound-T are primarily designed to analyze object code,
they both support the use of separate annotation files.
Both tools have to provide such an annotation tech-
nique, due to the missing compiler-support for WCET
analysis. Another reason is that the WCET analysis
framework should also be able to analyze code that is
only available as object code. The obvious drawback of
this procedure is that the developer has to look at and
understand the object code, which is only an interme-
diate representation where code locations might change
each time the source code is modified and re-compiled.

The support of annotations referring to code loca-
tions relative to symbolic labels reduces the amount of
code annotations that have to be checked again when-
ever a single module has been re-compiled.

A more practical way to refer to the program code
is to describe the referring code location structurally.
For example, aiT allows to refer to loops by their order
within a function. aiT also allows to annotate loops at
the source code, but this represents the same mecha-
nism, since the source code locations of these annota-
tions are translated into structural locations. Further,
Bound-T provides a quite generic pattern matching lan-
guage that allows to refer to code locations based on
various criteria. Using structural references allow the
user to annotate for the object code while looking at
the source code. However, the drawback of this tech-
nique is that it fails in case that the code optimizations
performed by the compiler change the structure of the
code.

3.2 Annotations within Program Code

Code annotations within the program code provide
the advantage that the developer can annotate the pro-
gram behavior directly where the program is coded.
The preferred annotation method from the developer’s
point of view is to directly annotate the source code.

The concrete syntactical realization of these code
annotations is not of stringent importance within this
paper. Even the approach of extending the program-
ming language with code annotation constructs allows
the compilation by conventional compilers that do not
support these language extensions. This can be real-
ized by deactivating the annotations by a preprocess-
ing pass prior to compilation [9]. The more relevant
question is whether the compiler provides support for
maintaining the consistency of code annotations in case
of code optimizations that change the structure of the
code. As shown by Exler, the consistency of code an-
notations may not be maintained without the help of
the compiler in case of code optimizations that change
the structure of the code [2].

The code annotation within the source code is es-
pecially interesting for PSA annotations since this pro-
vides the most seamless annotation interface for ana-
lyzing and annotating the code manually by the user.
PPA annotations are natural candidates for separate
annotation files since they refer to the low-level details
of the target platform. As a further argument, the PPA
annotations are often application independent.

4 Compiler Support for WCET Analy-
sis

The compiler (and all related tools as defined in
Section 3.2) transforms the code from the source code
representation level to the object code level, at which
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WCET analysis is applied. There are several reasons
why a compiler can contribute to and improve the cal-
culation of a WCET bound:

• The compiler has the control and knowledge over
all code transformations that are performed before
emitting the object code. For a number of code op-
timizations it is not possible to recognize the effect
of the optimization by comparing the structure of
the object code with that of the source code.

• The compiler has the view on both, the source
code and the object code. Typically, the execu-
tion behavior of a program is easier to obtain from
the source code than from the object code. This
is because the instructions in the object code re-
flect low-level implementation issues enforced by
the characteristics of the target hardware opti-
mized for low resource consumption. For example,
distinct variables in the source code can become
aliased as spilled registers in the object code.

However, due to their lack of support for WCET
analysis, compilers are currently not considered as a
helpful tool for calculating a WCET bound. Instead,
the policy often is to turn off most of the features of
a compiler for the sake of generating object code that
maintains properties found in the source code. The
result is an object code that shows a poor runtime per-
formance and a WCET that is typically much higher
than in the fully optimized code.

The intention of having a compiler supporting
WCET analysis is to get WCET analyzable code with
a seamless interface for code annotations. The support
by the compiler can be twofold. First, a seamless inte-
gration of code annotations into the source code repre-
sentation level can be provided. Second, the need for
code annotations can be reduced by emitting properties
about the object code by the compiler. The following
lists several possibilities how compilers could support
WCET analysis.

Emit Description of CFG Structure: A static
WCET analysis tool has to use CRA annotations
at the object code level for reconstructing the
CFG of a program. Using such code annotations
is a burden for the user of the tool since it forces
him to look at the object code level of a program,
maybe each time the code is re-compiled.

The compiler knows about the CFG structure at
the same precision as it is given by the syntactic
structure of the source code. Therefore, the com-
piler could automatically annotate the generated
object code by CRA annotations that will guide

the WCET analysis tool to reconstruct the CFG
of the program.

Currently, there is an initiative under way by
the cluster Compilers and Timing Analysis of the
ARTIST2 Network of Excellence of the IST FP6.
The aim of this group is to define a common for-
mat for the specification of object code and code
annotations. As a natural consequence, compilers
could be extended to directly generate such a code
specification file.

Maintain Consistency for Code Annotations:
The natural interface for PSA annotations is the
source code representation level, because this
would allow the developer to do the implementa-
tion of the program logic and the code annotation
at the same representation level.

A framework that allows to maintain consistency
of control-flow annotations in case of code opti-
mizations performed by the compiler is described
in [10]. This framework maintains the consis-
tency of the annotations for arbitrary code trans-
formations. Such a framework can be comple-
mented by static program analysis as a prepro-
cessing step to calculate control-flow annotations
from the code semantics and the provided annota-
tions about code invariants. An example for such
a static program analysis based on abstract inter-
pretation has been described by Gustafsson and
Ermedahl [4].

Emit Properties of Execution Behavior: PSA
annotations provide hints about the execution
behavior of a program. This information can be
used for the exec-time modeling and path analysis
phase of a WCET analysis tool (see Section 2.3).

The compiler may reduce the amount of required
PSA code annotations by automatically calculat-
ing and emitting some of these code properties.
For example, the compiler may know the memory
area potentially referenced by a specific pointer op-
eration. Research on compiler extensions to emit
code annotations about control flow and memory
access addresses is described in [11, 5].

Improve Predictability of Code: A compiler may
indirectly support WCET analysis by features not
directly related to code annotations. For example,
by using the single path conversion the execution-
time jitter of real-time programs may be reduced
while at the same time the WCET analyzability
of the program will be improved [12]. This con-
version may be also applied to local program seg-
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ments instead of the whole program, giving an ef-
fect similar to wcet-oriented programming [13].

4.1 Using Optimizing Compilers to Produce
Safety-Critical Code

There is often the argument that code optimizations
have to be prohibited for the production of safety-
critical code. This argument is strengthened by the
fact that it is very hard to prove formal correctness
of a compiler. However, recent research is focusing on
analysis techniques to verify the semantic equivalence
between the original and the optimized version of a
program [14]. Maybe, such verification techniques in
the future can be used to weaken the prohibition of
code optimizations on safety-critical software, and at
the same time providing a stronger argument for the
support of WCET analysis by optimizing compilers.

5 Summary and Conclusion

This paper provides an analysis of how compiler-
support would improve the use of WCET analysis
tools.

First, a categorization of code annotations for
WCET analysis has been done, resulting into four cat-
egories: platform property annotations (PPA), CFG
reconstruction annotations (CRA), program semantics
annotations (PSA), and auxiliary annotations (AA).

Second, it has been discussed what impact compiler-
support could have on these annotations. PPA annota-
tions are program-independent, therefore no compiler-
support is needed to support WCET analysis. How-
ever, the compiler may use PPA annotations for
platform-dependent code optimizations. The CRA an-
notations address the object code level. A compiler
may be extended to output additional program prop-
erties in order to reduce the need for manual CRA an-
notations. The most important impact a compiler sup-
porting WCET analysis provides, is for PSA annota-
tions. It will free the user from the burden of manually
analyzing and annotating the behavior of the object
code (provided that the source code of the program is
available).
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Abstract

Statically estimating the worst case execution time
(WCET) of a program is important for real-time soft-
ware. This is difficult even in the programming language
level due to the inherent difficulty in detecting and exploit-
ing infeasible paths in a program’s control flow graph. In
this paper, we propose an efficient method to exploit in-
feasible path information for WCET estimation of a loop
without resorting to exhaustive path enumeration. The ef-
ficiency of our approach is demonstrated with a real-life
control-intensive program.

1. Introduction

Static analysis of a program for obtaining the Worst Case
Execution Time (WCET) is important for hard real-time
embedded systems. WCET analysis typically consists of
three phases: flow analysis to identify loop bounds and in-
feasible flows through the program; architectural modeling
to determine the effect of pipeline, cache, branch predic-
tion etc. on the execution time; and finally estimation to find
an upper bound on the WCET of the program given the re-
sults of the flow analysis and the architectural modeling. In
this paper, we concentrate on the estimation problem.

There exist mainly three different approaches for WCET
estimation: tree-based, path-based, and implicit path enu-
meration. The tree-based approach estimates the WCET
of a program through a bottom-up traversal of its syntax
tree and applying different timing rules at the nodes (called
“timing schema”) [5]. This method is quite simple and ef-
ficient. But it has limitations in exploiting the results re-
turned by flow analysis. In particular, it is difficult to ex-
ploit infeasible paths due to branch constraints (dependen-
cies among branch statements) in this approach as the tim-
ing rules are local to a program statement. Implicit path enu-
meration techniques (IPET) [4] represent the program flows
as linear equations or constraints and attempt to maximize
the execution time of the entire program under these con-
straints. This is done via an Integer Linear Programming

(ILP) solver. Attempts have been made to integrate special
flow information in IPET [2]. However, the kind of flow in-
formation that can be handled by IPET is inherently lim-
ited. This is because the usual ILP formulation introduces
formal variables for the execution counts of the nodes and
edges in the Control Flow Graph (CFG) of the program.
Since the variables denote aggregate execution counts of
basic blocks, it is not possible to express certain infeasible
path patterns (typically denoting a sequence of basic blocks)
as constraints on these variables.

Path-based techniques estimate the WCET by computing
execution time for the feasible paths in the program and then
searching for the one with the longest execution time. Thus,
path-based techniques can naturally handle the various flow
information. Healy et al., in particular, detect and exploit
branch constraints within the framework of path-based tech-
nique [3]. Originally, path-based techniques were limited to
a single loop iteration. However, Stappert et al. [6] have ex-
tended it to complex programs with the help of scope graphs
and virtual scopes.

One of the main drawbacks of path-based techniques is
that they require the generation of all the paths. In the worst
case, this can lead to • • paths where • is the number of de-
cisions in the program fragment. In control-intensive pro-
grams, we have encountered up to • •• • • • • • • paths in a
single loop iteration (see Table 1). Research by Stappert et
al. [6] has sought to avoid this expensive path enumeration
by finding (a) the longest program path • , (b) checking for
the feasibility of • , and (c) removing • from CFG followed
by the search for a new longest path if • is infeasible. This
technique is a substantial improvement over exhaustive path
enumeration. However, if the feasible paths in the program
have relatively low execution times, then this approach still
has to examine many program paths. Indeed, for our bench-
mark only a small fraction (less than • •• • ) of the paths are
feasible, making this approach quite costly (see Table 1).

In this paper, we present a technique for finding the
WCET of a program in the presence of infeasible paths
without performing exhaustive path enumeration.
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2. WCET Estimation Algorithm

In this section, we present a method for finding the
WCET path of a single loop. Once this is obtained, the
WCET path of the program can be obtained by compos-
ing the WCET paths of individual loops through the well-
known timing schema approach [5]. Of course, this will
mean that infeasible path information across loops can-
not be taken into account. We assume that state-of-the-art
WCET analyzers such as aiT[1] can be used to estimate the
worst-case execution time of each basic block.

Given a fragment of assembly code corresponding to a
loop in a source program, we first construct the directed
acyclic graph (DAG) capturing the control flow in the loop
body (i.e., the CFG of the loop body without the loop back-
edge). We assume that the DAG has a unique source node
and a unique sink node. If there is no unique sink node, then
we add a dummy sink node. Each path from the source to
the sink in the DAG is an acyclic path— a possible path in
a loop iteration. Our algorithm finds the worst case execu-
tion path for a single iteration of the loop, i.e., we find the
heaviest acyclic path. If the estimated execution time of the
heaviest acyclic path is • and the loop-bound is •• , then the
loop’s estimated WCET is •• • •.

We find the heaviest acyclic path accurately by taking
into account infeasible path information and yet we avoid
enumerating all the acyclic paths in a loop. Clearly, the in-
feasible path information that we work with may not always
be complete; so the accuracy of our heaviest acyclic path
detection depends on the accuracy of the infeasible path in-
formation. First, we discuss the infeasible path information
used and then explain how it is efficiently exploited in our
WCET calculation.

2.1. Infeasible path information

Our infeasible path information consists of
two binary relations capturing conflicting pairs of
branches/assignments: AB conflict and BB conflict. The re-
lation AB Conflict is a set of (assignment, branch-edge)
pairs, that is, if •• •• • • • • • • • • •••• then • is an as-
signment instruction and • is an outgoing edge from a
conditional branch instruction; on the other hand, the rela-
tion • • • • • • •••• is a set of (branch-edge, branch-edge)
pairs.

We do not detect conflicts between arbitrary branches
and assignments to avoid an inefficient conflict detection
procedure. The only conditional branches whose edges ap-
pear in our BB conflict and AB conflict relations are of the
form • • • •• ••• • • •• ••• • • • • • • • • •• • •• • • •• • •. Similarly,
the only assignments which appear in AB Conflict are of
the form • • • •• ••• •• •• • • •• • •. For such assignments and
branches we can define pair-wise conflict in a natural way

(see [3] for a full discussion). For example, • •• • conflicts
with • • • , but not with • • • ; similarly • • • conflicts
with • • • but not with • • • . Now, for such restricted
branches and assignments, we put an assignment • conflict-
ing with a conditional branch-edge • into the • • • • • • ••••
relation (i.e., •• •• • • • • • • • • ••••) iff there exists at
least one path • from • to • which does not contain assign-
ments to the common variable appearing in • •• . Similarly,
we put two conflicting conditional branch-edges • ••• into
the • • • • • • •••• relation (i.e., •• ••• • • • • • • • • ••••)
iff there exists at least one path • from • • to • which does
not contain assignments to the common variable appearing
in • ••• . If •• ••• • • • • • • • • ••••, there may be another
path • • from • • to • that contains an assignment to the com-
mon variable appearing in • ••• . Such paths should not be
considered as infeasible paths.

The computation of the • • • • • • •••• and
• • • • • • •••• relations can be accomplished in
• •••• • • •• •• • •• •) time where •• •••• • are the
number of nodes and the number of edges in the con-
trol flow DAG; this is because for each branch-edge we
need to perform a depth-first like search to find conflict-
ing branch-edges and/or assignments.

Example: A loop-free program fragment (which can be the
body of a loop) and its control flow DAG are shown in Fig-
ure 1. In this example, the relation • • • • • • •••• contains
only one pair – the assignment at basic block • • (which
sets • to • ) and the branch-edge • • • • • (which stands
for • • • ). The relation • • • • • • •••• contains the branch-
edge pair •• • • • • •• • • • • • that captures the condi-
tions • • • and • • • .

2.2. WCET calculation

We now present our WCET estimation algorithm for
finding the heaviest feasible path in an iteration of a loop.
We do not enumerate the possible paths in an iteration and
then find the heaviest. At the same time, we do not con-
sider all paths in the loop’s control flow graph to be feasi-
ble – we consider the infeasible path information captured
by • • • • • • •••• and • • • • • • •••• relations.

Our algorithm traverses the loop’s control flow DAG
from sink to source. However, to take into account the in-
feasible path information, we cannot afford to remember
only the “heaviest path so far” as we traverse the DAG.
This is because the heaviest path may have conflicts with
earlier branch-edges or assignment instructions resulting in
costly backtracking. Instead, at a basic block • , we main-
tain a set of paths • • •• • •• • where each • • • • •• • •• • is a
path from • to the sink node. • • •• • •• • contains only those
paths which when extended up to the source node can poten-
tially become the WCET path. For each path • • • • •• • •• •
we also maintain a ”conflict list”. The conflict list contains
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Figure 1: A loop body with its Control Flow Graph

the branch-edges of • that participate in conflict with ances-
tor nodes and edges of • .

During our traversal from sink to source, consider a sin-
gle step traversal from • to • along the edge • • • in
the control flow DAG. We first construct • • •• • •• • from
• • •• • •• • by adding the edge • • • at the beginning of the
paths in • • •• • •• •. Also, for each path • • • • •• • •• • we up-
date its conflict list to contain exactly those edges in • which
have conflicts with branch-edges/assignments “prior to” •
(in topological order). At this stage we may add the branch-
edge • • • to • ’s conflict list or we may remove an edge
• from • ’s conflict list if all branch-edges/assignments con-
flicting with • appear “after” • (in the topological order).
If as a result, we have identical conflict lists for two paths
• •• • • • • •• • •• •, then we maintain the heavier path among
• and • •. Finally, if the conflict list of a path • • • • •• • •• •
becomes empty and • is the heaviest path in • • •• • •• •, we
assign the singleton set • • • to • • •• • •• •. Details of the al-
gorithm are omitted for space considerations.

In the worst case, the complexity of our algorithm is ex-
ponential in •• •, the number of nodes in the loop’s control
flow DAG. This is because the number of paths in • • •• • •• •
for some block • may be • •• •• •• due to different deci-
sions in the branches following • . In practice, this exponen-
tial blow-up is not encountered because (a) branch-edges
which do not conflict with any assignment/branch-edge do
not need to be kept track of, and (b) a branch-edge which
conflicts with other branch-edges/assignments need not be
remembered after we encounter those conflicting branch-
edges/assignments during the traversal.

Illustration We demonstrate our WCET calculation method
by employing it on the control flow DAG of Figure 1. As
mentioned, we traverse the DAG from sink to source and
maintain a set of paths • • •• • •• • at each visited node • . For
each path • • • • •• • •• • we also maintain the conflict list, a
set of branch decisions drawn from branch decisions made

so far. Thus each path • in • • •• • •• • is written in the form
• • • • • ••• • ••• • .

Starting from node • • • in Figure 1, our traversal is rou-
tine till we reach node • • (• denotes empty set).

• • •• • •• • • • • • •• • • •• •
• • •• • •• • • • • •• • •• • • •• •
• • •• • •• • • • • •• • •• • • •• •

The outgoing edges from node • • appear in conflict rela-
tions capturing infeasible path information. Consequently,
our method maintains two paths in • • •• • •• • • — the heav-
iest path starting with • • • • • and the heaviest path start-
ing with • • • • • .

• • •• • •• • • • • •• • •• • •• • • •• • • • • • •
•• • •• • •• • • •• • • • • • • •

Now, from node • • we traverse to nodes • • and • • . The
assignment in node • • conflicts with • • • • • . There-
fore, we do not consider any path in • • •• • •• • • which con-
tains • • • • • in its conflict list. This is how infeasible
path information is accounted for in our WCET calculation.
Thus we have

• • •• • •• • • • • •• • •• • •• • •• • • •• •

We drop • • • • • from the conflict list of
•• • •• • •• • •• • • • as we have encountered an as-
signment to program variable • in • • . The assign-
ment implies that the conflict between • • • • • and
• • • • • does not hold along any extension of the par-
tial path •• • •• • •• • •• • • •.

At node • • , we first add • • to the two partial paths
from • • . Then, we notice that the edge • • • • • is in-
volved only in a conflict with • • and we have already
traversed • • . Therefore, we can drop this edge from the
conflict list of the partial path •• • •• • •• • •• • • • and this
path now becomes completely conflict free. Assuming that
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Function Basic Blocks Total Paths Feasible paths BB-Conflicts AB-Conflicts Enumerated Paths
statemate 334 6.55x• • • • 1.09x• • • • 74 15 121,831

statemate1 44 19,440 7,440 6 0 15
statemate2 73 902 36 26 0 14
statemate3 161 1,459,364 69,867 15 0 40
statemate4 17 10 10 0 0 1
statemate5 43 256 58 2 0 4

Table 1: Efficiency of our WCET calculation method.

Function WCET Estimation (cycles)
w/o infeasibility with infeasibility

statemate 44,800 41,520
statemate1 29,400 28,960
statemate2 2,750 2,270
statemate3 7,300 7,000
statemate4 1,070 1,070
statemate5 2,370 2,090

Table 2: Accuracy of WCET estimation with and without
considering infeasibility.

•• • •• • •• • •• • • • is heavier than •• • •• • •• • •• • • •, we
have

• • •• • •• • • • • •• • •• • •• • •• • • •• •

On the other hand, if •• • •• • •• • •• • • • is heavier, we still
need to maintain both the partial paths (as the heavier path
may become infeasible later). Continuing in this way we
reach node • • ; we omit the details for the rest of the tra-
versal. Note that the control flow DAG of Figure 1 has three
branches and • • • • paths. However, when we visit any
basic block • of the control flow DAG, • • •• • •• • contains
at most two paths (i.e., the exponential blow-up is avoided
here in practice).

3. Experiments

In this section, we present preliminary experiment results
for the proposed method. The benchmark used in our exper-
iment is a car window lift control program taken from the
C-Lab benchmark suite. It is automatically generated by the
Statemate tool based on a state-chart specification. We re-
port results for the entire program (statemate) as well as
program fragments corresponding to all the five functions
(statemate1 to statemate5).

An enumeration-based WCET estimation method typi-
cally examines each possible path, filters out the infeasible
paths and selects the feasible path with the maximum ex-
ecution time. Table 1 shows that the total number of paths
through a single iteration of the loop body can be quite large
(• •• • • • • • • possible paths out of which at most • •• • • • • • •

are feasible for statemate). In fact, a naive WCET cal-
culation method, which enumerates all these possible paths

for one loop iteration and chooses the longest feasible one,
runs out of memory even on a PC with 1 GB main memory.
The column Enumerated Paths shows the maximum num-
ber of paths that need to be maintained by our estimation
technique at any point of time. The results are quite encour-
aging; even for the entire statemate program, we only
need to keep at most • • • •• • • paths at any point of time
during the estimation. As a result, our estimating technique
requires less than • minute for the entire statemate pro-
gram on a Pentium4 1.7Ghz platform with 1GB memory.
Finally, Table 2 shows that, as expected, our method pro-
duces more accurate estimation compared to a method that
does not take infeasibility information into account. The
only exception is statemate4, which does not have any
infeasible path.

4. Discussion

In this paper, we have reported preliminary results on ex-
ploiting (limited) infeasible path information during WCET
estimation of a loop without resorting to path enumeration.
The efficacy of our technique has been demonstrated on a
substantial real-life car window control benchmark. In near
future, we will develop WCET estimation methods that can
take into account infeasible path patterns of arbitrary length
without compromising efficiency.
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Composable Real-Time Analysis (Abstract) 
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Embedded computer systems are getting increasingly distributed. This can not only be seen on a 
small scale, e.g. in terms of multiprocessors on a chip, but also in terms of embedded systems that are 
connected via various communication networks. Whereas classical methods from the worst case timing 
analysis and real-time community focus on single resources, new models and methods need to be 
developed that enable the design and analysis of systems that guarantee end-to-end properties. 

The talk covers a new class of methods based on real-time calculus. They can be considered as a 
deterministic variant of queuing theory and allow for  

(a) bursty input events and event streams, 

(b) heterogeneous composition of scheduling methods (EDF, FP, TDMA, WFQ, ...), 

(c) distributed computation and communication resources 

(d) detailed modelling of event stream correlations and resource behaviour and 

(e) hard worst case bounds. 

Besides introducing the basic models and methods, some application studies are covered also. 

It appears that this class of new methods provide a major step towards the analysis and design of 
predictable distributed systems. 
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