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Abstract. Two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s. Reach-
ability-based secrecy means that s should never be disclosed while equi-
valence-based secrecy states that two executions of a protocol with dis-
tinct instances for s should be indistinguishable to an attacker. Although
the second formulation ensures a higher level of security and is closer to
cryptographic notions of secrecy, decidability results and automatic tools
have mainly focused on the first definition so far.
This paper initiates a systematic investigation of situations where syn-
tactic secrecy entails strong secrecy. We show that in the passive case,
reachability-based secrecy actually implies equivalence-based secrecy for
signatures, symmetric and asymmetric encryption provided that the prim-
itives are probabilistic. For active adversaries in the case of symmetric
encryption, we provide sufficient (and rather tight) conditions on the
protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications. Since they are widely distributed in critical systems, their security
is primordial. In particular, verification using formal methods attracted a lot of
attention during this last decade. A first difficulty is to formally express the secu-
rity properties that are expected. Even a basic property such as confidentiality
admits two different acceptable definitions namely reachability-based (syntac-
tic) secrecy and equivalence-based (strong) secrecy. Reachability-based secrecy
is quite appealing: it says that the secret is never accessible to the adversary.
For example, consider the following protocol where the agent A simply sends a
secret s to an agent B, encrypted with B’s public key.

A→ B : {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this no-
tion of secrecy may be sufficient in many scenarios, in others, stronger security
requirements are desirable. For instance consider a setting where s is a vote and
B behaves differently depending on its value. If the actions of B are observ-
able, s remains syntactically secret but an attacker can learn the values of the
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vote by watching B’s actions. The design of equivalence-based secrecy is tar-
geted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to
express properties like confidentiality of a vote, of a password, or the anonymity
of participants to a protocol.

Although the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, so far decidability results and auto-
matic tools have mainly focused on the first definition. The syntactic secrecy
preservation problem is undecidable in general [12], it is co-NP-complete for a
bounded number of sessions [16], and several decidable classes have been iden-
tified in the case of an unbounded number of sessions [12, 9, 7, 17, 15]. These
results often come with automated tools, we mention for example ProVerif [5],
CAPSL [11], and Avispa [4]. To the best of our knowledge, the only tool capa-
ble of verifying this property is the resolution-based algorithm of ProVerif [6]
that has been extended to strong secrecy and only one decidability result is
available [13]. In this article, Hüttel proves decidable for a fragment of the spi-
calculus without recursion for framed bisimilarity, a related equivalence relation
introduced by Abadi and Gordon [2].

In light of the above discussion, it may seem that the two notions of secrecy
are separated by a sizable gap from both a conceptual but also from a practical
point of view. These two notions have counterparts in the cryptographic setting
(where messages are bitstrings and the adversary is any polynomial probabilistic
Turing machine). Intuitively, the syntactic secrecy notion can be translated into
a similar reachability-based secrecy notion and equivalence-based notion is close
to indistinguishability. A quite surprising result [10] states that cryptographic
syntactic secrecy actually implies indistinguishability in the cryptographic set-
ting. This result relies in particular on the fact that the encryption schemes
are probabilistic thus two encryptions of the same plaintext lead to different
ciphertexts.

Motivated by the result of [10] and the large number of available systems for
syntactic secrecy verification, we initiate in this paper a systematic investigation
of situations where syntactic secrecy entails strong secrecy. Surprisingly, this
happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied
pi calculus [1]. We first treat in Section 2 the case of passive adversaries. We
prove that syntactic secrecy is equivalent to strong secrecy. This holds for sig-
natures, symmetric and asymmetric encryption. It can be easily seen that the
two notions of secrecy are not equivalent in the case of deterministic encryption.
Indeed, the secret s cannot be deduced from the encrypted message {s}pub(B)

but if the encryption is deterministic, an intruder may try different values for
s and check whether the ciphertext he obtained using B’s public key is equal
to the one he receives. Thus for our result to hold, we require that encryption
is probabilistic. This is not a restriction since this is de facto the standard in
almost all cryptographic applications. Next, we consider the more challenging
case of active adversaries. We give sufficient conditions on the protocols for syn-
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tactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that
the conditional tests are not performed directly on the secret since we have seen
above that such tests provide information on the value of this secret. We again
exhibit several counter-examples to motivate the introduction of our conditions.
An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to
understand when the two definitions of secrecy are actually equivalent. Second,
we can transfer many existing results (and the armada of automatic tools) de-
veloped for syntactic secrecy. For instance, since the syntactic secrecy problem
is decidable for tagged protocols for an unbounded number of sessions [15]. By
translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions.
Other decidable fragments might be derived from [12] for bounded messages
(and nonces) and [3] for a bounded number of sessions.

2 Passive case

2.1 Syntax

Cryptographic primitives are represented by functional symbols. More specifi-
cally, we consider the signature Σ = {enc, dec, enca, deca, 〈〉, π1, π2, sign, check,
pub, priv}. T (Σ,X ,N ) denotes the set of terms built over Σ extended by a set
of constants, the infinite set of names N and the infinite set of variables X . A
term is closed or ground if it does not contain any variable. The set of names
occurring in a term m is denoted by fn(m), the set of variables is denoted by
V(m). The positions in a term t are defined recursively as usual (i.e. as sequences
of positive integers), ε being the empty sequence. Pos(t) will denote the set of
positions of t and Posv(t) the set of positions of variables in t. We denote by t|p
the subterm of t at position p, by u[v]p the term obtained by replacing in u the
subterm at position p by v. For a term u, we denote by hu the function symbol,
name or variable at position ε in u. We denote by ≤st (resp.<st) the subterm
(resp. strict) order. We may simply say that a term v is in a term u if v is a sub-
term of u. If p = i1. · · · .in, where n ≥ 1, is a position then pr(p) = i1. · · · .in−1

is the parent position w.r.t. p. Denote by N∗
+ the set of sequences of positive

integers.
We equip the signature with an equational theory E:

π1(〈z1, z2〉) = z1
π2(〈z1, z2〉) = z2
dec(enc(z1, z2, z3), z2) = z1
deca(enca(z1,pub(z2), z3),priv(z2)) = z1
check(z1, sign(z1,priv(z2)),pub(z2)) = ok
retrieve(sign(z1, z2)) = z1

The function symbols π1, π2,dec,deca, check and retrieve are called destructors.
LetRE be the corresponding rewrite system (obtained by orienting the equations
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from left to right). RE is convergent. The normal form of a term t w.r.t. RE is
denoted by t↓. Notice that E is also stable by substitution of names. As usual,
we write u → v if there exists θ, a position p in u and l → r ∈ RE such that
u|p = lθ and v = u[rθ]p.

The symbol 〈 , 〉 represents the pairing function and π1 and π2 are the as-
sociated projection functions. The term enc(m, k, r) represents the message m
encrypted with the key k. The third argument r reflects that the encryption
is probabilistic: two encryptions of the same messages under the same keys are
different. The symbol dec stands for decryption. The symbols enca and deca are
very similar but in an asymmetric setting, where pub(a) and priv(a) represent
respectively the public and private keys of an agent a. The term sign(m, k) repre-
sents the signature of message m with key k. check enables to verify the signature
and retrieve enables to retrieve the signed message from the signature.1

After the execution of a protocol, an attacker knows the messages sent on
the network and also in which order they were sent. Such message sequences
are organized as frames ϕ = νñ.σ, where σ = {m1/y1 , . . . ,

mk/yk
} is a ground

substitution and ñ is a finite set of names. We denote by dom(ϕ) = dom(σ) =
{y1, . . . , yk}. The variables yi enable us to refer to each message. The names
in ñ are said to be restricted. Intuitively, these names are a priori unknown
to the intruder. A term M is said public w.r.t. a frame νñ.σ (or simply ñ) if
fn(M) ∩ ñ = ∅. The set of restricted names ñ might be omitted when it is clear
from the context. We usually write νn instead of ν{n}, and the same for bigger
sets.

2.2 Deducibility

Given a frame ϕ that represents the history of messages sent during the execution
of a protocol, we define the deduction relation, denoted by ϕ ` M . Deducible
messages are messages that can be obtained from ϕ by applying functional sym-
bols and the equational theory E.

νñ.σ ` xσ x ∈ dom(σ)
νñ.σ ` s s ∈ N\ñ

νñ.σ ` t1 · · · νñ.σ ` tr
νñ.σ ` f(t1, . . . , tr)

νñ.σ ` t t =E t′

νñ.σ ` t′

Example 1. The terms k and 〈k, k′〉 are deducible from the frame νk, k′, r.{enc(k,k′,r)/x,
k′/y}.

A message is usually said secret if it is not deducible. By opposition to our
next notion of secrecy, we say that a term M is syntactically secret in ϕ if ϕ 6`M .

1 Signature schemes may disclose partial information on the signed message. To enforce
the intruder capabilities, we assume that messages can always be retrieved out of
the signature.
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2.3 Static equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2. The set of deducible messages is the same for the frames ϕ1 =
νk,n0,n1,r0.
{enc(n0,k,r0)/x,

〈n0,n1〉/y,
k/z} and ϕ2 = νk,n0,n1,r1.{enc(n1,k,r1)/x,

〈n0,n1〉/y,
k/z}, while

an attacker is able to detect that the last message corresponds to distinct nonces.
In particular, the attacker is able to distinguish the two “worlds” represented by
ϕ1 and ϕ2.

We say that a frame ϕ = νñ.σ passes the test (M,N) where M,N are
two terms, denoted by (M = N)ϕ, if there exists a renaming of the restricted
names in ϕ such that (fn(M) ∪ fn(N)) ∩ ñ = ∅ and Mσ =E Nσ. Two frames
ϕ = νñ.σ and ϕ′ = νm̃.σ′ are statically equivalent, written ϕ ≈ ϕ′, if they
pass the same tests, that is dom(ϕ) = dom(ϕ′) and for all terms M,N such
that (V(M) ∪ V(N)) ⊆ dom(ϕ) and (fn(M) ∪ fn(N)) ∩ (ñ ∪ m̃) = ∅, we have
(M = N)ϕ iff (M = N)ϕ′.

Example 3. The frames ϕ1 and ϕ2 defined in Example 2 are not statically equiv-
alent since (dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.

Let s be a free name of a frame ϕ = νñ.σ. We say that s is strongly secret
in ϕ if for every closed public terms M,M ′ w.r.t. ϕ, we have ϕ(M/s) ≈ ϕ(M ′

/s)
that is, the intruder cannot distinguish the frame instantiated by two terms of
its choice. For simplicity we may omit s and write ϕ(M) instead of ϕ(M/s).

2.4 Syntactic secrecy implies strong secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some
examples of frames that preserves syntactic secrecy but not strong secrecy. They
all rely on different properties.

Probabilistic encryption. The frame ψ1 = νs, k, r.{enc(s,k,r)/x,
enc(n,k,r)/y}

does not preserve the strong secrecy of s. Indeed, ψ1(n) 6≈ ψ1(n′) since (x =
y)ψ1(n) but (x 6= y)ψ1(n′). This would not happen if each encryption used a
distinct randomness, that is, if the encryption was probabilistic.

Key position. The frame ψ2 = νs, n.{enc(〈n,n′〉,s,r)/x} does not preserve the
strong secrecy of s. Indeed, ψ2(k) 6≈ ψ2(k′) since (π2(dec(x, k)) = n′)ψ2(k) but
(π2(dec(x, k)) 6= n)ψ2(k′). If s occurs in key position in some ciphertext, the
intruder may try to decrypt the ciphertext since s is replaced by public terms
and check for some redundancy. It may occur that the encrypted message does
not contain any verifiable part. In that case, the frame may preserve strong
secrecy. It is for example the case of the frame νn{enc(n,s,r)/x}. Such cases are
however quite rare in practice.

No destructors. The frame ψ3 = νs.{π1(s)/x} does not preserve the strong
secrecy of s simply because (x = k) is true for ψ3(〈k, k′〉) while not for ψ3(k).
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Retrieve rule. The retrieve(sign(z1, z2)) = z1 may seem arbitrary since not
all signature schemes enable to get the signed message out of a signature. It is ac-
tually crucial for our result. For example, the frame ψ4 = νs.{sign(s,priv(a))/x,

pub(a)/y}
does not preserve the strong secrecy of s because (check(n, x, y) = ok) is true
for ψ4(n) but not for ψ4(n′).

In these four cases, the frames preserve the syntactic secrecy of s, that is
ψi 6` s, for 1 ≤ i ≤ 4.

This leads us to the following definition.

Definition 1. A frame ϕ = νñ.σ is well-formed w.r.t some name s if

1. Encryption is probabilistic, i.e. for any subterm enc(m, t, r) of φ, for any
term t′ ∈ φ and position p such that t′|p = r we have p = q.3 for some q and
t′|q = enc(m, t, r). The same condition holds for asymmetric encryption. In
addition, if s occurs in m at a position p′ such that no encryption appears
along the path from the root to p′ then r must be restricted, that is r ∈ ñ.

2. s is not part of a key, i.e. for all enc(m, t, r), enca(m′, t′, r′), sign(u, v),
pub(w), priv(w′) subterms of ϕ, s /∈ fn(t, t′, v, w,w′, n, n′).

3. ϕ does not contain destructor symbols.

Condition 1 requires that each innermost encryption above s contains a restricted
randomness. This is not a restriction since s is meant to be a secret value and such
encryptions have to be produced by honest agents and thus contain a restricted
randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong
secrecy.

Theorem 1. Let ϕ = νñ.σ be a well-formed frame w.r.t s ∈ ñ.

ϕ 0 s iff νñ\{s}.σ(M/s) ≈ νñ\{s}.σ(M ′
/s)

for all M,M ′ closed public terms w.r.t. ϕ.

Proof. We present the skeleton of the proof; all details can be found in Appendix
A. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ. If ϕ ` s, this trivially
implies that s is not strongly secret. Indeed, there exists a public term M w.r.t.
ϕ such that Mσ =E s (this can be easily shown by induction on the deduction
system). Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈ fn(ϕ). Since
Mσ(n1/s) =E n1 the frames νñ\{s}.σ(n1/s) and νñ\{s}.σ(n2/s) are distinguish-
able with the test (M = n1).

We assume now that ϕ 0 s. We first show that any syntactic equality satisfied
by the frame ϕ(M/s) is already satisfied by ϕ.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ, u, v terms such
that V(u),V(v) ⊆ dom(ϕ) and M a closed term, u, v and M public w.r.t. ñ. If
ϕ 0 s, uσ(M/s) = vσ(M/s) implies uσ = vσ. Let t be a subterm of a term in σ
that does not contain s. If ϕ 0 s, t = vσ(M/s) implies t = vσ.

The key lemma is that any reduction that applies to a deducible term t where
s is replaced by some M , directly applies to t.
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Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let u be a term with V(u) ⊆ dom(ϕ) and M be a closed term in normal form,
u and M public w.r.t. ñ. If uσ(M/s) → v, for some term v , then there exists a
well-formed frame ϕ′ = νñ.σ′ w.r.t. s

– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: ϕ ` w iff ϕ′ ` w,
– and such that v = v′σ′(M/s) for some v′ public w.r.t. ñ.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two
public closed terms M,M ′. We can assume w.l.o.g. that M and M ′ are in
normal form. Let u 6= v be two public terms such that V(u),V(v) ⊆ dom(ϕ)
and uσ(M/s) =E vσ(M/s). Then there are u1, . . . , uk and v1, . . . , vl such that
uσ(M/s)→u1→ . . .→uk, vσ(M/s)→v1→ . . .→vl, uk = uσ(M/s)↓, vl = vσ(M/s)↓
and uk = vl.

Applying repeatedly Lemma 2 we obtain that there exist public terms u′1, . . . , u
′
k

and v′1, . . . , v
′
l and well-formed frames ϕui = νñ.σui , for i ∈ {1, . . . , k} and

ϕvj = νñ.σvj , for j ∈ {1, . . . , l} (as in the lemma) such that ui = u′iσ
ui and

vj = v′jσ
vj .

We consider ϕ′ =νñ.σ′ where σ′ =σuk ∪ σvl . Since only subterms of ϕ have
been added to ϕ′, it is easy to verify that ϕ′ is still a well-formed frame and for
every term w, ϕ ` w iff ϕ′ ` w. In particular ϕ′ 0 s.

By construction we have that u′kσ
uk(M/s)=v′lσ

vl(M/s). Then, by Lemma 1,
we deduce that u′kσ

uk(s)=v′lσ
vl(s) that it uσ =E vσ. By stability of substitu-

tion of names, we have uσ(M ′
/s)=E vσ(M ′

/s). We deduce that νñ\{s}.σ(M/s) ≈
νñ\{s}.σ(M ′

/s).

3 Active case

To simplify the analyze of the active case, we restrict our attention to pairing and
symmetric encryption: the alphabetΣ is now reduced toΣ = {enc,dec, 〈〉, π1, π2}
and E is limited to the first three equations.

3.1 Modeling protocols within the applied pi calculus

The applied pi calculus [1] is a process algebra well-suited for modeling crypto-
graphic protocols, generalizing the spi-calculus [2]. We shortly describe its syntax
and semantics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q,R := processes
0 null process P |Q parallel composition
!P replication νn.P name restriction
if M = N then P else Q conditional c(z).P message input
c〈M〉.P message output
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where n is a name,M ,N are terms, and c is a name or a variable. The null process
0 does nothing. Parallel composition executes the two processes concurrently.
Replication !P creates unboundedly new instances of P . Name restriction νn.P
builds a new, private name n, binds it in P and then executes P . The conditional
if M = N then P else Q behaves like P or Q depending on the result of the
test M = N . If Q is the null process then we use the notation [M = N ].P
instead. Finally, the process c(z).P inputs a message and executes P binding
the variable z to the received message, while the process c〈M〉.P outputs the
message M and then behaves like P . We may omit P if it is 0. In what follows,
we restrict our attention to the case where c is name since it is usually sufficient
to model cryptographic protocols.

Extended processes are defined by the grammar:

A,B := extended processes
P plain process A|B parallel composition
νn.A name restriction νx.A variable restriction
{M/x} active substitution

Active substitutions generalize let, in the sense that νx.({M/x}|P ) corresponds to
let x = M in P , while unrestricted, {M/x} behaves like a permanent knowledge,
permitting to refer globally to M by means of x. We identify variable substitu-
tions {M1/x1 , . . . ,

Mk/xk
}, k ≥ 0 with extended processes {M1/x1}| . . . |{Mk/xk

}. In
particular the empty substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound
variables and free and bound names of A, respectively, defined inductively as
usual for the pi calculus’ constructs and using fv({M/x}) = fv(M) ∪ {x} and
fn({M/x}) = fn(M) for active substitutions. An extended process is closed if it
has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process (using the given construc-
tions, that is, parallel composition, restriction and active substitutions) are called
frames2. To every extended process A we associate the frame ϕ(A) obtained by
replacing all embedded plain processes with 0.

An evaluation context is an extended process with a hole not under a repli-
cation, a conditional, an input or an output.

Structural equivalence (≡) is the smallest equivalence relation on extended
processes that is closed by α-conversion of names and variables, by application
of evaluation contexts and such that the standard structural rules for the null
process, parallel composition and restriction (such as associativity and commu-
tativity of |, commutativity and binding-operator-like behavior of ν) together
with the following ones hold.

νx.{M/x} ≡ 0 ALIAS

{M/x} |A ≡ {M/x} |A{M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

2 We see later in this section why we use the same name as for the notion defined in
section 2.
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If ñ represents the (possibly empty) set {n1, . . . , nl}, we abbreviate by νñ
the sequence νn1.νn2 . . . νnl. Every closed extended process A can be brought to
the form νñ.{M1/x1}| . . . |{Mk/xk

}|P by using structural equivalence, where P is
a plain closed process, k ≥ 0 and {ñ} ⊆ ∪i fn(Mi). Hence the two definitions of
frames are equivalent up to structural equivalence on closed extended processes.
To see this we apply rule SUBST until all terms are ground (this is assured
by the fact that the considered extended processes are closed and the active
substitutions are cycle-free). Also, another consequence is that if A ≡ B then
ϕ(A) ≡ ϕ(B).

Two semantics can be considered for this calculus, defined by structural
equivalence and by internal reduction and labeled reduction, respectively. These
semantics lead to observational equivalence (which is standard and not recalled
here) and labeled bisimilarity relations. The two bisimilarity relations coincide [1]
and we use here the latter since it permits to take implicitly into account the
observer, hence it has the advantage of relying on static equivalence rather than
quantification over contexts.

Internal reduction is the largest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that:

c〈x〉.P | c(x).Q→ P | Q COMM

if M = M then P else Q→ P THEN

if M = N then P else Q→ Q ELSE

for any ground terms M and N such that M 6=E N

On the other hand, labeled reduction is defined by the following rules:

c(x).P
c(M)−→ P{M/x} IN c〈u〉.P c〈u〉−→ P OUT-ATOM

A
c〈u〉−→ A′

νu.A
νu.c〈u〉−→ A′

u 6= c
OPEN-ATOM

A
α−→ A′

νu.A
α−→ νu.A′

u does not
occur in α SCOPE

A
α−→ A′

A|B α−→ A′|B
(*)

PAR

A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′ STRUCT

where u is a metavariable that ranges over names and variables, and the condition
(*) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on
closed extended processes such that ARB implies:

1. ϕ(A) ≈ ϕ(B);
2. if A→ A′ then B →∗ B′ and A′RB′, for some B′;
3. if A α→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α) ∩ fn(B) = ∅ then B →∗ α→→∗

B′ and A′RB′, for some B′.

We denote A ⇒ B if A → B or A α→ B. Also we use the notation νsϕ for
ν(ñ ∪ {s}).σ, where ϕ = νñ.σ.
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Definition 3. A frame ϕ is valid w.r.t. a process P if there is A such that
P ⇒∗ A and ϕ ≡ ϕ(A).

Definition 4. Let P be a closed plain process without variables as channels and
s a free name of P , but not a channel name. We say that s is syntactically
secret in P if, for every valid frame ϕ w.r.t. P , s is not deducible from νsϕ. We
say that s is strongly secret if for any closed terms M,M ′ such that bn(P ) ∩
(fn(M) ∪ fn(M ′)) = ∅, P (M/s) ≈l P (M ′

/s).

Let Mo(P ) be the set of outputs of P , that is the set of terms m such that
c〈m〉 is a message output construct for some channel name c in P , and let Mt(P )
be the set of operands of tests of P , where a test is a couple M = N occurring
in a conditional and its operands are M and N . Let M(P ) = Mo(P ) ∪Mt(P )
be the set of messages of P . Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in active
frame is an output instantiated by messages deduced from previous messages.

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are k ≥ 0, an extended process B = νñ.σk|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P ), for every side of a test or an output M of PB there is a message
M0 in P (a side of a test or an output respectively), such that M = M0θσk, and,
σi = σi−1 ∪ {miθiσi−1/yi}, for all 1 ≤ i ≤ k, where mi is an output in P , θi is a
substitution public w.r.t. ñ and σ0 is the empty substitution.

The proof is done by induction on the number of reductions in P ⇒∗ A.
Intuitively, B is obtained by applying the SUBST rule (from left to right) as most
as possible until there are no variables left in the plain process. Note that B is
unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ϕ(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A⇒ B : A,Na

B ⇒ S : B, {A,Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas , {A,Kab}Kbs

A⇒ B : {A,Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key
Kab. The key is created by a trusted server S which shares the secret keys Kas

and Kbs with A and B respectively. The protocol is modeled by the following
process:

PY (kab)=νkas, kbs.(!PA)|(!PB)|(!νk.PS(k))|PS(kab)

where

PA = νna.c〈a, na〉.c(za).[b = ub].[na = una ].c〈π2(za)〉
PB = c(zb).νnb, rb.c〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉.c(z′b).[a = π1(dec(z′b, kbs))]
PS(x) = c(zs).νrs, r′s.c〈enc(〈π1(zs), 〈x, vn〉〉, kas, rs), enc(〈va, x〉, kbs, r

′
s)〉
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and ub = π1(dec(π1(za), kas)) una = π1(π2(π2(dec(π1(za), kas))))
va = π1(dec(π2(zs), kbs)) vn = π2(dec(π2(zs), kbs))

For this protocol the set of outputs and operands of tests are respectively:

Mo(PY ) = {〈a, na〉, za, π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉, z′b,
enc(〈π1(zs), 〈x, vn〉〉, kas, rs), enc(〈va, x〉, kbs, r

′
s)}

and Mt(PY ) = {b, ub, na, una , a, π1(dec(z′b, kbs))}.

3.2 Our hypotheses

In what follows, we assume s to be the secret. We restrict ourself to processes
with ground terms in key position. Indeed, if keys contained variables, they could
also contain the secret and lead to the same kind of attacks as in the passive
case. For example, let P1 = νk, r, r′.(c〈enc(s, k, r)〉 | c(z).c〈enc(a,dec(z, k), r′)〉).
The name s in P1 is syntactically secret but not strongly secret. Indeed,

P1 ≡ νk, r, r′.(νz.({enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a,dec(z, k), r′)〉))
→ νk, r, r′.({enc(s,k,r)/z} | c〈enc(a, s, r′)〉) (COMM rule)

≡ νk, r, r′.(νz′.({enc(s,k,r)/z,
enc(a,s,r′)/z′} | c〈z′〉))

νz′.c〈z′〉−→ νk, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′},

and the resulting frame does not preserve the strong secrecy of s (see the frame
ψ2 of section 2.4).

Also, as in the passive case, destructors above the secret must be forbidden.

Indeed, in P2 = c〈π1(s)〉 ≡ νz.({π1(s)/z}|c〈z〉)
νz.c〈z〉−→ {π1(s)/z}, s is syntactically

secret but not strongly secret (see the frame ψ3 of Section 2.4).
Without loss of generality with respect to cryptographic protocols, we assume

that terms occurring in processes are in normal form and that no destructor
appears above constructors. Indeed, terms like π1(enc(m, k, r)) are usually not
used to specify protocols. We also assume that tests do not contain constructors.
Indeed a test [〈M1,M2〉 = N ] can be rewritten as [M1 = N1].[M2 = N2] if N =
〈N1, N2〉, and [M1 = π1(N)].[M2 = π2(N)] if N does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except
for the test [enc(M1,M2,M3) = N ] if N does not contain constructors. It can
be rewritten in [dec(N,M2) = M1] but this is not equivalent. However since
the randomness of encryption is not known to the agent, explicit tests on the
randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say
that an occurrence qenc of an encryption in a term t is an agent encryptions
w.r.t. a set of names ñ if t|qenc = enc(u, v, r) for some u, v, r and r ∈ ñ.

Definition 5. A process P is well-formed w.r.t. a name s if it is closed and if:

1. any occurrence of enc(m, k, r) in some term t ∈ M is an agent encryption
w.r.t. bn(P ), and for any term t′ ∈ M and position p such that t′|p = r
there is a position q such that q.3 = p and t′|q = enc(m, k, r);
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2. for every term enc(m, k, r) or dec(m, k) occurring in P , k is ground;
3. any left or right side of a test M ∈ Mt is a name, a constant or has the

form π1(dec(. . . πn(dec(πn+1(z), kn)) . . . , k1)), with n ≥ 0, where the πi are
words on {π1, π2} and z is a variable.

4. there are no destructors above constructors, nor above s.

Conditional tests should not test on s. For example, consider the following
process:

P3 = νk, r.(c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉)

where a is a non restricted name. s in P3 is syntactically secret but not strongly
secret. Indeed, P3 → νk, r.({enc(s,k,r)/z} | [s = a].c〈ok〉). The process P3(a/s)
reduces further while P3(b/s) does not.

That is why we have to prevent hidden tests on s. Such tests may occur
nested in equality tests. For example, let

P4 = νk, r, r1, r2.(c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉
| c(z).[dec(dec(z, k), k′) = a].c〈ok〉)

→ P ′
4 = νk, r, r1, r2.({enc(s,k,r)/z} | c〈enc(enc(a, k′, r2), k, r1)〉 | [dec(s, k′) = a].c〈ok〉)

Then P4(enc(a,k′,r′)/s) is not equivalent to P4(n/s), since the process P ′
4(

enc(a,k′,r′)/s)
emits the message ok while P ′

4(
n/s) does not. This relies on the fact that the de-

cryption dec(z, k) allows access to s in the test.
For the rest of the section we assume z is a new fixed variable.
To prevent hidden tests on the secret, we compute an over-approximation

of the ciphertexts that may contain the secret, by marking with a symbol x all
positions under which the secret may appear in clear.

We first introduce a function fep that extracts the least encryption over s and
“clean” the pairing function above s. Formally, we define the partial function

fep : T × N∗
+ ↪→ T × N∗

+

fep(u, p) = (v, q) where v and q are defined as follows: q ≤ p is the position (if
it exists) of the lowest encryption on the path p in u. If q does not exist or if
p is not a maximal position in u, then fep(u, p) =⊥. Otherwise, v is obtained
from u|q by replacing all arguments of pairs that are not on the path p with new
variables. More precisely, q is a sequence of the form i · i1 · · · ik. We introduce
two functions pair1 and pair2 defined as follows: pair1(M,N) = 〈M,N〉 and
pair2(M,N) = 〈N,M〉. Let v′ = u|q. v′ must be of the form enc(M1,M2,M3)
with Mi = pairi1(. . . (pairik

(a,Nik
), . . .), Ni1) for some constant or variable a and

some terms Nij (remember that q leads to the lowest encryption on the path
p). Then v is defined by v = enc(M ′

1,M
′
2,M

′
3) with M ′

j = Mj for j 6= i and
M ′

i = pairi1(. . . (pairik
(a, xk), . . .), x1), where the xj are fresh variables.

For example,

fep(enc(enc(〈〈a, b〉, c〉, k2, r2), k1, r1), 1.1.2) = (enc(〈z1.1, c〉, k2, r2), 1).

The function fe is the composition of the first projection with fep.
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With the function fep, we can extract from the outputs of a protocol P the
set of ciphertexts where s appears in clear below the encryption.

E0(P ) = {fe(m[x]p, p) | m ∈Mo(P ) ∧ m|p = s}.

For example, E0(PY ) = {enc(〈z1, 〈x, z1.2〉〉, kas), enc(〈z1, x〉, kbs)}, where PY is
the process corresponding to the Yahalom protocol defined in previous section.

However s may appear in other ciphertexts later on during the execution
of the protocol after decryptions and encryptions. Thus we also extract from
outputs the destructor parts (which may open encryptions). Namely, we define
the partial function

fdp : T × N∗
+ ↪→ T × N∗

+

fdp(u, p) = (v, q) where v and q are defined as follows: q ≤ p is the occurrence
of the highest destructor above p (if it exists). Let r ≤ p be the occurrence of
the lowest decryption above p (if it exists). Then v = (u[z]r.1)|q. If q or r do not
exist then fdp(u, p) =⊥.

For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1.1.1.1) = (π1(dec(z, k1)), 1)
The function fd is the composition of the first projection with fdp. By ap-

plying the function fd to messages of a well-formed process P we always obtain
terms d of the form d = d1(. . . dn) where di = πi(dec(z, ki)) with 1 ≤ i ≤
n, ki are ground terms and πi is a (possibly empty) sequence of projections
πj1(πj2(. . . (πjl

) . . . )).
With the function fd, we can extract from the outputs of a protocol P the

meaningful destructor part.

Do(P ) = {fd(m, p) | m ∈Mo(P ) ∧ p ∈ Posv(m)}

For example, Do(PY ) = {π2(dec(z, kbs)), π1(dec(z, kbs))}.
We are now ready to mark (with x) all the positions where the secret might

be transmitted (thus tested). We also define inductively the sets Ei(P ) as follows.
For each element e of Ei we can show that there is an unique term in normal
form denoted by e such that V(e) = {z} and e(e)↓ = x. For example, let e1 =
enc(〈z1, 〈x, z2〉〉, kas), then e1 = π1(π2(dec(z, kas))). We define

Ei(P ) = {u | ∃e ∈ Ei(P ), u ≤st e and ∃q ∈ Pos(u), hu|q = dec}
Ei+1(P ) = {m′[x]q | ∃m ∈Mo(P ), p ∈ Posv(m) s.t. fep(m, p) = (m′, p′),

fdp(m′, p′′) = (d, q), p = p′.p′′, and d1 ∈ E i(P )}

For example,

E0(PY ) = {π1(π2(dec(z, kas))), π2(dec(z, kas)),dec(z, kas), π2(dec(z, kbs)),dec(z, kbs)}
E1(PY ) = {enc(〈z1, 〈z1.2, x〉〉, kas)}
E1(PY ) = {π2(π2(dec(z, kas))), π2(dec(z, kas)),dec(z, kas)}

and Ei(PY ) = ∅ for i ≥ 2.
Fact The set E(P ) = ∪i≥0Ei(P ) is finite up-to renaming of the variables.
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Proof. For every i ≥ 1, every term m ∈ Ei(P ), Pos(m) is included in the (finite)
set of positions occurring in terms of M0.

We can now define an over-approximation of the set of tests that may be
applied over the secret.

Ms
t (P ) = {M ∈Mt(P ) | p ∈ Posv(M)

and d = fdp(M,p) 6=⊥ and ∃e ∈ E ,∃i, s.t.

di = πi(dec(z), k), e = enc(u, k) and x ∈ di(e)↓}

For example, Ms
t (PY ) = {π1(π2(π2(dec(π1(za), kas))))}.

Definition 6. We say that a well-formed process P w.r.t. s does not test over
s if the following conditions are satisfied:

1. for all e ∈ E(P ), for all d = d1(. . . dn) ∈ Do(P ), if di = πi(dec(z), k) and
e = enc(u, k) and x ∈ di(e)↓ then i = 1 and e 6<st d1

2. if M = N or N = M is a test and M ∈Ms
t (P ) then N is a restricted name.

Note that E(P ) can be computed in polynomial time from P and that whether
P does not test over s is decidable. We show in the next section that the first
condition is sufficient to ensure that frames obtained from P are well-formed.
It ensures in particular that there are no destructors right above s. If some di

cancels some encryption in some e and x ∈ di(e)↓ then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely
projections from di) remain above x). Also we have i = 1 since otherwise a di

may have consumed the lowest encryption above x, thus the other decryption
may block, and again there would be destructors left above x.

The second condition requires that whenever a side of a test M = N is
potentially dangerous (that is M or N ∈Ms

t (P )) then the other side should be
a restricted name.

3.3 Main result

We are now ready to prove that syntactic secrecy is actually equivalent to strong
secrecy for protocols that are well-formed and does not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νsϕ 0 s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M,M ′

public w.r.t. bn(P ).

Proof. Again, we only provide a sketch of the proof. Showing that strong secrecy
implies syntactic secrecy is simple so we concentrate here on the converse impli-
cation. Let P be well-formed process w.r.t. a nonce s with no test over s and
assume that P is syntactically secret w.r.t. s.
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Let M,M ′ be to public terms w.r.t. bn(P ). To prove that P (M/s) and P (M ′
/s)

are labeled bisimilar, we need to show that each move of P (M/s) can be matched
by P (M ′

/s) such that the corresponding frames are bisimilar (and conversely).
By hypothesis, P is syntactically secret w.r.t. s thus for any valid frame ϕ
w.r.t. P , we have νsϕ 0 s. In order to apply our previous result in the passive
setting (Theorem 1), we need to show that all the valid frames are well-formed.
However, frames may now contain destructors in particular if the adversary sends
messages that contain destructors. Thus we first need to extend our definition
of well-formedness for frames.

Definition 7. We say that a frame ϕ = νñ.σ is extended well-formed w.r.t. s
if for every occurrence qs of s in t↓, where t = xσ for some x ∈ dom(σ), there
exists an agent encryption w.r.t. ñ above s. Let qenc < qs the occurrence of the
lowest encryption. It must verify that {ht|q | qenc < q < qs} ⊆ {〈, 〉}.
This definition ensures in particular that there is no destructor directly above s.

Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Let ϕ = ν(ñ ] {s}).σ be an extended well-formed frame w.r.t
s. ϕ 0 s iff νñ.σ(M/s) ≈ νñ.σ(M ′

/s) for all M,M ′ closed public terms w.r.t. ϕ.

The proof is obtained by adapting the proof of Theorem 1.
The first step of the proof of Theorem 2 is to show that any frame produced

by the protocol is a extended well-formed frame. We actually prove directly a
stronger result, crucial in the proof: the secret s always occurs under an honest
encryption and this subterm is an instance of a term in E .

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νsϕ 0 s. Consider the corresponding standard
frame νñ.σ = νñ.{tj | 1 ≤ j ≤ k}. For every occurrence qs of s in tj↓, we have
fe(tj↓, qs) = e[w/x] for some e ∈ E and some term w. In addition νñ.σj↓ is an
extended well-formed frame w.r.t. s.

The lemma is proved by induction on j and relies deeply on the construction of
the El.

The second step of the proof consists in showing that any successful test in
the process P (M/s) is also successful in P thus in P (M ′

/s).

Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νsϕ 0 s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

This lemma is proved by case analysis, depending on whether T1, T2 ∈ Ms
t and

whether s occurs or not in fn (T1θσ) and fn (T2θσ).
To prove that P (M/s) and P (M ′

/s) are labeled bisimilar, we introduce the
following relation R between extended processes defined as follows: ARB if
there is an extended process A0 and terms M,M ′ such that P ⇒∗ A0, A =
A0(M/s) and B = A0(M ′

/s).
Then we show that R satisfies the three points of the definition of labeled

bisimilarity using in particular Lemma 5. Hence we have also R ⊆ ≈l. Since we
have clearly that P (M/s)RP (M ′

/s), it follows that P (M/s) ≈l P (M ′
/s).
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3.4 Examples

We have seen in Section 3.2 that PY is a well-formed process w.r.t. kab and does
not test over kab. Applying Theorem 2, if PY preserves the syntactic secrecy of
kab, we can deduce that the Yahalom protocol preserves the strong secrecy of
kab that is

PY (M/kab
) ≈l PY (M ′

/kab
)

for any public terms M,M ′ w.r.t. bn(PY ). We did not formally prove that the
Yahalom protocol preserves the syntactic secrecy of kab but this was done with
several tools in slightly different settings (e.g.[8, 14]).

We have also verified that the Needham-Schroeder symmetric key protocol
and the Wide-Mouthed-Frog protocol are both well-formed process w.r.t. kab and
do not test over kab, where kab is the exchanged key. Again, the syntactic secrecy
of kab has been proved by several tools (e.g. [8]) in slightly different settings for
both protocols. Using Theorem 2, we can deduce that they both preserve the
strong secrecy of kab.

4 Conclusion

We have shown how syntactic secrecy actually implies strong secrecy in both
passive and active setting under some conditions, motivated by counterexamples.

We plan to further investigate the active case by considering in particular
other primitives like asymmetric encryption and signatures and trying to relax
our conditions for specific classes of protocols such as ping-pong protocols. We
hope to derive in that way new decidability results for strong secrecy, based on
the known ones for syntactic secrecy.
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A Passive case

We prove here Lemmas 1 and 2 of Section 2.
We define Posnv(u) = {p ∈ Pos(u) | u|p /∈ V(u)} to be the set of non-variable

positions of u. We also define the partial function sf : N∗
+×N∗

+ ↪→ N∗
+, sf(p, q) = r

if p = q.r and sf(p, q) =⊥ otherwise.
We first start by an initial lemma that states that in a well-formed frame

w.r.t. s, either every occurrence of s is under some encryption or s is deducible.

Lemma 6. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ and let p be an
occurrence of s in yσ(s) for some y ∈ dom(σ). If ϕ 0 s then there exists a
position q < p such that yσ(s)|q is an encryption, that is hyσ(s)|q ∈ {enc, enca};
In addition, s occur in the plaintext subterm of the encrypted term, that is q ·1 ≤
p.

Proof. Assume by contradiction that there is an occurrence of s such that there
is no encryption above s. Then, from Properties 2 and 3 of well-formed frames,
we have that there are only pairs and signatures as function symbols above s.
Hence s is deducible. Thus there exists a position q < p such that yσ(s)|q is an
encryption. By property 2 of well-formed frames, s must occur in the plain-text
part of the encryption that is q · 1 ≤ p.

We are now ready to prove Lemma 1.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ, u, v terms such
that V(u),V(v) ⊆ dom(ϕ) and M a closed term, u, v and M public w.r.t. ñ. If
ϕ 0 s, uσ(M/s) = vσ(M/s) implies uσ = vσ. Let t be a subterm of a term in σ
that does not contain s. If ϕ 0 s, t = vσ(M/s) implies t = vσ.

Proof. Suppose that uσ(M/s) = vσ(M/s) and uσ(s) 6= vσ(s). Then there is an
occurrence p of s, say in uσ, such that vσ|p 6= s. Consider the variable y ∈
V(u) ⊆ dom(σ) and its occurrence py in u such that p = py · p′ for some p′.

By Lemma 6, there is an encryption position q in yσ(s) such that q · 1 ≤ p′.
We assume q to be the innermost encryption above s, that is q is maximal. Hence
by Property 1 of well-formed frames, the term at position q · 3 is a restricted
name. It results that py · q · 3 /∈ Posnv(v), since v is public. Thus there is a
variable y′ ∈ V(v) ⊆ dom(σ) at position py′ in v such that py′ ≤ py · q · 3. Let
m = yσ(s) and m′ = y′σ(s). Let q′ such that py ·q = py′ ·q′. Since m|q·3 = m′|q′·3,
we have, by the properties of probabilistic encryptions, that m|q = m′|q′ . Since
py · q = py′ · q′ this means in particular that uσ|p = vσ|p = s, which contradicts
the fact that vσ(s)|p 6= s .

Let t be a subterm of a term in σ that does not contain s. The proof that
t = vσ(M/s) implies t = vσ is done similarly.

We now prove key Lemma 2 of Section 2.

Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let u be a term with V(u) ⊆ dom(ϕ) and M be a closed term in normal form,
u and M public w.r.t. ñ. If uσ(M/s) → v, for some term v , then there exists a
well-formed frame ϕ′ = νñ.σ′ w.r.t. s
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– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: ϕ ` w iff ϕ′ ` w,
– and such that v = v′σ′(M/s) for some v′ public w.r.t. ñ.

Proof. Let u, v,M be public terms, M being closed and in normal form such
that uσ(M/s) → v, as in the statement of the lemma. Let l → r ∈ RE be the
rule that was applied in the above reduction and let p be the position at which
it was applied, i.e. uσ(M/s)|p = lθ.

This position p must be in uσ since M is in normal form. In addition, since
the head function symbol of l is a destructor, by Condition 3 of well-formed
frames, p must be in u.

So let t = u|p. We have tσ(M/s) = lθ.
Assume that there is a substitution θ0 such that tσ = lθ0. This will be proved

in Claim 1 below.
For our equational theory E, r is either a constant or a variable. If r is

a constant then we take v′ = u[r]p and σ′ = σ. It is easy to verify that the
conditions of Lemma 2 are satisfied in this case.

Suppose now that r is a variable z0. Then, consider the3 unique position q
of z0 in l. This position q is also in lθ0, that is, in tσ. So we can have that q is a
position in t, but not in tσ, or, that q is a position in tσ, but not in t (or t|p is
a variable). Hence we can have:

1. If q is a position in t, but not in tσ (that is, there is no y ∈ dom(ϕ) above
z0) then we consider v′ = u[t|q]p and σ′ = σ. In this case also, it is easy to
verify that the conditions of the Lemma 2 are satisfied.

2. If q is a position in tσ, but not in t (that is, there is some y ∈ dom(ϕ) above
z0). Then we consider v′ = u[y′]p and σ′ = σ∪{rθ0/y′}, where y′ /∈ dom(σ).
We have that tσ =E rθ0, so ϕ ` rθ0. We also have that v′ is public w.r.t. ϕ′.
We have v′σ′ = (u[y]p)σ′ = uσ′[yσ′]p = uσ[rθ0]p. Hence uσ → v′σ′.
From tσ = lθ0 and tσ(M/s) = lθ, we deduce that θ0[M/s] = θ, hence
rθ0[M/s] = rθ. Thus v′σ′(M/s) = uσ(M/s)[rθ]p = v.
Since there is some y ∈ dom(ϕ) above z0, we have that then rθ0 is a subterm
of ϕ. Since ϕ is well-formed, we deduce that rθ0 satisfies the conditions of
Definition 1. So ϕ′ is also well-formed.

Claim 1: Let us now prove that there exists θ0 such that tσ = lθ0. Otherwise
we should have one of the following cases:

1. there is a position in l which is not a position in tσ;
2. there is a variable z in l having at least two occurrences, say at positions
p1, p2, for which tσ|p1 6= tσ|p2 .

Let us examine in detail the two cases:

1. Consider a minimal position (w.r.t. the prefix order) in l which is not a
position in tσ. Then at the predecessor position an s occurs (since minimal

3 For our equational theory there is exactly one occurrence of z0 in l.
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positions in l must be positions in tσ(M/s), but not in tσ). This position is
not ε (i.e. it does not correspond to the head of l) since otherwise M would
not be in normal form. Now, for all other cases, by examining all rules in
RE , we observe that at least one of Conditions 2 or 3 of Definition 1 (of
well-formed frames) is not satisfied, which contradicts the hypothesis that ϕ
is a well-formed frame.

2. Let t1 = tσ|p1 and t2 = tσ|p2 . We have t1 6= t2, but t1(M/s) = t2(M/s).
We can have the following cases, according to whether the positions p1 and
p2 are positions of t or not:
(a) If p1 and p2 are positions of t. Then we can define w1 = t|p1 and w2 = t|p2 .

We have w1σ 6= w2σ, but w1σ(M/s) = w2σ(M/s). Since w1 and w2 are
public, the disequality is contradicted by Lemma 1.

(b) If p1 is not a position of t. Let py be the position in t such that py < p1

and t|py = y for some y ∈ dom(σ).
– A special case is when the rule check(z1, sign(z1,priv(z2)),pub(z2)) =

ok is applied with z = z1.
Since the positions of z1 in l are 1 and 2 · 1, and py < p1 we have
that p1 = 2 · 1, p2 = 1 and py = 2 (py = ε implies that σ con-
tains a destructor symbol). Hence tσ|p1 = yσ|1. Using the equality
retrieve(sign(z1, z2)) = z1 we notice that yσ|1 is actually equal to
retrieve(yσ). Considering w1 = t|1 and w2 = retrieve(y), we have
w1σ(M/s) = w2σ(M/s). Since w1 and w2 are public, this implies by
Lemma 1 that w1σ = w2σ thus t1 = t2, a contradiction.

– Otherwise, by examining all the other cases and using the fact that
ϕ is well-formed, we verify that t′ = tσ|p1 is a subterm of σ that
does not contains s. Now either p2 is also not a position of t, then
symmetrically t|p2 does not contain s hence t1 = t1(M/s) = t2(M/s) =
t2, a contradiction. Or p2 is a position of t, then t|p2 is a public term,
and the disequality is contradicted by (the second part of) Lemma 1.

B Active Case

B.1 Proof of Lemma 3

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are k ≥ 0, an extended process B = νñ.σk|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P ), for every side of a test or an output M of PB there is a message
M0 in P (a side of a test or an output respectively, such that M = M0θσk, and,
σi = σi−1 ∪ {miθiσi−1/yi}, for all i ∈ {1, . . . , k}, where mi is an output in P , θi

is a substitution public w.r.t. ñ and σ0 is the empty substitution.

Proof. We provide an inductive and constructive proof. We reason by induction
on the number of reductions in P ⇒∗ A.

The base case is evident.
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Assume that P ⇒l Al and that there are k, Bl and θ as in the statement
of the lemma. Suppose that Al ⇒ Al+1 and regard what kind of reduction rule
was used in this last step:

– If it is an internal reduction then, since static equivalence is closed by struc-
tural equivalence and by internal reduction (see Lemma 1 in [1]), it is suffi-
cient to consider as searched values the same as for Al.

– If it is a labeled reduction then we prove the following property: α 6= c〈x〉
(for any a and x) and there is an extended process Bl+1 = ϕ(Bl+1)|Pl+1

such that Bl+1 ≡ Al+1 and
• if α = νx.c〈x〉 then Pl+1 = Pl and ϕ(Bl+1) = νñ.σk+1, where σk+1 =
σk ∪ {Ml/x} and Ml is an output in Pl.

• if α = c(M) then ϕ(Bl+1) = ϕ(Bl) and for every message (a side of a
test or an output) Ml+1 in Pl+1 there is a message (a side of a test or
an output, respectively) Ml in Pl, such that Ml+1 = Mlθ

′σk, for some
substitution θ′ public w.r.t. νñ.

• if α = c〈n〉 or α = νn.c〈n〉 then Pl+1 = Pl, and ϕ(Bl+1) = ϕ(Bl) or
ϕ(Bl+1) = ν{ñ}\{n}.σk, respectively.

It is easy to see that this property is sufficient to prove the inductive step.
The property can be verified, by showing, using induction on the shape of
the derivation tree, that for any extended processes A′, A′′, B′ such that
A′ α→ A′′, A′ ≡ B′, B′ = νñ.σ|Q there is B′′ such that A′′ ≡ B′′ and
B′ = νñ′.σ′|Q′ where
• if α = c(M) then ñ′ = ñ, σ′ = σ and N ′′ = N ′{M/x} for each term N ′′

of B′′ where N ′ is the corresponding term in B′ and c(x) is an input in
B′;

• if α = νx.c〈x〉 then Q′ = Q, ñ′ = ñ, and σ′ = σ ∪ {M/x} where c〈M〉 is
an input in B′;

• if α = c〈x〉, α = c〈n〉 or α = νn.c〈n〉 then ñ′ = ñ for the first two cases,
and {ñ′} = {ñ}\{n} for the third one, σ′ = σ and Q′ = Q.

B.2 Passive case revisited

We have to generalize our result to extended well-formed frames.

Proposition 1. Let ϕ = ν(ñ ] {s}).σ be an extended well-formed frame w.r.t
s. ϕ 0 s iff νñ.σ(M/s) ≈ νñ.σ(M ′

/s) for all M,M ′ closed public terms w.r.t. ϕ.

As for the proof of Theorem 1, we first proof some lemmas similar to Lemmas 1
and 2.

Lemma 7. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ. If ϕ 0
s then for all public terms u, v,M w.r.t. ñ, M being ground, uσ(M/s) = vσ(M/s)
implies uσ = vσ.

Proof. Suppose that uσ(M/s) = vσ(M/s) and uσ 6= vσ. Then there is an occur-
rence p of s, suppose in uσ, such that vσ|p 6= s. Consider the variable y ∈ V(u) ⊆
dom(σ) and its occurrence py in u such that py ≤ p. Let p′ = sf(p, py).
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Since ϕ is an extended well-formed frame, we have that there is an agent
encryption at occurrence q in yσ such that q ≤ p′. Hence the term at position q.3
is a restricted name. It results that q.3 /∈ Posv(v), since v is public. That is there
is variable y′ ∈ V(v) ⊆ dom(σ) with the occurrence py′ such that py′ ≤ py.q.3.
Let m = yσ and m′ = y′σ. Let q′ = sf(py.q, py′). Since m|q.3 = m′|q′.3, we have,
by unicity of the randomness in agent encryptions, that m|q = m′|q′ . This means
in particular that m|p′ = m′|p′′ , where p′′ = q′. sf(p′, q). But since m|p′ = s and
p = py′ .q

′. sf(p′, q), this contradicts the fact that vσ|p 6= s.

The following lemma is proved similarly.

Lemma 8. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such
that ϕ 0 s, u be a subterm of a term of σ such that σ ∪ {u/y} is still a well-
formed frame, and v be a public term w.r.t. ñ. Then, for all public ground term
M , u(M/s) = vσ(M/s) implies u = v.

The following lemma is similar to Lemma 2.

Lemma 9. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such
that ϕ 0 s and u,M public terms w.r.t. ñ, M being ground and in normal form.
If uσ(M/s) → v, then there exists an extended well-formed frame ϕ′ = νñ.σ′ such
that

– dom(σ) ⊆ dom(σ′), yσ′ = yσ,∀y ∈ dom(σ),
– for all term w, ϕ ` w iff ϕ′ ` w,
– and there exists a public term v′ w.r.t. ñ such that v = v′σ′.

Proof. Let u, v,M be terms such that uσ(M/s) → v, as in the statement of the
lemma. Let l → r ∈ RE be the rule that was applied in the above reduction
and p be the position at which it was applied, i.e. uσ(M/s)|p = lθ. Since M is in
normal form, p must be a position of uσ.

Assume that there is a substitution θ0 such that uσ|p = lθ0. This will be
proved later. Since ϕ = νñ.σ be an extended well-formed frame, we know there
is an agent encryption above s at position qenc < p such that there is only pairing
along the path between qenc and p. We deduce that p ∈ Posnv(u). So let t = u|p.
We have tσ(M/s) = lθ.

For our equational theory, r is a variable z0.
Consider the4 position q of z0 in l. The position q is also in lθ0, that is, in

tσ.

1. If q is a position in t but not in tσ (that is, there is no yi above z0) then
take v′ = u[t|q]p and σ′ = σ. It is easy to verify that the conditions of the
Lemma 9 are satisfied.

2. If q is a position in tσ, but not in t (that is, there is a yi above z0). Then
take v′ = u[y]p and σ′ = σ ∪ {rθ0/y}, where y /∈ dom(σ). We have that
tσ =E rθ0, so ϕ ` rθ0. We also have that v′ is public w.r.t. ϕ′.
We have v′σ′ = (u[y]p)σ′ = uσ′[yσ′]|p = uσ[rθ0]p. And hence uσ → v′σ′.

4 For our equational theory there is exactly one occurrence of z0 in l.
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¿From tσ = lθ0 and tσ(M/s) = lθ, we deduce that θ0(M/s) = θ hence
rθ0(M/s) = rθ. Thus v′σ′(M/s) = uσ(M/s)[rθ]p = v.
Since there is a yi above z0, we have that then rθ0 is a subterm of ϕ. Since
ϕ is an extended well-formed frame and ϕ 0 s, we deduce that rθ0 verifies
the condition of well-formedness. Thus ϕ′ is an extended well-formed frame.

Let us now prove that there exists indeed a θ0 such that tσ = lθ0. Assume
by contradiction that it is not the case. At least one of the following cases must
occur:

1. there is a position in l which is not a position in tσ;
2. there is a variable z in l having at least two occurrences, say at positions
p1, p2 in l, for which tσ|p1 6= tσ|p2 .

Let us examine in detail the two cases:

1. This is in fact an impossible case. Indeed, ϕ is an extended well-formed frame
and ϕ 0 s, it must be the case that l = dec(enc(z0, z2, z3), z2) but since there
is at least one encryption above s, all positions of l are in tσ.

2. Again, it must be the case that l = dec(enc(z0, z2, z3), z2).
(a) Either both p1 and p2 are both positions in t. Then we can consider

w1 = t|p1 and w2 = t|p2 . We have w1σ 6= w2σ, but w1σ(M/s) = w2σ(M/s).
Since w1 and w2 are public, the inequality is contradicted by Lemma 7.

(b) Or p1, p2 /∈ Pos(t). Let py be the position in t such that py < p1 and
t|py = y for some y ∈ dom(σ(s)). applied We must have that p1 = 1.2,
p2 = 2 and py = 1. Hence tσ|p1 = yσ|2, that is, it is a subterm t|2 of
a term of σ, and tσ|p2 = t|2)σ. t|2 being a public term, we can apply
Lemma 8 and derive a contradiction.

The proof of Proposition 1 ends like the proof of Theorem 1.

B.3 Proof of the main result

Let u, v be two terms. Define Pos(u, v) = {p ∈ Pos(u) | u|p = v}.
We denote by u→q v the reduction u→ v such that u|q = lθ and v = u[rθ]q,

where q is a position in u, a rule l → r ∈ RE , and θ is a substitution. Consider
a position p in u. The function nfp1 computes the corresponding position in v
of the function symbol (or variable or name) at position p in u. Accordingly, the
function nfp computes the corresponding position in u↓. The function nfp−1 will
do the opposite: to a position in u↓ it associates the corresponding position in
u. We say that a function symbol at position p is consumed w.r.t. the reduction
u →q v if nfp1(u, p, q) is undefined. Similarly, we say that the same occurrence
is consumed w.r.t. the normal form u↓ if nfp(u, p) is undefined. We will say only
that an occurrence is consumed when it is clear from the context which definition
is used. Formally, we define the function nfp1 : T × N∗

+ × N∗
+ ↪→ N∗

+

nfp1(u, p, q) =
{
p′, if u→q v
⊥, otherwise,
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where

p′ =

p, if p 6≥ q,
⊥, if p ≥ q ∧ p 6≥ q.qr,
q. sf(p, q.qr), if p ≥ q.qr,

where l→ r is the rule that was applied and qr is the position of r in l. Observe
that for the equational theory E there’s at most one rule that can be applied
and there’s exactly one occurrence of r in l. The function nfp: T × N∗

+ ↪→
N∗

+ is defined by nfp(u, p) = pk where u →q1 · · · →qk uk, uk = u↓, pi =
nfp1(u, pi−1, qi), for 1 ≤ i ≤ k and p0 = p. The definition is correct since RE is
convergent. We define nfp−1 : T × N∗

+ ↪→ N∗
+, nfp−1(u, p) = p′ iff nfp(u, p′) = p.

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νsϕ 0 s. Consider the corresponding standard
frame νñ.σ = νñ.{tj | 1 ≤ j ≤ k}. For every occurrence qs of s in tj↓, we have
fe(tj↓, qs) = e[w/x] for some e ∈ E and some term w. In addition νñ.σj↓ is an
extended well-formed frame w.r.t. s.

Proof. We reason by induction on j.
Base case: j = 1. We have that t1 = m1θ1. The position qs in fact a position

inm1 s can’t appear in θ since s is restricted and θ is a public substitution. There
must an encryption above s in m1, since otherwise s would be deducible. Then
the result follows immed iately from the properties of well-formed processes and
the definition of E0 (take w = s).

Inductive step. Let ps = nfp−1(tj , qs). If ps is in mj then, as in the previous
paragraph, fe(tj↓,qs)[x/s] ∈ E0.

Let ps = nfp−1(tj , qs). If ps is in mj then, as in the previous paragraph,
fe(tj↓, qs)[x/s] ∈ E0.

If ps is in σj−1, then let z be the variable in mj at position say pz, where pz <
ps and let yj1 be the variable of zθj on the path to ps at position say py1 . We have
that j1 ≤ j− 1. Let p1

s = sf(ps, py1) and q1s = nfp(tj1 , p
1
s). By recursion hypothe-

sis, σj−1 is a well-formed frame and fe(tj1↓, q1s) = e[w/x] with e ∈ El, for some term
w and some l ≥ 0. It follows that q1enc = max{ q ∈ Pos(tj1↓) | q < qs ∧ h(tj1↓)|q = enc }
exists. Let p1

enc = nfp−1(tj1 , q
1
enc).

If py1 .p
1
enc is not consumed in tj↓ then it follows that nfp(tj , py1 .p

1
enc) is the

lowest encryption in tj↓ (since it corresponds to q1enc). It follows that fe(tj↓,qs) =
fe(tj1↓, q1s).

If py1 .p
1
enc is consumed in tj↓, consider the occurrence of dec in tj , say pdec,

that consumes it. Since p1
enc is not consumed in tj1↓ it follows that pdec is in

zθj or in mj , and all encryptions above p1
enc in tj1 are consumed in tj . If pdec is

in zθj then all encryptions above p1
enc in tj1 are consumed by decryptions that

are in zθj . This means that in (zθjσj−1)↓ there’s no encryption above s, and
in particular no agent encryption, which contradicts that σj−1 is a encryption
above extended well-formed frame. Hence pdec is in mj .

Let u, v, k, k′, n be terms such that dec(u, k) = tj |pdec and enc(v, k′, n) =
tj |py1 .p1

enc
. We have that k =E k′ since pdec consumes py1 .p

1
enc. Since pdec is from
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the output mj and p1
enc is also from an output being an agent encryption we

have that k and k′ are in normal form, hence k = k′. We then have dec(u, k) →∗

dec(enc(v, k, n), k) →∗ v↓.
Let (d, p) = fd(m, pz) and consider di such that the decryption pdec is in di.

Since s is in tj↓ it follows that x is in di(e)↓. From the first condition of processes
that do not test over s we have that i = 1 and e 6<st d1. Since pdec consumes
py1 .p

1
enc, above pdec in d1 there are only projections, below enc in e there are

only pairs and e 6<st d1 it follows that d1 ≤st e. Hence d1 ∈ E l.
Suppose that there is no encryption above pdec in mj . Then since d1 is con-

sumed and above d1 in mj there are only pairs, it follows that s is deducible
from σj (tj that is). Thus there is at least one encryption above pdec in mj . Let
penc be the lowest decryption above pdec in mj . And let (m′, p′enc) = fep(mj , pz).
Then m′[x]p ∈ El+1.

Since penc is not consumed in tj↓ and in m′ all function symbols above p are
not destructors we have that fe(tj , ps) →∗ (m′[x]p)[x → d1(fe(enc(v, k, n), p′s))]
where p′s = sf(p1

s, p
1
enc). Hence fe(tj↓, qs) = (m′[x]p)[w

′
/x], where w′ = d1(fe(enc(v, k, n), p′s)↓.

That is we have the first part of the lemma.
In order to prove that σ↓ is a well-formed frame we show that m′[x]p and

w′ contain only pairs as function symbols, except for the head of m′[x]p which
is an encryption. We have that all function symbols, except the head in m′[x]p,
are pairs (it follows from the definition of m′). The term w′ is a subterm of
fe(enc(v↓,k, n), q′s) which contains only pairs as function symbols (except for the
head), since σj1 is well-formed frame.

Lemma 10. Let P be a well-formed process with no test over s, let ϕ = νñ.σ
a valid frame w.r.t. P such that ϕ 0 s, and T ∈ Mt(P ) a side of a test. Let θ
a public substitution. If T /∈ Ms

t and s ∈ fn((Tθσ)↓) then (Tθσ)↓ = uσ′ where
σ′ is an extended well-formed frame as in Lemma 9 and u is some term (not
necessarily public).

Proof. Suppose that T /∈ Ms
t and s ∈ fn(Tθσ(s)↓). Hence T is not ground and

denote by z the variable of T and by pz its position. Consider an occurrence qs
of s in Tθσ(s)↓. Denote tz = zθσ(s)↓. We then have that s ∈ fn(tz).

Let ps = nfp−1(Tθσ(s), qs). Let yj be the variable of zθ on the path to
ps at position say py, with 1 ≤ j ≤ k (see Lemma 3). Applying Lemma 4 to
tj we obtain that fe(tj↓, qs) = e[w/x] with e ∈ El, for some term w and some
l ≥ 0. Consider the lowest encryption qenc in tj↓ above q′s, where q′s is the
corresponding positions of q′s in tj↓. If this encryption is consumed then it must
be consumed be a dec from T since otherwise s would be deducible. It follows
that there is 1 ≤ i ≤ k such that di = πi(dec(z, k)), where fd(T, pz) = d1(. . . dk)
and e = enc(u, k, r). Moreover x ∈ di(e)↓. Thus T ∈ Ms

t , but this contradicts
the supposition. Hence qenc is not consumed in Tθσ(s)↓. Then it is sufficient to
consider the position nfp−1(tj , qenc) (it is in some σj1) in tj in order to find the
required u and σ′.
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Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νsϕ 0 s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

Proof. We say a test T is in case A, B or C if

– there is no s in Tθσ(s)↓,
– there is s in Tθσ(s)↓, T /∈Ms

t , or
– there is s in Tθσ(s)↓, T ∈Ms

t , respectively.

Suppose that T1θσ(M/s)↓ = T2θσ(M/s)↓ and T1θσ(s)↓ 6= T2θσ(s)↓. We con-
sider all possible cases T1 and T2 could be in:

– AA. The supposition is clearly false.
– BA, BB. By Lemma 10 we have that (T1θσ(s))↓ = uσ′(s). Suppose there is

an occurrence of s in (T1θσ(s))↓ such that the term at the corresponding
position in (T2θσ(s))↓ is not s. There is an agent encryption enc(v, w, n)
above s in (T1θσ(s))↓. The name n in (T2θσ(s))↓ may come from σ(s),
from θ or from T2. But it cannot come from T2 (see the definition of well-
formed processes), it cannot come from θ since n is restricted and θ is public,
and it cannot come from σ since σ is well-formed (and hence encryption is
probabilistic).

– CA, CB, CC. Since T1 ∈Ms
t , condition 2 of processes that do not test over

s says that T2 is a restricted name. Thus T2 cannot be in cases B or C:
since s doesn’t appear in tests, T2 should be non ground. If T2 is in case A
then there is a contradiction since T2 should be a subterm of M but this is
impossible since M is public, while T2 is restricted.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νsϕ 0 s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M,M ′

public w.r.t. bn(P ).

Proof. Consider the relation R between extended processes defined as follows:
ARB if there is an extended process A0(s) such that P (s) ⇒∗ A0(s) and ground
terms M,M ′ public w.r.t. ν(ñ∪ {s}) such that A = A0(M/s) and B = A0(M ′

/s).
We show that R satisfies the three points of the definition of labeled bisimi-

larity. Suppose ARB, that is A0(M/s)RA0(M ′
/s) for some A0,M,M ′ as above.

In what follows we write X(t) for X(t/s), where X ranges over processes and
frames and t is M or M ′. We prove that the following questions have affirmative
answer:

1. ϕ(A0(M)) ≈ ϕ(A0(M ′))? We know that ϕ(A0(s)) is a valid frame (from
the definition of R), hence ϕ(A0(s)) 0 s (from the hypothesis). Let ϕ′(s) ≡
ϕ(A0(s)) having only ground and normalized terms. Then, by Lemma 4, we
have that ϕ′(s) is an extended well-formed frame. We can then use Propo-
sition 1 to obtain that ϕ(A0(M)) ≈ ϕ(A0(M ′)), since we have ϕ(A0(M)) =
ϕ(A0(s))(M) (and the same for M ′).
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2. if A0(M) → A′ then A′ ≡ A′
0(M), A0(M ′) → A′

0(M
′) and A′

0(M)RA′
0(M

′),
for some A′

0? We distinguish two cases, according to whether the used rule
was the COMM rule or one of the THEN and ELSE rules:
– if the COMM rule was used then A0(M) ≡ C(M)[c〈z〉.Q(M)|c(z).R(M)],

where C is an evaluation context and A′ = C(M)[Q(M)|R(M)]. Then
A0(s) ≡ C(s)[c〈z〉.
Q(s)|c(z).R(s)]. Take A′

0(s) = C(s)[Q(s)|R(s)]. We have that P (s) ⇒∗

A′
0(s) and so, by definition of R, we have that A′

0(M)RA′
0(M

′).
– otherwise, A0(M) ≡ C(M)[if T ′(M) = T ′′(M) then Q(M) else R(M)].

Then A0(s) ≡ C(s)[if T ′(s) = T ′′(s) then Q(s) else R(s)]. From Lemma
3 we know that T ′(s) = T ′

0θσ(s) and T ′′(s) = T ′′
0 θσ(s), where T ′

0 =
T ′′

0 is a test in P and νñ.σ ≡ ϕ(A0(s)) is the standard frame w.r.t.
A0(s). Take A′

0(s) = C(s)[Q(s)] if T ′
0θσ(s) =E T ′′

0 θσ(s) and A′
0(s) =

C(s)[R(s)] otherwise. From Lemma 5 we have that T ′
0θσ(s) =E T ′′

0 θσ(s)
iff T ′

0θσ(M) =E T ′′
0 θσ(M). Hence A0(M) → A′

0(M), A0(M ′) → A′
0(M

′)
and A0(s) → A′

0(s). And we also have A′
0(M)RA′

0(M
′) from the defi-

nition of R.
3. if A0(M) α→ A′ and fv(α) ⊆ dom(ϕ(A0(M))) and bn(α) ∩ fn(A0(M ′)) = ∅

then A′ ≡ A′
0(M), A0(M ′) α→ A′

0(M
′) and A′

0(M)RA′
0(M

′), for some A′
0?

According to the form of α, we consider the following cases:
– α = c(T ). Suppose A0(M) ≡ C(M)[c(z).Q(M)]. Then take A′

0(s) =
C(s)[Q(s)
{T/z}].

– α = c〈u〉. Suppose A0(M) ≡ C(M)[c〈u〉.Q(M)]. Then take A′
0(s) =

C(s)[Q(s)].

– α = νu.c〈u〉. Suppose A0(M) ≡ C(M)[νu.A1(M)], where A1(M)
c〈u〉−→

A′
1(M). Then take A′

0(s) = C(s)[A1(s)].

The above discussion proves thatR ⊆≈l. Since we have clearly that P (M/s)RP (M ′
/s),

it follows that P (M/s) ≈l P (M ′
/s).

C Examples

For sake of simplicity, we may omit the symbol 〈, 〉 for pairing. In that case, we
assume a right priority that is a, b, c = 〈〈a, b〉, c〉.

C.1 Needham-Schroeder symmetric key protocol

The protocol is described below:

A⇒ S : A,B,Na

S ⇒ A : {Na, B,Kab, {Kab, A}Kbs
}Kas

A⇒ B : {Kab, A}Kbs

Our target secret is Kab.
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The corresponding process is:

PNS(kab) = νkas.νkbs.(!A)|(!c(zb))|(!νk.S(k))|S(kab)

where

A = νna.c〈a, b, na〉.c(za).[π1(dec(za, kas)) = na].
[π1(π2(dec(za, kas))) = b].c〈π2(π2(π2(dec(za, kas))))〉

S(x) = c(zs).νr, r′.c〈enc(〈π2(π2(zs)), π1(π2(zs)), kab,
enc(〈x, π1(zs)〉, kbs, r

′)〉, kas, r)〉

Note that other processes should be added to considered corrupted agents or
roles A,B and S talking to other agents but this would not really change the
following sets of messages.

The output messages are:

Mo =


a, b, na

π2(π2(π2(dec(za, kas))))
enc(〈π2(π2(zs)), π1(π2(zs)),
kab, enc(〈kab, π1(zs)〉, kbs, r

′)〉, kas, r)


The tests are: {

π1(dec(za, kas)) = na

π1(π2(dec(za, kas))) = b

}
We define max Ei = {e | e ∈ Ei} in order to increase readability, and since it

is easy to deduce Ei from max Ei.

Do = {π2(π2(π2(dec(z, kas))))}

E0 = {enc(〈z1, 〈z2, 〈x, z3〉〉〉, kas, r), enc(〈x, z4〉, kbs, r
′)}

max E0 = {π1(π2(π2(dec(z, kas)))), π1(dec(z, kbs))}

Do ∩ E0 = ∅

Mkab
t = ∅

We deduce that PNS is a well-formed process w.r.t. kab. Applying Theorem 2
and since the Needham-Schroeder symmetric key protocol preserves the syntactic
secrecy of kab, we deduce that the protocol preserves the strong secrecy of kab

that is

PNS(M/kab
) ≈l PNS(M ′

/kab
)

for any public terms M,M ′ w.r.t. bn(PNS).
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C.2 Wide Mouthed Frog Protocol (modified)

The protocol is described below:

A⇒ B : Na

B ⇒ S : {Na, A,Kab}Kbs

S ⇒ A : {Na, B,Kab}Kas

Again, the target secret is Kab.
The corresponding process is:

PNS(kab) = νkas.νkbs.(!A)|(!S)|(!νk.B(k))|B(kab)

where

A = νna.c〈na〉.c(za).[π1(dec(za, kas)) = na]
B(x) = c(zb).νr.c〈enc(〈zb, a, x〉, kbs, r)〉

S = c(zs).[π1(π2(dec(zs, kbs))) = a].
νr′.c〈enc(〈π1(dec(zs, kbs)), b, π2(π2(dec(zs, kbs)))〉, kas, r

′)〉

Note that other processes should be added to considered corrupted agents or
roles A,B and S talking to other agents but this would not really change the
following sets of messages.

The output messages are:

Mo =


na

enc(〈zb, a, kab〉, kbs, r)
enc(〈π1(dec(zs, kbs)), b,
π2(π2(dec(zs, kbs)))〉, kas, r

′)


The tests are: {

π1(dec(za, kas)) = na

π1(π2(dec(zs, kbs))) = a

}
Do = {π1(dec(z, kbs)), π2(π2(dec(z, kbs)))}

E0 = {enc(〈z1, 〈z2, x〉, kbs, r)〉}

max E0 = {π2(π2(dec(z, kbs)))}

E1 = {enc(〈z1, 〈z2, x〉, kas, r)〉}

max E1 = {π2(π2(dec(z, kas)))}

Do ∩ E1 = ∅

Mkab
t = ∅

We obtain similarly the same conclusion as for the previous protocol.
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