
Isolating Intrusions by Automatic Experiments

Stephan Neuhaus
Lehrstuhl f̈ur Softwaretechnik

Universiẗat des Saarlandes
Stephan.Neuhaus@acm.org

April 13, 2006

1 Introduction

The analysis of security incidents remains one of the most
taxing things a computer scientist can do. Why is there
no automated support for this task? We think this is so
because existing tools use an inadequate methodology.

Intrusion analysis aims at reconstructing the break-in
based on the current state of the system. To this end,
we analyze traces and then deduce what must have hap-
pened inside the system so that these traces appear the
way they do. For example, an analysis of the Linux Slap-
per worm could look like this: “Attackers with the IP ad-
dress 10.120.130.140 sent a specially crafted HTTP re-
quest to our web server, which contained a malformed
client key. This caused a buffer overflow and called a
shell. This shell then saved a uuencode-encoded copy
of the work source code, decoded and compiled it, and
started the resulting program under the name.bugtraq. As
soon as the program ran, it tried to contact other hosts i
the network.” (Example taken from [5].)

An investigator analyzing this intrusion will probably
first see the rogue.bugtraqprocess and will then try to
isolate those processes that were responsible for the at-
tack. This holds for processes that are still running (such
as the web server) and processes that have already termi-
nated (such as theuudecodeprocess).

The usual method is to begin with the violation of the
security policy (the.bugtraqprocess) and then work back-
wards using tools like The Coroner’s Toolkit [2] to the
root cause (the malformed HTTPS request). This deducti-
ve approach has a number of serious drawbacks:

Completeness.The traces may not be sufficient in order

to deduce the cause-effect chain reliably.

Minimality. Important traces are often buried in a large
number of irrelevant traces and need to be laborious-
ly extraced.

Correctness. Our proofs could base on wrong assumpti-
ons which may invalidate our deductions.

We have developed a tool called Malfor (short for
MALware FORensics) which avoids these drawbacks by
usingexperimentalmethods. Instead of interpreting tra-
ces and deducing a cause-effect chain backwards, Malfor
works experimentally: in a first phase, Malforcaptures
events (processes in pur case) as the system is running. As
soon as a break-in is detected, Malfor uses these events to
partially replay the system. By cleverly choosing which
events to repeat, we isolate those events that are reevant
for the break-in: if we repeat the system without process
X and if the break-in still occurs, processX cannot have
been relevant for the attack.

2 Capture and Replay

Malfor’s subsystem for capture and replay works by Sy-
stem Call Interposition. In this method, system calls like
fork, execve, read, getpidand so on are diverted to Mal-
for’s own routines. These execute the original routines and
upload the system calls’ parameters and results to a data-
base. In security research, this method has been used in
Systrace [6] in order to create on-the-fly security policies
for system calls.

1

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/696



Malfor must take care of many details when replaying
system calls, because otherwise replay will not work. For
example, processes may have a different process ID du-
ring replay than it had during capturing. Still, the process
must see its original PID so that library calls that use the
PID (such asgethostbyname) still work as expected when
replayed.

Our method works by replaying captured processes in
ever different configurations. For this it is necessary that
Malfor be able to suppress a process’s execution. But on
one hand, you can’t force a parent processnot to call fork.
On the other hand, process creation must not simply fail
because this would be too strong a difference with respect
to the original run. Our solution is to create the child pro-
cess, but to terminate it again at the next syscall.

These measures are typical when one wants to repeat
only parts of a system.

3 Minimization

In order to find the responsible processes among all cap-
tured processes, we use Delta Debugging [3]. Delta De-
bugging is a technique that uses repeated experiments to
minimizeanyset of failure-inducing circumstances.

Delta debugging works like binary search: first, we try
with one half of all circumstances removed. If that repro-
duces the failure, we continue with this reduced set of cir-
cumstances. If not, however, we try by removing the other
half. If that doesn’t work either, we try the complements
ofour subsets. If that doesn’t work either, we split the ori-
ginal set into more than two parts and try again.

Zeller and others have shown that the final result con-
tains only circumstances that are relevant for the failure.
If there are initiallyn circumstances, delta debugging will
need at mostO(n2) tests to minimize them.

4 First Experiences

In order to test our prototype, we have witten a network
server that contains a security hole: once it receives a spe-
cially prepared request, it creates a file/tmp/pwnedwith
administrator privileges. In a simulated attack, we have
hidden one malicious request among twenty-nine others.

This run caused about 1,500 system calls, which we-
re executed and captured by the original system in about
6 seconds. This is a performance overhead of about 8%
with respect to the throughput without capturing. Captu-
ring takes place in a virtual machine in order to simplify
replay. Takting that into account as well, the overhead ri-
ses to 13% with respect to a dedicated machine. These
penalties compare favourably with other research [1] and
make Malfor suitable for production environments.

Malfor used about three minutes and 14 tests to isolate
all relevant processes (three of 32) [5]. Replay was slower
than capturing by a factor of about two. These numbers
emphasize Malfor’s suitability for production use.

5 Further Work

We first want to extend Malfor to a realistic example. We
have already prepared an attack on Apache which adds
another root account to the password file without opening
the password file for reading. This attack is constructed
especially to fool tools like BackTracker which analy-
ze attacks by constructing relationships between system
calls [1, 4]. This attack never opens the password file; yet
it is modified afterwards.

The next task is to extend Malfor to distributed systems.
Malfor is already designed to be used in such environ-
ments, but replaying needs to observe certain constraints
so that the consistency of the entire system is preserved.

6 Conclusion

We have introduced Malfor, a system that uses experimen-
tal methods to analyse intrusions automatically. It can be
used on production systems and is especially suitable for
the analysis of targeted attacks.

Literatur

[1] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt: Enab-
ling intrusion analysis through virtual-machine log-
ging and replay. InProceedings of the 5th Symposi-
um on Operating Systems Design and Implementati-

2



on, pages 211–224, New York, NY, USA, December
2002. ACM Press.

[2] Dan Farmer. Frequently asked questions about the co-
roner’s toolkit. http://www.fish.com/tct/
FAQ.html , January 2005.

[3] Ralf Hildebrandt and Andreas Zeller. Simplifying and
isolating failure-inducing input.IEEE Transactions
on Software Engineering, 26(2):183–200, February
2002.

[4] Samuel T. King and Peter M. Chen. Backtracking
intrusions. InProceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages
223–236, New York, NY, USA, 2003. ACM Press.

[5] Stephan Neuhaus and Andreas Zeller. Isolating in-
trusions by automatic experiments. InProceedings
of the 13th Annual Network and Distributed System
Security Symposium, pages 71–80, Reston, VA, USA,
February 2006. Internet Society, Internet Society.

[6] Niels Provos. Improving host security with system
call policies. InProceedings of the 12th Usenix Secu-
rity Symposium, pages 257–272, Berkeley, CA, USA,
August 2003. Usenix Association, Usenix Associati-
on.

3


