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Abstract. This paper presents a formal model for representing any on-
chip communication architecture. This model is described mathemati-
cally by a function, named GeNoC. The correctness of GeNoC' is ex-
pressed as a theorem, which states that messages emitted on the archi-
tecture reach their expected destination without modification of their
content. The model identifies the key constituents common to all com-
munication architectures and their essential properties, from which the
proof of the GeNoC' theorem is deduced. Each constituent is represented
by a function which has no ezplicit definition but is constrained to satisfy
the essential properties. Thus, the validation of a particular architecture
is reduced to the proof that its concrete definition satisfies the essential
properties. In practice, the model has been defined in the logic of the
ACL2 theorem proving system. We define a methodology that yields a
systematic approach to the validation of communication architectures at
a high level of abstraction. To validate our approach, we exhibit sev-
eral architectures that constitute concrete instances of the generic model
GeNoC'. Some of these applications come from industrial designs, such as
the AMBA AHB bus or the Octagon network from ST Microelectronics.

1 Introduction

Current chip technology (65nm) allows the integration of several hundred million
transistors on a single die, which requires a huge progress in design methodolo-
gies. Indeed, chip business is highly competitive and time to market has shrunk.
A three month delay induces the loss of one fourth of the expected income [6].
To face this increasing time pressure, systems on a chip (SoC) are designed
through a platform based approach: a new SoC is built according to a generic
architecture, using pre-designed parameterized modules and processor cores. In
that context, the interconnect structure becomes challenging both for design and
verification [26].

Until recently, most of the verification effort was spent on the processing
elements, and the literature specifically devoted to the embedded communication
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architecture is relatively sparse. Bus architectures, and their protocols, have
been the subject of the earlier works on that topic. Roychoudhury et al. use the
SMYV model checker to debug an academic implementation of the AMBA AHB
protocol [19]. Their model is written at the register transfer level and without
any parameter. Roychoudhury et al. detect a live lock scenario that was caused
by the implementation of their arbiter rather than by the protocol itself. More
recently, Amjad [2] used a model checker, implemented in the HOL theorem
prover, to verify the AMBA APB and AHB protocols, and their composition
in a single system. Using model checking, safety properties are verified on each
protocol individually. The HOL tool is used to verify their composition. In this
work also, the model is at a low level of abstraction, and without any parameter.

Networks on a chip (NoC) are a more recent design paradigm, and little
work has been done about their formal verification outside straightforward model
checking on fixed structures. A notable exception is the work of Gebremichael et
al. [10], who recently specified the Ethereal protocol [11] of Philips in the PVS
logic. The main property they verified is the absence of deadlock for an arbitrary
number of masters and slaves.

At this point, it is worth noting that the above mentioned formal verification
efforts, devoted to communication architectures and protocols, were performed
at the register transfer level (RTL), on a very specific design. This level was
considered appropriate when the same source was generating the synthesizable
design for the full system. With the advent of outsource IP’s and platform based
design, the current trend in the SoC design community is to raise the level of
abstraction [26] and rely on verified parameterized library modules. This require-
ment will soon extend to communication network kernels, yet a formal theory
for this category of functional modules is non existing today. In effect, most
textbook (e.g. [8]) describe architectures in an informal manner.

On the path to the definition of a formal theory of communications, two
important studies have already treated part of it. Moore [17] defined a formal
model of asynchrony by a function in the Boyer-Moore logic [5], and showed
how to use this general model to verify a biphase mark protocol. More recently,
Herzberg and Broy [12] presented a formal model of stacked communication
protocols, in the sense of the OSI reference model. In a relational framework
supporting a component-oriented view, they defined operators and conditions
to navigate between protocol layers. Herzberg and Broy’s framework considers
all OSI layers. Thus, it is more general than Moore’s work, which is targeted at
the lowest layer. In contrast, Moore provides mechanized support. Both studies
focus on protocols and do not consider the underlying interconnection structure
explicitly.

The long term objective of our research is to support the validation of ab-
stract specifications for on chip communication architectures, and the verifica-
tion of their correct implementation by a given, possibly parameterized, IP. To
this aim, we provide a general formal framework that encompasses the essential
constituents of communication modules - i.e. protocols and topologies, routing
algorithms and scheduling policies - and applies to a wide variety of communi-



Formalizing On Chip Communications 3

cation architectures. It is essential that our theory be directly expressible in the
logic of an interactive theorem prover, either first or higher order, to provide
mechanized reasoning support.

This paper presents what constitutes, to our knowledge, a first proposal for
a formal theory for communication architectures. Communications on the chip
share many concepts with computer networks, but work on a different time scale.
Systems on a chip often have very hard time, heat and power constraints. On
chip communications must be predictable: losing and resending a message, or re-
ordering message pieces is unacceptable within a SoC, while it is current practice
on the Internet. On chip communications are more constrained, and their topol-
ogy is statically defined, which simplifies the protocols. This paper only deals
with these restricted communications systems: buses and NoC’s. We formalize a
generic communication architecture in functional form. A global function, called
GeNoC', formalizes the interactions between the three key constituents: inter-
faces, routing and scheduling.

This generic model makes no assumption on the protocol, the topology, the
routing algorithm, or the scheduling policy. To abstract from any particular
architecture, we have identified essential properties (considered proof obligations
or simply constraints) for each constituent. Those imply the overall correctness
of GeNoC'. Hence, the validation of any particular architecture is reduced to
the proof that each one of its constituents satisfies the generic constraints. By
embedding our theory in the logic of an automated proof assistant, we provide
a tool to specify and to validate network on a chip description at a high level
of abstraction. For any concrete architecture, the proof assistant automatically
generates the proof obligations that must be satisfied to prove the compliance
of this architecture with our theory.

This paper is structured as follows. The next section presents a motivating
example network, and defines our notations. Section 3 gives an overview of our
theory. Section 4 constitutes the core of the paper and our original contribution:
it precisely defines the functions and proof obligations for the main constituents
of a network on chip. Section 5 exposes our methodology for applying our model
to a practical network on chip in a systematic way, and gives an overview of
our experiments on a variety of communication architectures. The instanciation
of the GeNoC model to the "Octagon® design by STMicroelectronics is used as
an illustration. Finally, section 6 concludes the paper and gives future research
directions.

2 Background for the Theory

Our theory relies on some background principles and fundamental common fea-
tures of all communication architectures. To make our theory easily expressible
in interactive proof assistants, we define it using lists and their associated opera-
tors, as introduced at the end of this section. Let us first start with an example.
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2.1 An NoC Example: the Octagon

This network on a chip has been designed by STMicroelectronics [14]. A basic
Octagon unit consists of eight nodes and twelve bidirectional links (Figure 1). It
has two main properties: the communication between any pair of nodes requires
at most two hops, and it has a simple, shortest-path routing algorithm [14].

(=}

4

Fig. 1. Basic Octagon Unit

An Octagon packet is data that must be carried from the source node to the
destination node as a result of a communication request by the source node. A
scheduler allocates the entire path between the source and destination nodes of
a communicating node pair. Non-overlapping communication paths can occur
concurrently, permitting spatial reuse.

The routing of a packet is accomplished as follows. Each node compares the
tag (PackAd) to its own address (NodeAd) to determine the next action. The
node computes the relative address of a packet as:

RelAd = (PackAd — NodeAd) mod 8 (1)

At each node, the route of packets is a function of RelAd as follows:

RelAd = 0, process at node

— RelAd = 1 or 2, route clockwise

— RelAd = 6 or 7, route counterclockwise
— route across otherwise

Ezxample 1. Consider a packet Pack at node 2 sent to node 5. First, 5—2 mod 8 =
3, Pack is routed across to 6. Then, 5 — 6 mod 8 = 7, Pack is routed counter-
clockwise to 5. Finally, 5 — 5 mod 8 = 0, Pack has reached its final destination.

2.2 A Unifying Model

The previous example is generalized to the communication model of Figure 2.
An arbitrary but finite number of nodes is connected to some communication
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architecture, bus or network. Topologies, routing algorithms and scheduling poli-
cies are its essential constituents. To distinguish between interface-application
and interface-interface communications, an interface and an application commu-
nicate using messages; two interfaces communication using frames.

Application

messages frames
Interface Application

frames

messages

Communication

Application

Architecture
Interface Application

Fig. 2. Communication Model

messages

messages

frames

Applications represent the computational and functional aspects of nodes.
They are either active or passive. Typically, active applications are processors
and passive applications are memories. We consider that each node contains
one passive and one active application, i.e. each node is capable of sending and
receiving frames. As we want a general model, applications are not considered
explicitly: passive applications are not actually modeled, and active applications
are reduced to the list of their pending communication requests. We focus on
communications between distant nodes. We suppose that in every communica-
tion, the destination node is distinct from the source node.

2.3 Lists: Notations and Operators

Lists are essential to the implementation of our formalism. We briefly present
the notations and the functions used to manipulate them. Notations about lists
are summarized in Table 1.

Letters [ or L are used to denote a list or a list of lists. List elements are
often represented by letter e. The empty list is denoted by e. A list [ is a finite
sequence of & values indexed from 0 to k — 1, I = (I[1])ic[0;k—1]-

Len(l) returns the length of list [ (its number of elements), and Last(l) returns
its last element. Predicate NoDuplicatesp(l) recognizes a list in which each two
elements are distinct. The type of a list /; is defined by the membership of its
elements to a given set F, and is denoted with the C; operator.

Adding an element e in front of a list [ creates a new list I/, noted I’ = e.l.
Element e takes index 0 in [’. Elements of !’ with an index i greater that 0 are
elements of | with index ¢ — 1. If the list is a list of lists, e is a list. The append
of two lists, I; and o, of the same type is denoted [; LI lo, resulting in a list of
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Name Purpose

e.l add element e to list [

LS E l1 is a list of E (type)

l1 Ul2 append of /1 and Is

e€ lh e is an element of list [;

1 Cls l; is included in [o

I M2 elements common to /; and [»
List(l1,12) juxtaposition of lists [; and 2

Len(l) the number of elements contained in [
Last(1) the last element of [

NoDuplicatesp(l) |recognizes a list [ with no duplicate

€ the empty list

1[] an element of list [, 0 < i < Len(l) — 1

Table 1. Notations and functions used to manipulate lists

this type. If the lists have not the same type, their juxtaposition is obtained by
function List(l1,l2). An element e is an element of a list [ if and only if e is a value
of l. e €; I; reads: e is an element of list I;. A list /1 is included in a list [ , denoted
l; C lp, if and only if every element of /; is an element of ls. The empty list, ¢, is
included in all lists. Examples: the list (1 7 1) is included in the list (1); the list
(8 2)is included in the list (1 2 3). The list [ in which the first occurrence of an
element e has been removed is noted [\ e. The list I’ containing all the elements
that are elements of lists [, and I is noted I’ = [; M ly. This list preserves the
element ordering of ;. For instance, (1 2 5 3)M(1 21 3 4)=(1 2 3). The
definition of operator M is as follows:

€ ifli=eVip=c¢
ll M lg £ lll M l2 if ll = eli Ne ¢l ZQ (2)
6(1’1 M (lQ \6)) ifl; = el’l Ne €l

If the elements e of a list L are lists, the list of the elements of L with the
same index i in each e is noted L|;.

In our model, the meaning of the elements of e is often given by an identi-
fier. For readability, we shall use the identifier rather than its index. For in-
stance, assume that e is a list composed of a key, a name and a surname:
e = (key name surname). Let L be a list of elements e of this kind. The list
of the keys is noted L|;.,, the list of the names L|,4me and the list of the
surnames L| surname-

Very often, a list is built by the application of a function f to every element
of a list [. This operation corresponds to a higher-order function ¢ that takes
as arguments a function f and a list /. Function ¢ returns the list of the results
of the application of f to every element of [ . As function f could be complex,
it is not always practical to have it explicitly formulated. Often, it suffices to
express the modification done on each element. To alleviate the notation, the

! In functional programming, this corresponds to the map operation
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application of function ¢ is noted using operator A defined as follows:

— A )€ ifl=¢
géll fle)= e, f) = {f(e).go(l', f) otherwise [ = e.l’ (3)

For instance, let [ be a list of integer couples e = (z; zg). The list I’ of the
sums z; + z2 over the elements e of [ is easily defined with operator A:

I = A(e[()] +e[1])

e€l

3 Model Overview

3.1 Principles of GeNoC

Function GeNoC represents the transmission of messages on a generic communi-
cation architecture, with an arbitrary topology, routing algorithm and switching
technique. Its main argument is the list of messages emitted at source nodes. It
returns the list of the results received at destination nodes. Its definition mainly
relies on the following functions:

1. Interfaces are represented by two functions: send encapsulates a message
into a frame and injects the frame on the network; recv decodes the frame
to recover the emitted message. The main constraint associated to these
functions expresses that a receiver should be able to extract the encoded
information, i.e. the composition of functions recv and send (recv o send)
is the identity function. Note that this property is also present in Moore’s
model of asynchrony, as well as in Herzberg and Broy’s framework.

2. Routing and topology are represented by function Routing. The routing algo-
rithm consists of the successive application of unitary moves. For each pair
made of a source s and a destination d, Routing computes all the possi-
ble routes allowed by the unitary moves. The main constraint associated to
Routing is that each route from s to d effectively starts in s and uses only
existing nodes to end in d.

3. The switching technique is represented by function Scheduling. The schedul-
ing policy participates in the management of conflicts, and computes a set of
possible simulatenous communications. Formally, these commutations satisfy
an invariant. Scheduling a communication, .e. adding it to the current set of
authorized communications, must preserve the invariant, at all times and in
any admissible state of the network. The invariant is specific to the schedul-
ing policy. In our formalization, the existence of this invariant is assumed but
not explicitly represented. From a list of requested communications, function
Scheduling extracts a sub-list of communications that satisfy the invariant.
The rest represents the delayed communications

We stress the fact that all these functions are generic: their essential proper-
ties, called proof obligations or simply constraints, are formalized, but not their
explicit definition.
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3.2 TUnfolding Function GeNoC

Function GeNoC is pictured on Fig. 3. It takes as arguments the list of requested
communications and the characteristics of the network. It produces two lists as
results: the messages received by the destination of successful communications
and the aborted communications. In the remainder of this section, we detail the

basic components of the model.
Scheduling

Node A Interface Node B Interface
Node A Tecv recv Node B
- |Messages-—----------- Frames Frames ------------- Messages 0. ¢ .
Application send send Application
Node A Node B

Routing

Fig. 3. GeNoC': A Generic Network

The main input of GeNoC' is a list 7 of transactions of the form ¢ = (id A
msg; B). Transaction ¢ represents the intention of application A to send a mes-
sage msg; to application B. A is the origin and B the destination. Both A and B
are members of the set of nodes, NodeSet. Each transaction is uniquely identified
by a natural id. Valid transactions are recognized by predicate 75, (7, NodeSet).

The unfolding of function GeNoC' is depicted in Figure 4. For every message
in the initial list of transactions, function ComputeMissives applies function send
to compute the corresponding frame. Each frame together with its id, origin and
destination constitutes a missive. A missive is valid if the ids are naturals (with no
duplicate); the origin and the destination are members of NodeSet. A valid list,
M of missives is recognized by predicate Mg, (M, NodeSet). Then, function
Routing computes a list of routes for every missive. If the routing algorithm
is deterministic, this list has only one element. Once routes are computed, a
travel denotes the list composed of a frame, its id and its list of routes. A list
V of travels is valid if the ids are naturals (with no duplicate). Such a list is
recognized by predicate Vi, (V). Function Scheduling separates V into a list
Scheduled of scheduled travels and a list Delayed of delayed travels. The results of
the scheduled travels are computed by calling recv. Delayed travels are converted
back to missives and constitute the argument of a recursive call to GeNoC'.
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To make sure that this function terminates, we associate a finite number of
attempts to every node. At every recursive call of GeNoC, every node with a
pending transaction consumes one attempt. The association list att stores the
attempts and att[i] denotes the number of remaining attempts for the node i.
Function SumOfAtt(att) computes the sum of the remaining attempts for all the
nodes and is used as the decreasing measure of parameter att. Function GeNoC
halts if all attempts have been consumed.

The first output list R contains the results of the completed transactions.
Every result r is of the form (id B msg,) and represents the reception of a
message msg, by its final destination B. Transactions may not run to completion
(e.g. due to network contention). The second output list of GeNoC' is named
Aborted and contains the cancelled transactions.

T:t=(id A msg B)

ComputeMissives

M:m=(id A frm B)

Routing

ToMissives V:v = (id f Routes)

Scheduling
false

[SumOfAtt(att) L0 }Delayed Scheduled

true

ToMissives ComputeResults

A:abt = (id A frm B) R : rst = (id B msg)

Fig. 4. Unfolding of function GeNoC

The correctness of GeNoC'is expressed by two properties. First, the messages
that are received are identical to the messages that were sent. Second, each mes-
sage is received by its expected destination. Formally, this is expressed by the
formula below, which shows that each result rst is obtained from a unique trans-
action t that has the same identifier, the same message and the same destination
as rst.

Idg(rst) = Id7(t)
Vrst €, R, €, T, N Msgp(rst) = Msgr(t) 4)
A Destr(rst) = Destr(t)
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4 Details of the Functional Model

4.1 Nodes and Parameters

Nodes are defined on an arbitrary domain, GenNodeSet, with characteristic func-
tion ValidNodep:

Vz, ValidNodep (x) < = € GenNodeSet (5)

The set of nodes of a particular network is noted NodeSet. In all this sec-
tion, we shall use a subscripted curly D to represent a domain of elements. For
instance, D,y is the domain of messages, Dy, is the domain of frames, etc.

4.2 Interfaces

Function send builds a frame from a message and function recv builds a message
from a frame. Their functionality is:

send : Dysg — Dyrm, (6)

recv : Dipm — Dinsg (7)

The constraint on these functions is that their composition is the identity
function. The following proof obligation has to be relieved:

Proof Obligation 1 Validity of The Interface Functions.

Vmsg € Diysg, Tecv o send(msg) = msg

4.3 Routing

Principles and correctness criteria Let d be the destination of a frame
standing at node s. In the case of deterministic algorithms, the routing logic of
a network selects a unique node as the next step in the route from s to d. This
logic is represented by function L(s,d). The list of the visited nodes for every
travel from s to d is obtained by the successive applications of function £ until
the destination is reached, i.e. while £(s,d) # d. The route from s to d is:

s, L(s,d), L(L(s,d),d), LL(L(s,d),d),d),...,d

A route is computed by function pg4. that recursively applies function £ from
the source node to the destination node. Function pg4e; is defined as follows:

A fd ifs=d
Pdet(s,d) = {S-Pdet(£(57d)7d) otherwise ®)

In the adaptive case, the routing logic offers at each intermediate node several
"next" nodes. Several routes are possible between a source s and a destination
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d. In that case, the routing algorithm is represented by function p,ge:, which
computes all possible routes between nodes s and d.

To cover the general case, the routing algorithm is represented by function
p, which takes as arguments a source node s and a destination node d. This
function returns the list of the possible routes between s and d. Its functionality
is the following, where C denotes a list of lists of nodes:

p: GenNodeSet x GenNodeSet — C 9)

Routing Termination Since function p is recursive, it must be shown to termi-
nate, both to ensure the liveness of the network, and to be accepted by a proof
assistant.

Let S be a set and <g be a total ordering relation on S. We recall that
(S, <s) is a well-founded structure if any subset of S has a minimal element for
<g. Typically, the proof of termination of a function is done by showing that
some measure on its parameters is decreasing on a well-founded structure for
every recursive call of that function.

Let us return to the deterministic case and function pge;. Let (S, <g) be
a well-founded structure (most often S is the set of naturals), and mes be a
measure on S.

mes : GenNodeSet x GenNodeSet — S

To prove that pg.; terminates, one needs to prove that the "governing" con-
dition for the recursive call, namely s # d, implies that mes is decreasing. The
following proof obligation has to be satisfied:

Proof Obligation 2 Termination Condition for p4;.

Vs,d € GenNodeSet, Ames : GenNodeSet x GenNodeSet — S,
s #d = mes(L(s,d),d) <s mes(s,d)

Routing Correctness The correctness of a route is defined according to a missive.
A route r is correct with respect to a missive m if r starts with the origin of m,
ends with the destination of m and every node of r belongs to the set of nodes of
the network. Every correct route has at least two nodes. The following predicate
defines these conditions:

Definition 1. ValidRoutep.

r[0] = Orgpq(m)
ValidRoutep(r,m, NodeSet) = { A Last(r) = Dest p1(m)
A1 C; NodeSet A Len(r) > 2

Whether routing is deterministic or adaptive, this predicate must be satisfied
by all routes produced by function p. The following proof obligation has to be
relieved:
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Proof Obligation 3 Correctness of routes produced by p.

VM, Mgy, (M, NodeSet)
= Vm €, M,Vr € p(Org r(m), Dest p(m)), ValidRoutep(r, m, NodeSet)

Definition and Validation of Function Routing Function Routing takes
as arguments a missive list and the set NodeSet of nodes of the network. It
returns a travel list in which a list of routes is associated to each missive. The
functionality of Routing is the following:

Routing : Daq x P(GenNodeSet) — Dy (10)

Function Routing builds a travel list from the identifier, the frame, the origin
and the destination of missives.

Definition 2. Function Routing
Routing(M, NodeSet) =

m4/1 List(Id p(m), Frmaq(m), p(Org o (m), Dest p(m)))

Concerning data types, one has to prove that function Routing produces a
valid travel list if the initial missive list is valid.

Proof Obligation 4 Type of Routing.
VM, Mg, (M, NodeSet) = Visy, (Routing(M, NodeSet))

The definition of function Routing preserves the properties proved about the
previous function p. Function Routing terminates and the routes of every travel
satisfy predicate ValidRoutep. In a missive list, identifiers are unique. For every
travel v produced by function Routing, there is a unique missive m such that its
identifier equals the identifier of v and the frame of v equals the frame of m.

Theorem 1. Missive/Travel Match.

VM, Misip (M, NodeSet) =

Vv €; Routing(M, NodeSet), 3m €; M, { [ay(v) = Idp(m)

A Frmy(v) = Frma(m)
Proof. By definition of Routing.

Travels delayed by the scheduling function - but produced by function Routing
- are converted back to missives by function ToMissives. The latter builds mis-
sives in the following manner. It takes the identifier and the frame of a travel.
The origin and the destination of a missive are the first and the last node of a
route. Function ToMissives is the reverse of function Routing.

Theorem 2. Routing ToMissives.

VM, Mg, = ToMissives o Routing(M, NodeSet) = M
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Proof. Frames are not modified by function Routing. Since the latter satisfies
predicate ValidRoutep for all routes of all travels that it produces, the first and
the last node of any route are equal to the origin and the destination of the
initial missive.

4.4 Scheduling

Function Scheduling takes as arguments the travel list produced by function
Routing and the list att of the remaining number of attempts. It updates att and
returns two travel lists: the list Scheduled and the list Delayed. The functionality
of Scheduling is:

Scheduling : Dy x AttLst — Dy x Dy x AttLst (11)

A scheduled travel only keeps one of the possible routes for the missive. For
technical reasons, we avoid the introduction of a new data type and do not make
a special case of scheduled travels: they contain a list of routes, even if this list
has only one element.

The validation of Scheduling requires the satisfaction of several proof obliga-
tions.

~ In the following, the projection of a vector on one of its dimensions is denoted
m], with the following functionality:

wf:Dlngx---xDj—ﬂ)i (12)

For instance, 7% (21, 22) = z; and 75 (77, 12) = 2.
First, if the first parameter V of Scheduling is a valid travel list, the lists
Scheduled and Delayed are also valid.

Proof Obligation 5 Type of Scheduled and Delayed.
Let Scheduled be 3 o Scheduling(V, att) and
Delayed  be w3 o Scheduling(V, att), then :

VYV, Vistp (V) = Vistp (Scheduled) A Vi, (Delayed)

At each scheduling round, all travels of V are analyzed. If several travels are
associated to a single node, this node consumes one attempt for the set of its
travels. At each call to Scheduling, an attempt is consumed at each node. If all
attempts have not been consumed, the sum of the remaining attempts after the
application of function Scheduling is strictly less than the sum of the attempts
before the application of Scheduling. This is expressed by the following proof
obligation:

Proof Obligation 6 Function Scheduling consumes at least one attempt.
Let natt be 73 o Scheduling(V, att), then:

SumOfAtt(att) # 0
— SumOfAtt(natt) < SumOfAtt(att)
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The list of the delayed travels must be a sublist of V. Formally, one ensures
that for every delayed travel dir, there exists a unique initial travel v such that
dtr and v have the same identifier, the same frame and the same routes. Hence
the following proof obligation:

Proof Obligation 7 Correctness of the delayed travels.
Let Delayed be w3 o Scheduling(V, att), then:

Idv(dt’r’) = Idy(’U)
VYV, Visip (V) = Vdtr € Delayed,3v €, V, § A Frmy(dtr) = Frmy(v)
A Routesy (dir) = Routesy (v)

Since the scheduling function only keeps one route for every scheduled travel,
the list Scheduled is not exactly a sublist of the initial travel list V. The identifiers
and the frames are not modified. We check that the route, or more generally,
the routes of a scheduled travel belong to the routes of the corresponding initial
travel. Formally, we ensure that for every scheduled travel str, there exists a
unique initial travel v such that str and v have the same identifier, the same
frame and that the routes associated with str are among the routes associated
with v.

Proof Obligation 8 Correctness of the scheduled travels.
Let Scheduled be 73 o Scheduling(V, att), then:

Idy (str) = Idy(v)
VYV, Visip (V) = Vstr € Scheduled, v €, V, < A Frmy(str) = Frmy(v)
A Routesy(str) C Routesy(v)

Since routes of travels in Scheduled are routes of travels of V, function Scheduling
preserves the correctness of routes. If routes of V satisfy predicate ValidRoutep,
so do the routes of Scheduled.

A travel cannot, at the same time, be scheduled and delayed.

Proof Obligation 9 Mutual exclusion between Delayed and Scheduled.
Let Scheduled be 73 o Scheduling(V, att) and
Delayed be 3 o Scheduling(V, att), then :

YV, Visip(V) = Delayed ;4 M Scheduled |4 = €

4.5 Definition and Validation of GeNoC

The definition of function GeNoC and its correctness proof are summarized
in Fig. 5. The recursive call in GeNoC only involves functions Routing and
Scheduling. We define function GeNoC'; to be the subfunction computing this
recursion. It takes as arguments a list M of missives, the set NodeSet of nodes
of the network, the list att of the attempt numbers and a travel list V that is
initially empty. It returns two lists: a travel list that contains the frames received
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T :t = (id A msg B)
ComputeMissives

M:m = (id A frm B) GeNoCy (GeNoCM)

Lemma 1
Routing Proof : by induction
Induction Step
o i ¢(Scheduled) A ¢(Delayed)
ToMissives Vv = (id frm Routes) Case 1. Pr.Obl. 9 A Pr. Obl. 4
. = ¢(Scheduled)
falsd /\ Scheduling Case 2. Pr.Obl. 8
S A Induction Hypothesis
[SumOfAtt(att) =0 ]—*Delayed Scheduled = ¢(Delayed)
trie
ToMissives ComputeResults

A:abt = (id A frm B) R st = (id B msg)

Fig. 5. Proof of GeNoC

by the destination nodes of the missives in M and a list that contains the aborted
missives. Its functionality is the following:

GeNoC'y : Dapg x P(GenNodeSet) x AttLst x Dy — Dy X Dy (13)

If all attempts have been consumed, GeNoC; returns the travels accumulated
in V and the list of the remaining missives, i.e. the aborted missives. Otherwise,
the travels produced by function Routing are passed to function Scheduling.
The scheduled travels are added to the list V. The delayed travels are converted
to missives and constitute an argument of the recursive call to GeNoC;. The
remaining arguments are the updates of the lists att and V.

Definition 3. Definition of GeNoC;.
GeNoC'(M, NodeSet, att,V) =
if SumOfAtt(att) = 0 then

List(V, M)
else

Let(ScheduledRtg DelayedRtg att;) be

Scheduling(Routing(M, NodeSet), att) in
GeNoCy(ToMissives(DelayedRtg), NodeSet, atty, ScheduledRtg LIV)

endif

The correctness of function GeNoC', is obtained if for every element ctr of
the completed travels G, the frame and the last node of the route 2 of ctr are
equal to the frame and the destination of the missive m in M that has the same
identifier as ctr. This is expressed by the lemma below:

% Note that to keep our notations consistent, a travel is always made of a list of routes,
even if this list has only one element.
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Lemma 1. Correctness of GeNoC;.

Idy(ctr) = Id p(m)
Vetr €, G,3'm €, M, < A Frmy(ctr) = Frma(m)
AVr € Routesy(ctr), Last(r) = Dest ap(m)

Where:
G = 7% 0 GeNoC (M, NodeSet, att, €)

Proof. This theorem is proven by induction on the structure of function GeNoC.
It follows from proof obligation 9 that the scheduled and the delayed travels
can be proven separately. Scheduled travels have a correspondance with the
travel list input in Scheduling (proof obligation 8). Function Routing produces
correct routes (proof obligation 3), which are still correct after Scheduling. So,
frames and destinations after Scheduling match the missives input to function
Routing. The delayed travels are proven using the induction hypothesis and proof
obligation 7.

Function GeNoC takes as arguments a list 7 of transactions, the set NodeSet
of nodes of the network, the list att of attempt numbers. It returns the list R
containing the results and the list A containing the aborted missives. It has the
following functionality:

GeNoC : Dy x P(GenNodeSet) x AttLst — Dr X D (14)

Function ComputeMissives applies function send to the message of each
transaction of the list 7. This function produces a list of missives from the
initial transactions. Its functionality is the following:

ComputeMissives : Dy — Dy (15)

It is defined as follows:

Definition 4. ComputeMissives.
ComputeMissives(T) £

tAG/zL List(Idr(t), Orgy(t), send(Msg+(t)), Destr(t))

Function ComputeResults applies function recv to each frame of a travel list
to produce a list of results. Its functionality is the following:

ComputeResults : Dy — Dr (16)

It is defined as follows:

Definition 5. ComputeResults.
ComputeResults(V) =

t/lv List(Idy(tr), Last(Routesy (tr)), recv(Frmy(tr)))
rE]
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Function GeNoC' is defined using these functions and GeNoC'. Function
ComputeMissives gives the first argument of GeNoC'; from the transaction list
7. The last argument of GeNoC is the empty list. The aborted missives are
produced by function GeNoC';. The definition of GeNoC' is the following;:

Definition 6. Definition of GeNoC.
GeNoC(T, NodeSet, att) =
Let (Responses Aborted) be
GeNoC':(ComputeMissives(T ), NodeSet, att, €) in
List(ComputeResults( Responses), Aborted)

The correctness of GeNoC' is defined by expression 4 defined in section 3.

Theorem 3. Correctness of GeNoC.
Let R be 72 o GeNoC (T, NodeSet, att) in

Idg (rst) = Id7(t)
Vrst €, R, 3t €, T, N Msgg(rst) = Msgr(t)
A Destr(rst) = Destr(t)

Proof. The last term of the conjunct is directly obtained from Lemma 1. From
this lemma, it also follows that the frames produced by function ComputeMissives
are identical to the frames converted in messages by function ComputeResults.
From proof obligation 1 on the interfaces, it comes that messages of results are
equal to messages in the initial transaction list.

5 Methodology and Case Studies

We have embedded our theory in the logic of the ACL2 theorem proving sys-
tem [15]. Despite the fact that ACL2 is first order, and does not support the
explicit use of quantifiers, the choice of this system offered a number of advan-
tages:

— The input language being a subset of Common Lisp, the functions are ex-
ecutable. It is realistic to execute a model on test benches, and visualize
the behavior of a particular network specification, as a first debugging step
before proceeding with human time consuming proofs. This feature is im-
portant also for quick software prototyping, as a basis of discussion with
network designers.

— A large number of existing previous works are publicly available, and de-
veloping a new theory benefits from many layers of expert developments
that extend the system first principles. Libraries of functions definitions and
proven theorems can be compiled and stored for later use, restoring an en-
vironment is a single statement.

— Very powerful definition mechanisms, such as the encapsulation principle,
allow to extend the logic and reason on undefined functions that satisfy
one or more theorems, provided one witness can be exhibited. We made an
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extensive use of this principle to prove the correctness of GeNoC assuming
the satisfaction of the constraints on the functions that formalize the network
constituents.

— The combined use of typing predicates, list filtering, implication and recur-
sive function definitions over list arguments provides a means to express
universally quantified properties over domains, and the statement “there ex-
ists a unique element such that”.

Applying a systematic, and reusable, mode of expression (see [25] for details),
the complete GeNoC' formalization could be performed in the ACL2 logic, with
the above listed benefits, and we thus benefited from the high degree of auto-
mated mechanized reasoning in ACL2.

The proof of the main theorem about GeNoC and its modules involve 71
functions, 119 theorems in 1864 lines of code. Only one fourth of these is dedi-
cated to the encapsulation of the different modules. Most of the definitions and
theorems concern data types and the proof of the overall correctness. This makes
GeNoC ‘“relatively simple” to use, because users will only be concerned with the
modules, as we shall now discuss.

5.1 Overview of the Applications
In Fig 6, we summarize concrete instances of GeNoC'. Any combination of these

different concrete instances is defined and validated by generic function GeNoC,
that means without any additional effort.

Network Scheduling Policies

- Circuit Switching
Scheduling - Packet Switching
Bus Arbitration

- AMBA AHB Arbiter
Node A Interface Node B Interface
recy recy
************** Frames Frames -------------
send send
OSI Layer 1 Deterministic Routing

- Bi-#-M - Octagon
OSI Layer 2 Routing - XY routing
- Ethernet Adaptive Routing

- Double Y Channel

Fig. 6. Concrete Instances of GeNoC'
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We have shown that the circuit [23] and the packet [24] switching techniques
are concrete instances of Scheduling. Based on previous work [22], we proved
that bus arbitration in the AMBA AHB is also a valid instance of the generic
scheduling policy. From Moore’s work on asynchrony [17], we proved that his
model of the biphase protocol constitutes a valid instance of the interfaces. We
have modeled an Ethernet controler® and we are investigating its compliance
with GeNoC'.

In the next subsections, we illustrate our approach on the Octagon network.
We first detail the methodology associated with the routing algorithm. Then,
we apply it to the routing algorithm of the Octagon. A model and a proof of
this network have already been presented [23], but with a different methodology.
We have also shown that XY routing in a 2D mesh is also a valid instance of
our generic model [24]. Finally, we are currently working on the proof that an
adaptive routing algorithm - the double Y channel algorithm in a 2D mesh - is
a valid instance of function Routing. More details about all these studies can be
found in Schmaltz’s thesis [21].

5.2 Concrete instances of function Routing

The topology of a network determines the node numbering and the unitary
moves allowed between two adjacent nodes. The routing function is defined by
the successive applications of these moves. Before defining a particular routing
function, one has to define the set of nodes.

Node Definition. Before all, one has to define the node definition domain, that
is a particular instance of predicate ValidNodep, noted ValidNodepy. The generic
definition domain GenNodeSet becomes a particular domain GenNodeSety, the
naturals for instance. One has to give a concrete definition of Equation 5, that
is:

Va, ValidNodep,(z) < x € GenNodeSety (17)

Routing Definition First, we identify the moves allowed between two adjacent
nodes. As we consider regular network (or a regularization of an irregular net-
work), these moves are all identical at each point of the network. Identifying
these unitary moves defines a concrete instance, £y, of the routing logic £. The
routing function results of the successive application of these unitary moves, that
is:

pals,d) = {s.pﬁ(ﬁﬁ(s,d),d) otherwise (18)

The distance between the current position of a message and its destination is
deduced from the topology. The distance between some node s and some node d
is noted dist(s, d). Most often, this distance is the measure used to prove that the
routing function terminates. It suffices to prove that each unitary move reduces

3 This work has been done during a visit of the first author at the University of Texas
at Austin, in cooperation with Warren Hunt.
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this distance. The distance is a function that returns a natural for any node pair.
This function has the following functionality:

dist : GenNodeSety x GenNodeSety — N (19)

To prove the termination of the routing function, p;, one has to prove that this
function satisfies a concrete instance of proof obligation 2:

Vs,d € GenNodeSety, s # d = dist(Ly(s,d),d) < dist(s,d) (20)

The validity of a route is tested by predicate ValidRoutep. The definition of
ValidRoutep is valid for all networks, it needs not be redefined (see Definition
1).

Finally, to validate the concrete routing function, it suffices to prove that
is satisfies predicate ValidRoutep for the set NodeSety of concrete nodes of the
network:

VM, Mgy (M, NodeSety)
=Vm €; M,Vr €; py(Orgs(m), Desta(m)), ValidRoutep(r, m, NodeSety)
(21)
A function that matches the generic definition Routingy computes a list of
routes for each missive of a list M:

Definition 7. Concrete Instance of Function Routing.

Routing,(M, NodeSets) =

1744 List(Ida(m), Frmag(m), ps(Orgar(m), Destag(m)))

To prove the compliance of this function with GeNoC, we still need to prove
that Routing, produces a valid travel list if the initial list M is a valid list of
missives:

VM, Mg, (M, NodeSety) = Vi (Routings (M, NodeSety)) (22)

We apply this methodology to the Octagon network presented in Section 2.1.

5.3 Octagon Case Study

Octagon Node Definition Our Octagon model considers an arbitrary, but
finite, number of nodes, noted NumNode. This number is a natural, multiple of
4. So, we can define that number using a natural N, NumNode = 4N . Predicate
ValidNodep ., takes as arguments a node x and number N:

VN € N,Vz, ValidNodepoet(x, N) & v € NAx < 4N (23)
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Octagon Routing Function Let s be the current node and d the destination
node. The three unitary moves in the Octagon are defined as:

Clockwise (s, NumNode) £ (s + 1) mod NumNode

CounterClockwise(s, NumNode) = (s — 1) mod NumNode

NumN ode
2
These moves are grouped into function £ .. The relative address is RelAd =
(d—s) mod 4N. If the current node is the destination, the message is consumed.
If the relative address is positive and less than N, the message moves clockwise.
If this address is between 3N and 4N, it moves counterclockwise. Otherwise, it
moves across. The definition of Lo, is as follows:

Across(s, NumNode) = (s + ) mod NumNode

Definition 8. Unitary moves in the Octagon.

s if RelAd = 0
Lowls, d, N) 2 Clockwise(s, 4N) if 0 < RelAd < N
T CounterClockwise(s, 4N ) if 3N < RelAd < 4N
Across(s, 4N) otherwise

Routing function po.; is defined as the recursive application of the unitary
moves:

Definition 9. Routing Function of the Octagon, po.:.

(5. d.N) 2 d ifs=d
POt @)= s poet(Loet(s,d, N),d, N) otherwise

As there are two ways of traversing the Octagon, there exist two distances
between two nodes. The measure used to prove that function po.; terminates is
the minimum between these two distances:

mesoct(8, d, NumNode) = Min[(d — s) mod NumNode, (s — d) mod NumNode]

To prove that the octagon routing function terminate, it suffices to prove
that the unitary moves reduce this distance:

Theorem 4. Octagon Routing Function Terminates.
Vs,d € GenNodeSetoes, s # d =

mesoct(Loct(s, d), d, NumNode) < mesoct (s, d, NumNode)

Proof. The proof is decomposed according to the different moves. Each one of
them reduces the distance. The proof is a huge case split because of functions
Min and mod. In ACL2, the proof is decomposed in more that 1200 cases. It
only requires 10 additional lemmas about function modulo in addition to the
latest arithmetic library [18]. Two lemmas are also required to drive ACL2 to
the right case split. The proof is automatically performed in less that 100 seconds
on a Pentium IV 1,6 GHz, 256 MB of memory and running under Linux.
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To show that function po.; constitutes a valid instance of the generic rout-
ing function, we need to prove that it produces routes which satisfy predicate
ValidRoutep:

Theorem 5. Validity of Octagon Routes.

VM, Mlstp (M, NodeSetoct)
= Vm €; M,V €, poct(Orgap(m), Destag(m)), ValidRoutep(r, m, NodeSetoet)

Proof. By induction on the route length.

Finally, function Routing ., follows the generic signature:

Definition 10. Octagon Routing, function Routing,,
Routingoct(M, NodeSeto.t) =

4/[ List(Idp(m), Frmaq(m), List(poct (Orgam(m), Destaq(m))))
We still need to prove that this function produces a valid travel list. The
proof of the following theorem is trivial:

Theorem 6. Type of Octagon Routes.
VM, Misip (M, NodeSetoct) = Visty (Routingoet (M, NodeSetoet))

Table 5.3 shows details about the ACL2 modeling and proof. ACL2 is run on
a Pentium IV at 1.6 GHz with 256 MB under Linux. The Octagon specification
and proof are relatively small, an important point for the initial high level design
step. In the proof, a huge amount of time is devoted to arithmetic reasoning.

Nbr. of | Nbr. of |Proof Time| Size

functions|theorems| (seconds)
OctagonNodeSet 5 4 <1 70 lines
Lemmas on mod 0 10 <3 150 lines
Routing 19 41 ~ 720 955 lines
Total 21 64 < 740 |1325 lines

Table 2. Functions, theorems and proof time for the definition and validation
of the Octagon

6 Conclusion and Future Work

We have presented a generic model for communication architectures. It is formal-
ized by function GeNoC, which is defined by three key components: interfaces,
a routing algorithm and a scheduling policy. The generic model does not assume
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any particular definition of these components. It only relies on a set of proof
obligations (or constraints) associated with each component. The correctness of
GeNoC includes the proof that messages are either lost or reach their expected
destination without modification of their content. This proof is deduced from the
proof obligations only. Hence, the specification and the validation of a particular
communication architecture amounts to give an explicit definition to each com-
ponent and to prove that these definitions satisfy the corresponding constraints.
Moreover, each component is self-contained and can be specified and validated
in isolation.

To validate our approach, we have applied it to a variety of architectures that
constitute as many concrete instances of our theory: some come from industrial
systems, like the AMBA bus or the Octagon network, others are more academic
examples, like XY or double Y channel routing in a 2D mesh, packet and circuit
switching techniques or the biphase mark protocol Bi-¢-M.

The current GeNoC' definition is very abstract and very simplified. Succes-
sive, proven correct refined models are needed before reaching the level of details
of an implementation specification. Our work is currently being extended in two
different directions. At TIMA, our research involves the application of GeNoC to
wormhole routing, and the elaboration of a refinement method to derive the cor-
rectness of a particular hardware implementation. In Germany, the Verisoft [1]
project aims at developing methods and tools for the pervasive verification of
computer systems. Theories have already been developed about processors [4],
operating systems [9], compilers [16], memories [7], and I/O devices [13]. We
aim at verifying a complete distributed system where each node will contain
each one of the above components and where nodes are connected through a
time triggered bus in a FlexRay flavor. A pencil and paper proof of such a sys-
tem already exists [3]. From this proof, we have sketched additional constraints
on the interfaces to ensure proper communication in a real time context [20].
Ultimately, GeNoC will be used as the integration of the different theories in a
single framework.
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