TOWARDS AN AUTOMATIC PARAMETRIC
WCET ANALYSIS!

Stefan Bygde and Bjorn Lisper
School of Innovation, Design and Engineering, Milardalen University
Box 883, S-721 23 Visteras, Sweden
{stefan.bygde, bjorn.lisper} @mdh.se

Abstract

Static WCET analysis obtains a safe estimation of the WCET of a program. The timing behaviour of
a program depends in many cases on input, and an analysis could take advantage of this information
to produce a formula in input variables as estimation of the WCET, rather than a constant. A method
to do this was suggested in [12]. We have implemented a working prototype of the method to evaluate
its feasibility in practice. We show how to reduce complexity of the method and how to simplify parts
of it to make it practical for implementation. The prototype implementation indicates that the method
presented in [12] successfully can be implemented for a simple imperative language, mostly by using
existing libraries.

1. Introduction

Most state-of-the-art static WCET analyses derive a constant time estimation of the WCET of a pro-
gram. In the general case, this estimation has to be pessimistic in order to be safe. However, many
tasks are re-configurable and/or reused in different applications and the worst case derived by the
analysis applies only to one configuration/input. The real WCET for a fixed configuration or input
data might be significantly tighter than the global worst case. One analysis could be made for each
configuration or input data, and new analyses can be made as needed. This, however, is tedious,
inflexible and requires that the analysis tools are available whenever the data or configuration of the
program is changed. In [12] a static analysis which provides a safe parametric estimation of the
WCET as a formula of input variables rather than as a constant value is presented. We have done a
prototype implementation of this analysis and we will present some of the technical issues that arise in
a practical implementation. The reason for the implementation is to test the feasibility of the analysis
framework in practice. The contributions of this paper are

e Showing that the analysis can be implemented for simple programs (see Section 2)
e Reducing complexity of the analysis by reducing the number of variables

e Simplifying the method in [15] for counting solutions of presburger formulae to count points
inside convex polyhedra

o Identifying the need for simplification of the resulting parametric WCET formula
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Section 2 briefly summarises the method given in [12] and in Section 3 we show how we have im-
plemented it. Section 4, shows how to simplify symbolic counting of the number of solutions based
on [15]. Then, in section 5, we show how to reduce the complexity of the problem by eliminating
variables from the calculation phase. In Section 6, we discuss the problem with a big and complex
solution and suggestions on how to solve it. Finally we present related work in Section 7 and conclu-
sions and future work in Section 8.

2. Method

We first introduce some terminology and make a few assumptions. By program we shall mean a
small program, a task or a function which has a well defined set of input parameters. Furthermore,
we assume that the analysed program is terminating and deterministic, and that variables that affect
the program flow are integers or Booleans. We will refer to program points as the edges of the control
flow graph (CFG). The analysed program will be denoted P, and its set of program points Qp. We
shall assume that any program uses a set of variables Vp and that each program has a set of input
parameters Zp C Vp which has two properties: 1) They affect the program flow and 2) They are not
changed during execution of P. As long as these properties are fulfilled the set of input variables can
be chosen arbitrarily. Now we will for completeness summarise parts of the method described in [12].

The method assumes that there exists an analysis producing structural constraints> of the program
and a low-level analysis that produces a WCET estimation for all atomic parts (program points) of the
program. The idea here is to have the execution count of each program point bounded from above by
a parameter and to perform an parametric IPET calculation. Other constraints, such as constraints on
paths can also be bounded by parameters. The result of the parametric IPET calculation is a function
expressed as a formula

PCp: NI%rl - N

where the domain is a vector where each component represents the maximum bound on the execu-
tion count for a program point. We call the parameters in this vector execution bound parameters.
Furthermore, we call the function PCp Parametric Calculation. The maximum execution count for
individual program points is often dependent on input parameters. The arguments of PCp will there-
fore be computed in terms of Zp. Formally, the arguments will be computed by a function

MECp : Zrl — NICP|

where the domain vector is an instantiation of the input parameters. We call this function the Maxi-
mum Execution Count function. When the parametric calculation and the maximum execution count
functions have been computed, we can obtain the WCET estimation as a parametric formula in the
input variables as the function

PWCETp : Z"?! = N = PCp o MECp .

The analysis boils down to finding the functions PCp and MECp for a given program P. The function
PCp can be obtained by performing parametric IPET calculation using parametric ILP [9]. The
MECp function can be obtained by observing the fact that in a deterministic, terminating program,
each run-time state has to be unique®. Thus, the number of times a program point can be visited

2Constraints imposed by the graph structure of the CFG only
3If exactly the same state is encountered twice, the determinism of the program enforces the program to repeat the same
sequence of states infinitely.



Program Hardware

Timing Model

Abstract Structural Low-Level
Interpretation Analysis Analysis
CVarltab.Iet Structural Atomic
onstraints Constraints WCETs
Input . .
Symbolic Parametric
P t .
arameters _) Counting IPET
MEC
PC

Combination

v

PWCET

Figure 1. Work flow

is upper bounded by the number of distinct run-time states. Abstract Interpretation [6] can derive
a super set of the set of possible run-time states at each program point. A relational domain is an
abstract domain that preserves some of the relations among variables in the analysis. If the abstract
domain used in the abstract interpretation is relational, then some of the variables can be used to
parameterise the set of possible run-time states w.r.t. other variables. The maximum execution count
function can then be obtained by counting the number of states contained in the solutions of the
abstract interpretation with respect to the parameters. The work flow is shown in Figure 1.

3. Implementation

We have made a prototype implementation of the analysis presented in the last section. We represent
programs as CFGs where nodes are start, stop, assignment or conditionals. Furthermore, all variables
are assumed to be integers or Booleans. We do not consider function calls or pointers and the expres-
sions in assignments and conditionals have to be linear. The reason for this restriction is that most
relational abstract domains can only capture linear relations among variables. Since the computational
tasks required to realise this are quite modular, we have implemented different parts independently
of each other and mostly by reusing existing code and libraries. We present for each box in Figure 1
the corresponding implementation, except for structural analysis and low-level analysis which are as-
sumed to exist. In our prototype we simply assume that all atomic parts of the program have the same
constant WCET of ten clock cycles, but this could easily be replaced by the real results of a low-level
analysis. Since we represent our program as a CFG, we can easily derive the structural constraints for
each node by requiring that its in-flow should be equal to the out-flow.



Figure 2. Example program L where all program points have been labeled

3.1. Abstract Interpretation

The main design decision of the abstract interpretation is the choice of abstract domain. The require-
ments of the abstract domain is that, in order to be parametric, it should be relational and that the
domain can derive bounds on the values (to be able to count states). We have implemented the ab-
stract interpretation with the polyhedral domain [7] using the new polka library [13]. Such an abstract
interpretation can derive linear constraints among variables, enclosing the possible values of the pro-
gram variables at a program point inside a convex polyhedron in n dimensions, where n is the number
of variables. A simple framework for abstract interpretation for our CFGs has been implemented in
C++. The implementation allows support for other abstract domains to be added with little effort. The
polyhedral domain has exponential complexity in the number of dimensions (in this case, variables)
but has a quite good precision. As an example, consider the CFG of a program we call L in Figure 2.
Performing polyhedral abstract interpretation will yield a vector @ of abstract values for each program
point as follows:

ag =T a3 ={i>0,i>n+1}

ap={i=0} as={0<i<n} (1)

where T means ’no information”.

3.2. Counting States

To obtain the MECp function from the result of the abstract interpretation, we need to count the
number of integer solutions for each system, parameterized in the set of chosen input parameters
Zp. We have implemented a simplification of the method in [15]. The method counts the number
of solutions to a given presburger formula, of which a system of linear inequalities is a subset. We
describe our modelling and simplification of the method in Section 4. The result from the symbolic
counting represent the function MECp. For completeness we now sketch parts of the method in [15],
it computes the result of generalised sums (XV : P : z) where V is a set of variables to sum over,
P is a presburger formula (the guard) and x is any formula. The result of such a sum is the sum for
all variables v € V' which satisfy P of z. As a simple example, (X{v} : I < v < u : v) is equal to
> w_, v. The general method to compute (XV : P : x) is to choose a variable v € V and compute the
general sum
(EVA\{v}: P :(Z{v}:l<v<u:x))



where P’ is P where all information about v is removed. Since (X{v} : [ < v < u : x) is equivalent
to > v_, x, known formulae of summations over the form of = can be used to simplify it. If V' \ {v}
is non-empty another variable is chosen and the procedure is repeated until V' = &, and the result is
a sum of generalised sums (X : G : ) which should be read as ”z" if G holds, else 0”. This result is
symbolic in the variables occurring free in x or P but not in V. The situation is however not always
this easy; variables can have several lower/upper bounds or be unbounded and bounds can be negative
and/or rational. All these cases are handled in [15].

Given a vector @ = (ag Gy ... Gm—1), With m = |Qp| components, where each component is a convex
polyhedron obtained from the abstract interpretation, we define the image through MECp of the k-th
component as .

MECP<Z>k = (E(Vp \Ip) L Qg 1)

for £ = 0...m — 1. The right hand side is a formula of the elements in Zp which are instanced with the
elements of 7. Consider the CFG L in Figure 2 and the result @ from the abstract interpretation in (1).
For L we have V;, = {i,n} and Z;, = {n} so by symbolically counting the number of integer points
inside the polyhedra of will give the MEC, function as follows (we will here write > for 3{i}).

MEC,(n)s=(2i:1<i<n+1:1)=(X:n>0:n+1)

MEC[(n)o = (Xi: @ : 1) = oo (unbounded sum)
MECp(n)y =(Xi:i=0:1)=1
MECL(n)s=(Xi:i>0:1) =00 2
MECL(n)s=(Xi:i>0,i>n+1:1) =00
MEC.(n)s=(2i:0<i<n:1)=(X:n>0:n+1)

(n)s = (

Now MEC/, maps the value of n to the number of possible states (number of points inside polyhedra)
at each program point of the program.

3.3. Parametric IPET

Parametric Integer Programming [9] is essentially a parameterized version of the (dual) simplex algo-
rithm and may be used to solve parametric IPET problems. A tool called PipLib exists [14], it can be
used to solve a parametric IPET problem, where the answer is given in terms of the parameters. With
structural constraints A7 < b and atomic WCETs from the low-level analysis ¢, we can use PipLib to
maximise

Atz subject to AT < band <p

where p'is a vector of parameters where each component p; corresponds to a symbolic upper bound
to the execution count of ;. PipLib gives as solution a so-called guast, which is a formula expressing
the unknown variables in terms of the parameters. The quast is a tree of nested if-statements where
the leaves correspond to solutions for the unknown variables. Both the conditionals and the solutions
are linear expressions of the parameters, see [14] for further information. The quast can be used to
obtain PCp.

If we assume that each program point of L in Figure 2 has a constant WCET of ten clock cycles then
we want to maximise y = 10 ) x; subject to the structural constraints of L and z; < p;. Using PipLib
to solve this IPET problem will give us PC:

PCL = A(po, p1, P2, P3, P4, Ps)-ifpa < py + 1 then(ifp, < ps + 1 then 30p, + 10 else...  (3)



The full quast contains eight leaves and is too big to show here. The reason for the many leaves is
that the possible relations among the parameters are many.

3.4. Combination

Finally, we need to express the WCET estimation as a parametric formula in terms of the input
parameters in Zp, formally computing the function PWCETp = PCp o MECp. This is done by
parsing the solution quast given from PipLib (corresponding to PCp) and substituting the parameters
7 with MECp(4), resulting in a formula parameterized in Zp.

The final result of the analysis for L will after combining (3) and (2) is,

PWCET, = An.ifcy < ¢4 + 1 then(if ¢3 < ¢5 + 1 then 30c¢, + 10 else...

where ¢, = MEC[(n). Since c5 = ¢4 and ¢; = 1 we can see that simplification is needed, but not
yet implemented.

4. Symbolic Counting

The method in [15] gives a symbolic formula of the number of solutions to a given presburger formula.
Convex polyhedra (or equivalently, systems of linear inequalities) are a strict subset of presburger for-
mulae and we will show to restrict and simplify the method for this special case. We will assume two
restrictions of the generalised sums; first, rather than having the guard as a presburger formula, we
have it as a system of linear inequalities in the variables of Vp (since this is exactly what the poly-
hedral abstract interpretation will give). The other restriction is that we model the formulae to sum
over as polynomials, simplifying both representation and computation. Polynomials can easily be
modelled as a sum of terms, where a term is a vector representing an integer coefficient and variable
powers. As an example we can model the polynomial 3a?b® + 5a* (assuming Vp = {a, b}) as the sum
of the terms (3 2 3) and (5 4 0). This also makes arithmetical operations on these vectors straightfor-
ward to implement. Furthermore, since the guards are polyhedra, the lower and upper bound of any
variable will be sets of linear expressions. Summing a linear expression over a polynomial is again a
polynomial, so this model is closed under summations. However, these restrictions sometimes require
the result to be slightly over-approximated. The constraint 3a — b < 0 gives an upper bound for a
asa < ng , since a and b are integers. As seen, the upper bound is not a polynomial and therefore
problematic in our model. Since % is a safe upper bound for L%j and on polynomial form we can use
it as approximation. We handle lower bounds accordingly.

5. Reducing the Number of Variables

As seen above, we need an unknown variable and an execution count parameter for each program
point in the program in the parametric IPET calculation. Parametric ILP has exponential complexity in
the number of variables in the worst-case, making scalability problematic. The structural constraints
of the program in general produce an under determined system. In an under determined system with
n variables, the solution space is the span of a set of n —r vectors (where r is the rank of the constraint
matrix). The variables can be expressed as linear combinations of these vectors and we can only solve
the problem in terms of these. Let A7 = bbea system of structural and possible other linear equations
obtained from flow analyses and y = ¢*Z be the cost function. The constraints together with the cost



function is

b)) -6)

If we perform Gauss-Jordan elimination on the above (including the right-hand side by augmenting
the constraint matrix by (0 b)™) and re-arrange the columns of A and the components of Z such that
all pivot columns are to the left, and ¥ is re-arranged accordingly, we get

1o =\ [\ (=
0 A )\ T\p
Trv

where [, is the r x r identity matrix and r is the rank of A. Furthermore, z is the last column of
the solution of the augmented matrix after elimination. The vector & has now been partitioned into a
vector of r basic variables Zgy which corresponds to the columns of 7, and the vector Zry of n — r
free variables (where n is the number of columns of A) which corresponds to the columns of A’. Note
that this transformation also removes any redundant constraints from the system. From this we can
derive two important equations. One is the objective function expressed in terms of the free variables

y=z+dTpy
and a way to express the basic variables in terms of the free ones

As we model the parametric upper bounds as the constraints ¥ < p, we can now simply model our
IPET problem as

zZ + lepv Y
—A/fpv - S PBV
-fFV Prv

where we have partitioned and re-arranged p exactly as for . Now it suffices to solve the IPET with
these constraints, thus reducing the number of unknowns by the rank of A. Note that we cannot reduce
the number of parameters in the same way, since they directly correspond to the output of MECp.
This method of eliminating variables is not restricted to the parametric case, but can be used to reduce
the dimensionality of any IPET problem. As an example, using this on (3) reduces the system from
eight to two unknown variables (the variable of the cost function included).

6. The Result of Parametric Integer Programming

The possible number of relations between parameters in the IPET calculation are large, and yields
large and complex quasts as result, even for small program examples (as seen in Section 3.3). Calcu-
lating WCET p as a composition of the quasts with the result of the symbolic counting will substitute
guarded generalised sums for all parameters in the quasts and the final result will be very complex and
large. This suggests that a simplification of PCp is needed as well as of the final formula PWCET p.
As presented in Section 5, we already simplified the problem by reducing the number of unknowns,
but there are more possibilities for simplifications. A way to reduce the number of possible rela-
tions among parameters would be to restrict the parameters in the IPET calculation with constraints.
Restrictions of parameters could potentially be found directly from MECp (e.g. some counts may
impose absolute upper and lower bounds on parameters) and in some cases from the CFG structure
(e.g. start and stop nodes restrict the parameters). Some parameters could also potentially be elim-
inated. The final PWCET p obtained after substitution can be simplified by finding equal sub trees
and eliminating tautologies and contradictions in the conditionals.



7. Related Work

The analysis in [8] is as [12] based on calculating the number of run-time states to find the WCET
but without parameters. An approach to parametric WCET analysis was presented in two joint master
theses [1, 11] and also in [2]. The analysis of these theses uses PipLib as tool for a parametric IPET
calculation but uses parameters only for loop bounds. The loop bound parameters is then substituted
for parameterized intervals. The parameterized intervals are obtained by identifying loop counter
variables and loop invariants based on their relative values to input parameters of the program. Other
approaches to parametric WCET analysis can be found in [3, 5, 16].

Abstract interpretation [6] is a general theory for soundly abstracting program semantics and is com-
monly used in static analysis. The polyhedral domain [7] has been used in different contexts than this,
such as in verification of linear hybrid systems in [10]. Different methods for symbolic counting are
[15, 4]. Parametric integer linear programming was first presented in [9], see also [14].

8. Conclusions and Future Work

We have done a prototype implementation of the framework for parametric WCET analysis presented
in [12]. The framework was implemented for simple CFGs. The prototype is in the current state not
powerful enough to fully evaluate the method, but shows that the method successfully can be imple-
mented, mostly by using existing libraries. We have presented a simplified method for symbolically
counting integer points inside convex polyhedra based on the method in [15]. We have also presented
a general method to reduce the number of variables used in a IPET calculation where linear equations
are used as constraints. We conclude that an important challenge of making a successful implementa-
tion for real programs is to deal with complexity; both computational and representational. The final
WCET formula needs to be simplified in several steps. As future work, the prototype will be enhanced
to be able to deal with more realistic program (by adding arrays and pointers) in order to evaluate and
make comparative studies on concrete benchmarks and to compare the precision/complexity trade-off
by using different abstract domains and calculation methods.
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