PH-Helper — a Syntax-Directed Editor for
Hoshimi Programming Language, HL

Mariano Luzza!, Mario Marcelo Beron!, and Pedro Rangel
Henriques?

1 National University of San Luis
San Luis, Argentina
{mluzza,mberon}@unsl.edu.ar

2 Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

—— Abstract

It is well known that students face many difficulties when they have to learn programming.

Generally, these difficulties arise from two main reasons: i) the kind of exercises proposed by the
teacher, and ii) the programming language used for solving those problems. The first problem is
overcome by selecting an interesting application domain for the students. The second problem is
tackled by using programming languages specialized for teaching.

Nowadays, there are many programming languages aimed at simplifying the learning process.
However, many of them still have the same drawbacks of traditional programming languages: the
language used to write the statements is different from the programmers’ native language; and
the syntactic rules impose many tricky restrictions not easy to follow.

This paper presents an approach for solving the problems previously mentioned. The ap-
proach consists of using: an application domain motivating for the student, the Project Hoshimi
(PH); and a programming environment, PH-Helper that is a simple and user-friendly syntax-
directed editor and compiler for Hoshimi Language (HL), the actual PH programming language.

1998 ACM Subject Classification D.2.6 Programming Environments
Keywords and phrases Syntax-directed Editors, Visual Programming Enviroments, DSL

Digital Object ldentifier 10.4230/0ASIcs.SLATE.2012.71

1 Introduction

Since the early days of programming, people realized how difficult is to teach programming
principles and imperative programming languages.

Many researchers in computer science and didactics have been working over this prob-
lem. On one hand, searching for its causes, relating difficulties with students background
and courses curricula, and looking after the definition of the ideal profile for a successful
computing student. On the other hand, designing languages and sketching programming
environments that can overcome student barriers. Prolog [26, 4, 27, 21, 7, 8] (and other
declarative programming languages), Logo [23, 31, 32]!, and Scratch [25, 17] are some of

1A detailed description can be found at http://en.wikipedia.org/wiki/Logo: (programming_
language). See also the project homepage at http://stager.org/logo.html or http://el.media.
mit.edu/logo-foundation/. Complementary information is available at http://mckoss.com/logo/.

2 A detailed description can be found at http://en.wikipedia.org/wiki/Scratch- (programming_
language). See also the project homepage at http://scratch.mit.edu/.

@@@@ © Mariano Luzza, Mario Marcelo Beron, and Pedro Rangel Henriques;
G licensed under Creative Commons License NC-ND

15t Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simdes, Ricardo Queirds, Daniela da Cruz; pp. 71-89

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2012.71
http://en.wikipedia.org/wiki/Logo:(programming_language)
http://en.wikipedia.org/wiki/Logo:(programming_language)
http://stager.org/logo.html
http://el.media.mit.edu/logo-foundation/
http://el.media.mit.edu/logo-foundation/
http://mckoss.com/logo/
http://en.wikipedia.org/wiki/Scratch-(programming_language)
http://en.wikipedia.org/wiki/Scratch-(programming_language)
http://scratch.mit.edu/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

72

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

the more relevant contributions coming out from this search effort. As fully discussed in [29],
Alice [13, 14, 5, 20]® can be compared to Scratch as a teaching tool for introductory com-
puting. It uses 3D graphics and a drag-and-drop interface to facilitate a more engaging, less
frustrating first programming experience. The underlying idea is to create a 3D program-
ming environment that makes it easy to create an animation for telling a story, playing an
interactive game, or a video to share on the web.

However the problem is far away from being overridden. Even nowadays, all over the
world students face tremendous difficulties when they are introduced to programming. Ob-
viously the most difficult step is the ability to understand problem statement and to write
the algorithm; this is precisely the focus of the teaching activity. But unfortunately other
minor issues emerge that are strong obstacles that obstruct students progress. One is the use
of keywords in English language; another one is the (sometimes) complex details concerning
language syntax, like punctuation symbols of composed statements structure. Visual pro-
gramming languages and environments attempt to surmount these barriers that many times
lead beginners to loss motivation to accomplish programming tasks [22, 30, 24, 1]. However
visual programming does not scale properly and this approach had an impact far below the
one expected 20 years ago.

Structured editing*, also called Syntaz-directed editing [18] or even Language-based edit-
ing, is another relevant approach that can actually help programmers to cope agilely with
programming languages and overcome the referred syntactic idiosyncrasies [12, 16, 15]. The
basic idea is to develop text editors that are aware of a specific language structure or syn-
tax. In [11, 6] Henriques et.al. review the set of Language-based tools, like the editors under
discussion, that can be derived and automatically generated from the language’s context
free grammar. Also in [19] the topic is explored to develop a meta-language based editor to
create and analyze grammars. Some Structured Editors are reactive and others are proactive.

In the first class, the editor knows the language syntax but it does not guide the program-
mer; the programmer is free to write what he wants, and during or after writing the editor
uses highlighting, indentation or other visual techniques to enhance the language keywords
and the text structure. WinEdt® is just one example of this first class.

WinEdt is a powerful and versatile text editor for Windows with a strong predis-
position towards the creation of [La]TeX documents. It is used as a front-end for
compilers and typesetting systems, such as TeX, HTML, etc. WinEdt’s highlighting
schemes can be customized for different modes and its spell checking functionality
supports multi-lingual setups, with dictionaries (word-lists) for many languages.

Autocompletion—the ability to complete the words that are being typed, according to the
context that restrict the choices®—is another feature offered by modern reactive language-
sensitive editors that improve significantly the typesetting process reducing simultaneously
the error-proneness. Emacs” and Vim®, as well as TexMaker? are examples of text editors that

See also the project homepage at http://www.alice.org/ or http://www.cs.duke.edu/csed/alice/
aliceInSchools/.

Look at http://en.wikipedia.org/wiki/Structure_editor for a large discussion on that topic.

See the homepage at http://www.winedt.com/ for more details, or visit http://www.winedt.org/.
See http://en.wikipedia.org/wiki/Autocomplete for more details and examples.

See the homepage at http://www.gnu.org/software/emacs/ or a guided tour at http://www.gnu.
org/software/emacs/tour/.

8 More information at http://www.vim.org/ or http://www.yolinux.com/TUTORIALS/
LinuxTutorialAdvanced_vi.html.

For details look at http://www.xmlmath.net/texmaker/.

N4 o o oa

http://www.alice.org/
http://www.cs.duke.edu/csed/alice/aliceInSchools/
http://www.cs.duke.edu/csed/alice/aliceInSchools/
http://en.wikipedia.org/wiki/Structure_editor
http://www.winedt.com/
http://www.winedt.org/
http://en.wikipedia.org/wiki/Autocomplete
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/tour/
http://www.gnu.org/software/emacs/tour/
http://www.vim.org/
http://www.yolinux.com/TUTORIALS/LinuxTutorialAdvanced_vi.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialAdvanced_vi.html
http://www.xm1math.net/texmaker/

M. Luzza, M. M. Beron, and P. R. Henriques

offer autocompletion. Autoreplace is a related feature that involves automatic replacement
of a particular string with another.

Also the code completion feature provided by Microsoft, known as IntelliSense, is similar
to autocompletion but at a semantic level. IntelliSense editors are context sensitive and are
aware of all program identifiers so far declared; in this way, they are able to suggest those
identifiers that can be used in a certain place inside the program,

From the perspective of the work described in the paper, proactive structured editors
are more interesting. In the second class, the editor is aware of the language syntax and it
actively guides the programmer along the typesetting. At each moment, the editor knows
what can be written so it shows the possibilities and after the user choice it goes on in the
same way until it reaches an identifier or constant whose specific value just the programmer
knows; this is the only thing he actually has to type. Obviously this kind of editors offer an
effective help to the programmer that does not need to have a complete knowledge of the
programming language syntax. Moreover this family of tool can be derived directly from the
grammar and the editors can be generated automatically. Tim Teitelbaum was a pioneer [28]
in this area. Relevant work in this field—automatic generation of syntax-directed editors—
but concerned with visual editors, like the one (PH-Helper) discussed in this paper, has been
done by Arefi et.al. [2, 3].

Another concern that is highly relevant when teaching computer programming is the
problem statement by itself (its context, application area, and goals): many times, the prob-
lems proposed by teachers are not challenging enough, failing to motivate students. Without
a strong motivation and practical validation, is even more difficult to attract students for
this complex task. So, this topic (the choice of interesting and effective problems) is another
issue that shall be taken into account towards a successful learning process. Regarding this
point, we believe that start programming courses teaching Domain Specific Languages (DSL)
instead of choosing immediately a General Purpose Language (GPL)can be a wise approach
to overcome this last difficulty. A DSL is a formal language just a GPL is, so it is possible to
reach the same learning objectives—like problem understanding, data structures choice, al-
gorithm development, code implementation following elegant ways and good practices—but
supported in a smaller, higher-level language (more abstract and concise), designed specially
for a more restricted domain that can be more natural and appealing for students. Opposed
to the proposals described above—as Prolog, Logo, Scratch, Alice—and many other that
although innovative are sill GPL s, our proposal is a DSL aiming at taking profit from the
benefits just set above.

Project Hoshimi [10]'°, that will be introduced in section 2, is another trial to surpass
part of the programming struggles above identified. Created by Richard Clark for the
2005 Microsoft’s Imagine Cup contest, Project Hoshimi is a game based on .Net technology.
The basic idea is to create a scenario (in the context of human bloody system) and ask
students to program small robots that can navigate through the body and protect him
from some diseases. The scenario is attractive and based on common sense and the task
is challenging enough. The robots programming is done using a small set of primitive and
intuitive commands.

107 detailed description can be found at http://fr.wikipedia.org/wiki/Project_Hoshimi. See
also the project homepage at http://www.projethoshimi.fr. A Guide to The Imagine
Cup Project Hoshimi is available at http://blogs.msdn.com/b/edunhill/archive/2007/10/22/
guide-to-the-imagine-cup-project-hoshimi-ai-competition.aspx.

73

SLATE’12

http://fr.wikipedia.org/wiki/Project_Hoshimi
http://www.projethoshimi.fr
http://blogs.msdn.com/b/edunhill/archive/2007/10/22/guide-to-the-imagine-cup-project-hoshimi-ai-competition.aspx
http://blogs.msdn.com/b/edunhill/archive/2007/10/22/guide-to-the-imagine-cup-project-hoshimi-ai-competition.aspx

74

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

This paper is about an editing environment, called PH-Helper, that we are developing as a
front-end for Project Hoshimi that aims at overwhelming the remaining difficulties. Namely,
PH-Helper adds some more power to Hoshimi language (see section 3) and provides a syntax-
directed editor—section 4 fully discusses it—that helps beginners with the language syntax
avoiding boring errors. From a pedagogical perspective, a syntax-directed editor can also be
adequately instrumented to force, or just to give advices, on the use of good programming
practices like proper name conventions for the different type of identifiers, indentation, code
commenting, etc. This topic is something that we plan to explore in a future version. We
also discuss two other functionalities provided by PH-Helper: the compiler that generates
C+# to allow running the developed programs; and an XML exporter (see section 5). In order
to demonstrate how PH-Helper works a case study is presented (see section 6).

Section 2 is a bit long description of the main characteristics of Project Hoshimi. It was
included with two purposes: to make the paper more self-contained; and to make more
natural to describe the extensions introduced, the code generation strategy and mainly to
justify the decisions concerned with PH-Helper editor and enhance the syntactic aids it offers.
Of course the reader can skip it and go directly to the other sections, coming back just on
demand.

2 Project Hoshimi, an Overview

As said above and can be read at http://fr.wikipedia.org/wiki/Project_Hoshimi, Pro-
ject Hoshimi (PH for short) is a computer game aimed at promoting creative use of program-
ming languages and tools. PH is useful for:

Conceptualizing programming as a creative activity through strategic simulation.

Teaching object oriented programming and .Net technology.

In general terms, PH is a game whose goal is to cure human diseases using a set of NanoBots.
Nanobots are small robots that can be injected in blood flow system and are able to solve
health problems found in the human body. Each NanoBot has “artificial” intelligence for
healing partially certain diseases. So we can said that the game consists in the strategic
stmulation of NanoBots behavior. Artificial Intelligence (AI) behavior is provided by the
student programming those strategies in .Net technology.

2.1 Game Environment

The game is carried out inside of human body, where:

Game map is a tissue. Each map has 200 x 200 positions and the NanoBots have two
possible movements: Horizontal and Vertical.

Game area is composed of blood (red), bones (gray), nerves (blue) and impassable sectors
(black).

AZN area contains molecules employed for curing diseases. These molecules must be col-
lected by a special kind of NanoBots known as NanoCollector. This area is never empty.

Hoshimi Points (HPo) are the disease zones; in this places the NanoNeedles are elaborated.
Each HPo can receive up to 100 AZN molecules.

Injection Points (IPo) are the places where NanoBots are inserted. These points should
not be changed during the game.

http://fr.wikipedia.org/wiki/Project_Hoshimi

M. Luzza, M. M. Beron, and P. R. Henriques 75

2.2 NanoBots

NanoBots are the central, or main, entities in the game. For this reason they are described
in next subsections.

2.2.1 Kind of NanoBots

There are several kinds of NanoBots, namely:

Nanolntelligence (Nanol): this kind of NanoBot has two functionalities: i) Create all other
NanoBots in the community, and ii) Give instructions to the other NanoBots. Each
community (a team in the context of the game) has only one Nanol that is the first
inserted inside the human body. It can move but it can not shoot.

NanoNeedle: this kind of NanoBot is created at Hoshimi Points in order to provide AZN
molecules to the system. It belongs to the static defense; so it can not move but it can
shoot.

NanoCollector: this kind of NanoBot collects AZN molecules and transfers them to the
NanoNeedles. It is the only class that can move and shoot.

NanoExplorer: this kind of NanoBot is aimed at doing recognition task. This class has the
widest vision range and the fastest movements, however it can not shoot.

NanoBlocker: this kind of NanoBot is used for diminishing enemy movements by changing
blood density. It can not move and shoot.

NanoContainer: this kind of NanoBot is similar to NanoCollector class but it has bigger
capacity. It can move but it can not shoot.

NanoWall: this kind of NanoBot generates a force field. This field can not pass by the
enemies. It can not move and shoot.

NanolPCreator: this kind of NanoBot generates a second injection point. It can move but
it can not shoot.

2.2.2 NanoBots Characteristic

The NanoBots have the following characteristics:

Constitution: quantity of health also known as hit points.

Scan: vision distance.

Defense Distance: NanoBots’ attack range.

Maximum Damage: maximum damage that a NanoBot can cause to the enemy during one
time period.

Container Capacity: quantity of AZN that a NanoBot can store and transport.

Collect Transfer Speed: quantity of AZN that NanoBot can collect and transfer by time
period.

All the characteristics aforementioned can be changed by the user using the following rules:
1. The characteristic values can not exceed a maximum value.
2. The addition of characteristic values can not exceed a “Total” established.

2.2.3 NanoBots Commands

The following commands are recognized by NanoBots:

ForceAutoDestruction — This operation is used by the NanoBot for self-destroying. Gen-
erally, this command is used when: i) There are many NanoBots or ii) More NanoBots
are needed. All NanoBots have this command except the Nanol.

SLATE’12

76

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

StopMoving — This command is employed for stopping the NanoBot movement. All others
actions, such as attack or transport AZN, can be used. Afterward of executing this order
other command can be used. This method is used for all NanoBots with movement.

MoveTo(Point) — This command is employed for moving NanoBots until the place indicated
by Point (a point has two coordinates, x and y). All NanoBots with movement can run
this command.

MoveTo(PointLst) — This command works as MoveTo(Point). However, it receives a se-
quence of Points as its parameter. This sequence indicates different places where the
NanoBots must be moved. All NanoBots with movement can run this command.

DefendTo(Point, int) — This command is used for attacking the point received as para-
meter. The parameter int is used for indicating the number of times that the NanoBot
will attack its goal. All NanoBots with attack capability have this command.

CollectFrom(Point, int) — This order is used for collecting molecules AZN. This molecules
are gathered from Point. The parameter int is used for indicating the number of turn
that NanoBot will attack this point. All NanoBots with gathering capabilities execute
this command.

TransferTo(Point, int) — This instruction allows NanoBots to download molecules AZN
in the place indicated by Point. The parameter int is used for indicating the number
of times that the NanoBot will download molecules in this point. All NanoBots with
download capabilities execute this command.

Build(Type) — This command is executed by Nanol to create new NanoBots.

The reader interested in knowing more details about these commands shall look at
http://www.projethoshimi.fr/lab/richardc/index.php—a compilation of tutorials for
the competitions.

2.3 Defense Strategies

Depending on the game configuration, it is possible to play with other human player or
other enemy controlled by the computer. The defense is scheduled in two levels. The first
one is concerned with Al general strategy. The second one allows that a NanoBot attacks
a particular position. Generally, the vision range is greater than the attack range, for this
reason before attack the NanoBot must put the enemy inside its attack range. Obviously,
the NanoBot must not be inside of enemy attack range. In order to create an effective
defense strategy, the user must:

Surround vulnerable unit with protection, generally using Nanol.

Create static sentinels by employing NanoNeedles.

Guard the positions and behavior of the enemies.

Stay away from enemies.

Avoid to be closer of injection points.

oo, wbd=

Use formations highly cohesive.

3 Extending Hoshimi language

The current game platform available has a visual programming interface for developing
strategies. This interface is poor, because it only implements the NanoBots basic operations
described in section 2.2.3.

http://www.projethoshimi.fr/lab/richardc/index.php

M. Luzza, M. M. Beron, and P. R. Henriques

However the Project Hoshimi programming language, HL, has some severe restrictions:
it does not allow to work with variables, neither supports data structures such as list, hash
tables, etc., nor assignments.

PH-Helper gives a practical solution to the problems mentioned above and it provides
more flexible statements for implementing strategies.

On one hand, PH-Helper allows to declare and handle variables of primitive (int, Point,
etc.) or composed (list, dictionaries, hash tables, etc) types. Variables are defined when the
user creates a NanoBot. PH-Helper also extends the original language with the assignment
statement; it also allows the programmer to pass variables as parameter to other instructions.

On the other hand, the conditional statements are also extended supporting now any
kind of logical expression. Moreover, PH-Helper adds new loop statements, such as foreach,
for traversing complex data structures like dictionaries and lists.

All the programming activity above described is carried out using an intuitive and simple
graphical interface. This interface clearly shows: i) The type of variables that the user can
define, and ii) For each visual statement, its parameters and available operations.

To finish this section, it is important to notice that the extensions described are already
implemented in the current version of PH-Helper. But if the user needs more functions and
properties that are present in the Project Hoshimi but not in the editor, he can extend it!®.
The steps needed for extending functions are:

1. Define the new function in C#.
2. Modify the Function Configuration File (FCF).

Listing 1 DTD for FCF descriptions.

<!ELEMENT FUNCTIONS (FUNCTIONx)>
<!ELEMENT FUNCTION (PARAMETERS, CODE)>
<!ELEMENT PARAMETERS (PARAMETER%*) >
<!ELEMENT PARAMETER EMPTY>
<!ELEMENT CODE (#PCDATA)>
<VATTLIST FUNCTION name CDATA type CDATA>
<IATTLIST PARAMETER name CDATA

type CDATA>

This configuration file (FCF) contains a description of all functions supported by PH-
Helper. This description is written in a dialect of XML (also referred to as FCF); the respect-
ive DTD is shown in listing 1. In order to add a function, the user only needs to specify
a FUNCTION element by providing the following elements: parameters, function C# code,
name and type.

New properties can also be added to the kernel; the following steps describe what is
necessary to do that:

1. Define the property or variable in C#.
2. Modify the Properties Configuration File (PVCF).

Similar to the previous case, this configuration file (PVCF) contains a description of
all properties and variables supported by PH-Helper. The description is again written in
a dialect of XML (named PVCF) with the DTD depicted in listing 2. In order to add a
property, the user only needs to specify a VARIABLE element by providing the following
elements: property C# code, name , scope, readOnly and type.

1 The student can define new extensions, but it is advisable that the teacher carries out this task because
it is too complex.

77

SLATE’12

78 PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

Listing 2 DTD for PVCF descriptions.

<!ELEMENT VARIABLES (VARIABLEx)>

<!ELEMENT VARIABLE (CODE)>

<!ELEMENT CODE (#PCDATA)>

<IV'ATTLIST VARIABLE name CDATA
scope (global | local)
readOnly (yes | no)
type CDATA>

Listing 3 Examples of Function and Variable extensions to HL.

<FUNCTION name="Length" type="Int32"> <VARIABLE name="IsAlive"

<PARAMETERS > scope="1local" type="Bool"
<PARAMETER name="str" type="String"/> readOnly="yes">
</PARAMETERS > <CODE>

<CODE > {get{return HitPoint > 0;1}}
return str.Length; </CODE >

</CODE > </VARIABLE>

</FUNCTION >
(a) (b)

Listing 3.a shows an example of a function extension. This extension consist in adding
the Length function. This function has a string parameter called str and it returns an integer
that represents the length of str.

Listing 3.b shows an example of a variable extension. This extension adds a new property
called IsAlive. This property has a local scope, it is a readonly property and its type is bool.

4 Editing Hoshimi Programs with PH-Helper

To define a strategy using the PH-Helper Main Window, three steps must be carried out (see
figure 1):

Create a New Program

Create NanoBots Types

Define Strategies

Create a New Program, is used for creating a new Working Space. A Work Space is composed
by several sub-spaces. Each sub-space represents a NanoBot and it is composed by:

Toolbar: It is used for doing editing operations, such as: cut, copy and paste, change
node’s position, etc.

Language Command Bar: This bar contains all instructions available in the language.
These instructions are separated by three logical sections.

The first one holds all flow control instructions. For example: state (an equivalent
instruction to case statement), decision (an equivalent instruction to if-then-else state-
ment), repetition (an equivalent instruction to while statement), etc.

The second one provides all Project Hoshimi primitive Actions, like: mowve, stop, collect,
etc.

The last one contains all new commands added by PH-Helper. The most important is
the one that allow to save states. It is the variable assignment.

Program Window: This window visualize the current program. The Hoshimi Programs
are naturally represented as a r-tree. The tree nodes are classified in:

M. Luzza, M. M. Beron, and P. R. Henriques 79

S TR, ===
Archivo Estrategia
8 wyA | 0j0 Container
4 ¥ X
® = @ WA
= @ Main My_Al
? G- 2 lgualPUbicacién_AlCrearP(5067) 20 Sear 5
(el ! Parte Verdadera 0] Dist. Defensa [T
1§} Construir Container 0 Max. Dafo o2
-
W Contiora Estado 2 Purtos Restantes: 0 Auto Distrbur
] & Parts Falsa
® Varzbles
B o CrearP(50.67)
Nombx T
- @ Estado2 femere L
L H JR— Primitivos
[G final Purto
| &
*
Nombre Tpo
7/ [-
i
Nueva varizble

Figure 1 PH-Helper Main Window.

- Leaf Node: This kind of node represents an atomic instruction. For example: write
(for writing information on the log console), etc.

- Parent Node: This kind of node represents a group of actions. For example: the
instruction if-then-else has two child node, they are true and false branches. They in
turn are composed by actions. It is important to remark that these actions can be in
turn composed by actions or group of actions.

= Parametrization Window: This window is aimed at providing the parameters needed

by the selected instruction in the program window. Generally, these instructions are
functions with n parameters. In this context, PH-Helper restricts the construction of
expressions taking into account the parameter type and the value type returned by the
expression. An example is shown in figure 2. This figure shows all data needed for
specifying an assignment operation.
In this case, the Parametrization Window is divided in two parts:
= Variable: It is the lvalue of assignment instruction, and it has two lists:

1. Type is used for filtering the variables according to the selected type.

2. Names is employed for selecting the variable.
= Value: It is the rvalue of assignment instruction, and it has three tabs:

1. Variable: It shows a lists of variables. The type of these variables is the same that

the one selected in the Variable section.

2. Functions: This tab shows a set of functions whose return type is the same that
the one selected in the Variable section.

3. Constants: This tab allows to specify a literal.
It is important to notice that if a function is selected in the tab Function, the parameter

selection process (previously explained) is repeated for each parameter. Otherwise,
the process is ended.

Create NanoBots Types is used for creating several roles. A role describes the NanoBot

behavior, the number of roles is user-dependent. When a role is created two main activities
must be specified:

SLATE’12

80 PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

Archive Estrategia

4 v X

= ' Miy_Al Variable
L £ @ Estado 1 @ Giobales (@) Locales

? "'V destfinal < CrearPy| | Tino iz
P Entero
[Texto

Logico

Valor

= CrearP(6 Suma(10 Turnofctual))
Varizbles | Funciones | Constante
Resta

Longitud

AL X E T E FEB Y

Figure 2 PH-Helper Parametrization Window — Variable Assignment Operation.

= The specification of NanoBot Type: In this activity, the user selects the NanoBot type'?
which can not be changed during the game. The NanoBot type is used for two import-
ant goals. The first one sets the available commands, and the second one limits the
characteristic’s maximum values.

= The specification of NanoBot Characteristics: In this activity, the user gives a value to
each NanoBot characteristics'3, which can not be changed during the game.

The activities previously mentioned are easily carried out with PH-Helper. When a
NanoBot is created its type is directly established.

The user only needs to select the option Strategy and then the option Add.

In this moment, a NanoBot type list is shown.

The last task consists in selecting one NanoBot type from the list.

These operations can be observed on the top of figure 3.

After doing these tasks, a new tab is created for the NanoBot (it is a sub-space as
described at the beginning of this section). In the Program Window a root node is inserted.
This root represents the action for specifying the NanoBot characteristics. The user can
establish the characteristic values by following two steps. The first one consists in selecting
the root action. The last one consists in changing the characteristic values displayed in the
Parametrization Window. The process is illustrated in figure 3, at bottom.

Define Strategies is used to build the action tree. This task is simple to do, the user
just needs to add the wished actions by clicking on the Command Language Bar. At any
moment the user can save the project. This task is achieved by applying the following steps:

1. For each root node r do

12 Remeber that the available types were described in section 2.
13 Remember that the characteristics were described in section 2.

M. Luzza, M. M. Beron, and P. R. Henriques

Archivo Estrategia

2 T, =
Archivo | Estrategia
% NL Agregar » | @ ManoCollector
Quitar NanoBot W NanoContainer
4 ¥ Punto de Inyeccién ¥ NanoBxplorer
@ | Tl Comilar 5 A Nanoheedl
= ® Wen 4 NanoWall
? L= Ubicacién_Al ||| & | NanoBlocker
P @ NanolPCreator

A ¥ X
= B WA Caracteristicas

L] 5@ Man Nombre My_Al

? L Ubicacén Al || Consttucion 201 Scan 5=

25‘\ Capacidad 0% Dist. Defensa [
Transferencia 0% Max. Dafie 0

=
Puntos Restartes:] Auto Distribuir

Figure 3 Types and Characteristics available in PH-Helper.

a. For each action 4 in r do

i. Create a XML element for A. This element contains the A parametrization.
ii. Append the XML code generated in previous step in the XML document.

2. Save the XML document into a file.

The flow chart of this procedure is shown in figure 4.

1: For each root node r

2: For each actiona inr

3: Create a xml element e for a
4: Append e to xml document
5: Save the xml document

Figure 4 Save Procedure provided by PH-Helper.

The DTD that defines the XML dialect used by PH-Helper to save the edited code is shown

in listing 4.

Basically, this DTD allows to define a strategy ia an action set. The actions are specified
taking into consideration their parameters. Each action can have sub-actions. In this way

a tree structure is built.

81

SLATE’12

82

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

Listing 4 XML dialect used to save edited code.

<!ELEMENT STRATEGY (ACTIONx*)>
<!ELEMENT ACTION (VARIABLES, ACTION*)>
<!ELEMENT VARIABLES (VARIABLEx*)>
<!ELEMENT VARIABLE EMPTY>
<IATTLIST ACTION name CDATA
tag CDATA>
<IATTLIST VARIABLE name CDATA
type CDATA
keyType CDATA
valueType CDATA
isGlobal CDATA
isSystem CDATA
isReadOnly CDATA>

5 Compiling Hoshimi Programs with PH-Helper

The process for compiling Hoshimi programs is based on the following tasks (a complete

view is shown in figure 5):

1. Error Verifying: PH-Helper provides syntax-directed assistance for avoiding errors. How-
ever, some semantic errors can even occur. For example, the variable type used in an
assignment can be changed. If this happens, a type error arise. Other example is presen-
ted when a state referenced in change state operation is deleted. The error sub-system
works as follows:

a. For each action A do
i. Apply the method CheckErrors. In this method, A verifies its parametrization.
If it is not correct then an error collection is returned. In other case, an empty
collection is returned.
ii. For each error E recovered in previous step do
A. Print a message error on Error Console.
iii. If an error is detected, then finish the process.

2. Source Code Storage: This phase is carried out applying the algorithm described below.
a. For the root action R do
i. Apply the method GetCode. This method is recursively invoked in R sub-actions
with the goal of gathering the source code. Each action is responsible of building
its proper source code.
ii. When the strategy source code is collected, it is stored into a file.

The steps described above are applied for each root node in the program. When all the
source code components are recovered, they are compiled and the corresponding IL (.Net
Intermediate Language) is generated. It is important to remark that some library files are
always included in the compilation process, as is the case of:

MyUtils: this file contains common functions like DistanceCalculation, GetNearestPoint,

Barycenter, etc.

AlSystem: this file contains the scheduler and other administration structures.

Furthermore, a project file is also generated. This task is achieved to visualize all files
in Visual Studio .Net.

M. Luzza, M. M. Beron, and P. R. Henriques

FALSE TRUE

[3.2] [3.1] 1: For each root node r

2: Foreach actionainr

3: Has g any errors?
3.1: Print errors

3.2: Collect code from a

3.3: Save code in file
4: Was there any errors?

T 4.1: Compile collected code

Figure 5 PH-Helper Compilation Workflow.

6 Case Study: The AZN Way

As it was explained in section 2, one of the game objectives is to cure diseases. In order
to do this, a NanoNeedle (hereinafter called needle) must be created in the diseased zone
(Hoshimi Points — HPo). Once created, the needle must be filled with the only resource
available in the game: the AZN. Each needle can contain up to 100 units of AZN. It is
important to mention that it is convenient to fill the needles until the top, because they
provide a score proportional to the AZN stock. Needles can not move or gather AZN by
themselves. Because of this, the collaboration between a NanoAl (hereinafter denoted as
AT) and a nanobot with gathering capabilities is needed. NanoCollectors (hereinafter called
collectors) and NanoContainers (also known as containers) are two kinds of nanobots that
meet this property.

The Als job is to go to the desired destination (HPo) and build there a needle '* 5.
Furthermore, the AI must build collectors or containers too. These tasks can be carried out
in any order, however it is encouraged to build the gatherers and then the needles. In this
way, the firsts can go and gather AZN, while the AI moves to the HPo. Any number of
collectors can be built. Nevertheless, it is best to choose a multiple of the amount needed
to fill a needle, considering its capacity. If collectors are chosen, is wise to build 5 or 10 of
them, because they have a capacity of 20 units of AZN. If containers are chosen instead, is
advisable to build a pair number of them (generally between 4 and 10) because they can
transport 50 units of AZN.

4 On the one hand, nanobots with movement capabilities appear in the team injection point when built.
On the other hand, nanobots without movement capabilities emerge in the current location of the
NanoAl.

15 Several nanobots with movement capabilities can be at the same point, but just one of them can be
active. Because of that, only one needle can be built in a HPo.

83

SLATE’12

84

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

6.1 The Problem Statement

In this section, a simple problem is given as exercise with the goal of illustrating the operation
of the tool described in this article.

The problem statement is: FElaborate a strategy for creating and filling 3 needles in the
following points: <147, 22>, <159, 26> and <170, 38>. Tip: It should be noticed that
the nearest AZN is at point <154, 54>.

6.2 The Solution

To solve the problem, two nanobots must be added to the AI. One of them must be of
NanoNeedle type, and the other one must possess gathering capabilities. Containers will
be used in this solution, but the user can choose another type like collectors. The default
values of the characteristics are recommended for each nanobot, nevertheless the student
can experiment with other values. If these steps were carried out successfully, three tabs will
be displayed on the screen. Each one of them is labeled with the name of the represented
nanobot. Figure 6 shows the screen previously described.

Archive Estrategia Ayuda

‘ B i A Aguia | 00 Contenedor

Figure 6 PH-Helper Tabs corresponding to the 3 necessary nanobots created.

In this case, the tabs are labeled Mi_lA, Aguja and Contenedor which are the Spanish
words for “My AI”, “Needle” and “Container”.

Two steps must be specified to define an Al strategy for building a needle at the de-
sired HPo.

First, to save time, it is convenient to build the containers. Generally, the best approach
for solving problems is to separate each task into states. In this case, the first state consists
in creating the containers. This task is carried out using a conditional statement and a
counter. If the counter is less than the number of desired nanobots then a new nanobot
will be created; otherwise, the process will finish its execution. It is important to remark
that: i) Before adding the actions, the counter must be declared, and ii) The conditional
action is executed several times by the Hoshimi Project engine. The complete state and the
parametrization of the main action are shown in figure 7.

The next step is to specify the task of moving the Al to the desired location (HPo) and
build there a needle. The procedure consists in asking if the current Al location equals the
HPo location. If that is the case, the needle is created, and then the AI changes to the next
state; otherwise, the Al keeps moving towards the HPo location. The state for building a
needle and the predicate parametrization is shown in figure 8.

Two similar states must be specified for the remaining points, with the corresponding
HPo locations. The AI responsibilities are performed by all the tasks previously specified.

The needles strategies are very simple because they can not move. The needle can defend
by itself but the corresponding strategy will not be implemented because it was not included
in the problem statement.

M. Luzza, M. M. Beron, and P. R. Henriques

= . Caracteristicas
E| @ Construir Contenadorss Nombre Mi_IA
B ? Menor(CantContenedares, 3) Constitucién 2005 Sean 55
& Parte Verdadera Capacidad 02| Dit. Defensa i[ES
: - . Construir Contenedor Transferencia 0% Max. Dafio =
: .. V& CantContenedores <- Suma(CantContenadores, 1) Puntos Restantes] Auto Distrbuir
El. Parte Falsa
: Variables

H - ‘ Cambiar a Estado 2

Nomb: Ti

. Estado 2 lombre ipa

Primitivos
CartCortenedaores Entero
Figure 7 PH-Helper Building a Container.
Condicign

- ' Mi_lA

Congtruir Contensdorss IgualP(Ubicacién_Al,CrearP(159,26))

| Variables | Funciones | Constante |

Construir Aguja 1

E| ? lgualP{Ubicacion_Al CrearP(153,26))
E| Parte Verdadera

' Canstruir Aguja

[-b Cambiar a Construir Aguja 2
E|. Parte Falsa
o CrearP(159.26)

- Construir Aguja 2

Figure 8 PH-Helper Predicate Parametrization.

The containers strategy has the following tasks:
1. Go to the AZN point.

2. Gather AZN.

3. Go to a HPo with needle.

4. Transfer the AZN.

Clearly, this is translated into four states. The first one simply compares the nanobot
location with AZN location. If they are the same, then it changes to the next state; otherwise,
the containers keep moving towards the AZN location. The second state commands the
container to gather AZN for 10 turns at a rate of 5 units loaded by turn, this action will fill
the stock of the container. Then it changes to the next state. The third state is similar to
the first, but it uses the HPo location instead of the AZN location. The final state is similar
to the second, but it transfers the AZN to the needle.

With all strategies ready, only remains to compile. This process generates an assembly
(dll file) that will be used by the Project Hoshimi. An equivalent C# source code is also
generated. Part of the source code corresponding to the Al strategy is shown in figure 9,
and in figure 10 a snapshot of the strategy execution is displayed.

7 Conclusion

In this paper, a tool aimed at helping to teach programming was presented. This tool is
intended to keep students away from those harmful issues that distract them from learning
programming concepts (algorithms/strategies and data structures), that is the actual focus

85

SLATE’12

86 PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

switch (__ ESTADD)
{
case "Construir Contenedores™:
if (Memor(CantContenedores, 33}

AL.Build(typeof(Contenedor));
CantContenedores = Suma(CantContenedores, 1};
H

else

1
b

break;
case "Canstruir Agujz 1":
if (IgualP{Ubicacidn_AI, CrearP(159, 26)))

ESTADO = "Construir Aguja 173

AL.Build(typeof(Azuia))s
__ ESTADO = “Comstruir Aguja 23

b
else
MoveTo(CrearP (153, 26});
1
break;

Figure 9 PH-Helper generated C# Source Code.

Figure 10 PH-Helper Execution Snapshot.

when solving exercises using the computer. The main difficulties that the tool should keep
clear arise from the following facts: i) Programming Languages use idioms different from
Programmers’ native language, and ii) the syntax of Programming Language is full of tricky
details that disturb the quiet writing of programs.

In order to overcome these problems, PH-Helper allows the use of a simple visual language
and then generates C# source code. On one hand, the visual language is composed of
intuitive icons that can be easily related among them. By intuitive we mean icons that any
student, aware of the problem domain, can immediately understand. On the other hand,
PH-Helper offers an editing environment that is directed (or guided) by HL syntax, avoiding
in this way annoying syntactic errors.

PH-Helper features described above allow the student to be concentrated in solving prob-
lems, understanding programming essentials, instead of being bother with technical details.

In order to facilitate programming, HL, the Hoshimi Language, was extended: i) Some
statements were enhanced, such as, loop and decision statements; ii) Variable definitions and
Assignment statement were added; iii) New functions and properties can also be defined by
the programmer.

For each strategy PH-Helper generates C# code that can then be executed in the appro-
priate .Net environment to test the ideas implemented. Moreover, notice that the generated
code is saved into a file and so it can be used to teach object-oriented programming. In
this sense, our project also contributes for teaching this important topic, not as easy as we

M. Luzza, M. M. Beron, and P. R. Henriques

could forecast in the beginning [9]. Old code generators, mainly those depending directly on
the text being freely edit by the programmer (like HTML generators, etc,) produced awful,
unreadable code. However we know that recent code generators for formal languages are
delivering nice code, plenty of comments, that can actually be used for students to learn with
its inspection; we did many experiments in that direction when using compiler generators.

To sum up, we can say that the work here reported was concerned with three challenging
and complementary research directions: programming languages design and programming
languages implementation towards the improvement of programming courses.

As future work, the research team has scheduled the following tasks: i) To deploy as
soon as possible a first PH-Helper stable release to start the practical experiments with real
users in real class environments to assess the user-friendliness of the tool and its effective
pedagogical aid; ii) To apply the strategies used in PH-Helper development to build similar
tools for other domain specific languages. For instance, at UNSL (National University of San
Luis), in the first programming course an algorithmic language, similar to natural language,
is used for teaching. With this approach, the student can not execute programs. Therefore,
the student can not verify his solutions. For the reasons previously mentioned, we plan to
develop a visual language with an editor similar to the one described in this paper.

Another interesting topic, for future research, is to plan a set of experiments that can
let us to measure and understand how much that approach, of starting programming with
DSL s, can effectively help in learning to program properly with GPL s.

—— References

1 Francisco P. Andrés, Juan de Lara, and Esther Guerra. Domain Specific Languages with
Graphical and Textual Views. In Andy Schiirr, Manfred Nagl, and Albert Ziindorf, editors,
AGTIVE, volume 5088 of Lecture Notes in Computer Science, pages 82-97. Springer, 2007.

2 F. Arefi, C.E. Hughes, and D.A. Workman. The object-oriented design of a visual syntax-
directed editor generator. In Computer Software and Applications Conference, 1989.
COMPSAC 89., Proceedings of the 13th Annual International, pages 389 —396, sep 1989.

3 Farah Arefi, Charles E. Hughes, and David A. Workman. Automatically generating visual
syntax-directed editors. Commun. ACM, 33:349-360, March 1990.

4 W. F. Clocksin and Chris Mellish. Programming in Prolog. Springer, 1981.

5 M.J. Conway. Alice: easy-to-learn 3D scripting for novices. University of Virginia, 1998.

6 Daniela da Cruz, Ruben Fonseca, Maria Joao Varanda Pereira, Mario Beron, and
Pedro Rangel Henriques. Comparing generators for language-based tools. In CoRTA-07 -
Compiler Related Techonlogies and Applications, Covilhd, Portugual, July 2007.

7 Saumya K. Debray. The SB-Prolog System, version 3.1: A User Manual. Dep. of Computer
Science / Univ. of Arizona, 1.st edition, Dec. 1989.

8 P. Deransart and G. Ferrand. Initiation a prolog: Concepts de base. Support de Cours
86-2, Université d’Orleans, Dep. de Mathématiques et Informatique, Jun. 1986.

9 Stavroula Georgantaki and Symeon Retalis. Using educational tools for teaching object ori-
ented design and programming. Journal of Information Technology Impact (Jiti), 7(2):111—
130, 2007.

10 Javier Gonzalez Sanchez, Ramiro A. Berrelleza Perez, and Maria Elena Chavez Echeagaray.
Introducing computer science with project hoshimi. In Companion to the 22nd ACM SIG-
PLAN conference on Object-oriented programming systems and applications companion,
OOPSLA ’07, pages 908-914, New York, NY, USA, 2007. ACM.

11 Pedro Henriques, Maria Joao Varanda, Marjan Mernik, Mitja Lenic, Jeff Gray, and Hui
Wu. Automatic generation of language-based tools using lisa system. IEE Software Journal,
152(2):54-70, April 2005.

87

SLATE’12

88

PH-Helper — a Syntax-Directed Editor for Hoshimi Programming Language, HL

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Christopher D. Hundhausen, Sean F. Farley, and Jonathan L. Brown. Can direct manipu-
lation lower the barriers to computer programming and promote transfer of training?: An
experimental study. ACM Trans. Comput.-Hum. Interact., 16(3):13:1-13:40, Sep. 2009.
A. Hutchinson, B. Moskal, W. Dann, and S. Cooper. The alice curriculum and its impact on
women in programming courses. In Annual Meeting of the American Society for Engineering
Education (ASEE06), 2006.

A. Hutchinson, B. Moskal, W. Dann, S. Cooper, and W. Navidi. The alice curricular
approach: A community college intervention in introductory programming courses. In
Innovations 2008, International Network for Engineering Education Research, pages 157—
176, 2008.

Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Design requirements for more flex-
ible structured editors from a study of programmers text editing. In CHI ’05: HUMAN
FACTORS IN COMPUTING, pages 1557-1560. Press, 2005.

Andrew Jensen Ko. Designing a flexible and supportive direct-manipulation programming
environment. In Proceedings of the 2004 IEEE Symposium on Visual Languages - Hu-
man Centric Computing, VLHCC ’04, pages 277-278, Washington, DC, USA, 2004. IEEE
Computer Society.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The scratch program-
ming language and environment. ACM Transactions on Computing Education, 10(4):1-15,
2010.

Raul Medina-Mora. Syntaz-Directed Editing: Towards Integrated Programming Environ-
ments. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 1982.

MI-students, Daniela da Cruz, and Pedro Rangel Henriques. Agile - a structured-editor,
analyzer, metric-evaluator and transformer for attribute grammars. In Luis S. Barbosa
and Miguel P. Correia, editors, INForum’10 — Simposio de Informatica (CoRTA’10 track),
pages 197200, Braga, Portugal, September 2010. Universidade do Minho.

Barbara Moskal, Deborah Lurie, and Stephen Cooper. Evaluating the effectiveness of a
new instructional approach. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education, SIGCSE ’04, pages 75-79, New York, NY, USA, 2004. ACM.
Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. John Wiley & Sons, 1st
edition, 1990.

K.A. Olsen, P. Harnes, B. Pedersen, and O.-J. Tosse. The dsp system-a visual system to
support teaching of programming. In Visual Languages, 1988., IEEE Workshop on, pages
199 —206, oct 1988.

Seymour Papert. Mindstorms: children, computers, and powerful ideas. Basic Books, Inc.,
New York, NY, USA, 1980.

John Peterson. A Language for Mathematical Visualization. In Proceedings of FPDE’02:
Functional and Declarative Languages in Education, 2002.

M. Resnick, Y. Kafai, and J. Maeda. A networked, media-rich programming environment
to enhance technological fluency at after-school centers in economically-disadvantaged com-
munities. MIT Media Laboratory, Proposal to National Science Foundation (Information
Technology Research), 2003.

P. Roussel. Prolog: Manual de reference et d’utilisation. Groupe d’Intelligence Artificielle,
Marseille-Luminy, 1.st edition, Sep. 1975.

Leon Sterling and Ehud Shapiro. The Art of Prolog, chapter 16. Series in logic programming.
MIT Press, 1986.

Tim Teitelbaum. The cornell program synthesizer: a syntax-directed programming envir-
onment. SIGPLAN Not., 14(10):75-75, Oct. 1979.

M

29

30

31
32

. Luzza, M. M. Beron, and P. R. Henriques

Tan Utting, Stephen Cooper, Michael Kolling, John Maloney, and Mitchel Resnick. Alice,
greenfoot, and scratch — a discussion. ACM Transactions on Compututer Education,
10(4):17:1-17:11, Nov. 2010.

Maria Joao Varanda and Pedro Rangel Henriques. Visualization / animation of programs
based on abstract representations and formal mappings. In HCC’01 - 2001 IEEE Symposia
on Human-Centric Computing Languages and Environments. IEEE, September 2001.
Daniel Watt. Learning With Logo. McGraw Hill, 1983.

Molly Watt and Daniel Watt. Teaching With Logo: Building Blocks For Learning. Addison-
Wesley Pub, 1986.

89

SLATE’12

	SLATe2012PHHelper-vf
	Introduction
	Project Hoshimi, an Overview
	Game Environment
	NanoBots
	Kind of NanoBots
	NanoBots Characteristic
	NanoBots Commands

	Defense Strategies

	Extending Hoshimi language
	Editing Hoshimi Programs with PH-Helper
	Compiling Hoshimi Programs with PH-Helper
	Case Study: The AZN Way
	The Problem Statement
	The Solution

	Conclusion

	blank-page

