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—— Abstract

The positioning of valves on the pipes of a Water Distribution System (WDS) is a core decision in
the design of the isolation system of a WDS. When closed, valves permit to isolate a small portion
of the network, so called a sector, which can be de-watered for maintenance purposes at the cost
of a supply disruption. However, valves have a cost so their number is limited, and their position
must be chosen carefully in order to minimize the worst-case supply disruption which may occur
during pipe maintenance. Supply disruption is usually measured as the undelivered user demand.
When a sector is isolated by closing its boundary valves, other portions of the network may
become disconnected from the reservoirs as a secondary effect, and experience supply disruption
as well. This induced isolation must be taken into account when computing the undelivered
demand induced by a sector isolation. While sector topology can be described in terms of graph
partitioning, accounting for induced undelivered demand requires network flow modeling. The
aim of the problem is to locate a given number of valves at the extremes of the network pipes so
that the maximum supply disruption is minimized. We present a Bilevel Mixed Integer Linear
Programming (MILP) model for this problem and show how to reduce it to a single level MILP
by exploiting duality. Computational results on a real case study are presented, showing the
effectiveness of the approach.
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1 Introduction

In this Section we introduce a real problem in hydraulic engineering concerning the location
of the isolation valves of a Water Distribution System, and reformulate it as a graph based
optimization problem. A mathematical model is presented in Section 2, computational results
are presented in Section 3 where conclusions are drawn.

1.1 Valves closure and sector isolation

Water Distribution Systems (WDSs) are complex systems whose mission is to supply water
to the communities living in their service area. A WDS is made of several components, the
main ones being: a set of reservoirs feeding the WDS, a set of pipes delivering water to the
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system users, a user demand for each pipe, describing the average water consumption by the
users served by that pipe (liters per second), a set of junctions each describing the connection
of two or more pipes to each other.

Users are connected to their closest pipe by way of smaller pipes through which water is
supplied. To this purpose, we can imagine users as being evenly distributed along the pipe.
In turn, pipes receive water at an adequate pressure from the reservoirs to which they are
connected in the hydraulic network. Usually, the topological layout of hydraulic networks
contains a few loops that increase network reliability. Thus, a pipe can be connected to a
reservoir by several different paths. Given a pipe, if each connection from the pipe to each
reservoir is interrupted, water pressure falls, the pipe no longer supplies its users and it is
said to be isolated. Failure of ageing pipes frequently occurs. In such a case, the leaking pipe
is isolated on purpose, to be dewatered and fixed. Isolation is achieved by closing some of
the isolation valves purposely located on the network, in such a way that the failed pipe gets
disconnected from the reservoirs. In an ideal situation, each pipe would have one such valve
positioned at each of its two extremes, so that only that pipe could be disconnected in case
of maintenance by closing just its two valves, but it would require twice as many valves as
the network pipes. However, the number of valves is limited due to cost, and their location
poses a challenge, as described hereafter.

First, valves must be properly located at pipe extremes in such a way that any pipe can
be isolated by closing a proper set of valves. When all valves are closed, the network is
subdivided into a set of subnet, called sectors; also, the valves that delimit a sector are called
the boundary valves of that sector. Said in another way, a sector is a set of pipes which stay
connected themselves once all valves are closed. It follows that pipes within the same sector
share the same status, either isolated or connected to a reservoir, depending on which valves
are closed. When a sector is isolated, all its users experience supply disruption.

Second, the WDS engineers who design the network aim to reduce and equally distribute the
service disruption among users in case of maintenance operations.

So far, if we suppose that each pipe is equally likely to fail and require maintenance,
this target would be achieved by any valves location yielding sectors whose user demand is
approximately the same. However, a secondary effect of sector isolation must be accounted
for, i.e., unintended isolation. A pipe for which all connections to the reservoirs go through
the isolated sector will be isolated as well when that sector is closed. Therefore, the supply
disruption associated to a sector cannot take into account only the user demand of the sector
itself, but must consider the demand of unintentionally isolated pipes as well. We illustrate
these concepts on the toy network depicted in Figure 1. The hydraulic network has a single
reservoir, 6 junctions and 7 pipes with positive demand, plus a 0-demand pipe which connects
the reservoir to the rest of the network. 5 valves are positioned at pipe extremes as follows:
near junction 1 on pipe (1,2), near junction 1 on pipe (1,4), near junction 2 on pipe (2, 3),
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Figure 1 A simple hydraulic network and its isolation system.



A. Peano, M. Nonato, M. Gavanelli, S. Alvisi, and M. Franchini

near junction 3 on pipe (3,6), and finally near junction 5 on pipe (4,5). Three sectors are
induced by those valves, namely S7 made of pipes (1,4), (4,5) with demand 5I/s; S made of

pipes (1,2), (2,5), (5,6), (3,6) with demand 171/s; S3 made of pipe (2,3) with demand 71/s.

Let v; ; denote a valve located on pipe (i, j) near 4, and let v;; be the one close to j. If pipe
(2, 3) needs repairing, valves vy 2 and vs ¢ can be closed, with a supply disruption of 71/s. If
pipe (5,6) leaks, the boundary valves of Sy will be closed, namely vy 2, v5 4, V3,6, and vy 3,
but the supply disruption will be 24 = 17 + 7, greater than its sector demand, accounting for
the unintended isolation of Ss.

The Isolation System Design (ISD) of WDSs consists of locating a limited number of valves
at pipe extremes so that any pipe can be isolated. What an optimal placement is may depend
on several criteria that give rise to different objective functions; in particular, the Bottleneck

Isolation Valves Location Problem (BIVLP) minimizes the maximum undelivered demand.

The two main issues related to the ISD problem addressed in the hydraulic engineering
literature, are: the identification of the segments and unintended isolation due to the closure
of some isolation valves, and the optimal location of isolation valves. Regarding the first topic,
among others, [12, 13] exploit a dual representation of the network, with segments treated
as nodes and valves as links; [5, 9] exploit the topological incidence matrices to identify the
segments. Regarding the second topic, both [9] and [5] tackle the problem by bi-objective
genetic algorithms, seeking a compromise between cost and solution quality. In particular,
the former minimizes the number of valves and the maximum supply disruption. The latter
minimizes the cost of the installed valves related to pipe diameters and the average supply
disruption weighted by the probability of pipe failure. Both provide an approximation of the
Pareto frontier and no bounds to evaluate the quality of the heuristic solutions.

The only two exact approaches for the BIVLP we are aware of are provided in [2] and [7],
which apply two different tools of the Logic Programming field to minimize the maximum
undelivered demand given a fixed number of valves. The former is based on Constraint Logic
Programming on Finite Domain [11] (CLP(FD)), and models the problem as a two-players
game and three moves: player 1 locates the valves, player 2 chooses a pipe to break, and
player 1 closes a set of valves. The latter is based on the Answer Set Programming [8] (ASP)
paradigm and uses the concept of “extended sector”, that is the union of a sector with its
(if existing) unintended isolations. Both can be used to compute the Pareto frontier of the
problem tackled by [9] by solving a sequence of instances with an increasing number of
valves. Different models for the BIVLP have been proposed in each paper, with different pros
and cons regarding prototyping and computing times. At present the best computational
performance is achieved by the CLP(FD) model [2], which implements a redundant valves
elimination technique and bounding procedures, and which is our benchmark.

In the following we reformulate the BIVLP in the framework of graph theory, and set the
basis for the mathematical optimization model provided in Section 2.

1.2 Hydraulic sectors and graph partitioning

The Graph Partitioning problem (GPP) is one of the most studied problems in combinatorial
optimization, and admits several variants. Recall that a partition of a set is a collection of
non-empty disjoint subsets whose union returns the set. Generally speaking, GPP consists
of partitioning the vertices of a graph into a set of connected components by removing
a minimum (weight) set of edges, according to some criteria. For example, the number
of components of the partition is fixed, and the number of nodes in each component is
bounded from above. The set of removed edges is usually referred to as a multicut. Literature
references are many, among which [3] investigates the polytopes associated to the integer
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programming formulations of the major variants, and [6] studies the convex hull of incidence
vectors of feasible multicuts for the capacitated GPP.

The several analogies between the hydraulic network sectorisation and graph partitioning,
as recently exploited in the hydraulic engineering literature [14], seem at first to provide an
ideal framework for modelling BIVLP. Recall that each pipe must belong to one sector in
order to be isolated if required, but only one sector, due to the minimality of sector definition.
Therefore, sectors induce a partition on the positive demand pipes, whose associated multicut
models the location of the isolation valves at pipe extremes. This simple correspondence,
though, does not allow us to address the issue of unintended isolation. To meet this
requirement we need to introduce an extended graph that represents the topology of the
network, on which flow variables will model water flows, thus capturing unintended supply
disruption. We first provide a graph representation of the hydraulic network supporting graph
partition, and in the next Section we show how to extend such graph to handle unintended
isolation.

First, we suppose to concentrate the user demand of a pipe (4, j) at a single point denoted
as €5, located in the middle of the pipe. Denote by d,, such demand. Then, we shrink all
the reservoirs into a single one, to which we associate node 0. Now we can introduce the
undirected graph G = (V, E) defined as follows.

The vertex set V' is made of the union of: ¥ = {o}, where o is the super source modelling
the set of reservoirs; ¥, being the union over all pipes of the demand points €;;; I', modelling
the junctions of the hydraulic network.

The edge set E is made of: T, the set of the few structural edges corresponding to 0-demand
pipes which connect o to a vertex in I'; we denote as I'(X) C I' the subset of the junction
nodes adjacent to a reservoir. F', made of a pair of edges (i, €;;) and (j,€;;) for each pipe
(4,7) in the hydraulic network. Figure 2 shows how the two adjacent pipes of the hydraulic
network are modelled in graph G.

@ (1,2) @ (2,3) @ @(1,612) @ (2,612)@(27623) @ (3,623) @

Figure 2 Two adjacent pipes of the hydraulic network and their representation in G.

Each edge in F' may host a valve, while edges in T" do not. In real life WDSs, actually, a
special valve is always present on each pipe in T in order to isolate the reservoir from the
network, if the reservoir needs maintenance. However, such a valve would never be closed for
pipe maintenance purposes, so we disregard it here. Therefore, we assume that the edges in
T bear no valves, and that these edges, the reservoirs and the nodes in I'(¥) do not belong
to any sector. Furthermore, to keep notation simple, we suppose that all pipes other than
those incident on the reservoirs have positive demand.

Let h,,q: be the number of available valves, and $,,4, the maximum number of sectors
admitted. Denote by Ay, for s € S = {1,.., S;maz}, the undelivered demand associated to
sector s, and it is given by the sum of d,; for each pipe (7,j) which gets isolated when
the boundary valves of sector s are closed. Note that isolating a sector s on the hydraulic
network corresponds to the removal of all edges (7,¢;;) € F on graph G such that a boundary
valve of s is positioned on pipe (4, j) near junction i. We search for the location of at most
hmaz valves on as many edges of F' yielding at most Sy,q, sectors such that maxses{As} is
minimum. In Section 2 we provide a mathematical model for this problem.
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2 Mathematical models for the BIVLP

In 2.1 we present a graph partitioning model on graph G, how to extend G to model
unintended undelivered demand, and a bilevel MILP model for BIVLP. In 2.2 it is presented
how to reduce the bilevel model to a single level MILP.

2.1 A Bilevel model for BIVLP

Let us introduce the following variables.

s

5 €4{0,1} V(u,v) € F': u=1i,v = €, Vs € S, is a binary variable equal to 1 if a boundary

valve for s is located on pipe (4, j) near ¢ in the WDN (edge (4, €;;) in G), and 0 otherwise.

Likewise, 77; = 1 if the valve is near j, that is, on edge (j,€;) in G.
zf €{0,1} Vi e TUT\T'(X), Vs € S, is a binary variable equal to 1 if node i belongs to
sector s and 0 otherwise.
Recall that variable z{ is not defined for i € I'(X) or i = 0. If 7;; = 1 then there must be
another sector s’ such that 7'%/ = 1, unless ¢ is adjacent to a reservoir. Indeed, one valve
separates (at most) two sectors from each other.
The following constraints partition the vertices of G into at most s,,q, sectors with
limited user demand, by cutting at most h,,q, edges in F.

d =1, Vie WUT\ (D). (1a)
seS
Z Z (755 + 751) < himaz (1b)
sES €;; €V
Z Z 65” < 5maac7 Vs €S, (IC)
€ij €V

These constraints impose the following. Each node in ¥ UT' \ I'(X) belongs to one and
only one sector (1la). At most A, valves are available (1b). The sum of user demands
of the edges within the same sector is bounded from above; constraint (1c) excludes very
unbalanced partitions with sectors with large demand. However, the threshold 0,4, as well
as the parameters h.q; and s;,q, must be carefully set so that a feasible solution exists
and no optimal solution is cut off. Furthermore, note that it is not required to use all the
available valves since the optimal solution value does not necessarily improve as the number
of boundary valves increases, and we want to avoid solutions with useless valves, i.e., valves
positioned on an edge whose vertices belong to the same sector. Actually, in (2a—2b) we
exploit this fact and take for granted that each valve is a boundary valve, that is, if a valve
is positioned on an edge then the vertices of that edge belong to different sectors.

The following constraint states the relation between a boundary valve and the sector of
the vertices of the edge where the valve is located. Recall that 7;; refers to a valve positioned
in between vertex ¢ and vertex €;;. We use the symbol @ to denote the XOR logical operator
and then provide the system of integer linear inequalities that define the operator.

Tiy =2 ® 2, V(i,ei5) € Fyi,j ¢ T(X) Vs € S (2a)
Tij = 25 V(i ei5) € F:ie'(X) (2b)

Constraints (2a — 2b) state that a boundary valve of sector s is positioned on an edge if
and only if exactly one of the two vertices belongs to s, unless the vertex to which the
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valve is close is adjacent to a reservoir. (2a) can be formulated as the following set of linear
inequalities, for each edge (i,¢;;) € F' and for each s € S.

<, (3a)
T 2 E = 2, (3c)
T (34)

The user demand that is satisfied when sector s is isolated clearly depends on where the
sector’s boundary valves have been located, according to the current configuration of the
isolation system which is expressed in terms of the 7° variables. Let us denote the satisfied
user demand as DD?®(7%) and let T = Z(i,j) €;; be the total user demand. Therefore, BIVLP
can be stated as min, A s.t. A > Y —DD?(7%), Vs € S and 7 satisfies (1a-1c), (2b), (3a-3d).
In the following, we provide a mathematical description of DD?*(7°) as the solution of an
optimization problem.

Now we are ready to extend graph G in order to support the introduction of the flow
variables required to model water flow on the network corresponding to the satisfied user
demand in case a given sector is isolated. Since sectors are isolated one at a time, we must
consider separately each such scenario. In order to compute the undelivered demand for a
sector, an associated Maximum Flow Problem (MFP) on a graph whose topology depends
on 7 must be solved.

We start by adding to V' a special node P representing a sink collecting all user demand
that is satisfied; accordingly, F is extended to include a new set of edges, say D, that carry
user demand from each demand-vertex ¢;; to the sink P.

Then, let us introduce $;,4, families of multicommodity flow variables, one for each sector.
They are used to represent water flows in the hydraulic network when that given sector is
isolated.

First, we define the variables modelling the flow on network pipes. For each s € S and
(u,v) € F, a pair of non negative flow variables are introduced, namely, x5, and z$,. Recall
that v = ¢;; for some pipe (4,7), and u € {3,j}. Therefore, each pipe (3, ) yields four
flow variables for each sector, namely, x jqj, and :Eﬁ] 4 All such variables are
bounded by the sum of users demand T, unless a boundary valve for s is located on the edge,

S

S
i,eij7 Eij,i’ €

say near ¢. In such a case, 75 = L and xj . =a¢ ; =0.

Second, we introduce flow variables on the demand edges in D, connecting each demand
vertex €;; to the sink P. For each s € S and ¢;; € U, let a:ﬁmp be such variable. This
variable, for any s, is bounded form above by the actual user demand of pipe (i, j), that is
de,; previously introduced.

Finally, for each s € S and for each edge in T connecting the reservoir o € ¥ to a junction
v € I, a non negative flow variable x7 . is introduced, with no upper bound. In Figure 3 the
extended graph is depicted. In order to represent the water flow when a given sector s is
isolated, we must solve a MFP from the reservoir o to the sink P with respect to the flow

T VR
S 1) r]ez v(2) v |es T(::;)

Figure 3 The extended graph. The arrows show in which direction flow can traverse an edge.
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variables indexed by s. For each sector s, the mathematical model of the MFP is defined by
balance constraints at the nodes, capacity constraints on the flow variables, and the objective
function is the maximization of the flow entering P. The optimal value provides the user
demand that is satisfied when s is isolated. Capacity goes down to 0 on the arcs where
boundary valves of sector s have been located, so the optimal solution value DD*(7%) is a
function of 7°. Constraints (4-5i) model the MFP for a given sector s. A fake arc going
from the sink P to the source o with non negative flow variable x%  is introduced so that
the problem can be stated as a circulation problem. Arc (P, o) is the only arc outgoing from
P and entering o, therefore the objective function can then be stated as maximizing z% .
Zero balance constraints at junction nodes are given in (5a), at demand nodes in (5b), at
the sink in (5¢), and at the reservoir in (5d). Capacity constraints for the flow variables on
the edges in F', which depends on valves location, are given in (5e-5f). Similarly, capacity
constraints for the flow variables defined on the demand edges in D are given in (5g).

DD*(t°) =mar zp, (4)
st oad,+ Z (@5, —wie,) =0 Viel, (5a)
Jiei; €Y

xifij + xjveij - xiijsi - xiij’j - ‘Ti‘j,P =0 veij ev, (5b)
Z 'riij,P - 1‘?3,0 = Oa (5C)

€ij €V
T, — Z r;,; =0, (5d)

ier(x)

l’ieij < T(]. — TZSJ) V(% Eij) € F, (56)
xiij,i < T(l — Tzé]) V<Z7 Eij) S F, (5f)
zg, p < Oy Veij € U, (5g)
2, <Y Vi e T(3), (5h)
5 >0, ¥(i,j) € B. (51

Finally, BIVLP can be stated as a bilevel optimization problem.

min,A s. t. (la-1c), (2b), (3a-3d), A > YT — DD*(r®°) Vs € S, DD?(7°) = (4-51).
Regarding the ISD problem, the leader select a feasible configuration of the isolation system
by setting 7, while the follower determines the quality of a such configuration by solving a
maximum flow problem for each sector.

2.2 A one level MILP for BIVLP

Bilevel optimization [4] provides the framework for modelling optimization problems where two

decision makers with conflicting objective functions are involved in a hierarchical relationship.

The leader takes its decisions aware of the fact that their value depends on how the follower
reacts to such decisions. Here, the leader sets the topology of the isolation system, locating
the available valves on the pipes. The follower, sector by sector, maximizes the flow from
o to P on a graph whose topology depends on the boundary valves of the sector. Bilevel
optimization problems can be tackled by imposing inner problem optimality by adding its
optimality conditions, usually expressed as non linear constraints, to the inner problem
feasibility constraints, and reformulating the whole problem as a single level optimization
problem. When the inner problem is a linear programming problem, duality can be exploited
to state optimality by way of linear constraints (see [1]). In our case, given the valves location,
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each subproblem is a MFP whose dual is the minimum capacity cut provided in (6-7e).
For each s € S there is a dual variable for each constraint of the MFP model.

w‘f’eij, wiw ; > 0,V(i,€;;) € F are the non negative variables associated to capacity constraints

(5e) and (5f).

5 p >0, Ve;; € ¥ are the non negative variables associated to capacity constraints (5g).

€ij)

w;i >0, Vi € T'(X) are the non negative variables associated to capacity constraints (5h).

w7 Vi € I' U W are the unconstrained node potential variables associated to flow balance
constraints (5a) and (5b).

mp and 7 are the potential variables associated to the sink and the source flow balance
constraints (5¢) and (5d).

For each sector, an equivalent reformulation of the dual problem of (4-5i) is stated below.

w

min Z T(1—75)(Wie, Twe, ) + Z (Ges;we.,,p) (6)
(iseig)€F (eij,P)ED

T — e > 1, (7a)

T =T, Wi, 20 V(i,€i5) € (7b)

m = w20 V(i,€5) € (7¢)

mo— Tt wl p >0 V(eij, P) (7d)

o —m tws, >0 Y(o,i) € (7e)

The dual objective function coefficients of wf_ —~and wg _ ; depend on 77 . To linearize
k) J 17 1%

this non linear expression, for each sector we introduce two non negative variables 1 .

€

and pg, ; for each edge (i,€;;) € F' and constraints (8a-8b), which realize the equivalence

S S S
> = w? TS,
/”Lz,eij 1,655 1]

Hie, S Wie,, V(i e;;) € F, Vs € S, (8a)
My < X5 V(i e;j) € F, Vs € 8. (8b)

)

145 c,, is no greater than wi . —and it is forced to 0 when 77 is 0. Since its coefficient in the

objective function to be minimized is =T <0, then 47 Wlll be equal to wy . if 75 = 1.
Now we can replace the objective function (4) of the inner problem for each s € S by

constraint (9) that imposes the well known maz flow — min cut optimality condition.

The = > (The, +wi,0) = T, +ii,0) + D (Gawl,p): )
(i,eij)EF (Eij7P)€D
Finally, a single level MILP for BIVLP is given by:
min:A s. t. (la-lc), (2b), (3a-3d), and A > T — x5, (9), (8a-8b), (5a-5i), (Ta-Te) Vs € S
which can be fed into any MILP solver and solved, as described in the next section.

3 Computational results and conclusions

We developed the MILP model of Section 2 for a real life WDS, the Apulian network serving
Puglia, a region in the south of Italy, which was the case study also in [14], [2], and in [7]. A
scheme is depicted in Figure 4: it is made of one reservoir, 23 junctions, and 33 pipes.
Running time is heavily affected by the maximum number of sectors. A rough estimation
is the following: Spaz = ¢+ hmaz — Zver(z)(deg(y) — 1), where T'(X) is the set of junctions
~ adjacent to a reservoir o € ¥ (in Figure 4, I'(X) = {1}); deg(7) is the degree of vertex ~;
cc is the number of connected components obtained after edges (7, €4;) have been removed,
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Figure 4 The Apulian network.

for each junction v € I'(X), except for the component made of o, v, and pipe (o,7). Any
pipe with positive demand and incident on a junction in I'(X) must have a valve located
near the junction to be isolated. Once such valves have been placed, yielding cc sectors, at
most one more sector may result from the placement of one additional valve. This bound
can be tight for very sparse networks, such as a tree, but real WDSs have several loops. A
tighter estimate for $,,q, and a downsizing of the MILP model can be achieved by more
sophisticated procedures exploiting the network topology of the instance, and are currently
under investigation.

As in [2], hyaq varies in [5,-- -, 14] and the time limit for each instance is 8000 seconds.
In the Apulian network cc = 1, T'(X) = {1} and deg(1) = 4, then we have that s;u.; =
14 hmae — (4= 1) = hynae — 2, hence $,,4, varies in [3,--- | 12].

The MILP solver is Gurobi Optimizer 4.6 [10], experiments were run on a Intel dual core
architecture based on P8400 CPUs, 2.26 GHz, 4GB of RAM.

Figure 5 for each value of h,;,q, reports the running time for the optimally solved instances,
and the time the best feasible solution was found for the others. For such instances, labels
report the gap between the best feasible MILP solution (2 7EF) and the optimal one provided
in [2] (7). Note that for hpae = 8,9, 14 we find the optimal solution within the time
limit but we cannot certify it.

In conclusion, we provided a third exact solution approach to the BIVLP, based on MILP.

A first implementation outperforms the ASP based approach and can solve to optimality

0% | 0% 3.6% 1.5% 10.3% 0%

8000 8000
7000 . MILP - Total 7000
computing time
6000 # MILP - Best feasible 6000
Py solution time A
E 5000 — “¥CLP(FD) - Total 5000
= computing time
(=]
£ 4000 A CLP(FD)-Best 4000
= feasible solution time
§' 3000 I ZOLP _ 2MLP | Z°P 3000
© 2000 2000
1000 . 1000
0 0

3 4 5 6 7 8 9 0 M1 12 13 14
# Valves

Figure 5 Computation time and solution gap values with different number of valves.
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several instances of those solved by the CLP(FD) based approach in the same time limit, while
provides good quality solutions to the others. Regarding the Pareto front generation, some
iterations could be saved w.r.t. [2] where the number of used valves is fixed. Current research
is devoted to improve the computational performance by: tuning the solver parameters
which have been used at their default value; strengthening the GPP constraints taking
advantage of the literature studies on its polyhedral structure [3, 6]; reducing symmetries in
the model; tightening the estimate on $,,,, exploiting the WDS’s graph topology; exploiting
the knowledge of the exact solution with one more (one less) available valve in the computation
of the Pareto optimal frontier. Furthermore, we aim to tackle different objective functions
building on the MILP model here presented to formulate the feasible region of the ISD
problem. For example, we plan to handle different probabilities of pipe failures and pipe
dependent valve costs. Finally, hybrid approaches integrating MILP and CLP will be
explored.

—— References

1 M. Bruglieri, P. Cappanera, A. Colorni, and M. Nonato. Modeling the gateway location
problem for multicommodity flow rerouting. In J. Pahl et al., editor, Network Optimization,
volume 6701 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2011.

2 M. Cattafi, M. Gavanelli, M. Nonato, S. Alvisi, and M. Franchini. Optimal placement
of valves in a water distribution network with CLP(FD). Theory and Practice of Logic
Programming, 11(4-5):731-747, 2011.

3 S. Chopra and M. R. Rao. The partition problem. Mathematical Programming, 59(1), 1993.

4 B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
Operations Research, 153:235-256, 2007. 10.1007/s10479-007-0176-2.

5 E. Creaco, M. Franchini, and S. Alvisi. Optimal placement of isolation valves in water
distribution systems based on valve cost and weighted average demand shortfall. Journal
of Water Resources Planning and Management, 24(15), 2010.

6 C. Ferreira, A. Martin, C. de Souza, R. Weismantel, and L. Wolsey. Formulations and valid
inequalities for the node capacitated graph partitioning problem. Mathematical Program-
ming, 74(3), 1996.

7 M. Gavanelli, M. Nonato, A. Peano, S. Alvisi, and M. Franchini. An ASP approach for the
valves positioning optimization in a water distribution system. In F. Lisi, editor, 9th Italian
Convention on Computational Logic (CILC 2012), Rome, Italy, volume 857 of CEUR Work-
shop Proceedings, pages 134—-148, 2012.

8 M. Gelfond. Answer sets. In Handbook of Knowledge Representation, chapter 7. Elsevier,
2007.

9 O. Giustolisi and D. A. Savié. Identification of segments and optimal isolation valve system
design in water distribution networks. Urban Water Journal, 2010.

10  Gurobi Optimization, Inc. Gurobi optimizer reference manual. http://www.gurobi. com.

11 J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503-581, 1994.

12 H. Jun and G. V. Loganathan. Valve-controlled segments in water distribution systems.
Journal of Water Resources Planning and Management, 133(2), 2007.

13 J.-J. Kao and P.-H. Li. A segment-based optimization model for water pipeline replacement.
J. Am. Water Works Assoc., 99(7):83-95, 2007.

14 A. D. Nardo, M. D. Natale, G. Santonastaso, and S. Venticinque. Graph partitioning
for automatic sectorization of a water distribution system. In D. Savic, Z. Kapelan, and
D. Butler, editors, Urban Water Management: Challenges and Opportunities, volume 3,
pages 841-846. Centre for Water Systems, University of Exeter, Exeter (UK), 2011.



	Introduction
	Valves closure and sector isolation
	Hydraulic sectors and graph partitioning

	Mathematical models for the BIVLP
	A Bilevel model for BIVLP
	A one level MILP for BIVLP

	Computational results and conclusions

