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—— Abstract

The vehicle routing problem comes in varied forms. In addition to usual variants with diverse
constraints and specialized objectives, the problem instances themselves — even from a single
shared source — can be distinctly different. Heuristic, metaheuristic, and hybrid algorithms that
are typically used to solve these problems are sensitive to this variation and can exhibit er-
ratic performance when applied on new, previously unseen instances. To mitigate this, and to

improve their applicability, algorithm developers often choose to expose parameters that allow
customization of the algorithm behavior. Unfortunately, finding a good set of values for these
parameters can be a tedious task that requires extensive experimentation and experience. By
deriving descriptors for the problem classes and instances, one would be able to apply learning
and adaptive methods that, when taught, can effectively exploit the idiosyncrasies of a problem
instance. Furthermore, these methods can generalize from previously learnt knowledge by infer-
ring suitable values for these parameters. As a necessary intermediate step towards this goal, we
propose a set of feature extractors for vehicle routing problems. The descriptors include dimen-
sionality of the problem; statistical descriptors of distances, demands, etc.; clusterability of the
vertex locations; and measures derived using fitness landscape analysis. We show the relevancy
of these features by performing clustering on classical problem instances and instance-specific
algorithm configuration of vehicle routing metaheuristics.
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1 Introduction

The quality and the required computational effort of algorithmically optimized vehicle routing
solutions are heavily dependent on the problem instance, the solution method, and using
the right parameters for the algorithms [5]. Fortunately, it has been shown that automatic
algorithm configuration and algorithm selection can be used to improve the solver performance.
Thus, in order to make routing algorithms more robust and adaptive, we propose applying
machine learning to help the algorithms more effectively adapt to the problem being solved.
However, as a prerequisite, we need a way to describe the problem instances to the learning
algorithms.
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The vehicle routing problem (VRP) can be considered to be a generalization of the
traveling salesman problem (TSP). Therefore, studies where TSP instances are described,
e.g. [20, 8, 12, 6, 13], are highly relevant. Smith-Miles and van Hemert [20] proposed 12
features for predicting the most suitable optimization algorithm for a TSP instance. The
feature set is well-rounded containing features derived from the distance matrix, clustering,
nearest neighbors, and geometry of an instance. Kanda et al. [8] had a similar goal, but
they relied only on features based on the problem size and statistical description of the
distance matrix, whereas Mersmann et al. [12] proposed a set of 47 features in order to
build a model that could be used to discriminate between hard and easy TSP instances.
Hutter et al. [6] proposed a set of new approaches such as describing minimum spanning
trees, ruggedness, and probing with TSP solvers. Probing involved analyzing and describing
the solution attempts with a heuristic and branch-and-cut solvers. Pihera and Musliu [13]
further extended this feature set, which allowed algorithm selection for a TSP instance.

Literature of VRP descriptors is scarce. The only studies on VRP feature extraction from
the machine learning perspective we are aware of are the dissertation of Steinhaus [22] and
algorithm performance prediction in [25]. Steinhaus [22] explores the use of a self organizing
maps in solving VRPs and in algorithm selection. She proposes 23 features specifically
for VRP problems and explores the discrimination power of this feature set across 102
VRP benchmark problems. Most features she proposed are based on earlier literature on
describing T'SPs, but they are complemented with features describing the demand distribution
of the nodes, vehicle capacity, and their relations. Studies from a VRP fitness landscape
analysis perspective, e.g. [21, 14, 25], do exist, but as these metrics are mainly used to gain
deeper understanding of the problem, they need to be adapted before they can be used for
performance prediction or algorithm selection. This was the approach chosen by Ventresca
et al. [25].

In this article, a set of feature extractors gathered from the aforementioned sources
is adapted to describe capacitated vehicle routing problem (CVRP) instances. Our goal
is to recognize problem types and better understand instance properties that may affect
solving them. A set of features that is this comprehensive has not been previously used
to describe vehicle routing problems. Moreover, the feature set is validated experimentally
with clustering of benchmark instances, automatic algorithm configuration [5], and instance
specific algorithm tuning [7].

Our contributions are threefold: First, we give a review on feature extraction of vehicle
routing problems. Second, proposed features are used in automatic configuration of three
metaheuristic CVRP solvers to prove their usefulness for self-adaptive and learning solution
techniques. Finally, we do clustering on 168 well known CVRP benchmark instances and
make observations on their similarities. To the best of our knowledge, this is the first study
that proposes the use of features acquired by probing CVRP instances with exact and
heuristic solution methods. This is also the first study to explore the possibility of using
features to improve the performance of automatic configuration of vehicle routing algorithms.

This paper is organized as follows: In Section 2 the automatic algorithm configuration
problem is defined. Section 3 introduces the vehicle routing problem in detail, with handling
of common solution approaches. It is followed by listings of feature extractors and descriptors
for these problems, also including those presented in this study. Section 4 describes the
experimental setup and the results for verifying the proposed feature set. Finally, we conclude
our study in Section 5.
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2 Instance Specific Algorithm Configuration Problem

The task of automatic algorithm configuration (AAC) involves the off-line task of finding
a “good” set of parameter values, or a parameter configuration, for a target algorithm in
a way that the algorithm achieves the best possible performance. It is critical to use a
representative set of problem instances when configuring the algorithm parameters. This
ensures that the performance advantage manifests also on new, previously unseen, instances.

If a good generalized performance is needed and the problem set is not homogeneous,
i.e. the instances are very different from each other, the use of AAC may even be disad-
vantageous: a parameter configuration may enable an algorithm to perform well on some
instances, but be inferior to algorithm defaults on another. One possible solution in a
situation like this is to use instance specific algorithm configuration as described e.g. in
Kadioglu et al. [7]. The idea is to configure the parameters for each group of mutually similar
problem instances separately, and when a new problem instance needs to be solved, the
automatically configured parameters of the most similar instance group is used. For a study
on instance specific algorithm configuration of a TSP metaheuristic we refer to [18].

The task of algorithm selection is closely related to AAC. In algorithm selection, the
problem instance properties are used to choose the algorithm with best predicted performance.
Usually the algorithm is selected out of a portfolio, and the model for algorithm performance
is built earlier during an off-line learning phase. The approach has proven successful: during
the last decade many state-of-the-art results in combinatorial optimization competitions have
been achieved using algorithm selection from an algorithm portfolio [27, 10].

Please note that both algorithm selection and instance specific algorithm configuration
need a way to describe the problem instances. Therefore, a good set of feature extractors
is a critical prerequisite for employing these learning meta-optimization techniques. It is
necessary to experimentally discover which features can characterize a problem set in such a
way they capture properties relevant to a) solving the problems b) configuring algorithm
parameters c) recognizing a set of mutually similar problems that can share a configured
parameter configuration, and d) ability to predict algorithm performance.

3 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) involves finding optimal routes for vehicles leaving
from a depot to serve number of clients. Each client must be visited exactly once by exactly
one vehicle. Each vehicle must leave from the depot and return there after serving the
clients on its tour. There are numerous variants of VRPs, each with their own additional
constraints [23]. In this study, only the classic Capacitated Vehicle Routing Problem (CVRP)
is considered. In the CVRP, each of the identical vehicles has a maximum carrying capacity
of @ that cannot be exceeded at any point of the tour. Each of the clients, indexed with 4,
have a demand ¢; that has to be within 0 < ¢; < Q. The number of vehicles, denoted by
k, is the primal minimization target, followed by the total travel distance of the k vehicles.
Extending this notation, the CVRP can be written in a graph formulation adapted from
Toth and Vigo [23] as follows: Let V = {0,...,n} be the set of vertices where the depot
has the index 0 and where the rest correspond to the clients. The size of the problem is
denoted by N =|V|. Let E = {(0,1),...,(4,4),...,(n —1,n)} be the set of edges, where
1,7 € V,i # j. Therefore, the graph G = (V, E) is complete with each edge e = (i,j) € E

having an associated non-negative weight c;; that is the cost of traversal from vertex ¢ to j.

The weights can be also given as a distance matrix D. For each of the edges (i,j) € E there
is a binary decision variable z;; to decide whether the edge is traversed.
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3.1 On Solving Vehicle Routing Problems

The solution approaches of VRPs can be divided into two main families: exact and heuristic
methods. Heuristic methods are often augmented with metaheuristics to avoid entrapment
in the first local optima the search encounters. Laporte [9] further divides heuristic methods
into constructive and improvement heuristics. Constructive heuristics insert unassigned
clients on the routes, and improvement heuristics improve the solution quality through small
moves until no improving steps can be taken. Improvement heuristics can be seen as a
building block of the Local Search (LS), a key element in modern metaheuristics.

The (meta)heuristic approach is the most feasible approach when solving larger CVRP
problems. However, exact methods are still relevant as the (meta)heuristic methods make no
guarantees in reaching the globally optimal value. According to Lysgaard et al. [11], the most
promising exact solution technique for CVRP appears to be branch-and-cut (BnC). In BnC
cutting planes are iteratively added to a relaxed linear programming model to ultimately
narrow down on the global optimum.

3.2 Descriptors for the Problem

The features for routing problem instances are usually calculated either using the distance
matrix or the 2D coordinates. Therefore, to calculate all features, both the node coordinates
and the distance matrix need to be known. If D was not given in an instance file, a distance
matrix was produced using the depot and client coordinates. Likewise, if a benchmark
instance provided only a distance matrix, we used multidimensional scaling (MDS) [2] to
generate x and y coordinates for the instance. We also followed the example of Smith-Miles
and van Hemert [20] and scaled the coordinates into the [(0, 0), (400, 400)] rectangle to make
the geometrical features comparable between problem instances. However, we retain the
shape (scale) of the problem when normalizing the problem to avoid distortion of the distance
matrix, i.e. we maintained the z/y ratio. To maintain the connection between the coordinates
and D, we scaled the distance matrix D using the same multiplier as with coordinates. This
preprocessing produces a commensurable distance matrix D™ and coordinate set P™ that
can be used to calculate geometrical and graph features.

Table 1 (p. 5) presents the CVRP feature extractors used in this study. The features
proposed in this study are marked with bold typeface. The table also shows how many feature
values each extractor produces. Usually the features are statistical descriptors explaining the
distribution of measured values. If the number of statistical descriptors is five, it includes
statistical moments (mean, standard deviation, skewness and kurtosis) and coefficient of
variation; whereas if 11 descriptors are given, the former are complemented by minimum,
maximum, median, number of modes, frequency of the mode value, and the mode itself (or
average of modes). An even more complete set of 14 descriptors adds quartiles.

Table 1a. The first feature set is for describing the node distribution on a 2D plane. The most
often used feature involves statistically describing the distance matrix (cost matrix, without
the diagonal). Smith-Miles and van Hemert [20] used the standard deviation, which Kanda
et al. [8] and Hutter et al. [6] complemented with a more comprehensive set of statistical
descriptors. We normalized the distance matrix to the rectangle [(0,0), (400, 400)],
similarly to [20], and calculate 11 statistical descriptors for the distance distribution.
Smith-Miles and van Hemert [20] also proposed counting the distinct distances found in
the distance matrix using different precision. We used four levels of precision, like in [6].
Also, the centroid of the coordinates and the euclidean distance from each point to the
centroid were calculated. The average of these distances is the “radius” feature from [20].
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Table 1 The feature extractors for CVRPs, grouped by type.

(a) Node distribution features

(e) Geometric features

1D Feature # 1D Feature #
ND1 Distribution of distance matrix 11 G1 Area of the enclosing rect- 1
calues [20, 8, 6] angle (“squareness”) [20, 6]
ND2  Fraction of distinct distances 4 G2 Convex hull (CH) area [12] 1
(with 1,2,3,4 decimals) [20, 6] G3 Ratio of points on the hull 1
ND3  Centroid of the nodes (z,y) [20] 2 [12]
ND4  Distance to the centroid [20] 5 G4 Distance of enclosed points 11
ND5  # of clusters (abs.,rel.) [20] 2 to the CH contour [13]
ND6  # of core, edge and outlier 3 G5 Edge lengths of the CH [13] 11
cluster points (rel.) [20]
D7 Reach of the clusters [20] 5 (f) Nearest neighborhood (NN) features
ND8  Normalized cluster sizes [6] 5
ND9  Silhouette coefficient 1 ID Feature #
ND10  Minimum bottleneck cost [6] 5 NN1 Distance to 1st NN [20, 6] 5
NN2,9,15 Node input degree in direc- 14
. . ted kNN graph (DkNNG) for
(b) Minimum spanning tree (MST) features ke {3,5,7} [13]
NN3,10,16 # of strongly connected com- 11
:/I];Tl f/fg;uzedge cost [12, 6] #; ponents (SCCs) in DkNNG
) NN5,11,17 Size of SCCs in DKNNG [13] 11
MST2 MST node degree [12, 6] 5
NN6,12,18 # of Weakly Connected 11
MST3 MST depth from the depot 5 Components (WCCs) in
DKNNG
(c) Local search (LS) probing features NN7,13,19 Size of WCCs in DkNNG [13] 11
NN8,14,20 Ratio of SCCs/WCCs [13] 1
ID Feature #_ NN21 Angle between edges to two 11
LSP1 Solution quality after construc- 5 NNs [12, 13]
tion phase [6] NN22 Cosine similarity between 11
LSP2 Solution quality after LS [6] 5 edges to two NNs [13]
LSP3 Improvement per LS step [6] 5
LSP4 LS steps to local minimum [6] 5 .
LSP5  Distance of local minima [6] 5 () VRP specific features
LSP6 % for edges in local optima [6] 5  ID Feature #
LSP7  Solution edge lengths per 20 DC1 Number of clients [8] 1
quartile (5 x 4 quartiles) [13] DC2 The depot location (z,y) [22] 2
LSP8  Segment length [13] 5 pecs Distance between the 1
LSP9 Segment edge count [13] 5 centroid and the depot
LSP10  Segment edge length [13] 5 DC4 Client dist. to the depot 5
LSP11  Intra-tour intersections [13] 5 DC5 Client Demands [22] 5
LSP12 Autocorrelation length 5 DC6 Ratio of total demand to 1
total capacity (the “tight-
ness”) [22]

(d) Branch-and-cut probing features DC7 Ratio of max. cluster de- 1
D Feature Z man.d to vehicle capaci?y [22]
BCP1 Improvement per added cut [6] 5 bes i/itrla?ll %ferfllélsgeézo]mher fo 1
BCP2 Ratio between upper and lower 1 DC9 Ratio between the largest de- 1

boun(.i [6] i mand and the capacity [22]
BCP3  Solution value after probing [6] 1 DC10 Average number of clients 1
BCP4 Lower bound [6] 1 per vehicle [22]
DC11 Minimum number of trucks 1

22]
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Some heuristics rely heavily on the existence of clusters. Therefore, features capturing
this aspect are expected to be useful in algorithm selection. DBSCAN clustering has been
used, at least, in [20, 8, 12, 6, 13, 22] to extract features for routing problem instances.
We calculated features for cluster count (absolute and relative to N); cluster size; and
a relative number of core, edge and outlier points. Mersmann et al. [12] used three
different values for the e (maximum allowed distance for two points belonging to a same
cluster), while Steinhaus [22] experimented with four alternative methods to find a good
€ value. In our study we decided to use the minimum cluster size of 4, and with that
€= App/ (VN — 1), which is an approximation of the 4th nearest neighbor distance if the
nodes are assumed to be uniformly distributed on a lattice within a square with an area
of App [22]. To include a feature measuring the quality of the DBSCAN clustering, we
propose the silhouette score [19] as a novel addition to the feature set.

The node distribution features are completed with the Minimum Bottleneck Cost (MBC)
as proposed by [6]. It is used to describe the clusterability of TSP instances. The
bottleneck cost is defined to be the weight of the longest edge on a path from node 4
to 7, i # j. We get the minimum bottleneck cost by taking a minimum of bottleneck
costs over all possible paths from node i to j. By calculating the bottleneck cost for all
possible node pairs i,j € V', i # j, we get a distribution that can then be described with
statistical moments.

Table 1b. A minimum spanning tree (MST) was calculated for the fully connected normalized
graph G™. As suggested in [12, 6], the distribution of edge costs and node degrees of
the MST were described using statistical moments. Mersmann et al. [12] included the
spanning tree node depth as well, which we adapted for the VRP by calculating it with
the depot as the root. We omitted the sum of the MST tree cost proposed in [12], as it
can be inferred from the average MST cost.

Table 1c Probing features are computed with a solution attempt on a problem instance. An
algorithm is run for predefined time or steps and the trajectory of the search is recorded.
The approach is general and applicable to a variety of problems. Probing has been shown
to be useful, e.g. for predicting the performance of an algorithm [6].

To adapt the TSP LS probing features from [13], we used the VRPH heuristic search
algorithm library [3], or more specifically, its vrp_init application that is based on
the Clarke-Wright construction heuristic. It was modified to accept a shape parameter
v that affects the savings calculation [28]. The parameter can be selected randomly
to produce varied initial solutions. After construction, the solution is improved with
intra-route multi-neighborhood search using best accept strategy with one-point-move,
two-point-move and two-opt local search heuristics [3] until no improving move is found.
By repeating the probing 20 times, we could calculate the statistical descriptors in
Table 1c. Some of the features closely resemble those we have used previously to validate
visualization technique for VRPs with solution space analysis (SSA) [16]: the first is
the distribution of Manhattan distances between the local optimum solutions (LSP5),
calculated from the differences in edge traversal decision variable values between the
solutions. This feature is a measure of the multimodality and indicator for the existence
of a “big-valley” structure [14]. The second SSA feature LSP6 describes the distribution
of probabilities of all edges in locally optimal solutions, which aims to reveal the existence
of a backbone [26], that is, a common structure between good solutions.

The features LSP8-10 involve the concept of a segment. A segment is a continuous path
of consecutive edges on a tour, from which the longest edges are removed as specified in
[13]. Pihera and Musliu [13] also proposed another extension to the set of local search



J. Rasku, T. Karkkainen, and N. Musliu

features, which is the number of intra-tour intersections, i.e. the times the edges of a tour
cross each other.

The final local search probing feature is the autocorrelation length A 4 of a random
walk through a series of best-accept one-point-move neighborhoods (heuristic described
e.g. in [3]). This closely relates to the autocorrelation coefficient used in [6]. For calculating
the autocorrelation length we used a method adapted from [21] and [4], with a random
walk length of 2N. The walk is repeated and the length calculated 10 times.

Table 1d. Besides heuristics, also exact solvers can be used to probe the problem. We used
the open source mixed-integer programming package SYMPHONY 5.6.15 and its VRP
application that can solve CVRPs [15]. Unfortunately, we were not able to compile the
VRP application with heuristics support for this version of SYMPHONY. Therefore,
the upper bound is set only after the first feasible solution is found. Because of this,
is possible that the feature BCP2 is left undefined for the larger instances if no feasible
solution is found. SYMPHONY also requires the number of vehicles k as an input when
solving an instance. If k& was not known we divided the total demand with some margin
(+5%) with the vehicle capacity @ to get the value for k, i.e. k = [1.05)" ¢;/Q]. For
branch-and-cut probing we used a wall time cutoff of 3.0 seconds.

Table 1le. Geometric features try to capture information of the overall shape of the problem.

The area of an enclosing rectangle, when normalized with the area of the scaled problem,
describes the “squareness” of the problem. Mersmann et al. [12] suggested two features
concerning the convex hull: the hull area and the fraction of nodes that are on the hull
contour. According to their experiments, convex hull features allow accurate separation
of easy and hard TSP instances. Pihera and Musliu [13] added statistical descriptors
for distances of inner nodes to the hull contour. It is assumed that the more evenly
distributed the nodes are inside the convex hull, the more difficult it is to solve. Therefore,
all these were included in our feature set.

Table 1f. Because heuristic solution methods operate by navigating through the search space
using a local search neighborhood, the Nearest Neighbors (NN) of the nodes can offer
important insight to the structure of the problem. In our study, the distribution of the 1st

nearest neighbor distances over all nodes is statistically described as done in [20, 6, 13].

We also included the extended nearest neighbor features presented in [13], which involve
building a directed graph by taking only k € 3,5,7 shortest edges for each node from
the complete normalized graph G™. The node degree, number and size of strongly and

weakly connected components, and their ratios are calculated and statistically described.

Table 1g. In describing the demands and capacity, we followed [22]. As an extension to the
VRP specific features, we propose measuring the distance between the depot and the
centroid of the client points. Also, describing the shape of the distribution of distances
from clients to the depot is included in our feature set. Furthermore, the size of the
problem (number of clients) is included here. Refer to [22] for details on these features.

In addition to the features presented in Table 1, we recorded the per instance feature
computation time as proposed in [6]. These are reported as timing features T1-T9 that match
the feature groups (Tables la—1g), with the exception of the autocorrelation and bottleneck
cost features, which are timed separately.

To summarize this section, we have adapted and proposed 76 feature extractors for
CVRPs which generate 386 features in total. The feature extractors were implemented in
Python version 2.7.10, with the aid from numerical libary Numpy (version 1.9.2), machine
learning library Scikit-learn (version 0.16.1), and statistical library Scipy (0.15.1). VRPH

and SYMPHONY were built with GNU g++ 5.3.0 compiler from the Mingw-w64 project.
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Figure 1 The clustering of the benchmark instances. Black dots are non-clustered outliers. The
plot axes are the first two principal components, with the ratio of explained variance given in
parenthesis.

All feature extraction in this study was done on a laptop with dual-core 2.53 GHz Intel Core
i5 520M processor, 8 GB of memory and 64-bit Windows 7 Enterprise operating system.

4 Experimental Evaluation of the Features

4.1 Clustering

To evaluate the quality of the proposed feature set, we computed the 386 features for each of
the 168 problem instances in CVRPLIB, which is a collection of CVRP benchmark instances
[24]. However, the high dimensionality of the resulting data had to be addressed before
clustering. Hutter et al. [5] suggests using principal component analysis (PCA) to reduce
the computational complexity when building a surrogate model for the automatic algorithm
configuration tool SMAC. We share some of the concerns regarding the computational cost.
However, in our case a larger issue is the curse of dimensionality, where the space volume
grows very rapidly as the dimensionality increases. This makes the dataset too sparse to
provide a representative sample of the high dimensional space. A related problem is the
irrelevancy of the distance metric in high dimensional data, where all data points seem to be
similarly close to each other [1]. To overcome these issues, we reduced the dimensionality of
the feature space with PCA.

To do the actual clustering, the feature data was first normalized by scaling all features
independently to a range [0.0,1.0]. Then, PCA was applied to bring the dimensionality of
the data down from 386 to 7 following the example of [5]. These seven principal components
together explain 71 % of the overall variance in the data. Finally, to do the unsupervised
learning, we used the DBSCAN with a minimum cluster size of 3. The e parameter was set
to 0.20 through experimentation. Resulting clusters for the 168 benchmark instances are
presented in Figure 1.
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The clusters in the lower left corner seem to be the small-to-medium easy-to-solve
instances. Unsurprisingly, the A and P sets overlap, as P is based on A. The difference
between A and B is that clients in A are uniformly generated whereas in B they are clustered.
Also the Taillard (T) and Fisher (F) sets contain clustered clients, which can be observed
as an overlap with the set B. Interestingly, the benchmark set Golden (G) is separated into
four clusters and some outliers. The benchmark set contains points in geometric shapes
like stars, squares, circles and rays, and it seems that our features are able to discriminate
between these. The Li (L) and Golden benchmark sets are similar and clustering them
together is expected. For a more accurate analysis of clusters we would need to do a more
extensive experimentation with the solvers, since probing does not necessarily allow reliable
estimation of the hardness and computational difficulty of an instance. The complete list
of problem instance abbreviations and the clustering in a table format, together with an
interactive zooming visualization of the clustering, can be found from the supplementary
online appendix at http://users. jyu.fi/~juherask/features/

4.2 Instance Specific Algorithm Configuration

As the automatic algorithm configuration targets, we used the three metaheuristic solvers
provided by the VRPH package from Groér et al. [3]. Each solver employs different meta-
heuristic: Record-to-Record travel (VRPH-RTR, 648 free parameters), simulated annealing
(VRPH-SA, 645), and ejection (VRPH-EJ, 6+3). We omit the descriptions of the algorithms
and solver parameters and refer the reader to [3], whereas a detailed description of the
automatic algorithm configuration setup can be found in [17].

As a configurator, we used SMAC [5]. SMAC is a state-of-the-art AAC method that
alternates between fitting a random forest model to the observed behavior of the target
algorithm, and using that model to predict the performance of generated parameter configur-
ation candidates — evaluating only those that are most promising on the solver. SMAC offers
an option to complement the problem instances with feature values, which are used when
building and updating the random forest model. In our experiments this approach is called
fSMAC. fSMAC already does PCA to the feature vectors, but as an additional preprocessing
step we took 50 features that showed the highest correlation with the solution quality in
heuristic and branch-and-bound probing. SMAC is not an instance specific algorithm con-
figuration tool like ISAC from Kadioglu et al. [7], but we can follow a similar scheme to
create IS-fSMAC. This variant uses k-Means clustering on the preprocessed feature data to
split the problem instance set to subsets. These subsets supposedly share similar solving
characteristics and can be configured separately.

In our configuration experiments we used a set of 14 instances taken with stratified
sampling from the CVRPLIB set A. The problem set is the same one that we used in [17],
which makes it possible for the interested reader to compare the proposed approach against
other configurators. Also, each configuration task was run with three different evaluation
budgets (EBs): 100, 500, and 1000 time capped (10 s) runs of the target algorithm. In
the case of configuring the clustered instances, the budget was distributed according to the
cluster size. Because the algorithms are stochastic, the experiments were repeated 10 times.

The results of the configuration tasks are presented in Table 2. The use of features
seems beneficial, especially with a budget of 100. This is unsurprising, as the use of features
is expected to provide more initial information when building the surrogate model of the
parameter-solution quality response surface. Especially VRPH-SA target seems to benefit
from using the features. The advantage gained by using features is smaller for VRPH-EJ
and VRPH-RTR targets, but the effect still exists. However, the results of instance specific

7:9

SCOR’16


http://users.jyu.fi/~juherask/features/

7:10

Feature Extractors for Describing Vehicle Routing Problem Instances

Table 2 Median tuning results for VRPH metaheuristics. Results are given as percentages from
the aggregated best known solution (relative optimality gap). The best known solution values are
from CVRPLIB. Statistically better results are in bold (p < 0.05 with Bonferroni adjustment). If no
single best was found, a test for a best pair was made.

Target VRPH-SA VRPH-EJ VRPH-RTR
Defaults 0.83 (0.12) 0.50 (0.13) 1.42 (0.07)
Method \ EB 100 500 1000 100 500 1000 100 500 1000
SMAC 0.40 029 0.26 039 0.35 0.34 0.16 0.09 0.10
(0.11) (0.08) (0.06) (0.07) (0.04) (0.04) (0.05) (0.01) (0.02)
fSMAC 0.39 026 0.23 0.36 0.36 0.35 0.15 0.09 0.07
(0.15) (0.06) (0.05)  (0.06) (0.05) (0.06) (0.06) (0.04) (0.03)
IS-fSMAC 056 027  0.25 0.35 0.33 0.34 0.19  0.09  0.09

(0.11)  (0.07) (0.05) (0.08) (0.07) (0.06) (0.06) (0.03) (0.01)

parameter tuning are not as good as expected. The clustering to problem classes seems to be
beneficial only for VRPH-EJ targets. It may be that the features are unable to capture the
differences (unlikely), the clustering is handicapped by the curse of dimensionality (likely),
or the evaluation budget split among clusters is too small for SMAC to converge to good
parameter configurations (likely). Still, the most probable cause is the homogeneity of the
problem set. All of the instances in the set A come from the same generator, thus showing
similar solving characteristics. Additional experiments are needed to identify the largest
factor preventing the instance specific tuning from giving comparable advantage to what has
been reported in e.g. in [7]. Nonetheless, every resulting parameter configuration is superior
compared to the defaults.

All automatic configuration was done on a computing server with 64 Intel(R) Xeon(R)
CPU E7 2.67 GHz cores, and 1 TB of RAM running 64-bit OpenSUSE version 13.2 (codename
Harlequin). We enforced a 10 second cutoff for all evaluations of the CVRP solver.

5 Conclusions

In this article, we set out to find feature extractors for capacitated vehicle routing problem
(CVRP) instances, mostly by adapting Traveling Salesman Problem (TSP) descriptors from
the literature. We implemented 76 feature extractors for almost every descriptor that had
been reportedly used in algorithm selection and automatic algorithm configuration of routing
algorithms and proposed some novel ones. The presented set of 386 features for CVRP
is unparalleled in its extent. Additionally, we are not aware that probing with heuristic
and branch-and-cut solvers has been previously used to produce features for CVRP meta-
optimization. The suitability of these features was verified with feature assisted automatic
algorithm configuration with the state-of-the-art tool SMAC. We also presented clustering of
168 well-known benchmark instances from the CVRPLIB collection. Clustering shows good
discrimination ability between the known properties of these problems. However, a more
complete analysis of the clustering is warranted to get novel insights.

We can conclude that automatic algorithm configuration can benefit from using the
proposed features. Out of the tested CVRP metaheuristics, the simulated annealing (VRPH-
SA) benefited the most. We also experimented with instance specific configuration, where it
was possible to further improve the configured solver performance of the ejection metaheuristic
(VRPH-EJ). However, the overall increase in performance when using an instance specific
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algorithm configuration scheme was modest. This is probably due to our problem set being
relatively small and homogeneous. Therefore, a more extensive experimentation with different
targets, instance specific configurators, and problem sets is required to make a judgment on
applicability of instance specific parameter configuration of vehicle routing solvers. Also,
please note that in our automatic algorithm configuration experiments we did not test for
over-tuning (cf. overfitting), which may manifest as poor generalizability of the configured
parameter configuration.

Other future research topics include: Feature selection that should help us recognize the
most useful features, as currently the high dimensionality of the feature vector seems to
confuse unsupervised learning and algorithm configuration efforts. We would also like to
extend our feature extractors to describe other well-known VRP variants such as vehicle
routing problem with time windows (VRPTW) and pickup and delivery problems (PDP).
This could potentially reveal new interesting similarities between the problem types and sets.
We would also like to extend our study towards algorithm selection.

It has been shown that applying feature based machine learning approaches, such as the
one presented here, in solving combinatorial optimization problems, can lead to significant
improvements in on-line algorithm performance and resulting solution quality. Adapting this
approach in solving VRPs has shown promise and warrants further research.
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