
Constraint CNF: SAT and CSP Language Under
One Roof
Broes De Cat1 and Yuliya Lierler2

1 Independent Researcher, Londerzeel, Belgium
broes.decat@gmail.com

2 University of Nebraska at Omaha, Omaha, USA
ylierler@unomaha.edu

Abstract
A new language, called constraint CNF, is proposed. It integrates propositional logic with con-
straints stemming from constraint programming. A family of algorithms is designed to solve
problems expressed in constraint CNF. These algorithms build on techniques from both pro-
positional satisfiability and constraint programming. The result is a uniform language and an
algorithmic framework, which allow us to gain a deeper understanding of the relation between the
solving techniques used in propositional satisfiability and in constraint programming and apply
them together.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Propositional Satisfiability, Constraint Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.12

1 Introduction

Propositional satisfiability (SAT) and constraint programming (CP) are two areas of auto-
mated reasoning that focus on finding assignments that satisfy declarative specifications.
However, the typical declarative languages, solving techniques and terminology in both areas
are quite different. As a consequence, it is not straightforward to see their relation and how
they could benefit from eachother. In this work, we introduce a language called constraint
CNF, which will allow a formal study of this relation. We propose a graph-based algorithmic
framework suitable to describe a family of algorithms designed to solve problems expressed in
constraint CNF or, in other words, to find models of constraint CNF formulas. The described
algorithms build on ideas coming from both SAT and CP. We view constraint CNF as a
uniform, simple language that allows us to conglomerate solving techniques of SAT and CP.

The idea of connecting CP with SAT is not novel. Many solving methods investigated
in CP fall back on realizing the connection between the two fields and, in particular, on
devising translations from constraint satisfaction problem (CSP) specifications to SAT
problem specifications, e.g. [12]. Also, methods that combine CP and SAT in a more
sophisticated manner exist [10, 2]. Somewhat orthogonal to these efforts is constraint answer
set programming (CASP) [5], which attempts to enhance the SAT-like solving methods that
are available for processing logic programs under stable model semantics with CP algorithms.
It is reasonable to believe that the two distinct research areas CASP and CP, coming from
different directions, move towards a common ground. Yet, capturing the common ground
is difficult. Research on SAT, CP, CASP each rely on their established terminology and
classical results in earlier literature. This makes it difficult to borrow on the knowledge
discovered in one of the communities and yet not available in another. Here we undertake

© Broes De Cat and Yuliya Lierler;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 12; pp. 12:1–12:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Constraint CNF: SAT and CSP Language Under One Roof

the effort of introducing a language that can serve as a unifying ground for the investigation
in different automated reasoning communities. We believe that this language will foster
and promote new insights and breakthroughs in research communities that consider the
computational task of model building.

The paper starts by introducing syntax and semantics of constraint CNF and relating
the language to propositional logic and constraint satisfaction problems. We then adapt
a graph-based framework, pioneered by Nieuwenhuis et al. [9] for describing backtrack-
search algorithms, and design a family of algorithms suitable to solve problems expressed
in constraint CNF. We conclude the paper by discussing specific instantiations of such
algorithms.

2 Constraint CNF

A domain is a set of values. For example, the Boolean domain consists of truth values
B = {t, f}, whereas some possible integer domains include Z, N, and {1, 2, 4}. A signature is
a set of function symbols. Each function symbol f is assigned

a nonnegative integer called the arity and denoted arf , and
a non-empty domain for every integer i such that 0 ≤ i ≤ arf , denoted d̂f when i = 0
and d̂fi when 1 ≤ i ≤ arf .

We call d̂f the range of f . In addition, a function symbol f of nonzero arity can be assigned
a specific function from d̂f1 × · · · × d̂fn to d̂f , in which case we say that f is interpreted and
denote its interpretation by ιf . A function symbol is Boolean if its range is Boolean. A
propositional symbol is a 0-ary Boolean function symbol. For a signature Σ, its domain is
defined as the union of all involved domains. A signature is finite-domain when its domain is
finite.

For signature Σ, terms over Σ are defined recursively:
a 0-ary function symbol is a term, and
for an n-ary (n > 0) function symbol f , if t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

For a term τ of the form f(t1, . . . , tn), by τ0 we denote its function symbol f . We define the
range of a term τ , denoted as d̂τ , as the domain d̂τ0 . For a term f(t1, . . . , tn), we associate
each argument position 1 ≤ i ≤ n with the domain d̂fi and assume that d̂ti ⊆ d̂fi . A term is
Boolean if its range is (a subset of) the Boolean domain.

Let Σ be a signature. An atom over Σ is a Boolean term over Σ, a literal over Σ is an
atom a over Σ or its negation ¬a. A clause over Σ is a finite nonempty set of literals over Σ.
A formula over Σ is a finite set of clauses over Σ. We sometime drop the explicit reference to
the signature. For an atom a we call its negation ¬a a complement. For a literal ¬a we call
an atom a a complement. By l, we denote the complement of a literal l.

I Example 1. Consider the following sample problem specification. Two items, named 1
and 2, are available for sale, with associated prices of 100 and 500. We want to buy at least
one item, but we should not exceed our budget of 200. A possible signature to express these
statements consists of 0-ary function symbols i1, i2 and bgt (abbreviating budget), unary
function symbols pr (abbreviating price), buy, and binary interpreted function symbols +
and ≤, so that

d̂i1 = {1}, d̂i2 = {2}, d̂pr = {100, 500},

d̂bgt = {200}, d̂buy = d̂≤ = B,

d̂+ = {200, 600, 1000},

d̂pr
1 = d̂buy1 = {1, 2}, d̂≤1 = {200, 600, 1000},

d̂+
1 = d̂+

2 = {100, 500}, d̂≤2 = {200}.

B.De Cat and Y. Lierler 12:3

Function symbols + and ≤ are assigned respective arithmetic functions. We name the
described signature Σ1. In the following, terms that are composed using these functions
are often written in a common infix-style. We also drop parenthesis following the common
conventions. For instance, expression

pr(i1) + pr(i2) ≤ bgt

stands for the term

≤ (+(pr(i1), pr(i2)), bgt).

The requirements of the problem are expressed by formula ϕ1, consisting of four clauses:1

{buy(i1), buy(i2)} (1)
{¬buy(i1),¬buy(i2), pr(i1) + pr(i2) ≤ bgt} (2)
{¬buy(i1), pr(i1) ≤ bgt} (3)
{¬buy(i2), pr(i2) ≤ bgt}. (4)

Intuitively, clause (1) expresses that at least one item is bought. Clause (2) states that if
two items are bought then the sum of their prices should not exceed the budget. Clauses (3)
(respectively, clause (4)) state that if an item i1 (respectively, item i2) is bought then its
price should not exceed the budget.

For an n-ary function symbol f , we call any function d̂f1 × . . .× d̂fn 7→ 2d̂f approximating.
For instance, for the function symbol pr of Σ1 defined in Example 1, functions α1, α2, α3,
presented below

α1 : (1) 7→ {100} α2 : (1) 7→ {100}
(2) 7→ {100, 500} (2) 7→ {500}

α3 : (1) 7→ {100}
(2) 7→ ∅

are approximating. An approximating function is defining if, for all possible arguments, it
returns a singleton set. For example, function α2 is defining. We identify defining functions
with functions that, instead of a singleton set containing a domain value, return the domain
value itself. Thus, we can represent α2 as a function that maps 1 to 100 and 2 to 500.
We call a function inconsistent if for some arguments it returns the empty set. Function
α3 is inconsistent. We say that a function α : D1 × · · · × Dn 7→ 2D reifies a function
α′ : D1× · · ·×Dn 7→ 2D if for any n-tuple ~x ∈ D1× · · ·×Dn it holds that α(~x) ⊆ α′(~x). For
example, functions α2, α3 reify α1, and α3 reifies α2. The reification-relation is transitive
and reflexive.

We are now ready to define a semantics of the constraint CNF formulas. An interpretation
I over a signature Σ consists of an approximating function for every function symbol in Σ;
for a function symbol f ∈ Σ, by f I we denote the approximating function of f in I.

We call f I an interpretation of a function symbol f in I. An interpretation that contains
only defining functions is total. An interpretation that contains an inconsistent function is

1 By introducing additional function symbols, the representation can be made more elaboration tolerant
with regards to increasing the number of items. For simplicity of the example, a different representation
was chosen here.

ICLP 2016 TCs

12:4 Constraint CNF: SAT and CSP Language Under One Roof

inconsistent. For interpretations I and I ′ over Σ we say that I reifies I ′ (or, I is a reification
of I ′) if for every function symbol f ∈ Σ, f I reifies f I′ .

Let Σ be a signature, τ be a term over Σ, and I be a total interpretation over Σ. By τ I
we denote the value assigned to a term τ by I, defined recursively as

f I if τ has the form f , and
f I(tI1, . . . , tIn) if τ has the form f(t1, . . . , tn).

We say that I satisfies
an atom a over Σ, denoted I |= a, if aI = t,
a literal ¬a over Σ, denoted I |= ¬a, if aI = f,
a clause C = {l1, . . . , ln} over Σ, denoted I |= C, if I satisfies any literal li in C,
a formula ϕ = {C1, . . . , Cn} over Σ, denoted I |= ϕ, if I satisfies every clause Ci in ϕ.

We say that I is a model of a formula ϕ if
I satisfies ϕ and
for any interpreted function symbol f in Σ, f I coincides with ιf .

We say that formula ϕ is satisfiable when ϕ has a model and unsatisfiable, otherwise.

I Example 2 (Continued from Example 1). Consider signature Σ1 and formula ϕ1. All models
of ϕ1 interpret function symbols i1, i2, bgt as follows:

i1 [7→ 1] i2 [7→ 2] bgt [7→ 200].

They differ in their interpretation of pr and buy. Indeed, there are five models, one of which
is the following:

model1 pr [(1) 7→ 100, (2) 7→ 500]
buy [(1) 7→ t, (2) 7→ f].

2.1 Relation to propositional logic and constraint programming
It is easy to see that in case when the signature is composed only of propositional symbols,
constraint CNF formulas coincide with classic propositional logic formulas in conjunctive
normal form (classic CNF formulas). Indeed, we can identify a clause {l1, . . . , ln} in constraint
CNF with a clause l1, · · · , ln in propositional logic, whereas a constraint CNF formula
corresponds to conjunction of its elements in propositional logic.

A constraint satisfaction problem (CSP) is a triple 〈V,D,C〉, where V is a set of vari-
ables, D is a finite set of values, and C is a set of constraints. Every constraint is a pair
〈(v1, . . . , vn), R〉, where vi ∈ V (1 ≤ i ≤ n) and R is an n-ary relation on D. An assign-
ment is a function from V to D. An assignment ν satisfies a constraint 〈(v1, . . . , vn), R〉 if
(ν(v1), . . . , ν(vn)) ∈ R. A solution to 〈V,D,C〉 is an assignment that satisfies all constraints
in C. We map a CSP C = 〈V,D,C〉 to an “equivalent” constraint CNF theory FC as follows.
We define a signature ΣC to be composed of

0-ary function symbols fv so that d̂fv = D for each variable v ∈ V , and
interpreted n-ary Boolean function symbols fc, one for each constraint c =
〈(x1, . . . , xn), R〉 ∈ C.

Function ιfc maps n-tuple dn in Cartesian product Dn to t if dn ∈ R, otherwise ιfc maps
dn ∈ Dn to f. For each constraint c = 〈(v1, . . . , vn), R〉 ∈ C, the constraint CNF FC includes
a clause {fc(fv1 , . . . , fvn

)}. Models of FC are in one-to-one correspondence with solutions
of C: indeed, an interpretation I is a model of FC if and only if an assignment ν defined as
follows ν(v) = f Iv for each variable v ∈ V is a solution to C.

B.De Cat and Y. Lierler 12:5

3 DPLL Approach for Constraint CNF

The dpll decision algorithm [1] and its enhancement cdcl [8] are at the heart of most modern
SAT solvers. These algorithms also became a basis for some of the search procedures in
related areas such as satisfiability modulo theories [9], answer set programming [4], constraint
answer set programming [5] and constraint programming [12, 10]. Here, we present an
extension of dpll that is applicable in the context of the constraint CNF language.

The dpll algorithm is applied to a classic CNF formula. Let F be such a formula.
Informally, the search space of dpll on F consists of all assignments of the symbols in F .
During its application, dpll maintains a record of its computation state that corresponds to
a currently considered family of assignments. When dpll terminates, it either indicates that
given formula F is unsatisfiable or the current state of computation corresponds to a model
of F . Nieuwenhuis et al. [9] pioneered a graph-based (or transition system based) approach
for representing the dpll procedure (and its enhancements). They introduced the “Basic
dpll system”, which is a graph so that its nodes represent possible states of computation
of dpll, while the edges represent possible transitions between the states. As a result, any
execution of the dpll algorithm can be mapped onto a path of the Basic dpll system. Here
we introduce a graph that captures a backtrack-search procedure for establishing whether
a constraint CNF formula is satisfiable, an “entailment graph“. We refer to a procedure
captured by this graph as “an entail procedure”. The relation between the entailment graph
and an entail algorithm is similar to that between the Basic dpll system and the dpll
algorithm. Before presenting the entailment graph we introduce two key concepts used in its
definition: coherent encoding and entailment.

3.1 Coherent encodings and entailment
We begin by presenting some required terminology. An atom is propositional if it is a
propositional symbol, a literal is propositional if it is a propositional atom or a negation of a
propositional atom. We say that a signature is propositional if it is composed of propositional
symbols only. For a propositional signature Σ, we define Σ̂ as

Σ ∪ {¬a | a ∈ Σ}

It is easy to identify interpretations over a propositional signature Σ with sets of propositional
literals over Σ̂. Indeed, consider a mapping L from interpretations over Σ to 2Σ̂ so that for
an interpretation I over Σ, L(I) results in a set

{f, ¬f | f I = ∅} ∪ {f | f I = t} ∪ {¬f | f I = f}.

L−1 is a mapping from 2Σ̂ to interpretations over Σ so that for a set M of literals over Σ,
L−1(M) is an interpretation where for every symbol f ∈ Σ

f I =


t, if f ∈M,¬f 6∈M
f, if f 6∈M,¬f ∈M
∅, if f,¬f ∈M
B, otherwise.

A state of the dpll procedure is meant to capture the family of assignments currently
being explored. These families of assignments of classic CNF formulas can be referred to
by means of sets of propositional literals. For instance, a state {a ¬b} over a propositional

ICLP 2016 TCs

12:6 Constraint CNF: SAT and CSP Language Under One Roof

signature {a b c} intuitively suggests that assignments captured by the sets {a ¬b c} and
{a ¬b ¬c} of literals are of immediate interest. The signature of a general constraint CNF
formula goes beyond propositional symbols. To adapt the “propositional states” of dpll to
the constraint CNF formalism one has to ensure that the maintained state of computation
can be mapped into an interpretation for a signature that includes non-propositional symbols.
One approach to achieve this goal is to use auxiliary propositional symbols to encode the
state of the approximating functions of non-propositional symbols in the formula’s signature.
This method is sometimes used by constraint programming solvers, for example, see [11]. We
follow this approach in developing entail procedures.

From now on we assume only finite-domain signatures. We start by presenting a general-
ized concept of an “encoding” and summarize the important properties it should exhibit to be
applicable in the scope of entail procedures that we present next. In the following section
we illustrate that the equality or direct encoding studied in CP satisfies such properties.

An encoding is a 4-tuple (Σ,Σ′,m,m′), where Σ is a signature, Σ′ is a propositional
signature, m is a function that maps interpretations in Σ into interpretations in Σ′, and
m′ is a function that maps interpretations in Σ′ into interpretations in Σ. We say that an
encoding (Σ,Σ′,m,m′) is coherent when the following conditions (properties) hold
1. For a total interpretation I over Σ, m(I) results in a total interpretation over Σ′ and

I = m′(m(I)).
2. For a total interpretation I ′ over Σ′, m′(I ′) results in either a total interpretation over Σ

so that I ′ = m(m′(I ′)) or an inconsistent interpretation over Σ.
3. For any interpretations I ′1, I ′2, and a literal l over Σ′ such that (i) l is in I ′1 and its

complement is in I ′2, and (ii) interpretations m′(I ′1) and m′(I ′2) are consistent, it holds
that m′(I ′1) does not reify m′(I ′2).

4. For any consistent interpretations I ′1, I ′2 over Σ′ such that I ′2 reifies I ′1, m′(I ′2) reifies
m′(I ′1).

5. For any consistent interpretations I1, I2 over Σ such that I2 reifies I1, m(I2) reifies m(I1).
6. For any total interpretation I over Σ, a non-total interpretation I ′ over Σ′ such that I

reifies m′(I ′), and any atom a in Σ′ such that neither a nor ¬a in I ′, it holds that I
reifies m′(I ′ ∪ {a}) or I reifies m′(I ′ ∪ {¬a}).

7. For any literal l over Σ′, {l} ⊆ m(m′({l})).
The properties of coherent encodings allow us to shift between the interpretations in two
signatures Σ and Σ′ in a manner that proves to be essential to design of entail procedures
for constraint CNF formulas.

Let Σ be a signature, ϕ be a formula over Σ, I be an interpretation over Σ, and f be a
function symbol in Σ. Formula ϕ entails an approximating function fα, denoted as ϕ |= fα,
if for every model J of ϕ, fJ reifies fα. Formula ϕ entails an approximating function fα
with respect to interpretation I, denoted as ϕ |=I f

α, when for every model J of ϕ that is a
reification of I, fJ reifies fα and fα reifies f I . Formula ϕ entails interpretation I, denoted
as ϕ |= I if ϕ |= gI for every function symbol g in Σ. Formula ϕ entails an interpretation I ′
over Σ with respect to interpretation I, denoted as ϕ |=I I

′ if ϕ |=I g
I′ for every function

symbol g in Σ. We now remark on some properties about entailment: (i) when there is no
model of ϕ that reifies I then any approximating function is entailed w.r.t. I, (ii) when
there is at least one model of ϕ that is a reification of I then no inconsistent approximating
function is entailed, (iii) ϕ entails any interpretation including inconsistent ones when ϕ

has no models, (iv) ϕ entails any interpretation (including inconsistent) I ′ w.r.t. I when ϕ
has no models that reify I, and (v) ϕ entails any interpretation with respect to inconsistent
interpretation I.

B.De Cat and Y. Lierler 12:7

3.2 Abstract Constraint CNF Solver.

We are now ready to define nodes of the entailment graph and its transitions. For a set B of
propositional atoms (which is also a propositional signature), a state relative to B is either
the distinguished state Failstate or a (possibly empty) list M of literals over B, where (i) no
literal is repeated twice and (ii) some literals are possibly annotated by ∆. For instance, list
a ¬a∆ is a state relative to {a, b}, while a a∆ is not. The tag ∆ marks literals as decision
literals. Frequently, we consider M as a set of literals and hence as an interpretation over a
propositional signature, ignoring the annotations and the order among its elements. We say
that M is inconsistent if some atom a and its negation ¬a occur in it. E.g., states b∆ ¬b
and b a ¬b are inconsistent.

Given an encoding E = (Σ,Σ′,m,m′), we define the entailment graph entϕ,E for a
formula ϕ over Σ as follows. The set of nodes of entϕ,E consists of the states relative to Σ′.
The edges of the graph entϕ,E are specified by four transition rules:

Entailment Propagate: M ⇒M l if ϕ |=m′(M) I and l ∈ m(I)

Decide: M ⇒M l∆ if l 6∈M and l 6∈M

Fail: M ⇒ Failstate if
{
m′(M) is inconsistent, and
no decision literal is in M

Backtrack: P l∆ Q⇒ P l if
{
m′(P l∆ Q) is inconsistent,
and no decision literal is in Q.

A node (state) in the graph is terminal if no edge originates in it. The following proposition
gathers key properties of the graph entϕ,E under assumption that E is a coherent encoding.

I Proposition 3. For a signature Σ, a formula ϕ over Σ, and a coherent encoding
E = (Σ,Σ′,m,m′),
(a) graph entϕ,E is finite and acyclic,
(b) any terminal state M of entϕ,E other than Failstate is such that m′(M) is a model

of ϕ,
(c) state Failstate is reachable from ∅ in entϕ,E if and only if ϕ has no models.

Thus, to decide whether a CNF formula ϕ over Σ has a model, it is sufficient to (i) find
any coherent encoding E = (Σ,Σ′,m,m′) and (ii) find a path leading from node ∅ to a
terminal node M in entϕ,E . If M = Failstate, ϕ has no models. Otherwise, M is a model
of ϕ. Conditions (b) and (c) of Proposition 3 ensure the correctness of this procedure, while
condition (a) ensures that this procedure terminates. We refer to any algorithm of this kind
as an entail procedure.

An implementation of an entail algorithm in its full generality is infeasible due to the
complexity of the condition of the Entailment Propagate transition rule. Yet, for various
special cases, efficient methods exist. The dpll algorithm for classic CNF formulas relies
on this observation. Recall that classic CNF formulas can be viewed as constraint CNF
formulas over a propositional signature. We now define the graph dpF that coincides with
aforementioned Basic dpll system. Let Ep denote the encoding (Σ,Σ, id, id), where Σ is
a propositional signature and id is an identity function from Σ to Σ. The set of nodes of
dpF coincide with the nodes of entF,Ep . The edges of the graph dpF are specified by the
three transition rules of entF,Ep

, namely, Decide, Fail, Backtrack, and the clause-specific

ICLP 2016 TCs

12:8 Constraint CNF: SAT and CSP Language Under One Roof

propagate rule

Unit Propagate: M ⇒M l if
{
{l1, . . . , ln, l} ∈ F and
{l1, . . . , ln} ⊆M

It turns out that if the condition of the transition rule Unit Propagate holds then the condition
of Entailment Propagate in the graph entF,Ep

also holds. The converse is not true. The
dpF graph is a subgraph of entF,Ep

. Yet, Proposition 3 holds for the graph dpF . Proof of
this claim was presented in [9, 7].

We now present several incarnations of the entϕ,E framework that encapsulate the
Unit Propagate rule of dpll in a meaningful way.

Let Σ be a signature, E = (Σ,Σ′,m,m′) a coherent encoding, ϕ a formula over Σ, and F
a classic CNF formula over Σ′. We say that F respects ϕ when every model I of ϕ is such
that m(I) is also a model of F ; we also say that F captures ϕ when F respects ϕ and every
model M of F is such that m′(M) is a model of ϕ. It is obvious that the graph dpF can
be used to decide whether formula ϕ has a model when F captures ϕ. We define a graph
ent-upϕ,E,F as follows: (i) its nodes are the nodes of entϕ,E , and (ii) its edges are defined
by the transition rules of entϕ,E and the transition rule Unit Propagate. It turns out that
when F respects ϕ, the graphs ent-upϕ,E,F and entϕ,E coincide:
I Proposition 4. For a coherent encoding E = (Σ,Σ′,m,m′), a formula ϕ over Σ, a classic
CNF formula F over Σ′ that respects ϕ, and some nodes M and M l in the graph entϕ,E,
if the transition rule Unit Propagate suggests the edge between M and M l then this edge is
present in entϕ,E (due to the transition rule Entailment Propagate).
Consider a new graph ent′ϕ,E,F constructed from entϕ,E by dropping some of its edges.
In particular, given a node M in entϕ,E to which Unit Propagate is applicable, we drop
all of the edges from M that cannot be characterized by the application of Unit Propagate.
It turns out that Proposition 3 holds for the graph ent′ϕ,E,F , when F respects ϕ. This
suggests that the “more respecting” the propositional formula is to a given constraint CNF
formula, the more we can rely on the Unit Propagate rule of dpll and the less we have to
rely on propagations that go beyond Boolean reasoning. Another interesting propagator
based on Entailment Propagate is due to the transition rule

Model Check: M ⇒M l if
{
M is a model of F ,
ϕ |=m′(M) I, and l ∈ m(I)

This propagator is such that it is only applicable to the states that represent total inter-
pretations over Σ′. It is easy to see that any edge due to Model Check is also an edge due
to Entailment Propagate. It turns out that given classic CNF formula F that respects ϕ,
Proposition 3 also holds for the graph ent′′ϕ,E,F constructed from ent′ϕ,E,F by dropping
all of the edges not due to Unit Propagate or Model Check. The essence of this graph is in
the following: to adapt the dpll algorithm for solving a constraint CNF formula ϕ over
signature Σ, it is sufficient to (i) find some coherent encoding of the form E = (Σ,Σ′,m,m′),
(ii) find some classic CNF formula F over Σ′ that respects ϕ, (iii) apply dpll to F , and
(iv) implement a check that given any model of F can verify whether that model is also a
model of ϕ. Next section presents one specific coherent encoding and a family of mappings
that given a constraint CNF formula produces a classic CNF formula respecting it.

4 Equality Encoding

Walsh [12] describes a mapping from CSP to SAT that he calls “direct encoding”. Similar
ideas are applicable in the realm of constraint CNF for producing a coherent encoding and

B.De Cat and Y. Lierler 12:9

classic CNF formulas respecting and capturing given constraint CNF formulas. We make
this statement precise by (a) defining a coherent “equality” encoding E and, (b) introducing
mappings from a constraint CNF formula ϕ to classic CNF formulas that respect ϕ.

For a function symbol f , we denote the Cartesian product d̂f1 × · · · × d̂
f
arf by D̂f . For a

non-propositional function symbol f ∈ Σ, by f≡ we denote the set of propositional symbols
constructed as follows:

{[f~x .= v] | ~x ∈ D̂f and v ∈ d̂f}.

For a signature Σ, by Σ≡ we denote the signature that consists of all propositional symbols
in Σ and the propositional symbols in f≡ for every non-propositional function symbol f in
Σ. For example, for Σ1 defined in Example 1 signature Σ≡1 includes, among others, following
elements

[i1
.= 1]; [i2

.= 2]; [bgt .= 200];
[pr1 .= 100]; [pr1 .= 500]; [pr2 .= 100]; [pr2 .= 500];
[buy1 .= t]; [buy1 .= f]; [buy2 .= t]; [buy2 .= f];
[+100,100 .= 200]; [+100,500 .= 200]; [+200,100 .= 500];
[≤100,200 .= t]; [≤600,200 .= t]; [≤100,200 .= f].

Intuitively, the collection of the symbols of the form [f~x .= v] in f≡ is meant to “cap-
ture” the approximating function of non-propositional function symbol f in Σ by means of
approximating functions for the elements of f≡ in Σ≡.

We now present a mapping ε∗ from an approximating function α for a non-propositional
function symbol f into an interpretation M over signature f≡: every symbol [f~x .= v] in f≡
is interpreted as

[f~x .= v]M =


t, if α(~x) = {v}
f, if v 6∈ α(~x)
B, otherwise.

For an interpretation I over Σ, by ε(I) we denote the interpretation over Σ≡ constructed
as follows (i) for every propositional symbol f in Σ, f ε(I) = f I , and (ii) for every non-
propositional function symbol f in Σ, ε(I) includes the elements of ε∗(f I).

Similarly, for a non-propositional symbol f , we define a mapping ε≡∗ which, given an
interpretationM over f≡, mapsM into an approximating function α for f : for every ~x ∈ D̂f ,

α(~x) =


∅, if [f~x .= v]M = [f~x .= v′]M = t and v 6= v′

{v} otherwise, if [f~x .= v]M = t
d̂f \ {v | [f~x .= v]M = f} otherwise.

For an interpretation I and signature Σ, by I[Σ] we denote the set of all approximating
functions of Σ-elements in I: {f I |f ∈ Σ}. For a signature Σ and an interpretation M

over Σ≡, by ε≡(M) we denote the interpretation over Σ constructed as follows (i) for every
propositional symbol f in Σ, f ε≡(M) = fM , and (ii) for every non-propositional function
symbol f in Σ, f ε≡(M) = ε≡∗ (M [f≡]).

For a signature Σ, we call an encoding (Σ,Σ≡, ε, ε≡) an equality encoding.

I Proposition 5. For a signature Σ, its equality encoding is coherent.

ICLP 2016 TCs

12:10 Constraint CNF: SAT and CSP Language Under One Roof

We now present several mappings from constraint CNF formulas to classic CNF formulas
based on equality encoding. Consider a formula ϕ over signature Σ and the equality encoding
E = (Σ,Σ≡, ε, ε≡). By Fϕ,Σ≡ we denote a propositional formula constructed as the union of
the following sets of clauses:

for every interpreted function symbol f in Σ and every tuple ~x in D̂f , a set consisting of
unit clauses over Σ≡ that ensures that f is interpreted according to ιf :⋃

v∈d̂f

{¬[f~x .= v] | ιf (~x) 6= v}∪

{[f~x .= v] | ιf (~x) = v}.

for every other function symbol f in Σ and every tuple ~x in D̂f (i) a clause over Σ≡ that
ensures that f is associated with an approximating function:

{[f~x .= v] | v ∈ d̂f}.

and (ii) a set of clauses over Σ≡ that ensures that each functional symbol is associated
with a defining approximating function:⋃

v,v′∈d̂f ,v 6=v′
{¬[f~x .= v],¬[f~x .= v′]}.

I Proposition 6. For a signature Σ, a constraint CNF formula ϕ over Σ, and respective
equality encoding E = (Σ,Σ≡, ε, ε≡), propositional formula Fϕ,Σ≡ (as well as any formula
over Σ≡ constructed from Fϕ,Σ≡ by dropping some of its clauses) respects ϕ.

This proposition tells us that we can use the graph ent′ϕ,E,F and ent′′ϕ,E,F for verifying
whether formula ϕ is satisfiable.

5 Proofs for “Constraint CNF”

Proof of Proposition 5.
Proof of Property 1. This property is apparent from the constructions of the mappings.
Proof of Property 2. By contradiction. Assume that for a total interpretation I ′ over Σ′,
m′(I ′) resulted in a consistent non-total interpretation I over Σ. Thus, there is a function
symbol f ∈ Σ so that for some ~x ∈ D̂f , f I(~x) results in a set whose cardinality if greater
than 1. From f I construction it follows that (i) there is no v ∈ d̂f such that [f~x .= v] = t and
(ii) there are at least two values v, v′ ∈ d̂f such that v 6= v′, [f~x .= v] 6= f and [f~x .= v] 6= f.
Consequently, atoms [f~x .= v]I = [f~x .= v′]I

′

= B. This contradicts the fact that I ′ is total.
Proof of Property 3. Consider interpretations I ′1, I ′2, and a literal l over Σ′ such that (i) l
is in I ′1 and its complement is in I ′2, and (ii) interpretations ε≡(I ′1) and ε≡(I ′2) are consistent.
We show that it holds that ε≡(I ′1) does not reify ε≡(I ′2). Recall that an interpretation ε≡(I ′1)
reifies ε≡(I ′2) if any function in ε≡(I ′1) reifies a corresponding function in ε≡(I ′2).
Case 1. Literal l is of the form [f~x .= v]. Since ε≡(I ′1) is consistent we derive that [f~x .=

v]ε≡(I′1) = {v}. By the definition of ε≡, ε≡(I ′2) satisfies the following requirement [f~x .=
v]ε≡(I′2) ⊆ d̂f \ {v}. We derive that ε≡(I ′1) does not reify ε≡(I ′2).

Case 2. Literal l is of the form ¬[f~x .= v]. By the definition of ε≡, we derive that [f~x .=
v]ε≡(I′1) ⊆ d̂f \ {v}. Since ε≡(I ′1) is consistent, we also derive that [f~x .= v]ε≡(I′1) 6= ∅.
Since ε≡(I ′2) is consistent we derive that

[f~x .= v]ε
≡(I′2) = {v} (5)

B.De Cat and Y. Lierler 12:11

Proof of Property 4. Take any two consistent interpretations I ′1 and I ′2 over Σ≡ such
that I ′2 reifies I ′1. We illustrate that ε≡(I ′2) reifies ε≡(I ′1). This is the case if for every
nonpropositional function symbol f ∈ Σ, f ε≡(I′2) ⊆ f ε≡(I′1).

Take any nonpropositional function symbol f ∈ Σ. Recall that atoms f≡ are the ones
that are used to define approximating function of f via mapping ε≡. Take any argument list
~x ∈ D̂f . We illustrate that f ε≡(I′2)(~x) ⊆ f ε≡(I′1)(~x).
Case 1. I ′2 is such that [f~x .= v]I′2 = [f~x .= v′]I′2 = t for some values v 6= v′. Then,

f ε
≡(I′2)(~x) = ∅. Condition f ε≡(I′2) ⊆ f ε≡(I′1) trivially holds.

Case 2. I ′2 is such that [f~x .= v]I′2 = t for some value v, and there is no other value v′ 6= v

such that [f~x .= v′]I′2 = t. By the ε≡ construction, f ε≡(I′2)(~x) = {v}. Since I ′2 is consistent
and I ′2 reifies I ′1 it follows that (i) for v either [f~x .= v]I′1 = t or [f~x .= v]I′1 = B and (ii)
there is no other value v′ 6= v such that [f~x .= v′]I′2 = t. Consequently, by ε≡∗ mapping
definition, it is either f ε≡(I′2)(~x) = {v} or f ε≡(I′2)(~x) = {v} ∪ S where S is some subset of
d̂f . Consequently, condition f ε≡(I′2) ⊆ f ε≡(I′1) holds.

Case 3. I ′2 is such that [f~x .= v]I′2 = f or [f~x .= v]I′2 = B for any v ∈ d̂f . Since I ′2 reifies
I ′1, it also holds that [f~x .= v]I′1 = f or [f~x .= v]I′1 = B for any v ∈ d̂f so that when
[f~x .= v]I′1 = f it follows that [f~x .= v]I′2 = f. By ε≡∗ construction (forth case apply), and
it is apparent that f ε≡(I′2)(~x) ⊆ f ε≡(I′1)(~x).

Proof of Property 5. Consider consistent interpretations I1, I2 over Σ such that I2 reifies I1.
We illustrate that ε(I2) reifies ε(I1). This is the case when for every (propositional) function
symbol f ∈ Σ≡, f ε(I2) = f ε(I1) or f ε(I1) = B. This trivially holds for all propositional
symbols f that are in Σ ∩ Σ≡. We consider here propositional symbols in Σ≡ \ Σ. Consider
any symbol a of this kind. Symbol a is of the form [f~x .= v]. From the fact that I2 reifies I1
following cases are possible:
Case 1. f I2(~x) = f I1(~x). From ε-mapping definition it follows that aε(I2) = aε(I1).
Case 2. f I2(~x) ⊂ f I1(~x). From ε-mapping definition following cases are possible:

Case 2.1. v ∈ f I2(~x). It follows that there is also v′ 6= v so that v, v′ ∈ f I1(~x). Con-
sequently, aε(I1) = B.

Case 2.2. v 6∈ f I2(~x) and v 6∈ f I2(~x). From ε-mapping definition it follows that aε(I2) =
aε(I1) = f.

Case 2.3. v 6∈ f I2(~x) and v ∈ f I1(~x).
Case 2.3.1. f I1(~x) = {v}. Then f I2(~x) = ∅. Impossible as I2 is a consistent interpret-

ation.
Case 2.3.2. Since, cardinality of f I1(~x) is greater than one and v in f I1(~x) it follows

that aε(I1) = B.

Proof of Property 6. Atom a is of the form [f~x .= v]. It is easy to see that ε≡(I ′∪{a}) and
ε≡(I ′ ∪ {¬a}), only differ from ε≡(I ′) in how approximation function for function symbol
f is defined. Thus, for any other function symbol f ′ 6= f in Σ, approximating function for
f ′ in I, f I′ , reifies approximating function for f ′ in both ε≡(I ′ ∪ {a}) and ε≡(I ′ ∪ {¬a}).
Even more it only differs in how approximating function for f is defined on ~x arguments.
We only have to show that approximating function f I reifies an approximating function for
f in ε≡(I ′ ∪ {a}) or in ε≡(I ′ ∪ {¬a}) for the case of ~x. Recall that I reifies ε≡(I ′).
Case 1. f I(~x) = {v}. Then v ∈ f ε≡(I′)(~x). From the fact that a 6∈ I ′ and ε≡ construction

we derive that there is no single atom of the form [f~x .= v′] such that v′ 6= v and
[f~x .= v′]I

′

= t. From ε≡ construction, it follows that f ε≡(I′∪{a})(~x) = {v}. Obviously,
f I(~x) reifies f ε≡(I′∪{a})(~x).

Case 2. I, f I(~x) = {v′} so that v′ 6= v. Then v′ ∈ f ε≡(I′)(~x).

ICLP 2016 TCs

12:12 Constraint CNF: SAT and CSP Language Under One Roof

Case 2.1. f ε≡(I′)(~x) = {v′}. It is easy to see from ε≡ construction that f ε≡(I′∪{¬a})(~x) =
{v′} as well.

Case 2.2. f ε≡(I′)(~x) = {v′} ∪ S where cardinality |S| ≥ 1. Since ¬a 6∈ I ′, we derive that
v ∈ f ε≡(I′)(~x). It is easy to see that f ε≡(I′∪{¬a})(~x) = f ε

≡(I′)(~x) \ {v}. It holds that
v′ ∈ f ε≡(I′∪{¬a})(~x). Thus, f I(~x) reifies f ε≡(I′∪{a})(~x).

Proof of Property 7. Recall that {l} corresponds to an interpretation over Σ≡ where all
but one atom is assigned B.
Case 1. l has the form [f~x .= v]. ε≡({l} results in interpretation where f ε≡({l}(~x) = {v}

whereas all other approximating functions as well as approximating function for f on
different arguments that ~x are mapped to B. By ε construction, {l} ∈ ε(ε≡({l})). Indeed,
ε(ε≡({l})) contains l as well as literals of the form [f, v′, ~xf .=] or all v′ ∈ d̂f , where
v′ 6= v.

Case 2. l has the form ¬[f~x .= v] By the construction of ε≡ and ε, it is easy to see that
{l} = ε(ε≡({l})). J

We now present a lemma that captures important conditions that help to illustrate the
correctness of Proposition 3.

I Lemma 7. For any formula ϕ, a coherent encoding E = (Σ,Σ′,m,m′), and a path from
∅ to a state l1 . . . ln in entϕ,E, every model I of ϕ is such that li ∈ m(I) if I reifies
m′({l∆j |j ≤ i}).

Proof. By induction on the length of a path. Since the property trivially holds in the initial
state ∅, we only need to prove that all transition rules of entϕ,E preserve it.

Consider an edge M ⇒M ′ where M is a sequence l1 . . . lk such that every model I of ϕ
is such that li ∈ m(I) if I reifies m′({l∆j |j ≤ i}).

Entailment Propagate: M ′ is M lk+1. Take any model I of ϕ such that I reifies m′({l∆j |j ≤
k + 1}). It is easy to see that {l∆j |j ≤ k + 1} = {l∆j |j ≤ k}. By the inductive hypothesis,
since I reifies m′({l∆j |j ≤ k}), M ⊆ m(I). We only have to illustrate that lk+1 ∈ m(I). This
trivially follows from the application condition of Entailment Propagate.

Decide: M ′ is M l∆k+1. Take any model I of ϕ such that I reifies m′({l∆j |j ≤ k + 1}). By
Property 4 (of coherent encoding), interpretation m′({l∆j |j ≤ k + 1}) reifies m′({l∆j |j ≤ k}).
Since reification is a transitive relation we derive that I reifies m′({l∆j |j ≤ k}). By the
inductive hypothesis M ⊆ m(I). We only have to illustrate that lk+1 ∈ m(I). Obviously
lk+1 ∈ {l∆j |j ≤ k + 1}.

Since I is a model and hence a total interpretation it may only reify consistent interpret-
ations. Hence, m′({l∆j |j ≤ k + 1}) is consistent. Interpretation m(I) is a total over Σ≡, by
Property 1. Thus, either lk+1 ∈ m(I) or lk+1 ∈ m(I). Assume lk+1 ∈ m(I). By Property 1,
I = m′(m(I)) and reifies m′({l∆j |j ≤ k + 1}). By Property 3, we derive a contradiction.
Thus, lk+1 ∈ m(I).

Fail: Obvious.

Backtrack: M has the form P l∆i Q where Q contains no decision literals. M ′ is P li. Take
any model I of ϕ such that I reifies m′({l∆j |j < i}).

By Property 6 two following cases are possible: I reifies m′({l∆j |j < i} ∪ {li}) or I reifies
m′({l∆j |j < i} ∪ {li}).

B.De Cat and Y. Lierler 12:13

Case 1. I reifies m′({l∆j |j < i} ∪ {li}). By inductive hypothesis we derive that M ⊆ m(I).
Since I is a model and hence a total interpretation, by Property 1 m(I) is total. We
derive a contradiction since M is inconsistent interpretation. Hence, Case 2 must hold.

Case 2. I reifies m′({l∆j |j < i} ∪ {li}). By Property 4, interpretation m′({l∆j |j < i} ∪ {li})
reifies m′({l∆j |j < i}). Since reification is a transitive relation we derive that I reifies
m′({l∆j |j ≤ i}). By the inductive hypothesis P ⊆ m(I). We only have to illustrate that
l ∈ m(I). By Property 4, interpretation m′({l∆j |j < i} ∪ {li}) reifies m′({li)}) (the fact
that set {l∆j |j < i} ∪ {li} of literals is consistent follows from the properties of the Decide
rules and simple inductive argument). Since reification is a transitive relation we derive
that I reifies m′({li}). Since I is a model, it follows that m′({li}) is consistent. By
Property 5, m(I) reifies m(m′({li})). By Property 7 {li} ⊆ m(m′({li})). By Property 1,
m(I) is a total interpretation and hence {li} ⊆ m(I). J

Proof of Proposition 3. Part (a) is proven following the arguments for Proposition 1 (a) in
the paper by Lierler [6].

(b) Consider any terminal state M other than Failstate. From the fact that Decide is not
applicable, we derive that M assigns all literals over Σ′. Similarly, since neither Backtrack
nor Fail is applicable, M is consistent. By Property 2 of coherent encoding, it follows that
m′(M) is either (i) a total interpretation over Σ′ or (ii) an inconsistent interpretation.

We now show that (i) holds: m′(M) is a total interpretation. Assume the other case
(ii): m′(M) is inconsistent. Take any literal l over Σ′ not in M (since M is consistent
set of literals such l exists). Interpretation m′({l}) is such that ϕ |=m′(M) m

′({l}) since
m′(M) is inconsistent (recall that formula entails any interpretation w.r.t. any inconsistent
interpretation). By Property 7 of coherent encoding, l ∈ m(m′({l})). It follows that
Entailment Propagate is applicable in M . This contradicts the fact that M is terminal.
Consequently, m′(M) is a total interpretation.

We now illustrate that m′(M) is a model of ϕ. By contradiction. Assume m′(M) is not a
model. Since m′(M) is a total interpretation there is no other total interpretation that reifies
it. Hence, there is no model that reifies m′(M). It follows that ϕ entails any interpretation
w.r.t. m′(M). Consequently, interpretationm′({l}) is such that ϕ |=m′(M) m

′({l}). Following
the argument presented in previous paragraph, we derive that rule Entailment Propagate
is applicable in M that contradicts the fact that M is terminal. Consequently, m′(M) is a
model of ϕ.

(c) Left-to-right: Since Failstate is reachable from ∅, there is a state M without decision
literals so that (i) M is inconsistent, and (ii) there exists a path from ∅ to M . By Lemma 7,
any model I of ϕ is such that M ⊆ m(I). Since I is a model it is also a total interpretation.
By Property 1, m(I) is also a total interpretation. This contradicts the facts that M ⊆ m(I)
and M is inconsistent. Indeed, there is an element τ in M such that τM = ∅, whereas
τm(I) = t or τm(I) = f.

Right-to-left: From (a) it follows that there is a path from ∅ to some terminal state. By
(b), this state cannot be different from Failstate, because ϕ is unsatisfiable. J

Proof of Proposition 6. Sketch: The second claim follows immediately from the proof of the
former claim. It is sufficient to illustrate a more general statement, i.e., any interpretation I
of ϕ is such that ε(I) is a model of Fϕ,Σ≡ . This is easy to see by following the construction of
ε and illustrating that every clause in Fϕ,Σ≡ is satisfied by ε(I) for any interpretation I. J

Proof of Proposition 4. Sketch: Follows from the properties of Unit Propagate and the
respective formulas. J

ICLP 2016 TCs

12:14 Constraint CNF: SAT and CSP Language Under One Roof

6 Conclusions

In this paper we introduced the uniform language constraint CNF which integrates languages
from SAT and CP. We also introduced a graph-based framework for a class of algorithms for
constraint CNF. We generalized the concept of encoding and identified its essential properties.
In the future, we will extend the framework with clause learning, non-finite domains, and
constraint-based propagation rules as well as investigate the properties of other non-equality
encodings available in CP literature. We will also extend constraint CNF to the case of
logic programs so that the algorithms behind answer set solvers and constraint answer set
solvers can be captured. This will allow us to formulate algorithms stemming from CP
and constraint answer set programming in a uniform fashion to clarify their differences and
similarities and facilitate cross-fertilization between the fields. An ultimate goal of this work
is to illustrate how advanced solvers stemming from different research sub-communities can
be captured as an algorithm for solving search problems stated in constraint CNF. The SAT
solver minisat [3] is a true success story in model search automated reasoning. MiniSAT
Hack-track has been an official track since 2009 at the SAT competition – a prime research
venue for presenting and comparing state-of-the-art SAT solvers and techniques. The minisat
authors envisioned such a future for the solver. Their motivation behind the development of
the solver was to produce a middle-ware for a SAT solver design. This minisat middle-ware
incorporates major SAT techniques and also allows a simple integration mechanism for
investigating new features. We view constraint CNF as a step in the direction of designing
middle-ware that incorporates not only advances in SAT but also other related areas.

Acknowledgments. We would like to thank Marc Denecker, Vladimir Lifschitz, and Mirek
Truszczynski for valuable discussions related to this work. The work has been partially
supported by FRI (Faculty Research International) of the University of Nebraska at Omaha.

References
1 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem

proving. Communications of the ACM, 5(7):394–397, 1962.
2 Broes De Cat, Bart Bogaerts, Jo Devriendt, and Marc Denecker. Model expansion in the

presence of function symbols using constraint programming. In ICTAI, pages 1068–1075.
IEEE, 2013.

3 Niklas Een and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In SAT, 2005.

4 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artif. Intell., 187:52–89, 2012.

5 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solving. In
Patricia M. Hill and David Scott Warren, editors, ICLP, volume 5649 of LNCS, pages
235–249. Springer, 2009.

6 Yuliya Lierler. Abstract answer set solvers. In Proceedings of International Conference on
Logic Programming (ICLP), pages 377–391. Springer, 2008.

7 Yuliya Lierler. Abstract answer set solvers with backjumping and learning. Theory and
Practice of Logic Programming, 11:135–169, 2011.

8 João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 131–153. IOS Press, 2009.

B.De Cat and Y. Lierler 12:15

9 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

10 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause gen-
eration. Constraints, 14(3):357–391, 2009.

11 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling finite
linear CSP into SAT. Constraints, 14(2):254–272, 2009.

12 Toby Walsh. Sat v csp. In Rina Dechter, editor, Principles and Practice of Constraint
Programming, CP 2000, volume 1894 of Lecture Notes in Computer Science, pages 441–
456. Springer Berlin Heidelberg, 2000.

ICLP 2016 TCs

	Introduction
	Constraint CNF
	Relation to propositional logic and constraint programming

	DPLL Approach for Constraint CNF
	Coherent encodings and entailment
	Abstract Constraint CNF Solver.

	Equality Encoding
	Proofs for ``Constraint CNF''
	Conclusions

