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—— Abstract

In a second seminal paper on the application of semidefinite programming to graph partitioning
problems, Goemans and Williamson showed how to formulate and round a complex semidefinite
program to give what is to date still the best-known approximation guarantee of .836008 for
Max-3-Cut [5]. (This approximation ratio was also achieved independently by De Klerk et
al. [2].) Goemans and Williamson left open the problem of how to apply their techniques to
MAaAX-k-Cur for general k. They point out that it does not seem straightforward or even possible
to formulate a good quality complex semidefinite program for the general MAX-k-CuUT problem,
which presents a barrier for the further application of their techniques.

We present a simple rounding algorithm for the standard semidefinite programmming relaxa-
tion of MAX-k-CuT and show that it is equivalent to the rounding of Goemans and Williamson
in the case of MAX-3-CuT. This allows us to transfer the elegant analysis of Goemans and Willi-
amson for MAX-3-CUT to MAX-k-CuT. For k > 4, the resulting approximation ratios are about
.01 worse than the best known guarantees. Finally, we present a generalization of our rounding
algorithm and conjecture (based on computational observations) that it matches the best-known
guarantees of De Klerk et al.
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1 Introduction

In the MAX-k-CUT problem, we are given an undirected graph, G = (V, E), with non-negative
edge weights. Our objective is to divide the vertices into at most k disjoint sets, for some
given positive integer k, so as to maximize the weight of the edges whose endpoints lie
in different sets. When k& = 2, this problem is known simply as the MAX-CUT problem.
The approximation guarantee of 1 — 1/k can be achieved for all k by placing each vertex
uniformly at random in one of k sets. For all values of k > 2, this simple algorithm yielded
the best-known approximation ratio until 1994. In that year, Goemans and Williamson
gave a .87856-approximation algorithm for the MAX-CuUT problem based on semidefinite
programming (SDP), thereby introducing this method as a successful new technique for
designing approximation algorithms [4].

Frieze and Jerrum subsequently developed an algorithm for the MAX-k-CUT problem
that can be viewed as a generalization of Goemans and Williamson’s algorithm for MAX-CuT
in the sense that it is same algorithm when k& = 2 [3]. Although the rounding algorithm
of Frieze and Jerrum is arguably simple and natural, the analysis is quite involved. Their
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approximation ratios improved upon the previously best-known guarantees of 1 — 1/k for
k > 3 and are shown in Table 1. A few years later, Andersson, Engebretsen and Hastad
also used semidefinite programming to design an algorithm for the more general problem of
MaX-E2-LIN MOD k, in which the input is a set of 2-variable equations or inequations mod
k (e.g. * —y = c mod k) and the objective is to assign an integer from the range [0,k — 1]
to each variable so that the maximum number of equations are satisfied [1]. They proved
that the approximation guarantee of their algorithm is at least f(k) more than that of the
simple randomized algorithm, where f(k) is a (small) linear function of k. In the special
case of MAX-k-CuT, they showed that the performance ratio of their algorithm is no better
than that of Frieze and Jerrum. Although they did not show the equivalence of these two
algorithms, they stated that numerical evidence suggested that the two algorithms have the
same approximation ratio. Shortly thereafter, De Klerk, Pasechnik and Warners presented an
algorithm for MAX-k-CuUT with improved approximation guarantees for all £ > 3, shown in
Table 1. Additionally, they showed that their algorithm has the same worst-case performance
guarantee as that of Frieze and Jerrum [2].

Around the same time, Goemans and Williamson independently presented another
algorithm for MAX-3-CUT based on complex semidefinite programming (CSDP) [5]. For this
problem, they improved the best-known approximation guarantee of .832718 due to Frieze
and Jerrum to .836008, the same approximation ratio proven by De Klerk, Pasechnik and
Warners. Goemans and Williamson showed that their algorithm is equivalent to that of
Andersson, Engebretsen and Hastad and to that of Frieze and Jerrum (and therefore to that
of De Klerk, Pasechnik and Warners) in the case of MAX-3-CurT [5]. However, they argued
that their decision to use complex semidefinite programming and, specifically, their choice
to represent each vertex by a single complex vector resulted in “cleaner models, algorithms,
and analysis than the equivalent models using standard semidefinite programming.”

One issue noted by Goemans and Williamson with respect to their elegant new model
was that it is not clear how to apply their techniques to MAX-k-CuUT for k& > 4. Their
approach seemed to be tailored specifically to the MAX-3-CUT problem. This is because
one cannot model, say, the MAX-4-CuUT problem directly using a complex semidefinite
program. This limitation is discussed in Section 8 of [5]. In fact, as they point out, a direct
attempt to model MAX-k-CUT with a complex semidefinite program would only result in a
(1 — 1/k)-approximation for k& > 4. De Klerk et al. also state that there is no obvious way to
extend the approach based on CSDP to Max-k-CuT for k > 3. (See page 269 in [2].)

1.1 OQOur Contribution

In this paper, we make the following contributions.
1. We present a simple rounding algorithm based on the standard semidefinite programming
relaxation of MAX-k-CUT and show that it can be analyzed using the tools from [5].
For k = 3, this results in an implementation of the Goemans-Williamson algorithm
that avoids complex semidefinite programming.
For k > 4, the resulting approximation ratios are slightly worse than the best-known
guarantees.
2. We present a simple generalization of this rounding algorithm and conjecture that it
yields the best-known approximation ratios.

Thus, the main contribution of this paper is to show that, despite its limited modeling
power, we can still apply the tools from complex semidefinite programming developed by
Goemans and Williamson to MAX-k-CuT. In fact, we obtain the following worst-case
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Table 1 Approximation guarantees for MAX-k-CUT.

[4] 3] [5] [2] | This paper
k=2 | 878956 - - - -
k=3 - 832718 | .836008 | .836008 -
k=4 - .850304 - .857487 .846478
k= - 874243 - 876610 | 862440
k=10 - 926642 - 926788 | 915885

approximation guarantee for the MAX-k-CUT problem for all k£, which is the same bound
they achieve for k = 3:

O = % + % {arccos2 ((k;il) cos <2]:)> — arccos® (k;ilﬂ . (1)

We note that for k& > 4, the approximation ratio ¢, is about .01 worse than the approximation
ratio proved by Frieze and Jerrum. See Table 1 for a comparison. However, given the technical
difficulty of Frieze and Jerrum’s analysis, we believe that it is beneficial to present an
alternative algorithm and analysis that yields a similiar approximation guarantee. Moreover,
we wish to take a closer look at the techniques used by Goemans and Williamson for MAX-3-
CuT since these tools have not been widely applied in the area of approximation algorithms,
in sharp contrast to the tools used to solve the MAX-CUT problem. In fact, we are aware
of only two papers that use the main tools of [5]: The first is for a generalization of the
Max-3-CuT problem [6] and the second is for an optimization problem in which the variables
are to be assigned complex vectors [8].

While Goemans and Williamsons’ framework of complex semidefinite programming does
result in an elegant formulation and analysis for MAX-3-CUT, it also to some extent obscures
the geometric structure that is apparent when one views the same algorithm from the
viewpoint of standard semidefinite programming. Specifically, in the latter framework, their
complex semidefinite program is equivalent to modeling each vertex with a 2-dimensional
circle or disc of vectors. In our opinion, their main technical contribution is a formula for the
exact distribution of the difference of the angles resulting when a normal vector is projected
onto two of these discs that are correlated in a particular way. (See Lemma 8 in [5].) Thus,
while the limitation in modeling MAX-k-CUT with complex semidefinite programming comes
from the fact that we cannot model the general problem with these 2-dimensional discs, we
can circumvent this barrier in the following way. We construct 2-dimensional discs using the
vectors obtained from a solution to the standard semidefinite program. We then show that a
pair of these 2-dimensional discs (i.e. one disc for each vertex) are correlated in the same
way as those produced in the case of MAX-3-CuT. Then we can apply and analyze the same
algorithm used for MAX-3-CUT.

In some cases, e.g. MAX-3-CUT, using the distribution of the angle between two elements
is stronger than using the expected angle, which is what is used for MAX-CuUT. It therefore
seems that this tool has unexplored potential applications for other optimization problems,
for which it may also be possible to overcome the modeling limitations of complex semidefinite
programming in a similiar manner as we do here. On a high level, the idea of constructing
the “complex” vectors from a solution to a standard semidefinite program was used for a
circular arrangement problem [7].

Finally, we remark that the approach used in Section 4 to create a disc from a vector
is reminiscent of Zwick’s method of outward rotations in which he combines hyperplane
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rounding and independent random assignment [9]. For each unit vector v; from an SDP
solution, he computes a disc in the plane spanned by v; and u;, where the u;’s form a set of
pairwise orthogonal vectors that are also orthogonal to the v;’s, and chooses a new vector
from this disc based on a predetermined angle. Thus, the goal is to rotate each vector v; to
obtain a new set of unit vectors, which are then given as input to a now standard rounding
algorithm, such as random-hyperplane rounding. In contrast, our goal is to use the actual disc
in the rounding, as done originally by Goemans and Williamson in the case of MAX-3-CUT.

1.2 Organization

We give some background on the (standard) semidefinite programming relaxation used by
Frieze and Jerrum and discuss their algorithm for MAX-k-CUT in Section 2. In Section 3,
we present Goemans and Williamson’s algorithm for MAX-3-CuUT from the viewpoint of
standard semidefinite programming. In Section 4, we show how to create a 2-dimensional disc
for each vertex given a solution to the standard semidefinite program for MAX-k-CuT. We
do not wish to formally prove the relationship between these discs and the complex vectors.
Thus, in Section 5, we simply prove that if two discs are correlated in a specified way, then
the distribution of the angle is equivalent to a distribution already computed exactly by
Goemans and Williamson in [5]. We can then easily prove that the 2-dimensional discs we
create for the vertices have the required pairwise correlation. This results in a closed form
approximation ratio for general k, Theorem 6.

2  Frieze and Jerrum’s Algorithm

Consider the following integer program for MAX-k-CUT:

kE—1
max Z (1—w; -vj)T
ijeEE
v,rv; =1, VieV,
v, €%y, VieV. (P)

Here, ¥ are the vertices of the equilateral simplex, where each vertex is represented by
a k-dimensional vector, and each pair of vectors corresponding to a pair of vertices has
dot product —1/(k — 1). If we relax the dimension of the vectors, we obtain the following
semidefinite relaxation, where n = |V|:

max Z(l f’urvj)%

ijCE
vy =1, VieV,

Vi,j eV,

ViU 2> TE_1

v; ER™, VieV. Q)

Frieze and Jerrum used this semidefinite relaxation to obtain an algorithm for the MAX-k-
CuT problem [3]. Specifically, they proposed the following rounding algorithm: Choose k
random vectors, g1, gs, - - -, gr € R™, with each entry of each vector chosen from the normal
distribution A/(0,1). For each vertex i € V, consider the k dot products of vector v; with
each of the k£ random vectors, v; - g1,v; - g2, ..., v; - g. One of these dot products is maximum.
Assign the vertex the label of the random vector with which it has the maximum dot product.
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Figure 1 Three vectors v}, v? and v lie on a 2-dimensional plane corresponding to vertex i. The
vector g is projected onto the disc for element i to obtain 6;. Angle 6;; is the difference between
angles 6; and 6;.

In other words, if v; - gn, = max’gzl{vi -g¢}, then vertex 7 is assigned to to cluster h. Frieze and
Jerrum were able to prove a lower bound on the approximation guarantee of this algorithm
for every k. See Table 1 for some of these ratios.

3 Goemans-Williamson Algorithm for Max-3-Cut

Goemans and Williamson gave an algorithm for MAX-3-CUT in which they first modeled the
problem as a complex semidefinite program, i.e. each element is represented by a complex
vector. It is not too difficult to see that these complex vectors are equivalent to 2-dimensional
discs or sets of unit vectors. For example, here is an equivalent semidefinite program for
Max-3-Cut. The input is an undirected graph G = (V, E) with non-negative edge weights

{wij}.

2
max Z w;i (1 — v} vjl)g (2)
ijeE
v = —1/2, VieV, a#be[3)] 3)
a b a+c b+c s

of -of =ufte ot Vi eV, abe e (3], )
vl 0h > —-1/2, Vi,j €V, a,b€[3], (5)
vt =1, VieV, ael3, (6)
v¢ € R3", VieV, ae (3. (7)

Consider a set of 3n unit vectors forming a solution to this semidefinite program. Note

that for a fixed vertex i € V, the vectors v}, v?

1,v? and v} are in the same two dimensional

plane, since they are constrained to be pairwise 120° apart. In an “integer” solution for this
semidefinite program, all these discs would be constrained to be in the same 2-dimensional
space and each angle of rotation of the discs would be constrained to be 0,27/3 or 4w/3,
where each angle would correspond to a partition. In a solution to the above relaxation,
these discs are no longer constrained to be in 2 dimensions.
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In the rounding algorithm of Goemans and Williamson, we first pick a vector g € R3"
such that each entry is chosen according to the normal distribution A(0,1). Then for each
vertex ¢ € V', we project this vector g onto its corresponding disc. This gives an angle 6; in
the range [0, 27) for each element i. (Note that without loss of generality, we can assume
that 6; is the angle in the clockwise direction between the projection of g and the vector
v3.) We can envision the angles {6;} for each i € V embedded onto the same disc. Then we
randomly partition this disc into three equal pieces, each of length 27/3, i.e. we choose an
angle ¢ € [0,27) and let the three angles of partition be ), + 27/3 and v + 47/3. These
three pieces correspond to the three sets in the partition.

The angle 6;; is the angle 6; — 6; modulo 2. The probability that an edge 77 is cut in

this partitioning scheme is equal to 36;; /27 if 6;; < 27/3 and 1 otherwise. In expectation,
1

the angle 6;; is equal to arccos (v - v;). (This can be shown using the techniques in [4]. See
Lemma 3 in [7].) But using the expected angle is not sufficient to obtain an approximation
guarantee better than 2/3; If angle §,; is 2m/3 in expectation, then one third of the time it
could be zero (not cut) and two thirds of the time it could be 7 (cut). However, it contributes

one to the objective function. The exact probability Prledge ij is cut] that edge ij is cut is:

27 /3 P 4m/3 o or 0
MAOTPES S NSRS SR ORVPE =)
=0 y=2m/3 0=47/3

Therefore, we must compute Pr[f;; = 6] for all # € [0,27). One of the main technical
contributions of Goemans and Williamson [5] is that they compute the exact probability
that 6;; < ¢ for all § € [0,27). This can be found in Lemma 8 [5]. This enables them to
compute the probability that an edge is cut, resulting in their approximation guarantee.

4  Algorithm for Max-k-Cut

As previously mentioned, we cannot model MAX-k-CUT as an integer program directly using
2-dimensional discs as we do for MAX-3-CUT, because any rotation corresponding to an
angle of at least 27 /k should contribute one to the objective function. Note that in the case
of MAX-3-CuUT, there are two possible non-zero rotations in an integer solution: 27/3 and
47 /3 and both of the contribute the same amount (one) to the objective function. Since it
seems impossible to penalize all angles greater than 27 /k at the same cost, it seems similiarly
impossible to model the problem directly with a complex semidefinite program.

We now present our approach for rounding the semidefinite programming relaxation (Q)
for MAX-k-CuUT. After solving the semidefinite program, we obtain a set of vectors {v;}
corresponding to each vertex i € V. We can assume these vectors to be in dimension n. Let
0 represent the vector with n zeros. For each vertex i € V', we construct the following two
orthogonal vectors:

v; = (v;,0), v = (0,v;). (8)

Each vertex i € V now corresponds to a 2-dimensional disc spanned by vectors v; and v;-.
Specifically, this 2-dimensional disc consists of the (continuous) set of vectors defined for
¢ € 10,2m):

vi(}) = v; cos ¢ + v sin ¢. (9)

Now that we have constructed a 2-dimensional disc for each element, we can use the same
rounding scheme due to Goemans and Williamson described in the previous section: First,



A. Newman

Figure 2 A 2-dimensional plane for vertex i spanning v; and v;-. After projecting 6; and 8; onto
the same disc, we partion the disc into k = 4 equal sized pieces.

we choose a vector g € R?" in which each coordinate is randomly chosen according to the
normal distribution N(0,1). For each i € V, we project this vector g onto the disc {v;(¢)},
which results in an angle 6;, where:

g-vi(0i) = max g-vi(¢)
Note that we do not have to compute infinitely many dot products, since, for example, if
g-vi, g- vf- > 0, then:

Cpt
f; = arctan (M),
g

and the three other cases depending on the sign of g-v; and g-v;- can be handled accordingly.
After we find an angle 6; for each i € V, we can assign each element to a position

corresponding to its angle #; on a single disc and divide this disc (randomly) into k equal
c2m
Tk
for all integers ¢ € [0, k), where angles are taken modulo 27r. These are the k partitions of

the vertices in the k-cut.

sections of size 27 /k. Specifically, choose a random angle ¥ and use the partition ¢ +

5 Analysis

We prove that the distribution of the angle 6;; is the same as Lemma 8 of [5]. This implies
that we can use the analysis that Goemans and Williamson use for MAX-3-CUT to obtain
an analogous approximation ratio for MaxX-k-CuUT.

» Lemma 1. Given two sets of vectors x; = {x;(¢)} and x; = {z;(¢)} defined on ¢ € [0, 2m),
where

zi(¢) = (cos ¢, sin¢, 0, 0),

xj(¢) = (cosfcos ¢, cosBsing, sinfcose, sinfsing).

Let v € [0,2m) denote the angle 6; — 0; after the vector g € N'(0,1)*™ is projected onto z;
and xj. Then for § € [0,27),

rsin
V1 —12cos?d

Proof. Note that the set of vectors x; is 2-dimensional, since the angle between x;(¢1) and
xj(¢2) for ¢o > ¢1 is ¢2 — ¢1. Thus, the rounding algorithm in Section 4 is well defined.

1
Pr[OS’Y<5]=2W<5+

arccos (—r cos 5)) . (10)
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Recall that each coordinate of the vector g is chosen according to the normal distribution
N(0,1). Even though the vector g has 2n dimensions, we only need to consider the first four,
g = (91,92, 93,94). This vector is chosen equivalently to choosing «, 8 uniformly in [0, 27)
and p1, ps according to the distribution:

2
fly) =ye v /%
In other words, the vector g is equivalent to:

g = (p1cosf, pi1sinf, pscosa, pssina).

Let r = cos@ and let s = sinf. We will show that the probability that v € [0, ) for 6 < 7 is:

Pr[0§’y<5]21{6+/;Pr{p2.s< pl'%)}da} (11)

0 sind — sin (o —
Lemma 8 in [5] shows this is equivalent to probability in (10).
First, let us consider the case when 6 € [0, 7/2], or cosf > 0. Without loss of generality,

assume that the projection of g onto the 2-dimensional disc x; occurs at ¢ = 0. Then we can
see that

501(0) 9 =D1-

In other words, we can assume that 6; = 0. As previously mentioned, « is chosen uniformly
in the range [0, 27). However, if v < §, then o < 7. If @ < §, then the projection of g onto
xj, namely 0; (which equals 6;; in this case, because we have assumed that 6; = 0), is less
than ¢. The probability that v < ¢ if « € [0, 7) is equal to the probability that:

p2'5< p1-r

sind ~ sin(a —9)
p1-T .
P e < | .
P2 S_Sin(a—(S) sin o

(See Figure 3 in [5].) If § € (7w/2,pi) and r = cos § < 0, then the probability that + is in [0, §)
is the probability that + is in [7, 7 + ¢), which is §/(27). And the probability that v is in
[0, 7) is the probability that ~ is in [7 + 0, 27) for —r. This is:

pr-(=r)
e ——— . 12
po s < Sn (@ =) sin (7 4 0) (12)
However, since sin (7 + §) = — sin d, we have:
p1-T .
s . 0. 1
P27 = Gin (= 9) S (13)

Thus for all § < 7, we have proved the expression in (11). In Lemma 8 of [5], they show that
Equation (11) is equivalent to Equation (10) when § < 7. Then they argue by symmetry
that Equation (10) also holds when 7 < § < 2. |

» Lemma 2. Suppose v; - v; = cos @ for two unit vectors v; and v;. Let vi(¢) and v;(¢) be
defined as in equation (9). Then, we can assume that:

Ul(d)) = (COS ¢7 Sind)a 07 O)a

v;(¢) = (cosfcos ¢, cosfsin¢, sinfcos ¢, sinfsin ).
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Proof. From the definition (in Equation (9)) of v;(¢), we can see that:

vi(¢1) - vj(d2) = (vi cos p1 + v singy) - (vj cos ¢a + vj-‘ sin ¢9)
= V; - V; COS ¢1 COS P + v,»l . vj‘ sin ¢ sin ¢o
+ ;- ij COS ¢1 Sin o + vf - ; sin ¢ cos P2
= cos 0(cos ¢1 cos ¢o + sin ¢y sin ¢2).

Note that v; ~vj- = vZ-J- -v; = 0 since each v; vector has n zeros in the second half of the entries
and each v;- vector has n zeros in the first half of the entries. If we compute v;(¢1) - v;(¢2)
using the assumption in the lemma, then we get the same dot product. Thus, the two sets

are equivalent. |

Since the distribution of the angle is the same, we can use the same analysis of [5]
(generalized from 3 to k) to prove the following Lemma. Although it is essentially the exact
same proof, we include it here for completeness. As in Corollary 9 of [5], we define:

rsin d

1
g(r,6) = o ((5 + Nierrmer arccos (—r cos 5)) .

In other words, g(r, ) is the probability that angle 6;; obtained by projecting ¢ onto the two
discs {v;(¢)} and {v;(¢)}, correlated by r = v; - v, is less than 4.

» Lemma 3. Let r =v; - v; and let y; € [0,1,2,...k) be the integer assignment of vertex
to its partition. Then the probability that the equation y; — y; = ¢ (mod k) is satisfied is

1+ k 5 9 [ 2me 9 (2m(c+1)
T gz |2arccos reos | —— arccos reos | ———
2 -1

— arccos? (—r cos (71'(ck))>} .

Proof. Prly, — y; = ¢ (mod k) satisfied]

k
k [2r 2mc 2r(c+1)
e N e L Gl I
o J, ‘yr { A TSy < I 7':| T
27
k E 2 1 2
L e )
2m(c+1) 27e
k Z k Z
=5 - g(r,v)dv — o /“(2_1) g(r,v)dv

SOSA 2018
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2m(ct1) 2n(ct1)
k

k1 k 1

/ vdy — [2 arccos® (—r cos 1/)]
27mc
ko

T 27

2me
k

e L 2s
— /27(;_1) vdv + [2 arccos” (—r cos V):| 27((21))
_ k(e )\, (2=, (2mc)’
82 k k k
k 2me
+ o) {2 arccos <—r cos < >)
2( (27rc+1 )) ( (zw(c_m))]
—arccos” | —r cos — arccos” | —r cos —
1 k 9 2me
=% + [y} [2 arccos (—r cos ( ))
— arccos?® (—r cos (%(Ckfl)) — arccos? <—r cos (%(Ck_l)>>] . <

» Lemma 4. Let r = v; - v;. The probability that edge ij is not cut by our algorithm is:

1 + L arccos? (—r) — arccos® [ —7 cos 2
k  4n? k ’

Proof. In the case of MAX-k-CUT, we set ¢ = 0. By Lemma 3, we have the probability that
edge ij is not cut is:

% + % [2 arccos® (—r) — arccos? (—r cos (T)) — arccos? (—r cos (—%:))]
_! + k 2arccos? (—r) — 2arccos? [ —7 cos 2

k k

1

k 9 P [ 2m
k+4—2 arccos” (—r) — arccos” | —r cos - . <

» Lemma 5. Let r = v; - v;. The probability that edge ij is cut by our algorithm is:

% + 4]% {arccos,2 (—r - cos <2]:)> — arccos? (—r)} . (14)

Proof. By Lemma 4 and the previously stated assumption that r = v; - v; = cos (6;5), we

have:

1 k 2 2 2
1— [k + = {arccos (—r) — arccos (—r cos ( k ))”
. ]{; —1 k 2 2 2
_ k—1 k 2 2m 2
== + o) [arccos ( T COS <k>) arccos” ( 7")} : <

» Theorem 6. The worst case approzimation ratio of our algorithm for MAX-k-CUT is:

o = E+i arccos? L cos 21 — arccos? L
TR 42 E—1 k E—1)]"

Proof. As a function of r in the range [1,—1/(k — 1)], the expression in Equation 14 is
minimized when r = —1/(k — 1). Thus, if we do an edge-by-edge analysis, the worst case
approximation ratio is obtained when v; - v; = —1/(k — 1) for all edges ij € E. <
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6  Another Rounding Algorithm

The algorithm presented in Section 4 can be restated as the following rounding scheme. Let
wy,ws and w3z denote vectors in R? with pairwise dot product —1/2. In other words, w1, ws
and ws are the vertices of the simplex ¥3. Now take two random gaussians g, go € R™ and
set x; = g1 - v;, Y; = go - v;. To assign the vertex ¢ to one of the three partitions, we simply
assign it to j such that w; - (z;,y;) is maximized.

We can generalize this approach by choosing k£ — 1 random gaussians, g1,...,gr—1. For
each vertex i, we obtain the vector (g1 - vi, g2 - Vi,...,gx_1 - v;) in RF71. This vector is
assigned to the closest vertex of ¥;. Computationally, this rounding scheme seems to yield
approximation ratios that match those of De Klerk et al.

Acknowledgements. Thanks to Moses Charikar, Anupam Gupta, R. Ravi and Madhur
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