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Abstract
In this note we consider the survivable network design problem (SNDP) in undirected graphs.
We make two contributions. The first is a new counting argument in the iterated rounding based
2-approximation for edge-connectivity SNDP (EC-SNDP) originally due to Jain [10]. The second
contribution is to make some connections between hypergraphic version of SNDP
(Hypergraph-SNDP) introduced in [17] and edge and node-weighted versions of EC-SNDP and
element-connectivity SNDP (Elem-SNDP). One useful consequence is a 2-approximation for
Elem-SNDP that avoids the use of set-pair based relaxation and analysis.
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1 Introduction

The survivable network design problem (SNDP) is a fundamental problem in network design
and has been instrumental in the development of several algorithmic techniques. The input to
SNDP is a graph G = (V,E) and an integer requirement r(uv) between each unordered pair
of nodes uv. The goal is to find a minimum-cost subgraph H of G such that for each pair uv,
the connectivity in H between u and v is at least r(uv). We use rmax to denote maxuv r(uv),
the maximum requirement. We restrict attention to undirected graphs in this paper. There
are several variants depending on whether the costs are on edges or on nodes, and whether
the connectivity requirement is edge, element or node connectivity. Unless otherwise specified
we will assume that G has edge-weights c : E → R+. We refer to the three variants of interest
based on edge, element and vertex connectivity as EC-SNDP, Elem-SNDP and VC-SNDP.
All of them are NP-Hard and APX-hard to approximate even in very special cases.

The seminal work of Jain [10] obtained a 2-approximation for EC-SNDP via the tech-
nique of iterated rounding that was introduced in the same paper. A 2-approximation for
Elem-SNDP was obtained, also via iterated rounding, in [7, 5]. For VC-SNDP the current
best approximation bound is O(r3

max log |V |) [6]; it is also known from hardness results in [2]
that the approximation bound for VC-SNDP must depend polynomially on rmax under
standard hardness assumptions.
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2:2 On iterated rounding for SNDP

Our contribution: In this note we revisit the iterated rounding framework that yields a
2-approximation for EC-SNDP and Elem-SNDP. The framework is based on arguing that
for a class of covering problems, a basic feasible solution to an LP relaxation for the covering
problem has a variable of value at least 1

2 . This variable is then rounded up to 1 and the
residual problem is solved inductively. A key fact needed to make this iterative approach work
is that the residual problem lies in the same class of covering problems. This is ensured by
working with the class of skew-supermodular (also called weakly-supermodular) requirement
functions which capture EC-SNDP as a special case. The proof of existence of an edge
with large value in a basic feasible solution for this class of requirement functions has two
components. The first is to establish that a basic feasible solution is characterized by a
laminar family of sets in the case of EC-SNDP (and set pairs in the case of Elem-SNDP).
The second is a counting argument that uses this characterization to obtain a contradiction
if no variable is at least 1

2 . The counting argument of Jain [10] has been simplified and
streamlined in subsequent work via fractional token arguments [1, 13]. These arguments have
been applied for several related problems for which iterated rounding has been shown to be
a powerful technique; see [12]. The fractional token argument leads to short and slick proofs.
At the same time we feel that it is hard to see the intuition behind the argument. Partly
motivated by pedagogical reasons, in this note, we provide a different counting argument
along with a longer explanation. The goal is to give a more combinatorial flavor to the
argument. We give this argument in Section 2.

The second part of the note is on Elem-SNDP. A 2-approximation for this problem
has been derived by generalizing the iterated rounding framework to a set-pair based
relaxation [7, 5]. The set-pair based relaxation and arguments add substantial notation
to the proofs although one can see that there are strong similarities to the proofs used in
EC-SNDP. The notational overhead limits the ability to teach and understand the proof
for Elem-SNDP. Interestingly, in a little noticed paper, Zhao, Nagamochi and Ibaraki [17]
defined a generalization of EC-SNDP to hypergraphs which we refer to as Hypergraph-SNDP.
They observed that Elem-SNDP can be easily reduced to Hypergraph-SNDP in which the
only non-zero weight hyperedges are of size 2 (regular edges in a graph). The advantage of this
reduction is that one can derive a 2-approximation for Elem-SNDP by essentially appealing to
the same argument as for EC-SNDP with a few minor details. We believe that this is a useful
perspective. Second, there is a simple and well-known connection between node-weighted
network design in graphs and network design problems on hypergraphs. We explicitly point
these connections which allows us to derive some results for Hypergraph-SNDP. Section 3
describes these connections and results.

This note assumes that the reader has some basic familiarity with previous literature on
SNDP and iterated rounding.

2 Iterated rounding for EC-SNDP

The 2-approximation for EC-SNDP is based on casting it as a special case of covering a
skew-supermodular requirement function by a graph. We set up the background now. Given
a finite ground set V an integer valued set function f : 2V → Z is skew-supermodular if for
all A,B ⊆ V one of the following holds:

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)
f(A) + f(B) ≤ f(A−B) + f(B −A)

Given an edge-weighted graph G = (V,E) and a skew-supermodular requirement function
f : 2V → Z, we can consider the problem of finding the minimum-cost subgraph H = (V, F )
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of G such that H covers f ; that is, for all S ⊆ V , |δF (S)| ≥ f(S). Here δF (S) is the
set of all edges in F with one endpoint in S and the other outside. Given an instance of
EC-SNDP with input graph G = (V,E) and edge-connectivity requirements r(uv) for each
pair uv, we can model it by setting f(S) = maxu∈S,v 6∈S r(uv). It can be verified that f is
skew-supermodular. The important aspect of skew-supermodular functions that make them
well-suited for the iterated rounding approach is the following.

I Lemma 1 ([10]). Let G = (V,E) be a graph and f : 2V → Z be a skew-supermodular
requirement function, and F ⊆ E be a subset of edges. The residual requirement function
g : 2V → Z defined by g(S) = f(S)− |δF (S)| for each S ⊆ V is also skew-supermodular.

Although the proof is standard by now we will state it in a more general way.

I Lemma 2. Let f : 2V → Z be a skew-supermodular requirement function and let h : 2V →
Z+ be a symmetric submodular function. Then g = f − h is a skew-supermodular function.

Proof. Since h is submodular we have that for all A,B ⊆ V ,

h(A) + h(B) ≥ h(A ∪B) + h(A ∩B).

Since h is also symmetric it is posi-modular which means that for all A,B ⊆ V ,

h(A) + h(B) ≥ h(A−B) + h(B −A).

Note that h satisfies both properties for each A,B. It is now easy to check that f − h is
skew-supermodular. J

Lemma 1 follows from Lemma 2 by noting that the cut-capacity function |δF | : 2V → Z+
is submodular and symmetric in undirected graphs. We also note that the same property
holds for the more general setting when G is a hypergraph.

The standard LP relaxation for covering a function by a graph is described below where
there is variable xe ∈ [0, 1] for each edge e ∈ E.

min
∑
e∈E

cexe∑
e∈δ(S)

xe ≥ f(S) S ⊂ V

xe ∈ [0, 1] e ∈ E

The technical theorem that underlies the 2-approximation for EC-SNDP is the following.

I Theorem 3 ([10]). Let f be a non-trivial1 skew-supermodular function. In any basic
feasible solution x to the LP relaxation of covering f by a graph G there is an edge e such
that xe ≥ 1

2 .

To prove the preceding theorem it suffices to focus on basic feasible solutions x that are
fully fractional; that is, xe ∈ (0, 1) for all e. For a set of edges F ⊆ E let χ(F ) ∈ {0, 1}|E|

denote the characteristic vector of F ; that is, a |E|-dimensional vector that has a 1 in each
position corresponding to an edge e ∈ F and a 0 in all other positions. Theorem 3 is built
upon the following characterization of basic feasible solutions and is shown via uncrossing
arguments.

1 We use the term non-trivial to indicate that there is at least one set S ⊂ V such that f(S) > 0.
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2:4 On iterated rounding for SNDP

I Lemma 4 ([10]). Let x be a fully-fractional basic feasible solution to the the LP relaxation.
Then there is a laminar family of vertex subsets L such that x is the unique solution to the
system of equalities

x(δ(S)) = f(S) S ∈ L.

In particular this also implies that |L| = |E| and that the vectors χ(δ(S)), S ∈ L are linearly
independent.

The second part of the proof of Theorem 3 is a counting argument that relies on the
characterization in Lemma 4. The rest of this section describes a counting argument which
we believe is slightly different from the previous ones in terms of the main invariant. The
goal is to derive it organically from simpler cases.

With every laminar family we can associate a rooted forest. We use terminology for
rooted forests such as leaves and roots as well as set terminology. We refer to a set C ∈ L
as a child of a set S if C ⊂ S and there is no S′ ∈ L such that C ⊂ S′ ⊂ S; If C is the
child of S then S is the parent of C. Maximal sets of L correspond to the roots of the forest
associated with L.

2.1 Counting Argument
The proof is via contradiction where we assume that 0 < xe <

1
2 for each e ∈ E. We call

the two nodes incident to an edge as the endpoints of the edges. We say that an endpoint u
belongs to a set S ∈ L if u is the minimal set from L that contains u.

We consider the simplest setting where L is a collection of disjoint sets, in other words,
all sets are maximal. In this case the counting argument is easy. Let m = |E| = |L|. For
each S ∈ L, f(S) ≥ 1 and x(δ(S)) = f(S). If we assume that xe < 1

2 for each e, we have
|δ(S)| ≥ 3 which implies that each S contains at least 3 distinct endpoints. Thus, the m
disjoint sets require a total of 3m endpoints. However the total number of endpoints is at
most 2m since there are m edges, leading to a contradiction.

Now we consider a second setting where the forest associated with L has k leaves and h
internal nodes but each internal node has at least two children. In this case, following Jain,
we can easily prove a weaker statement that xe ≥ 1/3 for some edge e. If not, then each leaf
set S must have four edges leaving it and hence the total number of endpoints must be at
least 4k. However, if each internal node has at least two children, we have h < k and since
h+ k = m we have k > m/2. This implies that there must be at least 4k > 2m endpoints
since the leaf sets are disjoint. But m edges can have at most 2m endpoints. Our assumption
on each internal node having at least two children is obviously a restriction. So far we have
not used the fact that the vectors χ(δ(S)), S ∈ L are linearly independent. We can handle
the general case to prove xe ≥ 1/3 by using the following lemma.

I Lemma 5 ([10]). Suppose C is a unique child of S. Then there must be at least two
endpoints in S that belong to S.

Proof. If there is no endpoint that belongs to S then δ(S) = δ(C) but then χ(δ(S)) and
χ(δ(C)) are linearly dependent. Suppose there is exactly one endpoint that belongs to S and
let it be the endpoint of edge e. But then x(δ(S)) = x(δ(C)) + xe or x(δ(S)) = x(δ(C))− xe.
Both cases are not possible because x(δ(S)) = f(S) and x(δ(C)) = f(C) where f(S) and
f(C) are positive integers while xe ∈ (0, 1). Thus there are at least two end points that
belong to S. J
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Using the preceding lemma we prove that xe ≥ 1/3 for some edge e. Let k be the number
of leaves in L and h be the number of internal nodes with at least two children and let `
be the number of internal nodes with exactly one child. We again have h < k and we also
have k + h+ ` = m. Each leaf has at least four endpoints. Each internal node with exactly
one child has at least two end points which means the total number of endpoints is at least
4k+ 2`. But 4k+ 2` = 2k+ 2k+ 2` > 2k+ 2h+ 2` > 2m and there are only 2m endpoints for
m edges. In other words, we can ignore the internal nodes with exactly one child since there
are two endpoints in such a node/set and we can effectively charge one edge to such a node.

We now come to the more delicate argument to prove the tight bound that xe ≥ 1
2

for some edge e. Our main contribution is to show an invariant that effectively reduces
the argument to the case where we can assume that L is a collection of leaves. This is
encapsulated in the claim below which requires some notation. Let α(S) be the number of
sets of L contained in S including S itself. Let β(S) be the number of edges whose both
endpoints lie inside S. Recall that f(S) is the requirement of S.

I Claim. For all S ∈ L, f(S) ≥ α(S)− β(S).

Assuming that the claim is true we can do an easy counting argument. Let R1, R2, . . . , Rh
be the maximal sets in L (the roots of the forest). Note that

∑h
i=1 α(Ri) = |L| = m. Applying

the claim to each Ri and summing up,

h∑
i=1

f(Ri) ≥
h∑
i=1

α(Ri)−
h∑
i=1

β(Ri) ≥ m−
h∑
i=1

β(Ri).

Note that
∑h
i=1 f(Ri) is the total requirement of the maximal sets. And m−

∑h
i=1 β(Ri)

is the total number of edges that cross the sets R1, . . . , Rh. Let E′ be the set of edges
crossing these maximal sets. Now we are back to the setting with h disjoint sets and E′

edges with
∑h
i=1 f(Ri) ≥ |E′|. This easily leads to a contradiction as before if we assume

that xe < 1
2 for all e ∈ E′. Formally, each set Ri requires > 2f(Ri) edges crossing it from E′

and therefore Ri contains at least 2f(Ri) + 1 endpoints of edges from E′. Since R1, . . . , Rh
are disjoint the total number of endpoints is at least 2

∑
i f(Ri) + h which is strictly more

than 2|E′|.
Thus, it remains to prove the claim which we do by inductively starting at the leaves of

the forest for L.

Case 1: S is a leaf node. We have f(S) ≥ 1 while α(S) = 1 and β(S) = 0 which verifies
the claim.

Case 2: S is an internal nodes with k children C1, C2, . . . , Ck. See Figure 1 for the different
types of edges that are relevant. Ecc is the set of edges with end points in two different
children of S. Ecp be the set of edges that cross exactly one child but do not cross S. Epo
be the set of edges that cross S but do not cross any of the children. Eco is the set of edges
that cross both a child and S. This notation is borrowed from [15].

Let γ(S) be the number of edges whose both endpoints belong to S but not to any child
of S. Note that γ(S) = |Ecc|+ |Ecp|.

SOSA 2018



2:6 On iterated rounding for SNDP

S

C1 C2

C3

∈ Ecc
∈ Ecc

∈ Epo ∈ Eco ∈ Eco

∈ Ecp

Figure 1 S is an internal node with several children. Different types of edges that play a role. p

refers to parent set S, c refer to a child set and o refers to outside.

Then,

β(S) = γ(S) +
k∑
i=1

β(Ci)

≥ γ(S) +
k∑
i=1

α(Ci)−
k∑
i=1

f(Ci) (1)

= γ(S) + α(S)− 1−
k∑
i=1

f(Ci)

(1) follows by applying the inductive hypothesis to each child. From the preceding inequality,
to prove that β(S) ≥ α(S)−f(S) (the claim for S), it suffices to show the following inequality.

γ(S) ≥
k∑
i=1

f(Ci)− f(S) + 1. (2)

The right hand side of the above inequality can be written as:

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1. (3)

We consider two subcases.

Case 2.1: γ(S) = 0. This implies that Ecc and Ecp are empty. Since χ(δ(S)) is linearly
independent from χ(δ(C1)), . . . , χ(δ(Ck)), we must have that Epo is not empty and hence∑
e∈Epo

xe > 0. Therefore, in this case,

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1 = −
∑
e∈Epo

xe + 1 < 1.

Since the left hand side is an integer, it follows that
∑k
i=1 f(Ci)− f(S) + 1 ≤ 0 = γ(S).
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Case 2.2: γ(S) ≥ 1. Recall that γ(S) = |Ecc|+ |Ecp|.

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1 ≤
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe + 1

By our assumption that xe < 1
2 for each e, we have

∑
e∈Ecc

2xe < |Ecc| if |Ecc| > 0, and
similarly

∑
e∈Ecp

xe < |Ecp|/2 if |Ecp| > 0. Since γ(S) = |Ecc|+ |Ecp| ≥ 1 we conclude that∑
e∈Ecc

2xe +
∑
e∈Ecp

xe < γ(S).

Putting together we have

k∑
i=1

f(Ci)− f(S) + 1 ≤
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe + 1 < γ(S) + 1 ≤ γ(S)

as desired.
This completes the proof of the claim.

3 Connections between Hypergraph-SNDP, EC-SNDP and
Elem-SNDP

Zhao, Nagamochi and Ibaraki [17] considered the extension EC-SNDP to hypergraphs. In
a hypergraph G = (V, E) each edge e ∈ E is a subset of V . The degree d of a hypergraph
is maxe∈E |e|. Graphs are hypergraphs of degree 2. Given a set of hyperedges F ⊆ E and
a vertex subset S ⊂ V , we use δF (S) to denote the set all of all hyperedges in F that
have at least one endpoint in S and at least one endpoint in V \ S. It is well-known that
|δF | : 2V → Z+ is a symmetric submodular function.

Hypergraph-SNDP is defined as follows. The input consists of an edge-weighted hypergraph
G = (V, E) and integer requirements r(uv) for each vertex pair uv. The goal is to find a
minimum-cost hypergraph H = (V, E ′) with E ′ ⊆ E such that for all uv and all S that
separate u, v (that is |S ∩ {u, v}| = 1), we have |δE′(S)| ≥ r(uv). Hypergraph-SNDP is a
special case of covering a skew-supermodular requirement function by a hypergraph. It
is clear that Hypergraph-SNDP generalizes EC-SNDP. Interestingly, [17] observed, via a
simple reduction, that Hypergraph-SNDP generalizes Elem-SNDP as well. We now describe
Elem-SNDP formally and briefly sketch the reduction from [17], and subsequently describe
some implications of this connection.

In Elem-SNDP the input consists of an undirected edge-weighted graph G = (V,E) with
V partitioned into terminals T and non-terminals N . The “elements” are the edges and
non-terimals, N ∪E. For each pair uv of terminals there is an integer requirement r(uv), and
the goal is to find a min-cost subgraph H of G such that for each pair uv of terminals there
are r(uv) element-disjoint paths from u to v in H. Note that element-disjoint paths can
intersect in terminals. The notion of element-connectivity and Elem-SNDP have been useful
in several settings in generalizing edge-connectivity problems while having some features
of vertex connectivity. In particular, the current approximation for VC-SNDP relies on
Elem-SNDP [6].

The reduction of [17] from Elem-SNDP to Hypergraph-SNDP is quite simple. It basically
replaces each non-terminal u ∈ N by a hyperedge. The reduction is depicted in Figure 2.

SOSA 2018



2:8 On iterated rounding for SNDP

v ev

Figure 2 Reducing Elem-SNDP to Hypergraph-SNDP. Each non-terminal v is replaced by a
hyperedge ev by introducing dummy vertices on each edge incident to v. The original edges retain
their cost while the new hyperedges are assigned a cost of zero.

The reduction shows that an instance of Elem-SNDP on G can be reduced to an instance
of Hypergraph-SNDP on a hypergraph G′ where the only hyperedges with non-zero weights
in G′ are the edges of the graph G. This motivates the definition of d+(G) which is the
maximum degree of a hyperedge in G that has non-zero cost. Thus Elem-SNDP reduces to
instances of Hypergraph-SNDP with d+ = 2. In fact we can see that the same reduction
proves the following.

I Proposition 6. Node-weighted Elem-SNDP in which weights are only on non-terminals can
be reduced in an approximation preserving fashion to Hypergraph-SNDP. In this reduction
d+ of the resulting instance of Hypergraph-SNDP is equal to ∆, the maximum degree of a
non-terminal with non-zero weight in the instance of node-weighted Elem-SNDP.

3.1 Reducing Elem-SNDP to problem of covering skew-supermodular
functions by graphs

We saw that an instance of Elem-SNDP on a graph H can be reduced to an instance of
Hypergraph-SNDP on a graph G where d+(G) = 2. Hypergraph-SNDP on G = (V, E)
corresponds to covering a skew-supermodular function f : 2V → Z by G. Let E = F ] E ′

where E ′ is the set of all hyperedges in G with degree more than 2; thus F is the set of all
hyperedges of degree 2 and hence (V, F ) is a graph. Since each edge in E ′ has zero cost we
can include all of them in our solution, and work with the residual requirement function
g = f − |δE′ |. From Lemma 2 and the fact that the cut-capacity function of a hypergraph
is also symmetric and submodular, g is a skew-supermodular function. Thus covering f by
a min-cost sub-hypergraph of G can be reduced to covering g by a min-cost sub-graph of
G′ = (V, F ). We have already seen a 2-approximation for this in the context of EC-SNDP.
The only issue is whether there is an efficient separation oracle for solving the LP for covering
g by G′. This is a relatively easy exercise using flow arguments and we omit them. The
main point we wish to make is that this reduction avoids working with set-pairs that are
typically used for Elem-SNDP. It is quite conceivable that the authors of [17] were aware of
this simple connection but it does not seem to have been made explicitly in their paper or
in [16].

3.2 Approximating Hypergraph-SNDP
[17] derived a d+Hrmax approximation for Hypergraph-SNDP where Hk = 1 + 1/2 + . . .+ 1/k
is the k’th harmonic number. They obtain this bound via the augmentation framework for
network design [9] and a primal-dual algorithm in each stage. In [16] they also observe that
Hypergraph-SNDP can be reduced to Elem-SNDP via the following simple reduction. Given
a hypergraph G = (V, E) let H = (V ∪N,E) be the standard bipartite graph representation
of G where for each hyperedge e ∈ E there is a node ze ∈ N ; ze is connected by edges in H
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to each vertex a ∈ e. Let r(uv) be the hyperedge connectivity requirement between a pair of
vertices uv in the original instance of Hypergraph-SNDP. In H we label V as terminals and
N as non-terminals. For any pair of vertices uv with u, v ∈ V , it is not hard to verify that
the element-connectivity betwee u and v in H is the same as the hyperedge connectivity in G.
See [16] for details. It remains to model the costs such that an approximation algorithm for
element-connectivity in H can be translated into an approximation algorithm for hyperedge
connectivity in G. This is straightforward. We simply assign cost to non-terminals in H;
that is each node ze ∈ N corresponding to a hyperedge e ∈ E is assigned a cost equal to ce.
We obtain the following easy corollary.

I Proposition 7. Hypergraph-SNDP can be reduced to node-weighted Elem-SNDP in an
approximation preservation fashion.

[16] do not explicitly mention the above but note that one can reduce Hypergraph-SNDP
to (edge-weighted) Elem-SNDP as follows. Instead of placing a weight of ce on the node ze
corresponding to the hyperedge e ∈ E , they place a weight of ce/2 on each edge incident to ze.
This transformation loses an approximation ratio of d+(G)/2. From this they conclude that a
β-approximation for Elem-SNDP implies a d+β/2-approximation for Hypergraph-SNDP; via
the 2-approximation for Elem-SNDP we obtain a d+approximation for Hypergraph-SNDP.
One can view this as reducing a node-weighted problem to an edge-weighted problem by
transferring the cost on the nodes to all the edges incident to the node. Since a non-terminal
can only be useful if it has at least two edges incident to it, in this particular case, we
can put a weight of half the node on the edges incident to the node. A natural question
here is whether one can directly get a d+ approximation for Hypergraph-SNDP without the
reduction to Elem-SNDP. We raise the following technical question.

I Problem 8. Suppose f is a non-trivial skew-supermodular function on V and G = (V, E)
be a hypergraph. Let x be a basic feasible solution to the LP for covering f by G. Is there an
hyperedge e ∈ E such that xe ≥ 1

d where d is the degree of G?

The preceding propositions show that Hypergraph-SNDP is essentially equivalent to
node-weighted Elem-SNDP where the node-weights are only put on non-terminals. Node-
weighted Steiner tree can be reduced to node-weighted Elem-SNDP and it is known that
Set Cover reduces in an approximation preserving fashion to node-weighted Steiner tree
[11]. Hence, unless P = NP , we do not expect a better than O(logn)-approximation
for Hypergraph-SNDP where n = |V | is the number of nodes in the graph. Thus, the
approximation ratio for Hypergraph-SNDP cannot be a constant independent of d+. Node-
weighted Elem-SNDP admits an O(rmax log |V |) approximation; see [14, 3, 4, 8]. For planar
graphs, and more generally graphs from a proper minor-closed family, an improved bound of
O(rmax) is claimed in [3]. The O(rmax log |V |) bound can be better than the bound of d+ in
some instances. Here we raise a question based on the fact that planar graphs have constant
average degree which is used in the analysis for node-weighted network design.

I Problem 9. Is there an O(1)-approximation for node-weighted EC-SNDP and Elem-SNDP
in planar graphs, in particular when rmax is a fixed constant?

Finally, we hope the counting argument and the connections between Hypergraph-SNDP,
EC-SNDP and Elem-SNDP will be useful for related problems including the problems
involving degree constraints in network design.
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