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—— Abstract

This paper investigates the robustness of control systems when a controller is run in a Fog environment.
Control systems in the Fog are introduced and a discussion regarding relevant faults is presented.
A preliminary investigation of the robustness properties of a MinSeg case study is presented and
commented. The discussion is then used to outline future lines of research.
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1 Introduction

In recent years there has been a trend to move towards decentralized and distributed software
infrastructure in industry [1]. This interest rises from the advantages of decoupling the control
of the plant from the physical location and allowing for easier software update patches, lower
maintenance costs, easier integration and optimization of individual components, among
multiple others. This shift in paradigms is based on the emerging 5G-network with low
latency, higher bandwidth, lower cost, and more reliable communication channels [4,9].
However, neither the 5G-network nor the Fog that follows, are exempt from faults [5,12]. The
wireless and distributed nature of the Fog introduces different faults from the ones addressed
in classical control theory [13].

In real-time control systems, where reliability and timing constraints are of utmost
importance, the faults need to be analyzed thoroughly [10]. Recently, [11] showed that it
is possible for a control system to run in a Fog setting. The authors managed to control a
plant in real-time whilst migrating a controller from the near vicinity of the plant to two
datacenters, located at vastly different places. This result shows that it is possible to use the
Fog as a platform for distributed control but at the same time poses questions on its general
limitations and applicability. There is therefore need to develop methodologies for the study
of reliability and robustness of a control system in the Fog environment.
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The general set-up, where controller and plant are connected through a network, has been
studied under the name of networked control systems [7]. We propose an extension of the
work on networked control systems based on types and patterns of faults, characteristic to
the Fog environment. In this environment, faults can happen in the computation, actuation,
or sensing nodes as well as in the transmission between these nodes. Faults may appear in
the computation node due to overloads generated by other running tasks. Communication
faults might instead appear due to signal disturbances or channel overloads created by other
ToT-devices. In both cases the faults are likely to appear in bursts, meaning that the fault
appears at an arbitrary point in time and persists for some time before disappearing.

Control systems seem to guarantee an intrinsic robustness toward these faults but its
boundaries are yet to be explored. We perform a preliminary investigation of the topic by
discussing the possible faults as well as simulating their possible outcomes. Namely, the main
contributions of this paper are:

(i) a discussion on the specific faults introduced by a distributed Fog environment,
(ii) an investigation on the effect of bursts of faults on a control system,
(iii) a simulation based stability region for a particular case study.

The rest of the paper is structured as follows: Section 2 introduces control systems in the
Fog and discusses the potential faults that can appear. Section 3 presents and discusses the
case study of a MinSeg. Finally Section 4 summarizes the paper and outlines future research
directions.

2 System Model

2.1 Control Systems

The purpose of a control system is to make a process behave according to some given
requirements. Control systems are generally composed of a physical process and a controller.
The controller is implemented as a software that receives measurements from the process,
elaborates them, and decides accordingly how to steer the actuators of the process. Within
this work we study the specific (but still common) case in which the controller implementation
is split in two different components: a state observer and a control law. This is often needed
due to the states of the system differing from what we can measure. A representation of
these components and their interaction is shown in the block diagram of Figure 1.

For capturing the behaviour of the process, the most common class of models used are
the so-called time-invariant state-space models [2]. State-space models take the form

(1)

where u is a vector of actuation variables decided by the control law (also called the inputs of
the process), y is a vector of measured variables (also called the outputs of the process), and
x is a vector of states of the process. Therefore, the first equation describes how the system
evolves given the current state and input, whilst the second equation instead describes how
the measurements are connected to the actual state of the system.

The purpose of the observer is to estimate z given the known input u and measured
output y. The most common state observer is called the Luenberger observer [2]. This
observer is based on running a simulation of the process according to Equation (1) and
correcting it given the discrepancy between the expected measurement from the simulation
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and the true measurement. In this way, the information contained in the model is merged
with the measurements of the process. By calling the estimated state & and expected output
4 the Luenberger observer is implemented with the following equation:

=
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<>
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z

where the constant K (also called the observer gain) can be chosen using different techniques
(e.g. pole placement or Kalman filtering) [2]. Intuitively a high value of K represents that
the observer will rely more on the measurements and a low value will make the observer rely
more on the simulated model of the process.

The estimated state & is then used by the controller, together with the desired behaviour
r to compute the control action w. The most common class of controllers are linear controllers
which can be written as

u=L(r—2z), (3)

where L is called the control gain and can be designed using standard techniques from control
theory — e.g. pole-placement or LQG control [2].

The mentioned design methodologies provide formal guarantees on the stability and
performance of the control system. Stability is the most fundamental property required
in a control system and states that the system variables x, &, u, and y over time will not
diverge but instead converge to some finite value. Intuitively these guarantees depend on
the accuracy of the available model. In a control system, the capability of satisfying the
requirements in presence of modelling errors, disturbances, and component faults is called
robustness. In this work we analyze the robustness to the Fog faults in terms of stability
guarantees. Specifically, in the Fog context, we want to evaluate how tolerant a control
system is to faults.

2.2 Control Systems in the Fog

In traditional control systems, the control software is executed by an embedded device
that is attached to the physical process. Leveraging the emerging Fog network, it becomes
natural to move the controller into the Fog. This allows the control system to access higher
computational power, ease software updates, synchronize with other IoT-devices as well as
alter the hardware during runtime.

When the controller is run in the Fog, it interacts with the plant through wireless
channels, whilst sharing the computational power with other processes. Therefore, both
the communication channel and the computation platform are subject to the interference of
other IoT-devices. These phenomena introduce new and specific disturbances different from
the ones seen in traditional control systems. Evaluating the performance of control systems
in their presence is critical for the safe and optimal implementation of a control system in
the Fog.

In Figure 1, where the block diagram of the control system is shown, the dashed boxes
highlight that the controller (both state observer and control law) is executed in the Fog
and that the process is placed in a different physical location. This shows that the desired
behaviour 7, the control actuation u, and the measurement y are the signals traveling on
wireless communication channels.

I Different set-ups could be considered, for example the state observer and the control law could be run
in different IoT nodes. In this work we limit our study to this case being it the closest to the traditional
set-up.
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Figure 1 A control system in the Fog context. The purple dashed block illustrates all the
components located in the Fog, whilst the green dashed block represents the physical process we are
trying to control. Transmission channels are represented by black arrows and red crosses are used to
indicate a transmission fault.

2.3 Fog Faults and Control Systems

Given the Fog-IoT set-up described in the previous section, faults could be introduced when
communicating the signals r, u, and y as well as when executing the controller. Among these
we exclude faults in the communication of 7, since this signal is set by an external operator
and not affected by the control system.

In this work we discuss the following scenarios (shown in Figure 1 as red-crosses in the
control system block diagram):

Computation Faults [CF]: the IoT computation node does not manage to execute the
controller within the real-time constraints of the control system. Therefore, the actuator
does not receive any actuation command and the controller does not update. This could
happen, for example, if the node was suddenly overloaded by other computations.

Detected Actuation Transmission Faults [DF]: the communication channel fails
in transmitting the actuation signal u but the control software detects it and can take
counteraction. The actuator does not receive any command and the controller updates
accordingly. This could for example happen if the communication channel is kept busy
by other ToT devices.

Undetected Actuation Transmission Faults [UF]: the communication channel fails
in transmitting the actuation signal u and the control software is not aware of this and can
therefore not take any counteraction. The actuator does not receive any command and the
controller updates normally. This could happen, for example, if the controller get access
to the communication channel but the channel itself does not succeed in transmitting the
signal.

Measurement Transmission Faults [MF]: the communication channel fails in trans-
mitting the measurement signal y. The control software does not receive it and can
therefore take counteraction. This could for example happen if the communication channel
is either busy or simply fails to transmit the signal.
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Figure 2 Time series of the MinSeg leaning Figure 3 Time series of the MinSeg leaning
angle under regular conditions. angle in the presence of a burst of computation
faults starting at 9 = 0.5 with a duration of

At = 0.5.

2.4 Fault Patterns

In this work we consider fault patterns of the burst type, meaning that a given fault happens
sporadically and continuously for a relatively short time. The reason for considering this
type of faults is that Fog-IoT components are expected to incur temporary overload periods
that will result in temporary unavailability.

We define burst faults as a sequence of consecutive component faults that happens at
an arbitrary point in time and does not repeat. Therefore, a burst fault of a given type is
defined by two quantities: an initial time ¢y and a duration A¢. A graphical representation of
a burst fault and the corresponding process is shown in Figure 3, as opposed to the system
response in regular conditions shown in Figure 2. In Figure 3, the system experiences a burst
of computation faults at time ¢y = 0.5 with length At = 0.5. The red zig-zag line (in the
x-axis) shows the interval in which the fault occurs and the plot shows the time series of the
leaning angle of the MinSeg.

When the actuator does not receive an updated control signal, we implemented a zeroing
strategy [8]. This means that the variable w is set to zero in the presence of computation
faults (CF), detected (DF), and undetected actuation transmission faults (UF). We chose
a zeroing strategy over the alternative of re-applying the previous control signal. In fact,
in many control systems, after the computation of the control signal, additional steps are
performed, for example to transform the control signal between different coordinate spaces
(e.g., dynamic coordinate systems). The presence of faults would render this additional
computation (and holding the previously computed signal) infeasible, therefore justifying our
choice.

3 Results and Discussion

We will in this section evaluate a model of a real control system through simulations. From
the simulation results, we discuss the system robustness to the transmission disturbances
presented in Section 2. The real-world process that we chose to analyze is a MinSeg [6]
controlled via bluetooth technology. Due to the fact that the MinSeg is inherently unstable,
with fast dynamics, it is a relevant process for our experiments. The performance degradation
of the control system is therefore clearly exposed when computation and transmission errors
are introduced.
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Figure 4 Stability region for simulations using Figure 5 Stability region for simulations using
computation faults [CF]. detected actuation transmission faults [DF].
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Figure 6 Stability region for simulations using Figure 7 Stability region for simulations using
undetected actuation transmission faults [UF].  measurement transmission faults [MF].

We ran the simulations using Matlab?. In particular we simulated the timing interactions
between the network components and the control system using the research tool called
TrueTime [3]>. TrueTime is a Matlab multi-purpose toolbox primarily used for analyzing
the complex timing properties of real-time, networked control systems.

We injected the burst disturbances (as described in Section 2.4) into the control system
during a transient. A transient is when the process moves from an arbitrary state to an
equilibrium. An equilibrium is a state from which the system will not diverge unless in
presence of some external input or disturbance. This is a standard, however not exhaustive,
way to evaluate the performance of a control system.

We ran simulations for each type of fault with one burst each. We considered bursts of
different length At, starting at different points ¢y of the transient, as discussed in Section 2.4.
The stability results from the combinations of ¢ty and At values are then plotted together. We
define a simulation stable when the angle of the MinSeg does not exceed a given threshold «
for the entire duration of the simulation. Consequently, when the threshold is exceeded, the
simulation is marked as unstable. In fact, exceeding this threshold implies that the angle
of the process is too large for the control system to be able to bring the MinSeg back to
an upright position. Figures 4, 5, 6, and 7 show the stability regions for each of the faults
defined in Section 2.3 given different configurations of At and ¢y. Each point (z,y) in the
plot represents a simulation using a specific (At,ty) combination. Unstable simulations are
marked with white and stable simulations are marked with gray.

2 https://se.mathworks.com/products/matlab.html
3 http://www.control.lth.se/research/tools-and-software/truetime/
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As we can see in Figure 2, for values of ¢y < 0.75s, the burst happens while the system
is still in a transient state. Conversely, for values of ¢y > 0.75s the system has reached its
equilibrium, and the simulations are not changing anymore. For all the faults, this provides
the intuition that in an equilibrium state the robustness to burst for a control system could
be quantified. Still, there are differences between the specific faults.

Figure 5 shows the results of the simulations in presence of detectable actuation trans-
mission faults. The behaviour of the system appears similar to the case of computation
faults (Figure 4). Intuitively, in both cases, the system is not actuated. However, the
difference between the two faults is the fact that the state observer is not updated during the
computation faults burst. According to the simulations, the difference does not affect the
robustness of the system. In the future we plan to investigate the generality of this finding.

Figure 6 shows the results of the simulations in presence of undetectable actuation
transmission faults. The system shows less robustness with respect to the previous two cases.
This can be attributed to the state observer being updated with the wrong control signal and
therefore diverging from the actual state of the system. Despite this, the general behaviour
of the stability region shows a similar trend to the two faults considered previously. In
general, from the comparison of Figure 5 and 6, undetectable actuation transmission faults
can be more harmful than detectable ones. This should be taken into account when the Fog
infrastructure is implemented, e.g. by implementing detection algorithms for transmission
faults.

Figure 7 shows the results of the simulations in presence of measurement transmission
fault. Most of the simulations expose a stable behaviour. This is due to the perfect coherence
between the model used in the observer and the model used to simulate the process. Since
the two models are the same, despite the lack of feedback, the estimated states do not diverge
from the actual states of the process. This will not be true for a real implementation of
the system due to modeling errors and disturbances. The unstable simulations, that appear
for small values of ¢y, are due to the observer not having enough time to start tracking the
states of the process.

4  Conclusions

This paper presents preliminary work investigating the robustness to computation and
communication faults of control systems in the Fog. The simulations show that a control
system has an intrinsic robustness to the faults characteristic of this environment. Further
investigations should be based on a formal analysis of the system properties. The relevance
of the state observer, in the presence of the discussed faults, has been emphasized through
simulations. In future work we plan to evaluate solutions that handle burst faults.
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