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Abstract
We provide three detailed case studies of vulnerabilities in smart contracts, and show how property
based testing would have found them: 1. the Dexter1 token exchange; 2. the iToken; 3. the ICO of
Brave’s BAT token. The last example is, in fact, new, and was missed in the auditing process.

We have implemented this testing in ConCert, a general executable model/specification of smart
contract execution in the Coq proof assistant. ConCert contracts can be used to generate verified
smart contracts in Tezos’ LIGO and Concordium’s rust language. We thus show the effectiveness of
combining formal verification and property-based testing of smart contracts.
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1 Introduction

Blockchain-based technologies have seen rising interest in recent years. This can be attributed
to their ability to sustain a public distributed ledger with a high degree of reliability, integrity,
and transparency, without requiring a trusted third party. Smart contracts are distributed
applications deployed on a blockchain. They are typically used for sensitive transactions, for
example, carrying large amounts of money or other valuable assets, but in principle, they
can perform any computation. Once a smart contract is deployed on the blockchain, it is
impossible to change its source code. The blockchain ensures that contracts are executed
correctly according to the execution model. However, it gives no guarantee that the smart
contract’s code is correct. Like other programs, smart contracts are susceptible to bugs.
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Some attacks on smart contracts have resulted in substantial losses. For example, the
“DAO attack” on Ethereum, where $50 million worth of cryptocurrency was stolen due to
a re-entrancy vulnerability1. In April 2020, an attacker exploited a re-entrancy bug in the
Lendf.me platform, resulting in a loss of about 99.5% of the platform’s funds (∼$25 million).
In 2021 cryptocurrency-related crimes including smart contract attacks resulted in losses
of approximately $14 billion [6]. Hence, having a high assurance that a smart contract
implementation is free of bugs is imperative. Unit testing is often used in the process of smart
contract development. However, subtle bugs related to smart contract state evolution over a
series of calls, or interaction with other contracts often cannot be captured by conventional
unit testing. Moreover, even proving functional correctness properties is not sufficient, as
it was exemplified by the Dexter contract considered in Section 3. To address such issues,
we are using the ConCert framework in the Coq proof assistant which facilitates formal
verification and property-based testing of smart contracts.

Contributions

We present the details of the property-based testing functionality of the ConCert framework.
The testing functionality was presented briefly in earlier works on ConCert [3, 2]. This paper
contributes to the property-based testing functionality of ConCert and presents three case
studies demonstrating how ConCert can be used to find real-world bugs in smart contracts.
Contributions to the testing framework include counterexample shrinking, negative testing
capabilities, improved customisation and usability improvements.

The first two case studies show how ConCert could have been used to find bugs that
were found in smart contracts by auditors and attackers. The last case study shows how we
used ConCert to find new bugs which could have led to upwards of $8 million being stolen or
frozen.

2 ConCert Overview

In this section, we give a brief overview of the ConCert framework, focusing on the smart
contract execution layer and property-based testing. ConCert is open-source, and available
at https://github.com/AU-COBRA/ConCert/.

2.1 Pipeline
The pipeline overview is presented in Figure 1. We start by developing a smart contract in
Coq using the ConCert infrastructure. That is, smart contracts are written in Gallina, a
functional language of Coq that shares similarities with other functional languages. They
are just ordinary functions that use some pre-defined blockchain primitives provided by the
ConCert infrastructure. This facilitates porting smart contracts written in functional smart
contract languages to Coq.2 Even for a language like Solidity, this is fairly straightforward.
We then can write a specification and test the smart contact function semi-automatically
against it, using the integration with QuickChick [8]. With more effort, we can also prove
the properties of smart contracts using the ConCert infrastructure. Proofs and tests crucially
use the execution layer to reason about interacting contracts (see more details in Section 2.2),
which enables us to capture properties beyond the mere functional correctness of a single
contract invocation (see Section 3).

1 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
2 E.g. LIGO, Liquidity, Sophia

https://github.com/AU-COBRA/ConCert/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
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Figure 1 The pipeline.

After testing and verification, one can obtain an executable implementation in one of
the supported smart contract languages through code extraction. Our development uses
the verified erasure procedure of MetaCoq [9] with verified optimisations and certifying
pre-processing of ConCert. This gives us a code-generation procedure with strong correctness
guarantees and a small trusted computing base consisting of MetaCoq’s quote functionality,
the pretty-printers into the target languages and the extraction configuration. Note that
ConCert’s extraction does not use unsafe coercions, like Obj.magic in OCaml. Therefore, the
resulting code is type-checked as a regular user-defined contract. Additionally, extraction
configuration involves mappings from ConCert’s primitives to specific primitives for each
supported target blockchain. These mappings contribute to the TCB and are carefully defined
together with experts for a particular target blockchain. Outside of the ConCert pipeline,
the compilers used to produce low-level code (e.g. Michelson) from extracted contracts are
blockchain-specific and also contribute to the overall TCB.

2.2 Smart Contract Execution Layer
The execution layer provides a model which facilitates reasoning about contract execution
traces. This makes it possible to state and prove temporal properties of interacting smart
contracts. Smart contracts in ConCert are modelled by abstracting a number of blockchains.3
These blockchains can be characterised as variants of a message-passing model. ConCert
models core behaviour for such models. Each blockchain can have some specific features not
present in the ConCert execution model directly (e.g. Tezos’ views), but similar behaviour
can be expressed through message passing. Contracts which use such features are not directly
expressable in ConCert. Some contracts might not be extractable to some targets if they use
concepts that cannot be mapped to the target blockchain.

A contract consists of two functions:
init : Chain → ContractCallContext → Setup → option State
The initialisation function is called after the contract is deployed on the blockchain. The
first parameter of type Chain gives access to data about the blockchain (e.g. current chain
height). The ContractCallContext parameter provides data about the current call (e.g.
caller address, amount sent to the contract). Setup represents initialisation parameters.

3 E.g. Concordium, Tezos, Dune, Æternity
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Figure 2 Property-based Testing in ConCert.

receive : Chain → ContractCallContext → State → option Msg →
option (State ∗ list ActionBody) This function represents the main functionality of the
contract that is executed for each call to the contract. Chain and ContractCallContext are
the same as for init. The parameter of type State is the current state of the contract; Msg
is a user-defined type of messages that contract accepts (the entrypoints of the contract).
The result of a successful execution is a new state and a list of actions represented with
ActionBody. The actions can be transfers, calls to other contracts (including itself), and
contract deployments.

Both receive and init are ordinary Coq functions, making them convenient to reason
about. However, reasoning about the contract functions in isolation is not sufficient, as
many deployed contracts actually consist of a collection of interacting contracts, for example
for the sake of modularity. One call to receive potentially emits more calls, which can
create complex call graphs between deployed contracts. Therefore, it is necessary to consider
execution traces to prove some safety properties of smart contracts. An execution trace
ChainTrace is the reflexive, transitive closure of a proof-relevant ChainStep relation, which
essentially captures the addition of a block to the blockchain. In this step, any actions (such
as contract calls and transfers) coming from external users are executed.

ChainTrace gives a relational operational semantics for the executions process. The
semantics is non-deterministic since it allows for arbitrary execution order for the actions
emitted by contract calls. Thus, ConCert provides two executable implementations: one
follows depth-first and the other follows breadth-first order. It also provides proof that if
running add_block succeeds, it results in a valid instance of ChainTrace. Having an executable
implementation is crucial for property-based testing.

2.3 Property-based Testing framework
Property-based testing (henceforth abbreviated PBT ), also known as random-property testing,
is a technique for testing where test data is generated pseudo-randomly and tested in large
quantities against some decidable property. We integrate the PBT library QuickChick [8] with
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the execution framework to obtain a method for testing contract executions. In particular, we
support testing the functional correctness of contracts but also testing (decidable) properties
of entire execution traces. The overview of the testing framework is given in Figure 2.

In brief, the PBT framework works by having the user provide generators for the Msg
type of the contract(s) tested. In this context, generators are functions that produce pseudo-
random values of the given type. These generators are used to populate randomly generated
execution traces with pseudo-random contract calls during testing with QuickChick. The
user also configures the initial blockchain setup consisting of account balances and contracts
that are currently available for interaction (deployed contracts). QuickChick also uses Show
type class instances to print test results (e.g. counterexamples).

For example, consider how to test a token contract whose Msg type is
Inductive Msg :=

transfer of (address ∗ address ∗ nat)
| approve of (address ∗ address ∗ nat).

That is, it has two entrypoints: one for transferring tokens between the two given addresses
and one for approving an address to spend a given number of tokens on behalf of another
address. Generating pseudo-random values of Msg then amounts to either generating a
transfer or an approve, and populating it with parameters by using the generators for
address and nat. We can either implement this manually or have QuickChick automatically
derive such a generator4. Note that we might prefer to implement this manually since
we might want to ensure that the number of tokens to be transferred in transfer is never
larger than the balance of the sender. We provide various combinators to make it easy and
convenient to implement complex generators.

Suppose we want to test that transfer updates the internal balances correctly. In ConCert,
this functional correctness property is specified by using pre- and post-conditions. Testing
such a property with QuickChick could look like
QuickChick ({{msg_is_transfer}} Token.receive {{transfer_correct}}).

The code above states that if the incoming message is a transfer, then after executing the token
contract’s receive function, its state should be consistent with a predicate transfer_correct.
By default, QuickChick will generate 10.000 inputs and test that the property is satisfied
in all of them, or otherwise report a counterexample. The counterexamples reported are
automatically minimized by the PBT framework to produce smaller counterexamples that
are easy to understand. From our experience, these tests typically take less than a minute
(see Section 7).

One can also test whether some state is reachable from the given state. For example, the
following test
QuickChick (token_cb ∼∼> (person_has_tokens person_3 42)).

shows that from the state token_cb with three addresses participating in the token there is a
state where person_3 has 42 tokens. The corresponding trace is reported to the user.

4 Due to limitations of QuickChick, the Derive command fails for some parameterised inductive types,
e.g. Msg type in implicitly parameterised with some blockchain configuration. We have reported this
issue: https://github.com/QuickChick/QuickChick/issues/286

FMBC 2022
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3 Dexter decentralized exchange

In this section, we consider a bug in (an earlier version of) Dexter, a decentralized token
exchange contract on the Tezos blockchain. The bug would have allowed an attacker to
manipulate exchange rates to obtain unintended profit through a simple attack. The contract
had previously been formally verified for functional correctness5. However, this bug can only
be discovered when considering execution traces - that is, sequences of contract calls. We
demonstrate how this bug can be found by testing a natural specification on traces. So, we
argue that this bug would likely have been discovered when using ConCert as part of the
specification process.

The Dexter exchange smart contract is used for exchanging tokens and tez (the on-chain
currency of Tezos), it implements a so-called constant-product market, which means that the
total value of the contract never decreases. A property of such markets is that the exchange
rate cannot be significantly manipulated unless a party owns most of the market’s assets [1].
The rate at which tokens and tez can be exchanged is calculated dynamically at each trade
according to the function

getInputPrice(Ts, Tsreserve, T ezreserve) = Ts · 997 · Tezreserve

Tsreserve · 1000 + Ts · 997

where Ts are the tokens being exchanged, Tsreserve is the reserve of tokens held by the
Dexter contract, and Tezreserve is the contracts tez reserve.

One key property of constant-product markets, that cannot be verified from functional
correctness alone, is that splitting trades is never profitable. Specifically, suppose a user
trades N tokens for Z tez. Suppose this trade is split into k > 1 trades, totalling N tokens
for a total of Z ′ tez. Then it should be the case that Z ′ ≤ Z.

In ConCert, we can state this property by asserting that for each block added to generated
traces, the total amount of tez gained from trades does not exceed what the user would have
gained from trading the same amount of tokens in a single exchange. The full Coq definition
can be found in examples/dexter/DexterTests.v

With this test, our PBT framework automatically finds a counterexample that violates
the property. The counterexample show two consecutive exchanges; first trading 14 tokens
for 5 tez, then 16 tokens for an additional 5 tez. However, the payout for a single trade of
30 tokens would have been 9 tez, netting the user an extra one tez from splitting the trade.
The vulnerability is due to a combination of Tezos’ breadth-first execution model6 and the
way the contract tracks its asset reserves. Concretely the problem is that in breadth-first
both trades are executed before the actions emitted by the trades are executed, meaning
that the second trade will start before the tez and tokens from the first trade have finished
being transferred. The contract accounts for this by manually tracking the number of tokens,
but fails to do the same for the tez reserve. Thus when the second trade starts the contract
uses the wrong tez reserve for calculating the exchange rate. A strength of ConCert is that
it allows testing in both depth-first and breadth-first execution order, running the same test
with depth-first shows no vulnerability.

The bug was fixed prior to the deployment of Dexter.

5 https://research-development.nomadic-labs.com/dexter-decentralized-exchange-for-tezos-
formal-verification-work-by-nomadic-labs.html

6 Tezos moved to depth-first execution order after Dexter was developed

https://github.com/AU-COBRA/ConCert/blob/fmbc2022/examples/dexter/DexterTests.v#L97
https://research-development.nomadic-labs.com/dexter-decentralized-exchange-for-tezos-formal-verification-work-by-nomadic-labs.html
https://research-development.nomadic-labs.com/dexter-decentralized-exchange-for-tezos-formal-verification-work-by-nomadic-labs.html
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4 iToken

In this section, we show how the bZx iToken smart contract was compromised and how
ConCert could have discovered this vulnerability. The iToken smart contract is an interest
accumulating ERC20 token used as part of the bZx decentralized finance platform. In Septem-
ber 2020 an attacker stole $8 million worth of cryptocurrency by exploiting a vulnerability
in the iToken contract caused by a misplaced line of code7. This vulnerability was missed by
two audits of the platform. The vulnerability was in the tokens transferFrom, which is used
to transfer tokens between users. The transfer logic was implemented in the following way:
uint256 balanceFrom = balances[from];
uint256 balanceTo = balances[to];
balances[from] = balanceFrom.sub(amount);
balances[to] = balanceTo.add(amount);

This logic would have been safe had lines 2 and 3 been swapped. To see where this goes
wrong, consider the case where from = to. In this case, the transferred amount would be
subtracted from the sender’s balance in line 3. However, in line 4 the original balance of the
sender is used to add the transferred amount to the sender’s balance, resulting in the sender
ending gaining tokens through the self-transfer.

This bug could be found using the PBT framework by writing a test checking that the
balance remains the same after a self-transfer. However, such a test would require knowledge
of the possibility of a bug in this edge case. Instead, we formulate the property that the
sum of all balances should remain unchanged after a call, with the exception of minting and
burning calls. In ConCert testing such a property looks like:
Definition msg_is_not_mint_or_burn state msg :=

match msg with
| mint _ | burn _ ⇒ false
| _ ⇒ true
end.

Definition sum_balances_unchanged chain cctx (old_state : State) (msg : Msg)
(result : option (State ∗ list ActionBody)) : bool :=

let balances_sum state := sum s.(balances) in
match result with
| Some (new_state, _) ⇒ balances_sum old_state =? balances_sum new_state
| None ⇒ true (* Return true in the case that nothing changed *)
end.

QuickChick ({{msg_is_not_mint_or_burn}} iTokenContract {{sum_balances_unchanged}})

examples/iTokenBuggy/iTokenBuggyTests.v:sum_balances_unchanged

By running the test, we indeed obtain a minimal counterexample showing that self-transfers
violate the property.

5 Basic Attention Token

In this section, we show how ConCert was used to find new bugs, that were missed by several
audits, in the Basic Attention Token (BAT) smart contract. BAT is an Ethereum initial coin
offering smart contract developed by Brave. It is a combination of an ERC-20 token and a
crowdsale contract, where users can fund ether to Braves’ project in return for BAT tokens.
The crowdsale runs for a fixed amount of blocks, after which the funding either succeeds or

7 https://bzx.network/blog/incident
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fails. If funding succeeds, Brave receives all the ether raised. If it fails, all users can claim
a refund of their ether by burning their tokens. As the contract owners, Brave get a fixed
amount of free tokens to spend.

We test functional correctness using a similar Hoare triple test as shown in Section 2.3.
In addition, we formulated five key safety properties.
1. Funding is final: Once the contract enters its funded state it cannot leave it again.
2. Funding possible: If there is enough ETH in the blockchain to reach the funding goal,

then it should be possible to reach a state in which the funding succeded.
3. No refunding for owners: The free tokens given to the owners should not be refundable.
4. Refund guarantee: There should always be enough ETH in the contract balance to

refund all funded tokens. Unless funding succeded.
5. No frozen funds: It should always be possible to completely drain the contract balance,

so no ETH gets permanently frozen.
Through testing, we found that only the first property holds. Most of the bugs occur from
combining token and crowdsale functionality and both parts behave safely on their own. This
highlights that composing contracts is nontrivial and can easily introduce subtle bugs.

5.1 Test Setup
In Sections 3 and 4 we showed that ConCert could find known bugs. For those, it was not so
important whether the generators would cover the entire input space. However, when testing
a complex contract with the purpose of finding potentially unknown bugs, it is crucial to
have good generators. A good quality generator should be able to cover the entire input
space of the smart contract and have a good balance between generating calls that succeed
and calls that fail. Using automatically derived generators will often result in too many
failing calls for complex smart contracts. For testing BAT we take the approach of combining
manually written generators designed to only produce valid calls with generators that are
likely to produce invalid calls. That is, for each entrypoint, we define two generators. This
is illustrated in Figure 3. The finalize entrypoint is an entrypoint that transitions the
contract from funding to the funded state. It can only be called by the owner after funding
succeeds. The first generator gFinalize only produces calls that we expect to succeed, while
the gFinalizeinvalid generator will generate calls with an arbitrary sender, which is unlikely
to be valid. We use the x ← e1 ;; e2 monadic bind notation to bind generated values. The
generators for potentially invalid calls can be automatically derived using QuickChick. All
the generators are combined into a single call generator.

This approach gives us a generator that can cover the entire input space while still
allowing us to tune the distribution of valid and invalid calls to different entrypoints. Using
the PBT framework we can measure statistics about the generator and use that to tune the
distribution.

5.2 Finding Vulnerabilities
We test each of the five safety properties for the BAT contract defined in Section 5. Here we
detail a few of the tests.

A key property is that the contract doesn’t deadlock, i.e. with enough user support it
should always be possible to reach the funded state. Since ConCert can test reachability
of states we can easily state this property by combining the reachability checker with a
deployment configuration generator. The following test states that for any BAT deployment
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Definition gFinalize env contract_state : G (option (Address ∗ Msg)) :=
if (isFullyFunded env contract_state) (* Check if funding succeded *)
then returnGen (Some (fund_addr, finalize)) (* Call finalize from owner address *)
else returnGen None. (* Don’t return call if not funded *)

Definition gFinalizeInvalid env contract_state : G (Address ∗ Msg) :=
sender ← gAddress ;; (* Generate arbitrary address *)
returnGen (sender, finalize).

examples/bat/BATGens.v:gFinalize

Figure 3 Generators for the finalize entrypoint.

configuration there should exist a trace from the state where BAT is deployed with that
configuration to a state where the contract is funded.
QuickChick (forAll gBATSetup (build_init_cb (fun cb ⇒ cb ~~> is_finalized))).

examples/bat/BATTests.v

Here gBATSetup is the configuration generator, build_init_cb builds an inital state with the
contract deployed, and is_finalized checks for a given blockchain state if the contract is
funded. By running the test, we obtain counterexamples showing four classes of configurations
where the contract cannot be fully funded. One of them is the case where the funding period
is empty or already over at the time of deployment. Ideally, the contract should have included
a check at deployment preventing such configurations.

A crucial safety property is that any user who donated should be guaranteed their money
back in case of failed funding. By testing the functional correctness of entrypoints, we
already know that the contract will always refund the correct amount and will always succeed,
given that the contract has enough funds. Therefore, testing refund guarantee reduces to
checking that there is always enough funds to refund all tokens held by “real” users. Here we
distinguish between real users of the contract and the owner, because the owner’s free tokens
should not be counted. That is, we want to test that the following is always true.

contractBalance ≥ totalTokenSupply − ownersTokens

tokenExchangeRate

In ConCert a test of this looks like:
Definition contract_balance_lower_bound (cs : ChainState) :=

let contract_balance := env_account_balances cs contract_base_addr in
(* Get BAT contract state *)
match get_contract_state State cs contract_base_addr with
| Some cstate ⇒

(* Get token balance of owner *)
let bat_fund_balance := with_default 0 (FMap.find owner (balances cstate)) in

if cstate.(isFinalized)
then checker true (* Case where refunds are not permitted *)
(* Assert that there is enough ETH to refund all tokens held by "real" users *)
else checker (Z.geb contract_balance

(Z.of_N (((total_supply cstate) − bat_fund_balance) / cstate.(tokenExchangeRate))))
| None ⇒ checker true (* Case where contract isn’t deployed *)
end.

QuickChick (forAllChainState contract_balance_lower_bound)

examples/bat/BATTests.v:contract_balance_lower_bound

Running the test we get the following minimized counterexample from the testing framework.

FMBC 2022
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Chain{|
Block 1 [Action{act_from: 10, act_body: (act_deploy 0, Setup{owner:=17;...})}];
Block 2 [Action{act_from: 17, act_body: (act_call 128, 0, transfer 16 14)}]

|}

This counterexample shows a trace where the BAT contract is deployed in the first block,
after which the owner (address 17) immediately transfers some of its free tokens to another
user. This is possible because the contract combines crowdsale and token contract behaviour.
This violates two of the safety properties because nothing is preventing the second user from
refunding the transferred tokens. Thus it is possible for the free tokens given to the owner
to be refunded by first transferring them. This also breaks the property that all real users
should be guaranteed a refund because if the owner refunds some of the free tokens then
there is no longer enough ETH to refund all tokens held by real users.

The remaining safety properties were tested using similar methods.

6 Related Work

Various testing approaches have been applied to smart contracts. Tools like Truffle8 for
Ethereum or SmartPy9 for Tezos mostly cover conventional unit testing that can be insufficient.
The testing framework for LIGO10 supports unit testing and mutation testing. However,
none of the conventional testing frameworks offers a possibility for generating random
traces and testing properties of interacting contracts. We will now focus on works using
fuzzing/property-based testing techniques.

The closest to our work is the property-based testing framework for the Tezos’ Michelson
language. The framework utilises QCheck, a QuickCheck-inspired property-based testing
framework for OCaml. QCheck was extended by Nomadic Labs with the ability to generate
arbitrary sequences of Liquidity Baking contract calls. The contract is manually reimplemen-
ted in OCaml and serves as a model for the original contract. The model implementation
is then validated against the original contract through the actual Tezos execution model.
The development is tailored to the Liquidity Baking contract and is not connected to the
Michelson formalisation in Coq Mi-Cho-Coq [4]. We are currently collaborating with the
Mi-Cho-Coq team on integrating ConCert with the formalisation of Michelson.

For the Ethereum blockchain, several works are using randomised testing techniques.
Echidna [7] and Brownie11 use fuzzing-like techniques for testing smart contracts. The
common challenge for this approach is that randomly generated transaction data might
not be enough to ensure good coverage. This is especially problematic in the case of smart
contract interactions, since the whole sequence (trace) of actions must be generated. Echidna
uses coverage-driven feedback to automatically tune the testing parameters. Brownie uses
unit-test like tests with user-defined generators for randomising inputs to contract calls in
the tests. Brownie does not generate calls or execution traces, which limits the types of bugs
that it can find. In our approach, instead of tuning pre-defined parameters, we allow users
to define generators that produce random data with fewer discarded tests. For simple cases,
data generators can be derived automatically using the QuickChick infrastructure.

8 https://trufflesuite.com/
9 https://smartpy.io/docs/scenarios/testing/
10 https://ligolang.org/docs/advanced/testing
11 Property-based testing framework for EVM: https://github.com/eth-brownie/brownie
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The EthPloit project [10] generates possible exploits using fuzzing techniques. The
exploits are split into three categories. For each of these categories, a special exploit detector
oracle is used to report an exploit. For example, the Balance Increment oracle compares
the overall initial balance of attackers’ accounts with the current balance after a series of
transfers and reports, if the balance of the attackers’ accounts increases. EthPloit utilises
static analysis to focus attention on particular variables and functions. The input for selected
functions is generated randomly, or chosen using a seed set. The seed sets are used to provide
runtime feedback. This improves the fuzzing efficiency by exploiting the results of previous
runs. In our approach, the users specify the properties to test, instead of searching for
particular categories of exploits. Violation of such properties is reported as a counterexample,
which points to vulnerabilities. The pure/functional nature of our smart contracts avoids
many pitfalls and simplifies reasoning about smart contracts. When compared to effectfull
languages, such as Solidity, static analysis is less urgent.

Finally, the cooked-validators library12 for the Plutus smart contract language [5] fa-
cilitates property-based testing with arbitrary transaction sequences. Note, however, that the
execution model for Plutus does not involve on-chain inter-contract communication. Plutus
itself supports property-based testing at the contract endpoint level using QuickCheck.13

7 Evaluation

We evaluate our framework in terms of usability, specifically regarding bug-finding capabilities.
We demonstrated the testing framework on three concrete examples in the previous section,
showing that it can find different types of real-world bugs. The vulnerabilities had a wide
range of causes: the execution order, complex contract-to-contract interactions and the
evolution of the contract state. Such bugs would not have been detected in other tools
considering only functional correctness. This highlights ConCert’s unique capability of
modelling and testing complex contract interactions.

We have tested various other smart contracts, such as a reference implementation of
the ERC-20 Token14, and re-discovered known bugs, thus supporting the claim that our
framework is effective at finding bugs. Since we have the full power of Coq at our disposal, we
can effectively test any decidable property on the Chain type. Hence, there are few limitations
in terms of expressiveness. While ConCert can find many common bug types, some bugs,
such as vulnerabilities related to gas, remain out of reach of ConCert.

We also emphasise that once contracts are implemented (in ConCert) and the executable
specifications are written (i.e. the decidable properties to be proven or tested), the only
prerequisite for automatically testing the specifications is to implement the action generators
and show instances, as discussed in Section 2.3. Implementing these requires only some
expertise with Gallina and QuickChick, and can in some cases be derived automatically.
Hence, the setup is relatively simple, only requiring moderate extra effort compared to
writing traditional tests for users already familiar with property-based testing and Gallina or
similar functional languages.

Since the contracts tested were ported to ConCert there is the risk that bugs were
introduced in this process. However, since the framework gives full counterexamples it is
easy to verify that bugs found are also present in the original contract, this part could

12 https://iohk.io/en/blog/posts/2022/01/27/simple-property-based-tests-for-plutus-
validators/

13 https://plutus-pioneer-program.readthedocs.io/en/latest/pioneer/week8.html#using-
quickcheck-with-plutus

14 https://github.com/AU-COBRA/ConCert/tree/master/examples/eip20
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also be automated. Another worry could be that the implementations of the contracts or
the generators were tailored to finding known bugs. We took extra care implementing the
generators for all three contracts, making sure that no knowledge of known bugs was used.
Moreover, we did not test for a specific bug but for natural properties that would be part of
any reasonable specification. For the Dexter and iToken contracts, we only implemented the
entrypoints related to the known bugs. This slightly sped up finding the bugs, but adding
the other entrypoints would only slow this down by a small constant factor. For the BAT
contract the full contract was ported and it was not tailored towards any specific properties.

Additionally, the feedback loop from executing tests is fast, making it easy to use
during the contract development process. In our experience, QuickChick will usually report
counterexamples, if they exist, within 1-2 seconds and otherwise report that all inputs (by
default 10.000 traces) passed – usually in 5-10 seconds (for traces of 14 calls). Of course, the
time depends on many factors, most importantly, the length of traces and the complexity
of generators and contracts. Heuristically, we limit ourselves to 10.000 tests, based on the
extensive experience from QuickChick. Naturally, tests cannot fully guarantee that there is
no bug, we use proofs for that goal.

8 Conclusions

We have presented the ConCert Coq framework for testing, verifying and extracting smart
contracts. We have demonstrated the framework for property-based testing on three smart
contracts using it to discover vulnerabilities used in previous attacks and new bugs that
could have led to millions of dollars stolen or frozen. As stated in the previous section, the
vulnerabilities had a wide range of causes covering the most common causes of flaws in smart
contracts.

We have re-discovered several bugs in real-world contracts (not presented in this paper),
such as the $50 million “DAO attack” on Ethereum, and tested reference implementations of
ERC-20 and FA2 Token Standards, common standards for tokens used in several blockchains15.

Hence, our approach to testing smart contracts scales to real-world contracts and is
capable of finding significant bugs. Contracts in ConCert are extractable to Concordium’s
Rust framework, Liquidity, and CameLIGO. Thus in total, we have a toolchain for producing
executable code for smart contracts that are tested and verified. The importance of combined
auditing, testing and verification is also starting to be recognized by the industry.16
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