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Abstract
Constructionist learning involves learners that are actively engaged in the construction of an entity
that reflects the learning achievements. When learning to code, such a physical entity can take
the shape of a robot, or of a robotic arm, or any other hardware device that is used to manifest
the effect of the code that students are writing. Hardware devices have been used in primary and
secondary schools, and also in Higher Education. Unfortunately, the use of hardware devices is
limited as it does not scale to large cohorts and requires a physical space for face-to-face teaching.

In this paper we introduce a digital twin for a robotic platform to replicate a classroom setting
used for teaching first year undergraduate Computer Science students. We describe the architecture
of the system and its implementation.
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1 Introduction

According to constructionism, learning “happens especially felicitously in a context where the
learner is consciously engaged in constructing a public entity, whether it’s a sandcastle or a
theory of the universe” [24]. The case of learning to code is a special situation in which:
1) students need to learn a static syntax to encode an algorithm to achieve a desired goal,
but also
2) students need to learn how to associate a dynamical behaviour to the code they have
written, to make sure not only that the code is syntactically correct, but also that it achieves
its desired goals. Typically, the dynamical behaviour of code is often hidden and students
can only observe its final output, unless they use a debugger.

An approach based on constructionism can provide physical manifestations for code that
is easier to understand than traces from a debugger, and thus help in providing a better
strategy for students to understand the dynamical behaviour (and the consequences) of the
code they write, in that students can observe not only the final state of a program, but also
all the intermediate steps taken, if these correspond to states of a robot or any other hardware
platform. Several approaches have investigated strategies to support constructionism in the
setting of learning to code, see for instance [19] and references therein. Approaches based on
actual robots have been used in primary schools to support the development of computational
thinking and to also to support teachers’ confidence [9]. In Higher Education, robots have
been used on a range of topics, including to support teaching of functional patterns [6].
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Virtual platforms such as Scratch1 can provide a replacement for physical robots. Unfor-
tunately, these platforms have typically targeted younger users, with very few options (if
any) available for the Higher Education sector.

We have developed a digital twin for a robotic platform with the explicit goal of providing
physical manifestations of code for students in the Higher Education sector. At a high level,
a digital twin is the virtual counterpart of a physical system, implementing all its functional
properties and reproducing its physical characteristics with high accuracy. Digital twins have
been used in a range of domains, including manufacturing, avionics, architecture, etc. One
of the key differences between a digital twin and a simulation is the fact that a simulation
may remove non-relevant features, for instance a car may be depicted as a rectangle in a
2-dimensional space, while a digital twin would reproduce not only the dynamical behaviour
of a car, but also its other aspects, such as the ability to open doors etc.

In this paper we describe the details of a Digital Twin platform that we have developed
in Unity2. We present the architecture of the system, centred around the extension of an
existing approach for service-based development of microcontrollers [4].

Figure 1 The current prototype with text field for logs, information and sent/received data on
the TCP/IP network.

2 Related Work

Constructionism is rooted in Piaget’s constructivist approaches [1]. Both constructivism
and constructionism have played a key role in the past five decades in STEM education,
and advent of increasingly better connectivity has then resulted in the development e-
Learning platforms for a range of subjects [27] and across year groups, from primary school

1 https://scratch.mit.edu/
2 https://unity.com
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to higher education. In parallel, robots have been used to support the teaching of robotics,
electronics, manufacturing and STEM subjects in general, building on the success of the
maker movement [23].

Robots are used as a platform to teach many concepts in Computer Science. They provide
an educational tool for introducing students to embedded systems and computational thinking
for interacting with the environment around them. When hardware is introduced, students
can conceptualise a topology of the system; from the microcontroller and General Purpose
Input/Output (GPIO) functionality, to the software, libraries and interfacing/networking
involved to carry out a simple action such as driving forward. Robotics in education naturally
puts together continuous and discrete computation and provides an opportunity to reason
about error and uncertainty, an important topic of study at an undergraduate level [29].

In regards to computational thinking, other forms of technologies have been developed to
help students start to grasp the concepts of programming including augmented reality [21].

Within the task of building a robot, the layers of the system allow researchers and
educators to deploy teaching strategies and subject specificity for different target audiences.
For example, within the makers movement [23], there have been studies to understand the
benefits of robotics to teach programming, electronics, fabrication and general STEM as an
overall subject.

When creating a robot for teaching, there is an emphasis whether to buy an existing
product, or to create a bespoke product which the educators can iterate over time. Developing
a prototype in a maker movement [13] style allows open sourcing of hardware and software,
collaboration between staff and students and integration with higher education facilities.
One of the main benefits robot platforms following this tradition is the cost. Working robots
can be physically built for under £50 with a Raspberry Pi Zero board [34]. However, as
described by Correll et al [11], scalability is a factor. For example, designing complex systems
becomes a labour of maintenance, explanation of hardware, etc., which can create bottlenecks
for delivery.

When developing a simulation part of a platform, linking the virtual environment to this
platform is similar to gaming platforms, also used in educational teaching strategies. Games
are widely accepted as an engaging and motivating tool in the CS curriculum [18]. There are
many advantages including the ability to increase learning interest, enhancing confidence
in learning and also lead to long term knowledge retention. It is also noted that gaming
environments can produce effectiveness in learners due to their response time. They can
generate options to users which may not be available for the learner at the particular time.
They are flexible and allow choices without risk, exploration for the user, which stimulates
curiosity, discovering learning and perseverance [20].

With the emergence of digital twins, users are able to run counterparts to a physical
system. This could be a digital copy of a robotic system, which runs in parallel; this is a
common technology in the automotive industry [5]. These models have a plethora of uses in
a design life cycle and have many benefits including time saving of ideas, increased quality of
work, reduced risks in design and increased efficiency. Links have also been made to how
digital twins serve well as an educational tool, bringing together many aspects of different
learning theories [12]. Additionally, the manifestation of the understanding of how individual
parts of a system, including sensors and actuators work, is beneficial to students [8].

A tangible artefact, such as a robot gives the user embodiment, allowing them to express
their understanding of code through the robot e.g. movement, sensing the environment etc.
Embodiment in robotic hardware has been seen to have positive benefits over an array of year
groups [17, 22, 33]. Popular beneficial themes include engagement of material, self-efficacy,
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attitudes towards the subject and improvement of grades. These benefits are continued
between different forms of platform, for example, from bespoke and custom hardware [10], to
commercial robots or for virtual environments and simulations [3, 30].

Physical feedback obtained by using mobile robots has the ability to strengthen the
concepts of programming and motivate the students. On one hand, students are able to
become motivated by the technology and at the same time, have a better relationship between
the notion of theory and how that relates to practical results [31]. By creating a realistic
counterpart, the idea is to keep the irreplaceable position in the educational process [28],
but also keep the realism of the physical feedback obtained with real hardware and show the
similarities in class.

It has been reported [14] that experiences with physical manifestations and existing
projects can bring students to be motivated into learning and be interested in the subject.
Furthermore, students developed ideas further than originally set, setting additional goals
once understanding the system and technology further.

When developing a robotic platform, or its digital counterpart, the engagement of students
will allow them to spend more time developing programs and working on solutions. With
repetition of exercises, seeing changes and working on a solution in iterations, it is has been
suggested [15] that students build better solutions overall.

MIRTO [2] is an example of a cheap, open-source, robotic platform used in face-to-face
teaching. In this paper, the learning objectives were achieved much earlier than in traditional
and theoretical models of teaching. This tool is influenced by the constructionism approach,
and it allows the students to explore the capabilities of the robot independently. For example,
before working towards the marking objectives of the module, introductory activities would
include to understand wheel rotation and navigation. This includes defining the speeds of
the motors, alignment and bump sensors. These tasks allow students to understand by trial
and error the notion of real-time system and control, reinforcing knowledge and skills from
previous work. Gamification in the classroom by means of line-following races led to further
engagement [6].

In 2020, with academic institutions going into lockdown due to the COVID-19 virus, the
ability to create virtual labs for simulating practical skills [25] was essential to continue
teaching practical skills in classes. Digital twins allow this to happen by creating a reliable
and high fidelity prototype. However, with the development of this kind of systems, the
scalability for experimentation should increase and provide feedback as close as possible to
the original physical systems [32].

Existing literature shows the benefits of mobile robotics in Computer Science education.
The robots can be virtual or tangible. However, most of the case studies are up to keystage 5
in the United Kingdom (16-18 year olds). To the best of our knowledge, there does not seem
to be an undergraduate Computer Science course using a digital twin to support teaching
programming to these students.

Testing the principles of constructionist approaches and how to measure the effect of the
learning methodology has been subject to various studies. Kafai [16] created a comparative
study, in which the classroom was split between a constructionist approach using a creation
of video games which incorporated mathematical problems requiring an understanding of
fractions to solve; with another group received traditional teaching for fraction instruction.
This study concluded a better understanding of fractions, increased engagement/motivation
of the students, better critical thinking and a development of soft skills through collaborative
learning. Benefits of Scratch as a constructionist tool have been widely shown, particularly
by Resnick and Brennan [7] in which results concluded positive improvements in the ability
to develop an iterative design cycle with experimenting and iteration of code and objects,
logical reasoning through testing and debugging, creativity and problem solving.
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3 The MIRTO Robotic Platform

The MIRTO robotic platform was developed to support a specific pedagogy. We take a
constructionist approach to teaching the fundamentals to first year undergraduate Computer
Science students with MIRTO. Hardware is demonstrated using digital electronic circuits
to discuss system architecture, microcontrollers and microprocessors such as Raspberry Pi.
Programming concepts are taught with Racket (a dialect of Lisp). In the last third of the
academic year, the fundamentals of these topics are brought together using a robot with the
acronym MIRTO.

Figure 2 Students programming robots in a classroom setting.

MIRTO is an open source robotic platform that contains the following components:
1. Raspberry Pi: A custom image of Raspbian extended with Racket to compile code on the

Pi. This also enables networking opportunities such as custom wifi networks, editing of a
Linux image, ssh, ethernet etc. This can be networked with an Arduino microcontroller
to control GPIO or these two boards can be swapped with a Raspberry Pi Pico.

2. Custom PCB: The top-layer of the robot has all of the GPIO options of the robot available
in one place including motorshield for controlling 2 x DC motors, an RGB LED, an
infrared array for line following, 2 tilt switches for hit detection, a speaker and a LCD for
displaying messages and connection information.

3. ASIP: Arduino Service Interface Protocol3 enables a computer to discover, configure,
read, write a microcontrollers general purpose IO pins. As standard, ASIP uses a serial
connection to the Raspberry Pi.

4. Along with ASIP, there are various libraries to work with programming languages including
Java and Python. For first year students the focus is on the Racket4 library.

3 https://github.com/michaelmargolis/asip/
4 https://github.com/fraimondi/racket-asip
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15:6 A Digital Twin to Support Large-Scale Coding Classes

To support iteration of teaching material, anonymous questionnaires are delivered to
students, in which many reported enjoyment using MIRTO and use of hardware across the
year. However, in order to scale the use of robots for large classes and for online teaching,
we developed a digital twin to serve as a real-time counterpart of the physical robots in class.
Other reasons for designing a digital twin include:
1. Sustainability of manufacturing: The robots take time to design, build and repair, which
could be labour-intensive for large cohorts.
2. Time management: Students only have a 2-hour class per week to work on the robots.
The demand was very high outside the classroom for students to test, but due to the last
point, we were unable to loan these with fairness.
3. Training: The robots need a range of expertise across various disciplines to operate and
maintain and in scale, this was proved difficult for staff availability.

Figure 3 The latest iteration of MIRTO 2024.

3.1 Software for MIRTO
Students can complete exercises independently or in groups on software problems that involve
MIRTO. They are given a selection of exercises to try various GPIO of the robot and then
given examples of code to run and understand what it is doing. The exercises consist of
moving the robot in a room at different speeds and for a certain time (understanding the
timing issues) avoiding obstacles and bumping into walls. More advanced exercises involve
following a line and improving on precision. Examples of instructions are given in Table 1.

Table 1 Instructions for the MIRTO using DrRacket.

Instruction Description

(setMotor 0 0) Set the speed for the motors. The first integer assigns the left (0) or right motor (1).
The second integer assigns the speed of the motor. Value range is from -255 to 255.

(stopMotor 0) This will stop a single motor. The integer assigns the motor as above.
(stopMotors) Stops both the motors.

(getIR 0) Prints the reflected value from a infrared sensor array. The integer is the sensor
number in the array. Currently there are 3 sensors. Value range is from 0 - 255.

(setLCDMessages “message” 0) Write a message to a five line liquid crystal display. The text in “” is what will be
printed. The integer is the line on the display.

(leftBump?) This will check the state of a bump sensor, printed as a 0 or 1 for true or false. There
are two sensors on the robot, leftBump and rightBump.

(analog-read 0) Reads the on board potentiometer on the robots PCB. This could be any analog sensor
which is assigned by the integer.

(playTone 0 0) Plays a tone on a piezo buzzer based on a particular frequency. The first integer assigns
the frequency. The second assigns the duration in seconds.
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With the majority of the exercises, students are given the freedom to explore a snippet of
code and guess what it will do. Then when they compile the program, they can see how the
robot will react. With the exploration of the wheels, sensors and other input/output of the
robot, students embed themselves in a creative learning process. This supports reflection
in class and discussion between peers. During observations, an array of interpretations of
solutions for the same task are created using sensors to determine movement, outputs of LCD
messages or colour of LEDs to show a state or explanation of location etc. With this notion
of creative learning intertwined with the technology, students are able to follow a creative
learning spiral [26]. Examples of the concepts taught using MIRTO include higher-order
functions, string processing and open vs closed loop systems [6].

4 Implementation of Digital Twin

We have implemented a digital twin in Unity, to replicate a classroom setting for students.
Bespoke classroom objects such as the mobile robot, robotic arms and some furniture were
all designed in Blender.

4.1 High-Level System Architecture

Figure 4 Digital Twin Architecture for the Online Provision.

The digital twin created in Unity replaces the robot described above and the overall
architecture of the system is illustrated in Figure 4. At the high level, a student will control
the client of the system. This is typically a program written in Racket. When run, the
Racket program will establish a TCP connection with Unity and begin to translate Racket
messages into instructions. These instructions are then converted to C# scripts which will
control many aspects of the scene of the digital twin including the orientation and direction
of the robot, the speed and movement of the robot, control and reading of the sensors of
the robot (bump sensors, infrared sensors, LEDs etc). In turn, in some of these instances,
Unity will send back string messages to Racket, to let the program know which sensors have
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15:8 A Digital Twin to Support Large-Scale Coding Classes

been interacted with, looking for a follow up instruction if needed. For example, students
are taught different ways to navigate with the robot. This could include driving, using bump
sensors to turn if there are objects in the way, line following etc.

In Unity, the digital twin is created on the same part list used for the physical manu-
facturing of the robot. Therefore, the parts are the same scale and the scene replicates the
classroom setting. The scene is created using a range of furniture, walls and lighting. All
these components contain physics properties and meshes so the robot (and user) is able to
have a realistic interaction in the environment.

The digital twin incorporates wheel movement by operating scripts to control wheel
colliders, which are a slip-based tyre friction model generated for wheels. Along with the
collider, there is a rotation animation, to give realism and understanding of speed for the
user.

Figure 5 The digital twin has 3 rooms for students to explore and run their programs in.

For the sensors of the robot, Unity uses raycasting for the bump sensors. With raycasting,
the bump sensors on the 3D model send out a “ray” from a camera point until it finds a
surface it collides with. The ray sent is very short, to mimic being close enough to the object
to “hitting” it. Once hit, a boolean value is triggered, sending a message back to the Racket
client. Similarly, with the infrared sensor, 3 raycasts are sent (as separate threads) to the
floor to detect colour in the flooring, this is to mimic lines on the surface for students to
complete line following exercises.
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The environment uses an input system with various methods. For example, as described
above, Racket will send messages via a TCP server to control the robot; Unity can also
output messages back to Racket. USB peripherals can also control the movement, alignment
and camera position of the user in the scene. Additionally, Unity actions such as the
raycasting can provide input to control the environment. Racket is also the main input for
the environment, controlling the digital twin and its movement. All of these methods of
inputs will generate the scripts written in C to control the speed, direction and friction of
the wheels, line drawing (to help with navigation) and sensor and input/output control.

4.2 Implementation
Let’s consider an example to see how the digital twin works in practice. Assume that a
student needs to write code for the following task: “drive the robot forward for two seconds
then stop”; the Racket code would be the following:

1 #lang racket
2 ( require " AsipMain .rkt")
3 ( open-asip )
4 ( setMotors 150 150)
5 ( sleep 2)
6 ( stopMotors )
7 ( close-asip )

This is identical for a physical robot or for the digital twin. In the case of the digital
twin, instead of these commands being sent to the serial port of the robot, ASIP5 will send a
string to the TCP server running in Unity. The above code does the following:
1: Include the AsipMain Racket library
3: We setup the connection to the robot. This will connect to the localhost at port 54010 for
a digital twin.
5: The robot is asked to move both wheels forward. The power selected is 150 (the range is
between -255 to 255).
6: There is a sleep for 2 seconds, which allows the wheels to run during this time.
7: The wheels are turned off, the speed is set to 0.
8: Close the TCP connection

For the example above, the actual strings sent over TCP would be in two parts, to turn
the motors on and then off again. Concretely, the following messages will be sent:

"M,m,0,150";"M,m,1,150";"M,m,0,0";"M,m,1,0"

When a motor command is sent, it is translated to two commands back to control each
motor separately. This allows us to also set individual motor movement for turning and
concise movements.

In Unity, once the string is received, it is split into four different variables to understand
its role in ASIP and what it should be controlling. Each string starts with a letter, which
is the header of the request; this could include M (motors), E (encoders), T (tone – for a
piezo), P (RGB LED control), L (LCD on the robot), I (port to pin mapping) etc. Each of
these strings has separators (,) and other tags and numeric values that go with it. Once the
command above is identified as a motor command, wheel colliders in Unity that control the
wheels will move using the following command:

5 https://github.com/michaelmargolis/asip/tree/master/documents

ICPEC 2024

https://github.com/michaelmargolis/asip/tree/master/documents
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leftWheelInput.motorTorque = asipLeftWheelInput * motorForce;
rightWheelInput.motorTorque = asipRightWheelInput * motorForce;

Within the movement calculations, there are parameters set to increase the wheel speed in
the virtual space, similar to the classroom setting. For example, 0 being the no movement,
255 being the fastest speed and -255 reversing at the maximum speed. At a later date, there
will be planned tests to ensure accurate comparisons between the virtual and physical spaces.

For reference of the user, in the Unity GUI, there is a display box to show all of the
messages received from ASIP, as well as messages sent and error messages etc. This feature
can be shown/hidden by the user as well as the ability to draw a line showing the movement
path of the digital twin to help students understand path planning and movement instructions
further, similar to designs of LOGO and turtle robots in the 1980s [24].

5 Conclusion and future work

We have presented the development of a multi-programming language digital twin platform to
replicate a classroom setting used for teaching Computer Science to undergraduate students.
The digital twin is planned to be released as an open-source platform. The digital twin
can run side-by-side with its physical counterpart. Students are able to use the physical
model in classes and once resources are not available, for example out of class, students can
login to a virtual world to continue their programming assignments and continue developing
their computational thinking. The online platform and physical platform both use Racket (a
dialect of Lisp) as its main programming language. However, our virtual environment can be
used by students across year groups and can be programmed in multiple languages including
Java, Python, as well as Racket.

While the use of the digital twin in classrooms has shown to be promising, we plan
to conduct further experiments with students to empirically evaluate its impact. Current
surveys suggest there is a strong link to engagement and computational thinking when using
the digital twin. However, more work is to be carried out to fortify these claims.

For future work, more work is needed for creating an open source and robust digital twin
for all to host, deploy and use for their teaching and training. Emphasis will be made on
the GUI, to deploy visual indicators on all sensors and actuators, so students and staff can
get visual feedback of the tools they are using, rather then printed syntax and text. Within
the GUI, students will also be able to select a lab space, to best replicate the room they
are in for size. Additional to this, menus will be designed to enable students to select the
connection type; this could include web socket connections, TCP/IP as stated previously or
how they want to connect, via simulation only or as a digital twin.
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