
To Kill a Mocking Bug: Open Source Repo Mining
of Security Patches for Programming Education
Andrei-Cristian Iosif #

Universität der Bundeswehr München, Germany
Siemens AG, München, Germany

Tiago Espinha Gasiba #

Siemens AG, München, Germany

Ulrike Lechner #

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Abstract
The use of third-party components (TPCs) and open-source software (OSS) has become increasingly
popular in software development, and this trend has also increased the chance of detecting security
vulnerabilities. Understanding practical recurring vulnerabilities that occur in real-world applications
(TPCs and OSS) is a very important step to educate not only aspiring software developers, but
also seasoned ones. To achieve this goal, we analyze publicly available OSS software on GitHub to
identify the most common security vulnerabilities and their frequency of occurrence between 2009
and 2022. Our work looks at programming language and type of vulnerability and also analyses the
number of code lines needed to be changed to fix different vulnerabilities. Furthermore, our work
contributes to the understanding of real-world and human-made data quality required for training
machine learning algorithms by highlighting the importance of homogeneous and complete data. We
provide insights for both developers and researchers seeking to improve cybersecurity in software
education and mitigate risks associated with OSS and TPCs. Finally, our analysis contributes to
software education by shedding light on common sources of poor code quality and the effort required
to fix different vulnerabilities.

2012 ACM Subject Classification Security and privacy → Software and application security; Software
and its engineering → Collaboration in software development; Information systems → Open source
software; Security and privacy → Vulnerability management

Keywords and phrases Open-source software, Software quality, Cybersecurity, Repository Mining

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.16

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and ISTAR, for their
support. We acknowledge funding for project LIONS by dtec.bw. Andrei-Cristian Iosif and Tiago
Gasiba acknowledge the funding provided by the Bundesministerium für Bildung und Forschung
(BMBF) for the project CONTAIN (FKZ 13N16585).

Acknowledgements The authors would like to thank Kaan Oguzhan for aiding in data collection,
and also for the helpful, insightful, and constructive comments and discussions about the present
work.

1 Introduction

Having secure software has always been essential for developing any product or service.
Additionally, cybersecurity has gained more attention in recent years due to the ever-
increasing reliance on the internet. Providing secure products or services is essential to

© Andrei-Cristian Iosif, Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 16; pp. 16:1–16:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


16:2 Open Source Repo Mining of Security Patches for Programming Education

maintain customer and user trust. Moreover, it prevents potential damages resulting from
security breaches. As such, it is important that the developers of the software be aware
of security standards and best practices, e.g. through awareness campaigns or, in general,
cybersecurity education.

Several industrial cybersecurity standards provide guidelines for the industry. One
example is the IEC 62443 standard [5], which requires a secure software development life
cycle (sSDLC) framework that covers all SDLC phases and provides detailed guidance to
ensure software security. Another widely-used cybersecurity standard in the industry is the
Common Weakness Enumeration (CWE) [12] developed by the MITRE Corporation, which is
a community-developed list of both software and hardware vulnerabilities categorized by the
type of vulnerability they introduce. The CWE also provides descriptions of the vulnerabilities
and usually includes examples of both vulnerable and non-vulnerable code associated with
the vulnerability. Apart from cybersecurity standards, there are also standards for software
quality, such as ISO 25000 [6], which provides a set of metrics for evaluating the quality of
software products and guidelines for producing high-quality software.

According to the U.S. Department of Homeland Security (DHS) [2], humans are responsible
for more than 90% of software quality issues.

As software complexity increases, the use of third-party components, including commer-
cial off-the-shelf (COTS) and open-source software (OSS), has become more widespread.
According to a survey conducted by Black Duck Software, 78 percent of respondents reported
that their companies use OSS for some or all of their operations [1]. Although OSS can benefit
developers, detecting the most critical quality violations can pose a challenge. Attackers
view the widespread use of TPCs as an opportunity for exploitation. Notably, TPCs have
been the source of significant security vulnerabilities, such as the FREAK OpenSSL vulner-
ability (CVE-2015-0204) [10], Shellshock Vulnerability (CVE-2014-6271) [9], and Log4Shell
(CVE-2021-44228) [11]. As the trend of using third-party components continues to rise, it is
important to consider security when selecting and utilizing TPCs. This paper aims to analyze
existing OSS software on GitHub and shed light on the trends of security vulnerabilities.

Security-oriented companies may prioritize their own interests when discussing software
vulnerabilities, which in turn results in fewer studies with unbiased real-world data. We
contribute to improving the understanding of cybersecurity issues in OSS software and
providing insights for developers and researchers. In this work, we highlight the difficulty of
identifying OSS software’s most frequent security issues.

In this work, by exploring GitHub repositories and commits between 2009 and 2022, we
aim to gather insight into the following Research Questions:
RQ1: What are the most common security vulnerabilities in OSS software?
RQ2: How do these vulnerabilities vary by programming language and over time?
RQ3: What is the effort required to fix these vulnerabilities in terms of code changes?

To conduct our analysis, we scraped publicly available GitHub repositories, identified
commits aimed at fixing known software vulnerabilities by looking at their commit messages,
and analyzed trends and distributions of CWE categories. Our findings can benefit devel-
opment teams and researchers seeking to improve software quality by exploring the most
common sources of poor code quality. Therefore, in this paper, we present a summary of the
most common security vulnerabilities and their frequency of occurrence in OSS software.

This paper is structured as follows: Section 2 will introduce relevant related research.
Next, we present our approach in Section 3, followed by results in Section 4. We discuss our
results in Section 5. Next, Section 6 explores the threats to validity to our study. Finally,
Section 7 reiterates through our work and explores possible next steps.



A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:3

2 Related Work

In this section, we present similar large-scale studies which explore security through repository
metadata.

Iannone et al [4] explored the effects of refactoring on security by measuring security-
related technical debt. Their large-scale investigation involved running git-blame commands
to analyze commits, providing insights into the correlation between refactoring practices and
security implications in software development.

Li and Paxson [7] performed a comprehensive empirical study of security patches, analyzing
a diverse set of repositories to generate generalizable insights about security practices. They
utilized Git commit links to identify and review security-related changes, contributing
significantly to understanding security patch dynamics.

Wang et al. [18] developed PatchDB, a large-scale security patch dataset to facilitate
the manual checking of security-related commits. Their work highlights the consistency and
challenges in identifying security-focused changes across large datasets.

Wang and Nagappan [17] characterized software developer networks by conducting a large-
scale empirical study to distinguish between security and non-security-related commits. Their
findings provide insights into the network dynamics of developers engaged in security-related
software development.

While all these approaches explore repository metadata, our work tackles a purely
quantitative analysis of security-related git commit messages across OSS repositories, where
we explore: language-specific vulnerability analysis, SAST Tool integrations, and commit
message quality.

3 Approach

In this section, we provide details about the steps taken to collect the data driving our study.
Our search space includes all public GitHub repositories created between January 1, 2009,
and December 31, 2022. This arbitrary cut-off date is motivated by recent developments in
AI-assisted programming – according to a Microsoft executive’s statement from March 2023,
40% of GitHub Copilot users check in “AI-generated and unmodified” code [8]. Hence, we
purposefully restrict our search space to include mostly human code changes.

3.1 Querying and Scraping GitHub for Repositories
To gather the necessary data for our study, we developed a scraper to query GitHub for
repositories. The scraper searched for mentions of “CWE ID” in commit messages to identify
repositories containing fixes for vulnerabilities listed in the CWE catalog.

Due to limitations on the branch type for queries, we could only search for commits
on the master/main branch. We also employed a filter to exclude commits that contained
more than a single file change, as this helped to ensure that the commit was not a general
commit that happened to include a fix for a vulnerability. Changes on non-code files such as
README.md or LICENSE were not counted towards the one file change limit.

To parallelize the scraping process, we use Terraform to deploy multiple instances of our
scraper on the cloud. We selected instances optimized for high network bandwidth, with
a reported capacity of up to 10 Gigabit1, as well as 8GB of RAM and four vCPUs. These
specifications helped ensure the instances could efficiently clone and analyze repositories with
high commit volumes.

1 Available instance bandwidth reported by Amazon AWS

ICPEC 2024



16:4 Open Source Repo Mining of Security Patches for Programming Education

We conducted our analysis by running 13 instances over approximately seven days, each
assigned to scrape a different subset of repositories. We faced challenges with GitHub API’s
query limit, which restricts results to the first 1000 entries per query. We implemented
6-hour query intervals to mitigate this, allowing us to cover most of the relevant repositories.
Despite the time windowing approach, some commits were still missed, but we deemed this
an acceptable trade-off between the number of repositories we could scrape and the time it
took to scrape them.

3.2 Data Extraction
Once our scraper finished detecting all candidate repositories within the given year range,
it began cloning the repositories and analyzing their commits. We applied strict rules
to classify a commit as a “vulnerability fixing commit.” These rules required a commit
message containing the strings “fix” and “CWE ID,” where ID is any possible number in
the CWE catalog. We also imposed a limit of 1 file change per commit, excluding changes
on non-programming-language files such as Readme.md or License. These restrictions were
implemented to keep the results as relevant as possible. For each commit detected as fixing
a CWE vulnerability, we kept small metadata about the commit, date, repository, and the
before and after versions of the file(s) that were changed.

3.3 Analysis Method
In this section, we will describe our data analysis approach. We processed the scraped data to
extract insights such as the popularity of CWE vulnerabilities across different programming
languages and the number of commits per year. Our analysis involved plotting the results
for visualization and applying data manipulation techniques such as grouping and sorting to
determine the frequency of CWE vulnerabilities by programming language and year.

We analyzed whether some vulnerabilities were more common than others, whether the
frequency of specific vulnerabilities varied over time or varied by programming language, and
whether some programming languages were more prone to certain types of vulnerabilities.
Additionally, we statistically analyzed the number of lines changed in the commits to fix
specific vulnerabilities and their variation between different CWEs.

Regarding limitations, it is worth noting that our results are based solely on the commit
messages of the commits. This approach may result in some limitations in the accuracy of
our data, as we would miss all commits that don’t mention the fix in the commit message.
However, we believe this limitation is acceptable, given the size of our dataset and the
constraints of our approach. The results of our analysis are presented in the next section.

4 Results

In this section, we present the results of our analysis of the commits aimed at fixing CWE
vulnerabilities in open-source repositories found on GitHub. By focusing on repositories
created from 2009 onwards, we were able to acquire 1934 repositories that contained at least
one commit aimed at fixing a CWE vulnerability. Overall, we observed 7093 such commits,
as shown in Table 1.

Upon analyzing public GitHub repositories, we found that some programming languages
have received more Common Weakness Enumeration (CWE) vulnerability fixes compared
to others. Notably, the languages C, Java, and C++ received the highest number of CWE
vulnerability fixes, followed by JavaScript and Python. The number of CWE vulnerability
fixes for each language is shown in Table 2.



A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:5

Table 1 Number of GitHub repositories con-
taining at least one commit aimed at addressing
CWE vulnerabilities, and the overall count of
commits dedicated to fixing CWE vulnerabilities
on the platform.

Type Count

Number of Repositories 1934
Number of Commits 7093

Table 2 A breakdown of the top program-
ming languages that were detected in the com-
mits, along with their corresponding overall per-
centages. Only the top 5 languages are shown.

Programming Language Count

C 1784
Java 772
C++ 547
JavaScript 301
Python 265

Table 3 Top-5 popular programming languages according to multiple sources for the year 2022.

Rank Octoverse [3] TIOBE [16] RedMonk [14]

1 JavaScript Python JavaScript
2 Python C Python
3 Java Java Java
4 TypeScript C++ PHP
5 C# C# C#

In 2022, JavaScript and Python were the most popular programming languages, according
to Octoverse, TIOBE, and RedMonk. Surprisingly, C, which is the top language for receiving
CWE vulnerability fixes, is not even in the Top-5 of Octoverse and RedMonk. This indicates
a significant disparity between the popularity of programming languages on GitHub and
the number of security vulnerability-fixing commits. It is possible that developers using
popular programming languages lack cybersecurity awareness or are fixing vulnerabilities
without explicitly mentioning them in their commit messages. Notably, this analysis is
limited to publicly available repositories on GitHub, and further investigation is necessary
to comprehend the correlation between the popularity of programming languages and the
number of CWE vulnerability fixes, as well as the security implications of language choice.

Additional analysis was conducted on the commits within GitHub repositories to determine
basic statistics on the number of lines changed in each commit. The results indicated that
the average number of lines changed in a commit was 112.89, while the median was 7,
demonstrating that the distribution of the number of files changed is skewed to the right.
Investigation revealed that the skew was due to several factors, including the use of XML
files with named versioning in some repositories and Notebook-style coding. To minimize the
impact of outliers on the results commits with more than 100 lines changed were excluded,
shifting the mean and median to 13.86 and 6.00, respectively. Although this exclusion may
have affected the accuracy of the analysis, it was necessary to reduce the impact of outliers.

4.1 Number of Commits with mentions of CWE per Year
Figure 1 shows the number of publicly available GitHub commits that aimed to fix software
vulnerabilities and were tagged with the associated CWE ID. From 2009 to 2022, the number
of commits steadily increased from about 20 to around 1000. This trend indicates that the
awareness of cybersecurity is on the rise, and people are taking steps to address vulnerabilities
in their code.

ICPEC 2024



16:6 Open Source Repo Mining of Security Patches for Programming Education

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

200

400

600

800

Nu
m

be
r o

f C
om

m
its

Number of commits targeted at fixing CWE Vulnerabilities per year
Trend over the Years

Figure 1 Trend in the number of commits made on publicly available repositories on GitHub,
aimed at fixing software vulnerabilities and tagged with the associated CWE ID. The figure displays
a clear upward trend in the number of commits over the years. Over the years, the number of
commits has steadily increased from around 20 in 2009 to approximately 1000 in 2022.

However, our analysis suggests that the number of commits should be higher, especially
in recent years. This may be due to two reasons: either people are fixing vulnerabilities
without mentioning them or not enough people are addressing them. Additionally, our data
collection method may have limited the number of commits we collected, which highlights
the need for further research on this critical issue.

According to GitHub, there are approximately 28 million repositories, and assuming that
all 800 commits collected are from different repositories, the percentage of repositories that
had at least one software vulnerability fixing commit is only 0.003%. This suggests that our
data collection method may not be exhaustive, and more commits may have been missed.
Nevertheless, our study emphasizes the importance of addressing software vulnerabilities and
encourages further research on this critical issue.

Alternatively, it is possible that people are indeed correcting vulnerabilities but not
mentioning it specifically in their commits. This would explain the low number of commits,
despite the increasing trend. It could be due to code analysis tools reporting vulnerabilities
and people fixing them but do not mention the related CWE ID in their commits. Overall,
the number of commits is increasing, which indicates that people are taking steps to address
software vulnerabilities.

4.2 CWE per year
We repeat the trend analysis, this time only considering the top-10 CWEs.

Figure 2 shows a clear upward trend in the number of commits, indicating increasing
cybersecurity awareness and action taken to detect, report, and fix vulnerabilities.

In 2018, a significant upward spike was observed, mainly due to a spike in CWE-772.
The exact reasons for this spike are unclear, and further research is necessary to establish
causality and determine the underlying reasons behind this observation.



A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:7

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

50

100

150

200

250

300

Co
m

m
it 

Co
un

t

Cumulative Commit Count of the Top 10 CWEs over the Years

Figure 2 Number of commits between 2009 and 2022 targeted at fixing software vulnerabilities
and tagged with the associated CWE ID, filtered for the top-10 CWEs.

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
til

e

Commit Count of Top 10 CWEs Tracked Over The Years

CWE-22
CWE-79
CWE-119
CWE-120
CWE-252
CWE-404
CWE-457
CWE-476
CWE-561
CWE-772
Other

Figure 3 Percentile distribution of the Top-10 CWE categories from 2009 to 2022, along with
the ’Others’ category representing all remaining CWEs. The graph illustrates how the distribution
of the Top-10 CWEs changes over time as a percentile. The graph provides valuable insights into
whether the top-10 CWEs are decreasing or increasing over the years.

To the best of our knowledge, the spike could be due to high-profile cybersecurity incidents
like Meltdown and Spectre or data scandals like Scandal, all of which may have led developers
to review their code and fix vulnerabilities. Additionally, the General Data Protection
Regulation (GDPR), which came into effect on May 25, 2018, may have contributed to an
increase in vulnerability fixes, particularly those related to CWE-772.

We investigated whether the software development community is learning from the
vulnerabilities present in the top-10 CWEs by grouping the top-10 CWEs and the remaining
CWEs into eleven categories. Figure 3 suggests that the percentage of top-10 CWEs has
been decreasing over time, while the “Others” category has been increasing. The significant
spike observed in CWE-772 in 2018 is also visible in Figure 3.

ICPEC 2024



16:8 Open Source Repo Mining of Security Patches for Programming Education

The trends observed in Figure 3 indicate that lessons are being learned from the top-
10 CWEs over time, and the software development community is focusing on addressing
vulnerabilities other than the most common ones, which is positive. This suggests that the
community is becoming more proactive in identifying and fixing vulnerabilities beyond the
top-10 CWEs, which is crucial for improving software security.

Both Figure 2 and Figure 3 suggest that the software development community is becoming
more effective in addressing vulnerabilities beyond the top-10 CWEs. Although the spike
observed in CWE-772 in 2018 requires further investigation, the overall trends are positive
and indicate proactive measures being taken to improve software security, which is also
supported by Figure 1.

4.3 Programming Language vs CWE

C (1
05

8)

C++ (1
83

)

Jav
a (

12
6)

Jav
aS

cri
pt 

(41
)

Go (
41

)

Ru
by

 (2
7)

Pyt
ho

n (
26

)

Obje
cti

ve
-C (2

5)

PH
P (

23
)

Make
file

 (8
)

CWE-22

CWE-79

CWE-119

CWE-120

CWE-252

CWE-404

CWE-457

CWE-476

CWE-561

CWE-772

1 0 25 36 10 7 12 0 16 0

59 11 1 0 0 0 0 10 0 0

114 17 0 0 0 0 2 0 0 0

115 25 2 0 0 0 0 0 0 0

81 13 8 0 0 0 0 0 0 0

83 50 0 0 0 0 0 1 0 1

227 30 16 0 3 13 4 11 0 7

63 35 0 0 1 6 0 0 0 0

314 1 0 0 0 0 2 3 0 0

1 1 74 5 27 1 6 0 7 0

Commit count per per Programming Language 
Over The Top 10 CWEs

0

50

100

150

200

250

300

Figure 4 Commit count for the Top-10 CWEs across the Top-10 programming languages. The
x-axis represents the programming language, the y-axis represents the CWE, and the color of the
cells represents the number of commits.

The heatmap in Figure 4 shows commit counts for the Top-10 CWEs across the Top-
10 programming languages. The x-axis represents the programming language, the y-axis
represents the CWE, and the color of the cells indicates the number of commits. Results show
that C has significantly more vulnerability fixes compared to other programming languages.

This could be due to C’s popularity in low-level programming, which is more prone to
vulnerabilities. C is also widely used in operating systems, embedded systems, and other
low-level programming applications, contributing to its high number of vulnerability fixes.
Additionally, counting all .h files as C files has resulted in fewer C++ files, making C++ the
second-highest in number of commits for the Top-10 CWEs. This could be due to C++’s
popularity in low-level programming combined with C, resulting in a majority of the Top-10
CWEs being attributed to C and C++.



A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:9

The heatmap also highlights a noticeable trend of high counts for C and C++ for many
CWEs, but a count of zero for other programming languages. This further supports the
hypothesis that results are skewed towards C and C++ for the Top-10 CWEs. The presence
of many zeros also suggests that some programming languages may be inherently immune
to certain CWEs. For example, the common “Buffer Overflow” vulnerability (CWE-120,
CWE-121, CWE-122) is common in C/C++, but is 0 for Python, Go, Ruby, and other
languages.

4.4 Lines changed vs CWE
We analyze the number of lines changed for each of the Top-10 CWEs, to provide insight
into the effort required to fix these vulnerabilities.

CWE-2
2

CWE-7
9

CWE-1
19

CWE-1
20

CWE-2
52

CWE-4
04

CWE-4
57

CWE-4
76

CWE-5
61

CWE-7
72

0

5

10

15

20

25

30

35

Lin
es

 o
f c

ha
ng

e

Lines of change per CWE for the Top 10 CWEs

Figure 5 Number of code line that were changed to address a certain vulnerability (CWE).

Results from Figure 5 show that for 8 out of 10 CWEs, the mean lines of change is less
than 5, with the exceptions being CWE-252 and CWE-476. The interquartile range (IQR)
usually does not exceed 10. These findings indicate that addressing these CWEs can be
done efficiently and effectively with relatively small changes to the codebase. The small IQR
values suggest that the fixes are consistent across different instances of the same CWE. This
indicates that there is a clear and standardized approach to addressing these vulnerabilities.

Overall, these findings provide valuable insights into the nature of common software
vulnerabilities and how to address them effectively. However, it is important to note that
this data alone is not sufficient to draw conclusions about the effort required for vulnerability
detection and fixing. Additional research is necessary to investigate the required effort.

5 Discussion

In addressing our research questions, we explore our results to provide insights into the
common security vulnerabilities, their variations, and the effort required to fix them. Next,
we will discuss the results to provide an understanding of security vulnerabilities in OSS,
their distribution, variation by programming language, evolution across time, and the effort
required to mitigate them.

ICPEC 2024



16:10 Open Source Repo Mining of Security Patches for Programming Education

5.1 Implications for AI-Assisted Patching
Training machine learning (ML) algorithms to detect cybersecurity vulnerabilities is challen-
ging due to the lack of a large and diverse dataset classified by experts [15]. ML applications
require vast amounts of data for optimal performance, which is not always readily available.

To overcome the lack of diverse datasets, synthetically generated datasets such as Juliet
[13] can be used. However, the use of synthetic datasets poses a potential risk where ML
algorithms may learn characteristics of the dataset rather than vulnerability features, leading
to data leakage towards the test set. To address this issue, it is important to evaluate the
effectiveness of ML models on real-world examples rather than relying solely on synthetic
datasets. Investigating the results of ML training on synthetic datasets and testing on
real-world data to detect cybersecurity vulnerabilities would be interesting in the future.

5.2 Commits with CWE
The analysis shows an increase in commits with CWE over time, indicating a rise in
awareness of software vulnerabilities and more software fixes. Future research could investigate
factors contributing to this trend, such as the adoption of secure coding practices, improved
vulnerability scanning tools, and cybersecurity training for developers. Examining the
correlation between commits aimed at fixing vulnerabilities and repository numbers would
yield valuable insights into the effectiveness of current practices and policies in mitigating
software vulnerabilities.

5.3 Programming Language vs CWE
The results suggest that certain programming languages are more prone to specific CWEs
than others due to their design and nature. C and C++ are susceptible to buffer overflow
vulnerabilities because of their low-level nature and use in operating and embedded systems.
In contrast, Python is immune to buffer overflow CWE-120 vulnerability, provided third-party
libraries are not used. Developers should consider the programming language and its more
prevalent vulnerabilities when designing and developing software. By understanding the
likelihood of different vulnerabilities in different programming languages, developers can
mitigate risks and ensure the security and integrity of their software. Staying up-to-date
with the latest vulnerabilities and security trends is also important, as new vulnerabilities
can emerge and existing ones can evolve over time.

5.4 Lines changed vs CWE
Overall, the average number of changed lines is usually less than 5, implying that the fixes are
simple and can be done without introducing big changes to the codebase. Even for complex
CWEs, such as CWE-120 and CWE-252, average number of changed lines is still relatively
low. It is worth noting that some vulnerabilities may require more time to address their root
cause, but overall, when the vulnerability is detected, the fix can be done efficiently.

6 Threats to Validity

We base our results solely on commit messages, which may limit data accuracy. It is possible
that changes were collected, which should not have been accounted for due to bad comments,
or that changes in our scope were missed, due to missing commit message information.



A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:11

Throughout the data collection, we used a strict filter that specifically checks for the
mention of CWE in the commit messages to eliminate false positives. However, this approach
also has limitations. Specifically, we may have discarded changes relevant to vulnerability
fixes that did not mention the related CWE-ID in the commit message. As a result, the
data on GitHub may contain more vulnerability-fixing commits than what we captured, but
we were not able to detect them due to the filtering process. Although we aim to increase
the quality of our data by discarding changes that do not specifically mention a CWE-ID,
this may result in a smaller sample size. Therefore, future studies could explore alternative
methods for collecting data on vulnerability fixes in software development, such as scraping
and labeling the code directly with static analysis tools.

7 Conclusions and Future Work

Software quality is crucial and must be addressed throughout the software lifecycle. The
increase in commits targeting cybersecurity flaws in OSS repositories indicates developers
are more aware of the need to address security concerns in software development. Evolving
security standards mandate the implementation of secure software development processes,
such as the secure Software Development Life Cycle (sSDLC) outlined in the IEC 62443
standard, to improve software quality. However, the increasing usage of OSS brings unknown
vulnerabilities into one’s own software. Our analysis shows that the awareness of software
vulnerabilities in OSS is increasing over the years but still low, suggesting that there is room
for improvement.

We found a correlation between the programming language and the type of vulnerabilities,
indicating that developers should consider the strengths and weaknesses of the programming
language in terms of security. By understanding the prevalent vulnerabilities in different
programming languages, developers can mitigate risks and ensure the security and integrity
of their software. Staying up-to-date with the latest vulnerabilities and security trends is
also crucial as new vulnerabilities can emerge and existing ones can phase out over time.

Once vulnerabilities are detected, our research shows that fixes can be done efficiently
without introducing significant changes or rebasing to the codebase. Our database of fixes
can be used to cross-check the results of Static Application Security Testing (SAST) tools,
to check whether software quality problems are detected by the tool and if vulnerabilities
found match the mentioned CWE-ID in the commit message.

By outlining the findings and challenges associated with our large-scale data acquisition
approach, our research also contributes to understanding the quality of data required for
training machine learning algorithms, as data quality can significantly impact algorithm
performance. Homogeneous and complete datasets are essential for training models that can
accurately detect and classify software security vulnerabilities.

In a future work, the authors would like to extend their analysis by exploring a comparative
analysis with post-2022 commits. Additionally, we would like to explore how the acquired
data can be leveraged for AI-assisted vulnerability detection and classification.

References
1 North Bridge / Blackduck. https://tinyurl.com/blackduck2k15. [Accessed: 24 Apr. 2024].
2 Department of Homeland Security, US-CERT. Software Assurance. Online, Accessed 27

September 2020. URL: https://tinyurl.com/y6pr9v42.
3 GitHub Octoverse. Top programming languages in 2022. https://tinyurl.com/

octoverse2k22, 2022. [Accessed: 4 Apr. 2024].

ICPEC 2024

https://tinyurl.com/blackduck2k15
https://tinyurl.com/y6pr9v42
https://tinyurl.com/octoverse2k22
https://tinyurl.com/octoverse2k22


16:12 Open Source Repo Mining of Security Patches for Programming Education

4 Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, Andrea De Lucia, and Fabio Pa-
lomba. Rubbing salt in the wound? a large-scale investigation into the effects of refactoring on se-
curity. Empirical Software Engineering, 28(4), May 2023. doi:10.1007/s10664-023-10287-x.

5 International Electrotechnical Commission. IEC 62443-4-1 – Security for industrial automation
and control systems – Part 4-1: Secure product development lifecycle requirements. Technical
report, International Electrotechnical Commission, Geneval Switzerland, January 2018.

6 International Organization for Standardization. ISO/IEC 25000:2014 – Systems and Software
Engineering – Systems and Software Quality Requirements and Evaluation (SQuaRE) – Guide
to SQuaRE. Technical report, International Organization for Standardization, Geneva, CH,
March 2014. URL: http://iso25000.com/index.php/en/iso-25000-standards.

7 Frank Li and Vern Paxson. A large-scale empirical study of security patches. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
pages 2201–2215, New York, NY, USA, 2017. ACM. doi:10.1145/3133956.3134072.

8 Microsoft. Morgan Stanley Technology, Media & Telecom Conference - FY2023. https:
//tinyurl.com/ynepy7jw, 2023. Accessed: 15. Apr. 2024.

9 MITRE. CVE-2014-6271. https://tinyurl.com/4dk6yfzp. [Accessed: 15 April 2024].
10 MITRE. CVE-2015-0204. https://tinyurl.com/3prfckfj. [Accessed: 15 Apr. 2024].
11 MITRE. CVE-2021-44228. https://tinyurl.com/2dejmr3e. [Accessed: 15 Apr. 2024].
12 MITRE. Common Weakness Enumeration. cwe.mitre.org, 2023. [Accessed: 22 Apr. 2024].
13 National Security Agency Center for Assured Software. Juliet Test Suite C/C++ 1.3. https:

//tinyurl.com/bdd9csvz, 2023. [Accessed: 20 Apr. 2023].
14 Stephen O’Grady. The redmonk programming language rankings: June 2022. https://

tinyurl.com/4xpdr83z, 2022. [Accessed: 20 Apr. 2024].
15 Kaan Oguzhan, Tiago Espinha Gasiba, and Akram Louati. How good is openly available code

snippets containing software vulnerabilities to train machine learning algorithms? In CYBER
2022, The Seventh International Conference on Cyber-Technologies and Cyber-Systems, volume
ISBN: 978-1-61208-996-6, pages 25–33. ThinkMind, 2022. [ISSN: 2519-8599].

16 TIOBE. Tiobe index. https://tiobe.com/tiobe-index/, 2023. [Accessed: 25 Apr. 2024].
17 Song Wang and Nachiappan Nagappan. Characterizing and understanding software developer

networks in security development. In 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), pages 534–545, 2021. doi:10.1109/ISSRE52982.2021.00061.

18 Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. Patchdb: A large-
scale security patch dataset. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 149–160, 2021. doi:10.1109/DSN48987.2021.00030.

https://doi.org/10.1007/s10664-023-10287-x
http://iso25000.com/index.php/en/iso-25000-standards
https://doi.org/10.1145/3133956.3134072
https://tinyurl.com/ynepy7jw
https://tinyurl.com/ynepy7jw
https://tinyurl.com/4dk6yfzp
https://tinyurl.com/3prfckfj
https://tinyurl.com/2dejmr3e
cwe.mitre.org
https://tinyurl.com/bdd9csvz
https://tinyurl.com/bdd9csvz
https://tinyurl.com/4xpdr83z
https://tinyurl.com/4xpdr83z
https://tiobe.com/tiobe-index/
https://doi.org/10.1109/ISSRE52982.2021.00061
https://doi.org/10.1109/DSN48987.2021.00030

	1 Introduction
	2 Related Work
	3 Approach
	3.1 Querying and Scraping GitHub for Repositories
	3.2 Data Extraction
	3.3 Analysis Method

	4 Results
	4.1 Number of Commits with mentions of CWE per Year
	4.2 CWE per year
	4.3 Programming Language vs CWE
	4.4 Lines changed vs CWE

	5 Discussion
	5.1 Implications for AI-Assisted Patching
	5.2 Commits with CWE
	5.3 Programming Language vs CWE
	5.4 Lines changed vs CWE

	6 Threats to Validity
	7 Conclusions and Future Work

