
A Domain-Specific Language for Dynamic
White-Box Evaluation of Java Assignments
Afonso B. Caniço #

Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

André L. Santos #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal

Abstract
Programming exercises involving algorithms typically involve time and spatial constraints. Automated
assessments for such implementations are often carried out in a black-box manner or through static
analysis of the code, without considering the internal execution properties, which could lead to
falsely positive evaluations of students’ solutions. We present Witter, a domain-specific language
for defining white-box test cases for the Java language. We evaluated programming assignment
submissions from a Data Structures and Algorithms course against Witter’s test cases to determine if
our approach could offer additional insight regarding incomplete algorithmic behaviour requirements.
We found that a significant amount of student solutions fail to meet the desired algorithmic behavior
(approx. 21%), despite passing black-box tests. Hence, we conclude that white-box tests are useful
to achieve a thorough automated evaluation of this kind of exercises.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging;
Software and its engineering → Domain specific languages; Social and professional topics → Student
assessment

Keywords and phrases White-box assessment, student assessment, programming education

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.2

1 Introduction

Students of introductory-level programming courses, such as Algorithms and Data Structures,
are expected to develop implementations that conform to specific algorithm behaviour to
ensure the correct application of the algorithms under study. As a standard example, students
might be tasked with implementing a specific sorting algorithm. Ideally, formative assessment
of this kind of exercises should verify algorithmic behaviour – the essence of the subject
– by measuring white-box aspects such as the number of operations executed or memory
allocation. Automated constructive feedback that allows students to understand any possible
mistakes and deepen their understanding is valuable [18, 13], saving time on human feedback
and fostering autonomous learning.

While assessment tools providing feedback about the correctness of the outputs of a
solution (i.e. black-box testing) are generally available, assessment tools that check internal
algorithmic behavior are not (i.e. white-box testing) [9, 14, 12]. We believe that a technique
for deeper evaluation of exercises could serve as the backbone for more elaborated automated
assessment systems with richer feedback.

In this paper, we present an evolution of our previous work on Witter [3]1, a library for
white-box testing of Java code. We augmented the library with an internal domain-specific
language (DSL) written in Kotlin, allowing instructors to define white-box test cases for Java
source code that with stateful execution – a limitation of the initial approach. This kind of
tests are appropriate to test data structures implemented with classes.

1 https://github.com/ambco-iscte/witter

© Afonso B. Caniço and André L. Santos;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ambco@iscte-iul.pt
https://orcid.org/0009-0009-9334-717X
mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2024.2
https://github.com/ambco-iscte/witter
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 A DSL for Dynamic White-Box Evaluation of Java Assignments

We tested the DSL against a set of real student programming assignment submissions
from the Algorithms and Data Structures course offered at our institution. We observe that
students can effectively be misled if only the outputs produced by their implementations
are considered in their assessment, and thus conclude that programming assignments where
the internal algorithmic behaviour is relevant could benefit from a tool providing execution
information.

This paper proceeds as follows. Section 2 discusses related work on automated assessment.
Section 3 presents background on our previous work on Witter. Section 4 describes our
DSL for test specification. Section 5 describes the evaluation of our approach with student
submissions. Section 6 discusses conclusions and outlines future work.

2 Related Work

Recent surveys [9, 14, 12, 5] show that research and development on automated white-
box programming assessment systems focus primarily on well-known white-box assessment
methods like static analysis or bytecode instrumentation, with our literature review yielding
scarce mentions of assessment through the dynamic collection of details of a program’s
execution – the main novelty of our approach.

Programming languages or libraries such as AspectJ [10]2, Javassist [4]3, ASM [2]4, and
ByteBuddy5, require specilized knowledge on code instrumentation, allow existing systems
to be augmented with deeper assessment functionalities, but are limited in that they do not
allow for the collection of information regarding the code’s execution out-of-the-box. The
analyses have to be programmed and tailored to specific needs. Similarly, Valgrind6 is a
code instrumentation toolkit that enables detection of memory management and threading
bugs, along with program profiling. While these tools lay the groundwork upon which an
automated assessment system may feature white-box analysis, we consider the requirement of
specialised knowledge to be a negative factor when it comes to the tools’ general accessibility.
Additionally, significant analysis or instrumentation is required to accurately collect a relevant
amount of information during a program’s execution, negatively impacting the applicability
of these tools.

Lizard7 is a multi-language static analysis tool supporting the Java language, focusing
on determining the cyclomatic complexity of implemented functions, among other forms of
static code analysis. While cyclomatic complexity is a useful tool for measuring and therefore
managing the complexity of a program, it does not provide detailed algorithmic behaviour of
a solution. Similar tools, like Cppcheck8 for C and C++, focus on bug detection through
static code analysis, providing no dynamic analysis functionalities for a program’s execution.

ConGu [6] is a runtime verification tool that enables the assessment of Java classes against
formal algebraic specifications. Its main goal is to test abstract data types against function
domain restrictions and algebraic conditions or axioms that functions must verify.

2 https://www.eclipse.org/aspectj
3 https://www.javassist.org
4 https://asm.ow2.io
5 https://bytebuddy.net/
6 https://valgrind.org/
7 https://github.com/terryyin/lizard
8 https://cppcheck.sourceforge.io/

https://www.eclipse.org/aspectj
https://www.javassist.org
https://asm.ow2.io
https://bytebuddy.net/
https://valgrind.org/
https://github.com/terryyin/lizard
https://cppcheck.sourceforge.io/

A. B. Caniço and A. L. Santos 2:3

Jeed9 is a toolkit for Java and Kotlin in-memory execution with a focus on safety and
performance. While Jeed’s goals align with those of our proposed library by enabling code
execution in a sandboxed environment providing access to code evaluation metrics, its
assessment is focused on source code analysis rather than dynamic runtime events. Namely,
Jeed supports linting, cyclomatic complexity analysis, and a listing of which language features
are present in a given program.

Mooshak [11] is a programming assessment tool that checks whether a submitted program
functions correctly. To this effect, Mooshak analyses the programs for their returned or
printed outputs, and if any compilation or runtime errors were produced [17]. Mooshak’s
goal is broad, aiming to be a full online programming context judge for several programming
languages [11, 17], and as such, enables third-party extensions to execute custom static and
dynamic analysers, which might perform white-box analyses. This aligns with our goal of
providing Witter as a library which is easily integrable into existing assessment systems.

JavAssess [8] is a Java library used to integrate deeper code analysis capabilities into
existing automated assessment tools. This approach relies on combining traditional black-
box unit testing with code instrumentation and meta-programming functionalities, yet
does not offer a way to dynamically collect white-box execution metrics. Nonetheless, the
goals of JavAssess are considerably similar to Witter’s, aiming to be a library that can
be integrated into existing automated assessment systems to facilitate a deeper analysis
of student code, and the two libraries could work in tandem to provide a comprehensive
assessment toolkit. AutoGrader [7] is a similar assessment library, leveraging on the meta-
programming functionalities of the Java language along with typical unit testing for code
assessment.

3 Background: Witter Library

In previous work we developed Witter, a library for specifying white-box test cases for Java
source code [3]. The core functionality of Witter relies on Strudel10, a library providing an
interpreter allowing clients to perform fine-grained observation of code execution events.

In the first version of Witter, test cases were defined by annotating reference solutions
with header comments containing different directives that specified each test case and which
runtime metrics should be considered. Figure 1 presents an example of using Witter to
specify a test for the insertion sort algorithm. We can see two test cases and directives to
measure the number of array reads/writes and to check if the desired side-effects are met.
The white-box testing is based on comparing the measurements of the reference solution with
those of a students’ solution. For example, one may implement selection sort and end up with
a sorted array, but the array read/writes will not match, implying that the implementation
is not as intended.

While the initial version of Witter was suitable to evaluate algorithms that could be
implemented as standalone methods (e.g., involving arrays), it lacked support for assessing
stateful or object-oriented solutions. Furthermore, the limited Java support of Strudel at
the time also constrained the scope of code solutions we are able to analyze. Meanwhile, we
further developed Strudel to support a larger subset of Java’s language features and therefore
broaden the scope of programs that Witter is able to evaluate.

9 https://github.com/cs125-illinois/jeed
10 https://github.com/andre-santos-pt/strudel

ICPEC 2024

https://github.com/cs125-illinois/jeed
https://github.com/andre-santos-pt/strudel

2:4 A DSL for Dynamic White-Box Evaluation of Java Assignments

/*
@Test ({5, 4, 3, 2, 1})
@Test ({3, 2, 5, 3, 1})
@CountArrayReads (2)
@CountArrayWrites (1)
@CheckSideEffects
*/
static void insertionSort (int [] a) {

for (int i = 1; i < a. length ; i++) {
for (int j = i; j > 0; j--) {

if (a[j] >= a[j - 1]) break ;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

}

Figure 1 Reference solution of insertion sort annotated with Witter tests (initial version).

Table 1 Runtime metrics and corresponding values measured.

Metric Usage Measure
Loop Iterations CountLoopIterations([margin]) Number of loop iterations
Array Reads CountArrayReadAccesses([margin]) Number of array read accesses
Array Writes CountArrayWriteAccesses([margin]) Number of array write accesses
Recursive Calls CountRecursiveCalls([margin]) Number of recursive calls
Object Allocations CheckObjectAllocations Object allocations per type
Array Allocations CheckArrayAllocations Array allocations per type
Side Effects CheckSideEffects Side effects on arguments

4 Approach: DSL for White-Box Tests

In order to tackle the inherent difficulty of supporting the assessment of object-oriented
implementations through annotated code solutions, we implemented an internal DSL in
Kotlin providing a programmatic way for defining stateful test cases. We argue that the DSL
requires less effort from instructors for defining test cases when compared to the required
knowledge on specialised topics like code instrumentation or meta-programming, since there
are only a few DSL directives to be used in a declarative, high-level style.

Figure 2 illustrates Witter’s DSL with a test suite for list data structures, containing two
test cases. These test cases can be configured to use any number of white-box metrics either
throughout the test or within a bounded scope (using directive). As in the initial version of
Witter, evaluation metrics (summarised in Table 1) can be optionally instantiated with a
margin parameter that specifies an acceptable deviation interval from the reference value, in
order not to constrain students’ code to a single, rigid solution.

An object can be created using the new directive by passing the name of the class to
instantiate followed by a list of arguments to one of the class constructors. References to
the created objects can be stored using ref. Class methods can be invoked by using the call
directive on a previously declared reference. A sequence of these directives defines a stateful
test case.

A. B. Caniço and A. L. Santos 2:5

val tests = TestSuite (referencePath = "path/ reference /List.java") {
Case(" testContains ") {

// Create new object and store a reference to it
val list = ref { new("List") }

// Executed without white -box metrics (black -box only)
list.call("size") // 0
list.call("add", "hello")
list.call("size") // 1
list.call("add", "world")
list.call("size") // 2

using(CountLoopIterations () + CountArrayReadAccesses ()) {
// These calls compare loop iterations
list.call(" contains ", "hello") // true
list.call(" contains ", " algorithm ") // false

}
}

// All the calls within this case compare loop iterations
Case(CountLoopIterations (), " testIsEmpty ") {

val list = ref { new("List") }
list.call(" isEmpty ", expected = true)
list.call("add", "hello")
list.call(" isEmpty ", expected = false)

}
}

Figure 2 Witter’s DSL syntax. Example Test Suite for a list data structure comprising the
operations add, contains and isEmpty.

The call directive is used by specifying the name of the method to be invoked and a list
of arguments. We may use the “dot notation” to perform calls on instance methods given
its reference (ref.call(...)). For every call, the return values of the evaluated method are
compared to the reference solution, allowing for regular black-box testing. Additionally, if the
optional expected argument is passed, Witter will assert that both the reference solution and
the solution under evaluation produce the expected result. This verification allows educators
to assert that their solution works as expected, preventing the accidental usage of a faulty
reference solution as the ground truth for evaluating students’ implementations.

Consider an assignment where a student must implement a function for calculating the
average of an array of double values. We wish to assess not only the correctness of the
produced result, but also that of the algorithm behaviour by checking that the number of
loop iterations matches that of the reference solution. Figure 3 illustrates an evaluation
scenario for this assignment using Witter’s API, composed of: reference solution (3a), test
suite (3b), a solution to check against the tests (3c), a snippet of using Witter as a library
(3d), and the output of executing the tests (3e).

Educators design an exercise by providing a pair of artifacts consisting of a reference
solution and a corresponding test suite. Different solutions to the exercise (submitted
by students) may be checked against the test suite through Witter’s API. The example
submission (Figure 3c) has a defect, given that the array iteration starts at index 1 (rather
than 0). Witter runs the tests simultaneously for the reference solution and for the solution

ICPEC 2024

2:6 A DSL for Dynamic White-Box Evaluation of Java Assignments

(a) Reference solution (Average.java).

static double average (double [] a) {
double sum = 0.0;
for (int i = 0; i < a. length ; i++) sum += a[i];
return sum / a. length ;

}

(b) DSL test suite.

val tests = TestSuite ("path/to/ reference / Average .java") {
Case(CountLoopIterations ()) {

call(" average ", listOf (1,2,3,4,5), expected = 3.0)
call(" average ", listOf (0,2,3,5,7), expected = 3.4)

}
}

(c) Solution under testing (Solution.java) – with a defect, starting at index 1.

static double average (double [] a) {
double sum = 0.0;
for (int i = 1; i < a. length ; i++) sum += a[i];
return sum / a. length ;

}

(d) Invoking the execution of a test suite to a solution under evaluation.

val results : List < ITestResult > = tests.apply(
subjectPath = "path/to/ Solution .java"

)
results . forEach { println ("$it\n") }

(e) Output of the test results.

[fail] average ([1, 2, 3, 4, 5])
Expected : 3.0
Found: 2.8

[fail] average ([1, 2, 3, 4, 5])
Expected loop iterations : 5
Found: 4

[pass] average ([0, 2, 3, 5, 7])
Expected : 3.4

[fail] average ([0, 2, 3, 5, 7])
Expected loop iterations : 5
Found: 4

Figure 3 Exercise evaluation scenario using Witter’s API.

A. B. Caniço and A. L. Santos 2:7

under testing, comparing the two to evaluate the latter’s execution. In this case, a mismatch
of iterations is detected, given that the solution under testing perform always performs one
less iteration in contrast to the reference solution. Notice that in the output of the test
results (Figure 3e) this is being reported as a failure, while it succeeds in one of the test
inputs.

An automated assessment system may import Witter as a third-party library. In this
example we are merely displaying the objects of the test results to the console, but these can
be inspected for custom reporting, depending on the assessment system.

5 Evaluation

In order to evaluate the feasibility and usefulness of the approach, we carried out an experiment
using the proposed DSL to evaluate student assignments.

5.1 Context

We collected a set of 2,389 student assignment submissions spanning two offerings of the
Algorithms and Data Structures course taken by first year undergraduate students of Com-
puter Science and Engineering and related bachelor’s degrees. The submission process
was independent from our approach, hence no constraints were posed regarding Witter’s
limitations. For this reason, some submissions could not be handled. We analyzed five
distinct assignments with the following guidelines:
1. Implement three different classes, each solving the dynamic connectivity (union-find)

problem using different approaches: Quick-Find, Quick-Union, and Weighted Quick-Union
with Path Compression.

2. Implement a Queue data structure supporting the String data type. Use a circular resizing
array implementation to store the data internally without needing to limit the queue’s
memory capacity a priori.

3. Implement an optimised version of the Insertion Sort algorithm which executes fewer
array access operations by avoiding swap operations and instead shifting elements directly
one position to the right as needed.

4. Implement a generic List data structure utilising a dynamic sequence of simply-linked
nodes internally to store elements.

5. The implementation of the Heap Sort algorithm seen in the lectures assumes the array
indices begin at 1. Modify the algorithm’s implementation to support sorting arrays
starting at index 0.

Each assignment was given to students in this order throughout the semester. The
guidelines were translated from Portuguese, which included more API details that have been
truncated for presentation in this paper.

Table 2 presents the number of valid submissions used for evaluating the DSL for each
assignment. We consider a submission to be valid if the submitted file matches the name
and extension indicated in an assignment’s guidelines, and if Java can successfully compile
the source code. The inconsistent number of submissions is explained by two factors:
our observations of a growing rate of absenteeism as the semester progresses; and, every
assignment being present in the two course offerings considered except assignment A3, which
was only present in a single offering.

ICPEC 2024

2:8 A DSL for Dynamic White-Box Evaluation of Java Assignments

Table 2 Number of student submissions used for evaluating Witter’s DSL.

Assignment Description Total Valid
A1 Dynamic Connectivity 584 424 (72.6%)
A2 Resizing Array Queue of Strings 573 490 (85.5%)
A3 Improved Insertion Sort 212 120 (56.6%)
A4 Generic Linked List 550 476 (86.5%)
A5 Heap Sort 470 266 (56.6%)

2389 1776 (74.3%)

5.2 Method
Figure 4 presents the test specifications for each assignment using Witter’s DSL. Each student
submission was evaluated using Witter through the corresponding test specification, and the
results of the evaluation were processed to find cases where the student’s implementation
passed black-box tests but failed white-box tests. Given the nature of the chosen assignments,
the evaluation focused on the metrics for counting loop iterations, array read and write access
operations, allocated memory (for resizing array operations), and argument side effects (for
checking whether sorting algorithms effectively sorted the input array).

In order to assess Witter’s suitability for large-scale assessment processes, we measure
the average execution time for the evaluation of each submission. The execution took place
in a laptop system with a 12-core 2.6GHz Intel i7-9750H CPU and 16GB of RAM. While a
completely isolated simulation is impossible in a standard system, care was taken to minimise
the impact of other operating system processes on the performance of Witter’s execution.

It is usually the case that computer engineering students have a general propensity
to cheat in programming assignments [1]. We took this factor into consideration during
Witter’s evaluation by running plagiarism analysis on all student submissions using JPlag11,
a plagiarism checking tool resistant to a broad range of obfuscation techniques and which
provides easily-interpretable results of its analysis [15, 16]. While a connection between
plagiarism checking and white-box assessment has not been observed, we include this analysis
as a means to safeguard our evaluation against possible accidental biases stemming from
students having plagiarised the same incorrect sources (e.g. copying from a fellow classmate
who made mistakes).

5.3 Results
Table 3 summarizes the evaluation results. Witter successfully loaded a total of 1,526 student
submissions from the 1,776 valid submissions described in Table 2, constituting approximately
86% of all valid submissions. For these, all the assignments had a black-box tests pass rate
greater than 90%. However, the white-box tests failure rate ranged approximately between
9% and 45%, with assignment A4 exhibiting the largest failure rate.

Figure 5 presents the distribution of white-box metrics that produced failures in each
assignment. Approximately 50% of failed assertions for assignment A1 were caused by an
incorrect number of array write operations, with the majority of the remaining errors relating
to an incorrect number of array write operations. Out of the considered metrics, assignments
A2, A3, and A5 contained white-box errors relating to the number of loop iterations and array

11 https://github.com/jplag/JPlag

https://github.com/jplag/JPlag

A. B. Caniço and A. L. Santos 2:9

(a) Test specification for assignment A1.

Case(CountLoopIterations (1) + CountArrayWriteAccesses (1) +
CountArrayReadAccesses (1)) {

val uf = ref { new(" QuickFindUF ", 100) }
val connected = mutableListOf <Pair <Int , Int >>()
(1 .. 100). forEach { _ ->

val p = (100 * random ()). toInt ()
val q = (100 * random ()). toInt ()
uf.call("union", p, q)
connected .add(Pair(p, q))

}
connected . forEach { uf.call(" connected ", it.first , it. second) }

}

(b) Test specification for assignment A2 (excerpt).

Case(CountLoopIterations (1), " testDequeue ") {
val queue = ref { new("Queue") }
queue.call(" enqueue ", " witter ")
queue.call(" enqueue ", "is")
queue.call(" enqueue ", "cool")
queue.call(" dequeue ")
queue.call(" dequeue ")
queue.call(" dequeue ")

}
Case(CountLoopIterations (1) + CountMemoryUsage ()) {

val queue = ref { new("Queue") }
(1..100). forEach { queue.call(" enqueue ", it. toString ()) }

}

(c) Test specification for assignment A4 (excerpt).

Case(CountLoopIterations (2) + CheckObjectAllocations , " testSize ") {
val list = ref { new("List") }
list.call("size")
list.call("add", "hello")
list.call("size")
list.call("add", "world")
list.call("size")

}

(d) Test specification for assignments A3 and A5.

Case(CheckSideEffects + CountLoopIterations (1) +
CountArrayWriteAccesses (1) + CountArrayReadAccesses (1)) {

call("sort", listOf (1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
call("sort", listOf (7, 3, 2, 1, 5, 6, 10, 8, 9, 4))
call("sort", listOf (7.32 , 3.14 , 2.14 , 1.93 , 5.99 , 6.74 , 10.21 ,

8.84 , 9.26 , 4.56))
call("sort", listOf (" sorting ", " algorithms ", "are", " really ",

"very", "cool"))
call("sort", listOf (10, 9, 8, 7, 6, 5, 4, 3, 2, 1))

}

Figure 4 Test specifications for the evaluated assignments (A1–5).

ICPEC 2024

2:10 A DSL for Dynamic White-Box Evaluation of Java Assignments

Table 3 Number of black-box and white-box passes and failures for loaded submissions. Loaded
submissions are given as a % of valid submissions. Submission pass/fails are given as a % of loaded
submissions. Execution time is the average over all submissions of the corresponding assignment.

Assignment Valid Loaded Blackbox Pass Whitebox Fail Avg. Time
A1 424 413 (97.4%) 407 (98.5%) 79 (19.1%) 850 ms
A2 490 433 (88.4%) 391 (90.3%) 98 (22.6%) 300 ms
A3 120 110 (91.7%) 107 (97.3%) 49 (44.5%) 20 ms
A4 476 347 (72.9%) 347 (100%) 32 (9.22%) 100 ms
A5 266 233 (83.8%) 221 (99.1%) 58 (26.0%) 30 ms

1776 1526 (85.9%) 1473 (96.5%) 316 (20.7%)

Figure 5 Ratio of each white-box metric failure per assignment.

read and write operations, the proportion of which are approximately equal, each constituting
approximately one third of each assignment’s detected errors. Assignment A4 produced the
simplest results, with all failed assertions relating to the number of loop iterations.

Finally, our suspicion regarding code similarity was confirmed by JPlag’s analysis, with
the average similarity between submissions ranging approximately from 20% to 64%, as
summarised in Table 4.

6 Discussion

The results of our evaluation show that a considerable number of students produce faulty
implementations when it comes to algorithmic behaviour, which would go unnoticed by an
evaluation process focusing only on the results produced by the students’ code. Even in
the assignment which contained the least faulty implementations (A4) 32 students could be
misled by a black-box-only assessment process, a number which we argue is not negligible.
Furthermore, in assignment A3 (lowest submission similarity), which required arguably
the most originality in developing an alternative version of a standard algorithm, we saw
a 44.5% failure rate, which constitutes nearly half of all considered submissions. We can

A. B. Caniço and A. L. Santos 2:11

Table 4 Average submission code similarity per assignment.

Assignment Average ± Std. Dev.
A1 64.2 ± 20.0%
A2 25.7 ± 17.5%
A3 19.8 ± 17.6%
A4 22.6 ± 14.0%
A5 44.1 ± 24.0%

thus conclude that the usage of an assessment tool which provides information about the
execution of students’ implementations is useful, not only from the perspective of instructors
aiming at accurate grading, but also to prevent misleading students by informing them of the
correctness of their implementation’s results regardless of how those results were produced.

The current version of Witter successfully tackles the main limitations of our previous
work [3], with the internal development of Strudel broadening the scope of supported language
features and therefore that of supported assignments, coupled with the development of a
DSL for test specification, allowing the specification of stateful tests for assignments using
objects (e.g., for implementing data structures).

Our current work on Witter and Strudel allowed an acceptable coverage of standard
Java constructs and language features, as seen by the overall 85.9% successful file loading
rate seen during the evaluation phase. Nevertheless, further work should be carried out to
extend the scope of supported functionalities and therefore enable the usage of more diverse
assignments for a more detailed evaluation.

The average time taken to execute the evaluation of each submission reveals an acceptable
performance for using Witter in educational contexts, with each submission taking from a few
milliseconds to no more than one second to be evaluated. The execution time is dependent on
the complexity of the specified tests, with longer or more comprehensive tests corresponding
to a longer execution time.

Care should be taken in future work to tackle the limitations introduced by the char-
acteristics of the dataset chosen for evaluation. For instance, taking Strudel’s supported
functionalities into account during the submission process could provide a larger usable
dataset, enabling a more significant evaluation. Furthermore, a more unbiased evaluation
could be carried out by utilising an external, publicly-available dataset of programming
student submissions, guaranteeing the usage of code produced by students outside of our
institution. Additionally, this could tackle possible issues of cheating or plagiarism, whose
presence was made evident by our evaluation process and, as hypothesised, could skew the
results by introducing a bias relating to students unknowingly plagiarising from incorrect
sources. While an average code similarity between submissions of approximately 20%, as
for assignment A3, can fall within reasonable expectations for an assignment of this scope,
values of 44% or 61% average similarity, as seen for assignments A5 and A1, respectively,
begin to raise concerns of considerable plagiarism and how it can affect the results of our
analysis.

We continue to envision Witter as a tool not only aiming to be integrated into existing
automated assessment systems as a way to extend the scope of their assessment functionalities,
but also as courseware to be used by introductory programming students in a classroom
environment, providing a learning process augmented through instant feedback on their
attempts to solve programming exercises. To this effect, we envision the implementation
of more high-level metrics, such as counting the number of array swap or move operations,
which are standard when analysing programs from an algorithm complexity standpoint, and
thus relevant for introductory programming classes focusing on algorithms.

ICPEC 2024

2:12 A DSL for Dynamic White-Box Evaluation of Java Assignments

While we have not yet been able to conduct a user study with programming students
or instructors, this is likely to be our main focus in the future as the scope and stability
of both Witter and Strudel’s functionalities increase. Namely, a study with introductory
programming students is necessary to gauge whether Witter is useful for its envisioned
context, and a study with programming instructors can offer insight into the effort required
to develop assignments adopting Witter’s DSL. Finally, given a longer time frame, a study
could be conducted in the context of an introductory programming course to analyse the
long-term effect on the usage of Witter or similar assessment tools in students’ learning
outcomes.

References
1 C.L. Aasheim, Paige Rutner, L. Li, and S.R. Williams. Plagiarism and programming: A survey

of student attitudes. Journal of Information Systems Education, 23:297–314, January 2012.
2 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to

implement adaptable systems. In In Adaptable and extensible component systems, 2002. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769.

3 Afonso B. Caniço and André L. Santos. Witter: A library for white-box testing of introductory
programming algorithms. In Proceedings of the 2023 ACM SIGPLAN International Symposium
on SPLASH-E, SPLASH-E 2023, pages 69–74, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3622780.3623650.

4 Shigeru Chiba. Load-time structural reflection in java. In Elisa Bertino, editor, ECOOP
2000 — Object-Oriented Programming, pages 313–336, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

5 Sébastien Combéfis. Automated code assessment for education: Review, classification and per-
spectives on techniques and tools. Software, 1(1):3–30, 2022. doi:10.3390/software1010002.

6 Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos. Runtime verification for generic
classes with congu2. In Proceedings of the 13th Brazilian Conference on Formal Methods:
Foundations and Applications, SBMF’10, pages 33–48, Berlin, Heidelberg, 2010. Springer-
Verlag.

7 Michael T. Helmick. Interface-based programming assignments and automatic grading of java
programs. SIGCSE Bull., 39(3):63–67, June 2007. doi:10.1145/1269900.1268805.

8 David Insa and Josep Silva. Automatic assessment of java code. Computer Languages, Systems
& Structures, 53:59–72, 2018. doi:10.1016/j.cl.2018.01.004.

9 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic literature review of
automated feedback generation for programming exercises. ACM Trans. Comput. Educ., 19(1),
September 2018. doi:10.1145/3231711.

10 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. In Jørgen Lindskov Knudsen, editor, ECOOP 2001

— Object-Oriented Programming, pages 327–354, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

11 José Paulo Leal and Fernando Silva. Mooshak: a web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003. doi:10.1002/spe.522.

12 Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. Automated grading
and feedback tools for programming education: A systematic review. ACM Trans. Comput.
Educ., December 2023. Just Accepted. doi:10.1145/3636515.

13 Samim Mirhosseini, Austin Z. Henley, and Chris Parnin. What is your biggest pain point?
an investigation of cs instructor obstacles, workarounds, and desires. In Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2023,
pages 291–297, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3545945.3569816.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
https://doi.org/10.1145/3622780.3623650
https://doi.org/10.3390/software1010002
https://doi.org/10.1145/1269900.1268805
https://doi.org/10.1016/j.cl.2018.01.004
https://doi.org/10.1145/3231711
https://doi.org/10.1002/spe.522
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3545945.3569816
https://doi.org/10.1145/3545945.3569816

A. B. Caniço and A. L. Santos 2:13

14 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Trans. Comput. Educ., 22(3), June 2022.
doi:10.1145/3513140.

15 Timur Sağlam, Moritz Brödel, Larissa Schmid, and Sebastian Hahner. Detecting automatic
software plagiarism via token sequence normalization. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3597503.3639192.

16 Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik Burger. Obfuscation-resilient
software plagiarism detection with jplag. In 46th IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE-Companion. Institute of Electrical and
Electronics Engineers (IEEE), 2024. doi:10.1145/3639478.3643074.

17 Manuel Sánchez, Päivi Kinnunen, Cristóbal Flores, and J. Ángel Velázquez-Iturbide. Student
perception and usage of an automated programming assessment tool. Computers in Human
Behavior, 31:453–460, February 2014. doi:10.1016/j.chb.2013.04.001.

18 Anne Venables and Liz Haywood. Programming students need instant feedback! In Proceedings
of the Fifth Australasian Conference on Computing Education - Volume 20, ACE ’03, pages
267–272, AUS, 2003. Australian Computer Society, Inc.

ICPEC 2024

https://doi.org/10.1145/3513140
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3639478.3643074
https://doi.org/10.1016/j.chb.2013.04.001

	1 Introduction
	2 Related Work
	3 Background: Witter Library
	4 Approach: DSL for White-Box Tests
	5 Evaluation
	5.1 Context
	5.2 Method
	5.3 Results

	6 Discussion

