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Abstract
Generative AI presents both challenges and opportunities for educators. This paper explores its
potential for automating the creation of programming exercises designed for automated assessment.
Traditionally, creating these exercises is a time-intensive and error-prone task that involves developing
exercise statements, solutions, and test cases. This ongoing research analyzes the capabilities of the
OpenAI GPT API to automatically create these components. An experiment using the OpenAI
GPT API to automatically create 120 programming exercises produced interesting results, such as
the difficulties encountered in generating valid JSON formats and creating matching test cases for
solution code. Learning from this experiment, an enhanced feature was developed to assist teachers
in creating programming exercises and was integrated into Agni, a virtual learning environment
(VLE). Despite the challenges in generating entirely correct programming exercises, this approach
shows potential for reducing the time required to create exercises, thus significantly aiding teachers.
The evaluation of this approach, comparing the efficiency and usefulness of using the OpenAI GPT
API or authoring the exercises oneself, is in progress.
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1 Introduction

Since its introduction in late November 2022, ChatGPT has produced a range of reactions,
from enthusiasm to warnings. In academic and educational contexts, there is legitimate
concern about the potential impacts of extensive language models and generative AI. It is
important to acknowledge and address these concerns, but it is equally important to recognize
the potential of these tools to generate text, code, and data, offering valuable resources and
innovative approaches that can positively enhance the educational landscape.

This paper explores the utility of ChatGPT in facilitating the creation of programming
exercises, particularly those designed for automated assessment. The process of authoring
these exercises is time-consuming and error-prone. It involves generating three distinct
components: exercise statements articulated in a natural language, such as English; solutions
in a programming language, such as JavaScript; and test data, including input and expected
output files. Generative AI is promising for faster and more accurate exercise creation.
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An initial experiment was conducted within the Framework for Gamified Programming
Education (FGPE+) project [13] aiming to create 120 programming exercises suited for
automated evaluation for AuthorKit, a programming exercise repository [15]. This experiment
highlighted ChatGPT’s difficulties in generating valid JSON files and creating effective and
functional test cases for the proposed code solutions. Learning from this, an enhanced
feature was developed for Agni, a virtual learning environment, to assist teachers in creating
programming exercises [20]. An ongoing evaluation is comparing the time, quality, and
benefits of creating exercises independently versus using ChatGPT’s assistance.

2 Related Work

The integration of generative artificial intelligence (AI) in education has gained increasing
attention due to its potential to transform teaching and learning practices. Indeed, for
teachers, writing good questions/exercises and test cases is a fundamental and time-consuming
challenge [11, 24]. New AI tools have already increased productivity in work environments,
as measured in a study of issues resolved per hour. They found an increase of 14% on average,
including a 34% improvement for novice and low-skilled workers, but with minimal impact on
experienced and highly skilled workers [4]. A variety of studies have discussed the possibilities
of AI in generating educational content and providing personalized learning experiences,
highlighting both the opportunities and challenges of these technologies [3, 8, 2, 1, 14, 18, 23].

A study by Sarsa et al. analyzed the quality of programming exercises generated by
OpenAI Codex. It revealed that 84.6% of the exercises generated included a sample solution,
with 89.7% of these being executable. Furthermore, 70.8% of these exercises featured tests,
although only 30.9% of them passed all tests, achieving a test coverage rate of 98.0% [22].
Similarly, another study showed that 75% of exercises created by generative AI were sensible,
81.8% novel, and between 75.8% to 79.2% aligned with the intended themes and concepts [6].
Another study evaluated that students perceived exercises generated by AI as equal to those
created by people. However, the limited variety in AI-generated examples and their close
adherence to given prompts raise questions about their adaptability in creating diverse
learning resources [5]. These findings suggest that while generative AI can produce good
primary educational content, its quality and reliability are still lacking [19].

Other uses, such as automatic feedback, have also shown promise. A web application that
leverages GPT-4 to provide feedback on complex exercises demonstrated a high correlation
with human feedback and deviated by only 6% from human evaluations [10]. A study on
the customization of learning content via generative AI found that AI-generated materials
positively impacted lower-performing students without negative effects on accessibility [17].
The findings highlighted the benefit of personalized learning experiences, particularly for
students struggling with subjects, by providing materials suited to their specific needs, while
more proficient students received more advanced content.

In conclusion, while generative AI holds significant potential for education, it must be
integrated carefully, considering its abilities and limitations. Empirical studies and responsible
guidelines are essential for harnessing the benefits of AI in educational settings.

3 Early exploration

Within the FGPE+ project, an experiment was conducted using OpenAI’s GPT-3.5 API
to automatically generate 120 programming exercises. These exercises were designed for
AuthorKit, a platform for developing programming exercises, that support the definition
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Table 1 Results of using GPT to generate exercises.

Total % of Total % of Valid Resolved % of Resolved
JSON errors 199 35% 23 12%
Code errors 245 44% 67% 3 1%

Correct exercises 120 21% 33%
Total 562 100%

of various parameters. The experiment aimed to generate exercises with several paramet-
ers including title, difficulty level, context, task description, input and output details, an
example, the language used for the solution, the solution code itself, and five input/output
tests. Moreover, parameters such as title, context, etc., were required in multiple languages:
Portuguese, English, Italian, and Polish. The objective was to use the GPT API to automat-
ically generate these exercises, verify their correctness, and convert them into the YAPExIL
format [16], making them suitable for further integration into AuthorKit.

The main challenges in this process involved getting consistent responses for automatic
conversion and testing, as well as ensuring the correctness of the programming exercises.
Several different approaches were initially attempted, such as simply asking for the exercise
with the desired information or requesting separation with “;”, among others. All these
attempts faced the issue of GPT providing inconsistent responses, with changing field keys
and sometimes breaking the requested format. Finally, it was decided to request the responses
in JSON format, providing an example within the prompt. Thus, each prompt included a
description of the required parameters and an example of a response in JSON format. Once
the exercises were received, the JSON format was validated. If the format was valid, the
solution code was tested with the input and output tests. Therefore in the process, two types
of errors could occur: a JSON error, as illustrated in Listing 1, indicating a problem with
the format, or a code error, as shown in Listing 2, arising from issues in the solution code
or failure of a test case. When one of these errors occurred, a response was sent to GPT
describing the error and requesting a fixed exercise. This process is showcased in Figure 1.
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Figure 1 Process of the experiment.
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Table 1 displays the results of achieving 120 correct programming exercises, including
the number of JSON and code errors, as well as those that were resolved. To arrive at 120
accurate exercises, a total of 562 were generated, indicating that only 21% of the exercises
were correct. 199 exercises, accounting for 35% of the total generated, encountered JSON
Errors, of which 12% were rectified upon consulting GPT. Furthermore, 245 exercises, which
represent 44% of the total, failed due to errors in a test case or the solution code. Only 3
of these could be corrected. It is important to note that a code error can only be detected
if the JSON format is valid. This means that out of the 363 exercises with a valid JSON
format, 245 had a code error, translating to 67%. The consistency of parameters such as title,
solution, task, etc., was manually verified across most generated exercises, and no significant
discrepancies were found.

Some limitations of the experiment included the use of GPT version 3.5; it is possible
that version 4.0 might have delivered better results. The reason behind choosing GPT 3.5
was that when the experiment was conducted, GPT 4.0 was relatively new and associated
with a higher cost. Furthermore, at that time, there were no other well-known generative AI
options with an API to choose from. Additionally, generating the parameters step-by-step
could have potentially enhanced GPT’s capabilities, but this approach was not chosen due
to the API’s limitation of three requests per minute [7, 21]. Not assigning a specific role to
GPT in the prompts, which is often suggested to improve outcomes, was another constraint.
Furthermore, the generation of numerous parameters and the extensive size of the prompts
might have negatively impacted the results.

Listing 1 Example of generated exercise with a JSON Error (missing brackets at the end).
{
"title ":{" english ":" FizzBuzz problem with a twist", ...} ,
...
"task ":{" english ":" Write a function that given n, prints the

FizzBuzzBang output from 1 to n", ...} ,
...
" solution_code ":"..." ,
"tests ":[... , {" input ":"1" , " output ":"1"}

Despite these limitations, the results highlight a challenge with GPT in generating valid
JSON formats using the chosen method. Similar issues with JSON formats have been
reported by other programmers in community forums [9]. The findings also underscore
GPT’s limitations in creating completely accurate programming exercises. With a general
code error rate of 44%, and 67% when considering only exercises with valid formats, the
experiment clearly demonstrates these constraints. However, it is worth noting that in many
code error instances, the overall exercise was correct; often, only one or two test cases were
slightly off, sometimes due to interpretation issues. For instance, in tasks asking for the
maximum word length in a string, there were discrepancies in whether a comma was counted
to the word before or not. In the solution code, GPT generated a code that counted a comma
with the word before, however, in the test case, it interpreted it contrarily.

4 Authoring Tools

GPT was integrated into Agni [20], a web-based platform designed for learning and teaching
JavaScript, to assist teachers in creating programming exercises. However, some changes
were made from the previous experience to improve the results. The approach of Joseph
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Listing 2 Example of generated exercise with a Code Error (first test case).
{
"task ":{" english ":" Create a function that receives a sentence and

returns the largest word in it. If there are multiple words with
the same length , return the first one in the sentence .", ...} ,

...
" solution_code ":

"def largest_word ( sentence ):
words = sentence .split ()
largest = ’’
for word in words:

if len(word) > len( largest ):
largest = word\n return largest ",

"tests ":[
{" input ":" Hello , world !", " output ": "world "},
{" input ":" What is your profession ?", " output ": " profession ?"},
{" input ":" Mathematics isn ’t a sport .", " output ": " Mathematics "},
...]

}

Martinez [12] was followed to include a JSON schema as a parameter in the API prompt. This
clearly improved the consistency of the responses with no further JSON errors detected. Also,
GPT was instructed to take the role of a teacher to help create programming exercises for
JavaScript. Another distinction from the experiment was the demand for viewer parameters
in Agni, accommodating requests for exercise titles, statements, solution codes, and corner
test cases with input and expected output. The version of GPT, namely GPT-3.5, was kept.

Figure 2 Interface of Agni with the Chat GPT Chatbot.

To provide users with an interactive experience and considering broader future use cases
with AI, a chatbot-like feature was incorporated, as shown in its usage in Figure 2. In the
early stages, this feature does not provide a direct conversation with ChatGPT but serves as
a means to input data to generate exercises. This “bot”, accessible during the editing process
of a lesson, notifies authors of potential inaccuracies in the exercises, which can occur despite
improvements made from previous experiments. It then prompts users to specify the number
and topic of exercises they wish to create. A request is sent to the OpenAI API to create the
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specified number of programming exercises on the desired topic. The received exercises are
then automatically validated in JSON format using the Ajv JSON Schema validator. If valid,
they are presented in a pop-up displaying key information such as the title and statement.
Within this pop-up, authors can request the generation of three additional exercises and
select those to be included in the current lesson. Upon selecting the exercises and clicking
the button to add them, they are added to the current lesson. The evaluation of the test
cases and the solution is not performed in this feature because, in the previous experiment,
many code errors occurred when only one or two out of five test cases failed due to minor
issues. Therefore, it was deemed more effective to keep all exercises, as those with errors can
be easily corrected. After adding the exercises, when a teacher enters one of the generated
ones, the solution code with its test cases is run showcasing visually to the teacher which of
the tests fail or pass.

This refined approach resolved the formatting challenges of the initial experiment, offering
a robust tool to aid teachers in authoring programming exercises.

5 Ongoing and Future Work

This paper presented an experiment on creating programming exercises using the OpenAI
API, highlighting its difficulties in generating valid JSON formats and producing sample
solutions with correct test cases. In the experiment, 67% of the correctly formatted exercises
contained a code error, indicating that a test case failed when running the provided solution.
However, it is important to note that often it was only one out of five test cases that failed,
sometimes due to an interpretation issue of the exercise. A refined feature to assist teachers in
generating programming exercises was then integrated into Agni. To address the formatting
issues, a different approach was adopted, which involved providing a JSON schema in the
prompt to the OpenAI API. However, challenges with the solutions and test cases persisted,
which is why the feature is considered an assistant rather than an automatic generator.

Despite the stated challenges, the feature still offers potential gains in the speed of creating
new programming exercises. Consequently, a questionnaire and survey are being conducted
where evaluators have to create programming exercises using Agni, both with and without
the help of GPT. The evaluators are recording their time and then responding to follow-up
questions about their opinions on the quality and efficiency of using GPT compared to not
using it.

After collecting a substantial number of responses, the data will be analyzed to understand
the teachers’ opinions on this tool and whether a significant reduction in time was observed.
We expect these findings to provide insights into how teachers perceive generative AI features
and to help to improve current and potentially future features.
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