
An Experience with Adaptive Formative
Assessment for Motivating Novices in Introductory
Programming Learning
Jagadeeswaran Thangaraj #

School of Computing, Dublin City University, Ireland

Monica Ward #

School of Computing, Dublin City University, Ireland

Fiona O’Riordan #

CCT College, Dublin, Ireland

Abstract
This study presents empirical research that uses adaptive formative assessment framework in addition
to traditional lectures to motivate novice students in an introductory programming course. The
primary goal of this work is to provide guidance for the creation of adaptive formative assessments
in Python programming language to inspire novice students. The experiment is based on lessons
learned from the literature and pedagogical theories that support learning through assessment and
scaffolding. This study investigates how the experiment helped the novices, whether it increased
their confidence, whether it assisted in identifying and correcting common errors, and whether it
covered the material on learning modular programming components. It report on extensive survey
results of over 265 attempts of 90 students taking CS1 (introductory programming) that included
five quizzes covering fundamental concepts. The students responded favorably to the experiment,
and results are also included.

2012 ACM Subject Classification Applied computing → Education; Social and professional topics
→ Computing education; Social and professional topics → Student assessment

Keywords and phrases Assessment and feedback, Computer programming, CS1, Formative assess-
ment, Introductory programming, Novice students

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.6

Funding I want to thank the research committee of School of Computing at Dublin City University
(DCU) for funding this research project.

1 Introduction

Any course in a higher education institution worldwide that is concerned with software
development requires programming modules. By introducing syntax and semantics, these
modules aim to impart fundamental knowledge of programming languages. These modules
are crucial for students to feel confident in their study in Computer Science (CS). Students
who are learning their introductory programming must also become familiar with the often-
hard syntax of the language, numerous data types and its operations, the effects of various
statements on variables, and control flow. Novice programmers are those taking their first
computer programming courses or those with no prior programming experience. E.g. First
year computer science degree students, second level students such as junior or senior cycle
years. Independent components of programming will increase the difficulties of novices in
learning programming [23]. There are a number of activities introduced to motivate novice
students in programming modules in addition to traditional lecture and practical sessions.
The recommended pedagogical activities are pair programming, peer instructions, live coding,
collaborative learning and assessment and feedback systems [7, 30].

© Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 6; pp. 6:1–6:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jagadeeswaran.Thangaraj2@mail.dcu.ie
https://orcid.org/0000-0002-2721-0898
mailto:Monica.Ward@dcu.ie
https://orcid.org/0000-0001-7327-1395
mailto:fiona@cct.ie
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 An Experience with Adaptive Formative Assessment

Every lecture in the classroom is given by a lecturer and includes exposition lectures, live
coding to solve practical problems in real time and practical exercises using programming
languages in lab sessions. The traditional lecture session occupied the majority of the practice.
Also, students felt frustrated that they had to repeatedly go over concepts in lab session
from they had already learned in lecture [4]. Furthermore, it does not help students to grasp
fundamental ideas. Conversely, they found the live coding and practical portion especially
enjoyable since it allowed the students to witness the theories and concepts being used to
build a program [25]. However, novice students are unable to interpret program code and
have a lack of understanding of individual elements of programming due to their lack of
programming experience [24]. The assessment system of programming helps in this scenario
as it is an essential component of education that promotes learning [26]. Formative assessment
is one of the approaches for effective programming learning that aims to increase student
understanding and learning by providing feedback on students’ submissions [23]. Taking
this into consideration, this research created a formative assessment framework that aims at
increasing students’ confidence by familiarising novice students with independent components
of programming. As an expansion of our earlier research [32], this paper explores the
development of a formative assessment framework for this purpose, describes the experiment,
and offers insights into its performance and future directions.

2 Exploring Formative Assessments’ Potential to Improve
Programming Learning

One strategy for efficient programming learning is formative assessment including feedback
[31]. Formative feedback is information provided to a learner with the intention of altering
their behavior or way of thinking to improve learning [27]. Formative feedback gives
teachers the chance to personalize their responses, motivate student interest, gather data on
each student’s progress, encourage reflective thought, and encourage self-directed learning
[33, 21]. Therefore, formative assessment refers to routine, interactive evaluations of student
development and comprehension that are used in educational settings to identify learning
needs and adapt training [15].

2.1 Enhancing Programming skills through Learning from Errors

When writing programs, both novice and experienced programmers make errors – just not
to the same extent. Different kinds of errors demotivate novices to engage in learning to
program. Error detection and correction play a central role in programming learning: it is
an essential cognitive and pedagogical component of learning to program [20]. Programming
errors can appear in a variety of forms such as syntax and logical errors [6, 3, 2]. A program
error that breaks language conventions and stops execution is known as a syntax error [3].
When a syntax error occurs in a compiled language, the compiler will usually produce an
error message that points to the incorrect program lines. Most of the time, program compilers
provide information on the kind and location of syntax errors. Compiler error messages
can also be used to identify and fix syntax and semantic errors during program compilation
or execution. However, for novice programmers, these error messages can occasionally be
difficult to understand and make them confused [5]. Therefore, some research suggested
improving error messages to make them easier to interpret and understand [10, 8]. They
demonstrated that these enhancement messages were more useful than compiler messages for
figuring out common syntax and semantic errors [5, 8].

J. Thangaraj, M. Ward, and F. O’Riordan 6:3

In addition, students suffer more with logical errors than syntax errors [3]. There are
three possible explanations for these logical mistakes: Algorithm, misunderstanding, and false
information [12]. Another factor, called “Programmer misconception”, contributes to the
misunderstanding of control flow in logic that led to the erroneous code [18]. As a result, the
code can deliver inaccurate results. It is also quite challenging to identify and correct logical
errors. Various studies have identified common logical errors that people make frequently and
offered suggestions for how to avoid them [3, 12]. Thus, helping students understand their
programming errors is another effective technique to teach them programming, as mistakes
are an incredible means of instruction for programming courses [14, 36]. Therefore, our
goal is to familiarise students with these types of errors ahead to make it easier for them to
understand. It enables students to comprehend the common code errors they make as well
as compiler error messages.

2.2 Enhancing Formative assessment with adaptive strategy
Assessments that are customized to each student individually based on their responses to
previous test items are referred to as adaptive assessments [22]. Students who complete
adaptive assessments have their ability level determined by the answers they provide; the
most illuminating problems are then shown to the students to measure their abilities more
accurately [13]. When taking an adaptive assessment, every student will experience it
differently from another [34]. In a traditional assessment, every student works on the same
set of tasks with varying degrees of difficulty. Students can work on the predetermined
tasks in any sequence because they are predetermined. On the other hand, in an adaptive
assessment, every student works on a customised set of tasks since the questions are chosen
by an algorithm that considers the answers that each student has previously provided.
Therefore, it varies from traditional assessment in that each participant is asked a separate
set of questions rather than all the same ones [34]. As a result, students work on different
questions that take different amounts of time to complete [13]. The system chooses the next
test from a pool of available tests based on the the students’ performance [35].

2.3 Encouraging Learning and Proficiency in programming through
Adaptive Formative assessment

The process of learning programming involves starting from beginning and using a completion
method, such as changing or finishing program code [4]. When it comes to cognitive skills,
programming is more advanced than rote memorisation; to complete programming activities,
students must grasp particular concepts and understand how to apply them together [35].
Self-efficacy of students can be used to adaptively generate assessments that are customised
to each student in terms of question difficulty, assessment length, and question types (e.g.,
multiple choice, fill-in-the-blank, or short response) [35]. An answer key and a number of
choices make up the two components of a multiple-choice question (MCQ) [1]. A query or a
remark is typically made by the stem. To proceed with the stem, the learner must choose the
best or accurate option. MCQs are insufficient for evaluating a student’s coding proficiency
in programming modules since they do not encourage learners to write their own code, even
when they are at an advanced level. The ability to retain programming concepts and increase
engagement, however, can be useful. The assessment length and question difficulty can also
be modified. Using adaptive assessment, which organizes a collection of questions into three
cognitive levels according to complexity (easy, moderate, and difficult), adaptive formative
assessment evaluates students’ knowledge in programming courses [9]. Consequently, rather
than supplying resources that are universally applicable, adaptive assessment systems could
customize instruction and evaluation by considering each student’s uniqueness.

ICPEC 2024

6:4 An Experience with Adaptive Formative Assessment

Table 1 An example question with answer choices and accompanying feedback.

Question Choices Feedback
What will be the output
of following code?

var = “computer”
print(var[5::1])

computer Incorrect! It prints a range of items starting from
index 5 with step 1. [ter]

ter Correct! print(var[5 :: 1]) - it prints a range
of items starting from index 5 with step 1. [ter]

compu Incorrect! if the index is “0” print(var[0::1]),
then it prints compu.

u Incorrect! if the index is “5” print(var[5]) ,
then it prints u.

2.4 Research Questions
This study intends to investigate the scaffolding and support that formative assessment
quizzes might provide for students learning to program. Using the adaptive formative
assessment quizzes, this study will particularly investigate the following research questions.
RQ-1: Does formative assessment help to build self-confidence in novice programmers in

learning basic concepts of programming?
RQ-2: Does formative assessment help to understand and correct the errors in order to

improve their programming skills?
RQ-3: Does formative assessment help novices effectively learn the independent components

of programming concepts?

3 Development of Adaptive Formative Assessment Framework

This study has led us to create formative assessment quizzes to introduce common pro-
gramming errors. These quizzes are an excellent method to increase student confidence and
introduce more frequent errors while programming. We have a list of questions with various
answers in these quizzes. As they offer feedback for each selection, these quizzes assist in
fostering their learning. While the wrong answer feedback helps them locate the appropriate
response, the right answer feedback acknowledges their responses. Students can learn from
their incorrect responses and determine the correct response. As a result, it is a system
that progresses and aids in their ability to learn from mistakes. This study examines if the
formative assessment increases participants’ confidence in their capacity to understand the
fundamental ideas behind programming. They assist students in comprehending the common
code errors they make as well as compiler error messages.

3.1 Quiz Implementation
Google Forms is utilized to implement the quizzes because, according to [11], it can be
an effective tool for formative assessment and for promoting active learning. Furthermore,
integration with all learning management systems is possible. Each quiz aims to educate
students about common code errors they made when studying the assigned topics. A sample
question is shown in Table 1. Feedback will be given to students for each potential response,
which will help them better comprehend the errors and help them to understand easily as
shown in Table 1. Feedback are customised messages that are similar to enhanced error
messages [5]. Every incorrect reaction offers advice on how to respond. Students can select
the best alternative based on the feedback.

J. Thangaraj, M. Ward, and F. O’Riordan 6:5

3.2 Adaptive Approach

Difficulty levels have been added to learning objects in the model. These learning objects
could be topics, questions, a variety of errors. The goals relate to questions with varying
degrees of difficulty. Difficulties in programming are classified as Bloom’s taxonomy of
programming [29]. In this model, we classified a list of questions in three cognitive levels
based on the complexity (like easy, moderate, and difficult) [17]. Here easy questions assess
the basic concepts, moderate questions assess comprehensive knowledge and difficult questions
do the applications of the knowledge [34]. If a student successfully responds to a moderate
question on this assessment, the subsequent question is hard. If not, the easy questions will
be asked as indicated in Figure 1. It goes on until the system forecasts the competency level
of the students [28]. A sample classification is described as Table 2.

Figure 1 Adaptive approach.

Table 2 Summary of print statement question in adaptive model.

Purpose Difficulty low Difficulty moder-
ate

Difficulty high Summary

String notation
and character
traverse

var = ’Amazon’
print(var[4])

var = ’Computer’
print(var[5 :: 1])

var = ’Python’
print(var[4 :: -1])

var = ’James
Bond’ print(var)
print(var[3])
print(var[5 :: 1])
print(var[5 :: -1])

ICPEC 2024

6:6 An Experience with Adaptive Formative Assessment

3.3 Questions Development
Python is an established programming language that is utilized in introductory programming
courses due to its convenience and syntactical simplicity [16]. Variables, operators, condition-
als, loops, and functions were all covered in the introductory programming course. We created
quizzes corresponding with these topics that familiarise modular parts of programming. Each
question intends to introduce some of the most common errors made by novices [3, 36].
Details of the questions are shown in Table 3. Quiz topics included syntax errors, logical
errors, and common misconceptions among novice students [2, 12, 18]. Every quiz has at
least five questions of a moderate difficulty. Depending on the responses, the question moves
automatically from a moderate level to a high level or low level as shown in Figure 1. It goes
to a summary question that describes the relevant concept to provide proficiency level if they
are unable to respond to all of the questions. With the help of the lecturer, we conducted
these quizzes periodically during teaching sessions to build novice’s confidence as well as to
capture their barriers in programming.

Table 3 Summary of questions of each quiz.

Quiz
no

Topic Modular parts Objectives

1 Print &
operators

Print statement Familiarising syntax errors in print statement
Arithmetic operators Familiarising syntax errors in arithmetic expres-

sions
Assignment operator Familiarising syntax errors in assignment

2
Variables,
input &
operations

Input function Familiarising variables and type conversion when
read a value from keyboard

Operators & precedence Familiarising operators & precedence in expres-
sions

Higher arithmetic operator Familiarising higher precedence arithmetic operat-
ors (%, //, **)

3 If/Else
statements

The if/elif/else structure
with comparative operators

Familiarising if/else process & comparative oper-
ators

Operators & precedence Familiarising comparative expression using AND,
OR, NOT

Errors in If/else Familiarising syntax error & indentation error in
assignment

4 While
loop

While loop process Introducing while loop elements, process before or
after increment or decrement

Introducing multiple while
loops & infinitive executions

Familiarising multiple loops and syntax errors &
Non-terminating loops

Mixed loops Familiarising multiple loops (while & if/else) &
Syntax or logical errors

5 Strings &
Functions

String representation Familiarising different string array representations
Functions Familiarising values passing to parameters & syn-

tax errors
Global & Local variables in
function

Familiarising logical errors in assignment of global
or local variables

4 Research Methodological paradigm

This research combines both qualitative and quantitative elements. This instance is con-
strained by the CS1 module during the academic year 2023-24, and different student cohorts
of first year undergraduate Computer Science students. In quantitative research, the interven-

J. Thangaraj, M. Ward, and F. O’Riordan 6:7

tion technique is used to address reliability and validity. A brief, voluntary, anonymous survey
is used in conjunction with formative assessment to gain insight of students perceptions on
how they perceived and experienced it. It also includes qualitative elements and makes use
of a range of data sources and data collection methods. It was conducted via an anonymous
“Google forms” questionnaire.

4.1 The Population

The University’s Introductory programming modules provided the data for this investigation.
The data includes 267 students’ programming quiz attempts that they submitted at the end
of each quiz session. Some students attempted many surveys, in relation to the total number
of quiz attempts. These participants were from non-CS major course.

4.2 Data collection strategies

Data was gathered using a survey consisting of both closed-ended and open-ended questions
to obtain both qualitative and quantitative data [19]. In addition to traditional teaching and
practical sessions, regular quizzes were provided during the study periods. This gave the
chance to take quizzes and consider what they had learned. For this study, a short optional
and anonymous survey was employed to get an idea of how learners viewed and experienced
the quizzes for introductory programming at the end of each quiz. At the end of each quiz,
we conducted a survey about how it effectively helped them to learn programming. The
respondents were questioned about how they felt about formative assessment quizzes of each
programming topic. Open-ended questions for qualitative data and closed-ended Likert scale
questions for quantitative data were both used in the survey form. The Likert scale had five
possible scores: strongly disagree, disagree, neutral, agree, and strongly agree. The surveys
provide both quantitative and qualitative information about the effects of this intervention
and perceptions about the use of formative assessment in learning programming. The student
questionnaires and their reflective writing assignments provide the qualitative data. Every
piece of qualitative data is anonymous.

5 Results & Discussion

In order to collect more thorough data for analysis, this study gave students quizzes at
regular intervals. Each quiz contained survey questions in addition to other quiz questions.
Following an intervention survey, all analysis was completed.

Table 4 Post Survey Likert Questions 1 and 2 (N=265).

Question Strongly
Dis-
agree:1

Disagree:2 Neutral:3 Agree:4 Strongly
Agree:5

Mean SD

Do these quizzes increase
your self-confidence in
learning programming?

17 31 72 86 59 3.52 1.14

Do these quizzes help to
understand and correct
errors in Python?

16 29 58 94 68 3.64 1.15

ICPEC 2024

6:8 An Experience with Adaptive Formative Assessment

Figure 2 Overall feedback on self-confidence. Figure 3 Overall feedback on understanding
& correcting errors.

5.1 RQ-1: Increasing self-confidence
To answer the RQ-1, it included a Likert question, “Do these quizzes increase your self-
confidence in learning programming?”, at the end of the quizzes. The responses ranged
from ’Strongly disagree’ to ’Strongly agree’. The whole survey data results are presented
in Table 4. It offers a thorough understanding of the students’ feelings regarding their
level of self-confidence in handling these quizzes. Responses for ’Strongly agree’ and ’Agree’
(≈55%) were higher than ‘Disagree’ part (≈18%) as shown in Figure 2. As a result, this
study discovered that the adaptive formative assessment quizzes helped them increase their
self-confidence.

5.2 RQ-2: Understand & Correct the errors
This study asked, “Do these quizzes help to understand and correct errors in Python?”. The
responses ranged from ’Strongly disagree’ to ’Strongly agree’. The whole survey data results
are presented in Table 4. Huge responses (≈61%) were received as ’Agree’ as a result as in
Figure 3. Their responses for these two questions show a clear shift from their post-quizzes
average of 3.52 to an average of 3.64 (with less volatility) as shown in Table 4. These
results indicate that the adaptive formative assessment quizzes helped them comprehend the
common programming errors.

5.3 RQ-3: Students’ perception on learning modular parts
This study asked, “Do these quizzes help to better understand basic concepts of Python
language?”. The responses were ’Yes’, ’May be’ and ’No’. The result is presented in Table 5.
Huge responses (≈68%) were received as ’Yes’ as a result as shown in Figure 4. Based on
the surveys, it demonstrates that the novice students believe the quizzes assisted in grasping
fundamental programming principles and significantly increased students’ confidence in
learning programming after attending. This study also asked, “Is the feedback you receive
for each question helpful in finding the correct answers and understanding errors?”. The
responses were ’Yes’, ’May be’ and ’No’. These responses were also highly positive as shown
in Table 5.

Quantitative data alone does not provide the full picture of the learning experience. Find-
ing out what students think and feel about formative assessment as a computer programming
learning activity is critical. According to sentimental analysis, they delighted in gaining
knowledge by taking quizzes in various models and they also valued these quizzes for various
reasons as stated in the comments below.

J. Thangaraj, M. Ward, and F. O’Riordan 6:9

Table 5 Post Survey Likert Question 3 (N=267).

Question No: 1 May be: 2 Yes: 3 Mean SD
Do these quizzes help to better un-
derstand basic concepts of Python
language?

40 45 182 2.53 0.74

Is the feedback you receive for each
question helpful in finding the cor-
rect answers and understanding er-
rors?

43 39 185 2.52 0.76

Figure 4 Overall feedback on understanding
basic concepts.

Figure 5 The correct answer frequency (in %)
of difficult levels during the quiz attempts.

...It introduced me to new elements of python...made me realise what i didn’t know...was
good to refresh my brain...very helpful exercises...I think they are much better than the way
the lectures are being taught...It helped to recall... Maybe do the quizzes in the lectures to
fully understand what is being taught...

Responses for understanding modular concepts (M = 2.53, SD = 0.74) out of four
questions were given a higher weight than other responses with a small effect size as shown
in Table 5. It is evident from their feedback that these quizzes enabled them to review their
programming expertise and make necessary revisions. Some students claimed that taking
the quizzes had taught them some new material.

5.4 Low vs Moderate vs High – Difficulty levels
The frequency of correct responses to questions at varying degrees of difficulty is shown by the
outcome chart that we have plotted in Figure 5. It demonstrates that the majority (≈81%)
of students correctly answer questions at a moderate difficulty level. On the other hand,
students who attempt questions with low difficulty levels tend to give less (≈70%) correct
answers. Additionally, students who tackle highly difficult questions give more (≈80%) correct
answers. Eventually, students get more detailed feedback to their summary questions, which
helps them understand the modular parts of programming better. Moreover, it demonstrates
that adaptive formative assessments helped them understand the basic concepts better.

6 Conclusion and Future Work

The experience presented in this paper describes the use of adaptive formative assessment in
introductory programming to help novice students overcome the challenges of learning to
program, particularly in identifying and understanding more frequent errors. The results

ICPEC 2024

6:10 An Experience with Adaptive Formative Assessment

are clearly confirming that this approach helped novice students become more confident in
programming and dispel some of the misconceptions surrounding it. As a conclusion, we
argue that adaptive formative assessment quizzes motivate students to evaluate and learn
from their mistakes, which in turn encourages them to learn computer programming. It can
be a viable teaching and learning tool for computer programming. The reflection makes it
easier to comprehend the basic concepts. The students claim that learning through formative
assessment quizzes has improved their comprehension and increased their confidence in
learning programming. They also claim to be satisfied and indicate that they would repeat
this teaching technique again, as evidenced by their high level of loyalty. This study will
further investigate whether the adaptive formative assessment quizzes could help novice
students learn more effectively in other programming languages. Consequently, we intend to
incorporate this technique into other languages like Irish, Portuguese and Spanish.

References
1 Pedro Henriques Abreu, Daniel Castro Silva, and Anabela Gomes. Multiple-choice questions

in programming courses: Can we use them and are students motivated by them? ACM
Transactions on Computing Education (TOCE), 19(1):1–16, 2018.

2 Alireza Ahadi, Raymond Lister, Shahil Lal, and Arto Hellas. Learning programming, syntax
errors and institution-specific factors. In Proceedings of the 20th Australasian Computing
Education Conference, ACE ’18, pages 90–96, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3160489.3160490.

3 Nabeel Alzahrani and Frank Vahid. Common logic errors for programming learners: A three-
decade literature survey. In 2021 ASEE Virtual Annual Conference Content Access, Virtual
Conference, July 2021. ASEE Conferences. URL: https://peer.asee.org/36814.

4 Zahra Atiq and Michael Loui. A qualitative study of emotions experienced by first-year
engineering students during programming tasks. ACM Transactions on Computing Education,
22, March 2022. doi:10.1145/3507696.

5 Brett Becker, Graham Glanville, Ricardo Iwashima, Claire Mcdonnell, Kyle Goslin, and
Catherine Mooney. Effective compiler error message enhancement for novice programming
students. Computer Science Education, pages 1–28, September 2016. doi:10.1080/08993408.
2016.1225464.

6 Anat Ben-Yaacov and Arnon Hershkovitz. Types of errors in block programming: Driven by
learner, learning environment. Journal of Educational Computing Research, 61(1):178–207,
2023. doi:10.1177/07356331221102312.

7 Neil C. C. Brown and Greg Wilson. Ten quick tips for teaching programming. PLOS
Computational Biology, 14(4):1–8, April 2018. doi:10.1371/journal.pcbi.1006023.

8 Tessa Charles and Carl Gwilliam. The effect of automated error message feedback on
undergraduate physics students learning python: Reducing anxiety and building confid-
ence. Journal for STEM Education Research, 6(2):326–357, August 2023. doi:10.1007/
s41979-022-00084-4.

9 Dimitra Chatzopoulou and Anastasios Economides. Adaptive assessment of student’s knowledge
in programming courses. J. Comp. Assisted Learning, 26:258–269, August 2010. doi:10.1111/
j.1365-2729.2010.00363.x.

10 Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C
Albrecht, and Garrett B. Powell. On designing programming error messages for novices:
Readability and its constituent factors. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3411764.3445696.

11 Mireille Djenno, Glenda M. Insua, and Annie Pho. From paper to pixels: using google
forms for collaboration and assessment. Library Hi Tech News, 32(4):9–13, 2022. doi:
10.1108/LHTN-12-2014-0105.

https://doi.org/10.1145/3160489.3160490
https://peer.asee.org/36814
https://doi.org/10.1145/3507696
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1177/07356331221102312
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1007/s41979-022-00084-4
https://doi.org/10.1007/s41979-022-00084-4
https://doi.org/10.1111/j.1365-2729.2010.00363.x
https://doi.org/10.1111/j.1365-2729.2010.00363.x
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1108/LHTN-12-2014-0105
https://doi.org/10.1108/LHTN-12-2014-0105

J. Thangaraj, M. Ward, and F. O’Riordan 6:11

12 Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. Common logic errors made by novice
programmers. In Proceedings of the 20th Australasian Computing Education Conference,
ACE ’18, pages 83–89, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3160489.3160493.

13 Takayuki Goto, Kei Kano, and Takayuki Shiose. Students’ acceptance on computer-adaptive
testing for achievement assessment in japanese elementary and secondary school. Frontiers in
Education, 8, 2023. doi:10.3389/feduc.2023.1107341.

14 Heather J. Hoffman and Angelo F. Elmi. Do students learn more from erroneous code?
exploring student performance and satisfaction in an error-free versus an error-full sasÂ®
programming environment. Journal of Statistics and Data Science Education, 29(3):228–240,
2021. doi:10.1080/26939169.2021.1967229.

15 Seyed M. Ismail, D. R. Rahul, Indrajit Patra, and Ehsan Rezvani. Formative vs. summative
assessment: impacts on academic motivation, attitude toward learning, test anxiety, and self-
regulation skill. Language Testing in Asia, 12(1):40, 2022. doi:10.1186/s40468-022-00191-4.

16 Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. Analysis of student miscon-
ceptions using python as an introductory programming language. In Proceedings of the 4th
Conference on Computing Education Practice, CEP ’20, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3372356.3372360.

17 Fatima Ezzahraa Louhab, Ayoub Bahnasse, and Mohamed Talea. Towards an adaptive
formative assessment in context-aware mobile learning. Procedia Computer Science, 135:441–
448, 2018. The 3rd International Conference on Computer Science and Computational
Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life.
doi:10.1016/j.procs.2018.08.195.

18 Davin Mccall and Michael Kölling. Meaningful categorisation of novice programmer errors.
In Proceedings - Frontiers in Education Conference, FIE, volume 2015, October 2014. doi:
10.1109/FIE.2014.7044420.

19 Donna Mertens. Research and Evaluation in Education and Psychology: Integrating Diversity
with Quantitative, Qualitative, and Mixed Methods 5th edition. SAGE Publications, Inc, June
2019.

20 Anastasia Misirli and Vassilis Komis. Computational thinking in early childhood education:
The impact of programming a tangible robot on developing debugging knowledge. Early
Childhood Research Quarterly, 65:139–158, 2023. doi:10.1016/j.ecresq.2023.05.014.

21 Gunilla Näsström, Catarina Andersson, Carina Granberg, Torulf Palm, and Björn Palmberg.
Changes in student motivation and teacher decision making when implementing a formative
assessment practice. Frontiers in Education, 6, 2021. doi:10.3389/feduc.2021.616216.

22 Elena Papanastasiou. Adaptive Assessment, pages 1–2. Springer Netherlands, Dordrecht, 2021.
doi:10.1007/978-94-007-6165-0_3-4.

23 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

24 Sjaak Smetsers Renske Weeda and Erik Barendsen. Unraveling novices’ code composition
difficulties. Computer Science Education, 0(0):1–28, 2023. doi:10.1080/08993408.2023.
2169067.

25 Anders Schlichtkrull. An experience with and reflections on live coding with active learning.
In International Computer Programming Education Conference, 2023. URL: https://api.
semanticscholar.org/CorpusID:260777639.

26 Nicole Shanley, Florence Martin, Nicole Collins, Manuel Perez-Quinones, Lynn Ahlgrim-
Delzell, David Pugalee, and Ellen Hart. Teaching programming online: Design, facilitation
and assessment strategies and recommendations for high school teachers. TechTrends, 66,
April 2022. doi:10.1007/s11528-022-00724-x.

27 Valerie J. Shute. Focus on formative feedback. Review of Educational Research, 78(1):153–189,
2008. doi:10.3102/0034654307313795.

ICPEC 2024

https://doi.org/10.1145/3160489.3160493
https://doi.org/10.3389/feduc.2023.1107341
https://doi.org/10.1080/26939169.2021.1967229
https://doi.org/10.1186/s40468-022-00191-4
https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1016/j.procs.2018.08.195
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1016/j.ecresq.2023.05.014
https://doi.org/10.3389/feduc.2021.616216
https://doi.org/10.1007/978-94-007-6165-0_3-4
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993408.2023.2169067
https://doi.org/10.1080/08993408.2023.2169067
https://api.semanticscholar.org/CorpusID:260777639
https://api.semanticscholar.org/CorpusID:260777639
https://doi.org/10.1007/s11528-022-00724-x
https://doi.org/10.3102/0034654307313795

6:12 An Experience with Adaptive Formative Assessment

28 E’loria Simon-Campbell and Julia Phelan. Effectiveness of an adaptive quizzing system as
a self-regulated study tool to improve nursing students’ learning. International Journal of
Nursing & Clinical Practices, 5, August 2018. doi:10.15344/2394-4978/2018/290.

29 Sonia Sobral. Bloom’s taxonomy to improve teaching-learning in introduction to programming.
International Journal of Information and Education Technology, 11:148–153, March 2021.
doi:10.18178/ijiet.2021.11.3.1504.

30 Sonia Sobral. Strategies on Teaching Introducing to Programming in Higher Education, pages
133–150. Springer, Cham, March 2021. doi:10.1007/978-3-030-72660-7_14.

31 Qing Sun, Ji Wu, Wenge Rong, and Wenbo Liu. Formative assessment of programming
language learning based on peer code review: Implementation and experience report. Tsinghua
Science and Technology, 24:423–434, August 2019. doi:10.26599/TST.2018.9010109.

32 Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan. The impact of using form-
ative assessment in introductory programming on teaching and learning. 10th International
Conference on Higher Education Advances (HEAd’24), Valencia, June 2024.

33 Fabienne S. Van der Kleij and Lenore Adie. Formative assessment and feedback using
information technology. Second Handbook of Information Technology in Primary and Secondary,
pages 601–615, 2018. doi:10.1007/978-3-319-71054-9.

34 Jill-Jênn Vie, Fabrice Popineau, Éric Bruillard, and Yolaine Bourda. A Review of Recent
Advances in Adaptive Assessment, volume 94, pages 113–142. Springer International Publishing,
February 2017. doi:10.1007/978-3-319-52977-6_4.

35 Albert C.M. Yang, Brendan Flanagan, and Hiroaki Ogata. Adaptive formative assessment
system based on computerized adaptive testing and the learning memory cycle for personalized
learning. Computers and Education: Artificial Intelligence, 3:100104, 2022. doi:10.1016/j.
caeai.2022.100104.

36 Zihe Zhou, Shijuan Wang, and Yizhou Qian. Learning from errors: Exploring the effectiveness
of enhanced error messages in learning to program. Frontiers in Psychology, 12, 2021. doi:
10.3389/fpsyg.2021.768962.

https://doi.org/10.15344/2394-4978/2018/290
https://doi.org/10.18178/ijiet.2021.11.3.1504
https://doi.org/10.1007/978-3-030-72660-7_14
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.1007/978-3-319-71054-9
https://doi.org/10.1007/978-3-319-52977-6_4
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.3389/fpsyg.2021.768962
https://doi.org/10.3389/fpsyg.2021.768962

	1 Introduction
	2 Exploring Formative Assessments' Potential to Improve Programming Learning
	2.1 Enhancing Programming skills through Learning from Errors
	2.2 Enhancing Formative assessment with adaptive strategy
	2.3 Encouraging Learning and Proficiency in programming through Adaptive Formative assessment
	2.4 Research Questions

	3 Development of Adaptive Formative Assessment Framework
	3.1 Quiz Implementation
	3.2 Adaptive Approach
	3.3 Questions Development

	4 Research Methodological paradigm
	4.1 The Population
	4.2 Data collection strategies

	5 Results & Discussion
	5.1 RQ-1: Increasing self-confidence
	5.2 RQ-2: Understand & Correct the errors
	5.3 RQ-3: Students' perception on learning modular parts
	5.4 Low vs Moderate vs High – Difficulty levels

	6 Conclusion and Future Work

