HW-Flow: A Multi-Abstraction Level HW-CNN
Codesign Pruning Methodology

Manoj-Rohit Vemparala &
BMW Autonomous Driving, Munich, Germany

Alexander Frickenstein &

BMW Autonomous Driving, Munich, Germany
Manfredi Camalleri &

BMW Autonomous Driving, Munich, Germany
Christian Unger &

BMW Autonomous Driving, Munich, Germany

Maurizio Martina &
Politecnico di Torino, Turin, Italy

Nael Fasfous &

Technical University of Munich, Munich, Germany

Emanuele Valpreda =

Politecnico di Torino, Turin, Italy

Qi Zhao =
BMW Autonomous Driving, Munich, Germany

Naveen-Shankar Nagaraja &
BMW Autonomous Driving, Munich, Germany

Walter Stechele =

Technical University of Munich, Munich, Germany

— Abstract
Convolutional neural networks (CNNs) have pro-
duced unprecedented accuracy for many computer
vision problems in the recent past. In power and
compute-constrained embedded platforms, deploy-
ing modern CNNs can present many challenges.
Most CNN architectures do not run in real-time
due to the high number of computational operations
involved during the inference phase. This empha-
sizes the role of CNN optimization techniques in
early design space exploration. To estimate their
efficacy in satisfying the target constraints, exist-
ing techniques are either hardware (HW) agnostic,
pseudo-HW-aware by considering parameter and
operation counts, or HW-aware through inflexible
hardware-in-the-loop (HIL) setups. In this work,

we introduce HW-Flow, a framework for optimizing
and exploring CNN models based on three levels
of hardware abstraction: Coarse, Mid and Fine.
Through these levels, CNN design and optimization
can be iteratively refined towards efficient execution
on the target hardware platform. We present HW-
Flow in the context of CNN pruning by augmenting
a reinforcement learning agent with key metrics
to understand the influence of its pruning actions
on the inference hardware. With 2x reduction in
energy and latency, we prune ResNet56, ResNet50,
and DeepLabv3 with minimal accuracy degrada-
tion on the CIFAR-10, ImageNet, and CityScapes
datasets, respectively.

2012 ACM Subject Classification Computing Methodologies — Artificial intelligence
Keywords and Phrases Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning

Digital Object Identifier 10.4230/LITES.8.1.3

Received 2020-12-15 Accepted 2021-09-05 Published 2022-11-16

Editor Samarjit Chakraborty and Qing Rao

Special Issue Special Issue on Embedded Systems for Computer Vision

1 Introduction

Convolutional neural networks (CNN) are widely used for solving problems like image classifica-
tion [13], semantic segmentation [3], object detection [45], complex autonomous driving tasks [2]
and medical diagnosis of brain tumors [28]. Having outperformed hard-coded algorithms on
challenging benchmarks such as ImageNet [30], CNNs also surpassed human-level accuracy. How-
ever, the computational complexity of these networks hampers their application in embedded
environments. Most accurate CNN models require up to hundreds of megabytes for parameter
storage [24] and billions of multiplications [32]. For instance, a ResNet-152 [13] trained on the
ImageNet dataset [30] requires up to 244MB of learned parameters to execute 517 layers, with
around 22 billions operations. Compression techniques have become an essential topic of research

© Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri,
Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele;
5v licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)
Leibniz Transactions on Embedded Systems, Vol. 8, Issue 1, Article No. 3, pp. 03:1-03:30

\\v Leibniz Transactions on Embedded Systems
LITES

Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:manoj-rohit.vemparala@bmw.de
https://orcid.org/0000-0001-8186-8319
mailto:nael.fasfous@tum.de
https://orcid.org/0000-0002-8081-7904
mailto:alexander.frickenstein@bmw.de
mailto:emanuele.valpreda@polito.it
https://orcid.org/0000-0002-1285-9360
mailto:manfredi.camalleri@bmw.de
https://orcid.org/0000-0002-7050-8980
mailto:qi.zhao@bmw.de
https://orcid.org/0000-0003-0944-8058
mailto:christian.unger@bmw.de
mailto:naveen-shankar.nagaraja@bmw.de
https://orcid.org/0000-0002-7608-1439
mailto:maurizio.martina@polito.it
https://orcid.org/0000-0002-3069-0319
mailto:walter.stechele@tum.de
https://orcid.org/0000-0002-7455-8483
https://doi.org/10.4230/LITES.8.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

03:2

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

for finding light-weight architectures capable of efficiently solving various deep learning tasks.
Despite the remarkable compression rates of existing pruning methods, conventional approaches
are either hardware (HW) agnostic, pseudo-HW-aware by considering proxies, or HW-aware
through inflexible hardware-in-the-loop (HIL) setups, which lead to vendor lock-ins.

In embedded applications such as autonomous driving and robotics, the design of neural
networks and the target HW accelerator goes hand in hand. During the early development phases,
it is likely that the target platform is not fully defined, the HW is not available, or compilers are
prone to errors, making a HIL-based approach challenging. Alternatively, proxy metrics, such as
parameter (Param) and operation (0P) counts, offer a detached yet loosely correlated indication of
hardware performance [1]. Reliance on proxy metrics oversimplifies the problem at hand and does
not always guarantee improvements in energy or latency when deployed on real hardware. Directly
choosing a hardware-platform restricts the CNN optimizer, and conversely, directly choosing the
compression technique may not match the hardware architectures being designed.

This circumstance calls for a HW-CNN codesign paradigm that guarantees synergies in
the process of deploying CNNs to real-world applications. This work aims to estimate the
implementation metrics at different abstraction levels through various hardware models and a
novel scheduler. This allows for either a top-down or a meet-in-the-middle codesign approach,
giving the designer the ability to gradually traverse through the design abstraction levels, while
permitting design space exploration and exploitation after each stage of refinement. With this
flexibility, the designer can analyze the impact of various CNN pruning configurations and HW
specific hyperparameters, without committing to a target hardware platform in the early design
phases. This ultimately leads to a platform-aware optimization technique, which improves energy
efficiency and/or latency at design time.

We remove the limitations of pure proxy and HIL-based neural network pruning and use a
reinforcement learning (RL) agent to prune filters by considering the estimates of the proposed
HW-Flow framework. With this method, we overcome the burden of wasting GPU-hours for
optimizing CNNs, which do not guarantee an efficiency gain for a target hardware platform.
We can assert that the decision of pruning rate for each layer is highly correlated to the target
hardware constraint and inference platform. The estimates generated for a HW platform can
directly influence which layers are pruned and to what extent. They also help the CNN designer
understand which scheduling schemes and hardware dimensions are necessary to have a reasonable
pruning rate/burden, to match the target application constraints. The contributions of this work
can be summarized as follows:

We introduce HW-Flow, a framework for optimizing and exploring CNN models based on three
hardware abstraction levels, Coarse | Mid | Fine, by scheduling and mapping workloads onto
potential HW-architectures. With this approach, we model different HW platforms without
costly fabrication and explore the pruning potential of CNN models at each design phase.

We reduce the time required to produce an optimal schedule using analytical search approaches,
circumventing exhaustive and random sampling techniques used in literature.

We augment a state-of-the-art learning-based pruning agent [16] with rewards in the form
of model-based HW estimates (e.g., 0Ps, DRAM accesses, energy, and latency). Using this
information, the agent produces an optimal pruning strategy required to meet the target
constraints. We obtain different pruning configurations, which result in a 2x reduction of the
respective KPIs (Key Performance Indicators), with minimal accuracy degradation.

M-R. Vemparala et al.

2 Background

2.1 Convolutional Neural Networks

CNNs are deep neural networks which are well-suited for generating predictions based on multi-
dimensional, localized input feature spaces, e.g. image processing applications. The convolution
of an input activation A'~! with the convolution kernel W' produces an output feature map A’,
where each pixel of the feature map A can be computed as shown in equation 1.

Inp.Ch Kernel.dim
—

=
C; Ko Kn

- Cox Hox W,
Al [CO][hO] [’LUO] - Z ZZ a0i77lﬂo'8+kw,ho-s+kh ’ wio,ci,kw,khv where Al eR X Hox W, (1)
Ci kw kn

The input feature maps (Ifmaps) denoted by A'~! are composed of multiple channels C;
and spatial dimensions W, H;. To compute the convolution operation, the kernel of dimensions
K, x K}, slides across the input 2-D map with stride size s. A dot-product is performed between
¢ W' and a sub-set of pixels a'~' € A'"! from the input volume. The
dot-product accumulates the values across all input channels resulting in an output pixel. The

the kernel pixels w

convolution operation is the repetition of the aforementioned dot-product operation for the entire
Ifmap with C, filters, generating output feature maps (Ofmaps) Al € RWexHoxCo Successive
layers detect different features in the input image at different scales. The first layers are usually
responsible of recognizing simple shapes, edges and patterns, while complex features can be
detected at the deeper stages of the network. Fully Connected (FC) layers can be simplified
considered a special case of the convolution operation by setting W; = K,,, H; = K, W, = 1 and
H, = 1. These layers restrict weight reuse opportunities and demand high memory bandwidth
during the inference. CNNs have produced better predictions than humans on computer vision
applications such as image classification [13] and semantic segmentation [3] using supervised
ground truth labels.

Image Classification. Out of O possible classes, the input image is predicted based on the output
Y € RO. It is typical to translate the problem into predicting the probability of each possible
class given an input image, so that the output layer produces a vector with a fixed dimension of O.
Several CNN topologies were proposed in the last decade to solve the image classification problem,
dealing with different datasets such as CIFAR-10 [19] and ImageNet [30]. For instance, AlexNet
was introduced by Krizhevsky et al. [20] as the first CNN topology for classifying the ImageNet
dataset. The network consists of five convolutional layers, max-pooling layers, dropout layers and
three fully-connected layers, where the last one maps to a 1000-element vector representing the
number of possible classes for the ImageNet dataset. Other examples which followed in the next
years include VGG-16 [24], Inception-Net [33], ResNet [13] and EfficientNet [34].

Image Semantic Segmentation. Segmentation-based CNNs such as FCN [25] and DeepLab [3]
predict the class of each pixel in the input image from O possible categories. The semantic maps
are derived from the logits Y € RW*H*O with O probability values per pixel. The CNN topology
for this task follows an encoder-decoder architecture. The encoder network is a feature extractor
having a similar architecture as image classification CNNs and the decoder network is a set of
upsampling layers which restore the original image resolution in order to predict the pixel-wise
class output. FCN uses transpose convolution to upsample features whereas DeepLab uses the
bilinear upsampling method.

03:3

LITES

03:4

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

2.2 Reinforcement Learning

Reinforcement learning (RL) is an exploration-exploitation approach to optimize decisions based on
interactions with a dynamic environment [18]. The optimization problem is solved using an agent
which is connected to the considered environment via perception and action. The environment is
characterized by its state S which describes the relevant features for the decision making process.
At each step, the agent generates an action .4 which changes the state of the environment and
outputs a reinforcement signal or reward R describing the quality of this state transition. Given
a state and action space, the purpose is to find a policy which maps each state to the optimal
action, which maximizes the sum of future rewards. RL-based systems often balance a trade-off
between exploration and exploitation while predicting new actions. Exploitation is entirely based
on the knowledge acquired by the agent and predicts actions that maximize the expected return
value according to the gained experience. Exploration assumes that the current knowledge can be
further improved by exploring different actions.

Supervised learning and reinforcement learning differ from each other in two major aspects.
First, supervised learning is based on a set of data pairs where each input has a clearly defined
ground-truth label. This is not the case for RL where each input (action) generates an immediate
reward while the objective function is to maximize the sum of all future rewards. Second, RL
is typically deployed in an online manner, i.e. RL-based systems are evaluated and trained
concurrently to optimize the agent decisions for new input sequences. Deep Deterministic Policy
Gradient (DDPG) [23] is an RL technique that outputs continuous action using Q-Networks and
Actor-Critic based policy gradients. Here Q refers to the function which the algorithm predicts.
Reinforcement learning has been applied in several fields such as robotics, gaming, traffic light
control, and resource management systems [26, 39, 29]. In this work, we use a DDPG-based RL
agent in order to decide the optimal pruning configuration of CNNs.

3 Related Work

Based on the target optimization metrics, we classify pruning techniques into four categories:
HW-agnostic, pseudo-HW-aware, HIL-based, and HW-modeling-based pruning techniques, as
compared in Table 1. Additionally, we discuss HW-modeling works that compute the HW estimates
of CNN accelerators in literature.

HW:-agnostic Pruning. The advantages of pruning were investigated in early works such as
[6, 12]. Subsequent works determined the redundant weights based on an iterative method, without
considering any target hardware resource constraints, e.g. simple magnitude-based pruning [11].
Recently, He et al. [15] pruned redundant filters using a geometric median heuristic. However,
the efficiency term was limited to the pruning rate (PR), i.e., the ratio of pruned to total
parameters. The PR was set constant to all the layers, which does not capture the energy or
latency requirements of the target inference hardware. The work by Guo et al. [10], dynamically
pruned CNNs irregularly based on a saliency function during training to produce efficient networks.
Recently, Frickenstein et al. [9] proposed the auto-encoder-based low-rank filter-sharing technique
(ALF), which utilizes sparse auto-encoders to extract the most salient features of convolutional
layers, pruning redundant filters. The above works only target to compress the CNN model with
minimal accuracy degradation without considering the benefits on the target HW platform.

Pseudo HW-aware Pruning. The authors of [14] proposed structured channel pruning, where
the saliency of individual channels is determined through Lasso regression. The pruning ratio for
each layer is based on handcrafted heuristics which targets lower prozy metrics such as 0Ps and

M-R. Vemparala et al.

Params. In more recent works, automated pruning methods have gained popularity. Huang et
al. [17] trained layer-specific agents, which receive the kernel matrix as a state and produce actions
to prune exact filters. Contrary to [16], here the agent has a more complex task of learning the
features of a layer rather than simply its sparsity ratio. The agent’s reward is formulated using a
multi-objective cost function, which aims to find CNN models with both high accuracy and low
prozy metrics. Reward functions based on proxy metrics do not guarantee an improvement for HW
deployment, as we demonstrate in the following sections. The work in [36] identifies redundant
weights for different regularizations during the training process using a HW loss formulation. The
HW loss is limited to optimization of prory metrics.

HW-aware Pruning. As hardware platforms tend to be complex, the effects of arbitration, stalls,
etc., may be severely understated if hardware estimations purely rely on proxy metrics. By
considering real hardware metrics, hardware-in-the-loop (HIL) training frameworks have been used
to verify the advantages of CNN optimization techniques pragmatically [42, 7, 16]. NetAdapt [42]
prunes filters based on a preexisting look-up table of hardware metrics obtained ahead of time
from a mobile device. This is a costly pseudo-HIL approach, as building the look-up table is
tedious and time consuming, requiring the designer to execute all possible workloads and layer
dimensions to be accurate and complete. For this method to work, the hardware would need to
be decided and readily available before the CNN optimization process starts. Another drawback
to the approach is that the pruning technique is performed in a layer-wise manner, which is
susceptible to local minima, as inter-layer effects on the hardware platform and prediction accuracy
are not considered. ChamNet [7] also adopts a look-up table strategy to estimate the latency with
a Bayesian energy predictor and performs neural architectural search. The predictors for the HW
metrics also require the “ready-to-use” target HW platform to perform optimization. Furthermore,
if the target hardware is changed, the effort to recollect the data for the new look-up table and
the Bayesian optimizer needs to be taken into account. HW-NAS-Bench [22] presents a dataset
to evaluate various CNN configurations on different HW platforms. The dataset is generated by
performing extensive real HW measurements on NAS-specific search spaces [8, 40] Furthermore,
the dataset does not cover exploration of HW specific hyper-parameters which impacts the CNN
compilation/scheduling procedures. The work in AMC-AutoML [16] demonstrated an RL pruning
agent, producing channel sparsity ratios for each layer as its action after every episode. Based on
the magnitude obtained from the L2-norm heuristic and the sparsity ratio of each layer given by
the RL agent, the redundant channels are pruned. The work demonstrated results of both proxy
metrics (0Ps and Params) and HIL-based timing evaluation using TF-Lite. Another HIL-based
optimization technique, HAQ [38], resorts to RL-based exploration to determine suitable, layer-wise
quantization levels for weights and activations in the CNN model. The reward function, including
real hardware metrics, is generated by directly executing the inference of a CNN model on a Field
Programmable Gate Array (FPGA) design which supports quantized computations [31].

Hardware Modeling. The deterministic nature of CNN inference execution on hardware makes
analytical hardware modeling an intuitive approach to simulate aspects of the synthesis and
deployment phases. Timeloop [27] is a HW-modeling tool that exploits CNN execution determinism
to offer accurate estimates of a given hardware description. It shows the strength of HW modeling,
circumventing the need for cycle-accurate CNN hardware simulators and/or synthesized hardware
in the early phases of development. The tool provides the flexibility of changing the cost of
hardware operations (e.g. read, write, multiply-accumulate) and the memory hierarchy, among
other design parameters. Based on the data movement constraints set by the designer, the tool
searches the scheduling solution space in an exhaustive or randomly sampled manner, thereby

03:5

LITES

03:6

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

providing the HW estimates. The schedule search time could either last significantly long with
exhaustive search or lead to a sub-optimal solution with random sampling. Interstellar [43]
proposes formal dataflow definitions. Unlike Timeloop, the authors of Interstellar use the Halide
programming language to represent the HW-architecture and data movement constraints. The
influence of memory hierarchy and dataflows on energy efficiency and latency is investigated
thoroughly. MAGNet [37] considers various CNN architectures and hardware constraints generating
an optimal RTL and mapping strategy to execute the CNNs efficiently. It explores various tiling
strategies and dataflows by proposing a highly configurable processing element array. Yang et
al. [41] leverage a HW-model to estimate the energy requirements of each layer. The layers with
the highest energy contribution present a good starting point for the pruning process, based on
the L2-norm heuristic. However, energy estimates do not influence the sparsity ratio directly.
The work is also limited to optimizing normalized energy, but not latency, which is an equally
important parameter for real-time applications. In this work, we remove the limitations of pure
proxy and HIL-based neural network pruning by introducing a multi-abstraction level HW-model
for estimating the efficiency of CNN architectures. Instead of exhaustive and random sampling
search techniques, we analytically reduce the size of the search space, and thereby the search-time,
without sacrificing schedule efficiency. A deep deterministic policy gradient (DDPG) based learning
agent is augmented with key rewards and state information, allowing it to understand the influence
of its pruning actions on the inference hardware for energy and latency, and enabling HW-CNN
codesign-based optimization.

Table 1 Classification of pruning, modeling techniques and their advantages.

Agnostic Proxy HIL HW-Model HW-Flow
Advantage [15,10,9] [14,17, 36] [16, 42, 7, 22] [27, 41) [Ours]
Accuracy optimization: v v v 4 v
0Ps/Params optimization: X 4 4 v 4
Energy/latency optimization: X X v v v
HW-design exploration: X X X v v
Learning based agent: X v v X v
HW-CNN codesign (abstraction/refinement): X X X X v

4 Hardware-Flow

In the case of general-purpose HW, such as off-the-shelf GPUs and CPUs, HIL-based approaches
may indeed be less cumbersome than building a hardware model. For many real-time, energy, and
latency-critical applications, these platforms are not applicable at deployment time. Carefully
designing custom hardware, which meets specific criteria for an application, necessitates following
a HW-SW codesign paradigm. In the top-down approach, this implies iteratively going through
different levels of abstraction and performing some iterations of exploration before fixing some
parameters and refining the design to one abstraction level lower. During inference, CNN forward-
pass executions are entirely deterministic, making it hard to justify the need for synthesized
hardware to observe training or optimization effectiveness. This makes hardware modeling an
attractive and economical alternative for rapid prototyping and testing of different HW-aware
optimization strategies.

In this paper, the HW-Flow framework is based on an interaction between the CNN environment
f, the pruning agent 7 and the hardware model p (shown in Figure 1). In detail, the agent
receives a layer-wise state S and an accuracy term 1, from the environment. The environment’s

M-R. Vemparala et al.

accuracy /precision ¢ is computed with respect to the logits Y and labels of the validation set.
Depending on the level of abstraction, the CNN f is simulated and scheduled on the HW-model p,
returning estimates ¢ of an embedded application for the agent to produce a pruning action A’.

Figure 1 Overview of HW-Flow enabling HW-model based pruning. The CNN environment (bottom)
is pruned by a DDPG agent (right). The distinction of layer-wise sparsity is based on the three proposed
HW-modeling abstraction levels - Coarse, Mid and Fine, which estimate the complexity of CNN workloads.

4.1 Problem Formulation

Without loss of generality, in an L-layer CNN, the convolutional layer [€ {1, ..., L} receives an
input feature map A~ € REXWixCi where H;, W;, and C; indicate the spatial height, width,
and input channels respectively. A° is the input image I to the CNN, as shown in Figure 1
(bottom). The weights W € RE»*KuwxCixCo are the trainable parameters of the individual layers,
here K, K,, and C, are the kernel dimensions and the number of output channels (filters)
respectively. The input A'~! is convolved with the weights W' where the kernels are moved
over the input with stride s. In detail, the task of the agent 7 is to prune the input channels
C; of the environment by zeroizing the binary pruning mask A' = {0, 1}1X1x¢x1 " To select
the most salient channels, the Hadamard product ® is applied, giving a sparse representation
W e REnxKuwxCixCo — 171 &) Al Referring to Figure 1, zeroizing an input channel in the [layer
will zero out the corresponding output feature map from the [— 1 layer. Consequently, the kernels
of all filters in the [— 1 layer are also zeroed-out. Channel-wise pruning removes several weights
from the CNN at once, causing a significant loss in accuracy. To mitigate this negative effect and
guarantee an energy and latency efficient compression, the learning-based agent 7 has to learn
good actions A'. The goal of HW-Flow is to complement well-established proxies, such as 0Ps and
Params count, with more elaborate HW-model based estimates, which are conducive to finding
efficient CNNs for embedded applications.

03:7

LITES

03:8

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

4.2 Deep Deterministic Policy Gradient-based Agent

The DDPG agent’s architecture, including the actor and the critic, is adopted from He et al. [16].
The agent is augmented with key rewards and state information, allowing it to understand the
influence of its pruning actions on the inference hardware with respect to the energy estimates
wp and the latency estimates ¢, elaborated in Section 4.4. The newly adapted state S is
composed of the following layer information of the environment’s f: the index of the layer [, stride
s and the layer dimensions after pruning C’O, C’i, W;, H;. It should be noted that the multi-level
estimates ¢ obtained from the HW-models are considered to be part of the state S, where
0 =[0" ..., ..., oF] ensembles either layer-wise energy estimates ¢ or latency estimates ¢r..
As expressed in equation 2, the action A'~! is applied for composing the input state of the agent.

-1 L

‘Sl =< la57007c~’i7Wi7H7 @laz(pi7 Z (pjaA171 > (2)
=0 j=l+1

In this work, the agent is trained using one of the two search protocols, either the estimate
balanced or estimate constrained reward function, as defined in equation 3. The balanced reward
of equation 3 is inspired by [17]. When the HW-constraints are unknown in the early stages of
the design, the reward function can be formulated to achieve at least a target accuracy ¥* before
optimizing the performance estimate term. A trade-off between the accuracy term (1 — (¢* —)/b)
and the estimate term log(¢* /) after each pruning action is the goal of the estimate balanced
reward function. Parameter b influences the turning point between a negative and positive reward
R, encouraging the agent to improve the accuracy when the difference between 1* and) is larger
than b. When this condition is met, the agent starts to optimize the trade-off between accuracy and
hardware estimates. This reward can also be extended to optimize multiple KPI’s by appending
several logarithmic terms. The estimate constrained compression improves the reward R by
maintaining higher prediction accuracy v after each pruning action. This encourages the agent to
prune the CNN model while minimizing the accuracy degradation when the HW-constraints are
strictly stipulated.

R { (1- 2=y, 1Og(f:), if balanced 3)

P, otherwise constrained

The estimate term in the reward represents the benefits obtained from pruning with respect to
the HW-model pu, giving the estimate ¢* of the unpruned base model and ¢ after each episode of
the agent.

4.3 HW-model Abstraction Levels

The HW-Flow framework proposes 3 levels of abstraction, Coarse, Mid, and Fine, for estimating
the complexity of a CNN workload (Table 2). At the Coarse level, the goal would be to narrow
down the CNN architectures which would suit an application’s accuracy requirements, while
maintaining a reasonable number of OPs and Params.

Once satisfied with the CNN’s computational complexity, the Mid-level estimates take interme-
diate design parameters such as memory hierarchy, partitioning, and bandwidth into consideration,
which decide whether the off-chip to on-chip communication infrastructure is suitable for the
considered HW design. At the Mid-level, HW-Flow provides refined metrics such as off-chip to
on-chip data transfer volumes, computation-to-communication ratio (CTC) and off-chip energy
PE,oft—cnip due to external memory accesses. Using this information, the candidate CNNs can be
tested for various criteria, such as respecting the communication bandwidth constraints expected

M-R. Vemparala et al.

Table 2 Input, output and optimization details of HW-Flow’s abstraction levels.

Level Input Optimization Output

Coarse: ¢ CNN graph * N/A e OPs/Params

Mid: e Memory hierarchy e Loop tiling o CTC ratio
» Memory size/partitioning » Loop reordering « Off-chip energy/accesses: Qg ozt —cnip
e Off-chip bandwidth/burst length ¢ Mid Latency ¢y, pandwidtn
» Compute array sizes

Fine: » Complete memory/compute » Loop unrolling ¢ Total inference energy: ¢y
hierarchy o Interleaving * Breakdown of datatype energy
» PE specification « Folding « Total inference latency: ¢, inference
o Supported dataflows * Mapping exploration e Detailed data movement schedule

on the hardware platform, resulting in latency estimates ¢, panawiatn at the Mid level. In Section 5,
we demonstrate how the Mid-level can provide an intermediate evaluation closer to the detailed
Fine-level without requiring the designer to decide the low-level details of the compute array at
this stage. This eases the design process into the next stage and provides one more stepping-stone
before narrowing down the complete HW design.

HW-Flow’s Fine estimates provide metrics that consider specific details of the accelerator, such
as the detailed structure and dimensioning of the processing element (PE) array and the scheduling
strategies supported by the on-chip interconnect, which determines the possible communication
channels between the PEs. The estimates at this level provide normalized energy costs ¢ g g of
each datatype dtype € {ifmap, ofmap, psum, weight} at each memory level of the system. The
agent 7 receives estimates for the energy and latency for a particular scheduling strategy relative
to each layer of the investigated network. At the Mid and Fine levels, HW-Flow additionally
searches for scheduling solutions which optimize the criteria provided by the designer, e.g. latency,
energy or a trade-off. The latency is the time interval between the stimulation of the host and its
response from the accelerator for a particular neural network, i.e. time between the pre-processed
input and the output of the neural network. The total energy consumption of the CNN accelerator
is determined using the data movement cost at various memory hierarchies and compute cost in
processing element array.

For a human designer, the three levels allow the structured traversal of the HW and CNN
design space, which may be a daunting task otherwise. The designer starts with a set of potential
CNNs and tests their pruning potential in terms of OPs, Params and task-related accuracy. Once a
subset of CNNs with high pruning ratios and acceptable task-related accuracies is narrowed down,
the Mid-level is then critical in designing the communication infrastructure between the host and
the accelerator, as well as dimensioning the on-chip SRAM. After pruning, an under-dimensioned
SRAM can result in high communication effort with off-chip DRAM, resulting in higher stress on
the off-chip to on-chip interconnect. An over-dimensioned SRAM can lead to area-on-chip and
fabrication cost problems. Therefore, the pruning potential of the CNN needs to be evaluated
alongside the on-chip SRAM dimensions and the interconnect stress at the Mid-level. Finally, at
the Fine-level, the designer can use the findings at the Coarse and Mid-level and further specify
the computation infrastructure of the accelerator (such as PE count, register files sizes, dataflow).
Tackling all three levels by searching for an efficient HW and CNN configuration at once would
potentially lead to sub-optimal results. This would also result in more GPU hours of CNN pruning
and HW search due to the difficulty in understanding which part of the system (CNN or HW)
needs to be adjusted to meet the demands of the application at hand.

03:9

LITES

03:10

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

4.4 HW-model Optimizer

Model: The core structure of the HW-model in HW-Flow is based on two generic blocks, namely
the memory and compute blocks. Arbitrary memory hierarchies can be instantiated using these
generic blocks. Each block is accounted for its position in the hierarchy by referring the memory
below it and the level at which it is placed. The highest level represents the largest memory, where
all the data fits. Memory blocks can be detailed with their total or datatype-wise segmented
size. Below last-level memories, a compute block can be instantiated, as shown in Figure 2. The
compute block is defined by several parameters, including the number of processing elements (PE),
interconnect dimensions, and register file sizes. The register files in each PE can be specified

CNN: Scheduler: Upper Level Memory: Mapper: PE
b v bo HW-Accelerator: [T = Register
DRAM: Banks: = Compute Block: a-at(b-c)
ifmap % Control
RAEAp g |
o A, Ci % 5] -
s T 55
S weights = %
55 e
& 2 >3 =
=0 — 25— =
wn © o
o <§,: = [%2]
o ofmap g2 =
5 = =
25 = £3 =l
P & e2 € 2 . —
=8 I S8 © Bad Pruning — No Good Utilization

Figure 2 Scheduling strategies for data movement optimization.

according to their size and segmentation, as shown in Figure 2 (top/right). Using these blocks,
diverse compute architectures can be described. In this paper, we focus on modeling architectures
similar to [4], with a single on-chip buffer and a compute core with an array of PEs, as depicted
in Figure 2.

Scheduler. The energy contribution of data movement cannot be disregarded for efficient
execution of CNNs. For most cases, it constitutes the majority of the total power consumption
to execute CNN models. CNNs are commonly represented in a nested loop format, as expressed
in Figure 3. The for-loops shown present many reuse opportunities. The main computation

. #Loop Tiled
#Strided Convolution 7" #Higher memory schedule:
I[B][Ci][Hi][Wi] = inp ;:tzr*(int co=0;co<ﬁo;ci+=T_Co):

. ower memory schedule:
W[Co][Ci][Kh][Kw] = wgt for(int t_coza;t_co<T_Co;t_co++):
O[B][Co][Ho][Wo] = out
for(int b=0; b<B; b++):

for(int co=0; co<Co; co++): #Loop Reordered
for(int ci=0; ci<Ci; ci++): #1-Read ci: #3-Purge ci, read ci++

for(int ho=0; ho<Ho; ho++): for(int ci=0; cicCi; cit+):
for(int wo=d; wocko; wor): 2 frerate over o1 cor
for(int kh=0; kh<Kh; kh++): ’ ’
for(int kw=0; kw<Kw; kw++): #Loop Unrolled
w = W[co][ci][kw][kh] #Execute pw operations in parallel
i = I[b][ci][wo*sw+kw][ho*sh+kh] for(int kw=0; kw<Kw; kw+=pw):
O[b][co][wo][ho]+=w*i

Figure 3 Nested for-loop representation of strided convolution.

M-R. Vemparala et al.

is at the core of the inner-most loop and many elements are accessed in multiple iterations of
the higher loops. Specifically, reuse occurs when the indices of the parameters involved in the
inner-most computation remain fixed for some loops before iterating in others. In hardware, this
translates to a single element being stored at a lower level memory for multiple iterations before
being purged to make space for new data. For optimal reuse to occur, no single element should
be read more than once from a higher level memory. This implies that during all the iterations
that a single element is involved in, all the other elements that it is reused against also fit in
the lower level memory. Practically, due to memory constraints, the parameters required by the
entire nested-loop do not fit in the lowest-level of the memory hierarchy. A standard method of
exploiting the entire hierarchy is to relax this constraint and split the for-loops into shallower loops
through a technique called loop-tiling. As shown in Figure 2, the loop tiling strategy effectively
decides which tiles T € {T¢,,Te,, Tu,, Tw,, Tk, , Tk, , T} of CNN computation will take place
in one round of communication with a lower level memory. Note that Tz is the tiling along the
batch dimension when performing batch processing. The tiling strategy is selected based on the
amount of on-chip buffer Buf, respecting the inequality in equation 4.

Ty, x Tw, X Te, X Tg+ Ty, x Tw, x Te, x Tp+ Kp, x Ky X Te, x Te, < Buf (4)

Input Tile Output Tile ‘Weight Tile

To generate an output tile with spatial dimensions Ty, , T, with stride s and kernel k, an
input tile with spatial dimensions Tyy,, Tx, are required. The relation between input and output
tiles is given in equation 5.

TWi:(TW071)~S+Kw

(5)
THi :(THO —1)S+Kh

The order of the loops can also be manipulated dynamically for each layer without affecting the
algorithm through loop-reordering. As an example in Figure 3, loop C; can be swapped with
loop C,, allowing a single element c¢; to reside longer on the lower-level memory while iterating
over all possible elements ¢, € C,. This can help extract improved reuse opportunities since the
lower-level loops remain on the lower-level memories of the hardware architecture, thus closer
to the compute units. Particularly for Mid-level estimates, these permutations directly impact
the number of DRAM accesses and consequently DRAM energy. This work considers three loop
orders, namely Input Reuse Order (IRO), Weight Reuse Order (WRO), and Output Reuse Order
(ORO) schemes inspired by the work in [35]. Switching dynamically between these three reuse

schemes allows to schedule the entire CNN exploiting the reuse opportunities of different layers.

As an example, layers with a very large kernel can benefit from ORO and WRO schedules, whereas
layers with large feature maps (e.g. the first layers of most conventional CNN) will benefit the
most with IRO schedule. This is refereed to as dynamic loop tiling. Finally, once a memory level
is distributed spatially, further loops can be unrolled over the parallelism degree offered by the
hardware architecture through loop-unrolling. In Figure 3, the kernel’s elements can be assigned to
spatially distributed processing elements, executing several K, loop iterations in parallel during a
single clock cycle. HW-Flow’s mapper component optimizes the execution schedule through this
technique, as detailed in the following subsection.

Using the aforementioned strategies, the scheduler builds a matrix of possible tilings and loop
orders. Each potential solution in the matrix is checked for legality, by assessing whether its
transfer size breaches the memory restrictions at lower levels. The volumes V moved between the
memory levels are calculated based on the memory occupation and the number of invocations
required. To analytically reduce the size of the search space, a Computation-to-Communication
(CTC) hall-of-fame is constructed after the evaluation of all legal solutions, which contains only

03:11

LITES

03:12

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

a top percentage of the highest CTC loop tilings/orderings. Equation 6 represents a CTC ratio
formula, inspired by the work in [44]. v represents a bandwidth-correction term to account for the
burst-length of the memory transfers. The numerator is the number of operations/complexity of a
particular workload. The denominator is the overall DRAM access along with bandwidth scaling
for input, weights, and outputs for a particular workload.

2-H, W, K- K, C,-C;

CTC =)
Zdtype Yatype * Vatype

dtype € {ifmap, ofmap, psum, weight} (6)

The hall-of-fame solutions are passed on to the mapper for Fine-level estimations. An analysis on
the hall-of-fame size and the efficiency of the final schedule produced is presented in Section 5.4.

Mapper. Many dataflow strategies have been explored in literature [4, 43]. Reuse opportunities in
CNNs include convolutional, weight, input, and partial sum reuse. In this work, we focus on three
dataflows, namely weight-stationary, output-stationary, and row-stationary. The weight-stationary
dataflow unrolls the dimensions T¢, and T, as Pe, and Pc, across the spatially distributed
computation array. Each PE holds complete kernels (K, x K}) and corresponding input feature
slices. Spatial reduction of partial sums can occur inside the PE; however, accumulation across
input channels requires psum traversal over the spatial computation array. The output-stationary
dataflow similarly unrolls Pe, and Pc,; however, the psums remain stationary in each processing
element, while input feature map pixels traverse the array and kernel pixels are updated once
they are exhaustively used over the tile. Finally, row-stationary as introduced in [4] unrolls the
Ty, dimension horizontally across the array as Pr,. Each K} column of PEs is responsible for
the complete computation of an entire row of the output W,, while the neighboring set of K}
PEs computes the output row below that. Folding and replication techniques are applied to fit
this unrolling method on the physical array dimensions. All three dataflows enable interleaving of
channel computation within a single PE to maximize the use of the register files.

HW-Flow’s mapper analytically determines the viability of a particular dataflow, based on
the hardware details such as the interconnect dimensions, processing array size, and scratchpad
configuration. HW-Flow attempts to find a mapping that optimizes a given criterion (energy,
latency, or a trade-off) while respecting the dataflow’s restrictions. As presented in Figure 3,
unrolling a subset of a loop’s iterations as P spatially distributed computations, improves execution
time. Assuming a filled pipeline, the latency of a layer ¢ can be estimated as the product of
intertile and intratile latency as shown in equation 7. The intertile latency is computed based
on the number of tiles required to transfer from off-chip memory to on-chip memory. Based on
the PE unrolling procedure of the tiles available in the on-chip memory, the intratile latency is
calculated. In equation 7, the kernel dimensions Kj and K, are not tiled, as such granular tilings
result in performance degradation for modern CNN models with small kernel sizes.

e = | Co] [G [Ho] [We
@L,interTile = TCU TCi THO TWO

- o Tc, ' Tc, ' TH, ' Tw, ' Tk,) Tk, (7)
@PL intraTile PCD PCi PHD PWO PKh PKw

@L,total == @L,intchilc X @L,intraTilc

A particular mapping produces reuse factors for each datatype at different memory levels. We
denote a reuse factor with RSPS,

factors are dependent on tiling and unrolling strategies, as well as data interleaving [4], where

where level € {Offchip, Onchip, Array,Registers}. Reuse

M-R. Vemparala et al.

a single computation element switches between multiple sets of the same datatype in order to
extend the utilization of its registers. Once a legal mapping is found, the energy contributions of
each datatype at each memory level can be computed. Equation 8 shows an example of the energy
consumption calculation at a particular memory level for a single datatype [4]. The read/write cost
term C of a particular memory level can be set based on the fabrication technology or a relative
normalized cost to other memory types in the hardware architecture. The energy estimates of all
datatypes at all memory levels can be calculated similarly and summed up to obtain the total

layer energy ¢g.

Level

@E,Level(dtype> = (H Ri:isi) “ Crevel

off—chip

V dtype € {ifmap, ofmap, psum, weight} (8)

Finally, the mapping found is fed back to the scheduler, determining whether the tiling factors it

provided were adequate. The possible combinations for legal schedules are evaluated and compared.

These two optimization problems are codependent, as a tiling strategy that optimizes off-chip data
movement may result in a mapping that under-utilizes the processing elements for a particular
dataflow and vice versa. Therefore, a feedback loop, such as the one in HW-Flow, is essential in
finding an optimal scheduling strategy for the overall system.

4.5 Search Space for HW-model Optimizer

For Fine-level estimates, creating a complete schedule implies choosing a fixed set of tiling factors
{Te,, Te,, Tu,, Tw, } and unrolling factors { Pg,, P, , Pu,, Pw,, Pk, , Pk, }- We restrict T, = K},
and Tk, = K,,, and therefore omit them from the tiling factors set. Modern CNNs employ small
kernel sizes, making it unreasonable to tile them during computation. Furthermore, tiling the
kernel dimension generates a large amount of partial sums which can quickly become parasitic
due to memory consumption and on-chip movement, if not collapsed into an output pixel. We

can define two subspaces in the scheduling search space: tiling space 7 and mapping space P.

Equation 9 defines the size of the subspaces. Ord defines the reordering possibilities of the outer
(off-chip memory) loops of the convolution. In this work, we consider three distinct orderings,
IRO, ORO, and WRO, relating to inputs, outputs, or weights being kept longer on the on-chip
memory respectively [35].

|T|=C;-Co-H, -W,-Ord
|7)7—| = 1—‘611 -TCU -THO .TWO .TKh 'TKw VT c T (9)

|7| and |P,| represent the cardinality of the tiling space and mapping space associated with
a single tiling 7 € T respectively. Therefore, the size of P, is directly dependent on a single
solution 7 = {T¢,,Tc,, Tu,, Tw,,Ord} € T. Restricting T directly reduces the number of total
P, searches necessary for finding a schedule. 7 may contain a single solution 7 which results in a
single mapping p € P,, that is optimal for the overall schedule, in terms of latency, energy, or
both. The trade-off in restricting the size of 7 is between schedule search speed and the optimality
of the found schedule. To avoid evaluating drastically sub-optimal tilings, we analytically reduce
the size of T, and maintain solutions 7, which have a higher probability of producing efficient p
mappings. The search for the optimal mapping p can also be expedited with further sampling
techniques.

A straightforward approach to restricting the search space is to uniformly sample equidistant
solutions in 7. We choose uniform sampling over random sampling to consider, at a minimum, a
single candidate from each neighborhood in the search space. For fixed dimensions C;, C,, H,,

03:13

LITES

03:14

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

and W,, the distance between two solutions depends on the sampling step. For small search
spaces, the sampling step can be set to a small integer value. Therefore, for all experiments on
the CIFAR-10 dataset, the sampling step was set to 2, effectively halving the number of tiles from
each dimension. For the larger CNN models, better suited for the ImageNet dataset, integer steps
are less effective. The size of a particular dimension C;, C,, H,, and W,, varies greatly between
the first layer of the CNN towards the last. This makes the choice of a single integer step-size for
all dimensions either grossly large to maintain simulation speed or small to maintain optimality
at the cost of prohibitively increased search time. We use a ratio-based sampling to overcome
this problem, where the step-size is a fixed fraction of the total dimension. This decouples the
dimensions of the CNN from the number of 7 mappings to be evaluated. We also allow each
dimension to have its own ratio, providing more flexibility in finely searching smaller dimensions
and coarsely searching larger ones. One more technique to aggressively reduce the search space is
to find all the factors (divisors) of a particular dimension and declare those as the possible tiling
factors. Since a factor will always give an integer number of tiles, this method usually leads to
near-optimal results and is scalable to larger CNNs.

The CTC ratio metric is elaborated in Section 4.4 for choosing a reasonable tiling solution.
Based on the intuition that a high CTC tiling solution 7 could result in an efficient mapping, we
analytically reduce the search space by creating a CTC hall-of-fame (HOF). In the first step, we
evaluate the CTC ratio for all 7 € T, which is a fast and parallelizable operation. A set percentage
of 7 with the highest CTC ratios among all the solutions is entered in the HOF. Only members
of the HOF have their respective P searched for mapping solutions.

For Mid-level estimates, evaluating the outputs shown in Table 2 is a fast and parallel operation,
which can be done by either sampling the tiling space or exhaustively, since the total number of
solutions to evaluate at this level is |T|. For Fine-level, we have a total number of full schedule
evaluations equal to ZZ— |P-|, which rapidly grows with 7, emphasizing the importance of good
search space reduction techniques to maintain reasonable search time, without cutting out the
optimal solutions in the space.

5 HW-model Design Space Exploration

We evaluate the HW-Flow framework by exploring the HW estimations at various abstraction
levels in Section 5.1. We explore the design choices and estimates at the Mid and Fine-level
abstractions in Section 5.2 and Section 5.3 respectively. We improve the schedule search time of
HW-Flow by systematically reducing the search space of the proposed HW-model optimizer using
a detailed ablation study in Section 5.4. Finally, in Section 5.5, the optimal mapping is validated
with the estimates reported in Eyeriss [4] and compared against the HW modeling framework
Timeloop [27]. An advantage of using HW-models over HIL-based methods is the flexibility of
prototyping and testing multiple target architectures before committing to a final design for
synthesis and fabrication. We report various HW configurations with different PE array sizes,
memory costs, SRAM buffer and register sizes in Table 3. Column 3 indicates the data access cost
from higher memory levels (DRAM) to lower levels (RF) relative to one MAC operation. This
section uses the HW-Flow-Val model with 16-bit word length to explore the Coarse, Mid and Fine
abstraction levels and validate the modeling tool.

5.1 HW Estimations at Various Abstraction Levels

In this subsection, we demonstrate the HW estimates produced across various abstraction levels
and discuss their use in the context of HW development. For this purpose, we interpret the
influence of on-chip buffer size through DRAM access counts and throughput of the HW-Flow-Val

M-R. Vemparala et al.

Table 3 Hardware configurations used for experiments and validation. RS refers to row-stationary
dataflow.

Architecture

Spec PE Array Memory Cost SRAM Register
Hardware DRAM, SRAM, Array, RF size ‘Words
Model <KB> filter, ifmap, psums
HW-Flow - Val 16 x 16 200, 6, 2, 1 128 192, 12, 16
Timeloop [27] 16 x 16 200, 7.41, 0, 1 128 192, 12, 16
Eyeriss-like-168 PE (RS) 12 x 14 200, 6, 2, 1 128 224,12, 14
Eyeriss-like-256 PE (RS) 16 x 16 200, 13.84, 2, 1 256 224,12, 14
Eyeriss-like-1024 PE (RS) 32 x 32 200, 155.35, 2,1 3072 224,12, 14
Eyeriss-like-Deeplab (RS) 32 x 32 200, 155.35, 2,1 3072 224, 37, 16

model in Figure 4. We obtain the Coarse-level estimations for DRAM access counts (indicated in
red) by simply summing-up the layer-wise transfer volumes of ifmaps, ofmaps and weights. This
is equivalent to considering that the HW has unbounded buffers and communication bandwidth.
Similarly, we consider that all the compute units in the PE array are fully occupied and report
the accelerator’s throughput. These assumptions in the initial phases of development allow the
designer to choose the CNN topologies that suit the application under consideration. For Mid-level
estimations, we optimize layer-wise schedules for minimum DRAM energy by considering the
possibility of dynamic tiling and reordering schemes as described in Section 4.4. We report
the sum of DRAM accesses across all layers (indicated in green). To calculate the accelerator’s
throughput at Mid-level, we consider the external memory bandwidth as 8 words/cycle. For
Fine-level estimations, we optimize the row-stationary dataflow to obtain a trade-off between
normalized energy and latency (indicated in blue).

We perform the measurements for four CNN architectures, namely AlexNet, VGG-16, ResNet18,
and ResNet152. We observe that as the on-chip buffer size increases, larger tiles of input, weights,
and outputs can be stored on the buffer, thereby decreasing the number of DRAM Accesses.
We also observe that the Mid and Fine estimations for all the CNN architectures could meet
the ideal Coarse estimations at higher buffer sizes (> 512KB). We notice that the Fine-level
estimations produce a higher number of DRAM accesses, as the schedule must consider more
complex HW details and constraints at this level. The AlexNet architecture achieves the least
throughput among other architectures, as a considerable number of operations and parameters
are assigned to fully-connected layers. The throughput produced at the Fine-level considers the
dataflow and the underlying unrolling scheme and therefore achieves closer estimates compared
to real target deployment. We observe that the throughput saturates at 128KB of buffer size
for both Mid and Fine level estimations for different CNN architectures. A slight decrease in
throughput happens for AlexNet and ResNet18 at Fine-level scheduling for on-chip memories
larger than 128KB. This due to the Fine-level schedule simultaneously optimizing for inference
energy (not shown in the figure) as the on-chip memory grows.

5.2 Mid-Level Estimations and Design Choices

In Figure 5, we evaluate the number of DRAM accesses for different loop ordering schemes. We also
evaluate the Mid-level throughput estimation for different external bandwidth considerations (4,
8, 16 words/cycle). Among IRO, WRO and ORO loop ordering schemes, we observe that the IRO
scheme produces DRAM accesses close to the layer-wise dynamic ordering scheme for AlexNet. For

ResNet18, we observe that the ORO scheme achieves DRAM access closer to the dynamic order.

This emphasizes the importance of a dynamic ordering scheme as different workloads prefer reuse

03:15

LITES

03:16 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

x AlexNet ¢ VGG-16 O ResNet18 O ResNet152
Mid = Fine

256 [T

—— Coarse

10* 224 |

192

160 |-
103
128 | @

96

DRAM Access (MB)

Througput (Ops/Cycle)

102 64 |-

: 32

| | | |
8 16 32 64 128 256 512 8 16 32 64 128 256 512

On-chip memory On-chip memory

Figure 4 Analysis of DRAM Access and Throughput on varying the on-chip buffer size and different

CNN architectures.

for different datatypes. Fixing the dynamic ordering scheme, the throughput of the accelerator is
analyzed for AlexNet and ResNet-18 under different external memory bandwidth considerations.
We observe a significant improvement in the throughput of AlexNet as the bandwidth increases.
For ResNet18, the throughput saturates at 8 words/cycle. Improving the throughput for AlexNet
depends on the choice of external memory bandwidth as AlexNet has several memory-bounded

fully-connected layers compared to ResNet18.

5.3 Fine-Level Estimations and Dataflows

The row-stationary (RS), weight-stationary (WS) and output-stationary (OS) dataflows, detailed
in the Section 4.4, are used to explore the Fine-level estimates. The mapper searches for a
trade-off between normalized energy and latency while respecting each dataflow’s unrolling rules
and the HW’s memory and compute capacity checks. We obtain the Fine estimates for AlexNet
and ResNet18 models for different on-chip buffer sizes considering the HW-Flow-Val model. We
observe that the RS dataflow is the most energy efficient at all the buffer sizes. This is due to RS
maximizing the data reuse at the register-level, for all the datatypes [4]. OS and WS dataflows
maximize the compute utilization of PE arrays, albeit with higher normalized energy requirements.
The WS dataflow achieves higher throughput using larger buffer sizes (> 32K B) for ResNet18.

5.4 Search Space Exploration for Fine-level Estimations

We perform multiple experiments to measure the sensitivity of the scheduling tool under the
search space sampling strategies described in Section 4.5. Although all schedules produced under
any of the sampling strategies are valid, it is favorable to maintain schedules which are close or
comparable to the optimum for a particular CNN workload. To explore the search space, we use
the HW-Flow-Val model with RS dataflow to estimate convolutional layers of the AlexNet model
with 16-bit weights and activations, as it offers a diverse set of workloads with different kernel
sizes and strides. The input batch size is set to 16. AlexNet consists of convolutional workloads

with strides 4, 2 and 1 and kernels sizes 11, 5 and 3. Grouped convolution is performed for layers

2, 4 and 5.

M-R. Vemparala et al.

x AlexNet O ResNet18

—— IRO —— ORO —— WRO —— Dynamic —— 4 Word/cyc 8 Word/cyc 16 Word/cyc
100 T T 256 F ;‘.73%*
224 - .
_ 2
2 00| s 192| |
2 2
))
2 & 160 :
5200 =
; 2 128 |- 1
= = /,
A - = i |
100 =
.l /’ l
0 - ! ! ! ! ! ! 32 L | | | | | -
8 16 32 64 128 256 512 8 16 32 64 128 256 512

On-chip memory

On-chip memory

Figure 5 Influence of loop reordering schemes and external memory bandwidth on DRAM access and
throughput of the HW accelerator.

x AlexNet O ResNet18
—— RS —— 0OS —— WS

150

100 |-

256
224
192

160

128 |

<o
(@)
I

{

Througput (Ops/Cycle)

D
=~
T

Normalized Energy (x10°)

w
[\]
T
|

| | |
64 128 256 512 8 16 32 64 128

On-chip memory

o

0 L | |
8 16 32

On-chip memory

Figure 6 Influence of dataflows selection on normalized energy and throughput of the HW accelerator.

Table 4 shows the search time needed for different analytical search strategies to produce a

schedule. The quality of the search method can be measured by its corresponding mapping goal.

Three different 7 sampling rates (5%, 10%, 20%) are explored in Figure 7 with 1% CTC-HOF. We
observe that the normalized energy increases as we limit the exploration by increasing the sampling
rate. Based on the trade-off between evaluation speed (see Table 4) and schedule optimality
(Figure 7), we sample the tile space with 10% for ImageNet experiments to obtain HW estimates

03:17

LITES

03:18

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

for the pruning process. This results in an overall shorter search time (up to x2.5) at the cost
of degradation in mapping optimization goal. We also highlight the tile sampling method by
computing divisors in Table 4. We observe that the divisors-based sampling method produces a
schedule with the lowest energy consumption. However, this method might produce sub-optimal
results in case of channel pruning when the agent finds prime-number of filters for a particular
layer. For CIFAR-10 experiments, we use smaller, integer steps of 2, as these CNNs have a small
scheduling search space.

1010 108
5 T T T T T T T T T T T T T T T T T T
B praM B sraM 0 Array B rF B MAC
4F —— tile 5% tile 10% tile 20%

3 5 % latency & 10% latency 20% latency |

Normalized Energy
w0
—
S R
)
>
Normalized Latency

()
CONV4

L L L
CONV1 CONV2 CONV3

Figure 7 Sensitivity analysis for search space sampling of tiling factors.

The sensitivity analysis of the CTC-HOF tile space reduction technique is shown in Table 4.
The results show that the (10% T, 1% HOF) strategy is very effective, providing a speedup
of 2.14x compared to (10% T, 100% HOF) schedule without sacrificing the optimality of the
schedule. Combining these methods is critical in maintaining a reasonable exploration time for
multiple pruning experiments. We finally use the sampling strategy (10% 7, 1% HOF) with an
overall search time reduction of 20x compared to the search strategy (5% T, 100% HOF). Once a
HW-CNN pair is found, the HW-optimizer can run with a more exhaustive search strategy and
provide an improved schedule for the final deployment stage. For reference, we also present the
search/calculation time for Mid and Coarse estimate levels in Table 4. In addition to facilitating
the proposed codesign approach, the two higher abstraction levels are much faster to estimate,
allowing agent 7 to run for more episodes than with Fine-level estimates, for the same amount of
time.

5.5 Validation with Eyeriss and Timeloop

Validation: To validate the correctness of HW-Flow’s modeling and mapping components, we
compare its estimates with the Eyeriss architecture [4] and its Timeloop model [27] for AlexNet [21]
inference, which has diversified kernel sizes, strides and input/output dimensions. Figure 8 shows
a breakdown of normalized energy contributions of each datatype at each memory level for the
convolutional layers. We observe that HW-Flow tracks the original Eyeriss results similar to
Timeloop. A slight offset is observed, which can be attributed to small differences in the energy
references used during the search. The overlapping line charts show the latency estimates of both
frameworks.

6 Experimental Results

In Sections 6.1 to 6.6, we demonstrate the influence of channel pruning on different abstractions,
reward functions, target HW architectures and mapping schemes using the estimates generated
by HW-Flow. The pruning is evaluated based on CIFAR-10 [19] and ImageNet [30] for the
classification task and CityScapes [5] for the semantic segmentation task. The 50K train and 10K

M-R. Vemparala et al.

Table 4 Schedule search duration and optimality under different search space reduction strategies for
AlexNet on Eyeriss-like-256. All schedules optimize for a trade-off between latency and energy, unless
marked otherwise. Similar to Eyeriss [4], we normlize DRAM energy (column 3) and total energy (column
4) to the cost of one MAC operation.

)) Search | DRAM Energy | Energy Latency
Search Strategy Time [s] [x10°] [x10°] | [x10%cycles]
10% T, 1% HOF* 9.87 10.76 83.25 379
10% T, 1% HOF** 10.13 155.82 257.49 65
10% 7, 1% HOF 10.23 11.06 91.89 67
5% T, 1% HOF 25.59 12.10 83.96 60
10% 7, 1% HOF 10.23 11.06 91.89 67
20% T, 1% HOF 7.23 10.47 104.61 118
divisors T, 1% HOF 12.86 14.60 71.61 65
5% T, 100% HOF 215.42 12.10 83.96 60
5% T, 1% HOF 25.59 12.10 83.96 60
10% 7T, 100% HOF 23.03 11.06 91.89 67
10% T, 10% HOF 15.24 11.06 91.89 67
10% 7, 1% HOF 10.76 11.06 91.89 67
divisors 7, 100% HOF 51.47 9.67 72.44 65
divisors 7, 1% HOF 12.86 14.60 71.61 65
Coarse Estimates 0.10 - - -
Mid Estimates 5% 7*** 5.23 8.13 - -

All simulations were run with 24 threads on an Intel Xeon E5-2698 Process

Mapping goal : *energy, **latency, ***dram access

test images of CIFAR-10 are used to train and evaluate the base models, respectively. The images
have a resolution of 32 x 32 pixels. ImageNet consists of ~ 1.28M train and 50K validation images
with a resolution of 256 x 256 pixels. The CityScapes dataset consists of 2975 training images
and 500 validation images, including their corresponding ground truth labels. The images of size

2048 x 1024 show German street scenes along with their pixel-level semantic labels of 19 classes.

The pruning experiments are performed using the agent detailed in Section 4.2, for 150 episodes of
pruning exploration and 400 for learning and exploitation. After the agent selects the best action
corresponding to the reward, the environment is fine-tuned for 60 epochs with a learning rate of
1e-03 for CIFAR-10 experiments. For ImageNet experiments, we fine-tune for 20 epochs with an
initial learning rate of 1e-02, step decay of 1e-01 for every 5 epochs. For CityScapes experiments,
we fine-tune the model with a learning rate of 1e-02 for 240 epochs with a polynomial learning
rate. If not otherwise mentioned, all hyper-parameters specifying the task-related training were
adopted from the CNN’s base model. The batch size is set to 4 to evaluate the HW estimates.

HW metrics such as DRAM accesses, normalized energy, and latency are generated based on
the different variants of an Eyeriss-like architecture [4] mentioned in Table. 3. These metrics are
also reported similarly in the works of Timeloop [27] and Eyeriss [4]. In Table 5-10, the reported
normalized energy estimates are relative to the cost of one MAC operation and are therefore
unitless. The latency is reported as number of clock cycles. Additionally, we report the accuracy
and pruning rate for each experiment. The pruning rate indicates the number of operations
reduced relative to the baseline CNN. For comparison with the state of the art, we measure
the memory required to store training parameters under 16-bit fixed-point representation. To
demonstrate the effect of pruning on different HW-architectures, we scale the variants of spatial,
eyeriss-like accelerators from 168 to 256 and 1024 PEs (Table 3).

03:19

LITES

03:20 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

1010 -107

35 —— —
H DRAM B SRAM Array M RF B MAC

3 [Eyeriss === Timeloop

251 Y& Timeloop latency 3¢ HW-Flow latency -|

HW-Flow

Normalized Energy
Normalized Latency

Figure 8 Validation with the Eyeriss accelerator [4] and Timeloop [27]. Note: [4] does not report

layerwise latencies.

6.1 Pruning on Different Abstraction Levels

In this experiment, we fix the target hardware architecture to an Eyeriss-like 256 PE accelerator
and perform pruning based on HW-Flow’s Coarse, Mid and Fine estimates. At each level, we
choose the constrained reward function (equation 3), and set the target metric reduction to 50%
of the baseline value (unpruned model execution). To observe the impact of the metrics at each
abstraction level on the hardware architecture, we evaluate all the generated pruned networks on

the Fine-level model.

The experiments in Table 5 serve as an example on how the three HW abstraction levels
(Course | Mid | Fine) can be used to narrow down the range of CNNs and HW architectures which
result in an optimal task-to-resource mapping. When using the HW-Flow design methodology,
the Coarse-level helps the designer evaluate the pruning potential of a set of different CNNs. The
designer only needs to have a rough number of OPs in mind, a target CNN memory footprint, and
an estimation of the desired accuracy. For the purpose of demonstration, we use ResNet56 as
our baseline CNN model, with a task-accuracy of 93.59% on the CIFAR-10 dataset. We analyze
the compression capability by constraining 50% of 0Ps. After evaluating the CNNs’ compression

potential, a set of promising candidates can be narrowed down.

The search can be refined to take the on-chip memory hierarchy and dimensioning into
consideration at the Mid-level. The focus at this level is to choose the correct on-chip memory size

and the amount of communication that needs to take place between the host and the accelerator. An

under-dimensioned on-chip SRAM would lead to more stress on the communication infrastructure

since more rounds of communication are necessary with the DRAM. A large SRAM, although

costly, might relieve the complexity of a high-speed, high-bandwidth interconnect. In this context,

HW-Flow’s Mid-level can play a pivotal role in helping the designer dimension the SRAM and the

off-chip to on-chip interconnect while considering the pruning potential of the CNN. In Table 5,
we check if the on-chip SRAM (256KB) is in a good range to achieve reductions in DRAM
accesses without having to over-prune our CNN and lose the task-related accuracy goal with the
available loop tiling and reordering possibilities. We observe that the agent prunes 63.84% of OPs

constraining DRAM accesses to 50%.

Going deeper to the Fine-level, the pruning rate is relaxed as the efficient Eyeriss-like architec-

ture is able to meet the constraint requirements without a high pruning rate. Consequently, this

preserves the network’s accuracy equivalent to the Coarse level, while meeting lower target energy

and latency.

M-R. Vemparala et al.

Table 5 ResNet56 pruned at different HW abstraction levels for Eyeriss-like 256 PE configurations.
RS refers to row-stationary dataflow.

Prune configuration Acc | PR Energy Latency
(< constraint >;< level >;< hw_model >) [%] [%] [>< 109} [>< 1030ycles}
Baseline (not pruned); 256 PE - RS | 9359 | - 3.76 2350
-50% Ops *; Coarse; 256 PE - RS | 93.03 | 50.00 2.08 1219
-50% DRAM access *; Mid; 256 PE - RS | 91.82 | 63.84 1.50 862
-50% Energy *; Fine; 256 PE - RS 93.14 | 54.00 1.88 1159
-50% Latency *; Fine; 256 PE - RS 93.24 | 50.89 2.05 1176

* : reduction required to meet constraint | (matched for))

6.2 Pruning on Different Rewards

To demonstrate the application of HW-Flow to a hardware design problem, we consider the three
candidate Eyeriss-like hardware accelerators with 168, 256, and 1024 PEs. In this experiment,
the agent performs pruning based on the two types of reward functions proposed in equation 3,
namely estimate constrained and balanced.

Estimate Constrained. The agent is tasked with pruning the ResNet56 model trained on CIFAR-
10 such that it meets a given fixed constraint while minimizing the accuracy degradation of the
compressed network. The constraint is set to 50% energy or latency reduction relative to the
baseline leader, i.e. the accelerator which performs the best for the target metric. The results
in Table 6 show several interesting trends. We observe that the 168 PE variant is the baseline
leader for energy-constrained pruning and the 1024 PE accelerator as a baseline leader for latency
constrained pruning. With 1024 PEs, there is an ample capacity to improve latency, requiring a
lower pruning rate to meet the application constraint. Conversely, the CNN can be pruned more
effectively for 168 and 256 PEs when considering an energy-constrained application. For both
cases, choosing the correct hardware platform results in a pruned network with higher accuracy.
Figure 9a-c shows the agent’s decisions across the episodes for the three HW platforms with
energy and latency constrained experiments. The noisy actions taken in the exploration phase
(first 150 episodes) allow the agent to collect data on the environment and then start convergence
and optimization in the following 400 episodes. For Figure 9a-latency and 9b-latency, the agent
heavily prunes the model to achieve the target constraints, resulting in an accuracy degradation
(marked as red in Table 6 if > 2%). In Figure 9c-energy, the agent struggles to meet the desired
constraints, resulting in an accuracy degradation after fine-tuning. These critical observations can
facilitate the choice of a suitable hardware for a given application constraint.

Estimate Balanced. As detailed in Section 4.2 and equation 3, the balanced estimate reward
encourages the agent to maintain the target accuracy ¢*, while minimizing the estimates ¢. Here,
1* and b are set to 0.5, 0.125 respectively. Figure 10 demonstrates episode-wise reward plots for
the balanced reward formulation of ResNet20 and ResNet56 configurations under various HW
platforms. From Table 7, we observe that all the configurations optimized for energy and latency
undergo minimal degradation in prediction accuracy with different latency and energy estimates.
The Eyeriss-like 168 PE configuration achieves the best energy, whereas 1024 PEs achieves the
best latency. Generally, for experiments in Figure 10, we observe an improvement in accuracy
and reduction in HW metrics as the number of episodes increase. We also observe that the agent

03:21

LITES

03:22 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Table 6 Pruning ResNet56 on CIFAR-10 using estimate constrained reward R on Eyeriss-like accelera-

tors.

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw_model >) [%] [%] [>< 109] [>< 103Cy0168]
Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS 93.59 - 5.52 588
Target Energy (-50%)**; Fine; 168 PE - RS* 92.63 | 58.16 1.85 1644
Target Energy (-50%)**; Fine; 256 PE - RS 93.14 | 54.00 1.88 1159
Target Energy (-66%)**; Fine; 1024 PE - RS 91.09 | 75.22 1.88 170
Target Latency (-92%)**; Fine; 168 PE - RS 86.89 | 93.14 0.40 269
Target Latency (-87%)**; Fine; 256 PE - RS 89.66 | 87.94 0.59 306
Target Latency (-50%)**; Fine; 1024 PE - RS* | 92.92 | 52.68 3.07 294

*: Baseline leader | **: reduction required to meet constraint | (violated constraint) (matched constraint)

Table 7 Pruning ResNet56 on CIFAR-10 using the estimate balanced reward function on Eyeriss-like

accelerators.

Prune configuration Acc | PR Energy Latency
(< reward >;< level >;< hu_nodel >) [%] (%] [x109] [x103cycles]
Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS | 93.59 - 5.52 588
Energy balanced; Fine; 168 PE - RS 91.94 | 69.14 1.41 1309
Energy balanced; Fine; 256 PE - RS 92.56 | 62.22 1.61 913
Energy balanced; Fine; 1024 PE - RS 92.30 | 62.09 2.69 238
Latency balanced; Fine; 168 PE - RS 92.64 | 56.50 1.94 1658
Latency balanced; Fine; 256 PE - RS 92.58 | 59.75 1.69 975
Latency balanced; Fine; 1024 PE - RS 92.97 | 57.14 3.18 276

finds a pruning strategy for challenging HW configurations (168 PE latency constraint or 1024 PE
energy constraint), with minimal accuracy degradation. We also observe quick convergence for
ResNetb6 pruning on the 256 PE accelerator in Figure 10e.

6.3 Pruning on Different Mappings

The following experiment is performed to evaluate the relationship between effective pruning and
an efficient dataflow. We compare the target hardware model, with 256 PEs, against two variants
with identical specification, except for their dataflows. Here, the three dataflows, weight-stationary
(WS), output-stationary (OS), and row-stationary (RS), described in Section 4.4, are compared in
their potential for improved execution of pruned CNNs.

The baseline estimates of the unpruned network show the energy and latency variation caused
by dataflows (Table 8). All three dataflows present unique non-dominated solutions for baseline
energy and latency. Similar to the estimate constrained experiment in Section 6.2, we set the
constraint with respect to the baseline leader dataflow. Figure 9d-f shows the agent’s highly
varying actions depending on the dataflow and the target constraint. RS results in the lowest
baseline energy, whereas the OS has the lowest baseline latency. We can observe that the agent
obtains minimum accuracy degradation for RS when constraining for energy. When constraining

M-R. Vemparala et al.

g g
£ 1 El
ey :
E 08 E
= 06 -
© =
= 04 g
é 020 sl e E
R s = e e =
0100 200 300 400 500 G0 100 200 300 400 500 600 -
Episode Episode
168 PE - RS: —50% Energy | —92% Latency (d)

are KPI/Accuracy

0.8

0.6

Hardware KPI/Accuracy
Hardware KPI/Accuracy

() 00

200

300
Episode

(b) 256 PE - RS: —50% Energy | —87% Latency

W00 500 600

] 00 200 300

Episode

00 500 600

=
=
o
4

=2

() 100

(c) 1024 PE - RS: —69% Energy | —50% Latency

tware KPI/Accuracy

Hardware KPI/Accuracy

200 300

Episode

00 500 600 0 100

200

300
Episode

100 500 600

0.8
0.6
0.4

0

256 PE - RS: —50% Energy |

bk

0 100

Hardware KPI/Accuracy

200 300

Episode

100

500 600

0 00 200 300

Episode

100 500 600

—58% Latency

[

d
N

Hardware KPI/Accuracy

Figure 9 Training curves of the agent detailing the mm Reward, reduction in == Latency

W
00 200 300 400 500 G600 00100 200 300 00 500 600
Episode Episode
(e) 256 PE - OS: —69% Energy | —50% Latency
Z 1
g 0.8
=
=06
EZ
2 0.4
:é 0.2
I 100 200 300 400 500 600
Episode Episode
(f) 256 PE - WS: —79% Energy | —58% Latency
Energy mm

0Ps at every episode. We calculate reward by computing prediction accuracy on 10000 randomly sampled

images from training dataset.

Table 8 Constraining dataflows relative to 50% of the baseline leader (RS for energy and OS for

latency).

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw_model >) [%} [%} [>< 109] [X 103cycles]
Baseline (not pruned); Fine; 256 PE - OS 93.59 - 5.87 1960
Baseline (not pruned); Fine; 256 PE - WS 93.59 - 5.77 1991
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Target Energy (-68%); Fine; 256 PE - OS 91.84 | 72.05 1.88 584
Target Energy (-68%); Fine; 256 PE - WS 90.06 | 84.53 1.75 1308
Target Energy (-50%); Fine; 256 PE - RS * | 93.14 | 54.00 1.88 1159
Target Latency (-50%); Fine; 256 PE - OS * | 92.91 | 52.11 3.06 981
Target Latency (-51%); Fine; 256 PE - WS | 84.17 | 96.20 0.71 1612
Target Latency (-58%); Fine; 256 PE - RS 92.36 | 61.05 1.72 984

*: Baseline leader | (violated constraint) (matched constraint)

for latency, the agent achieves better accuracy for OS and RS. WS demands higher pruning rate
when constraining both energy and latency thereby resulting in lower accuracy (marked as red
in Table 8). We can also see that the agent does not change its action across several episodes
when constraining latency under WS dataflow (see Figure 9f). Thus, we can conclude that the
row stationary dataflow is an optimal mapping scheme to achieve efficient energy and latency.

03:23

LITES

03:24 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Hardware KPI/Accuracy

Py
&

Hardware KPI/Accuracy

—
o
~

Hardware KPI/Accuracy

04
02

05

100 200 300 400

Episode

AR i N

500

600

m \‘%M‘m‘wyww Ahivani c"“‘

Hardware KP1/Accuracy
Z

0 100 200 300 400 500 GO0 0 100 200 300 400 500 6o — U0 100 200 300 400 500 600
Episode Episode Episode

168 PE - RS - ResNet20 Energy | Latency Balance (d) 168 PE - RS - ResNet56 Energy | Latency Balance

14
12

1
08
0.6
04
02

05

256 PE - RS - ResNet20

i

100 200 300 400
Episode

N M T T Y

500

600

Y07 100 200 300 400 500 600 700 500 9001,000

Episode

g4 (i

£ 1N

I M

g 12 T“"‘M i)

<1

<

)

z

T 9 . == = - - = o
0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 800 900 1.000 0100 200 300 400 500 600 700 800 900 1.000

Episode Episode Episode

Energy | Latency Balance (e) 256 PE - RS - ResNet56 Energy | Latency Balance

S

o2
| i
| “"f\f) p
S " vl N
= = f B Athinases
= =1 [
& | &
R «,wtwi——\, . ’
T e e S 5 iz T
=3 = oo == 3 . e ==} SR, = -
0100 200 300 400 500 600 700 300 900 1,000 0100 200 300 400 500 600 700 800 900 1.000 0100 200 300 400 300 600 700 S00 900 1.000

Episode Episode Episode

(c) 1024 PE - RS - ResNet20 Energy | Latency Balance (f) 1024 PE - RS - ResNet56 Energy | Latency Balance

Figure 10 Training curves of the agent detailing the == Reward =m Accuracy == Normalized La-

tency

Normalized Energy == Normalized OPs at every episode.

6.4 Layer-wise Analysis of ResNet18

107 - Energy: m Baseline m OPs Prune DRAM Prune = Energy Prunc m Latency Prune -10°
- Latency: ® Baseline ® OPs Prune DRAM Prune @ Energy Prune ® Latency Prune ;2
56 % 56 28 x 28 14 % 14 TxT 28

Figure 11 Energy consumption and latency of the pruned layers in ResNet18 on an Eyeriss-like 256
PE accelerator under different pruning constraints.

Based on different pruning constraints, the layer-wise analysis of the ImageNet-trained
ResNet18, scheduled on an Eyeriss-like 256 PE accelerator, is presented in Figure 11. The
architecture of ResNet18 consists of four stages based on the output feature map spatial size.
The results detail the achieved Fine estimates (normalized energy and latency). We observe that
the agent’s pruning rate decision for each layer depends on the constrained HW metric. The
layers with higher spatial output sizes (56 x 56) are aggressively pruned when constraining DRAM

M-R. Vemparala et al.

accesses. On the other hand, the pruning rate for the layers with smaller spatial output size (7 x 7)
is observed higher when constraining for OPs. We also observe a lower drop in energy and latency
(< 50%) for layers such as CONV411, CONV511, CONV512 to avoid accuracy degradation for all kinds
of pruning constraints. The prediction accuracy and the pruning rates of the four configurations
are reported in Table 10.

6.5 Pruning DeeplLabv3 for Semantic Segmentation

Using the HW-Flow estimations, we prune DeepLabv3 [3] (using ResNet18 backbone) on the
CityScapes dataset. For the DeepLab-based CNN, the bottleneck layers consist of two residual
blocks with a dilation rate of 2 and an Atrous Spatial Pyramid Pooling (ASPP) block with dilation
rates {1, 8, 12, 18}. To obtain Fine-level estimates for dilated convolutional layers from the
HW-Flow framework, we adapt the row-stationary dataflow. The rows of PEs responsible for

the dilated parts of the kernel can either be clock-gated or removed from the logical mapping.

This implies that the diagonal reuse of input pixels across the spatial array is disrupted. This
phenomenon is equivalent to a regular convolution with a large stride, where not every row of
the input feature is shared directly with the diagonal neighbor PE [4]. Nevertheless, a non-direct
neighbor PE may still reuse the input feature map row. In this case, the potential to reuse an
input feature map row at the PE array-level depends on the degree of unrolling Ppr,, the dilation
rate, and the stride. We use an Eyeriss-like architecture with a large PE array to perform inference
of the DeepLabv3 model. In Table 9, we highlight that the DeepLabv3 cannot be scheduled
on the standard Eyeriss architecture [4] (Eyeriss-168). This is due to the ifmap register files
being dimensioned to hold at-most 12 pixels at a time (see Table 3), which is a decision made
by the designers in [4] to support the largest kernel size row in AlexNet (11 pixels). The dilated
convolution layers in DeepLabv3, can have up to 36 pixel rows at a time, for a 3x3 kernel with
a dilation rate of 18. Increasing the PE array dimensions would not resolve this issue, as it is
inherent to the pipeline and dataflow constraints of the Eyeriss-like architecture. We increase
the i fmap register sizes to 37 pixels per PE (i.e. 36 + 1) to make all layers schedulable on the
accelerator and obtain baseline estimates.

Table 9 Pruning DeepLabv3 on the CityScapes dataset.

Prune configuration mIOU | PR Memory Energy Latency
(< reward >;< level >;< hw_nodel >) (%) (%] [MB] [x10%] [x10%cycles]
Baseline (not pruned); Fine; Eyeriss-like 168 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Fine; Eyeriss-like 1024 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Fine; Eyeriss-like-Deeplab 69.68 - 33.26 1541 267.4
Ops Constrained (Ours); Coarse; Eyeriss-like-Deeplab 69.69 | 50.00 25.48 954 174.9
Energy Constrained (Ours); Fine; Eyeriss-like-Deeplab 69.88 | 51.90 29.05 820 161.5
Latency Constrained(Ours); Fine; Eyeriss-like-Deeplab | 69.79 | 60.36 16.87 677 119.6
(NS: Not Schedulable) (matched constraint)

We constrain the number of operations, energy, and latency during the pruning process to
50% as shown in Table 9. There is no degradation in the mIOU (mean intersection over union)
evaluation metric for different pruning constraints. We could derive that the unpruned DeepLabv3
model is over-parameterized for the CityScapes dataset. We observe that a higher pruning
rate is required to constrain latency to 50%. We highlight the pruned models’ effectiveness by
demonstrating the semantic predictions on three sample images of the CityScapes dataset. We
observe that the pruned models could produce better predictions (terrain in column 1, bikers in
column 2, motorcycle and terrain in column 3) due to their higher generalization capability. By
analyzing the layer-wise pruning ratios for different target constraints, we observe that the agent
heavily prunes the ASPP and decoder blocks. For energy-constrained pruning, the agent only
finds redundant operations in the decoder blocks.

03:25

LITES

03:26 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Raw Image

Labels

50% Energy

50% Latency

Figure 12 Qualitative results for pruned models on different scenarios in the CityScapes dataset. Black
regions are unlabeled in the original dataset.

M-R. Vemparala et al.

6.6 Results Summary and Discussion

In this section, we compare HW-Flow with other channel pruning works proposed in literature.
Table 10 details various pruning configurations of ResNet variants trained on CIFAR-10 (ResNet20,
ResNet56) and ImageNet (ResNet18, ResNet50), evaluated on an Eyeriss-like 256 PE accelerator.
The table also includes other pruning methods and baseline models for reference. FPGM [15]
and Channel-Pruning [14] do not consider HW metrics as optimization targets or constraints, but
rather limit the compressed models only to be efficient with respect to computational complexity.
Due to a lack of information given by the authors, the estimation of the energy and the latency is
not possible for these works.

Table 10 Constrained and balanced pruning configurations using HW-Flow on ResNet variants,
compared to other works in literature. HW estimates measured on Eyeriss-like-256.

Prune configuration Acc PR Memory Energy Latency
(< reward >;< level >) (%] (%] [MB] [x10°] [x10%cycles]
ResNet20

Baseline (not pruned) 92.48 - 0.54 1.22 765
FPGM [15] (HW agnostic) 91.09 | 42.20 - - -
Ops Constrained [16]; Coarse 91.78 | 50.00 0.33 0.82 464
DRAM Constrained (Ours); Mid 90.78 | 70.87 0.27 0.43 236
Energy Constrained (Ours); Fine 91.46 | 56.12 0.35 0.61 359
Latency Constrained (Ours); Fine 90.53 | 48.55 0.35 0.66 383
ResNet56

Baseline (not pruned) 93.59 - 1.69 3.76 2350
FPGM [15] (HW agnostic) 92.89 | 52.60 - . -
Channel-pruning [14] (proxy) 91.80 | 50.00 - - -
Ops Constrained [16]; Coarse 93.03 | 50.00 1.21 2.08 1219
DRAM Constrained (Ours); Mid 91.82 | 63.84 1.21 1.50 862
Energy Constrained (Ours); Fine 93.14 | 54.00 1.11 1.88 1159
Latency Constrained (Ours); Fine 93.24 | 50.89 1.15 2.05 1176
ResNet18

Baseline (not pruned) 68.33 - 23.34 64.85 37796
FPGM [15] (HW agnostic) 67.81 | 41.80 - - -
Ops Constrained [16]; Coarse 67.66 | 50.00 16.94 32.89 18906
DRAM Constrained (Ours); Mid 66.38 | 54.46 15.94 30.17 16755
Energy Constrained (Ours); Fine 66.58 | 50.63 14.69 32.32 18280
Latency Constrained(Ours); Fine 66.92 | 49.70 16.61 33.62 18889
ResNet50

Baseline (not pruned) 76.06 - 51.00 361.12 206873
FPGM [15] 74.83 | 53.50 - - -
Channel-pruning [14] (proxy) 72.30 | 50.00 - - -
Ops Constrained [16]; Coarse 73.25 | 50.00 22.67 178.55 103968
DRAM Constrained (Ours); Mid 72.17 | 58.61 17.16 148.67 86411
Energy Constrained (Ours); Fine 73.69 | 49.82 24.12 180.91 104411
Latency Constrained(Ours); Fine 74.35 | 49.68 25.62 180.93 103576

(violated constraint) (matched constraint)

The accuracy and HW-estimates for AMC [16] are re-implemented by constraining the 0Ps in
HW-Flow’s Coarse-level estimation. We observe that constraining DRAM accesses by 50% using
Mid-level estimation demands higher pruning rate as there is little room for optimizing the HW
schedule. This results in accuracy degradation compared to other pruning configurations from
other target constraints (see DRAM constrained pruning for ResNet56, ResNet50 in Table 10).
HW-Flow is able to constrain energy and latency precisely to 50% of its baseline metrics by
using Fine-level HW estimates during the pruning process. For ResNet50, the energy and latency

03:27

LITES

03:28

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

constrained solutions by HW-Flow produce 0.44% and 1.10% better prediction accuracy compared
to the work in AMC (OPs constrained). AMC also prunes the CNNs based on latency, but it is
only limited to general-purpose HW platforms (Pixel 1 and TitanX GPU). We should note that
HW-Flow can prune CNN models at different HW abstraction levels and with a customizable,
accurate HW optimizer/modeler, thus allowing for a HW/CNN co-design approach.

7 Conclusion

Optimization of CNNs and the design of resource-constrained HW platforms go hand in hand.
In this paper, we propose HW-Flow, a framework for optimizing and exploring CNN models
based on three levels of hardware abstraction: Coarse, Mid and Fine. We propose analytical
search techniques to systematically traverse through the scheduling and mapping space, thereby
generating accurate HW estimates. We show that the pruning rate is an inaccurate proxy metric for
HW efficiency. With HW-aware pruning using Fine-level estimates, HW-Flow achieved x2 energy
and latency reduction with minimal loss in prediction accuracy compared to its baseline unpruned
models. We extend the investigation to segmentation tasks, where observations on pruning
rates of decoder and ASPP blocks were made with respect to the pruning target. DeepLabv3’s
energy and latency were reduced by ~50%, while improving the accuracy of the baseline, over-
parameterized model. HW-Flow can prune CNN models at different HW abstraction levels and
with a customizable and accurate HW modeling technique, facilitating a HW-CNN codesign
approach.

— References

1 Han Cai, Ligeng Zhu, and Song Han. Proxyless- formation Processing Systems (NeurIPS). Morgan
NAS: Direct Neural Architecture Search on Target Kaufmann Publishers Inc., 1990.
Task and Hardware. In International Conference 7 Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu
on Learning Representations (ICLR), 2019. URL: Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yun-
https://dblp.org/rec/conf/iclr/CaiZH19.bib. qging Hu, Yiming Wu, Yangqing Jia, Peter Vajda,

2 C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deep- Matthew Uyttendaele, and Niraj K. Jha. Chamnet:
driving: Learning affordance for direct perception Towards efficient network design through platform-
in autonomous driving. In 2015 IEEE Interna- aware model adaptation. 2019 IEEE/CVF Confer-
tional Conference on Computer Vision (ICCV), ence on Computer Vision and Pattern Recognition
pages 2722-2730, December 2015. doi:10.1109/ (CVPR), 2019. doi:10.1109/CVPR.2019.01166.
ICCV.2015.312. 8 Xuanyi Dong and Yi Yang. Nas-bench-201: Extend-

3 Liang-Chich Chen, Yukun Zhu, George Papandreou, ing the scope of reproducible neural architecture

search. In International Conference on Learning
Representations, 2020. URL: https://openreview.
net/forum?id=HJxyZkBKDr.

Florian Schroff, and Hartwig Adam. Encoder-
Decoder with Atrous Separable Convolution for
Semantic Image Segmentation. In The FEuro-) :) .
pean Conference on Computer Vision (ECCV), 9 Alexander Frickenstein, Manc?J-Rohlt Vemparala,
Cham, 2018. Springer International Publishing. Nael Fa§f0us, I_jau.ra Hauenschild, Naveen-Shankar
doi:10.1007/978-3-030-01234-2_49. Nagaraja, Christian Unger, and Walter Stechele.

K . Alf: Autoencoder-based low-rank filter-sharing for

4 Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial efficient convolutional neural networks. In Proceed-

Archi.tecture for Energy-Efficient Dataflow for Con- ings of the 57th ACM/EDAC/IEEE Design Au-
volutional Neural Networks. In ACM/IEEE Annual : .

I ‘onal S . c Archi tomation Conference, (DAC), 2020. doi:10.1109/
nternational Symposium on Computer Architec- DAC18072.2020.9218501.

ture (ISCA), 2016. doi:10.1109/ISCA.2016.40. 10 Yiwen Guo, Anbang Yao, and Yurong Chen. Dy-

5 Marius Cordts, Mohamed Omran, Sebastian namic Network Surgery for Efficient DNNs. In
Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
Ben.enson, UW(? Franke, Stefan Roth, and Bernt and R. Garnett, editors, Advances in Neural In-
Schiele. The Cltyscape§ Dataset for Semantic Ur- formation Processing Systems (NeurIPS). Curran
ban Scene Understanding. In IEEE/CVF Con- Associates, Inc., 2016. URL: https://dblp.org/
ference on Computer Vision and Pattern Recogni- rec/conf/nips/GuoYC16.bib.
t.ion (CVPR), 2016. URL: https://dl?lp.org/rec/ 11 Song Han, Jeff Pool, John Tran, and William Dally.
journals/corr/CordtsORREBFRS16.bib. Learning both Weights and Connections for Effi-

6 Yann Le Cun, John S. Denker, and Sara A. Solla. cient Neural Network. In C. Cortes, N. D. Lawrence,

Optimal Brain Damage. In Advances in Neural In- D. D. Lee, M. Sugiyama, and R. Garnett, editors,

https://dblp.org/rec/conf/iclr/CaiZH19.bib
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/ISCA.2016.40
https://dblp.org/rec/journals/corr/CordtsORREBFRS16.bib
https://dblp.org/rec/journals/corr/CordtsORREBFRS16.bib
https://doi.org/10.1109/CVPR.2019.01166
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.1109/DAC18072.2020.9218501
https://doi.org/10.1109/DAC18072.2020.9218501
https://dblp.org/rec/conf/nips/GuoYC16.bib
https://dblp.org/rec/conf/nips/GuoYC16.bib

M-R. Vemparala et al.

12

13

14

15

16

17

18

19

20

21

22

23

Advances in Neural Information Processing Sys-
tems (NeurIPS). Curran Associates, Inc., 2015.
Babak Hassibi, David G. Stork, Gregory Wolff,
and Takahiro Watanabe. Optimal Brain Surgeon:
Extensions and Performance Comparisons. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), San Francisco, CA, USA, 1993. Mor-
gan Kaufmann Publishers Inc. doi:10.1109/ICNN.
1993.298572.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Resid-
ual Learning for Image Recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. doi:10.1109/CVPR.2016.90.
Y. He, X. Zhang, and J. Sun. Channel Pruning
for Accelerating Very Deep Neural Networks. In
IEFEFE International Conference on Computer Vi-
ston (ICCV), 2017. doi:10.1109/ICCV.2017.155.
Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and
Yang Yang. Filter Pruning via Geometric Me-
dian for Deep Convolutional Neural Networks Ac-
celeration. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.
doi:10.1109/CVPR.2019.00447.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia
Li, and Song Han. AMC: AutoML for Model Com-
pression and Acceleration on Mobile Devices. In
European Conference on Computer Vision (ECCV),
2018. doi:10.1007/978-3-030-01234-2_48.
Qiangui Huang, Shaohua Kevin Zhou, Suya You,
and Ulrich Neumann. Learning to Prune Filters
in Convolutional Neural Networks. IEEE Winter
Conference on Applications of Computer Vision
(WACYV), 2018. doi:10.1109/WACV.2018.00083.
Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237-285,
1996.

Alex Krizhevsky. Learning Multiple Layers of
Features from Tiny Images, 2009. University of
Toronto.

Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification
with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL: https:
//proceedings.neurips.cc/paper/2012/file/
€c399862d3b9d6b76c8436e924a68c45b-Paper . pdf.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. ImageNet Classification with Deep Convo-
lutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc., 2012.
doi:10.1145/3065386.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yon-
gan Zhang, Yang Zhao, Haoran You, Qixuan Yu,
Yue Wang, Cong Hao, and Yingyan Lin. {HW}-
{nas}-bench: Hardware-aware neural architecture
search benchmark. In International Conference
on Learning Representations, 2021. URL: https:
//openreview.net/forum?id=_OkaDkv3dVf.
Timothy P Lillicrap, Jonathan J Hunt, Alexan-
der Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous

24

25

26

27

28

29

30

31

32

33

34

control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Shuying Liu and Weihong Deng. Very deep con-
volutional neural network based image classifica-
tion using small training sample size. In 2015 3rd
IAPR Asian Conference on Pattern Recognition

(ACPR), pages 730-734, 2015. doi:10.1109/ACPR.

2015.7486599.

Jonathan Long, Evan Shelhamer, and Trevor Dar-
rell. Fully convolutional networks for semantic
segmentation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
June 2015.

Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In Proceedings of the
15th ACM workshop on hot topics in networks,
pages 50-56, 2016.

A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A.
Ying, A. Mukkara, R. Venkatesan, B. Khailany,
S. W. Keckler, and J. Emer. Timeloop: A System-
atic Approach to DNN Accelerator Evaluation. In
IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019.
doi:10.1109/ISPASS.2019.00042.

S. Pereira, A. Pinto, V. Alves, and C. A. Silva.
Brain tumor segmentation using convolutional neu-
ral networks in mri images. IEEE Transactions
on Medical Imaging, 35(5):1240-1251, May 2016.
do0i:10.1109/TMI.2016.2538465.

Martin Riedmiller and Thomas Gabel. On experi-
ences in a complex and competitive gaming domain:
Reinforcement learning meets robocup. In 2007
IEEE Symposium on Computational Intelligence
and Games, pages 17-23, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-
ageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3), 2015. doi:10.1007/s11263-015-0816-y.

Hardik Sharma, Jongse Park, Naveen Suda,
Liangzhen Lai, Benson Chau, Vikas Chandra, and
Hadi Esmaeilzadeh. Bit Fusion: Bit-Level Dy-
namically Composable Architecture for Accelerat-
ing Deep Neural Networks. In ACM/IEEE An-
nual International Symposium on Computer Ar-
chitecture (ISCA), ISCA ’18. IEEE Press, 2018.
doi:10.1109/ISCA.2018.00069.

V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient
Processing of Deep Neural Networks: A Tutorial
and Survey. Proceedings of the IEEE (Volume: 105,
Issue: 12), 105(12), November 2017.

Christian Szegedy, W. Liu, Y. Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, D. Er-
han, V. Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 1-9, 2015.

Mingxing Tan and Quoc Le. EfficientNet: Rethink-
ing model scaling for convolutional neural networks.
In Proceedings of the 36th International Conference
on Machine Learning, 2019.

03:29

LITES

https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2019.00447
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1109/WACV.2018.00083
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/3065386
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ISCA.2018.00069

03:30

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

35

36

37

38

39

40

F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and
S. Wei. Deep convolutional neural network ar-
chitecture with reconfigurable computation pat-
terns. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(8):2220-2233, 2017.
doi:10.1109/TVLSI.2017.2688340.

Manoj Rohit Vemparala, Nael Fasfous, Alexander
Frickenstein, Sreetama Sarkar, Qi Zhao, Sabine
Kuhn, Lukas Frickenstein, Anmol Singh, Christian
Unger, Naveen Shankar Nagaraja, Christian Wress-
negger, and Walter Stechele. Adversarial robust
model compression using in-train pruning. 2021
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages
66-75, 2021.

R. Venkatesan, Y. Shao, Miaorong Wang, Jason
Clemons, S. Dai, M. Fojtik, Ben Keller, Alicia
Klinefelter, N. Pinckney, Priyanka Raina, Y. Zhang,
B. Zimmer, W. Dally, J. Emer, Stephen W. Keckler,
and B. Khailany. Magnet: A modular accelerator
generator for neural networks. In 2019 IEEE/ACM
International Conference on Computer-Aided De-
sign (ICCAD), 2019. doi:10.1109/ICCAD45719.
2019.8942127.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and
Song Han. HAQ: Hardware-Aware Automated
Quantization With Mixed Precision. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.

Marco A Wiering. Multi-agent reinforcement learn-
ing for traffic light control. In Machine Learning:
Proceedings of the Seventeenth International Con-
ference (ICML’2000), pages 1151-1158, 2000.
Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yang-
han Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Péter Vajda, Yangqing Jia, and Kurt Keutzer.
Fbnet: Hardware-aware efficient convnet design

41

42

43

44

45

via differentiable neural architecture search. 2019
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10726-10734,
2019.

T. Yang, Y. Chen, and V. Sze. Designing Energy-
Efficient Convolutional Neural Networks Using
Energy-Aware Pruning. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2017. doi:10.1109/CVPR.2017.643.
Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao
Zhang, Alec Go, Mark Sandler, and Hartwig Sze,
Vivienneand Adam. NetAdapt: Platform-Aware
Neural Network Adaptation for Mobile Applica-
tions. In The European Conference on Computer
Vision (ECCYV). Springer International Publish-
ing, 2018. URL: https://dblp.org/rec/journals/
corr/abs-1804-03230.bib.

Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter,
Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao,
Heonjae Ha, Priyanka Raina, Christos Kozyrakis,
and Mark Horowitz. Interstellar: Using halide’s
scheduling language to analyze dnn accelerators. In
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS), pages 369-383, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3373376.3378514.

C. Zhang, Zhenman Fang, Peipei Zhou, Peichen
Pan, and Jason Cong. Caffeine: Towards uniformed
representation and acceleration for deep convolu-
tional neural networks. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (IC-
CAD), 2016. doi:10.1145/2966986.2967011.
Xingyi Zhou, Dequan Wang, and Philipp Krahen-
biithl. Objects as points. In arXiv preprint, 2019.
arXiv:1904.07850.

https://doi.org/10.1109/TVLSI.2017.2688340
https://doi.org/10.1109/ICCAD45719.2019.8942127
https://doi.org/10.1109/ICCAD45719.2019.8942127
https://doi.org/10.1109/CVPR.2017.643
https://dblp.org/rec/journals/corr/abs-1804-03230.bib
https://dblp.org/rec/journals/corr/abs-1804-03230.bib
https://doi.org/10.1145/3373376.3378514
https://doi.org/10.1145/2966986.2967011
http://arxiv.org/abs/1904.07850

	1 Introduction
	2 Background
	2.1 Convolutional Neural Networks
	2.2 Reinforcement Learning

	3 Related Work
	4 Hardware-Flow
	4.1 Problem Formulation
	4.2 Deep Deterministic Policy Gradient-based Agent
	4.3 HW-model Abstraction Levels
	4.4 HW-model Optimizer
	4.5 Search Space for HW-model Optimizer

	5 HW-model Design Space Exploration
	5.1 HW Estimations at Various Abstraction Levels
	5.2 Mid-Level Estimations and Design Choices
	5.3 Fine-Level Estimations and Dataflows
	5.4 Search Space Exploration for Fine-level Estimations
	5.5 Validation with Eyeriss and Timeloop

	6 Experimental Results
	6.1 Pruning on Different Abstraction Levels
	6.2 Pruning on Different Rewards
	6.3 Pruning on Different Mappings
	6.4 Layer-wise Analysis of ResNet18
	6.5 Pruning DeepLabv3 for Semantic Segmentation
	6.6 Results Summary and Discussion

	7 Conclusion

