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Abstract. We study the intrinsic difficulty of solving linear parabolic initial value
problems numerically at a single point. We present a worst case analysis for determin-
istic as well as for randomized (or Monte Carlo) algorithms, assuming that the drift
coefficients and the potential vary in given function spaces. We use fundamental solu-
tions (parametrix method) for equations with unbounded coefficients to relate the initial
value problem to multivariate integration and weighted approximation problems. Hereby
we derive lower and upper bounds for the minimal errors. The upper bounds are achieved
by algorithms that use Smolyak formulas and, in the randomized case, variance reduc-
tion. We apply our general results to equations with coefficients from Hölder classes, and
here, in many cases, the upper and lower bounds almost coincide and our algorithms are
almost optimal.

1. Introduction

Consider a linear parabolic equation

(1) ∆u+
d∑

j=1

bj ·
∂u

∂xj

+ b0 · u =
∂u

∂t

on ]0, t0]× Rd with initial condition

(2) u(0, ·) = ϕ,

and suppose that the vector b = (b0, . . . , bd) of coefficients belongs to a function class
B. The latter is typically defined by smoothness properties and growth conditions. We
wish to compute the solution u of any initial value problem with b ∈ B at a single point
(t0, x0), and we study deterministic and randomized (or Monte Carlo) algorithms that use
a finite number of functions values of the coefficient vector b. Well-known algorithms of
this form are, e.g., finite difference schemes for the parabolic equation or weak Ito-Taylor
schemes for the associated stochastic differential equation, see (7) and (8).

We follow a worst case approach for the analysis and comparison of algorithms. For
parabolic initial value problems the approach is used for the first time by Plaskota,
Wasilkowski, and Woźniakowski (2000) and then by Kwas and Li (2003), and Kwas (2004).
They consider (1) and (2) with b1 = · · · = bd = 0 but variable b0 and ϕ.

For simplicity we assume that ϕ is fixed. The intrinsic difficulty of our computational
problem is quantified by the n-th minimal errors

edet(n,B) = inf
Pn∈Adet

n

e(Pn,B)

and
eran(n,B) = inf

Pn∈Aran
n

e(Pn,B).
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Here Adet
n and Aran

n denote the classes of all deterministic and randomized algorithms,
respectively, that use n function values of the coefficient vector b at adaptively chosen
nodes from [0, t0] × Rd. Moreover, e(Pn,B) is the worst case (or maximal) error of an
algorithm Pn for initial value problems with b ∈ B. We are interested in the asymptotic
behaviour of the minimal errors as n tends to ∞, and we derive asymptotic upper and
lower bounds. Furthermore, we wish to determine algorithms from Adet

n and Aran
n with

error close to the corresponding minimal error and with computational cost close to n.
Our analysis relies on the results by Deck and Kruse (2002), who construct fundamen-

tal solutions for parabolic equations with unbounded coefficients under mild regularity
assumptions. It follows that u(t0, x0) is given as a rapidly convergent series of weighted
integrals of increasing dimension, where the integrands are tensor products of the coeffi-
cients bj.

A general technique, which is due to Bakhvalov (1959) and Novak (1988), is available
to establish lower bounds for integration problems. We extend this technique to derive the
same lower bounds for the non-linear problem of solving parabolic initial value problems
with variable coefficients.

To provide upper bounds for the minimal errors and to construct corresponding algo-
rithms we truncate the series representation for u(t0, x0) and approximate the remaining
tensor products of coefficients. Furthermore, our randomized algorithm use the determin-
istic one for variance reduction. Hereby we show that solving the initial value problem
is almost as easy as L∞-approximation of the coefficients bj with respect to the weight

function (t, x) 7→
(
1 + |x|δ

)−1
for any 0 ≤ δ < 1. In fact, one may use Smolyak formulas

to approximate tensor products of coefficients, so that the latter problems altogether are
almost as easy as approximation of a single coefficient. The computational cost of the
resulting algorithms is almost proportional to the number n of evaluations of b. We rely
on results by Wasilkowski and Woźniakowski (1995), who provide a general analysis of
Smolyak formulas with emphasis on bounds that explicitly depend on the dimension.

We apply our general results to parabolic equations with coefficients from Hölder classes
Cr,α

M , where r is the order of differentiability and α and M denote the Hölder exponent
and constant, respectively. To derive the upper bounds we also use results (partially with
slight modification) on weighted approximation by Wasilkowski and Woźniakowski (2001).
Put

γ =
r + α

d+ 1
,

and consider any ε > 0 in the sequel.
For

B =
{
b ∈ Cr,α

M : |b(0, 0)| ≤M ′}d+1

with r = 0 and α < 1 we get the lower bounds

(3) lim inf
n→∞

(
nγ · edet(n,B)

)
> 0, lim inf

n→∞

(
nγ+1/2 · eran(n,B)

)
> 0

and the upper bounds

(4) lim
n→∞

(
nγ−ε · edet(n,B)

)
= 0, lim

n→∞

(
nγ+1/2−ε · eran(n,B)

)
= 0.

According to Deck and Kruse (2002) we additionally have to impose a growth condition
with exponent 0 ≤ β < 1 for coefficients of smoothness r + α ≥ 1. Hence we study the
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classes

(5) B =
{
b ∈ Cr,α

M : sup
(t,x)∈[0,t0]×Rd

|b(t, x)|/(1 + |x|β) ≤M ′}d+1
.

In this case (3) is valid, too, but instead of (4) we get

(6) lim
n→∞

(
nϑ−ε · edet(n,B)

)
= 0, lim

n→∞

(
nϑ+1/2−ε · eran(n,B)

)
= 0

with

ϑ = γ · 1− β

r + α− β
.

However, on subclasses of functions whose local Hölder constants decay sufficiently fast
as |x| tends to ∞ we get the bounds (3) and (4) again. This holds true in particular for
compactly supported functions from Cr,α

M .
We conclude that for coefficients with low regularity or for smooth coefficients with

Hölder constants that decay sufficiently fast the minimal errors converge to zero almost
like n−γ for deterministic algorithms and n−(γ+1/2) for randomized algorithms. Moreover,
our algorithms are almost optimal in these cases. On the other hand, we do not have sharp
bounds in the case (5) if r + α ≥ 1. In fact, the upper bounds (6) and lower bounds (3)
differ significantly for large values of γ, i.e., if the smoothness r+α is large compared to the
spatial dimension d. Note that in all these cases randomized algorithms are significantly
better than deterministic ones if γ is small.

Associated with every linear parabolic equation there is a stochastic differential equation

(7) dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

for t ∈ [0, t0]. The principal part of the elliptic operator is related to the diffusion coefficient
σ, and in particular for (1) we have σ =

√
2 · Idd. Furthermore,

µ(t, x) = (b1(t0 − t, x), . . . , bd(t0 − t, x))>,

and W denotes a d-dimensional standard Brownian motion. The Feynman-Kac represen-
tation of u yields

(8) u(t0, x0) = E

(
ϕ(Xt0) · exp

(∫ t0

0

b0(s,Xs) ds

))
for parabolic equations in general, where X is the solution of (7) with initial condition

X0 = x0.

Consider the particular case

(9) ∆u+ b0 · u =
∂u

∂t

of equation (1), which corresponds to a stochastic differential equation with solution Xt =
x0 +

√
2Wt. The latter is a Gaussian process, and a Taylor expansion of the exponential

function in (8) shows that u(t0, x0) may be expressed as a series of weighted integrals. The
integrands are the tensor products ϕ⊗ b0⊗ · · · ⊗ b0, and the weight functions correspond
to mixtures of multivariate normal distributions, since X is Gaussian. If b0 = 0, too,
then u(t0, x0) is simply given as the integral of ϕ with respect to a d-dimensional normal
distribution.

This is the starting point of the analysis by Plaskota, Wasilkowski, and Woźniakowski
(2000), Kwas and Li (2003), and Kwas (2004). More precisely, Plaskota, Wasilkowski, and
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Woźniakowski (2000) and Kwas and Li (2003) study deterministic algorithms in the cases
d = 1 and d ≥ 1, respectively, and Kwas (2004) analyzes randomized (as well as quantum)
algorithms in the case d ≥ 1.

The stochastic differential equation (7) corresponding to (1) can be solved explicitly
only in exceptional cases and leads to a non-Gaussian process X, in general. Still, by
the results from Deck and Kruse (2002), we can proceed in a similar way as Plaskota,
Wasilkowski, and Woźniakowski (2000), Kwas and Li (2003), and Kwas (2004).

Implementation of the almost optimal algorithms that are constructed in the present
paper, as well as in those references cited previously, requires extensive pre-computing.
In fact, a straight-forward approach leads to more than n quadrature problems, which do
not depend on the coefficients bj and must be solved before implementation.

The Feynman-Kac representation is often used to derive randomized algorithms of the
following form. A simulation yields samples X(1)(ω), . . . , X(m)(ω) that are approximately
distributed like X, and a sample mean corresponding to the right-hand side of (8) is used
as an approximation to u(t0, x0). The simplest algorithm of this form uses the weak Euler
scheme for the simulation of (7). In computational practice randomized algorithms are
often preferred to deterministic ones, unless the dimension d is small. Large values of d
naturally arise, e.g., in computational finance, when (7) is used to model the risk-neutral
dynamics of the prices of d assets and ϕ denotes the discounted payoff of a European
option with maturity t0. In this case u(t0, x0) is the value of the option at time t = 0.

We present a simple consequence of our lower bound for the minimal error edet(n,B)
with Hölder classes B. Consider the randomized algorithm that is based on the weak
Euler scheme for simulation of (7) with constant step-size in time. It is well known that
its bias is (at most) proportional to the step-size, if the coefficients µ and σ as well as ϕ
and b0 satisfy moderate smoothness assumptions and growth bounds, see, e.g., Kloeden
and Platen (1999). Relating the step-size and the number of simulations in an optimal
way, we get a randomized algorithm PE

n ∈ Aran
n with error

e(PE
n ,B) ≤ c · n−1/3

for some constant c > 0 and with computational cost proportional to n. For σ =
√

2 · Idd

and b0 = 0 this holds true at least if r + α > 2. On the other hand, we have the lower
bound

edet(n,B) ≥ c′ · n−(r+α)/(d+1)

with some constant c′ > 0, see (3). We thus conclude that asymptotically the simple and
easily implementable algorithm PE

n is better than every deterministic algorithm of the
same computational cost, if

d > 3 (r + α)− 1.

For instance, if r + α close to 2, this superiority already holds for d ≥ 6.

2. Problem Formulation

In the sequel we let c denote unspecified positive constants with possibly different values
and we put b = (b0, . . . , bd) as well as D = [0, t0] × Rd. Moreover, we use | · | to denote
the Euclidean norm. We always assume that

(i) every function bj : D → R is continuous and satisfies a Hölder condition

|bj(t, x)− bj(t, y)| ≤ c · |x− y|α, t ∈ [0, t0], x, y ∈ K,
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with exponent 0 < α ≤ 1 for every compact set K ⊆ Rd and a growth condition

sup
(t,x)∈D

(
|bj(t, x)|/(1 + |x|β)

)
<∞

with exponent 0 ≤ β < 1,
(ii) the function ϕ : Rd → R is continuous and satisfies a growth condition

sup
x∈Rd

(
|ϕ(x)| · exp(−h · |x|2)

)
<∞

for every h > 0.

Then the initial value problem (1) and (2) is uniquely solvable in the class of continuous
functions u that satisfy

(10) sup
(t,x)∈D

(
|u(t, x)| · exp(−h · |x|2)

)
<∞

for any h > 0, see Deck and Kruse (2002). In order to indicate the dependence of u on b
we write u(t, x;b).

Now we formulate the computational problem that is studied in this paper. Let t0 > 0,
x0 ∈ Rd, and ϕ with property (ii) be given. Consider a class B of functions b : D → Rd+1

that satisfy property (i). Formally, the problem of solving the initial value problem at the
point (t0, x0) for b ∈ B is defined by the non-linear mapping P : B → R with

P [b] = u(t0, x0;b).

We study algorithms for the approximate computation of P that use a finite number
of function values of the coefficients bj. For simplicity we assume that a single evaluation
at a node (t, x) ∈ D already yields the values of all coefficients b0, . . . , bd at this node. By
Adet

n and Aran
n we denote the classes of all deterministic and randomized (or Monte Carlo)

algorithms, respectively, that use n evaluations for every b ∈ B at adaptively chosen
nodes from D. For deterministic algorithms Pn : B → R the worst case error on the class
B is defined by

e(Pn,B) = sup
b∈B

|P [b]− Pn[b]| ,

and for randomized algorithms Pn, which formally are random variables with values in
Adet

n , this quantity is defined by

e(Pn,B) = sup
b∈B

(
E
(∣∣P [b]− Pn[b]

∣∣2))1/2

.

The n-th minimal errors on B,

edet(n,B) = inf
Pn∈Adet

n

e(Pn,B)

and

eran(n,B) = inf
Pn∈Aran

n

e(Pn,B),

quantify how well initial value problems with coefficients b ∈ B can be solved by any
deterministic or randomized algorithm that uses n values of the coefficient vector.

The number n of evaluations of b is a rather rough measure for the computational
cost of Pn. In a detailed definition of the cost for computing Pn[b] we add the (expected)
number of arithmetic operations (and the expected number of calls of the random number
generator) to the number n. By cost(Pn,B) we then denote the worst case cost for com-
puting Pn[b] on the class B. We refer to Traub, Wasilkowski, and Woźniakowski (1988)
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and Novak (1995) for the precise definition and analysis of the underlying real number
model of computation.

We are interested in algorithms Pn from Adet
n or Aran

n with error close to edet(n,B) or
eran(n,B), respectively, and with cost(Pn,B) close to n.

3. A Fundamental Solution and Basic Estimates

Deck and Kruse (2002) construct a fundamental solution for parabolic equations with
unbounded coefficients under mild regularity assumptions by means of the classical para-
metrix method, see, e.g., Friedman (1964). Deck and Kruse consider the general case of a
uniformly elliptic operator. Here we formulate and use their result in the particular case
of equation (1).

Let 0 ≤ τ < τµ < · · · < τ1 < t ≤ t0 and ξ, ξµ, . . . , ξ1, x ∈ Rd, and put

Z(t, x, τ, ξ) =
(
2
√
π
)−d · (t− τ)−d/2 · exp

(
− |x− ξ|2

4 (t− τ)

)
as well as

V (τ, t) = ]τ, t[× Rd.

By Zj we denote the partial derivative of the heat kernel Z with respect to the j-th
component of its second argument. Moreover, we put Z0 = Z. For j ∈ {0, . . . , d}µ we
define

ψ(j)(t, x, τ1, ξ1, . . . , τµ, ξµ, τ, ξ)

= Z(t, x, τ1, ξ1) · Zj1(τ1, ξ1, τ2, ξ2) · · ·Zjµ−1(τµ−1, ξµ−1, τµ, ξµ) · Zjµ(τµ, ξµ, τ, ξ).

Lemma 1 (Deck and Kruse (2002)). Let

0 ≤ δ < 1.

There exists a constant c > 0 such that

f (j)(t, x, τ1, ξ1, . . . , τµ, ξµ, τ, ξ) =

µ∏
`=1

(
1 + |ξ`|δ

)
·
∣∣ψ(j)(t, x, τ1, ξ1, . . . , τµ, ξµ, τ, ξ)

∣∣
with µ ≥ 1 and j ∈ {0, . . . , d}µ satisfies∫

V (τ,t)

∫
V (τ,τ1)

. . .

∫
V (τ,τµ−1)

f (j)(t, x, τ1, ξ1, . . . , τµ, ξµ, τ, ξ) d(τµ, ξµ) . . . d(τ1, ξ1)

≤ (cµ)−µ/2 · (t− τ)(µ−d−1)/2 ·
(
|ξ|δ·(µ+1) + µ(1+δ)/4·µ) · exp

(
−c |x− ξ|2

t− τ

)
.

Proof. We have

|Zj(t, x, τ, ξ)| ≤ c1 · (t− τ)−(d+1)/2 · exp

(
− |x− ξ|2

8 (t− τ)

)
for j ≥ 0 with some constant c1 > 0, cf. Deck and Kruse (2002, Eqn. (5.2)). For 0 < δ < 1
we now proceed as in Deck and Kruse (2002, pp. 77–79) with the particular choice εµ =
1/2 · µ−(1+δ)/(2δ) (in our notation). �

We introduce the weighted L∞-norm

‖g‖µ,δ = sup
(τ`,ξ`)∈D

|g(τ1, ξ1, . . . , τµ, ξµ)|∏µ
`=1 (1 + |ξ`|δ)
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for appropriately bounded functions g : Dµ → R and 0 ≤ δ < 1. Due to Lemma 1

Γ(j)[g](t, x, τ, ξ) =

∫
V (τ,t)

∫
V (τ,τ1)

. . .

∫
V (τ,τµ−1)

g(τ1, ξ1, . . . , τµ, ξµ)

· ψ(j)(t, x, τ1, ξ1, . . . , τµ, ξµ, τ, ξ) d(τµ, ξµ) . . . d(τ1, ξ1)

is well defined for j ∈ {0, . . . , d}µ and every continuous function g with ‖g‖µ,δ < ∞. In
view of assumption (i) this applies in particular to g = b(j) and β ≤ δ < 1, where

b(j) = bj1 ⊗ · · · ⊗ bjµ

denotes the tensor product of the functions bj1 , . . . , bjµ .

Theorem 1 (Deck and Kruse (2002)). A fundamental solution for the parabolic equation
(1) is given by

Γ[b] = Z +
∞∑

µ=1

∑
j∈{0,...,d}µ

Γ(j)[b(j)].

Moreover,

u(t, x;b) =

∫
Rd

Γ[b](t, x, 0, ξ) · ϕ(ξ) dξ

holds for the continuous solution of (1) and (2) that satisfies (10).

Theorem 1 yields

(11) P [b] = I(0) +
∞∑

µ=1

∑
j∈{0,...,d}µ

I(j)[b(j)]

with

I(0) =

∫
Rd

Z(t0, x0, 0, ξ) · ϕ(ξ) dξ

and

I(j)[g] =

∫
Rd

Γ(j)[g](t0, x0, 0, ξ) · ϕ(ξ) dξ.

The solution P [b] of the initial value problem at the point (t0, x0) is therefore given as
a series of weighted integrals with integrands being tensor products of the coefficients bj
(and the initial data ϕ).

We define

ρ(j)(τ1, ξ1, . . . , τµ, ξµ) =

∫
Rd

ψ(j)(t0, x0, τ1, ξ1, . . . , τµ, ξµ, 0, ξ) · ϕ(ξ) dξ

if 0 < τµ < · · · < τ1 < t0 and ρ(j)(τ1, ξ1, . . . , τµ, ξµ) = 0 otherwise. Furthermore, we put

λ
(j)
δ =

∫
(]0,t0[×Rd)

µ

µ∏
`=1

(
1 + |ξ`|δ

)
·
∣∣ρ(j)(τ1, ξ1, . . . , τµ, ξµ)

∣∣ d(τ1, ξ1, . . . , τµ, ξµ).

Obviously

(12) I(j)[g] =

∫
(]0,t0[×Rd)

µ
g(τ1, ξ1, . . . , τµ, ξµ) · ρ(j)(τ1, ξ1, . . . , τµ, ξµ) d(τ1, ξ1, . . . , τµ, ξµ),

and λ
(j)
δ is the norm of I(j) with respect to ‖ · ‖µ,δ.
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Lemma 2. Let 0 ≤ δ < 1 and δ∗ = (1− δ)/4. There exists a constant c > 0 such that

λ
(j)
δ ≤ cµ · µ−δ∗µ

for every µ ≥ 1 and j ∈ {0, . . . , d}µ. Moreover,

sup
µ∈N

sup
j∈{0,...,d}µ

λ
(j)
δ <∞.

Proof. Let c1 > 0. Due to Lemma 1 it suffices to verify that

(13)

∫
Rd

exp(−c1|x0 − ξ|2) · |ϕ(ξ)| dξ <∞

and that there exists a constant c2 > 0 with

(14)

∫
Rd

|ξ|δ·(µ+1) · exp(−c1|x0 − ξ|2) · |ϕ(ξ)| dξ ≤ (c2 · µ)δ/2·µ

for every µ ≥ 1.
Because of assumption (ii) there exists a constant c3 > 0 such that

exp(−c1|x0 − ξ|2) · |ϕ(ξ)| ≤ 1/c3 · exp(−c3|ξ|2).
Hence we have (13). For the proof of (14) we may assume δ · (µ+ 1) ≥ 2 without loss of
generality. According to Ledoux and Talagrand (1991, Cor. 3.2) there exists a constant
c4 > 0 with ∫

Rd

|ξ|p · exp
(
−|ξ|2/2

)
dξ ≤ (c4 · p)p/2

for every p ≥ 2. Take p = δ · (µ+ 1) to complete the proof of (14). �

Put
‖b‖δ = max

j=0,...,d
‖bj‖1,δ.

Lemma 3. For β ≤ δ < 1 let c denote the constant from Lemma 2. Then
∞∑

µ=m+1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]
∣∣

≤
(
(d+ 1) · ‖b‖δ · c

)m+1 ·m−δ∗m ·
(
1− (d+ 1) · ‖b‖δ · c ·m−δ∗

)−1

if m > ((d+ 1) · ‖b‖δ · c)1/δ∗.

Proof. By Lemma 2∣∣I(j)[b(j)]
∣∣ ≤ ‖b(j)‖µ,δ · cµ · µ−δ∗µ ≤ ‖b‖µ

δ · c
µ · µ−δ∗µ

for j ∈ {0, . . . , d}µ. Therefore
∞∑

µ=m+1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]
∣∣

≤
(
(d+ 1) · ‖b‖δ · c

)m+1 ·m−δ∗m ·
∞∑

µ=0

(
(d+ 1) · ‖b‖δ · c ·m−δ∗

)µ
,

and the statement follows. �

Now we truncate the series (11) at µ = mn, where mn is chosen such that the truncation
error converges to zero faster than any polynomial in 1/n.



9

Lemma 4. Let

mn =
⌈
lnn/

√
ln lnn

⌉
for n ≥ 3. Then, for every s > 0, 0 ≤ δ < 1, and K > 0,

lim
n→∞

ns · sup
‖b‖δ≤K

∞∑
µ=mn+1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]
∣∣ = 0.

Proof. Let

dn = (c/mn)δ∗mn · ns

for any constant c > 1 and 0 < δ∗ ≤ 1/4. According to Lemma 3 it suffices to show that
dn tends to zero. For sufficiently large n we have

dn ≤
cln n · ns

mδ∗mn
n

=
nln c+s

mδ∗mn
n

.

Furthermore,

mδ∗mn
n ≥

(
lnn√
ln lnn

) δ∗·ln n√
ln ln n

= nδ∗·pn

with

pn =
√

ln lnn− ln ln lnn

2
√

ln lnn
.

Note that nδ∗·pn increases faster than any power of n, since limn→∞ pn = ∞. �

4. Lower Bounds

We show that, under rather general assumptions on the class B, solving the initial value
problem (1) and (2) is not easier than computing an integral over a (d + 1)-dimensional
rectangle. For the latter problem lower bounds for the minimal errors are known in many
cases.

The lower bounds for parabolic equations already hold if all but one of the coefficients
b0, . . . , bd vanish, i.e., if

∆u+ bj ·
∂u

∂xj

=
∂u

∂t
or

∆u+ b0 · u =
∂u

∂t
.

Since all theses cases can be analyzed in the same way, and since the lower bounds
coincide, we only present the details for the first equation with j = 1. Here we have
b = (0, b1, 0, . . . , 0), and we put

(15) ρ(µ) = ρ(j), I(µ) = I(j)

for

j = (1, . . . , 1) ∈ {0, . . . , d}µ.

Hence (11) reads

(16) P [(0, b1, 0, . . . , 0)] = I(0) +
∞∑

µ=1

I(µ)[b1 ⊗ · · · ⊗ b1].
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Furthermore, by (12),

I(1)[b1] =

∫
]0,t0[×Rd

b1(τ1, ξ1) · ρ(1)(τ1, ξ1) d(τ1, ξ1)

with

ρ(1)(τ1, ξ1) = Z(t0, x0, τ1, ξ1) ·
∫

Rd

Z1(τ1, ξ1, 0, ξ) · ϕ(ξ) dξ,

which is a continuous function on ]0, t0[× Rd.

4.1. Assumptions and Preliminaries. We assume that ϕ actually depends on the
first component of its argument, i.e., that there exist v, v′ ∈ R and w ∈ Rd−1 such that
ϕ(v, w) 6= ϕ(v′, w). Then the set of points (τ1, ξ1) with ρ(1)(τ1, ξ1) 6= 0 is dense in ]0, t0[×Rd.

In the sequel we consider any compact rectangle D0 ⊆ ]0, t0[ × Rd with non-empty
interior such that

inf
(τ1,ξ1)∈D0

|ρ(1)(τ1, ξ1)| ≥ K

for some constant K > 0. Furthermore, we put

J [f ] =

∫
D0

f(τ1, ξ1) d(τ1, ξ1)

for f ∈ C(D), and we let B1 denote the class of all functions b1 : D → R such that
(0, b1, 0, . . . , 0) ∈ B.

For integration on the class B1 minimal errors are defined in the same way as for the
initial value problem, i.e.,

edet
Int (n,B1) = inf

Jn∈Adet
n

sup
b1∈B1

∣∣J [b1]− Jn[b1]
∣∣

and

eran
Int (n,B1) = inf

Jn∈Aran
n

sup
b1∈B1

(
E
(∣∣J [b1]− Jn[b1]

∣∣2))1/2

.

We assume that there are sequences (an)n∈N and (en)n∈N of positive real numbers such
that for every n ∈ N there exist functions f1, . . . , f2n : D → R with the following proper-
ties:

(a) fi ≥ 0 for i = 1, . . . , 2n, and supp f1, . . . , supp f2n are pairwise disjoint and con-
tained in D0,

(b) for σ1, . . . , σ2n ∈ {−1, 1}
2n∑
i=1

σi · fi ∈ B1,

(c) for i = 1, . . . , 2n

J [fi] ≥ en,

(d) for i = 1, . . . , 2n

‖fi‖2
∞ ≤ an.

Bakhvalov and Novak have used the assumptions (a)–(c) to establish lower bounds for
minimal errors for (weighted) integration. We cite here their general results.
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Theorem 2 (Bakhvalov (1959), Novak (1988, Sec. 2.2.4)). Properties (a)–(c) imply

edet
Int (n,B1) ≥ edet

Int

(
n, F (n)

)
≥ n · en

for deterministic algorithms and

eran
Int (n,B1) ≥ eran

Int

(
n, F (n)

)
≥ 1

2
· n1/2 · en

for randomized algorithms. Here

F (n) =

{
2n∑
i=1

σi · fi : σ1, . . . , σ2n ∈ {−1, 1}

}
.

The same lower bounds, with an additional factor K, hold for I(1) instead of J .

To adopt this technique to our non-linear problem we additionally require that the
unfavorable functions f ∈ F (n) are not too large, see (18) and (19) and note that

(17) sup
f∈F (n)

‖f‖2
∞ ≤ an

due to (a) and (d).

Example 1. Consider a Hölder class

B1 = Cr,α
M

with r ∈ N0, 0 < α ≤ 1, and M > 0. By definition, f ∈ Cr,α
M if and only if f has continuous

partial derivatives up to order r and every r-th order partial derivative g of f satisfies

|g(t, x)− g(s, y)| ≤M · |(t, x)− (s, y)|α, (t, x), (s, y) ∈ D.
Let D0 ⊆ ]0, t0[ × Rd denote any compact rectangle with non-empty interior. Fix a

function f ∈ Cr,α
M such that 0 ≤ f ≤ 1, ε = J [f ] > 0, and supp f is contained in the

interior of D0. Assume, without loss of generality, that 2n = `d+1 with ` ∈ N. Now rescale

f as follows, f̃(t, x) = `−(r+α) f(` t, ` x), and shift f̃ to obtain functions f1, . . . , f2n ∈ Cr,α
M

with properties (a), (b), and

J [fi] = `−(r+α+d+1) · ε
as well as

‖fi‖2
∞ ≤ `−2(r+α).

We may therefore take

en = (2n)−(r+α)/(d+1)−1 · ε
and

an = (2n)−2(r+α)/(d+1)

to satisfy properties (c) and (d).
For the integration problem we thus conclude that

lim inf
n→∞

edet
Int (n,C

r,α
M )

n−(r+α)/(d+1)
> 0

and

lim inf
n→∞

eran
Int (n,C

r,α
M )

n−(r+α)/(d+1)−1/2
> 0.

We add that these lower bounds are sharp, i.e.,

edet
Int (n,C

r,α
M ) � n−(r+α)/(d+1)
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and

eran
Int (n,C

r,α
M ) � n−(r+α)/(d+1)−1/2.

See Novak (1988, Prop. 1.3.9, Prop. 2.2.9).

4.2. Deterministic Algorithms. Suppose that

(18) lim
n→∞

max

(
an,

an

n · en

)
= 0.

Then the lower bound n · en for the integration problem turns out to be a lower bound
for solving the initial value problem, too, up to a constant.

If n · en tends to zero and weak equivalence � holds in (17), then (18) is equivalent to

lim
n→∞

supf∈F (n) ‖f‖2
∞

n · en

= 0.

Theorem 3. If (18) is satisfied then

lim inf
n→∞

edet(n,B)

n · en

> 0.

Proof. Let Pn ∈ Adet
n , and consider the deterministic algorithm

P̃n = Pn − I(0) ∈ Adet
n .

From (16) we get

|P [(0, b1, 0, . . . , 0)]− Pn[(0, b1, 0, . . . , 0)]|

≥
∣∣∣I(1)[b1]− P̃n[(0, b1, 0, . . . , 0)]

∣∣∣− ∞∑
µ=2

∣∣I(µ)[b1 ⊗ · · · ⊗ b1]
∣∣ .

By (18), an tends to zero, and due to (17) we thus may assume that

sup
f∈F (n)

‖f‖2
∞ ≤ (2 · (d+ 1) · c)−1.

In this case Lemma 3 with m = 1 implies

sup
f∈F (n)

∞∑
µ=2

∣∣I(µ)[f ⊗ · · · ⊗ f ]
∣∣ ≤ 2 ·

(
(d+ 1) · c

)2 · an.

Furthermore,

sup
f∈F (n)

∣∣∣I(1)[f ]− P̃n[(0, f, 0, . . . , 0)]
∣∣∣ ≥ K · n · en,

see Theorem 2. Summarizing we obtain

sup
b∈B

|P [b]− Pn[b]| ≥ sup
f∈F (n)

|P [(0, f, 0, . . . , 0)]− Pn[(0, f, 0, . . . , 0)]|

≥ n · en ·
(
K − 2 ·

(
(d+ 1) · c

)2 · an

n · en

)
.

Use (18) to complete the proof. �
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Corollary 1. Let r ∈ N0, 0 < α ≤ 1, and M > 0, and assume that

{(0, b1, 0, . . . , 0) : b1 ∈ Cr,α
M } ⊆ B.

Then

lim inf
n→∞

edet(n,B)

n−(r+α)/(d+1)
> 0.

Proof. In view of Example 1 we can apply Theorem 3. �

4.3. Randomized Algorithms. In addition to (18) we now assume that

(19) lim
n→∞

an

(n1/2 · en)1/m
= 0

and

(20) lim inf
n→∞

en·(4m−3)

en

> 0

for some integer m ≥ 1. Then the lower bound 1/2 · n1/2 · en for the integration problem
turns out to be a lower bound for solving the initial value problem, too, up to a constant.

If n · en tends to zero and weak equivalence � holds in (17), then (19) is equivalent to

lim
n→∞

supf∈F (n) ‖f‖2
∞

(n1/2 · en)
1/m

= 0.

By (20) we require that the lower bound for integration decreases at most by a multi-
plicative factor if the number of nodes increases by the fixed multiplicative factor 4m− 3.

Theorem 4. If (18), (19), and (20) for some integer m ≥ 1 are satisfied then

lim inf
n→∞

eran(n,B)

n1/2 · en

> 0.

Proof. Recall that I(µ) is the integral with weight function ρ(µ), see (12) and (15), and
let λ(µ) denote the L1-norm of ρ(µ). Let I(µ,+), I(µ,−), λ(µ,+), and λ(µ,−) denote the corre-
sponding mappings and L1-norms for the positive part ρ(µ,+) and the negative part ρ(µ,−)

of ρ(µ).

Consider the classical Monte Carlo algorithm Î
(µ,+)
n ∈ Aran

n for approximation of I(µ,+)

that is based on importance sampling according to ρ(µ,+), i.e.,

Î(µ,+)
n [g] =

λ(µ,+)

n
·

n∑
i=1

g(Xi),

where X1, . . . , Xn are i.i.d. with distribution having Lebesgue density ρ(µ,+)/λ(µ,+). The
upper bound

E

(∣∣∣I(µ,+)[g]− Î(µ,+)
n [g]

∣∣∣2) ≤ λ(µ,+) · n−1 · I(µ,+)[g2]

is well known and easy to verify. Using (17) we conclude that

sup
f∈F (n)

(
E

(∣∣∣I(µ,+)[f ⊗ · · · ⊗ f ]− Î(µ,+)
n [f ⊗ · · · ⊗ f ]

∣∣∣2))1/2

≤ λ(µ,+) · n−1/2 · sup
f∈F (n)

‖f‖µ
∞

≤ λ(µ,+) · n−1/2 · aµ/2
n .
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In the same way we approximate I(µ,−) to obtain a randomized algorithm Î
(µ)
2n ∈ Aran

2n for
approximation of I(µ) = I(µ,+) − I(µ,−) that satisfies

(21) sup
f∈F (n)

(
E

(∣∣∣I(µ)[f ⊗ · · · ⊗ f ]− Î
(µ)
2n [f ⊗ · · · ⊗ f ]

∣∣∣2))1/2

≤ λ(µ) · n−1/2 · aµ/2
n .

Let Pn ∈ Aran
n , and consider the randomized algorithm

P̃n = Pn − I(0) −
2m−1∑
µ=2

Î
(µ)
2n ∈ Aran

n·(4m−3)

(with Pn, Î
(2)
2n , . . . Î

(2m−1)
2n being independent, say). From (16) we get

|P [(0, b1, 0, . . . , 0)]− Pn[(0, b1, 0, . . . , 0)]|

≥
∣∣∣I(1)[b1]− P̃n[(0, b1, 0, . . . , 0)]

∣∣∣− 2m−1∑
µ=2

∣∣∣I(µ)[b1 ⊗ · · · ⊗ b1]− Î
(µ)
2n [b1 ⊗ · · · ⊗ b1]

∣∣∣
−

∞∑
µ=2m

∣∣I(µ)[b1]
∣∣

for every realization of P̃n. As in the proof of Theorem 3 we obtain

sup
f∈F (n)

∞∑
µ=2m

∣∣I(µ)[f ⊗ · · · ⊗ f ]
∣∣ ≤ am

n · c

with some constant c > 0 if n is sufficiently large. Moreover,

sup
f∈F (n)

(
E

(∣∣∣I(µ)[f ⊗ · · · ⊗ f ]− Î(µ)
n [f ⊗ · · · ⊗ f ]

∣∣∣2))1/2

≤ λ(µ) · an · n−1/2

for every µ ≥ 2 if n is sufficiently large, see (21). Finally,

sup
f∈F (n)

(
E

(∣∣∣I(1)[f ]− P̃n[(0, f, 0, . . . , 0)]
∣∣∣2))1/2

≥ K/2 · (4m− 3)1/2 · n1/2 · en·(4m−3),

see Theorem 2. Summarizing we obtain

sup
b∈B

(
E
(
|P [b]− Pn[b]|2

))1/2 ≥ sup
f∈F (n)

(
E
(
|P [(0, f, 0, . . . , 0)]− Pn[(0, f, 0, . . . , 0)]|2

))1/2

≥ n1/2 · en ·

(
K/2 · (4m− 3)1/2 ·

en·(4m−3)

en

−
2m−1∑
µ=2

λ(µ) · an

n · en

− c · am
n

n1/2 · en

)
.

Use (18), (19), and (20) to complete the proof. �

Corollary 2. Let r ∈ N0, 0 < α ≤ 1, and M > 0, and assume that

{(0, b1, 0, . . . , 0) : b1 ∈ Cr,α
M } ⊆ B.

Then

lim inf
n→∞

eran(n,B)

n−(r+α)/(d+1)−1/2
> 0.
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Proof. Consider the sequences (an)n∈N and (en)n∈N from Example 1. We already know
that (18) is satisfied, and (20) obviously holds for every integer m ≥ 2. It remains to
verify (19) for some integer m ≥ 2 and then to apply Theorem 4. Since

an · e−2/m
n · n−1/m � n−(r+α)/(d+1)·(2−2/m)+1/m,

we have equivalence of

m > 1 +
d+ 1

2(r + α)
.

and (19). �

We see that in the previous proof a low degree of smoothness or a high dimension
requires to take a large value of m.

5. Upper Bounds and Almost Optimal Algorithms

We construct and analyze algorithms for the approximate computation of the solution
P [b] of the initial value problem at the point (t0, x0). The algorithms are based on values
of b = (b0, . . . , bd) ∈ B at finitely many points. The series representation (11) suggests a
deterministic algorithm of the following form:

(I) approximate the tensor products b(j) = bj1⊗· · ·⊗bjµ by b̃(j), say, for j ∈ {0, . . . , d}µ

and µ = 1, . . . ,m,
(II) approximate P [b] by

I(0) +
m∑

µ=1

∑
j∈{0,...,d}µ

I(j)
[
b̃(j)
]
.

For the randomized algorithm we additionally use a variance reduction, and therefore we

(III) add Monte Carlo approximations to integrals I(j)
[
b(j) − b̃(j)

]
.

In (I) we consider approximation with respect to a weighted L∞-norm ‖ · ‖µ,δ for

0 ≤ δ < 1,

which is motivated by the results from Section 3. Note that∥∥b(j)
∥∥

µ,δ
= ‖bj1‖1,δ · · · ‖bjµ‖1,δ <∞,

if a growth condition with exponent β ≤ δ holds for the coefficients bj, see Section 2. We
aim at algorithms Pn with error close to edet(n,B) or eran(n,B) and with cost(Pn,B) close

to n. In view of this goal tensor products b̃(j) = b̃j1⊗· · ·⊗ b̃jµ with suitable approximations

b̃j`
for bj`

should not be used in (I), since then the number of arithmetic operations is too
large. Instead, we use Smolyak formulas.

5.1. Assumptions. For simplicity we assume that all coefficients bj belong to the same
class B of functions, i.e.,

B = Bd+1.

Furthermore, we require that every b ∈ B is continuous and satisfies a Hölder condition
with exponent 0 < α ≤ 1, see Section 2.

Our key assumption deals with approximation of functions b ∈ B with respect to the
norm ‖ · ‖1,δ for some exponent 0 ≤ δ < 1. First of all we assume that

(22) sup
b∈B

‖b‖1,δ ≤ K1
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with a constant K1 > 0. Hence, in particular, the growth condition from Section 2 is
satisfied with β = δ. For approximation we consider linear methods A(k) that are based
on a finite number of function values. Every such method A(k) : C(D) → C(D) is of the
form

A(k)[b] =

nk∑
ν=1

b
(
y(k)

ν

)
· h(k)

ν

with pairwise different nodes y
(k)
ν ∈ D and basis functions h

(k)
ν ∈ C(D). Let

Y (k) =
{
y

(k)
1 , . . . , y(k)

nk

}
denote the nodes that are used by A(k), and define T (k)(σ) : D → R by

T (k)(σ)[z] =

nk∑
ν=1

σν · h(k)
ν (z)

for σ ∈ Rnk and z ∈ D. We assume that there exists an exponent

ϑ > 0

and a sequence of methods A(k) with the following properties for every k ∈ N:

(a) the nodes are nested, i.e.,

Y (k) ⊆ Y (k+1),

(b) their number is given by
nk = 2k − 1,

(c) an error bound

sup
b∈B

‖b− A(k)[b]‖1,δ ≤ K2 · n−ϑ
k

holds with a constant K2 > 0,
(d) and a cost bound

sup
σ∈Rnk

cost(T (k)(σ)) ≤ K3 · k

holds with a constant K3 > 0.

Property (d) refers to the cost of evaluation of an approximation A(k)[b] at an arbitrar-

ily chosen point z ∈ D, and it holds if the basis functions h
(k)
ν have small and simply

shaped supports and are easy to evaluate. We add that property (d) is only used in our
construction and analysis of a randomized algorithm for the initial value problem.

We present examples that involve Hölder classes Cr,α, see Example 1. We rely on the
approach and results (sometimes with slight modifications) that are due to Wasilkowski
and Woźniakowski (2001). The respective algorithms A(k) use piecewise polynomial inter-
polation of degree r.

Example 2. Assume that

B = {b ∈ C0,α
M : |b(0, 0)| ≤M ′}

with M,M ′ > 0 and
0 < α < 1.

Then (22) is satisfied for every δ ≥ α. For weighted approximation with exponent α <
δ < 1 one can achieve the order

ϑ =
α

d+ 1
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as in the unweighted case on compact domains.

For r + α ≥ 1 we consider subclasses Cr,α,κ
M of Cr,α

M . By definition f ∈ Cr,α
M belongs to

Cr,α,κ
M if and only if every r-th order partial derivative g of f satisfies

|g(t, x)− g(s, y)| ≤ M

max(Rκ, 1)
· |(t, x)− (s, y)|α

for every R ≥ 0 and all (t, x), (s, y) ∈ D with |x|, |y| ≥ R. Thus, in particular Cr,α,0
M = Cr,α

M .

Example 3. Assume that

(23) B = {b ∈ Cr,α,κ
M : ‖b‖1,β ≤M ′}

with M,M ′ > 0 and

r + α ≥ 1, 0 ≤ β < 1, κ > r + α− 1.

Then (22) is satisfied for every δ ≥ β. Moreover, for every exponent max(β, r + α− κ) <
δ < 1, one can achieve the order

ϑ =
r + α

d+ 1
for weighted approximation. We add that this upper bound holds in particular for func-
tions with compact support. In fact, consider a compact set D0 ⊆ D with non-empty
interior. Then we have

{b ∈ Cr,α
M ′′ : supp b ⊆ D0} ⊆ B

for every β and every κ, if M,M ′ are sufficiently large.

Example 4. Let B be given by (23) with

r + α ≥ 1, 0 ≤ β < 1, κ ≤ r + α− 1.

Then one can achieve the order

ϑ =
r + α

d+ 1
· δ − β

r + α− κ− β

for weighted approximation with exponent β < δ < 1.

5.2. The Smolyak Algorithm. Smolyak’s construction yields approximation methods
A(µ,k) : C(Dµ) → C(Dµ) in dimensions µ ≥ 2 as follows,

A(µ,k)[f ] =
∑

k≤|i|≤µ+k−1

(−1)µ+k−1−|i| ·
(
µ− 1

|i| − k

)
· A(i1) ⊗ · · · ⊗ A(iµ)[f ]

for f ∈ C(Dµ) and k ∈ N, where

i = (i1, . . . , iµ) ∈ Nµ, |i| =
µ∑

`=1

i`.

For µ = 1 we have A(1,k) = A(k).
A detailed general analysis of Smolyak formulas for tensor product problems is given

in Wasilkowski and Woźniakowski (1995). We apply their results to our approximation
problem for the functions b(j).

Because of (a) the function A(µ,k)[f ] depends on f via its values at the nodes from the
so-called sparse grid

H(µ,k) =
⋃

|i|=µ+k−1

Y (i1) × · · · × Y (iµ).



18

Therefore

(24) A(µ,k)[f ] =

nµ,k∑
ν=1

f
(
y(µ,k)

ν

)
· g(µ,k)

ν

with suitable functions g
(µ,k)
ν ∈ C(Dµ), where nµ,k is the number of nodes y

(µ,k)
ν in the

sparse grid H(µ,k).

Remark 1. In particular,

A(µ,k)[b(j)] =
∑

k≤|i|≤µ+k−1

(−1)µ+k−1−|i| ·
(
µ− 1

|i| − k

)
· A(i1)[bj1 ]⊗ · · · ⊗ A(iµ)[bjµ ]

for j ∈ {0, . . . , d}µ. Hence nk values of the coefficient vector b, namely (b0(y), . . . , bd(y))
with y ∈ Y (k), suffice to determine A(µ,k)[b(j)] for every dimension µ ≥ 1 and every
j ∈ {0, . . . , d}µ.

We have the following error bound.

Lemma 5 (Wasilkowski and Woźniakowski (1995)). Assume that

(25) µ− 1 ≤ λ · k

for some constant λ > 0. Then there exists a constant c > 0 such that

sup
j∈{0,...,d}µ

sup
b∈B

‖b(j) − A(µ,k)[b(j)]‖µ,δ ≤ (c/µ)µ · (lnnk)
µ−1 · n−ϑ

k .

Proof. Let µ ≥ 2, and assume that K2 ≥ 2−ϑK1 without loss of generality. Lemma 2 in
Wasilkowski and Woźniakowski (1995), applied1 with B = K1, C = K2 2ϑ, D = 2−ϑ, and
E = C (1 + 2ϑ), shows that (b) and (c) yield

‖b(j) − A(µ,k)[b(j)]‖µ,δ ≤ Kµ
2 ·
(
1 + 2ϑ

)µ−1 ·
(
µ− 1 + k

k

)
· 2−ϑ(k−1).

Let ζ ∈ N. Induction readily yields ζ! ≥ (ζ/e)ζ . Hence,(
ζ + k

k

)
≤ exp(ζ) · (k + ζ)ζ

ζζ
= exp(ζ) ·

(
k

ζ

)ζ

·
(

1 +
ζ

k

)(k/ζ)·(ζ2/k)

.

Therefore

(26)

(
ζ + k

k

)
≤ exp(ζ + ζ2/k) ·

(
k

ζ

)ζ

.

Together with (25) this yields(
µ− 1 + k

k

)
≤ exp((µ− 1) · (1 + λ)) ·

(
k

µ− 1

)µ−1

.

Use lnnk � k to complete the proof. �

The number of nodes in the sparse grid H(µ,k) is bounded as follows.

1Wasilkowski and Woźniakowski (1995) consider a Hilbert space setting. However, their proof is appli-
cable here, too. See Li (2002) for an analysis in a Banach space setting.
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Lemma 6 (Wasilkowski and Woźniakowski (1995)).

nµ,k ≤ 2k ·
(
µ+ k − 2

k − 1

)
.

Proof. This is Lemma 7 in Wasilkowski and Woźniakowski (1995) with parameters F0 = 1
and F = 2. �

In order to estimate the cost of evaluating a Smolyak approximation A(µ,k)[b(j)] at a
point z ∈ Dµ we define T (µ,k)(σ) : Dµ → R by

(27) T (µ,k)(σ)[z] =
∑

k≤|i|≤µ+k−1

(−1)µ+k−1−|i| ·
(
µ− 1

|i| − k

)
· T (i1)(σ(1))[z1] · · ·T (iµ)(σ(µ))[zµ]

for z ∈ Dµ and σ = (σ(1), . . . , σ(µ)) with σ(`) ∈ Rni` . Moreover, we define

(28) mnk
=
⌈
lnnk/

√
ln lnnk

⌉
, k ≥ 2,

cf. Lemma 4. Clearly

(29) nk � 2k

and

(30) mnk
� k√

ln k
.

Lemma 7. For every ε > 0

lim
k→∞

(
n−ε

k ·
(
mnk

+ k

k

))
= 0.

Proof. By (26) (
ζ + k

k

)
≤ exp

(
ζ + ζ2/k + ζ · ln(k/ζ)

)
,

and for ζ = mnk
we have

ζ + ζ2/k + ζ · ln(k/ζ) � k · ln
√

ln k√
ln k

,

see (30). On the other hand we have (29). �

Lemma 8. For every ε > 0

lim
k→∞

(
n−ε

k · sup
µ=1,...,mnk

sup
σ

cost(T (µ,k)(σ))

)
= 0.

Proof. Due to assumption (d), each summand in (27) can be computed at cost propor-
tional to |i| ≤ µ+ k − 1, and the number of summands is given by

#{i ∈ Nµ : k ≤ |i| ≤ µ+ k − 1} ≤
µ+k−1∑

`=µ

(
`− 1

µ− 1

)
=

(
µ+ k − 1

k − 1

)
.

For µ ≤ mnk
we therefore get

cost(T (µ,k)(σ)) ≤ (mnk
+ k − 1) ·

(
mnk

+ k

k

)
� k ·

(
mnk

+ k

k

)
.

It remains to apply (29) and Lemma 7. �
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5.3. A Deterministic Algorithm for the Initial Value Problem. Let µ, k ∈ N and
j ∈ {0, . . . , d}µ. The Smolyak algorithm A(µ,k) leads to the approximation

I(j,k)[b(j)] = I(j)
[
A(µ,k)[b(j)]

]
of I(j)[b(j)], i.e., b̃(j) = A(µ,k)[b(j)] in (II). Note that

I(j,k)[b(j)] =

nµ,k∑
ν=1

b(j)
(
y(µ,k)

ν

)
· u(j,k)

ν ,

where

u(j,k)
ν = I(j)

[
g(µ,k)

ν ],

see (24). The coefficients u
(j,k)
ν ∈ R do not depend on b and can therefore be pre-computed.

According to (II) a reasonable approximation to P [b] is given by

P (m,k)[b] = I(0) +
m∑

µ=1

∑
j∈{0,...,d}µ

I(j,k)[b(j)],

where m ≥ 1. The constant I(0) can be pre-computed, too. We take

m = mnk

for k ≥ 2, see (28), and this choice defines a sequence of algorithms

P (k) = P (mnk
,k) ∈ Adet

nk
,

see Remark 1.
We present an asymptotic error bound for P (k) in terms of nk and of the approximation

order ϑ, see (c).

Theorem 5. For every ε > 0

lim
k→∞

(
nϑ−ε

k · e(P (k),B)
)

= 0.

Proof. For every m ≥ 1∣∣P [b]− P (m,k)[b]
∣∣ ≤ ∞∑

µ=m+1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]
∣∣+ m∑

µ=1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]− I(j,k)[b(j)]
∣∣ .

Let µ ≤ mnk
. From (30), Lemma 2, and Lemma 5 we get∣∣I(j)[b(j)]− I(j,k)[b(j)]

∣∣ ≤ λ
(j)
δ ·
∥∥b(j) − A(µ,k)[b(j)]

∥∥
µ,δ

≤
(
c · lnnk

µ1+δ∗

)µ

· (lnnk)
−1 · n−ϑ

k

for every b ∈ B and j ∈ {0, . . . , d}µ with some constant c > 0.
For every z > 0

sup
µ∈N

(
z/µ1+δ∗

)µ ≤ exp
(
(1 + δ∗)/e · z1/(1+δ∗)

)
,

and therefore
mnk∑
µ=1

(
c · d · lnnk/µ

1+δ∗
)µ ≤ (lnnk + 1) · exp

(
(1 + δ∗)/e · (c · d · lnnk)

1/(1+δ∗)
)
.
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Since δ∗ > 0, we obtain

lim
k→∞

nϑ−ε
k · sup

b∈B

mnk∑
µ=1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]− I(j,k)[b(j)]
∣∣ = 0.

From Lemma 4 we already know that

lim
k→∞

nϑ
k · sup

b∈B

∞∑
µ=mnk

+1

∑
j∈{0,...,d}µ

∣∣I(j)[b(j)]
∣∣ = 0.

�

Theorem 5 immediately yields upper bounds for the error of P (k) on the Hölder classes
from Examples 2–4. In particular, for functions with low regularity or for smooth functions
whose Hölder constants decay sufficiently fast as |x| tends to ∞, the algorithms P (k) turn
out to be almost optimal in the power scale.

Corollary 3. Let B denote a Hölder class from Example 2 or Example 3. Then, for
B = Bd+1 and every ε > 0,

lim
k→∞

e(P (k),B)

edet(nk,B)1−ε
= 0.

Proof. Apply Corollary 1 and Theorem 5. �

Remark 2. Suppose that B = Bd+1 with a Hölder class B from Example 4, and put

γ =
r + α

d+ 1

as well as

ϑ = γ · 1− β

r + α− κ− β
.

We get the upper bound

lim
k→∞

(
nϑ−ε

k · e(P (k),B)
)

= 0

for every ε > 0 by taking δ close to one in Example 4 and the lower bound

lim inf
k→∞

(
nγ

k · e
det(nk,B)

)
> 0.

In the extremal case κ = 0 we have
r + α− 1

d+ 1
≤ γ − ϑ ≤ r + α

d+ 1
,

so that here our upper and lower bounds differ in particular if the smoothness is large,
compared to the dimension.

Remark 3. Suppose that we use the tensor product algorithm A(k) ⊗ · · · ⊗ A(k) in the
definition of I(j,k) instead of the Smolyak algorithm A(µ,k). In both cases the resulting
algorithm P (k) depends on the same data from b, and in the tensor product case we have
an error bound

sup
b∈B

‖b(j) − A(k)[bj1 ]⊗ · · · ⊗ A(k)[bjµ ]‖µ,δ ≤ µ · (K1 +K2)
µ−1 ·K2 · n−ϑ

k ,

cf. Lemma 5. Therefore the error bound from Theorem 5 and the optimality result from
Corollary 3 are valid in the tensor product case, too. See, however, Remark 4.
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Now we study the computational cost of the algorithm P (k). Note that P (k) uses the
same number of arithmetic operations and function evaluations for every b ∈ B. We show
that cost(P (k),B) is almost proportional to the number nk of function values used.

Theorem 6. For every ε > 0

lim
k→∞

(
n−1−ε

k · cost(P (k),B)
)

= 0.

Proof. Suppose that b is evaluated at the nodes from Y (k) and that I(0) as well as the

coefficients u
(j,k)
ν are available for µ = 1, . . . ,mnk

, j ∈ {0, . . . , d}µ, and ν = 1, . . . , nµ,k. To
compute b(j) at the nodes from the sparse grid H(µ,k) we need nµ,k · (µ − 1) multiplica-
tions. Thereafter we need 2 · nµ,k − 1 multiplications and additions to compute I(j,k)[b(j)].
Accumulation of these numbers yields P (k)[b]. The total number of arithmetic operations
is proportional to qk with

qk ≤
mnk∑
µ=1

∑
j∈{0,...,d}µ

nµ,k · (µ+ 1) ≤ (d+ 1)mnk · q̃k,

where

q̃k =

mnk∑
µ=1

nµ,k · (µ+ 1).

Lemma 6 yields

qk ≤ (d+ 1)mnk · 2k ·
mnk∑
µ=1

(
µ+ k − 2

k − 1

)
· (µ+ 1) ≤ (d+ 1)mnk · 2k+1 ·m2

nk
·
(
mnk

+ k

k

)
.

Thus, by (29), (30), and Lemma 7,

lim
k→∞

(
n−1−ε

k · qk
)

= 0.

It remains to use cost(P (k),B) ≤ nk + qk. �

Remark 4. Suppose that we replace the Smolyak approximations by tensor product
approximations as in Remark 3. Then the computational cost of the resulting algorithm
P (k) increases faster than every polynomial in nk.

5.4. A Randomized Algorithm for the Initial Value Problem. We employ a vari-
ance reduction and proceed as in the proof of Theorem 4. Let I(j,±)[g] denote the integrals
of g with the positive or negative part ρ(j,±) of ρ(j) as weight functions, see (12). Moreover,
put

ωµ,δ(τ1, ξ1, . . . , τµ, ξµ) =

µ∏
`=1

(
1 + |ξ`|δ

)
.

The classical Monte Carlo algorithms for approximating I(j,±) that are based on impor-

tance sampling according to ρ(j,±) · ωµ,δ yield Monte Carlo algorithms Î(j,k) ∈ Aran
2nk

that
satisfy

(31)

(
E

(∣∣∣I(j)[g]− Î(j,k)[g]
∣∣∣2))1/2

≤ λ
(j)
δ · ‖g‖µ,δ · n−1/2

k

for µ ≥ 1, j ∈ {0, . . . , d}µ, and g ∈ C(Dµ) with ‖g‖µ,δ <∞, cf. (21).
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According to (III) we combine the deterministic algorithm P (k) from Section 5.3 with

Monte Carlo approximations Î(j,k)
[
b(j) − A(µ,k)[b(j)]

]
of Î

[
b(j) − A(µ,k)[b(j)]

]
. Hereby we

get the randomized algorithm P̂ (k),

P̂ (k)[b] = P (k)[b] +

mnk∑
µ=1

∑
j∈{0,...,d}µ

Î(j,k)
[
b(j) − A(µ,k)[b(j)]

]
(with Î(j,k) being independent for j ∈ {0, . . . , d}µ and µ = 1, . . . ,mnk

, say).

Theorem 7. For every ε > 0

lim
k→∞

(
n

ϑ+1/2−ε
k · e(P̂ (k),B)

)
= 0.

Proof. Let b ∈ B and put

f (j,k) = b(j) − A(µ,k)[b(j)].

For every realization of P̂ (k)

P [b]− P̂ (k)[b] =
∞∑

µ=mnk+1

∑
j∈{0,...,d}µ

I(j)[b(j)] +

mnk∑
µ=1

∑
j∈{0,...,d}µ

(
I(j)
[
f (j,k)

]
− Î(j,k)

[
f (j,k)

])
.

By Lemma 2, Lemma 5, and (31)(
E
(
I(j)
[
f (j,k)

]
− Î(j,k)

[
f (j,k)

])2
)1/2

≤ (c/µ)µ · (lnnk)
µ−1 · n−ϑ−1/2

k

for some constant c > 0. It remains to use the arguments from the proof of Theorem 5. �

On the Hölder classes from Examples 2–4 the algorithms P̂ (k) enjoy the same optimality
properties as their deterministic counterparts P (k).

Corollary 4. Let B denote a Hölder class from Example 2 or Example 3. Then, for
B = Bd+1 and every ε > 0,

lim
k→∞

e(P̂ (k),B)

eran(nk,B)1−ε
= 0.

Proof. Apply Corollary 2 and Theorem 7. �

Remark 5. The conclusion from Remark 2 remains valid for the randomized algorithms

P̂ (k), too, with γ and ϑ both increased by 1/2.

The computational cost of the algorithm P̂ (k) turns out to be almost proportional to
the number of function values used.

Theorem 8. For every ε > 0

lim
k→∞

(
n−1−ε

k · cost(P̂ (k),B)
)

= 0.

Proof. Use Lemma 8, cost
(
Î(j, k),B

)
≤ c · nk, and Theorem 6. �

Acknowledgment. We thank Jakob Creutzig for valuable discussions.



24

References

Bakhvalov, N. S. (1959), On approximate computation of integrals, Vestnik MGV, Ser. Math.
Mech. Astron. Phys. Chem. 4, 3–18.

Deck, T., and Kruse, S. (2002), Parabolic differential equations with unbounded coefficients - a
generalization of the parametrix method, Acta Appl. Math. 74, 71–91.

Friedman, A. (1964), Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs.

Kloeden, P. E., and Platen, E. (1999), Numerical Solution of Stochastic Differential Equations,
Springer, Berlin.

Kwas, M. (2004), Complexity of multivariate Feynman-Kac path integration in randomized and
quantum settings, Preprint, Department of Computer Science, Columbia Univ., New York.

Kwas, M., and Li, Youming (2003), Worst case complexity of multivariate Feynman-Kac path
integration, J. Complexity 19, 730–743.

Ledoux, M., and Talagrand, M. (1991), Probability in Banach Spaces, Springer, Berlin.

Li, Youming (2002), Applicability of Smolyak’s algorithm to certain Banach spaces of multivari-
ate functions, J. Complexity 18, 792–814.

Novak, E. (1988), Deterministic and Stochastic Error Bounds in Numerical Analysis, Lect. Notes
in Math. 1349, Springer, Berlin.

Novak, E. (1995), The real number model in numerical analysis, J. Complexity 11, 57–73.
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