
Fast component-by-component construction

for (non-)primes ?

Dirk Nuyens, Ronald Cools

Dept. of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

The component-by-component construction algorithm for rank-1 lattices can be
formulated elegantly as a repeated matrix-vector product. As was shown in an
earlier paper, this matrix-vector product can be done in time O(n log(n)) for n
prime. Here we extend this result to general n using facts from algebra to obtain a
construction cost of O(sn log(n)) for a rank-1 lattice in s dimensions with n points.

As was the case for n prime, the main calculation cost is significantly reduced
by using fast Fourier transforms in the matrix-vector calculation. The number of
fast Fourier transforms is dependent on the number of divisors of n and the number
of prime factors of n. It is believed that the intrinsic structure present in rank-1
lattices and exploited by this fast construction method will deliver new insights in
the applicability of these lattices.

Key words: Numerical integration, Quadrature and cubature formulas,
Quasi-Monte Carlo, Rank-1 lattices, Fast component-by-component construction,
Analysis of algorithms
1991 MSC: 65D30, 65D32, 68W40

? This research is part of a project financially supported by the Onderzoeksfonds
K.U.Leuven / Research Fund K.U.Leuven

Email addresses: dirk.nuyens@cs.kuleuven.ac.be (Dirk Nuyens),
ronald.cools@cs.kuleuven.ac.be (Ronald Cools).

Preprint submitted to Elsevier Science 14 February 2005

Dagstuhl Seminar Proceedings 04401
Algorithms and Complexity for Continuous Problems
http://drops.dagstuhl.de/opus/volltexte/2005/148

1 Introduction

The application of this paper is the approximation of an s-dimensional integral
over the unit cube by an equal weight cubature rule,

I(f) =
∫
[0,1)s

f(x) dx ≈ Q(f) =
1

n

∑
xk∈Pn

f(xk) , (1)

where the n evaluation points are a rank-1 lattice

Pn =

{
k · z
n

: 0 ≤ k < n

}
, (2)

and by k · z we mean (componentwise) multiplication modulo n. The integer
vector z is called the generating vector of the lattice and its components come
from the set Un = {z ∈ Zn : gcd(z, n) = 1}. This set contains the units of Zn

and assures us that (k · zj)/n is a permutation of the equispaced distribution
k/n in each dimension j, where k = 0, . . . , n − 1. This generating vector is
chosen such as to minimize a certain error measure for the cubature rule (1).
Here we minimize the worst-case error for all functions in the unit ball of a
Hilbert space H:

e(Pn,H) = sup{|I(f)−Q(f)| : f ∈ H, ‖f‖ ≤ 1} .

We take the same scenery as in [10], that is we use a shift-invariant tensor
product reproducing kernel Hilbert space, with kernel

Ks,γ(x) =
s∏

j=1

K1,γj
(xj) , K1,γ = 1 + γ ω(x) ,

in which the worst-case error for n sample points in s dimensions can be
written as a function of z as

en,s(z1, z2, . . . , zs) =

[
−1 +

1

n

n−1∑
k=0

ps−1(k)

(
1 + γs ω

(
k · zs

n

))]1/2

, (3)

and the n-vector ps−1 is recursively defined as

ps−1(k) = ps−2(k)

(
1 + γs−1 ω

(
k · zs−1

n

))
, p0(k) = 1 . (4)

The function ω in these formulas can be taken arbitrary. The most often
used function spaces are the weighted Korobov space, for periodic functions,
and the weighted Sobolev space, for non-periodic functions. For example, the

2

reproducing kernel for a Korobov space with smoothness parameter α = 2 is
given by

K1,γ(x) = 1 + γ 2π2 B2(x) , B2(x) = x2 − x + 1/6 .

We consider so-called weighted function spaces, where the weights denote the
relative importance of certain coordinates in the function space. The weights
used here are product-type weights [12] where the γj are taken as a decaying
sequence of positive weights,

γ1 ≥ γ2 ≥ · · · ≥ γs ≥ 0 ,

to denote that successive coordinates are less and less important.

In Section 2 we will introduce the component-by-component algorithm in
its matrix-vector form. After introducing some necessary theory in Section 3
and Section 4, we will show in Section 5 how to obtain a fast, O(sn log(n)),
component-by-component construction algorithm by providing a fast matrix-
vector multiplication for general n. In Section 6 we will illustrate the tech-
niques which were introduced in the previous sections for different cases. We
conclude the paper in Section 7.

2 A matrix-vector form of the component-by-component algorithm

Our goal is to select a generating vector z which tries to minimize the worst-
case error, defined in (3). The component-by-component algorithm (intro-
duced in [11]) finds values for the components of the generating vector one
component at a time, while keeping the previously made choices fixed. Since
we start with z1 to construct a 1-dimensional rule, then go on to find z2 for a
2-dimensional rule and so on, it is assumed that the components are ordered
by importance (cf. the weights γj form a decaying sequence).

So in iteration s we have to calculate the worst-case error (3) for each possible
candidate zs ∈ Un. Abstracting out the γs and the summation of the constant 1
in (3) gives a formula of the form

vs(z) =
n−1∑
k=0

ps−1(k) ω

(
k · z
n

)
, ∀z ∈ Un ,

which can easily be identified with a matrix-vector product (for all z at once):

vs = Ωn · ps−1 , Ωn =
[
ω

(
k · z
n

)]
z∈Un
k∈Zn

.

3

We have taken the liberty to define this matrix Ωn without specifying the
iteration order of the elements z ∈ Un and k ∈ Zn which define it. For now
we take this order arbitrary, although for correctness the ordering of vs and
ps−1 must match those of Un and Zn respectively, and this is silently assumed
from now on.

After this matrix-vector product we search the minimum value of vs, i.e. vs(z
?),

and choose the corresponding z candidate as the optimal choice for zs = z?.
It can be seen easily that the minimum index z? for vs is also the index for
the worst-case error es with minimum es(z

?). Thus:

zs = argmin
z∈Un

es(z) .

Once we know zs we can overwrite the old p-vector, ps−1, with the new ps

using (4). This is in fact (almost) the same as multiplying each element in
ps−1 by the corresponding element of the row of Ωn which corresponds to our
choice of zs:

ps(k) = (1 + γs Ωn(zs, k)) · ps−1(k) , ∀k ∈ Zn .

This can be written in matrix-vector lingo as a product with a diagonal matrix

ps = diag(1 + γs Ωn(zs, :)) · ps−1 ,

where Ωn(zs, :) means the zs-th row of the matrix Ωn.

This brings us to a short and concise formulation in Algorithm 1 of the
component-by-component algorithm.

Algorithm 1 The component-by-component algorithm

for s = 1 to smax do
e2

s = −1 + 1
n

(1 + γs Ωn) · ps−1

zs = argmin e2
s(z)

ps = diag (1 + γs Ωn(zs, :)) · ps−1

end for

By simple inspection of the algorithm, we find that the major cost in con-
structing such a rank-1 lattice rule is concentrated in the matrix-vector mul-
tiplication. A general matrix-vector product has time complexity O(n2) for a
matrix of order n, and so the obvious component-by-component construction
of a rank-1 lattice with n points in s dimensions is O(sn2). A more precise
construction cost can be derived by using the actual size of the matrix Ωn,
which is |Un| × |Zn| = φ(n)× n, and thus the construction cost is O(sφ(n)n),
where φ is the Euler totient function. This means that the construction cost
is O(sn2−δ) with 0 < δ ≤ 1/2 when using a general matrix-vector product.

4

Since our matrix Ωn has at most n different elements, and since in such a case
it is often possible to do a matrix-vector product in O(n log(n)) instead of
O(n2), we could of course hope that component-by-component construction
could be done in O(sn log(n)). Such a technique was introduced in [10] for n
prime.

3 Preliminaries

Define the index-matrix Ξn to represent the structure of Ωn. This index-matrix
has the same size as Ωn where at position (k, z) we do not have the value of
ω((k · z)/n), but just the index i = k · z mod n:

Ξn =
[
k · z mod n

]
z∈Un
k∈Zn

.

We can form the matrix Ωn (assuming the same ordering of the index sets Un

and Zn) in a simple way from Ξn, by the application of the kernel function ω
operating elementwise

Ωn = ω(Ξn/n) .

There is a matrix homomorphism from the matrix Ξn to the matrix Ωn, i.e.
the modulo multiplication structure present in Ξn is preserved in Ωn. We will
formalize this matrix homomorphism in the following definition were we use
the term codomain to denote the set of entries in the matrix and the term
domain to denote its index set.

Definition 1 (Matrix homomorphism). A mapping ϕ from the codomain
of A onto the codomain of B defines a matrix homomorphism if there exist
mappings σr and σc from the domain of A onto the domain of B such that

∀(i, j) ∈ domain(A) : A(i, j) = t ⇔ B(σr(i), σc(j)) = ϕ(t) .

Similarly we can define a matrix isomorphism which states that two matrices
are isomorphic when the mappings σr, σc and ϕ are one-to-one and onto. Note
that these definitions are chosen in such a way that the Cayley tables of two
isomorphic groups A and B are isomorphic matrices and vice versa.

Please note that we take a very liberate view on the matrices we are using. A
more suitable way to look at these matrices might be as functions from one
finite domain (the domain of the matrix) onto another finite domain (the codo-
main of the matrix). (A trivial extension is also possible to multi-dimensional

5

matrices.) Thus we could define Ωn and Ξn as

Ξn : Un × Zn → Zn : (z, k) 7→ z · k mod n ,

Ωn : Un × Zn → R(Ωn) : (z, k) 7→ ω((z · k)/n) = ω(Ξn(z, k)/n) ,

where R(Ωn) means the set R restricted to the actual values in the matrix Ωn.

For completeness we will now give some basic abstract algebra results which
we will use further on, and which can all be found in a standard algebra
textbook, e.g. [7].

Definition 2 (Cyclic group). A group G is called cyclic whenever all its ele-
ments can be generated by the powers of an element g ∈ G, called a generator,
and thus G = 〈g〉 = {gk : k ∈ Z}.

Corollary 1 (Cyclicness of Un). The multiplicative group Un = {z ∈ Zn :
gcd(z, n) = 1}, with order given by the Euler totient function as |Un| = φ(n),
is cyclic whenever

n = 2, 4, pk or 2pk ,

with p an odd prime. A generator for the cyclic group Un is called a primitive
root modulo n.

An algorithm to find a primitive root modulo n can be found in [1]. If we have
a generator g for the cyclic group Un (with n given as in Corollary 1) then we
can list the elements of Un in natural order of this generator as

Un = 〈g〉 = {g0, g1, g2, . . . , gφ(n)−1} .

We will now make a connection between the Cayley table of a cyclic group
and a circulant matrix. For more about circulant matrices see e.g. [2].

Definition 3 (Circulant matrix). A circulant matrix Cm = circ(c) of order
m is a matrix defined by the m elements in the vector c as

[Cm]k,` = ck−` mod m .

In other words every diagonal of a circulant matrix consists of the same element
and each column is a cyclic downshifted version from the previous column.
Thus the first column is just the vector c and the last column is this vector
upside down.

The Cayley table of a cyclic group can be made to look like a circulant matrix.
Consider a cyclic group G with a generator g. We can then picture the Cayley

6

table as the left part in (5).

· g0 g1 g2 · · · g−1

g0 g0 g1 g2 · · · g−1

g1 g1 g2 g3 ... g0

g2 g2 g3 g1

...
...

...
...

g−1 g−1 g0 g1 · · · g−2

'

· g0 g−1 g−2 · · · g1

g0 g0 g−1 g−2 . . . g1

g1 g1 g0 g−1 . . .
...

g2 g2 g1 g−2

...
...

. g−1

g−1 g−1 . . . g2 g1 g0

(5)

By inspection we see that using the natural order of a generator results in
constant anti-diagonals. By using the negative powers of the generator for the
columns of the Cayley table, and keeping the positive powers of the generator
for the rows, we obtain the table depicted at the right of (5). We now have
constant diagonals and this table can be interpreted as a circulant matrix.

Theorem 1 (Diagonalization of a circulant matrix). A circulant matrix
has a similarity transform with the Fourier matrix as its eigenvectors

Cm = F−1
m ·D · Fm ,

and its eigenvalues are given by the discrete Fourier transform of its defining
elements in the vector c

D = diag(Fm · c) .

Corollary 2 (Fast matrix-vector product with a circulant matrix).
A matrix-vector product with a circulant matrix Cm takes time O(m log(m))
instead of O(m2) when using its similarity transform and a fast Fourier al-
gorithm:

Cm · x = F−1
m ·D · Fm · x

= IFFT(diag(FFT(c)) · FFT(x)) .

Note that a fast Fourier transform in time O(m log(m)) is always possible when
an m-point discrete Fourier transform is necessary. For such an implementation
see e.g. [6].

4 Partitioning the index-matrix into circulant blocks

The technique which we will use for the fast construction will be based on
block-partitioning the matrix Ξn into smaller matrices which are isomorphic

7

to (block) circulant matrices (and thus isomorphic to cyclic groups). We will
do this partitioning based on the structure present in Ξn and therefore we need
not be concerned anymore with the actual matrix Ωn. The derived techniques
will work for any matrix Ωn as long as there is a matrix homomorphism from
Ξn to Ωn.

For the partitioning of Ξn into smaller blocks we need to partition its domain,
which is Un × Zn. We will handle these two sets separately. But first we will
introduce two alternatives for looking at the numbers in Zn.

A first useful way of looking at v ∈ Zn is given by its prime factorization

v =
∏
p |n

pvp

︸ ︷︷ ︸
divisors of n

·
∏
p - n

pvp

︸ ︷︷ ︸
units of n

, p prime, p ≤ n and each vp ≥ 0 .

Since the divisors of n are all those numbers which have the same primes in
their factorization as n, and the units of Zn are those numbers which have 1
as their greatest common divisor with n, it follows that the divisors and the
units naturally fall apart in a representation based on prime powers. It also
follows that multiplication of a unit u ∈ Un with any element v ∈ Zn has
gcd(u · v, n) = gcd(v, n).

A second useful way of representing v ∈ Zn is given in a “residue number
system” (e.g. [8, Section 4.7]), where we use the remainders of v with respect
to moduli that are prime to each other and n = n1n2 · · ·nr. The most natural
way is to use the prime factorization of n, with the ni = pki

i , and so

v ' (v mod n1, v mod n2, . . . , v mod nr)

' (v1, v2, . . . , vr) .

The Chinese remainder theorem tells us that this representation is unique
(whenever the ni are prime to each other) and we can thus map from v to
(v1, v2, . . . , vr) and back (an algorithm can be found in [1]). Since gcd(v, n) '
(gcd(v1, n1), gcd(v2, n2), . . . , gcd(vr, nr)) in this representation also the units
take a special form:

u ' (u1, u2, . . . , ur) ∈ Un ⇔ ui ∈ Uni
,

from which the well known φ(n) =
∏

i φ(ni), when the ni are prime to each
other, follows since |Un| =

∏
i |Uni

|.

8

4.1 Partitioning of Un

First we partition Un using the Chinese remainder theorem and a result from
algebra about the structure of Un in function of smaller cyclic groups.

Theorem 2 (Structure of Un). The multiplicative group Un is isomorphic
to the external direct product of groups Umi

where n = m1m2 · · ·mr is a fac-
torization of n and the mi are prime to each other

Un ' Um1 ⊕ Um2 ⊕ · · · ⊕ Umr .

Corollary 3. Every group Un can be written as an external direct product of
r multiplicative cyclic groups Mni

where n = n1n2 · · ·nr and r = κ(n) + 1 for
8 | n or r = κ(n) otherwise, and κ(n) is the number of unique prime factors
of n.

Proof. A proof can be found in most abstract algebra books (e.g. [7, page
155]) mostly in the proximity of the fundamental theorem of Abelian groups,
but since we need some details for prime factors of the form 2k later on, we
sketch the outline.

Consider the group Un and a prime factorization of n = pk1
1 pk2

2 · · · pkκ(n)

κ(n) . We
already know that Uni

with ni - 8 are cyclic (see Corollary 1), so we only need
to consider the case where one of the prime factors is 2k with k ≥ 3. For such
group we can always generate half of the elements by the cyclic subgroup of
powers of 5, the other half of the elements can be reconstructed from this
subgroup by a simple multiplication

U2k = {1 · 〈5〉, (2k−1 − 1) · 〈5〉} .

This comes from the isomorphism U2k ' Z2 ⊕ Z2k−2 . We thus split a prime
factor 2k | 8 into two artificial ni factors, namely 2 and 2k−1, giving cyclic
groups of order 2 and 2k−2 so that φ(2k) = 2k−1 = 2 · 2k−2. We note that such
a power of 2 thus makes an isomorphic copy of half of Un. This proves the
corollary.

So, given a group Un we can find r smaller cyclic groups Uni
of order φ(ni)

and generators gi (we make abstraction of the special case for ni | 8 since it
would clutter the explanations following, however the reasoning still holds and
an example follows in Section 6.2). We can then order the elements of ⊕iUni

9

in lexicographical order of the powers of these generators

⊕iUni
=



(g0
1, . . . , g

0
r−1, g

0
r), . . . , (g

0
1, . . . , g

0
r−1, g

φ(nr)−1
r),

(g0
1, . . . , g

1
r−1, g

0
r), . . . , (g

0
1, . . . , g

1
r−1, g

φ(nr)−1
r),

...

(g
φ(n1)−1
1 , . . . , g

φ(nr−1)−1
r−1 , g0

r), . . . , (g
φ(n1)−1
1 , . . . , g

φ(nr−1)−1
r−1 , gφ(nr)−1

r)


,

as well as in order of the negative powers of these generators to build a Cayley
table. Then it is not so hard to see that the Cayley table of such a group will
contain nested circulant matrices.

As an example consider Un, where n = p1p2, a generator g1 for Up1 and g2 for
Up2 , then the Cayley table can be made to look like:

· (g0
1, G

−1
2) (g−1

1 , G−1
2) · · · (g1

1, G
−1
2)

(g0
1, G2) (g0

1, C2) (g−1
1 , C2) · · · (g1

1, C2)

(g1
1, G2) (g1

1, C2) (g0
1, C2) · · · (g2

1, C2)

...
...

...
. . .

...

(g−1
1 , G2) (g−1

1 , C2) (g−2
1 , C2) · · · (g0

1, C2)

, C2 =



g0
2 g−1

2 · · · g1
2

g1
2 g0

2 · · · g2
2

...
...

. . .
...

g−1
2 g−2

2 · · · g0
2


.

Here C2 is the circulant form of the Cayley table for Up2 and the notation
(gk

1 , C2) means that we have to combine gk
1 with every entry from C2, likewise

the notation (gk
1 , G2) means to combine every element from G2 = 〈g2〉 with

gk
1 , the same goes for (g−k

1 , G−1
2) where G−1

2 = 〈g−1
2 〉.

The complete Cayley table for Un can now be seen as a block circulant matrix
with circulant blocks. This can obviously be extended to more than 2 factors
and we would get that the Cayley table for r factors could be seen as r nested
circulants. A matrix-vector product with such a (block) circulant with r levels
can be done in time O(rn log(n)), see Lemma 2 in Section 5 later on in this
paper.

4.2 Partitioning of Zn

We will now split Zn by considering a group action ϕ by the transformation
group Un on Zn. For completeness we will introduce the necessary definitions.

10

Definition 4 (Group action, orbit and stabilizer). A group G acts on a
set X by a group action ϕ : G×X → X such that for every x ∈ X:

(1) ϕ(e, x) = x, where e is the identity element from G,
(2) ϕ(g, ϕ(h, x)) = ϕ(gh, x) for all g, h ∈ G.

The orbit of x ∈ X is defined as orb(x) = {ϕ(g, x) : g ∈ G} and is the subset
of X which can be reached by x under the transformations of G. The stabilizer
of x ∈ X is defined as stab(x) = {g ∈ G : ϕ(g, x) = x} and is the set of
transformations which leave x invariant.

For our purpose the group G = Un acts on the set X = Zn, and the group
action ϕ is multiplication modulo n. This is in fact a very natural view on
the generation of the point set Pn as given in (2), where the components
of the generating vector are selected from the units of Zn, i.e. Un, to assure
that (k · zj)/n is a permutation of the equispaced distribution k/n in each
dimension j, where k = 0, . . . , n− 1.

We can now see every possible choice of zs in the optimization process for
dimension s as a possible permutation of the n 1-dimensional points. A given
action G on X defines an equivalence relation where the different orbits are
the partitions. We will now show that the divisors of n are valid representers
for these orbits on Zn.

Theorem 3 (Partitioning of Zn). The union of all orbits generated by the
divisors of n under Un form a partition of Zn⋃

d |n
orb(d) = Zn ,

where the partition represented by d, and d | n, has size |orb(d)| = φ(n/d).
Furthermore

n =
∑
d |n

|orb(d)| .

Proof. We first note that the orbit of d can be specified in different ways

orb(d) = {d · u : u ∈ Un} , the definition,

= dUn , as a coset of Un, (6)

= {v ∈ Zn : gcd(v, n) = d} , having a common gcd.

The last form is the most interesting for us (and follows directly from observing
the prime powers). Since for all v ∈ Zn

gcd(v, n) = d ∈ divisors(n) ,

11

this shows that the divisors are representers for the partitions.

If we consider v ∈ Zn in the residue number system where the moduli are given
by the prime factorization of n, then we can count the number of elements in
the orbit of d mod pki

i . The total number of elements in the orbit of d under
Un in Zn is then given by their product. Thus for all u ∈ Un and a divisor d
we consider

d · u = (d1 · u1, d2 · u2, . . . , dr · ur) ,

where the number of elements in the smaller orbit of di (under Uni
in Zni

, i.e.
taken modulo ni where ni = pki

i) is given as

|orbUni
(di)| = |di Uni

| =

φ(pki
i) = |Uni

| , if gcd(di, p
ki
i) = 1 (i.e. di ∈ U

p
ki
i

) ,

φ(pki−`
i) , if gcd(di, p

ki
i) = p`

i .

The second case follows since the moduli are of the form pk, with p prime.

If we now write pk ‖ n to denote that pk divides n exactly, i.e. k is the highest
power of p that divides n, then it follows that

|orb(d)| = |dUn| =
∏

pk ‖n

p` ‖ d

φ(pk/p`)
∏

pk ‖n
p - d

φ(pk) , for all d | n ,

which simplifies to |orb(d)| = φ(n/d).

The result of the previous theorem contains an instantiation of the very well
known identity

n =
∑
d |n

φ(n/d) =
∑
d |n

φ(d) .

4.3 Block-partitioning of Ξn

If we combine Theorem 2 and Theorem 3 then we can partition Ξn in blocks
which are isomorphic to the Cayley table of groups Un/d. Let us first introduce
the following lemma.

Lemma 1. The following are equivalent for n =
∏

i ni and all ni prime to
each other:

dUn = dUn/d = ⊕i di Uni/gi
= d ⊕i Uni/gi

, with gi = gcd(di, ni) and d | n .

12

Moreover

v Un = v Un/g , with g = gcd(v, n) and v ∈ Zn .

Proof. If d | n it follows from the last two equations in (6) that

dUn = {v ∈ Zn : gcd(v, n) = d}
= {v ∈ d Zn : gcd(v, n) = d}
= {d · v : v ∈ Zn/d and gcd(v, n) = 1}
= dUn/d .

To prove that dUn/d = ⊕i di Uni/gi
we observe that di = d mod ni splits in a

part that is a unit and a part that is a divisor of ni

di = ui · d̃i , where d̃i | ni and ui ∈ Uni
.

We do not care about the unit part because this just gives a permutation of
the elements. The effect of multiplying the set Uni

with di is thus the same
as multiplying with d̃i. Since gcd(di, ni) = gcd(d̃i, ni) = d̃i mod ni the result
follows.

The same observations can be made for the general case v Un = v Un/g with
v any number and g = gcd(v, n) using the Chinese remainder theorem to
reconstruct everything back together.

We should note that we could as well have written v Un = g Un/g instead of
v Un = v Un/g, and similar dUn = ⊕i gi Uni/gi

.

In the next theorem we use the symbol 1t×1 to denote a vector with all com-
ponents equal to one of length t and we use the symbol ⊗ to denote the
Kronecker tensor product. So 1t×1 ⊗ B can be read as t replications of the
matrix B on top of each other.

Theorem 4 (Block-partitioning of Ξn). We can block-partition the matrix

Ξn =
[
k · z

]
z∈Un
k∈Zn

by considering the divisors of n (denoted as d(1), d(2), . . . , d(d(n)), with d(n)
the number of divisors of n), into vertical partitions Ad per divisor d,

Ξn = [Ad(1) |Ad(2) | · · · |Ad(d(n))] , Ad =
[
k · z

]
z∈Un

k∈d Un/d

,

13

of sizes φ(n)× φ(n/d) which (each separately) can be horizontally partitioned
into td identical square blocks Bd for which

Ad =


Bd

...

Bd

 = 1td×1 ⊗Bd , Bd =
[
k · z

]
z∈Un/d

k∈d Un/d

=
[
d · k · z

]
z∈Un/d

k∈Un/d

,

of size φ(n/d)× φ(n/d), and so td = φ(n)/φ(n/d), which are isomorphic with
the Cayley table of Un/d.

Proof. The vertical partitioning follows directly from Theorem 3 and the
equality dUn = dUn/d from Lemma 1.

What’s left to prove is that the vertical partitions can be partitioned again,
horizontally, in td = φ(n)/φ(n/d) identical square blocks which are isomorphic
to the Cayley table of Un/d. We will again shift our problem to the residue num-
ber system, with moduli given by the prime factorization of n = n1n2 · · ·nr.
From Lemma 1 we have that

dUn/d = ⊕i di Uni/gi
= d ⊕i Uni/gi

, with gi = gcd(di, ni) ,

and it follows that

|di Uni/gi
| = |Uni/gi

| = φ(ni/gi) .

Now consider the matrix Bdi
as a set (i.e. the codomain of Bdi

)

Bdi
= {di · vi · wi : vi ∈ Uni

, wi ∈ Uni/gi
}

= {di · (vi · wi)︸ ︷︷ ︸
permutation

: vi ∈ Uni
, wi ∈ Uni

}

= {di · wi : wi ∈ Uni
}

= {(di · wi) : (di · wi) ∈ di Uni/gi
}

= di Uni/gi
,

which has size |Bdi
| = φ(ni/gi). We observe that the φ(ni) elements of Uni

can be partitioned in td,i = φ(ni)/φ(ni/gi) equivalence classes which have the
elements of Uni/gi

as representers, i.e. Bdi
is isomorphic to Uni/gi

.

Using the Chinese remainder theorem it follows that we have td = φ(n)/φ(n/d)
and that Bd is isomorphic to the Cayley table of Un/d.

The previous theorem has not filled in the details of how exactly the rows
and the columns of the matrix Ξn should be permuted. It only states that
this is possible for each vertical partition Ad (cf. the wording each separately).

14

The following corollary states that we can fix these two permutations for the
complete matrix at once.

Corollary 4. If we fix the ordering of the rows for all partitions Ad and
arrange the ordering of the columns so that B1 ' Cn, where Cn is the (block)
circulant form of the Cayley table of the group Un, then the interleaving of the
(block) circulant matrices Bd ' dCn/d for a certain divisor d of n in Ad is
given by

Ad = (⊗iRd,i) dCn/d ,

where the i indices go over the prime factors of n (with the exceptional case
for powers of 2 as given in Corollary 3) and the Ri matrices are defined as

Rd,i = 1td,i×1 ⊗ Iφ(ni/gi) ,

where gi = gcd(di, ni), td,i = φ(ni/gi)/φ(gi) and Iφ(ni/gi) is the identity matrix
of order φ(ni/gi).

Proof. By simple calculation.

This corollary gives a straight forward method to know where every element of
a matrix Bd arrives in its corresponding matrix Ad. We just have to interpret
what multiplication with a matrix Rd = ⊗iRd,i means, this interpretation
is quite natural since dCn/d = ⊕i di Cni/gi

. If we look at the basic case of
multiplication with one matrix Rd,i we observe that the identity matrix has the
effect of distributing every element of the group di Cni/gi

, and the replicating
by 1td,i×1 fills up the empty space left in Cni

when gi 6= 1.

By using the formulation of Corollary 4 we will be able to distribute the results
of matrix-vector multiplications with the smaller (block) circulant matrices Bd

to the final result vector of multiplication with the complete matrix.

5 Fast matrix-vector for general n

With the result from Theorem 4 it becomes trivial to show that a fast matrix-
vector product with matrices homomorph to Ξn is possible in time O(n log(n)).

Theorem 5 (Fast matrix-vector for Ξn structures). A matrix-vector
product with a matrix Ωn which is homomorph to Ξn can be done in time
O(n log(n)) and requires memory of order O(n).

15

Proof. We block-partition the matrix Ωn according to the block-partitioning
of Ξn given in Theorem 4 by the divisors of n and order the elements appro-
priately by the powers of the generators of the components of n. This cre-
ates vertical partitions Ad which have (interleaved) copies of (block) circulant
matrices Bd.

Since the matrix Ωn is homomorph to Ξn the same permutations can be done
and we can then assume an arbitrary elementwise mapping function ϕ on Ξn

to obtain Ωn. For our specific purpose this mapping function is ϕ(t) = ω(t/n).
We thus consider the matrix-vector product

E = ϕ ([Ad(1)|Ad(2)| · · · |Ad(d(n))]) ·



pd(1)

pd(2)

...

pd(d(n))


= ϕ(Ad(1)) · pd(1) + ϕ(Ad(2)) · pd(2) + · · ·+ ϕ(Ap(d(n))) · pd(d(n)) ,

which can be considered as the sum of d(n) smaller matrix-vector products,
where d(n) is the number of divisors of n.

According to Theorem 4 we then have, in each of these Ad matrices, copies of
a (block) circulant matrix Bd. As such it suffices to calculate Bd ·pd instead of
Ad · pd for each d | n and then distribute and sum the results of these smaller
calculations by usage of Corollary 4 and the forthcoming Lemma 3.

The size of Bd is φ(n/d)× φ(n/d) and it follows that a matrix-vector product
with Bd can thus be done in O(κ(n/d) φ(n/d) log(φ(n/d))) (see Lemma 2
following this theorem). The summation of the d(n) smaller result vectors is
O(κ(n) n) (see Lemma 3 following) and this brings the total cost to

O

∑
d |n

κ(n/d) φ(n/d) log(φ(n/d)) + κ(n) n

 = O(n log(n)) , (7)

where we used
∑

d|n φ(d) = n.

The memory needed for this operation is O(n), since we only need the fast
Fourier transform of the first column of the (block) circulant matrices (see
Lemma 2).

In (7) we actually assume κ(n) to be bounded by a constant. For practical im-
plementations this will always be the case and will be reasonable, e.g. κ(n) ≤ 9
for all n ≤ 232. However, we could as well use a crude bound like κ(n) < log2(n)
(the logarithm in base 2) from which it follows that the total complexity is

16

always less than O(n log2(n)) (the logarithm to the power 2), this is a serious
overestimate however. Also it is known that on the average κ(n) ∼ log(log(n)),
and for the worst choice, i.e. n a product of distinct primes, it is known that
on the average κ(n) ∼ log(n)

log(log(n))
.

We have already claimed (and used) that all these block circulant matrices
allow for a fast matrix-vector multiplication, no matter how many blocks are
embedded. We provide a method for such a fast matrix-vector multiplication
in the following lemma.

Lemma 2. A matrix-vector product with a block circulant matrix C of order
n where the blocks can again be block circulant or circulant (at the lowest
level) can be done in time O(kn log(n)) requiring memory O(n), where k is
the number of circulant levels.

Proof. In Corollary 2 it was already shown that a matrix-vector product with a
circulant matrix can be done in O(n log(n)) using its eigenvalue decomposition
which was given in Theorem 1.

Here we will show that any additional block circulant level can be made block
diagonal, and furthermore completely diagonal by the use of a permutation
and an additional sequence of FFT’s (one per diagonal block).

Assume C = circ(C(0:m−1)) is a block circulant matrix with m circulant blocks
of order n (i.e. there are 2 levels):

C = circ(C(0:m−1)) =



C(0) C(m−1) C(m−2) . . . C(1)

C(1) C(0) C(m−1) . . .
...

C(2) C(1) C(m−2)

...
. C(m−1)

C(m−1) . . . C(2) C(1) C(0)



∈ Rnm×nm ,

and C(j) ∈ Rn×n. Then we can diagonalize the smaller circulant matrices
by m n-point Fourier transforms on the first column of C (i.e. on the first
columns of the blocks C(j) = circ(c(j))). This gives the start of an analog to
the diagonalization in Theorem 1 (by applying this same theorem m times):

C = (Im ⊗ F−1
n) · circ(C̃(0:m−1)) · (Im ⊗ Fn) ,

where C̃(j) = diag(Fn · c(j)) = diag(c̃(j)).

17

We observe that the elements in circ(C̃(0:m−1)) are laid out in such a way
that we actually have n interleaved circulant matrices of order m, e.g. the
first circulant matrix is defined by the first elements of the diagonals c̃(j),
j = 0, . . . ,m−1, the second circulant matrix is defined by the second elements,
etc. . . The next step is to exchange the single circ-operation and the m diag-
operations with one diag-operation and n circ-operations. This can be done
by the following permutation (as can easily be verified by a small example)

diag(C̃ ′(0:n−1)) = P T
σ · circ(C̃(0:m−1)) · Pσ ,

where σ(i) = (i mod m) n + bi/mc and C̃ ′(k) = circ(c̃
(0:m−1)
k) = circ(c̃′(k)).

The diagonalization of the complete matrix C can now be completed by ap-
plying n m-point Fourier transforms to these n circulant blocks. As such we
find that

C = (Im ⊗ F−1
n) · Pσ · (In ⊗ F−1

m) · ˜̃C ′ · (In ⊗ Fm) · P T
σ · (Im ⊗ Fn) ,

with ˜̃C ′ = diag(Fm · c̃′(0:n−1)).

This can be reformulated in a computationally more interesting way when we
consider a matrix C ∈ Rn×m defined as

C =
[
c(0) c(1) · · · c(m−1)

]
∼ C = circ(C(0:m−1)) ,

so that

C̃ = Fn · C ∼ circ(C̃(0:m−1)) ,

C̃ ′ = C̃T ∼ diag(C̃ ′(0:n−1)) ,

and

˜̃C ′ = Fm · C̃ ′ ∼ ˜̃C ′ = diag(Fm · c̃′(0:n−1)) .

A matrix-vector product with such a 2-level block circulant matrix has an
analog to Corollary 2 as

C · x = (Im ⊗ F−1
n) · Pσ · (In ⊗ F−1

m) · ˜̃C ′ · (In ⊗ Fm) · P T
σ · (Im ⊗ Fn) · x .

From this follows that a matrix-vector product can be done in a fast way by
considering x as an n×m matrix, denoted as xn×m, in column order, so that
the product can be calculated efficiently as

(C · x)n×m = F−1
n · (F−1

m · (˜̃C ′ � (Fm · (Fn · xn×m)T)))T ,

18

where �means elementwise multiplication, e.g. diag(d)·x = d�x. This calcu-
lation has a preprocessing cost of O(nm log(nm)) and a cost of O(2nm log(nm))
per matrix-vector product (ignoring the constants of the FFT’s).

If we now consider such matrices C to be embedded in another block circulant
with ` blocks, and perform all the previous steps for each such matrix C then
we arrive at a block circulant with diagonal blocks (at cost O(`nm log(nm))).
Again we can permute this form to a block diagonal matrix with circulant
blocks, perform nm Fourier transforms of size ` (at cost O(nm` log(`))) and
we again arrive at a diagonal matrix (at cost O(nm` log(nm`))).

The matrix-vector product can be handled in exactly the same way as for
the 2-level case, with one extra level of FFT’s and permutations. The di-
agonal multiplication is O(nm`) and thus the total cost here is as expected
O(nm` log(nm`)).

The total cost for a matrix of size n which has k levels of circulant embeddings
thus is O(kn log(n)). The memory needed is the memory needed to store C
and x as well as their k-fold Fourier transforms, this is O(n).

It must be noted that the number of embedded circulant matrices in a Bd

block is the number of distinct prime factors in n/d and thus k = κ(n/d) and
the size of such a Bd block is φ(n/d) (again when n | 8 we have an exceptional
case where we have one extra level due to the isomorphic copy effect).

The second part in the total complexity for multiplication with Ωn is the
summing of the d(n) result vectors. We could bound this naively by d(n) φ(n)
and for prime n we have d(p) = 2 and φ(p) = p − 1, and as such this cost is
negligible compared with the O(n log(n)) for the matrix-vector products. Also
for prime powers this works out fine, since then d(pk) = k+1 = O(log(n)) and
φ(pk) = pk−1(p− 1) = O(n). However, for general n this looks not so good.

For composite n we could bound d(n) φ(n) very crudely as

d(n) φ(n) ≤ 2
√

n (n−
√

n) = 2(n3/2 − n) ,

which will then dominate the cost over the O(n log(n)) from the matrix-vector
products. Summing like this will give a total complexity of O(n3/2 − n) but
is still asymptotically better than O(n2−δ) for doing the full matrix-vector
product as shown in Section 2. Luckily it is possible to do a better summing
job by carefully choosing the order of the divisors.

Lemma 3. The summing of the d(n) result vectors of the (block) circulant
matrices Bd can be done in time O(κ(n) n).

Proof. To achieve a good summing order we consider the divisors of n in

19

natural ordering of their prime components (so the divisors itself appear out
of order). For n = pk1

1 pk2
2 · · · pkr

r , with r = κ(n), we consider divisors

d = p`1
1 p`2

2 · · · p`r
r , where 0 ≤ `i ≤ ki ,

where we first vary through all the powers of p1, then increase the power of
p2 by one and vary again through all the powers of p2 and so on, i.e. we
consider the divisors in a “prime power number system” where they can be
represented as d = 〈`r, . . . , `2, `1〉 where `1 is the least significant digit, etc. . .
and our ordering is given by the natural ordering in this number system.

First observe that two adjoining vertical partitions, one for a divisors d =
p`r

r · · · p
`2
2 p`1

1 and the other for a divisor d′ = p`r
r · · · p

`2
2 p`1+1

1 , need

φ

(
pkr

r · · · pk2
2 pk1

1

gcd(p`r
r · · · p

`2
2 p`1

1 , p`r
r · · · p

`2
2 p`1+1

1)

)
= φ(pkr−`r

r · · · pk2−`2
2 pk1−`1

1)

operations to sum their results. This summing of the adjoining partitions at
the lowest level must be done for `1 = 0, . . . , k1−1 and this for all occurrences
(i.e. all other powers). If we do this for decreasing `1 then the formula above
holds for all intermediate results and gives a partial cost for the first level of

kr∑
`r=0

· · ·
k2∑

`2=0

k1−1∑
`1=0

φ(pkr−`r
r · · · pk2−`2

2 pk1−`1
1)

=
kr∑

`r=0

φ(pkr−`r
r) · · ·

k2∑
`2=0

φ(pk2−`2
2)

k1−1∑
`1=0

φ(pk1−`1
1)

= pkr
r · · · pk2

2 (pk1
1 − 1) = O(n) .

We now have result vectors of sizes φ(pkr−`r
r · · · pk2−`2

2 pk1
1), and thus, from now

on, the lowest level will always count for its full size φ(pk1
1). Similarly, to sum

up the next level we get a cost of

kr∑
`r=0

· · ·
k2−1∑
`2=0

φ(pkr−`r
r · · · pk2−`2

2 pk1
1) =

kr∑
`r=0

φ(pkr−`r
r) · · ·

k2−1∑
`2=0

φ(pk2−`2
2) φ(pk1

1)

= pkr
r · · · (pk2

2 − 1) φ(pk1
1) = O(n) .

And this continues upto the last level, which has a cost of

kr−1∑
`r=0

φ(pkr−`r
r · · · pk2

2 pk1
1) =

kr−1∑
`r=0

φ(pkr−`r
r) · · ·φ(pk2

2) φ(pk1
1)

= (pkr
r − 1) · · ·φ(pk2

2) φ(pk1
1) = O(n) .

Since we have r = κ(n) levels (the number of unique prime factors) and the
cost on each level is O(n), the total complexity is O(κ(n) n).

20

6 Illustrative examples

We now provide some examples which show the complete track of the previous
sections in action. We will start with the trivial case for prime n. Since powers
of 2 are an exceptional application we present such an example which also
illustrates the concepts for other prime powers. Finally we will consider an
example of the more general case.

We present images of the matrix Ξn in Figures 1–3. Since in such a matrix we
have values from 0 upto n− 1, there are n different colors per figure. On each
row each color occurs only once, i.e. each row is a permutation of the first
row of n colors. The matrices are organized as in Theorem 4 and so there is
a vertical partition Ad for each divisor d of n, grouped as given by Lemma 3.
The start of these partitions is marked with an arrow which has a textlabel
to denote which d generates this partition. In each vertical partition we have
repetitive blocks Bd, the repetitions of this block are drawn with faded colors
to make clear how this block is distributed (cf. Corollary 4).

6.1 Prime n

Our previous result for prime n from [10] can now compactly be restated as
follows. If n equals a prime p, the divisors are simply

divisors(p) = {1, p} .

We obtain the trivial partition Zp = 1 Up ∪ p U1 = Up ∪{0}. The index-matrix
has thus two very simple vertical partitions A1 and Ap:

A1 = 11×1 ⊗B1 , B1 = [k · z]z,k∈Up ,

Ap = 1p−1×1 ⊗Bp , Bp = [0] ,

of which B1 is isomorphic to a circulant matrix of size φ(n).

For example consider p = 5 and the generator g = 2 for U5. Then we can
construct A1 and A5 as

A1 = B1 = [1, 2, 4, 3]T · [1, 3, 4, 2] A5 = 14×1 ⊗ [0]

=



1 3 4 2

2 1 3 4

4 2 1 3

3 4 2 1


, =



0

0

0

0


.

21

The diagonal form of ω(A1/n) is simply obtained as diag(F4 ·ω([1, 2, 4, 3]T /5)).

An example of the structure for p = 41 is given in Figure 1. On the left we
have drawn the matrix in its natural ordering, while on the right the matrix
is drawn in the ordering which allows a fast matrix-vector product. The last
partition is the partition for d = 41 were the complete column is constant;
only the first element in this column is drawn at full color, the rest of the
column is faded to denote its redundancy.

6.2 Powers of 2 (and other prime powers)

For powers of a prime the divisors are

divisors(pk) = {p` : 0 ≤ ` ≤ k} ,

resulting in circulant matrices Bd (being block circulant with 2 levels for a
power of 2), which have regularly diminishing sizes

|Bp` | = φ(pk−`)

=

pk−`−1(p− 1) , if ` < k ,

1 , otherwise.

Figure 2 shows Ξn for n = 26 = 64. In this figure it is clearly visible that
increasing powers of a prime have the effect of overlapping in a nice way. It is
this effect we are using to sum the result vectors. Assume we have calculated
the 7 result vectors Ed for n = 64, then the summing order from Lemma 3
gives

E = E1 + (E2 + (E4 + (E8 + (E16 + (E32 + E64︸ ︷︷ ︸
1 addition

)

︸ ︷︷ ︸
2 addition

)

︸ ︷︷ ︸
4 additions

)

︸ ︷︷ ︸
8 additions

)

︸ ︷︷ ︸
16 additions

)

︸ ︷︷ ︸
32 additions

resulting in a total of 1 + 2 + 4 + 8 + 16 + 32 = 63 = 64 − 1 which can be
verified on the figure.

Also visible in the figure is the isomorphic copy effect when a power of 2 is
involved (mentioned in Corollary 3). This can be used nicely since the kernel
function ω(·) is in most cases symmetric around 1/2, i.e. ω(x) = ω(1− x). As
was shown in [10, Theorem 2], for prime n this symmetry has the effect that

22

only half the space of z-candidates has to be searched and only one quarter of
the Ωn matrix has to be considered. Similar effects occur for n which are not
prime, for a power of 2 this means that the isomorphic copy can be left out,
in other words, we get circulant matrices instead of block circulant matrices
for free.

6.3 For general n

To get a better view of the interleaving of the matrices Bd as given in Co-
rollary 4 we must of course consider more general n. Figure 3 shows Ξn for
n = 3 · 5 · 7 = 105. Clearly visible in the part for d = 1 is the block circulant
structure with 3 levels. At the highest level we see a circulant structure with
φ(3) = 2 blocks of size φ(5)φ(7) = 24, in each such block we see again a
circulant structure with φ(5) = 4 blocks of size φ(7) = 6, and these blocks in
their turn are circulant matrices of 6× 6.

The summing as given by Lemma 3 here gives:

E = (E1 + E3)︸ ︷︷ ︸
48 additions

+ (E5 + E15)︸ ︷︷ ︸
12 additions

+ (E7 + E21)︸ ︷︷ ︸
8 additions

+ (E35 + E105)︸ ︷︷ ︸
2 additions

= (E1,3 + E5,15)︸ ︷︷ ︸
48 additions

+ (E7,21 + E35,105)︸ ︷︷ ︸
8 additions

= (E1,3,5,15 + E7,21,35,105)︸ ︷︷ ︸
48 additions

which makes a total of (48 + 12 + 8 + 2) + (48 + 8) + (48) = (7 · 5 · (3− 1)) +
(7(5 − 1)φ(3)) + ((7 − 1)φ(5)φ(3)) = 174 additions and can again be verified
on the figure.

7 Discussion

In [4] and [5], Dick & Kuo presented an adaptation of the component-by-
component algorithm, called ‘Partial search’, by using low composite n having
2, 3, 4 and 5 factors. In their adaptation the worst-case error for each of
the factors is calculated in terms (by averaging over the components to be
optimized) and then the optimal zi are combined using the Chinese remainder
theorem. From our analysis we expect that their calculated errors differ from
the true worst-case error probably only in a small amount, since the divisors
they left out are large and thus would only give small blocks Bd.

Also from their papers [4,5], with verification in our previous paper [10], and

23

1

41

Fig. 1. Example matrix for n = 41, left: natural order, right: generator order

1 2 4 8 16 32 64

Fig. 2. Example matrix for n = 26 = 64

1 3 5 15 7 21 35 10
5

Fig. 3. Example matrix for n = 3 · 5 · 7 = 105

24

also from [3], it is known that prime n have lower worst-case errors and thus are
preferable over composite n. This clearly lowers the interest in implementing
such a general n routine as presented in this paper. However, the prime power
case is certainly interesting as this might give the user the opportunity to
apply only part of the pointset while still keeping a good distribution of the
used points.

In our opinion, the main contribution of this paper is the revealing of the
structure present in rank-1 lattice rules. We expect that it is be possible to
get some insights on the effect of combining two existing lattice rules into a
new one. Also the ‘natural’ division of the matrix in blocks associated with
the divisors of n could be useful. An important property that will probably
be of use here is the possibility of using the Chinese remainder theorem to
combine units of different groups whenever their ni are prime to each other.

We mentioned in the examples section that the kernel function ω(·) is often
symmetric. For computational efficiency an implementation should definitely
use this fact because, although the algorithm is called fast, there is a huge
difference in waiting 10 minutes for circa 108 points (a result from [10]) or
waiting more than half an hour. . .

Only preliminary testing has been done for more general n, but from the
results in this paper it should be clear that an implementation for prime n
will probably be the most efficient (contradicting the previous results from
[3–5] due to the fast construction). Especially n which have a large number
of unique prime factors will slow the algorithm down because of the more
complicated (block) circulant matrix-vector calculations involved. An example
implementation for prime n was given in [9] (as well as a connection with
component-by-component construction of polynomial lattice rules).

We conclude that we presented a method to construct rank-1 lattice rules in
a weighted, shift-invariant tensor product reproducing kernel Hilbert space
by using the component-by-component algorithm and the intrinsic structure
present in this setting. The construction has time complexity O(sn log(n))
for a rank-1 lattice rule with n points in s dimensions, for any n, and needs
memory O(n). The time complexity increases when n has more unique prime
factors and when n has more divisors, but still is O(sn log(n)).

Acknowledgements

The authors would like to thank the organizers of the Dagstuhl Seminar 04401
titled “Algorithms and Complexity for Continuous Problems” for such a stim-
ulating environment to present this work. We would also like to thank Frances

25

Kuo for renewing our attention to the powers of 2 case. This research is part
of a project financially supported by the Onderzoeksfonds K.U.Leuven / Re-
search Fund K.U.Leuven.

References

[1] Henry Cohen. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics. Springer-Verlag, 3rd edition, 1996.

[2] Philip J. Davis. Circulant Matrices. Wiley, 1979.

[3] Josef Dick. On the convergence rate of the component-by-component
construction of good lattice rules. Journal of Complexity, 20(4):493–522, August
2004.

[4] Josef Dick and Frances Kuo. Constructing good lattice rules with millions of
points. In Harald Niederreiter, editor, Monte-Carlo and quasi-Monte Carlo
Methods - 2002, pages 181–197. Springer-Verlag, January 2004.

[5] Josef Dick and Frances Kuo. Reducing the construction cost of the component-
by-component construction of good lattice rules. Mathematics of Computation,
73:1967–1988, 2004.

[6] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture
for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, Vol. 3, pages 1381–1384. IEEE, 1998.

[7] Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin, 4th
edition, 1998.

[8] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics. Addison-Wesley, 2nd edition, 1994.

[9] Dirk Nuyens and Ronald Cools. Fast component-by-component construction,
a reprise for different kernels. In Harald Niederreiter and Denis Talay, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer-Verlag. Accepted.

[10] Dirk Nuyens and Ronald Cools. Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert
spaces. Mathematics of Computation, 2005. Accepted.

[11] Ian H. Sloan and Andrew V. Reztsov. Component-by-component construction
of good lattice rules. Mathematics of Computation, 71(237):263–273, 2002.

[12] Ian H. Sloan and Henryk Woźniakowski. When are quasi-Monte Carlo
algorithms efficient for high dimensional integrals. Journal of Complexity,
14(1):1–33, March 1998.

26

