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Abstract: Several variants of Genetic Algorithms have been used to study the surface 
profiles of hot rolled slabs, quantified in terms of crown, a major parameter related to 
their geometric tolerances. Two different models are presented, and simulations in a 
multi-objective mode are carried out to generate the relevant Pareto fronts, which, in 
turn, are tested against the operational data of an integrated steel plant. 
 

1. Introduction 
The present paper is a part of our ongoing investigation on the surface profiles of 
the hot rolled strips produced by an integrated steel plant, and represents, in 
essence, a continuation and further extension of one  of  our recent work [1]. The 
strips produced by the hot rolling process, as schematically presented in Figure 1, 
need to satisfy a strict dimensional tolerance limit.  To facilitate the subsequent 
cold rolling, the hot rolled strips are often deliberately provided with a differential 
surface thickness between their edge and the center, quantified through a 
parameter called crown (Figure 2) and to achieve this, the rolls themselves are 
provided with a curvature, and the so-called continuously variable crown (CVC) can 
work through a judicious shifting of the rolls [1].  
The crown that is finally imparted to rolled strip at the exit is however heavily 
dependent upon a number of other factors. Primary among them are the thermal 
expansion of the rolls, their wear, as well as bending.  Considering all these factors, 
two objective functions were formulated in our earlier work [1]. The first one 
ensured a smooth scheduling of the slabs that are being rolled during a particular 
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campaign and the second one described the magnitude of crown. Both were 
simultaneously optimized following the concept of Pareto-optimality [2] and two 
variants of multi-objective genetic algorithms [3] were utilized to achieve that. 
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Figure 1: The finishing mill assembly in a typical hot rolling mill. Figure 1: The finishing mill assembly in a typical hot rolling mill. 
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Figure 2: Crown (  and its measurement )⊂
In this work we extend this study further by utilizing an Ant Colony Optimization 
scheme [4-5] for the first objective function.  A new objective function quantifying 
the power requirement is now introduced. Further details are provided below.  
  
2. The Modeling Details 
Only a limited amount of Genetic Algorithms related studies have been conducted 
for the rolling process  and in this context one really has a very limited amount of 
prior work to fall back upon [6]. Here we have attempted to solve the problem in 
two different forms as discussed below. 
2.1. The first model: Analogous to our previous work [1] the first approach involved 
construction of the two objective functions as: 
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number of constraints, specific to the hot rolling practice at TATA Steel, were also 
considered. Minimization of this objective function had ensured a smooth transition 
of the hardness and dimension from one slab to the next, resulting in a lesser roll 
damage.   
The second objective function was constructed with a purpose of minimizing crown 
from diverse sources. A total crown calculation was performed for the strips 
passing through all the six stands at the hot rolling facility of TATA steel such 
that: 
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where , the total crown imparted to the th strip after passing through theij⊂ i j th 

stand, which can be expressed as: 
),,,,( jjWOij FPf ⊂⊂⊂=⊂ Τ ; and ijij Κ≤⊂                                          (3)   

where  is the initial crown value,  and  denote crowns due to thermal and 
wear contributions,   denotes the roll force, while  is the bending force.  

O⊂ Τ⊂ W⊂

jP jF ijΚ  
denotes the acceptable level of crown tolerance for the i th strip after it has 
passed through the j th stand, assigned on the basis of the operational practices at 
TATA steel.  The detailed formulation for crown calculation has been included in 
our earlier publication [1]. A brief summary is provided in Table 1.  
Table 1: Equations used for Crown calculation 
Type of crown Mathematical description Remarks 
Thermal crown Heat transfer equation: 

.
2 qT

t
T

+∇=
∂
∂ α  

The boundary conditions 
and the details of the 
source term are provided 
in [1]  

Crown due to wear Wear equation: 
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where, 
1, =ziδ   when 2/0 iWz ≤<  

       = 0    when          2/iWz >

The subscript  denotes 
the rolling pass number, 
while is the total 
number of rolling passes, 
r is the reduction, l is the 
roll contact length, W is 
the strip width and is 
exit strip length. The 
work roll diameter is 
denoted as .  The 
parameters , and 

i

n

L

D
a b α  

are three empirical 
coefficients depending 
upon the roll material, 
strip temperature, roll 
bite lubrication, roll 
coolant etc. 
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Crown due to bending The equation for bending at a 
distance x  towards the center of 
the roll: 

( ) φ
22

2

2

2 axPx
dx

ydEI D
−

−=  

 
The equation for bending due to 
shear: 
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The subscript  refers 
to the roll diameter, 

D
E  is 

the Young’s modulus and 
 is the moment of 

inertia.                               
The parameter 

DI

φ  
denotes the force (P) 
distribution over the 
barrel in the region of 
strip. 
G is the modulus of 
rigidity, and A is the 
cross-sectional area of 
the work-roll, and α  
equals to 4/3 for a 
circular section. 
 

 
Once the crown values are known, the second objective function is evaluated as:  
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Here we sought to minimizeδ , simultaneously with the first objective function, 
subject to a number of constraints, once again, based upon the operational 
practices at TATA steel. 
 
2.2. The second model:  During the next phase of our investigation we have looked 
into the performance of the individual slabs. So equation (1) became redundant in 
that case.  Here we still kept equation (4) as one of the objective functions and 
minimized it along with an expression for power taken as: 
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where the ξ  terms denote power in watts and the objective function is computed 
for the six stands that are used in the hot rolling mill of TATA steel. For a roll 
revolving at an rpm  the power term is computed as: N
 

60
2 MNπξ =                                                                                                              (6) 

where M denotes the roll torque. 
 
The basic computing scheme that we have adopted in this study is elaborated in the 
following section. 
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3. Computing Strategies 
The concept of a unique global optimal solution, as utilized in the single objective 
case, often becomes redundant in a multi-objective scenario. The idea here is to 
seek a Pareto-optimal solution [2], based upon the weak dominance condition [3].  
For a multi-objective minimization exercise this can be expressed as: 
 
( ) ( )( ) ( )( imilmimiliml ffff )<∃∧≤∀⇔ΩΩ p                                                                     (7) 
 
where the terms denote the objective function and the f Ω  terms are the vectors 
formed by the objectives. If any Ω  is dominated by a total of  other objective 
vectors, its rank is taken as 

N
1+N , the locus of the mutually non-dominant  solutions 

of rank 1 constitutes the Pareto-front. 
Although Genetic Algorithms were used in both the cases their exact nature varied 
from the first to the second approach.  This is further elaborated below. 
3.1 The Computing strategy used in the first model: In our earlier work [1], the 
search for the Pareto-optimality was conducted using a Strength Pareto 
Evolutionary Algorithm (SPEA) [7].  An extensive discussion of this method is 
provided elsewhere [1,8]. Here the first model required simultaneous minimization 
of the objective functions (1) and (4), and consequently it involved optimization of 
the sequence of slabs passing through the rolls. In our previous work this was 
achieved through a Genetic Algorithm that had involved a Position Based Crossover 
(PBX) [1,9]. Here we have adopted a strategy based upon an Ant Colony 
Optimization (ACO) technique [4-5]. This is essentially a crude mimicking of the 
behavior of the real ant species. Our algorithm for the present problem is 
essentially an adaptation of its more familiar version [4-5] used for the Traveling 
Salesman Problem (TSP) [10].  Instead of using the SPEA approach here we have 
utilized the concepts of Crowding Distance Sorting scheme proposed and utilized in 
NSGA-II algorithm [3], for obtaining the final Pareto-fronts. The salient features 
of this new approach are indicated below. 
3.1.1 Ant Colony Optimization tuned for computing the rolling sequence:  Once a real 
ant traces a certain route, secretion of pheromone, a complex chemical, takes place 
along its path.  The ants are basically blind, however they can sense this chemical 
and navigate following a pheromone trail.  If any ant discovers a shorter path it 
travels more through that route, accumulating more pheromone there in comparison 
to the longer paths. This in turn, draws more ants towards it, and the process 
continues till the entire colony traces out an optimum route.    
Analogically we can take any particular sequence of slabs as a particular path traced 
by an ant.  Fitness of the path traced by the kth ant can be taken as ℑk which is 
effectively computed from equation (1).   The sequence of any pair of slabs say i  
and j , however could  be used by a number of ants tracing some different routes. 
At any point of time  the amount of pheromone for that particular sequence, tt ∆+
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Here we assume that  is the fraction of the original pheromone present at 
time  which has naturally evaporated. In the context of the present problem this 
simply becomes an adjustable parameter. The second term in equation (8) denotes 
the pheromone increase for the sequence  and

( f−1 )
t

i j . The ants which do not use this 
sequence do not contribute anything to it. However, if it occurs in the paths of 
M different ants, the increment in pheromone for this sequence is computed as: 
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where ℘ denotes an user defined parameter. 
One of the factors that an ant would consider for selecting the sequence  to i j  is 
the visibility of i  from j . In real life this could be taken as the reciprocal of the 
actual distance between i  and j .  In the present case ijℜ the reciprocal of an index 
of the property jumps between the slabs  and i j  can easily substitute the 
visibility.   
Since  and  are the two factors influencing the ants choice of the sequence  
to 

ijΦ ijℜ i
j , we can assume that it does so with a probability ijΡ , which can be defined as: 
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where denotes a typical slab that can be possibly placed after the slab, and  
denotes the total number of such slabs. The parameters 

n N
α  and β  are once again 

user defined.  
We have initiated our algorithm with a random population of ants, each containing a 
random sequence of slabs.  The next generations of ants are allowed to follow the 
accumulated pheromone trails, following the mechanism discussed above, and the 
process continued till the optimum sequence of the slabs to be rolled had emerged. 
 
3.1.2. Obtaining the Pareto-fronts using ACO data: Once an ant returns a sequence 
the corresponding objective functions can be evaluated through equations (1) and 
(4).  The family of solutions obtained through the ants in a certain generation is 
now mixed with the already existing solutions, if any, and the combined population is 
now ranked. A new set of solution is selected through a crowded tournament 
selection operator devised by Deb [3]. It requires calculation of a crowding 
dis ance which essentially measures the unoccupied region surrounding a particular t
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solution in the objective function space. A larger crowding distance is favored as it 
helps to maintain the population diversity, and allows calculation of the maximum 
spread of the Pareto-front. On the basis of their rank and the crowding distance, 
the following hierarchy is maintained among the candidate solutions during a 
tournament selection: 
(i) A solution of better rank wins the tournament. 
(ii) Between two solutions of same rank, the one with larger crowding distance is 
favored. 
Since the solutions here are generated through the ant colony movements, the 
crossover and mutation operations in more conventional genetic algorithms become 
redundant here.  
3.2 The Computing strategy used in the second model:   The recently proposed 
Generalized Differential Evolution (GDE) [11] was used for obtaining the Pareto-
fronts from the second model. GDE is a multi-objective version of the original 
Differential Evolution (DE) algorithm [12]. It deals with a real coded population, 
instead of a binary or a Gray representation [13], and devises its own crossover and 
mutation in the real space. Differential Evolution uses the concept of fitness in the 
same sense as in Simple Genetic Algorithms (SGA) [14]. However, there are some 
major philosophical differences between SGA and DE. Although DE uses a 
population based computing strategy, unlike SGA, it does not require any binary 
representation. Here a real coded representation is used and an individual is formed 
by a vector array of all the variables in the problem. DE uses both crossover and 
mutation. However, both the operations need to be redefined in the present 
context. DE attempts to create ℵ♠, a mutated form of any individual ℵ, using the 
vector difference of two randomly picked individuals ℵ♦ and ℵ♥, such that 

 
ℵ♠  = ℵ+ ϑ (ℵ♦ - ℵ♥)                                                                                           (9)                             

                                 
where ϑ is a user-supplied scaling factor, often kept between 0 and 1.2. In DE this 
operation is known as mutating with vector differentials. Next, the crossover is 
applied between any individual member of the population ℵ♣ and the mutated vector 
ℵ♠, which is done essentially by swapping the vector elements in the corresponding 
locations. Like in SGA, this is also done probabilistically and the decision of doing 
(or not doing) crossover is monitored by a crossover constant ς, (0≤ς≤1). The new 
vector, ℵ⊕ produced this way, is known as the trial vector in DE parlance. 
It is made sure that the trial vector inherits at least one variable from the 
mutated vector ℵ♠, so that it does not become an exact replica of the original 
parent vector. In DE the trial vector is allowed to pass on to the next generation if 
and only if, its fitness is higher than that of its parent vector ℵ♣. Otherwise, the 
parent vector proceeds to the next generation.  
In Generalized Differential Evolution these basic features of crossover and 
mutation are retained. In order to make it suitable for the multi-objective case it 
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adds few newer rules [11] which are elaborated below for a two-objective 
optimization case: 
 

(i) Select the trial vector if it produces better values of both the objective 
functions, and neither the trial vector nor the parent violates any 
constraints. 

(ii) Select the trial vector if it does not violate any constraints, while the 
parent vector does. 

(iii) Select the trial vector if both the trial and the parent vectors violate 
some constraints, but the trial vector does not violate more number of 
constraints than the parent vector. 

(iv) Select the parent vector in any other situation. 
 
As evident from the abovementioned set of rules, keeping the solutions in the 

feasible range is one of the top priorities in GDE, and therefore it is geared to 
restrict any constraint violations. During this study we have written our own GDE 
code tailor-made for the present problem, which executed well with the 
characteristic fast converging nature of Differential Evolution. 
 
4. Results and Discussion 
 
The calculations using our first model were performed for a typical hot rolling 
campaign at TATA steel, using their automated roll shifting profile, discussed in 
detail in our earlier work [1]. The computed Pareto-front is shown in Figure 3.  It 
seems that the ant-colony based algorithm performed well, and the computed data 
are well in accord with the results obtained through the SPEA route. The ant-
colony results however, show a much better spread of the Pareto-front and, on that 
count, resolves the problem in a more efficient manner. 
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Figure 3: Comparison of Pareto-fronts generated through the ant-algorithm and SPEA 
after 450 cycles. f1 and f2 are calculated using objective functions (1) and (4) respectively. 
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The second model was applied to a number of slabs actually rolled in TATA steel. 
The operating conditions varied in those slabs and hence the nature of the Pareto-
fronts also got changed, as shown in Figure 4 for four typical cases.  In most cases 
the Pareto-fronts are concave, and any lowering of delta function defined by 
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Figure 4: Computed Pareto-fronts for typical slabs rolled at TATA steel. The input 
temperatures and the width varied, as indicated on the figures. 
 
equation (4) is accompanied by a gradual change in the power function space.  This 
trend however, can not be generalized at this stage of the work since the operating 
conditions fluctuated a lot and an acceptable statistical analysis is yet to emerge 
for this process. We plan to take up this issue further during the next phase of our 
work. At this stage we have however, the capability of analyzing each slab 
individually, and are able to recommend the optimum power requirement 
corresponding to a desired crown limit. 
In the next stage of the analysis we tried to compare the reduction imparted to 
slabs at various levels of power input. Three typical points were selected in the 
Pareto-front for this purpose, one was chosen close to the maximum value of power, 
the second one was taken close to the maximum computed delta and an average 
point was chosen in between.  The reductions at each stand were computed for all 
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the three cases and compared with the on line data obtained from the hot strip mill 
of TATA steel. This is demonstrated in figure 5.  A careful analysis of the data 
shown in this figure would reveal that in order to operate at a large power or in 
other words, at a small crown range, one would require to provide a very large 
reduction in the first couple of stands. A more gradual reduction profile can be 
provided if one decides to operate at a lower power regime. For all the slabs 
analyzed in Figure 5, the reductions provided at the first stand of the finishing mill 
of TATA steel seems to be larger than the corresponding computed values with 
maximum power. A corrective measurement on this aspect is likely to enhance the 
performance of rolling, and we plan to try it out in a near future. 
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Figure 5: Comparison of the reduction profiles obtained for the various regimes of the 
Pareto-fronts. Actual data obtained from TATA steel are also shown.  The initial slab 
thicknesses are shown against band 1. The rest indicate the corresponding reductions at the 
exit of each of the six stands, denoted by numbers 2 to 7.  
 
Since the roll velocity is one of the crucial operational parameter that we could 
optimize during this study, as in case of reduction, we have compared the optimized 
data at the maximum, minimum and the average power regions of the Pareto front 
with the operational data from TATA steel. This is demonstrated in Figure 6.  It 
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seems that for all the slabs the actual rolling speed used was significantly above 
the optimized requirements.  A corrective measure can possibly be taken in this 
regard, by lowering the roll speed, at the same time keeping the performance level 
intact. For an integrated steel plant this would possibly mean a considerable amount 
of cost savings in the long run.  Since a very sophisticated level of automation 
currently runs at the hot-strip plant of TATA steel, only a handful of them are 
actually under the explicit control of the operators. However, even there, a 
judicious choice can indeed make a difference, as demonstrated through the results 
obtained in this study. 
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Figure 6: Comparison of the computed roll velocities at the three different regimes of the 
Pareto-fronts with the actual data provided by TATA steel. 
 
Concluding Remarks 
Analyzing the rolling process through evolutionary algorithms is an emerging trend 
in this field. Although its ubiquitous presence in the rolling literature is still a 
matter of some more time, however, the general robustness of the genetic 
algorithms and its several variants, plus the success stories reported in this work 
and some of its predecessors [1, 15-17] provide a strong candidature for this class 
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of algorithms in the context of material deformation area in general, and the rolling 
processes in particular. 
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