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Abstract. This paper is devoted to a Pareto frontier generation technique, which 
is aimed at subsequent visualization of the Pareto frontier in an interaction with 
the user. This technique known as the Interactive Decision Maps technique was 
initiated about 30 years ago. Now it is applied for decision support in both convex 
and non-convex decision problems in various fields, from machinery design to 
environmental planning. The number of conflicting criteria explored with the help 
of the Interactive Decision Maps technique is usually between three and seven, but 
some users manage to apply the technique in the case of a larger number of 
criteria. Here we outline the main ideas of the technique, concentrating at non-
linear problems. 
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1    Introduction 
The classical approach to the multi-objective optimization is usually associated with 
interactive techniques for multi-criteria decision aid (MCDA), which use generating 
the Pareto frontier points sequentially in the process of interactive revealing the 
preferences of the decision maker. However, the classical approach is not restricted to 
the interactive techniques – it includes techniques of alternative types. Classification 
of the MCDA techniques in accordance to the role of the decision maker (see Fig. 1) 
was introduced in [1]. One can find it in the books [2, 3], too.  

One class of the alternative techniques is provided by the Pareto frontier 
generation methods, which are based on approximating the Pareto frontier before the 
decision maker (or any other user) is involved into the decision process. For this 
reason they have got the name of a posteriori preference techniques. This feature of 
the generation techniques relates them to the evolutionary multi-objective 
optimization techniques. The generation techniques were introduced about 50 years 
ago [4] and stated as a particular field of multi-objective optimization in the end of 
1970s [1].  

 1 

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/235

mailto:lotov1@ccas.ru


 
 

Fig. 1. Classification of the MCDA techniques according to the role of the decision 
maker 

 
Various techniques for approximating the Pareto frontier were developed since 

1955. In this paper we describe the main ideas of a Pareto frontier generation 
technique, which is aimed at subsequent visualization of the Pareto frontier. The user 
explores the Pareto frontier in interaction with the computer, but this interaction starts 
only after the approximation process is over. This technique known now as the 
Interactive Decision Maps (IDM) technique was introduced about 30 years ago [5, 6]. 
Its concepts, methods and applications are summarized in the recent book [7]. The 
main feature of the method consists in approximating the Edgeworth-Pareto Hull of 
the feasible criterion set instead of the direct approximating the Pareto frontier. The 
Edgeworth-Pareto Hull (EPH), which plays an important role in the theory of multi-
criteria optimization, is the maximal set in criterion space that has the same Pareto 
frontier as the feasible criterion set. It includes, along with the feasible criterion 
points, all criterion points dominated by the feasible points. An approximation of the 
EPH is used for fast interactive visualization of the Pareto frontier as the frontiers of 
slices of the EPH. To be precise, decision maps (collections of criterion tradeoff 
curves) are displayed.  

Methods for approximating the EPH used in the framework of the IDM technique 
depend on the model. In the linear case, they are based on the combination of the 
single-criterion optimization with the Fourier convolution of the linear inequality 
systems, and the EPH is approximated by a polyhedral set. In the non-linear case, the 
random search and the statistical evaluation of approximation quality are combined 
with the local optimization, and the EPH is approximated by a collection of 
domination cones with vertices located in points, which are close to the Pareto 
frontier. Recently, concepts of the evolutionary optimization methods were included 
into the IDM technique, too. 

Applications of the IDM technique include national economic planning, water 
management, national energy planning, machinery design, etc (see [7]). Web 
applications are developed very intensively now. Experimental application of the 
IDM technique on Web has started as soon as in 1996 [8]. Its refined version based on 
Java technology was developed in 2000 in the form of Web application server [9, 10]. 
The first real-life application of the Web application server is related to supporting of 
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remote negotiations and decision making in regional water management in the Werra 
River project, Germany [11]. It is clear, however, that a wide range of applications of 
such Web tool can be considered.  

The concept of the IDM technique is described in the paper. In Section 2 the 
mathematical description of the technique is provided. Its application in the convex 
case is outlined. Section 3 describes the main ideas of the approximation methods in 
the case of the non-linear problems including the methods for statistical evaluation of 
the quality of an approximation of the EPH. In Section 4 we outline an example of the 
IDM technique application in the non-linear case. 

 
2    Mathematical Description 
We assume that the feasible decision x belongs to a compact set X in the linear metric 
space  and that the vector of criterion values y is a point of the linear metric space 

. The vector y is given by a vector function f:  → . The feasible set of 
criterion vectors is Y=f(X), that is,  

nR
mR nR mR

( ){ }XxxfyRyY m ∈=∈=   , : . 

Let us assume that the directions of the desired variation in the criteria values are 
given. To be definite, we assume that this is their decrease. Then, a point  ∈  is 

preferred to a point  ∈  (

y ′′ mR

y′ mR yy ′′′ ; , that is, y ′′  dominates ) if ≤  и 
 ≠ . In this case, the Pareto (non-dominated) frontier P(Y) of Y is defined as 

y′ y ′′ y′
y ′′ y′
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Fig. 2. Illustration of Y=f(X), P(Y) and Yp. The frontier of the set Yp is given by the 

dashed and bold lines. One can easily identify points of the Pareto frontier, which is 
given by the bold line: the cone of points y ′′ : yy ′′′ ;  does not intersect with the set 

Yp for a non-dominated criterion point y′ . 
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The Edgeworth-Pareto hull of the set Y is defined in the case under consideration as 

Yp = Y + = {y* ∈ : y*=ymR+
mR 1+ y2, y1∈ Y, y2∈ }, mR+

where  is the nonnegative cone of . Importantly, P(YmR+
mR p) = P(Y). Moreover, 

proceeding to Yp, we get rid of the dominated frontier of Y, which impedes 
visualization. Visualization of the Pareto frontier is based on the display of the 
approximation of the EPH using collections of its two-criterion slices (cross-sections). 
A two-criterion slice of Yp passing through a point y* ∈  is defined as follows. Let 
us consider a pair of criteria, say u and v. Let z* be the values of the rest of criteria in 
the point y*. Then, a two-criterion slice of the set Y

mR

p, which passes through the point 
y* and is related to the pair (u, v), is defined as (we do not care about the order of the 
criteria) 

( ) ( ) }{ pp YzvuvuzYG ∈= *,,:),(*, . 

The slices of the Pareto frontier are displayed as frontiers of the slices of the EPH. A 
collection of such two-criterion frontiers, for which the value of only one of the rest 
of criteria can change, constitutes a decision map. Therefore, a decision map can 
provide information on criterion tradeoffs among two criteria, depending on the 
values of the third criterion. The influence of other criteria is displayed in the 
framework of the IDM technique by animation. Since the EPH has already been 
approximated, modern personal computers spend only a few seconds for computing 
and displaying hundreds of decision maps. Due to it, animation is possible by 
successive demonstration of decision maps associated with monotonically changing 
value of a fourth criterion.  

Let us consider an example for a problem characterized by the convex EPH. In 
Fig. 3 a display of the IDM technique for a large linear model with five linear criteria 
is provided. The model is used in the DSS for computer aided design of water quality 
improvement projects in a river basin (see [7], chapter 3; a detailed description of the 
study is provided in [12]). It is clear that for a linear model the EPH is convex. It is 
displayed in the following way. Feasible values of two criteria are displayed in the 
plane, the water pollution in two regions located in the river basin, which remain after 
the water quality improvement project is completed. The color informs concerning the 
cost of the project. It means that the lilac color (zero cost) is associated with the point 
with maximal pollution (upper right corner of the decision map). The cost of US$200 
million is associated with the blue color. The feasible values of the pollutions are 
given by the blue area in the decision map. One can see the Pareto frontier of this 
area, which is the slice of the Pareto frontier for the whole problem. One can easily 
understand the tradeoffs among two criteria. The next cost value is US$400 million, 
and it is associated with the green color. The green area in the decision map displays 
the pollution values, which are feasible for the cost higher, than US$200 million, but 
not greater, than US$400 million. The next two areas (yellow and red) inform the user 
on the effect of larger costs. One can see the Pareto frontiers (tradeoffs) among 
remaining pollution criteria for all five values of cost under consideration. Jointly, 
these tradeoff curves inform, however, about the tradeoffs for all three criteria. 
Indeed, it is fairly clear that first US$200 million are much more efficient than the last 
US$200 million.  
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Fig. 3. An example of the IDM technique display 

 
Now let us consider the influence of other two criteria (investments in two regions 

of the basin, F4 and F7). Influence of these two criteria on decision map is studied 
with the help of scroll-bars located under the decision map. There are sliders at the 
scroll-bars located in Fig. 3 at the right ends of the bars (maximal non-dominated 
values of the criteria). One can move the sliders manually using the computer mouse, 
studying by this the influence of the decrement of one of the scroll-bar criteria on the 
decision map. Alternatively, the sliders can be moved automatically, animating by 
this the decision maps. Since it is impossible to show such a form of the analysis in a 
paper, we have to advise downloading our software from the Web site  

http://www.ccas.ru/mmes/mmeda/soft

and playing with it. Fortunately, a finite number of snapshots of the animation can be 
given in the paper. The display of the snapshots is provided in the form of a matrix of 
decision maps illustrated in Fig. 4. Note that in Fig. 4 the decision maps are given 
using the only color: the values of cost are associated with different shades of green. 
In addition, only the frontiers of the slices are displayed. Such display helps to 
estimate the values of particular points of the frontiers more easily and is therefore 
preferred by many users. 
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Fig. 4. A matrix of decision maps 
 

Any column of the matrix is associated with a certain value of the fourth criterion 
F4. Any row is associated with a certain value of the fifth criterion F7. The matrix of 
decision maps provides an opportunity to study the influence of both F4 and F7 
simultaneously. 

Usually we advise the user to restrict themselves with five criteria. Indeed, 
psychological studies prove that seven is the maximal number of objects a normal 
human being can deal with. Since the criterion tradeoffs are fairly complicated, 
exploring five criteria simultaneously seems to be natural for human beings. 
However, since the users apply our technique without our control, they manage to 
study sometime till nine criteria simultaneously. Technically, the software provides 
such an opportunity (additional scroll-bars are displayed for any reasonable number of 
criteria). However, understanding of such complicated relations is not simple, and 
therefore restricting with five criteria is recommended by us. 

By identifying a preferred criterion point (feasible goal) at the Pareto frontier of a 
suitable decision map, the user can express his/her preferences. Since the identified 
criterion point is feasible, the user obtains a decision, which results in the identified 
goal. It is important that the main problem of the goal programming, that is, 
unfeasibility of the identified goal, is solved here by the display of the Pareto frontier. 
Therefore, the IDM technique can be considered as the tool for visualization of the 
goal identification procedure in the goal programming. Such application of the IDM 
technique has got the name of the Feasible Goals Method (see [7] for details). 

Another application of the IDM technique for the convex EPH is related to 
visualization of tables (relational databases) containing large number (may be, 
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millions) of rows. Several numerical attributes (columns) are specified to be the 
selection criteria. Due to it, the rows of the database are associated with the points in 
the criterion space. Then, the EPH of the convex hull of the criterion points is 
approximated and the IDM technique is applied for supporting the identification of 
the goal at the Pareto frontier. However, this time the goal is not feasible, but only 
reasonable (that is, close to feasible criterion points). Therefore, this method is known 
as the Reasonable Goals Method (see Chapter 4 of the book [7] as well as the recent 
paper [10]).  
 
3    Approximation of the EPH in the non-linear case 
In the non-linear case the EPH is approximated by the set 

Tp = { y + : y ∈ T }, ∪ mR+

where T is a finite set of criterion points. Geometrically speaking, Tp is the union of 
cones y+  with the vertices located in points y ∈ T. The set T is named the 
approximation base. If the points of the set T are close to the Pareto frontier, the set 
T

mR+

p, approximates the EPH (see Fig. 5 where the Pareto frontier P(Y) and the 
approximation Tp of the EPH are given for the case m = 2). The methods for 
approximating and visualization of the Pareto frontier on the basis of the concepts of 
the IDM technique were introduced for non-linear models in [13]. The modified 
versions of the methods are described in Chapter 5 of the book [7]. 

The methods are based on combination of random multi-objective search with 
scalar local optimization. One must use an algorithm for generating independent 
random points distributed uniformly over X and an algorithm for solving local 
optimization problems for any continuous scalarizing function φ( ) of the vector 
criterion, i.e., the problems 

φ(f(x)) → min while x∈X.    (1) 

It is assumed that the algorithm can find a local minimum for any initial point x0∈X. 
Methods for evaluating the quality of an EPH approximation given by the 

approximation base T play an important role in the methods for approximating the 
EPH. Therefore, we start with the description of the evaluation methods. They are 
based on stochastic estimation of the approximation quality and have the following 
sense. The quality of approximation of the set Yp for the case m = 2 can be measured 
by the dashed area (Fig. 5) that belongs to Yp, but does not belong to Tp. However, 
though we know the approximation, we do not know the set Yp or its Pareto frontier 
P(Y). Therefore direct measurement of the dashed area seems to be impossible. 
However, there exists an indirect way of its measurement. This indirect measure was 
proposed in [14] for estimating the quality of an approximation of a multi-
dimensional non-convex image of a compact set. In [13] it was proposed to apply the 
same ideas for estimating the quality of an approximation of the EPH. 
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Fig. 5. The Pareto frontier P(Y) and the approximation Tp of the set Yp  

 
Let us consider the uniform measure µX in , that is, µnR X(A) for any measurable 

set A from  equals to its volume. Let us assume that the set X is measurable and 
that µ

nR
X(X)=1. Let the function f:  →  be continuous. Then, for any 

approximation T
nR mR

p we can define the value  

                                                                η = µX (f -1(Tp  ∩ Y)),    (2) 

where f -1(B) is the full pre-image of a subset B of the set Y. The meaning of η is 
evident: it is the probability that x ∈ X implies f(x) ∈ Tp, that is, 

η = Pr { x∈X ⇒  f(x)∈Tp }.    

In turn, the value 1– η is the probability that, for a point x ∈ X, the point f(x) does not 
belong to the set Tp, that is, it belongs to the dashed area in Fig. 5. The value of η 
named approximation completeness. It can be used for evaluating the quality of the 
approximation of Yp by Tp. 

For some 0 < η* < 1, the condition  

η ≥ η*     (3) 

requires that no less than the η*-th fraction of the set X is represented by criterion 
points of Tp. Estimating the quality of the approximation can be formulated as 
checking the condition (3), which is verified in our method statistically, on the basis 
of generating random uniformly distributed points in X. Therefore, the condition (3) 

 8 



can be guaranteed only with certain reliability χ smaller than one. Thus, instead of 
(3), we verify the statement 

 P { η > η* } ≥ χ ,    (4) 

where 0 < χ < 1. The problem is to pick a sufficient number N of random points x ∈ X 
so as to verify estimate (4) for a given value of χ. 

Let us consider HN={x1,…,xN }, which is a random sample of uniformly distributed 
points of X. Let N+ be the number of elements of the sample, for which f(x) ∈ Tp. 
Then, the following theorem holds (proof is given in [7]). 

 
Theorem. An estimate of the approximation completeness is given by 

 P {η > η(N) – ∆(χ, N)} ≥ χ     

where η(N)= N+/N and the accuracy ∆(χ,N) is defined by the relation 

∆(χ,N) = ( ln (1-χ)-1 / (2N) )1/2.   (5) 

 
A comparison of this relation with formula (4) shows that η(N) – ∆(χ, N) can serve as 
the value of η*. Relation (5) can be used to find the required N for given ∆ and χ: a 
sufficient number N of points can be determined as the minimum integer satisfying 

N(∆,χ) ≥ ln(1-χ)-1 / (2∆2).    (6) 

For example, for ∆ =0.05 and χ =0.95, formula (6) yields N = 600, and for ∆ =0.1 and 
χ =0.9, formula (6) yields N = 116.  

Note that the value of N does not depend on η. Due to it, in addition to Tp, one can 
estimate the quality of approximation by a neighborhood of Tp. Let Qε be the ε–
neighborhood of a set Q⊂ Rm . We can introduce the estimate of the approximation 
quality for any ε≥0. It is the function ηN(ε) defined for all ε≥0 as follows: 

ηN(ε) = N+(ε)/N, 

where N+(ε) is the number of points x of the sample HN that satisfy f(x)∈( Tp)ε. The 
function ηN(ε) is denoted as sample approximation completeness function. It is an 
increasing function of ε, and for some finite value of ε it equals to one. The function 
ηN(ε)–∆(χ,N) provides an estimate of the confidence interval for the approximation 
completeness η(ε) for any non-negative value of ε. However, the function ηN(ε) 
provides information by itself, too, since its mathematical expectation equals to the 
value of η(ε). 

Let us discuss several requirements that must be satisfied by an estimate that can 
evaluate the quality of approximation of EPH. First, the estimate must be monotonic, 
that is, if an approximation Tp

(2) is more precise, than another approximation Tp
(1) 

(Tp
(1)⊂  Tp

(2)), then the estimate of Tp
(2) must be higher, that of Tp

(1). Secondly, the 
estimate must be effective, that is, it must distinguish between good and bad 
approximations. Finally, it must be practical, that is, relatively simple algorithms 
should exist for its computing in real-life problems.  

It is clear that the completeness function is monotonic and practical. However, 
experimental application of it proved that this estimate is effective only in the case of 
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relatively small dimensions n. If n is large, the value of ηN(0) can be equal to one even 
for large values of N and rough approximations of the EPH. This effect is related to 
the fact that the volume of points of the set X, which result in non-dominated criterion 
points, may be very small. Therefore, it is practically impossible to find points, which 
images do not belong to the current approximation. For this reason, the approximation 
completeness function was modified in [7] in the following way: instead of simple 
testing f(x) ∈ Tp for the random points from the sample HN, we first “improve” these 
points. The “improvement” means that starting with an initial point x’∈ HN, we 
construct such a new point =′′x  Φ( x′ ) ∈ X, which satisfies f( x ′′ ) ≤ f( ). It means 
that f(

x′
x ′′ ) is closer to the Pareto frontier than f( x′ ). The mapping Φ: X→X that 

describes the “improvement” of the points of the sample can be based, for example, 
on an algorithm for solving local optimization problem (1) with some scalarizing 
function.  

Several scalarizing functions φ( ) were tested, first of all the weighted 
Tchebycheff function proposed independently in [2] and [15] 

φ(f(x)) = max {λj (fj(x) – y*j), j=1,2,..,m}+ β ,   ∑
=

−
m

j
jj yxf

1

* ))((

where y* is the ideal point, that is, the vector of best feasible values for particular 
criteria, the values of λj are positive weights and β is a small positive number. In 
contrast to the above techniques, in our study the weights were determined by the 
initial point x(l)∈ HN:  

λj = 1 / (yj
(l) – y*j), j=1,2,..,m,     

where y(l) = f(x(l)). Then, we use “improved” points of X instead of the initial points of 
the sample. It means that the modified approximation completeness is applied. It is 
the function ηΦN(ε) defined for all ε≥0 as follows: 

ηΦN(ε) = N+(ε)/N, 

where N+(ε) is now the number of points x of the sample HN that satisfy f(Φ(x))∈(Tp)ε. 
The function ηΦN(ε) is denoted as generalized sample approximation completeness 
function. Since optimization is used to implement the mapping Φ: X→X, the function 
ηΦN(ε) is often denoted as optimization-based sample approximation completeness, 
too.  

Note that the function ηΦN(ε) is monotonic in respect to the approximation and is 
practical since it can be easily calculated in real-life problems. Experiments with non-
linear problems with four-five criteria described by hundreds of decision variables 
proved that this estimate of the approximation quality is effective in this case. If the 
probability  

ηΦ(ε) = Pr { x∈X  f(Φ(x))∈(T⇒ p)ε }    

exists, it is denoted as the generalized (optimization-based) approximation 
completeness. Then, it is possible to use the values of ηΦN(ε) for constructing the 
confidence interval for the value ηΦ(ε) for any ε>0 as it was done in the case of the 
ordinary approximation completeness. In addition, ηΦN(ε) provides the unbiased 
estimate of ηΦ(ε).  
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The function ηΦN(ε) can be provided to the user in the graphical form. Note that 
the value 1 – ηΦ(ε) provides the probability to get a new feasible point outside the set 
(Tp)ε. Therefore, it characterizes the efforts needed to improve the current 
approximation. If the value of ηΦN(ε) is sufficiently close to one for small values of 
ε>0, then the user may be satisfied with the approximation. However, it is important 
to remember that the completeness function provides a stochastic approximation of 
the quality of approximation and does not provide guaranteed estimate of the 
approximation precision.  

Different scalarizing functions were tested as well. They resulted in even more 
effective estimates. However, they are out of scope of this paper.  

 
Let us consider an example of 
generalized approximation com-
pleteness function for a problem 
with five criteria. This problem is 
described by several extrema 
characterized by exponential 
growth. Several approximations 
of the EPH were constructed. In 
Fig. 6 two functions ηΦN(ε) for a 
rough approximation and for a 
more precise approximation of 
the EPH are given. The value of 
ε>0 is measured in relative units 
based on the ranges of the Pareto 
frontier. One can see that, in the 
case of the rough approximation, 
the acceptable value of the 
sample completeness (say, 0.95) 
is achieved for ε=0.15. In the 
case of the more precise 
approximation, the acceptable 
value of the sample completeness 
(say, 0.95) is already achieved for 

ε= 0.03. So, it is clear that the estimate makes difference between rough and more 
precise approximations, i.e., it turned out to be effective in this case. 

 

Fig. 6. Graphs of ηΦN(ε) for ε >0  

(blue curve for a rough approximation and 
pink curve for a more precise 

approximation) 

Since the value 1 – ηΦ(ε) provides the probability to get a new feasible point 
outside the set (Tp)ε, it characterizes the efforts needed to improve the current 
approximation. If the value of ηΦN(ε) is sufficiently close to 1 for relatively small 
values of ε>0, then the user may be satisfied with the approximation.  

After discussing the methods for estimating the quality of the approximation, we 
can describe the idea of the approximation methods. The methods proposed in [13] 
are iterative. Estimating of the approximation quality and improvement of the 
approximation follow each other in the course of an iteration. 

At the preliminary iteration, an approximation base T0 is found. It can be provided 
by the nondominated points of a collection of responses of relatively few random 
points of X. The k-th iteration is as follows. It is assumed that the approximation base 
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Tk-1 was obtained at the preceding iteration, and so we have got the current 
approximation of the EPH in the form of the set Tp

k-1 specified by the base Tk-1. 
Step 1. The quality of the current approximation Tp

k-1 is estimated by using one of 
the several methods for estimating the approximation quality. If the user is satisfied 
with the result of the estimating, the approximation procedure is terminated (formal 
stopping rules can be applied, too). Otherwise, the next step is started. 

Step 2. Several most distanced (or all) criterion points found at the previous step 
that do not belong to Tp

k-1 are included into the list of points of the approximation 
base. Then, dominated points are excluded from the list. The resulting approximation 
base is denoted by Tk and used at the (k+1)-st iteration. When the number of points in 
the approximation base is too large or it contains points, which are the result of close 
decisions, the base is filtered. 

Additional steps may be included into the iterations. It turned to be very efficient to 
squeeze the region of the search after several iterations of the described type as well 
as to apply genetic algorithms at the very end of the approximation procedure. 

After completing the approximation of the EPH, an interactive visualization of the 
Pareto frontier is started. In the same manner as in the convex case, the decision 
maker inspects various collections of slices of the EPH and indicates a preferable 
criterion point (goal) on one of the slices. Next, the computer finds a feasible decision 
whose response is close to the goal. To this end, the vertex of the goal-containing 
cone and the point of X generating the vertex are found (for this purpose, the points of 
the base are usually stored together with the coordinates of the decisions generating 
them). 

Note that, since the responses of random points of X can be calculated in parallel 
with solving the local optimization problems (1) for different points of the sample, the 
methods can be implemented on multiprocessor computing systems. 
 
 
4    An application example 
As an example of the IDM technique application in the non-linear case we provide a 
short description of its use in the course of analysis of cooling equipment for 
continuous steel casting. The study was carried out as a joint project of Academy of 
Finland and Russian Academy of Sciences. It is described in details in the report [16] 
and in the paper [17]. Though continuous steel casting has wide recognition and is 
used universally, its development continues. In particular, the technology is studied 
and improved with the help of exploration of mathematical models. In our study we 
applied the IDM technique in the course of the analysis of the multi-criteria 
optimization model of steel cooling developed at the University of Jyvaskyla, Finland, 
[18], which, in turn, is based on the mathematical model of the cooling process [19].  

The process of steel casting is illustrated in Fig 7. Molten steel is poured down 
from the tundish into a water cooled mold, where the strand of steel obtains a solid 
shell. After the mold exit (point z1), the strand is supported by rollers and cooled 
down by water sprays. In this spray cooling region (the so-called secondary cooling 
region) more heat is extracted. After the water sprays region (point z2), the strand is 
cooled down mainly by radiation. At the point z3 the solidification is completed. 
Then, the strand is straightened at the unbending point z4, and then in the cutting point 
z5 it is cut up. 
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The secondary cooling plays a major role in the steel casting process, since the 
intensity of the water sprays affects highly the solidification rate. First of all, 
overcooling can lead to the formation of cracks. Moreover, there must be a smooth 
transition of the surface temperature as the steel passes through in the secondary 
cooling region. In addition, undercooling of the strand in the process of secondary 
cooling can result in a liquid pool that is too long. These technological requirements 
result in constraints that must be imposed on the secondary cooling process. 
Fortunately, it is quite easy to adjust the intensity of the water sprays. 

 
 

Fig. 7. Steel cooling in the process of continuous steel casting 
 

It is clear that a mathematical model of the cooling process must be non-linear and 
fairly complicated, especially if one takes into account the fact that the position of the 
solidification front is not known a priori and depends upon the secondary cooling. 
Moreover, the solidification front is not sharp, between the solid and the liquid phases 
there exists a mushy zone, which is considered to be partially solid and partially 
liquid. The mathematical model [19] that takes these features into account was 
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implemented in the form of a computational module based on application of the 
FEM/FDM techniques and used for specification of parameters of the secondary 
cooling process. 

The task of selecting the intensities of the water sprays formulated in the form of 
a multi-criteria optimization problem in [18] used in total 325 control variables to 
describe the intensity of water sprays from different sprayers. The technological 
constraints imposed on the steel cooling process included constraints on the surface 
temperature of the strand, on the derivative of the surface temperature along the 
strand, on the temperature after the point z3 and at the point z5. Originally, a single 
optimization criterion J1 was considered that described deviation from the desired 
surface temperature of the steel strand. However, it turned out that this criterion is of 
minor importance since the constraints imposed on the steel cooling process cannot be 
satisfied simultaneously. For this reason, a multi-criteria problem of minimization of 
constraints violation was formulated in [18], where four additional criteria J2 to J5 
were considered that are the penalty criteria introduced to describe the violations of 
constraints. Namely,  
• criterion J2 is related to the surface temperature; 
• criterion J3 is related to the derivative of the surface temperature along the 

strand; 
• criterion J4 is related to the temperature after point z3; and 
• criterion J5 is related to the temperature at point z5. 

Criteria from J2 to J5 were considered in the study that applied the IDM technique. So, 
the EPH was approximated for the non-linear model, which contains 325 decision 
variables and four criteria. Let us provide one of the decision maps considered in this 
study (Fig. 8).  

 
Fig. 8. A decision map for the steel cooling problem 
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In this figure the values of J4 are given on the horizontal axis and the values of J5 are 
given on the vertical axis. Values of J3 are given by colors that correspond to value 
intervals of J3. The range of the criterion J3, which values change from 0 to 0.05, is 
split into nine intervals. The correspondence between the color and the value interval 
is given in the palette located to the right of the decision map. The slices for smaller 
values of J3 are superimposed over the slices for higher values.  

Range of J2 can be specified by two sliders of the scroll-bar located under the 
decision map. It turned out that positions of the sliders practically did not influence 
the decision map. Therefore, zero values for both sliders were specified in Fig. 8. It 
means that the value of J2 equals zero. 

The decision map given in the figure proves that the ideal criterion values cannot 
be achieved simultaneously, and so there is a conflict among criteria. Look at the 
large pink area given by the slice that is related to the interval of the criterion J3 with 
its minimal values (between zero and 0.005). It is clear that the criteria J4 and J5 
cannot achieve their minimal (zero) value simultaneously for these values of J3. Zero 
value of J4 can be achieved only while the value of J5 is about 0.07. At the same time, 
the smallest value of J5 (it is close to zero) can be achieved while the value of J4 is 
about 3.0. The tradeoff curve between J4 and J5 is given in a clear way for the interval 
of J3 with minimal values. 

The decision map informs on how the increment of the value of J3 influences the 
feasible combinations of J4 and J5. Fig. 8 proves that, in the model under study, the 
situation is not getting much better while one turns to larger values of J3. Though 
larger values of J3 provide new feasible criterion points (we can see those points that 
are not covered by the slices with smaller values of J3), the increment of slices is 
fairly small. The minimal value of J4 for J5 being about zero is decreased a bit, but not 
substantially. Say, it is close to 0.032 for the maximal value interval of J3 in the figure 
(J3 is between 0.043 and 0.049, that is, red colored area is discussed). Larger values of 
J3 do not help either (additional figures that are not given here prove it).  

As the result, the user knows that the control of the intensity of the water sprays 
cannot solve the conflict between the constraints imposed on the process. Moreover, 
he/she knows how much are the possible violations of constraints and how the 
tradeoff curves look. The user (designer in this case) has to find a balance between the 
constraint violations or propose some changes in the steel casting equipment that will 
solve the conflict. 
 
4    Summary 
The IDM technique helps to explore various multi-criteria optimization problems 
described by linear or non-linear models. The user has an opportunity to explore the 
Pareto frontier and select a preferred decision by a simple click at the computer 
mouse.  
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