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Abstract. The capability of revising its beliefs upon new information in
a rational and efficient way is crucial for an intelligent agent. The classic
AGM theory studies mathematically idealized models of belief revision
in two aspects: the properties (i.e., the AGM postulates) a rational re-
vision operator should satisfy; and how to construct concrete revision
operators. In scenarios where new information arrives in sequence, ratio-
nal revision operators should also respect postulates for iterated revision
(e.g., the DP postulates). When applications are concerned, the idealiza-
tion of the AGM theory has to be lifted, in particular, beliefs of an agent
should be represented by a finite belief base. In this paper, we present
a computational base revision operator, which satisfies the AGM pos-
tulates and postulates for iterated revision. We will show that our base
revision operator is almost optimal in terms of computational complex-
ity. Furthermore, the base revision operator’s degrees of syntax relevance
and minimal change are also formally analyzed.
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1 Introduction

The capability of revising its beliefs upon new information in a rational and
efficient way is crucial for an intelligent agent. Technically, belief revision is the
process of changing the beliefs of an agent to accommodate new, more precise, or
more reliable information that is possibly inconsistent with the existing beliefs.
In situations where the new information is consistent with the existing beliefs,
the two can just be merged; we call this mild revision. More interesting and
complicated are situations where the information conflicts with the prior beliefs,
in which case the agent need to remove some of its currently held beliefs in
order to consistently accommodate the new information. This kind of revision is
referred to as severe revision [Lehmann, 1995].

In the literature, the classical AGM theory [Alchourrón et al., 1985; Gärdenfors
and Makinson, 1988; Gärdenfors, 1988] is a formal account of mathematically
idealized models of belief revision in single agent environments. In AGM theory,
beliefs of the agent are represented by a set of sentences in an underlying logical
language. The agent is supposed to be a Besserwisser, i.e., it is aware of and
responsible for all logical consequences of it beliefs. A belief revision operator
is mathematically a mapping from the old beliefs and new information to the
new beliefs. Any rational belief revision operator is supposed to satisfy a set of
properties (AGM postulates). The guiding principle of AGM postulates is that
of economy of information or minimal change of belief sets, which means not to
give up currently held beliefs and not to generate new beliefs unless necessary.

For the incremental adaptation of beliefs, these postulates proved to be too
weak [Darwiche and Pearl, 1997]. This has led to the development of additional
postulates for iterated belief revision by Darwiche and Pearl (DP), among others.
The underlying principle of DP postulates is that of minimal change of preference
information which is exploited by revision operators. Still, however, the two sets
of postulates are too permissive in that they support belief revision operators
which assume arbitrary implicit dependencies among the pieces of information
which an agent acquires along its way [Nayak et al., 1996; Nayak et al., 2003].
Based on a formal analysis, we proposed an Independence postulate as a solution
to rule out revision operators which may abuse implicit dependence [Jin and
Thielscher, 2005].

When applications are concerned, the mathematical idealization of AGM the-
ory has to be lifted. Inevitably, the beliefs of the agent should be represented
finitely by a belief base [Wobcke, 1992; Nebel, 1992; Rott, 1991]. Computational
complexity of a belief revision operator becomes a very important criterion [Eiter
and Gottlob, 1992; Nebel, 1998; Liberatore, 1997], since it determines how ef-
ficiently the agent can revise its beliefs . In this paper, we present a general
base revision operator, which satisfies all AGM and DP postulates. The base
revision operator does not abuse the implicit dependence in the sense it respects
the postulate of Independence. We will show that our base revision operator
is almost optimal in terms of computational complexity. Furthermore, we will
formally analyze the base revision operator’s degrees of syntax relevance and
minimal change.
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The rest of the paper is organized as follows. In the next section, we first in-
troduce some notation which will be used throughout the paper. Then we recall
the classical AGM theory in a propositional setting (including the AGM postu-
lates and two characterizations of them), followed by a single-step base revision.
In Section 3, we present a general base revision operator after recapitulating the
basic ideas of iterated belief revision. The whole Section 4 contributes to the
formal assessment of our iterated base revision operator, including its logical
set-theoretical properties, computational complexity, and degrees of syntax rele-
vance and minimal change. We conclude in Section 5 with a detailed comparison
to related work.

2 Background

2.1 Preliminaries

We will work in a propositional language L . The language is that of classical
propositional logic with an associated consequence operation Cn in the sense
that Cn(X) = {A : X ` A} , where X is a set of sentences. A set K of
sentences is logically closed or called a belief set when K = Cn(K) . We denote
the set of all belief sets in L by K . If X , Y are two sets of sentences, X + Y
denotes Cn(X∪Y ) . K+ϕ is a shorthand of K+{ϕ} , which is called expansion
of K by ϕ . The set of all propositional interpretations (worlds) of L is denoted
by W . A set X of sentences is true in a world w ∈ W (denoted by w |= X ),
iff every element in X is true in w . For any set X of sentences, [X] (called
models of X ) denotes the set of worlds in which every sentence in X is true.
Conversely, given any set S ⊆ W , Th(S) denotes the set of sentences true in
every world in S .

Given a total pre-order ≤U
1, we denote by <U its strict part, i.e., ϕ <U ψ

iff ϕ ≤U ψ and ψ 6≤U ϕ , and α =U β is just a shorthand of α ≤U β and
β ≤U α . Given a set U and a total pre-order ≤U , the partition induced by
≤U on U is the one, s.t., two elements s, t are in the same class iff s =U t .
If the rest of the paper, whenever we talk about classes, they refer to those of
the induced partition, unless explicitly specified. A class C1 ⊆ U is higher than
another class C2 ⊆ U , if there are s ∈ C1 and t ∈ C2 , s.t., t ≤U s . Given any
set U and total pre-order ≤U , we denote by min(U,≤U ) the lowest class of
the partition.

2.2 AGM Postulates

As a mathematical model, AGM theory assumes the beliefs of the agent are
represented by a belief set, and the new information is represented by a sentence.
Formally, for any belief set K and sentence ϕ , K ∗ ϕ stands for the result of
belief revision when K is revised by ϕ . To provide general design criteria for

1 A pre-order is a reflexive, transitive binary relation. A binary relation ≤ is total if
α ≤ β or β ≤ α , for arbitrary pair of elements α, β .
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belief revision operators, Alchourrón, Gärdenfors, and Makinson (AGM) have
developed a set of postulates: 2

(∗1) K ∗ ϕ = Cn(K ∗ ϕ) (Closure)
(∗2) ϕ ∈ K ∗ ϕ (Success)
(∗3) K ∗ ϕ ⊆ K + ϕ (Inclusion)
(∗4) If ϕ ∪K is consistent, K + ϕ ⊆ K ∗ ϕ (Vacuity)
(∗5) K ∗ ϕ is consistent if ϕ is consistent (Consistency)
(∗6) If ϕ1 ≡ ϕ2 , K ∗ ϕ1 = K ∗ ϕ2 (Extensionality)
(∗7) K ∗ (ϕ1 ∧ ϕ2) ⊆ (K ∗ ϕ1) + ϕ2 (Superexpansion)
(∗8) If ϕ2 ∪ (K ∗ ϕ1) is consistent, (Subexpansion)

then (K ∗ ϕ1) + ϕ2 ⊆ K ∗ (ϕ1 ∧ ϕ2)

One interesting point of AGM postulates is that they do not constrain opera-
tions wrt. varying belief sets. In other words. we can consider a revision operator
a mapping (with an underlying belief set K ) from L to K . A revision operator
of such kind is also referred to as a local revision [Hansson, 1998].

2.3 Characterizations of AGM Postulates

It is well known, a belief set K usually does not contain enough information
to uniquely determine a revision operator [Gärdenfors, 1988; Gärdenfors and
Makinson, 1988]. Therefore, we should exploit some kind of extra-logical pref-
erence information.3 In particular, an epistemic entrenchment (EE for short)
wrt. a belief set K is a binary relation over L which satisfies the following
conditions:

(EE1) If α ≤K β and β ≤K γ , then α ≤K γ

(EE2) If α |= β , then α ≤K β

(EE3) α ≤K α ∧ β or β ≤K α ∧ β , for any α and β

(EE4) If K is consistent, then α /∈ K iff α ≤K β for all β

(EE5) If β ≤K α for all β , then |= α

It follows from (EE1)-(EE3), that ≤K is a total pre-order. Conditions (EE2)
and (EE5) says the highest class comprises all (and only) tautologous sentences.
Condition (EE5) identifies L\K to be the lowest class, if K 6= L .

The intuitive meaning of α ≤K β is sentence β is at least as entrenched as
α , in the sense, when one of them has to be canceled, removing of α will be
preferred. Given an EE ≤K wrt. the belief set K , we can uniquely determine a
revision operator. The cut-set of a sentence ϕ wrt. ≤K [Rott, 1991] (denoted
by cut<K

(ϕ) ) is defined as

cut<K
(ϕ) = {ψ ∈ L |ϕ <K ψ} (1)

2 Readers are referred to [Alchourrón et al., 1985] for detailed explanation and justi-
fication.

3 Cf., Section 5 a discussion on revision operators which does not exploit extra-logical
preference information.
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The revision operator ∗≤K
based on ≤K maps a sentence ϕ to the expansion

of cut<K
(¬ϕ) and ϕ :

K ∗≤K
ϕ

def
= cut<K

(¬ϕ) + ϕ (2)

Since the revision operator defined above amounts to cut away all sentences
which is less entrenched than the negation of the sentence to be added, hence it
is also called cut revision [Nebel, 1994].

It is not difficult to see, for a belief set there could be multiple corresponding
EEs. As we have seen that an EE uniquely determines the result of the revision
operator, which implies that the same belief set when revised with the same
sentence may lead to different new belief sets due to different EEs. Such revision
operators, whose results do not only depend on the logical contents of the original
belief sets, are also referred to as syntax based [Nebel, 1991].

The following result shows a revision operator based on an EE satisfies all
AGM postulate. Conversely, any revision operator which satisfies all AGM pos-
tulates can be generated by ∗≤K

based on some EE ≤K .

Theorem 1. [Gärdenfors and Makinson, 1988; Rott, 1991] Given a belief set
K , a revision operator ∗ satisfies all AGM postulates iff there exists an EE
≤K wrt K , s.t., for any sentence ϕ

K ∗ ϕ = K ∗≤K
ϕ

Revision operators based on EEs give a nice characterization of AGM pos-
tulates. Note, an EE is a preference relation over the set of sentences. There is
another elegant characterization of the AGM postulates which is however more
from semantics point of view, where the preference information is a relation over
the set of possible worlds.

Given a belief set K , a total pre-order ≤f(K) on W is called a faithful
ranking wrt. K [Katsuno and Mendelzon, 1991] iff it satisfies the following
conditions:

– If w1, w2 |= K , then w1 =f(K) w2 .

– If w1 |= K and w2 6|= K , then w1 <f(K) w2 .

Intuitively, w1 ≤f(K) w2 means w1 is at least as plausible as w2 . Given
a faithful ranking ≤f(K) wrt. the belief set K , the revision operator based it
takes exactly the minimal models of the new sentence ϕ wrt. ≤f(k) , as the
models of the revised belief set.

Theorem 2. [Katsuno and Mendelzon, 1991] Given a belief set K , a revision
operator ∗ satisfies all AGM postulates iff there exists a faithful ranking ≤f(K)

wrt. K s.t., for any sentence ϕ

K ∗ ϕ = Th(min([ϕ],≤f(K)))
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The vigilant reader may have observed that, in both characterization of AGM
postulates, there is a problem of so-called categorial mis-matching [Hansson,
2003], in the sense the revision operator takes as input the belief set together with
some preference information, whereas the output is merely a belief set. A direct
consequence is that after one step of revision, we cannot iteratively apply the
revision operator when there comes successively new information. This has been
considered a difficult problem and extensively studied as the topic of iterated
belief revision [Boutilier, 1993; Darwiche and Pearl, 1997; Lehmann, 1995; Jin
and Thielscher, 2005]. We will come back to this point in Section 3, before we
present the iterated base revision.

2.4 Base Revision

AGM theory gives a formal characterization of the space of rational revision op-
erators and shows how to construct revision operators based on some preference
information. However, there are two major problems if we want to apply AGM
theory in a computer science or artificial intelligence application [Nebel, 1998;
Jin and Thielscher, 2004]. First of all, it is assumed beliefs of the intelligent agent
is logically closed, which seems representationally infeasible, since logically closed
set of sentences are in general infinite. Similarly, extra-logic preference informa-
tion is usually a relation over the set of all sentences [Gärdenfors and Makinson,
1988], or a relation over all possible worlds [Katsuno and Mendelzon, 1991], or
a relation over all subsets of the belief set [Alchourrón et al., 1985], which is
huge even the belief set is finite modulo logical equivalence. Second problem is
revision operators cannot be iterated [Darwiche and Pearl, 1997], when the new
information comes in sequence.

In this section, we will address the first problem. Solutions to the second the
problem are delegated to next section. In a computational framework, we assume
that the beliefs of an agent are represented by finite sets of sentences, which are
called belief bases [Wobcke, 1992]. From the computational point of view, the
size of extra-logical preference information should be bounded polynomially in
the size of the belief base. A prioritized base 〈B,≤B〉 consists of a belief base
B and a total pre-order ≤B (called epistemic relevance ordering [Nebel, 1991],
ERO for short ) over the sentences in B .

Similar to the cut-set wrt. an EE as defined by (1), one can define cut-set
wrt. an ERO ≤B (denoted by cut≤B

(ϕ) ) for any sentence ϕ as

cut<B
(ϕ) = {ψ ∈ B | {χ ∈ B |ψ ≤B χ} 6|= ϕ} (3)

Put in words, the cut-set of ϕ wrt. ≤B consists of all sentences in all high class,
s.t., adding next lower class leads to the implication of ϕ .

Given an ERO ≤B , the cut base revision ∗≤B base on ≤B is defined for
any sentence ϕ as

B ∗≤B
ϕ = cut<B

(¬ϕ) ∪ {ϕ} (4)

It is interesting to see how many of the AGM postulates are satisfied by the
cut base revision. For this reason, we take Cn(B) as the original belief set, and
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Cn(B ∗≤B
ϕ) as the revised belief set. First to observe is that although an ERO

≤B is a total pre-order over B , it can be generalized to an EE ≤Cn(B) wrt.
Cn(B) by letting

ϕ ≤Cn(B) ψ iff cut<B
(ψ) ⊆ cut<B

(ϕ) (5)

Theorem 3. [Nebel, 1994] Let B be a belief base with an ERO ≤B . Then the
relation ≤Cn(B) generated by (3) and (5) is an EE wrt. Cn(B) .

Based on the generalized EE ≤Cn(B) , we can define a revision operator
∗≤Cn(B)

as defined by (2). The cut base revision ∗≤B
based on ≤B has a very

nice property that in terms of change of the logical contents it is equivalent to
the revision operator ∗≤Cn(B)

. Therefore, we also say that the revision operator
∗≤Cn(B)

is generated by ∗≤B
.

Theorem 4. [Nebel, 1994; Williams, 1994] Let B be a belief base with an ERO
≤B . Let ≤Cn(B) be the EE generated by (3) and (5). Then

Cn(B ∗≤B
ϕ) = Cn(B) ∗≤Cn(B)

ϕ

It follows directly from Theorem 1, that cut base revisions based on EROs
satisfy all AGM postulates. Furthermore, cut base revisions based on EROs are
also flexible enough to generate all AGM revision operators.

Theorem 5. [Nebel, 1994] The class of revision operations generated by cut base
revision defined by (4) coincides with the class of revision operations satisfying
all AGM postulates.

3 Iterated Base Revision

Cut base revisions seems to be a perfect solution to the first problem which
is mentioned in the last section. It is not difficult to observe that the second
problem remains, since the result of cut base revision is merely a belief base.

3.1 Iterated Revision

Iterated belief revision is a very important topic from both theoretical and prac-
tical point of view, and has been studied by many researchers [Boutilier, 1993;
Darwiche and Pearl, 1997; Lehmann, 1995; Jin and Thielscher, 2005]. Let’s re-
call some basic ideas of the iterated revision: An iterated revision should not
only produce a revised belief set (base), but also new preference information.
A commonly accepted way to generate the new preference information is to ap-
ply the minimal change to the old preference information. Darwiche and Pearl
have shown that AGM postulates are so overly permissive that they allow many
unreasonable behaviors [Darwiche and Pearl, 1997] . The underlying reason is
that AGM postulates put almost no constraints on the change of preference in-
formation. Therefore, Darwiche and Pearl proposed a set of (DP) postulates to
complement the AGM postulates:4

4 Readers are referred to [Darwiche and Pearl, 1997] for detailed explanation and
justification.

8



(C1) If β |= ϕ , then (K ∗ ϕ) ∗ β = K ∗ β .
(C2) If β |= ¬ϕ , then (K ∗ ϕ) ∗ β = K ∗ β .
(C3) If ϕ ∈ K ∗ β , then ϕ ∈ (K ∗ ϕ) ∗ β .
(C4) If ¬ϕ /∈ K ∗ β , then ¬ϕ 6∈ (K ∗ ϕ) ∗ β .

The following representation theorem shows the constraints DP postulates
put on change of preference information. In particular, Condition (CR1) (Con-
dition (CR2)) says the plausibilities of the worlds which satisfy (violate) the new
information should changed in a uniformed way, s.t., their relative positions do
not change.

Theorem 6. [Darwiche and Pearl, 1997] Suppose that a revision operator ∗
satisfies all AGM postulates. The operator satisfies (C1)–(C4) iff its faithful
rankings f(K) and f(K ∗ ϕ) satisfy:5

(CR1) If w1, w2 |= ϕ , then w1 ≤f(K) w2 iff w1 ≤f(K∗ϕ) w2 .

(CR2) If w1, w2 6|= ϕ , then w1 ≤f(K) w2 iff w1 ≤f(K∗ϕ) w2 .

(CR3) If w1 |= ϕ and w2 6|= ϕ , then w1 <f(K) w2 implies w1 <f(K∗ϕ) w2 .

(CR4) If w1 |= ϕ and w2 6|= ϕ , then w1 ≤f(K) w2 implies w1 ≤f(K∗ϕ) w2 .

We have pointed out DP postulates are still too permissive [Jin and Thielscher,
2005] . In particular, A revision operator satisfying all DP postulates can still
suffer from the problem of so-called implicit dependence, which can be informally
explained as follows. According to the revision operator defined by (2),when a be-
lief set K revised by ¬ϕ , any sentence ψ ∈ K will be removed if ϕ ≥K ϕ∨ψ .
It seems that ϕ is the only reason for ψ to exist in K (even they are not
logically related), i.e., ψ implicitly depends on ϕ . Implicit dependence seems
inevitable with AGM postulates, since any revision operator satisfying all AGM
postulates can be generated by a revision operator based on some EE (Theo-
rem 1). Therefore, the only thing we can do is to require a revision operator
does not abuse implicit dependence, i.e., does not introduce undesired implicit
dependence. The over-permissiveness of DP postulates can be evidenced by the
natural revision [Boutilier, 1993], an iterated revision operator which satisfies all
DP postulates. In natural revision, the new sentence is always least entrenched
in the revised belief set, hence it implicitly depends on all other beliefs. As a
consequence, a severe revision could cancel out all previous learned information,
which is of course too radical in general.

To rule out revision operators which abuse implicit dependence, we proposed
a postulate of Independence: 6

(Ind) If ¬µ 6∈ K∗β then µ ∈ (K∗µ)∗β

The following representation theorem shows, postulate (Ind) impose a very
natural constraint on the change of preference information.

5 Recall: f(K) is the original faithful ranking and f(K ∗ ϕ) is the faithful ranking
after revision

6 Reader are once again referred to [Jin and Thielscher, 2005] for a formal analysis of
implicit dependence and detailed explanation and justification of (Ind)
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Theorem 7. [Jin and Thielscher, 2005] Suppose that a revision operator ∗ sat-
isfies all AGM postulates. The operator satisfies Postulate (Ind) iff its faithful
rankings f(K) and f(K ∗ ϕ) satisfy:

(IndR) If w1 |= µ and w2 |= ¬µ , then
w1 ≤f(K) w2 implies w1 <f(K∗µ) w2 .

Basically, Condition (IndR) says if a world w1 satisfying the new information
and another world w2 violating the new information, then their relative dis-
tance in terms of plausibilities increases. It follows directly from Theorem 6 and
Theorem 7, that with the presence of AGM postulates, (Ind) implies both (C3)
and (C4).

3.2 A (General) Iterated Base Revision

In this subsection, we will show how to obtain an iterated base revision by adding
some small ingredients to the recipe of cut base revision defined by (4). We
first introduce a compact and more general belief representation: An epistemic
entrenchment base (EE base for short) is a pair 〈B, f〉 consists of a belief base
B and a mapping f from B to N

+ (natural numbers greater than 0 ). For
any sentence β ∈ B , we call f(β) its evidence degree. In an EE base the size
of extra-logic preference information is equal to the cardinality of its belief base.
We denote by Bm the set of sentences in B which have at least evidence
degree m , i.e., Bm = {β ∈ B | f(β) ≥ m} . The maximal evidence degree
of non-tautologous sentences in B is denoted bymax(B) , that is, max(B) =
max{f(β) |β ∈ B and 6|= β} .

For any sentence ϕ , its belief degree (also called rank) wrt. a given EE base
〈B, f〉 is defined as:

Rankf (B,ϕ) =







0 IfB 6|= ϕ
max(B) + 1 Else if |= ϕ
max({m |Bm |= ϕ}) Otherwise

Note, it is possible that a sentence β in B has a higher belief degree Rank f (B, β)
than its evidence degree f(β) . So that f(β) should only be considered as the
lower bound of β ’s belief degree.

Clearly, EE bases are more general forms of prioritized bases, therefore what
applies to prioritized bases can also apply to EE bases. Given an EE base 〈B, f〉 ,
the cut-set of a sentence ϕ (denoted by cutf (ϕ) ) is defined as

cutf (ϕ) = {β ∈ B |Rankf (B,ϕ) < f(β)} (6)

Similarly, an EE base 〈B, f〉 can induce an EE wrt. ≤Cn(B) by letting

α ≤Cn(B) β iffRankf (B,α) ≤ Rankf (B, β) (7)

Theorem 8. [Wobcke, 1992] Given an EE base 〈B, f〉 , the induced binary
relation ≤Cn(B) defined by (7) is an EE relation wrt. Cn(B) .
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An iterated EE base revision operator should map an EE base and the new
information to a new EE base. A natural question is of course what should be
the evidence (belief) degree of the new sentence ϕ in the revised EE base?
Obviously, if the new information is purely a sentence ϕ , the revision operator
has to assign ϕ a belief degree via a fixed scheme. It is unlikely that there exists
such a fixed scheme suitable for all different kinds of applications. Therefore,
based on the same considerations of [Spohn, 1988], we consider a more general
revision schema where the new information 〈ϕ, e〉 consists of a sentence ϕ and
an evidence degree e ∈ N

+ . The evidence degree e is supposed to provide
additional information for the revision operator to determine the belief degree
of ϕ in the revised EE base.

Given an EE base 〈B, f〉 , the EE base revision is defined as follows for any
new information pair 〈ϕ, e〉 :

〈B′, f ′〉 = 〈B, f〉 ∗ 〈ϕ, e〉 iffB′ = {β |β ∈ cutf (¬ϕ)} ∪ {ϕ ∨ β |β ∈ B} ∪ {ϕ}
wheref ′(β) = f(β), f ′(β ∨ ϕ) = max(f(β) + 1, e) and f ′(ϕ) = e

(8)

According to (8), the evidence degree of a sentence β ∈ cutf (¬ϕ) does not
change. Unlike in (4), for each sentence β ∈ B , a disjunction β∨ϕ with evidence
degree max(f(β)+1, e) is added to the new EE base. These are the ingredients
for avoiding (undesired) implicit dependence. Note, intuitively if β ∨ ϕ is more
entrenched than ϕ , it will disqualify β to be implicitly dependent on ϕ .

The EE base revision defined by (8) can be straightforwardly implemented by
the following algorithm, where an EE base is represented as: {〈β1, f(β1)〉, . . . , 〈βn, f(βn)〉} .

Input : 〈B, f〉 = {〈β1, f(β1)〉, . . . , 〈βn, f(βn)〉}, ϕ, e
Output: 〈B′, f ′〉 such that 〈B′, f ′〉 = 〈B, f〉 ∗ 〈ϕ, e〉
begin

〈B′, f ′〉 = { } ;
r = Rankf (B,¬ϕ) ;
for i = 1 . . . n do

if f(βi) > r then
〈B′, f ′〉 = 〈B′, f ′〉 ∪ {〈βi, f(βi)〉} ;

end
〈B′, f ′〉 = 〈B′, f ′〉 ∪ {〈βi ∨ ϕ,max(f(βi) + 1, e)〉} ;

end
〈B′, f ′〉 = 〈B′, f ′〉 ∪ {〈ϕ, e〉}

end
Algorithm 1: Algorithm of the EE base revision

4 Formal Assessment

We present in this section a formal assessment of the EE base revision, including
its satisfiability of logical set-theoretical postulates, computational complexity,
degrees of syntax relevance and minimal change.
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4.1 Logical Set-Theoretical Properties

We first show that the EE base revision satisfies all AGM, DP postulates and
additionally (Ind). For this reason, we first present another revision operator,
which is equivalent to the EE base revision and satisfies all above the mentioned
postulates. The revision operator is a variant of Spohn’s proposal of revising
ordinal conditional functions [Spohn, 1988].

An ordinal conditional function (OCF) is a mapping k from W to N (nat-
ural numbers including 0 ). Given a world w ∈ W , k(w) is called the rank of
w . Clearly, OCFs are more general forms of faithful rankings. Intuitively, the
rank of a world represents its degree of plausibility. The lower its rank, the more
plausible is a world. The belief set Bel(k) is the set of sentences which hold in
all worlds of rank 0 :

Bel(k) = Th({w|k(w) = 0}) (9)

From now on, we use an ordinal conditional function and its belief set inter-
changeably; e.g., µ ∈ k means µ ∈ Bel(k) , and k1 ≡ k2 denotes Bel(k1) =
Bel(k2) .

Given an OCF k , we denote by max(k) its maximal rank, i.e., max(k) =
max{k(w) |w ∈ W} . An OCF be extended to a ranking of sentences as follows:

k(µ) =

{

max(k) + 1 If |= µ
min{k(w) |w |= ¬µ)} Otherwise

(10)

Put in words, the rank of a sentence is the lowest rank of a world in which the
sentence does not hold. Hence, the higher the rank of a sentence, the firmer the
belief in it.

As for the EE base revision, the new information consists of a sentence and
an evidence degree. An OCF k is revised according to new evidence µ with
evidence degree e ∈ N

+ as follows:

k∗ϕ,e(w) =







max(k(w) + 1, e) If w |= ¬ϕ
k(w) Else if k(w) > k(¬ϕ)
0 Otherwise

(11)

First of all, we show that varying evidence degrees of the new information
do not affect the logic contents of revised OCF.

Theorem 9. Given any OCF k and sentence ϕ , let k1 = K∗
ϕ,e1

and k2 =
K∗

ϕ,e2
where e1 6= e2 , we have

Bel(k1) = Bel(k2)

The following results show that the OCF revision defined by (11) satisfies
all AGM, DP postulates and (Ind), regardless the evidence degree of the new
sentence.

12



Theorem 10. For any e ∈ N
+ , the OCF revision operator defined by (11)

satisfies all AGM postulates, where K and K ∗ ϕ are, respectively, identified
with Bel(k) and Bel(k∗ϕ,e) .

Theorem 11. For arbitrary e1, e2 ∈ N
+ , the OCF revision operator defined by

(11) satisfies the following conditions:

(EC1) If α |= µ , then (k∗µ,e1
)∗α,e2

≡ k∗α,e2
.

(EC2) If α |= ¬µ , then (k∗µ,e1
)∗α,e2

≡ k∗α,e2
.

(EInd) If there exists e such that ¬µ 6∈ k∗¬β,e , then µ ∈ (k∗µ,e1
)∗¬β,e2

As shown by the following result, the belief degree of any sentence in the
revise OCF is uniquely determine by the contents of the original OCF, despite
its syntax form (A point we will return to in Section 4.3).

Lemma 1. Let k be an OCF and 〈ϕ, e〉 an arbitrary pair of new information,
then the following condition holds for any non-tautologous sentence β :

k∗ϕ,e(β) =























max(k(β) + 1, e) If |= ¬ϕ ∨ β
0 Else if k(¬ϕ) ≥ k(ϕ→ β)
k(β) Else if k(ϕ→ β) ≤ k(β)
k(β) + 1 Else if e ≤ k(β)
min(k(ϕ→ β), e) Otherwise

Lemma 1 gives a full characterization of the OCF revision. The following
result shows the EE base revision satisfies exactly the same conditions of Lemma
1. This essentially means the EE base revision is equivalent to the OCF revision.

Lemma 2. Given an EE base B and a new information pair 〈B,ϕ, e〉 , let
〈B1, f1〉 = 〈B, f〉∗〈ϕ, e〉 , then the following condition holds for any non-tautologous
sentence β :

Rankf1
(B1, β) =























max(t+ 1, e) If |= ¬ϕ ∨ β
0 Else If r ≥ t′

t Else if t′ ≤ t
t+ 1 Else if e ≤ t
min(t′, e) Otherwise

where r = Rankf (B,¬ϕ) , t = Rankf (B, β) and t′ = Rankf (B,ϕ→ β) .

Theorem 12. Let 〈B, f〉 be an EE base and k an OCF, s.t., Rank f (B, β) =
k(β) for any sentence β . Let 〈ϕ, e〉 be any new information pair. We have for
any sentence α the following condition holds:

Rankf ′(B′, α) = k∗ϕ,e(α)

where 〈B′, f ′〉= 〈B, f〉 ∗ 〈ϕ, e〉

Theorem 13. The EE base revision operator defined by (8) satisfies all AGM,
DP postulates and (Ind).

13



Since revision operators defined on the EE bases are more general than belief
revision operators defined on belief sets (bases), it is no surprise that we can
prove more properties for them. For the EE base revision defined by (8), we can
prove that the evidence degree e of the new sentence ϕ is the lower bound
of belief degree of ϕ in revised EE base.7 This is a very nice property from
pragmatic point of view. Image a scenario where information sources provide
new information with evidence degrees to its best knowledge. It is of course
proper to take the evidence degree as the lower bound of the information’s belief
degree

Theorem 14. For any non-tautologous sentence ϕ , the following condition
holds:

Rankf ′(B′, ϕ) = max(Rankf (B,ϕ) + 1, e)

where 〈B′, f ′〉 = 〈B, f〉 ∗ 〈ϕ, e〉 .

4.2 Computational Complexity

In this subsection, we will show that the EE base revision is almost optimal in
terms of computational complexity. 8 As in [Eiter and Gottlob, 1992], we consider
the problem of COUNTERFACTUAL (CF for short), which is to decide whether
B∗ϕ |= β for any belief base B and any sentences ϕ, β . It is not difficult to see,
when a revision operator satisfies (*4) and (*5) of AGM postulates, both SAT
and VALID can be polynomially many-to-one reduced to CF. Hence,in general
CF is both NP and coNP hard.

Theorem 15. [Nebel, 1992] For any revision operation, which satisfies (*4) and
(*5) ,the problem CF is NP-hard and coNP-hard.

A direct consequence of the above theorem is, in general CF is unlikely to be a
member of NP ∪ coNP, or otherwise it implies NP=coNP. Moreover, Nebel has
identified the complexity class of CF wrt. the cut base revision.

Theorem 16. [Nebel, 1994] For the cut base revision operator defined by (4),
the problem CF is ∆p

2 [O(log n)] -complete.

Since EE base revision is based on cut base revision without introducing
additional computational overload, it is not difficult to see, the CF wrt. the EE
base revision is in the same complexity class.

Theorem 17. For EE base revision operator defined by (8), the problem CF is
∆p

2 [O(log n)] -complete.

7 There are other possibilities, e.g., the EE base revision defined by [Jin and Thielscher,
2004] adds e to ϕ ’s old belief degree.

8 We assume the reader has basic knowledge on complexity theory, or otherwise can
be found in [Papadimitriou, 1994]
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Together with NP-hardness and coNP-hardness of CF, the above result suggests
that the complexity of the EE base revision is almost optimal and there is no
space for fundamental improvement.

Since the problem of computing the revised EE base is obviously not hard
than CF, it is in the same complexity class.

Theorem 18. The problem of computing the revised EE base as defined by (8)
is ∆p

2 [O(log n)] -complete.

4.3 Degree of Syntax Relevance

Technically, EE base revision violates Dalal’s principle of Irrelevance of Syntax
[Dalal, 1988b], in the sense the new EE base is not determined merely by the
logical contents of the original EE base. However, we will show its degree of
syntax relevance is so low, that it does not even deserve to be called syntax
relevant.

Two EE bases 〈B1, f1〉 and 〈B2, f2〉 are called epistemically equivalent iff
their induced EEs (as defined by (7)) are equivalent, i.e., for any sentences α, β :

α ≤Cn(B1)
β iff α ≤Cn(B2)

β

Two EE bases 〈B1, f1〉 and 〈B2, f2〉 are called equivalent iff the following con-
dition holds for any sentence β :

Rankf1
(B1, β) = Rankf2

(B2, β)

The following result shows in the EE base revision the logical contents of
revised EE base is determined by the induced EE of the original EE base.

Theorem 19. Let 〈B1, f1〉 , 〈B2, f2〉 be two epistemically equivalent EE bases,
then for any sentence ϕ with evidence degrees e1, e2 :

Cn(B′
1) = Cn(B′

2)

where 〈B′
1, f

′
1〉 = 〈B1, f1〉 ∗ 〈ϕ, e1〉 and 〈B′

2, f
′
2〉 = 〈B2, f2〉 ∗ 〈ϕ, e2〉

Finally, it is not difficult to see that in the EE base revision equivalent original
EE bases (despite their syntax forms) lead to equivalent new EE bases.

Theorem 20. Let 〈B1, f1〉 , 〈B2, f2〉 be two equivalent EE bases, then for any
sentence ϕ with evidence degree e : 〈B ′

1, f
′
1〉 = 〈B1, f1〉 ∗ 〈ϕ, e〉 is equivalent to

〈B′
2, f

′
2〉 = 〈B2, f2〉 ∗ 〈ϕ, e〉

4.4 Degree of Minimal Change

Minimal change is both underlying principle of AGM theory (wrt. logical con-
tents) and iterated revision (wrt. preference information). The EE base revision’s
satisfiability of AGM postulates is an evidence of its minimal change in logical
contents. Obviously, the change of preference information in EE base revision is
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not absolutely minimal. This is not at all a drawback, since as shown in [Dar-
wiche and Pearl, 1997; Jin and Thielscher, 2005], the absolute minimal change
of preference information implies radical behaviors and is not proper in general.

In the sequel, we will show that the change of preference information in
the EE base revision is all necessary in order to satisfy AGM, DP postulates
and (Ind). Since the EE base revision is shown to be equivalent to the OCF
revision, we will base our analysis on a special case of the OCF revision, where
the evidence degree e of the new sentence is fixed to be 1 . This OCF revision
can be visualized by the Fig 4.4, where the dots on the left (right) side of the
vertical dotted line represent worlds in which ϕ is true (false); the red arrowed
lines denote the way how ranks of worlds change.

0

1

Rankf (B,¬ϕ)

n

ϕ ¬ϕ

Fig. 1. Visualization of an OCF revised by 〈ϕ, 1〉

According to Theorem 2, if a revision operator satisfies AGM postulates, the
new belief set (base) should take the most plausible worlds satisfying ϕ as it
most plausible worlds. Hence, the downward movement of worlds on the left side,
and upward movement of worlds with rank 0 on the right side is compulsory.
According to Theorem 6, if a revision operator satisfies DP postulates, the worlds
the left (right) side should have somehow uniformed way of change their ranks,
such that their relative positions do not change. As a direct consequence, the
upward movement of worlds with rank 0 on the right side should squeeze the
rest worlds on the right side upward (image domino effect). Altogether, the OCF
revision does not do any change which is unnecessary. If fact, as a side effect of
the way OCF revision changes ranks of worlds on the right side, the Condition
(IndR) of Theorem 7 is automatically satisfied.

The general OCF (EE base) revision allows the evidence degree of the new
sentence to vary, this may introduce more changes to the preference information,
but it also has its merit in practice as discussed above. In this sense, we agree on
on those authors [Hansson, 2003], who argued that we should not take minimal
change as the only criterion.
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5 Related Work and Conclusions

The EE base revision proposed is technically syntax based, as argued it is how-
ever from pragmatic point of view more fine-grained. There are revisions, such
as model-based revision [Katsuno and Mendelzon, 1991; Dalal, 1988a], do no
need extra-logical preference information. Since such revision operators are al-
ways uniquely determined by logical contents of the belief set (also called syntax
irrelevant [Dalal, 1988b]), they are quite inflexible [Nebel, 1998], in the sense the
class of generated revision operations is quite limited. On the other hand, almost
all syntax irrelevant revision operators violate both DP postulates and (Ind).

Syntax irrelevant revision operators are in principle iterated operators. As
already shown in [Eiter and Gottlob, 1992; Nebel, 1998], CF wrt. most of them
are Πp

2 -complete, except Dalal’s operator and full meet revision. Moreover, Lib-
eratore [1997] has shown that CF wrt. most well-know syntax based iterated
revisions are ∆p

2 -complete. Due to the limited space, we only show in Table 5
a comparison between revision operators, which satisfy all AGM postulates 9.

Revision operator DP Ind Complexity of CF

EE base Yes Yes ∆p

2 [log n]-complete

Natural Yes No ∆p

2-complete

Prioritized full meet No Yes ∆p

2-complete

Adjustment No No ∆p

2-complete

Conditionalization No No ∆p

2-complete

Dalal No No ∆p

2 [log n]-complete

Full meet No No coNP(3)-complete

Table 1. Comparison of well-known iterated revision operators

The first three columns show that the EE base revision and prioritized full
meet revision are the only operators which satisfy all DP postulates and (Ind).
It it worth to mention, that the prioritized full meet revision [Liberatore, 1997]

is essentially same as the lexicographic revision [Abhaya, 1994] with ”naked
evidence”and the basic memory operator [Konieczny and Pérez, 2000]. Hence its
satisfies the following postulate of Recalcitrance which is criticized as too radical
in [Jin and Thielscher, 2005]:

(Rec) If 6|= β → ¬µ , then (Ψ ∗ µ) ∗ β |= µ .

The last column shows the complexity results, most of which can be found in
[Eiter and Gottlob, 1992; Nebel, 1998; Liberatore, 1997]. As shown, although
the EE base revision’s computational complexity is at same level as other syntax

9 We only consider special cases of Adjustment and Conditionalization where the new
evidence degree e > 0 .
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based revisions, it requires much less calls (specially when size of EE base is large)
of NP oracles. Since in practice, NP oracles cost exponentially time (provided
P 6= NP), less invocations of NP oracles is already a big advantage. For general
propositional logic, Dalal’s operator is in the same complexity class as the EE
base revision. A drawback of Dalal’s operator is even the underlying language is
constrained to Horn sentences, it remains in the same complexity class, while CF
wrt. the EE base revision becomes tractable. The only revision operator whose
complexity class is lower than the EE base revision is the full meet revision,
which is too radical, in the sense a severe revision with full meet revision only
takes the new information as the revised belief base.

To summarize, we have proposed a general iterated base revision operator,
which satisfies all AGM, DP postulates and (Ind), in addition to other nice prop-
erties from the practical point of view. The proposed iterated is almost syntax
irrelevant and does only changes of preference information, which is necessary.
A comparison to others shows it is also well-performed in computation.
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Appendix: proofs

Theorem 9. Given any OCF k and sentence ϕ , let k1 = K∗
ϕ,e1

and k2 =
K∗

ϕ,e2
where e1 6= e2 , we have

Bel(k1) = Bel(k2)

Proof. According to (11), the set of most plausible worlds (with rank 0 ) in
the revised OCF is not influenced by the value of evidence degree of the new
information. Furthermore, Bel(k) of an OCF k as defined by (9) only depends
on the set of most plausible world.

Theorem 10. For any e ∈ N
+ , the OCF revision operator defined by (11)

satisfies all AGM postulates, where K and K ∗ ϕ are, respectively, identified
with Bel(k) and Bel(k∗ϕ,e) .

Proof. Let w1 ≤k w2 iff k(w1) ≤ k(w2) . Clearly, ≤k is a faithful ranking wrt.
Bel(k) . According to (11), the set of most plausible worlds (with rank 0 ) in the
revised OCF is exactly min([ϕ],≤k) . It follows from Theorem 2, that EE base
revision satisfies all AGM postulates.

Theorem 11. For arbitrary e1, e2 ∈ N
+ , the OCF revision operator defined by

(11) satisfies the following conditions:

(EC1) If α |= µ , then (k∗µ,e1
)∗α,e2

≡ k∗α,e2
.

(EC2) If α |= ¬µ , then (k∗µ,e1
)∗α,e2

≡ k∗α,e2
.

(EInd) If there exists e such that ¬µ 6∈ k∗¬β,e , then µ ∈ (k∗µ,e1
)∗¬β,e2

Proof. It follows directly from Theorem 6, Theorem 7, that Conditions (EC1),
(EC2) and (EInd) hold for OCF revision with fixed evidence degree for the new
information. From Theorem 9, then it follows that those conditions also holds
for varying evidence degrees.

Lemma 1. Let k be an OCF and 〈ϕ, e〉 an arbitrary pair of new information,
then the following condition holds for any non-tautologous sentence β :

k∗ϕ,e(β) =























max(k(β) + 1, e) If |= ¬ϕ ∨ β
0 Else if k(¬ϕ) ≥ k(ϕ→ β)
k(β) Else if k(ϕ→ β) ≤ k(β)
k(β) + 1 Else if e ≤ k(β)
min(k(ϕ→ β), e) Otherwise

Proof. Assume |= ¬ϕ∨β . Since β is non-tautologous, if follows that there exist
w |= ¬β , s.t., k(w) = k(β) . Follows from |= ¬ϕ ∨ β , for any w′ if w′ |= ¬β
then w′ |= ¬ϕ . According to (11) , k∗ϕ,e(w) = max(k(w) + 1, e) . Let w′ be an
arbitrary world, s.t., w′ |= ¬β . It follows from k(w) = k(β) , k(w′) ≥ k(w) .
Hence, we have k∗ϕ,e(w

′) ≥ k∗ϕ,e(w) . It follows from k∗ϕ,e(w) = max(k(w)+1, e)
, we have k∗ϕ,e(β) = max(k(β) + 1, e) . In the rest of the proof, we only consider
the case 6|= ¬ϕ and 6|= β .

19



Assume k(¬ϕ) ≥ k(ϕ → β) . It follows from (EE2), k(¬ϕ) = k(ϕ → β) .
There exists w |= ϕ ∧ ¬β , s.t., k(w) = k(¬ϕ) = k(ϕ → β) . According to (11),
k∗ϕ,e(w) = 0 . Hence, we have k∗ϕ,e(β) = 0 .

Assume k(¬ϕ) < k(ϕ → β) and k(ϕ → β) ≤ k(β) . It follows from (EE2),
k(ϕ → β) = k(β) . There exists w |= ϕ ∧ ¬β , s.t., k(w) = k(ϕ → β) = k(β) .
According to (11), k∗ϕ,e(w) = k(w) , since k(w) > k(¬ϕ) . To prove k∗ϕ,e(β) =
k(w) , we need to show, if w′ |= ¬β then k∗ϕ,e(w

′) ≥ k(w) for any w′ . Let w′ be
an arbitrary world, s.t., w′ |= ¬β . It follows from k(w) = k(β) , k(w′) ≥ k(w) .
We consider two cases: 1) If w′ |= ¬ϕ , then according to (11) k∗ϕ,e(w

′) =
max(k(w′) + 1, e) ≥ k(w) . 2) If w′ |= ϕ , then according to (11) k∗ϕ,e(w

′) =
k(w′) ≥ k(w) .

Assume k(¬ϕ) < k(ϕ → β) , k(ϕ → β) > k(β) and e ≤ k(β) . There exists
w |= ¬β , s.t., k(w) = k(β) . It follows from k(ϕ → β) > k(β) , w |= ¬ϕ .
According to (11), k∗ϕ,e(w) = max(k(w) + 1, e) . Since e ≤ k(w) , we have
k∗ϕ,e(w) = k(w)+1 . To prove k∗ϕ,e(β) = k(w)+1 , we need to show, if w′ |= ¬β
then k∗ϕ,e(w

′) ≥ k(w) + 1 for any w′ . Let w′ be an arbitrary world, s.t., w′ |=
¬β . It follows from k(w) = k(β) , k(w′) ≥ k(w) . We consider again two cases:
1) Assume k(w′) ≥ k(ϕ → β) . Since k(ϕ → β) > k(¬ϕ) , according to (11)
k∗ϕ,e(w

′) is either max(k(w′)+1, e) or k(w′) . Clearly, k∗ϕ,e(w
′) ≥ k(w)+1 , since

k(w′) ≥ k(ϕ → β) > k(w) . 2) If k(w′) < k(ϕ → β) , then w′ |= ϕ → β . Since
w′ |= ¬β , we have w′ |= ¬ϕ . According to (11) , k∗ϕ,e(w

′) = max(k(w′)+1, e) .
Since k(w′) ≥ k(w) , k∗ϕ,e(w

′) ≥ k(w) + 1 .

Assume k(¬ϕ) < k(ϕ→ β) , k(ϕ→ β) > k(β) and e > k(β) . we distinguish
two cases: 1) Assume e ≤ k(ϕ→ β) . There exists w |= ¬β , s.t., k(w) = k(β) .
It easy to see w |= ¬ϕ , since k(ϕ → β) > k(β) . According to (11), k∗ϕ,e(w) =
max(k(w) + 1, e) . It follows from e > k(β) , k∗ϕ,e(w) = e . We will show, that
if w′ |= ¬β then k∗ϕ,e(w

′) ≥ e for any w′ . Let w′ be an arbitrary world, s.t.,
w′ |= ¬β . It follows from k(w) = k(β) , k(w′) ≥ k(w) . There are two sub-cases:
a) If k(w′) < k(ϕ→ β) , then w′ |= ϕ→ β . It follows from w′ |= ¬β , w′ |= ¬ϕ .
According to (11) k∗ϕ,e(w

′) = max(k(w′) + 1, e) ≥ e . b) If k(w′) ≥ k(ϕ → β) ,
then k∗ϕ,e(w

′) is either k(w′) or max(k(w′)+1, e) . Since k(w′) ≥ k(ϕ→ β) ≥
e , we have k∗ϕ,e(w

′) ≥ e . 2) Assume e > k(ϕ→ β) . There exists w |= ϕ ∧ ¬β ,
s.t., k(w) = k(ϕ→ β) . According to (11) k∗ϕ,e(w) = k(w) , since k(w) > k(¬ϕ) .
We will show, that if w′ |= ¬β then k∗ϕ,e(w

′) ≥ k(ϕ→ β) for any w′ . Let w′ be
an arbitrary world, s.t., w′ |= ¬β . It follows from k(w) = k(β) , k(w′) ≥ k(w) .
There are two sub-cases: a) If k(w′) ≥ k(ϕ→ β) , then k∗ϕ,e(w

′) is either k(w′)
or max(k(w′) + 1, e) , since k(ϕ → β) > k(¬ϕ) . Hence k∗ϕ,e(w

′) ≥ k(ϕ → β) .
b) If k(w′) < k(ϕ → β) , then w′ |= ϕ → β . It follows from w′ |= ¬β , that
w′ |= ¬ϕ . According to (11) k∗ϕ,e(w

′) = max(k(w′) + 1, e) ≥ e > k(ϕ→ β) .

Lemma 2. Given an EE base B and a new information pair 〈B,ϕ, e〉 , let
〈B1, f1〉 = 〈B, f〉∗〈ϕ, e〉 , then the following condition holds for any non-tautologous
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sentence β :

Rankf1
(B1, β) =























max(t+ 1, e) If |= ¬ϕ ∨ β
0 Else If r ≥ t′

t Else if t′ ≤ t
t+ 1 Else if e ≤ t
min(t′, e) Otherwise

where r = Rankf (B,¬ϕ) , t = Rankf (B, β) and t′ = Rankf (B,ϕ→ β) .

Proof. Assume |= ¬ϕ ∨ β . Since β is non-tautologous, it follows that |= ¬ϕ .
From |= ¬ϕ , it follows that cutf (¬ϕ) = ∅ . We consider two cases: 1) Assume
e > t + 1 . According to (8), ϕ ∈ Be

1 . It follows from that |= ¬ϕ , we have
Be

1 |= β . It is easy too see, according to (8), Be+1
1 = {ϕ ∨ ψ |ψ ∈ Be} which

is logically equivalent to Be , since |= ¬ϕ . It follows from e > t+ 1 , Be 6|= β .
Thus, we have Rankf1

(B1, β) = e . 2) Assume e ≤ t + 1 . According to (8),
ϕ ∨ β ∈ Bt+1

1 . It follows from that |= ¬ϕ , we have Bt+1
1 |= β . According to

(8), Bt+2
1 = {ϕ ∨ ψ |ψ ∈ Bt+1} , which is logically equivalent to Bt+1 , since

|= ¬ϕ . Since Bt+1 6|= β , it follows that Rank f1
(B1, β) = t+ 1 .

For the rest of the proof, we assume 6|= ¬ϕ and 6|= β .
Assume r ≥ t′ . According to (8), B0

1 = Br+1 ∪ {ϕ} ∪ {ϕ ∨ ψ |ψ ∈ B} . It
follows from t′ = Rankf (B,ϕ → β) , that Br+1 6|= ϕ → β . According to the
Deduction Theorem, we have B0

1 6|= β . Hence Rankf1
(B1, β) = 0 .

Assume r < t′ and t′ ≤ t . It follows from (EE2), we have t = t′ . According
to (8), Bt ⊆ Bt

1 , since r < t′ . From Bt |= β , it follows that Bt
1 |= β . It is easy

to see, Bt+1
1 ⊆ Bt+1 ∪ {ϕ} ∪ {ϕ ∨ ψ |ψ ∈ B} . It follows from Bt+1 6|= ϕ → β ,

we have Bt+1
1 6|= β . Hence Rankf1

(B1, β) = t .
Assume r < t′ and t′ > t and e ≤ t . We consider two cases: 1) Assume

t ≥ r . According to (8), Bt+1
1 = Bt+1 ∪ {ϕ ∨ ψ |ψ ∈ Bt} , since e ≤ t . It

follows from Bt |= β , we have Bt+1 |=
∧

(Bt\Bt+1) → β . It is easy to see that
{ϕ ∨ ψ |ψ ∈ Bt} |=

∧

(Bt\Bt+1) ∨ ϕ . Since t′ > t , we have Bt+1 |= ϕ → β .
Hence, we have Bt+1

1 |= β . According to (8), Bt+2
1 = Bt+2∪{ϕ∨ψ |ψ ∈ Bt+1} .

Assume Bt+2 ∪ {ϕ ∨ ψ |ψ ∈ Bt+1} |= β . It is easy to see that Bt+2 ∪ {ϕ ∨
ψ |ψ ∈ Bt+1} |= β is logically equivalent to Bt+2 ∪ {ϕ ∨

∧

(Bt+1\Bt+2)} .
Thus Bt+2 |= (ϕ ∨

∧

(Bt+1\Bt+2)) → β . Since Bt+2 6|= β , we have Bt+2 |=
¬ϕ ∧ ¬

∧

(Bt+1\Bt+2)} , which contradicts with t > r . 2) Assume t < r .
According to (8) Bt+1

1 = Br+1 ∪ {ϕ ∨ ψ |ψ ∈ Bt} , since e ≤ t . Since Bt |= β ,
we have {ϕ∨ψ |ψ ∈ Bt} |= ϕ∨β . It follows from r < t′ , that Br+1 |= ϕ→ β .
Thus, we obtain Bt+1

1 |= β . Bt+2
1 = Br+2 ∪ {ϕ ∨ ψ |ψ ∈ Bt+1} .It is easy to

see that Bt+1 |= {ϕ ∨ ψ |ψ ∈ Bt+1} . Since t < r , we have Br+2
1 ⊆ Bt+1 . It

follows from Bt+1 6|= β , we have Bt+2
1 6|= β .

Assume r < t′ and t′ > t and e > t . We consider two cases: 1) Assume
t′ ≥ e . According to (8), Bt′ ∪ {ϕ} ⊆ Be

1 , since r < t′ . It follows from that
Bt′ |= ϕ→ β , we have Be

1 |= β . According to (8), Be+1
1 ⊆ Be+1 ∪ {ϕ ∨ ψ |ψ ∈

Be} . It follows from e > t , that Be 6|= β . Hence, we have Be+1
1 6|= β . 2) Assume

t′ < e . According to (8), Bt′ ∪ {ϕ} ⊆ Bt′

1 , since r < t′ . It follows from that

Bt′ |= ϕ→ β , we have Bt′

1 |= β . According to (8), Bt′+1
1 ⊆ Bt′+1∪{ϕ∨ψ |ψ ∈
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Be} . Since e > t′ , we have Bt′+1 ∪ {ϕ ∨ ψ |ψ ∈ Be} is logically equivalent to

Bt′+1 . It follows from Bt′+1 6|= ϕ→ β , Bt′+1 6|= β Thus, we obtain Bt′+1
1 6|= β .

Theorem 12. Let 〈B, f〉 be a EE base and k a OCF, s.t., Rank f (B, β) = k(β)
for any sentence β . Let 〈ϕ, e〉 be any new information pair. We have for any
sentence α the following condition holds:

Rankf ′(B′, α) = k∗ϕ,e(α)

where 〈B′, f ′〉= 〈B, f〉 ∗ 〈ϕ, e〉

Proof. As a direct consequence of Lemma 1 and 2, the condition holds for non-
tautologous sentences. Since the ranks of tautologous sentences is the maximal
rank of non-tautologous sentences plus one, the condition also holds for tautol-
ogous sentences.

Theorem 13. The EE base revision operator defined by (8) satisfies all AGM,
DP postulates and (Ind).

Proof. If follows directly from Lemma 1, Lemma 2, Theorem 11 and Theorem
10.

Theorem 14. For any non-tautologous sentence ϕ , the following condition
holds:

Rankf ′(B′, ϕ) = max(Rankf (B,ϕ) + 1, e)

where 〈B′, f ′〉 = 〈B, f〉 ∗ 〈ϕ, e〉 .

Proof. If follows directly from Lemma Lemma 2.

Theorem 17. For EE base revision operator defined by (8), the problem CF is
∆p

2 [O(log n)] -complete.

Proof. To prove that CF is in ∆p
2 [O(log n)] , it is enough to see that the main

computational affect of Algorithm 1 is to compute Rank(B,¬ϕ) . Clearly, com-
puting Rank(B,¬ϕ) requires in worst-case to call log n (based on the ideas
of the Binary Search) times a NP oracle (which solves the implication (IMPL)
problem). After computed the revised EE base B ′ , we just can call one more
time IMPL oracle to decide whether B′ |= β .

What remains to show is CF’s ∆p
2 [O(log n)] -hardness. We prove this by

showing a polynomially many-to-one reduction from CF wrt. cut base revision to
CF wrt. EE base revision. Given any prioritized base 〈B,≤B〉 , we can construct
a EE base 〈B, f〉 as follows. The all sentences in the lowest class get as evidence
degrees 1 , the sentences in the next higher class get evidence degree 2 , and so
on unit all sentences in B gets an evidence degree. Obviously, EEs induced by
〈B,≤N 〉 and 〈B, f〉 are equivalent. As a consequence of Theorem 19, for any
sentences ϕ,ψ and we have

B ∗≤B
ϕ |= ψ iff B1 |= ψ

where 〈B1, f1〉 = 〈B, f〉 ∗ 〈ϕ, 1〉
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Theorem 18. The problem of computing the revised EE base as defined by (8)
is ∆p

2 [O(log n)] -complete.

Proof. Base on same ideas of the proof of Theorem 17, and observation that CF
can be solved by first computing the revised EE base, then calling a NP oracle.

Theorem 19.Let 〈B1, f1〉 , 〈B2, f2〉 be two epistemically equivalent EE bases,
then for any sentence ϕ with evidence degrees e1, e2 :

Cn(B′
1) = Cn(B′

2)

where 〈B′
1, f

′
1〉 = 〈B1, f1〉 ∗ 〈ϕ, e1〉 and 〈B′

2, f
′
2〉 = 〈B2, f2〉 ∗ 〈ϕ, e2〉

Proof. According to Lemma 2, when a EE base 〈B, f〉 revised with ϕ with some
arbitrary evidence degree e , we have a sentence β ’s rank is e in the revised
EE base (which means it is not in the revised EE base) iff ϕ→ β ≤Cn(B) ¬ϕ .

Theorem 20. Let 〈B1, f1〉 , 〈B2, f2〉 be two equivalent EE bases, then for any
sentence ϕ with evidence degree e : 〈B ′

1, f
′
1〉 = 〈B1, f1〉 ∗ 〈ϕ, e〉 is equivalent to

〈B′
2, f

′
2〉 = 〈B2, f2〉 ∗ 〈ϕ, e〉

Proof. It follows from the Lemma 2, all non-tautologous sentences will have the
same rank in both revised EE bases. Since ranks of tautologous sentences is the
maximal rank of the non-tautologous sentences plus one, they are also equal.
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