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Abstract. In this note we discuss strategies that would enhance modern model-
ing and simulation software (MSS) with reliable routines using validated data
types, controlled rounding, algorithmic differentiation and interval equation or
initial value problem solver. Several target systems are highlighted. In stochas-
tic traffic modeling, the computation of workload distributions plays a promi-
nent role since they influence the quality of service parameters. INoWaTIV is a
workload analysis tool that uses two different techniques: the polynomial fac-
torization approach and the Wiener-Hopf factorization to determine the work-
load distributions of GI/GI/1 and SMP/GI/1 service systems accurately. Two
extensions of a multibody modeling and simulation software were developed
to model kinematic and dynamic properties of multibody systems in a vali-
dated way. Furthermore, an interface was created that allows the computation
of convex hulls and reliable lower bounds for the distances between subpav-
ing-encoded objects constructed with SIVIA (Set Inverter Via Interval Analy-
sis).

Keywords. Reliable algorithms, stochastic traffic modeling, multibody model-
ing tools, geometric modeling

1  Modeling software: three case studies

The techniques of validated computing have proved their merits in many scientific
and engineering applications [13]. They are based on solid theoretical studies in
mathematics and computer science [2].  In this paper we discuss different strategies
to integrate reliable and validating algorithms into stochastic, mechanical or geomet-
ric modeling and simulation software.

1.1 Stochastic traffic modeling

Semi-Markov processes (SMP) provide a useful modeling approach for evaluating
the performance of computer and telecommunication systems and can be effectively
applied in many other fields as well. A SMP combines a Markov chain for transitions
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in a finite state space and a state-specific distribution that characterizes possible in-
crease and decrease of the workload in the system between certain points in time.

The computation of workload distributions of service systems in telecommunica-
tion networks is essential for determining the quality of service parameters for vari-
ous types of data transfer traffic. Depending on the model, there are different ways to
determine workload distributions. We investigate polynomial and Wiener-Hopf fac-
torization as efficient approaches for classical general independent GI/GI/1 and dis-
crete time semi-Markovian server systems. We show that subproblems can be non-
trivially solved by a computer program. Both methods are integrated into a recent
tool INoWaTIV (Interval-based numerical software with result verification of the
workload distribution for Internet traffic). Our approach is first to obtain a numerical
solution of the steady state workload distribution using an extension of the algorithm
of Grassmann and Jain [12]. After a verification step, the guaranteed workload distri-
bution can be computed. Both steps are carried out by using INoWaTIV.

1.2 Modeling of multibody systems

One of the most challenging application fields for reliable computing is the modeling
of a robot in a complex environment. Numerical rounding, uncertainty in sensor
measurements, and discretization contribute to significant error accumulation during
non-validated computations. This happens, for example, while the collision positions
of free arms and joint angles or the payload of the end-effector are computed. Similar
problems exist in the context of robot localization and local path planning as well as
in parameter estimation and identification of a non-linear controller for multibody
systems with many degrees of freedom. For this reason we sought to introduce
strategies that would enhance modern multibody modeling and simulation software
(MMSS) with accurate routines that use validated data types, controlled rounding and
algorithmic differentiation.

Particular attention was paid to the object-oriented MMSS MOBILE [14]. This
tool was adapted to validation, which resulted in two reliable extensions: NiceMO-
BILE (Numerics with Intervals and Error Control in MOBILE) [2], [20] and Smart-
MOBILE (Simulation and Modeling of dynAmics in MOBILE: Reliable and Tem-
plate-based) [3], [4]. The former is intended to support validated kinematics and can
choose from two libraries for interval computations [22]. The latter incorporates li-
braries for algorithmic differentiation as well as the adapted interval initial value
problem (IVP) solver VNODE [18] and can therefore be used for validated modeling
of dynamic properties of multibody systems. The template-based structure of Smart-
MOBILE facilitates integration of arbitrary reliable data types instead of intervals,
should the necessity to do so arise.

1.3 Geometric modeling

Along with the above-mentioned research, studies of reliable algorithms for comput-
ing distances between two objects were carried out. To cope with the lack of accu-
racy for elementary functions and rounding error accumulation inflicted by standard
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IEEE 754 arithmetic, we first represented initial data for these objects as machine
numbers. Furthermore, standard arithmetic operations and precise scalar product
were preferred, and nested iterations avoided. Under these general design rules, a set
of basic routines was developed. This set accurately computes the distance between
points and edges or rectangles, as well as between (non)convex polygons. Verified
enclosures of distances were obtained by using interval versions of the usual algo-
rithms [6], [10]. Based on these routines, accurate algorithms that determine the dis-
tance between a sensor point and a polyhedron, two polyhedra and two axis-aligned
or unaligned octrees [9] were developed. One of the results of this research was the
C++ package PolyLib [19], which implements an interface between several of the
above mentioned routines and MOBILE. The newly developed modeling tool ZMIN
constructs and visualizes hierarchical tree structures and includes an interface to the
SIVIA system [13]. Moreover, ZMIN interfaces with PolyLib and SIVIA, allowing
us to accurately compute convex hulls and guaranteed lower bounds for distances of
objects represented by subpavings.

2  Integration of accurate algorithms into MSS

Before discussing the integration of accurate algorithms into MSS, it is necessary to
clarify general strategies for validating the results of modeling tools already in use.
Fig. 1 illustrates the stages (represented by arrows) of the enhancement approach. An
arrow's length represents the degree to which the validated software and MSS inter-
twine.

Fig. 1. Integration schemes
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The first integration stage requires almost no merging (from either side). MSS and
accurate algorithms exchange results, the former providing the required models and
the latter the characteristics sought. In this manner, accurate kinematic properties can
be obtained. This mechanism is used by PolyLib, for example, to compute collision-
free trajectories for a moving end-effector or distances between polyhedral objects.

The second stage consists in introducing validated data types and algorithms into
the MSS. This process requires substantial modifications in the target modeling soft-
ware, causing a higher merging degree. Verified kinematic properties of the system
being modeled can be now obtained, as in the case of NiceMOBILE, which uses an
interval library and automatic error control [16] to modify MOBILE's code in order
to provide guaranteed results.

The third stage presupposes that the second has been carried out.  Now MSS has
to be substantially extended or completely redesigned to feature validation. For ex-
ample, it might become necessary to use enhanced modeling elements or templates
that allow us to change basic data types and algorithms according to the task. In this
case, not only MSS but also the validated algorithms have to be adjusted. After the
third stage, both constituents form an almost inseparable whole, allowing us to obtain
verified dynamic properties of systems. Examples of such programs are SmartMO-
BILE, which uses modified VNODE to compute solutions to the equations of motion
resulting from an enhanced model, and INoWaTIV, which employs modified equa-
tion solver and interval matrix algorithms.

In the following sections, we present three case studies of modeling and simula-
tion software for stochastic, mechanical and geometric systems.

3  Verified computation of the workload distribution

In [11] we have presented a short introduction to traffic modeling in telecommunica-
tion networks. The classical approach in queueing and service systems is to consider
random variables for the interarrival times of events corresponding to the arrivals of
packets, flows, connections or other units relevant for network elements. Two basic
characteristics of the stochastic behavior of traffic are the distribution function of
considered random variables and the autocorrelation of the process. To model the
distribution function of arriving data as well as the autocorrelation function, semi-
Markov processes can be used. These processes extend the well-known Markov
models with finite state space. Furthermore, they provide memoryless states with ex-
ponential or geometrical distribution, such that each state is associated with an arbi-
trary state specific distribution. For a process SMP(m) with m states in the underlying
chain, the autocorrelation has the form of a superposition of m − 1 geometrical terms
including complex coefficients. SMP(m) models have been successfully used within
a fitting procedure for a given video trace to handle video traffic multiplexing as de-
scribed in [21]. Since the results have influence on service level agreements, the
analysis of such models and the modeling itself should be done as exactly as possi-
ble. Consequently, interval arithmetic is applied to guarantee the results of the analy-
sis and to validate the method. Hence, we are able to obtain reliable information
about data delay and loss probabilities.
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3.1 Polynomial factorization approach

In the following, we consider a GI/GI/1 service system in the Kendall notation with
general independent (GI) arrival and service processes and only one service station.
An, Sn denote the interarrival and service times of the n–th arrival,

Wn the waiting time of the n–th request. Then the fact that
Pr(Wn = i) = Σk Pr(Wn-1= k) Pr(Un-1 = i − k), i > 0,

leads to w(i) := limn→∞ Pr(Wn = i), the stationary distribution. The workload of a
GI/GI/1 server denotes the time required to process all requests present.

For the stationary distribution w we obtain the characteristic system equation [21]
• w(k) = Σ−h≤i≤g w(k + i)u(−i) for k ≥ h
• w(k) = Σ−k≤i≤g w(k + i)u(−i) for h − 1 ≥ k ≥ 1
• w(0) = Σ0≤i≤g w(i) Σi≤j≤g u(−j).

Using the representation w(k) = αβk we can derive the characteristic function as
p(z) = S(z−1)·A(z) −1 = U(z−1)−1

with the generating functions A(z) and S(z) of the interarrival and service time
• U(β−1) = Σ−g≤i≤h u(i)β−i= 1, E(U) = Σ−g≤i≤h i u(i) = −Σ−h≤i≤g i u(−i) < 0,
• w(k) = Σ1≤j≤h αjβj

k

for simple zeros β1,. . . ,βh of zhp(z) inside the unit circle.
Since the degree of the characteristic system equation is g + h, we need the roots

exclusively inside the unit circle. Now we use the following algorithm:

• Input: characteristic polynomial
• Determine the zeros βj, j = 1,..., h, inside the unit circle. All roots except

zero have to be simple
• Solve the Vandermonde system for αj using the βj

• Compute enclosures for w(0) and w(k), k > 0
• Output: verified workload w.

This algorithm has the following problems: For huge values g it is difficult to lo-
calize h zeros in the unit circle and to find tight enclosures for the zeros of the large
system. Only tight enclosures lead to a suitable solution of the Vandermonde system
for the coefficients αj and to tight enclosures for the workload w(k).  So  it  seems
promising to apply some theory to guarantee the existence of h zeros inside the unit
circle and to compute initial values that are close to these zeros before starting a nu-
merical solver.

In queueing theory, Rouché’s theorem is very important to prove ergodicity condi-
tions or the existence of solutions for polynomial equations building the generating
functions. Generally, the theorem is used to show the existence of a certain number
of zeros in the analyticity domain of a complex function. However, in certain cases it
is very difficult to verify the assumptions of the theorem. Thus, it is of general inter-
est to provide an alternative approach to obtaining the zero distributions of the sys-
tem by using numerical methods or properties of the underlying stochastic process
(i.e., the Markov chain).

( ),0,max,,0,0 11 −− +=−=≤≤≤≤ nnnnnnnn UWWASUhSgA
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In the GI/GI/1 case, it can be shown with the extended Rouché theorem [15] that
exactly h roots are inside the unit disc.

Klimenok’s Theorem. Let the functions f (z) and ϕ(z) be analytic in the open disk
|z| < 1 and continuous on the boundary |z| = 1, and the following relations hold:

 |f (z)| |z|=1,z≠1 > |ϕ(z)| |z|=1|,z|≠1, f (1) = −ϕ(1) ≠ 0.
Also, let the functions f (z) and ϕ(z) have derivatives at the point z = 1 and assume

that the following inequality holds: ( f’(1) + ϕ’(1) )/ f (1) < 0. Then the numbers Nf
and Nf of zeros of the functions f (z) + ϕ(z) and f (z) in the domain |z| < 1 are related
as follows: Nf+ϕ = Nf .

In the present case we set (z) := zh Σ−h≤i≤g u(−i)zi,  f (z)=− zh and  find  ( f’(1) +
ϕ’(1)) / f (1) = (h – Σ−h≤i≤g u(−i) (h+i)) = − Σ−h≤i≤g u(−i)i < 0.

If we assume a uniformly distributed U, it is possible to derive the asymptotic be-
havior of the zeros β, | β | < 1, g → ∞. Assume u(−i) = 1/c, c := g+h+1. Then

    cU(β−1) = βg + … + β−h = c → βg+1 − β−h  = c(β − 1) ⇒
β−h ≈ c(1 − β), β = r exp(iθ). Then it follows that

    crh = 1/(1+r2−2r cos θ)1/2, r = c–1/h(1+O(1/h)),
    arg β = 2πk/h + 1/h arctan (r sin θ /(1 − r cos θ)).

Furthermore,
       |( βh+g+1 − 1)/( β − 1)| ≥ (rg+h+1 – 1) /(r + 1)  := crh ⇔ 1 = rh(c + cr + rg+1) ⇔

   r = ( c + cr + rg+1)−1/h ⇒ r > (c + c1/h + c−(g+1)/h )−1/h, since r < c−1/h,
which provides a lower bound for r. The asymptotic behavior can be used to generate
suitable initial values automatically as an input for standard root finder tools.

Theorem. Assume that a closed expression for zhS(z−1)A(z) can be obtained such
that the asymptotic relation zhS(z−1)A(z) ≈ T(z,h) for g → ∞ and  |z|  <  1  holds  true.
Then the roots w inside the unit circle fulfill wh/T(w,h) ≈ 1.

Example 1. In the equidistributed case we have

Note that the degree of the numerator is substantially reduced.

 Next, we want to discuss the more general SMP/GI/1 systems and a Markov
chain with m states. We use pm(z) = zmh det(UT(z−1) − I ) to denote the characteristic
polynomial of the SMP/GI/1 system and consider the following determinant func-
tion:
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with uij(k) = Pr(Un+1 = k, σn+1 = j | σn = i) and ∑−g≤k≤h∑1≤j≤m uij(k) = 1.
As in the previous case, we apply Klimenok’s theorem. This can be done success-

fully for m=2 and 3, but for greater m it is only possible when further restrictive con-
ditions are applied to the distribution {uij(k)}. To derive the asymptotic behavior of
the zeros, we write
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For m=2, we infer 011)( 211222112 =−−−≥ aaaazp  with aii = max|z|=1 |aii(z)| =
aii(1), i =  1,  2,  and a12 =  1 − a11, a21 =  1 − a22. Therefore, the assumptions in Kli-
menok’s theorem are fulfilled since the first ≥-sign can be replaced by the >- sign if z
≠ 1.
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The stochastic matrix P=(aij(1))m×m has m eigenvalues z1, …, zm. The greatest equals
one, and all the others are located in the unit circle.
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We define cγ (z):  =  (zc – 1)/(z − 1) and evaluate the determinant in the case of
equidistribution

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) 



















−

−
−

=

h
mmmm

m
h

m
h

m

zzazaza

zazzaza
zazazza

zp

...
............

...

...)(

det)(

21

22221

11211

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) 



















−

−
−

=

h
mmmm

m
h

m
h

zzazaza

zazzaza
zazazza

γγγ

γγγ
γγγ

...
............

...

...)(

det

21

22221

11211

( )

( )
( )

( )

( ) ( )( ) .1||,g,1,11

1...
............

...1

...1

det

1

21

22212

11211

<∞→++=−−−=





















−−

−−
−−

−≈

∏
=

−−

−

zhgczzczzc

zzcaaa

azzcaa
aazzca

czc

m

i

h
i

mm

h
mmmm

m
h

m
h

m

Thus, the m relevant asymptotic relations as g tends to infinity are given by
c(1 − z)zh ≈ zi , i  = 1, .. , m,

zi denoting the eigenvalues of the stochastic matrix. This fact can be used to generate
the initial suggestion. After that, the roots of polynomials with complex interval coef-
ficients are enclosed by an interval iteration. A verification step concludes the proc-
ess.

Figure 2 shows the zero distribution for an SMP(5) adaptation in the case m = 5, h
= 23, g = 64. We clearly discern five circles with a deformation near the point 1.

Example 2. Now we choose h
= 25, g = 500, m = 2. The char-
acteristic polynomial has degree
2(g+h) = 1050. The corres-
ponding asymptotic polynomial
p(z) has 55 zeros, one zero
outside, 4 zeros near 1 and 50
zeros inside the unit circle. The
computed initial values have
been successfully used to obtain
tight enclosures.

Fig. 2. The 115 zeros of the charac-
teristic polynomial with m = 5, g =
64 and h = 23
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As an example of how tight the enclosures computed this way are, consider the
zero z = −0.424018874 2877889 + 0.501740168 5083331i and the corresponding en-
closure [−0.4240188742877994, −0.4240188742877782], [0.5017401685083224,
0.5017401685083437]).

With

H(z) = 0.04(1 − z26) − 0.01(1 − z)(z18+z17+z16+z15) + 0.02(1 − z)(z9−z8+z7−z6),
A(z)= 0.002(1 − z + z2), B(z) = 0.001(1 + z)

the corresponding characteristic polynomial is











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−−

= 252

252

2 )1()()(6.0)()(4.0
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and has degree 55.

3.2  The Grassmann-Jain algorithm

Alternatively, we can apply the Grassmann-Jain algorithm to solve the SMP/GI/1
matrix case. The settings for the transition probabilities of the Markov process

          uij(k) = Pr(Un+1 = k, σn+1 = j | σn = i); i, j ∈ {1, …, m}; u(k) = (uij(k)), −g ≤ k ≤ h
         Un = An – Sn interarrival and service times of the n–th arrival
         σn ∈ {1, …, m} states of the underlying Markov chain
         lij(k) = Pr(I = k, σE = j | σA= i) the probability for an idle period I of duration k

    σA und σE initial and final state of a given busy period

imply the following relationships among the probabilities vij(k) and lij(k)

;,...,0,)()()()( ),min(
1

hkmmkkk gkh
m

=++= ∑ −

=
lvuv  (1)

.,...,1,)()()()( ),min(
0

gkkmmkk hkg
m
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=
lvul  (2)

Here vij(k) denotes the probability that a phase with level k and initial state j is ob-
served within a busy period having initial state σA= i.

Relation (1) defines a recursion for the probability interval matrices v(k) with
known u and l: (v(h) = u(h), v(h-1) = u(h-1) + v(h)l(1), ...), the relation (2) represents
an equation system for the probability interval matrices l(k), k = 1, …, g.

In [11] the software environment is described that computes the Wiener-Hopf fac-
torization numerically using the method developed originally for GI/GI/1 systems by
Grassmann and Jain and now adapted to the SMP/GI/1 case. In order to solve equa-
tions (1) and (2), the iteration process introduced by Grassmann and Jain takes initial
approximations for l(k). Thus, a sequence of interval matrix distributions l(n)(k),
v(n)(k) for n = 0, 1, . . . is obtained. After this, a verification step is performed. If the
condition [v(n+1)(k)] ⊂ [v(n)(k)] holds for all k = 0, . . . , h, Brouwer’s fixed point theo-
rem guarantees that the correct solution v(k) is contained in [v(n+1)(k)] for all k = 0, . .
. , h. With this verified result for v(k) we compute a verified enclosure of l(k).
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Consider an example which leads to a large system:

Pr(A = 0) = 0, Pr(A = i) = 0.00025 for i = 1, . . . , 4000;
Pr(S = 0) = 0, Pr(S = i) = 0.0003125 for i = 1, . . . , 3200.

The following table shows the probabilities produced by polynomial and Wiener-
Hopf factorization methods:

w       Polynomial Factorization (·10−4)                  Wiener–Hopf (·10−4)
w(0) 3223.840[778932494,802745668] 3223.840790[807376,940053]
w(10)  1.684[161009480889,276354777528]  1.684218682[091688,205687]
w(50)  1.685[508983181590,602789470004]  1.685555886[256863,371390]
w(99)  1.686[696387027708,769329452040]  1.686732858[176097,291241]
w(103)      1.61790[5425768473,6315600827] 1.617905870[627717,748028]

Note that the Wiener-Hopf enclosures are tighter because the w(k) here are obtained
directly.

The newly developed ‘Interval-based numerical software with result verification
of the workload distribution for Internet traffic’ (INoWaTIV) (see Fig. 3) provides a
unified approach via a graphic user interface to the verified computation of the work-
load distribution using both presented methods, the polynomial factorization and the
Wiener-Hopf method for GI/GI/1 and SMP/GI/1 service systems. Based on the dis-
cussion presented in this section, the user can choose a method to determine initial
values for the equation solver and – in a forthcoming version – directly influence the
Grassmann-Jain iteration process. The results of the numerical analysis are visualized
and parallely stored in a text file. Thus the user has easy access to the distribution of
the zeros of the characteristic polynomial as well as to the workload distribution,
quantiles and mean values.

Fig. 3. Screenshot of the INoWaTIV-Tool
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4  Multibody modeling and simulation software

Right from the beginning, the software in section 3 has been designed to work
with intervals and thus provides guaranteed results. In contrast, the task of our second
case study is to verify the efficacy of MOBILE, a tool that is already in use. To cover
all the modeling facilities our target MSS offers, various validating techniques, such
as accurate distance measuring and verified solving of systems of (non-)linear and
differential equations, have to be integrated into MOBILE. The process of integration
spans all stages of the scheme in section 2.

We have shown in detail in [5] how accurate distance algorithms (DA) can be im-
ported into MOBILE. This integration corresponds mostly to the second stage of the
scheme. We start with an accurate DA import by making the recently developed dis-
tance library PolyLib act as an element of MOBILE. Simultaneously, we can ap-
proach validation from a different angle by converting to intervals the existing DA
from MOBILE. A naive replacement of IEEE data types with interval ones results in
a considerable wrapping effect, especially if distances are intended to be used to
model dynamics. An improvement can be achieved by changing the underlying data
type (for example, from intervals to Taylor models), by modifying the existing mod-
eling elements (for example, rotation error elimination strategy [20]), or by enhanc-
ing DA from MOBILE themselves. Moreover, if the dynamics of a system has to be
modeled, the use of a better IVP solver might be helpful.

To validate DA from MOBILE, a complex element MoChordPointPolyeder, based
on PolyLib, was introduced. This improves the modeling of the robot motion in intri-
cate geometric environments. On the other hand, the standard DAs from MOBILE
(the MoChord-based class branch) were reimplemented to produce guaranteed results
and integrated into two verifying extensions of MOBILE − NiceMOBILE and Smart-
MOBILE.

Let us consider SmartMOBILE in more detail. It was developed to model dynamic
properties of multibody systems in a validated way. The programming concept of
MOBILE presupposes, however, that such a tool can model kinematics as well. The
objectives of the design of SmartMOBILE were, first, to develop a basic data type
that would automatically compute derivatives of the solution of the motion equations
and, second, to make this MOBILE version data type independent, allowing the user
to apply his own solutions should the provided data type be unsuitable for the par-
ticular modeling task.

The first objective is met through implementing a composite data type TMoInterval
and an interval IVP solver TMoAWAIntegrator (a transmission element based on
VNODE). The data type helps to introduce algorithmic differentiation into MOBILE
and therefore provides enough information for the solver to handle the initial value
problems given in their algorithmic form.

The second goal is achieved by using the C++ template technique. This involves
systematic replacement of all MOBILE classes with their equivalents containing
placeholders instead of data types. Particular data types (e.g. TMoInterval)  can  be
uniformly and easily substituted for these placeholders by the user during the last
modeling stage.

At the present time SmartMOBILE is capable of modeling dynamic (and by im-
plication kinematic) properties of various classes of multibody systems, including
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non-autonomous and explicitly solvable closed-loop systems. However, the comput-
ing time and wrapping effect in this version are not inconsiderable. Nevertheless, as
the comparison with other approaches to MMSS validation and other IVP solvers
shows, the tool seems to be more effective for (at least several) complicated multi-
body systems, such as triple pendulum and one-axis manipulator, in regard to either
computing time or global error (cf. [4]).

As  an  example  of  modeling  in
SmartMOBILE, consider the one-axis
manipulator shown in Fig. 4. It con-
sists of an extension arm driven by a
linear actuator in combination with a
four-joint chain. This chain includes a
revolute (R1), a prismatic (P), a uni-
versal (T) and a spherical joint (S)
modeled with the help of separate
elementary joints. A one kg mass m is
attached to the arm. The system has
one degree of freedom (s) and, addi-
tionally, a control variable (u) char-
acterizing the linear actuator.

Fig. 4. One-axis manipulator

We do not have to change the given MOBILE model of this one-axis manipulator
much to obtain the verified dynamics in SmartMOBILE. First, we choose a validated
basic data type (e.g. the provided TMoInterval). Next, we use templates of the
transmission elements with names similar to those used in MOBILE. Finally, after
introducing the above-mentioned IVP solver TMoAWAIntegrator, we obtain the be-
havior of the variable s over the time interval (for the point initial conditions
[−0.19;0] and u=60).

Fig. 5. Position s of the one-axis manipulator
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Fig. 5 shows the verified (solid line) and usual (dashed line) solutions. Note that
the algorithm from SmartMOBILE produces the results only up to t=2.139 and
breaks down due to the wrapping effect after that point. However, this is not as dis-
couraging a result as one might assume. If we obtain the expressions for the equa-
tions of motion of the one-axis manipulator with the help of an appropriate symbolic
MMSS and then try to solve these equations with VNODE, it breaks down for
t=0.582. Therefore, in this case SmartMOBILE can even be considered quite robust.

 In Fig. 6, solutions obtained with SmartMOBILE, MOBILE and VNODE in rela-
tion to the midpoints of the intervals obtained with SmartMOBILE are shown. (The
time interval [0,0.5] was chosen to represent all the results adequately.) We notice
that the solution from MOBILE, which seemed to coincide with that of SmartMO-
BILE in Fig.5, lies considerably outside the validated bounds. In the scale of 10-12 for
the validated solutions, we can discern that the enclosures of both validated solutions
intersect and are still quite tight. The overall similarity of results obtained with
SmartMOBILE and VNODE shows that we cannot completely rely on the dynamic
properties of this system as supplied by MOBILE.

Fig. 6. Relative position of the one-axis manipulator

5  Reliable geometric modeling

Now we come to our last case study, which describes a way to plan reliable, colli-
sion-free paths by combining two geometric modeling and simulation systems with
the distance library PolyLib.

A common technique for reconstructing a scene object is to use bounding volumes
relying on an object’s representation as a hierarchical model with axis-aligned
bounding boxes. A typical example of a bounding volume is an octree. The main ad-
vantage of octrees is that the object representation does not depend on the nature of
the real solid. This is a useful property for objects with complex structures that are
difficult to describe using exact mathematical formulae. An adaptive enclosure of a
real solid that depends only on the chosen maximum level of the tree is another ad-
vantage of the octree data structure. Because of their adaptive depth, octrees can be
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used to describe a virtual environment constructed from camera data. For moving ob-
jects, it is interesting to employ unaligned octrees to avoid the wrapping effect during
the octree decomposition in a common coordinate system after several rotations.

Quadtrees and octrees are well-known data types used to represent flat and spatial
data hierarchically in a tree-based structure with four or eight childnodes. Alterna-
tively, subpavings [13] – lists of disconnected boxes obtained by dividing the space
along a plane  – are employed. To construct the trees, a square or a cube including
2D- or 3D-objects is divided into four mutually disjoint subsquares or eight mutually
disjoint voxels until the required closeness to the object is reached. Each node, square
or cube is checked to see whether it is full (black), partially empty (gray) or empty
(white) of solid material. If the nodes are empty or full, they do not need to be subdi-
vided any further. In the case of partial emptiness, the nodes need to be subdivided to
create a higher level quadtree or octree. The subdivision process is repeated until all
the nodes are either full or empty or until the maximal resolution level has been
reached. To obtain an outer or an inner hierarchically structured approximation of the
object, partially occupied leaves are filled or emptied.

The distance calculation for octree-encoded objects is based on a simple computa-
tion of the distance between two boxes, which can be done with high accuracy. If the
objects are represented in an axis-aligned octree, the vertices of the boxes are ma-
chine numbers by construction. This case is dealt with in [6]. The use of an appropri-
ate local coordinate system reduces the case of two unaligned cubes to the case of an
unaligned cube and an axis-aligned one. The distance and the corresponding couples
of distance points between an axis-aligned and a rotated cube that both belong to a
higher hierarchy level of the octrees can be computed by first applying mutual inclu-
sion and intersection tests (see [8]). Then the distance computation can be reduced to
a few typical cases: interval vertex to facet, interval vertex to vertex or edge, and in-
terval edge to edge or vertex.

To cope with the unwanted rasterization effect and the multitude of corner points,
a new algorithm for building the convex hull of an octree was presented in [10] (see
Fig. 7). Using the convex hull of an octree allows one to apply algorithms for com-
puting the distance between convex polyhedra and to speed up the distance calcula-
tion. Moreover, it helps to reduce the wrapping effect. To obtain lower bounds for the
distance between two octrees, we can build the convex hulls of both and afterwards
apply well-known distance algorithms for convex polyhedra. A feasible way of
achieving the convex enclosure of an octree representing an object is to use the ex-
treme vertices of the boxes forming the boundary. Then, the convex hull of all ex-
treme vertices yields the enclosure of the object.

The case of a quadtree Q is treated in [10]. First, a rectangle hull of Q at level k, k
= 0, 1, . . . , is constructed, i.e. the smallest axis-aligned rectangles R1,  .  .  .  , R4 that
cover Q at level k, with the left-, right-, bottom- and topmost corners of Q.

For an octree, the preprocessing phase can be done analogously using a transfor-
mation of the octree into a bintree and updating the nodes which contain the possible
extreme points of the convex hull at the level under inspection successively in x-, y-
and z-direction. The preprocessing starts with the smallest axis-aligned cube covering
the octree and finishes with a set of the extreme points. Instead of R1,  .  .  .  , R4 we
have eight regions, each with three extreme corners. To eliminate non-extreme
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points, the well-known QuickHull algorithm can be used. Further details will appear
elsewhere.

Fig. 7.  Octree enclosure of a sphere and its convex hull

Both algorithms are implemented in a new tool ZMIN by Min Zhang [17] and de-
scribed in his thesis. ZMIN also provides an interface to import the subpaving format
defined by Jaulin et al [13] and used in SIVIA software. This allows us to build reli-
able geometric models by combining the geometric MSS SIVIA and ZMIN with the
distance algorithms package PolyLib.

6  Conclusion

In this paper, the successful integration of various validating numerical methods into
modeling and simulation software systems was presented. One achievement is the
newly developed ‘Interval-based numerical software with result verification of the
workload distribution for Internet traffic’ (INoWaTIV), which provides a unified ap-
proach to the verified computation of the workload distribution for GI/GI/1 and
SMP/GI/1 service systems. The main advantage of this approach is the guaranteed
accuracy of the results even when rigorous proofs are inaccessible, which is impor-
tant for quality of service evaluation. Furthermore, it was shown how a multibody
modeling and simulation system can be enhanced to model guaranteed kinematic and
dynamic behavior, which presupposes solving linear and nonlinear equations or ini-
tial value problems with result verification. Finally, algorithms for computing the
verified convex hull and a distance enclosure for objects represented by hierarchical
geometric models were highlighted.
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