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Abstract In Section 1.3 we discuss our main technical contribu-

tions: proving upper and lower bounds on the complexity
We study two quite different approaches to understand- of PosSLP. In Section 1.4 we present applications of our
ing the complexity of fundamental problems in numerical main result with respect to the Euclidean Traveling Sales-
analysis. We show that both hinge on the question of under-man Problem and the Sum-of-Square-Roots problem.
standing the complexity of the following problem, which we
call PosSLP: Given a division-free straight-line program 1.1 Polynomial Time Over the Reals
producing an integeV, decide whetheN > 0. We show
that PosSLP lies in the COUnting hierarChy, and Combining The Blum-Shub-Smale model of Computation over the
our results with work of Tiwari, we show that the Euclidean reals provides avery well-studied Comp|exity_theoretic set-
Traveling Salesman Problem lies in the counting hierarchy ting in which to study the computational problems of nu-
—the previous best upper bound for this important problem merical analysis. We refer the reader to Blum, Cucker, Shub
(in terms of classical complexity classes) be$ACE. and Smale [9] for detailed definitions and background ma-
terial related to this model; here, we will recall only a few
salient facts. In the Blum-Shub-Smale model, each machine
1 Introduction computing over the reals has lassociated with !t a finite set
of realmachine constantsThe inputs to a machine are el-
ements ofl J, R" = R*, and thus each polynomial-time
The original motivation for this paper comes from a de- machine oveiR accepts a “decision problen, C R,
sire to understand the complexity of computation over the The set of decision problems accepted by polynomial-time
reals in the Blum-Shub-Smale model. In Section 1.1 we machines oveR is denote®x.
give a brief introduction to this model and we introduce the  There has been considerable interest in relating computa-
problemPosSLP and explain its importance in understand- tion overR to the classical Boolean complexity classes such
ing the Blum-Shub-Smale model. asP, NP, PSPACE, etc. This is accomplished by consider-
In Section 1.2 we present yet another reason to be in-ing the Boolean partof decision problems over the reals.
terested inPosSLP. We isolate a computational problem That is, given a probleni, C R*°, the Boolean part of,
that lies at the root of the task of designing numerically sta- is defined aBP(L) := L N {0,1}*. (Here, we follow the
ble algorithms. We show that this task is computationally notation of [9]; {0,1}> = (J,,{0,1}", which is identical
equivalent taPosSLP. The material in Sections 1.1 and 1.2 to {0,1}*.) The Boolean part oPg, denotedBP (Pr), is
provides motivation for studyin§osSLP and for attempt-  defined afBP(L) | L € Pg}.
ing to place it within the framework of traditional complex- By encoding the advice function in a single real constant
ity classes. as in Koiran [27], one can show thBi/poly C BP(Pg).
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The best upper bound on the complexity of problems in BP(Pg). The proof in fact shows eveRFsSLF /poly C
BP(Pg) that is currently known was obtained by Cucker BP(Pg). The real constant encoding the advice function,
and Grigoriev [16]: will, of course, in general be transcendental. Thus, there
is a strong relationship between non-uniformity in the clas-
sical model of computation and the use of transcendental
constants in the Blum-Shub-Smale model. We conjecture
that this relationship can be further strengthened:

BP(Pgr) C PSPACE/poly. (1)

There has beeno work pointing to lower bounds on the
complexity of BP(Pg); nobody has presented any com-

pelling evidence thaBP (Pg) is not equal td®/poly. Conjecture 1.2 PPoSLP /poly = BP(Pg)
There has also been some suggestion that perhaps

BP(Pg) is equal toPSPACE/poly. For instance, cer- 12 The Task of a Numerical Analyst

tain variants of the RAM model that provide for unit-

cost arithmetic can simulate all d&#SPACE in polyno- The Blum-Shub-Smale model is a very elegant one, but
mial time [6, 23]. Since the Blum-Shub-Smale model also t does not take into account the fact that actual numerical
provides for unit-time multiplication on “large” numbers, computations have to deal wifiitely represented values.
Cucker and Grigoriev [16] mention that researchers have\ye next observe that even if we take this into account, the

raised the possibility that similar arguments might show that p.s1,p problem still captures the complexity of numerical
polynomial-time computation ové might be able to sim-  computation.

ulatePSPACE. Cucker and Grigoriev also observe thatcer- | gty =£ (0 be a dyadic rational number. Thilating
tain nave approachesto provide such a simulation must fail. yoint representation of is obtained by writingu = v2™
One of our goals is to provide evidence thit(Px) lieS  wherem is an integer ang < |v| < 1. The floating point
properly betwee? /poly andPSPACE/poly. Towardsthis  yepresentation is then given by the signvpand the usual
goal, it is crucial to understand a certain decision problem pinary representations of the numbgrisandm. The float-
PosSLP: The problem of deciding, for a given straight-line  jng point representation @fis the stringo itself. We shall

program, whether it represents a positive integifor pre-  abyse notation and identify the floating point representation

cise definitions, see the next section.) of a number with the number itself, using the term “floating
The immediate relationship between the Blum-Shub- hoint number” for the number as well as its representation.

Smale model and the problefrosSLP is given by the Let w # 0 be a real number. We may writeasu =

proposition below. Following Brgisser and Cucker [13], ,7om wherel < [«/| < 1 andm is an integer. Then, we

definePy to be the class of decision problems over the reals gefine gloating point approximation af with & significant
decided by polynomial time Blum-Shub-Smale machines pits to be a floating point number2™ so thatjv — u/| <

using only the constants 1. 9—(k+1)

We will focus on one part of the job that is done by
numerical analysts: the design of numerically-stable algo-
rithms. In our scenario, the numerical analyst starts out with
a known functionf, and the task is to design a “good” al-
gorithm for it. When we say that the functighis “known”,
we mean that the analyst starts out with some method of
computing (or at least approximating) we restrict atten-
tion to the “easy” case where the method for computfng
uses only the arithmetic operatiofis—, *, +, and thus the
fdescription off that the analyst is given can be presented
as an arithmetic circuit with operations, —, x, . Usu-

Proposition 1.1 PFosSLP — BP(PY).

Proof. (Sketch) Itis clear thaosSLP is in BP(P?), since
we can implement a standard SLP interpreter in the Real
Turing Machine framework and evaluate the result in linear
time using unit cost instructions. To show the other direc-
tion, assume we have a polynomial time machine d&er

using only the constants 1. Given a bit string as input, we

simulate the computation by storing the straight-line pro-
gram representation of the intermediate results instead o

itsgltrh\;a:)urzile?(;adnectgrlrﬁ:;(ii‘tlt%nesc(c:;?e?‘?:g?;Et’eed” tr))e/glijs—_a"y’ the analyst also has to worry about the problems that
ter (represented by a straight-line program) is greater thanare (_:aused by the fact Fhat the mpgtsf tcar_e not known
~ero precisely, byt are only given as f!oatlng point numbers that
’ are approximations to the “true” inputs — but again we will
It was shown by Chapuis and Koiran [14] that algebraic focus on the “easy” case where the analyst will merely try
constants do not help. More specifical§P (P2) equals to compute a good approximation ffz1, ... ,z,) on the
the Boolean part of the class of decision problems over theexact floating point numbers, ... , z, that are presented
reals decided by polynomial time Blum-Shub-Smale ma- as input:
chines using real algebraic numbers as constants. The generic task of numerical computation Given an
As already mentioned, by encoding the advice function integerk in unary and a straight-line program (witk) tak-
in a single real constant, one can show tRdpoly C ing as inputs floating point numbers, with a promise that it



neither evaluates to zero nor does division by zero, compute The desired output is a floating point numbetr +'2",
a floating point approximation of the value of the output where|v — /| < 2-(*+1), To obtainu’ we first want
with & significant bits. to find the integerw between2* and 2+ — 1 so that
The traditional approach that numerical analysts havew/2¥! < v/2" < (w + 1)/2F*!. Sincew/2k+! <
followed in trying to solve problems of this sort is to study v/2" < (w+1)/2%Liff w2 vy < 01281 < (w+1)27vs,
the numerical stability of the algorithm represented by the we can determine this by another binary search, usifig
circuit, and in case of instability, to attempt to devise an calls to the oracle. We then output the sigrvpthe binary
equivalent computation that is numerically stable. Although representation of the rationai/2**!, and the binary rep-
stable algorithms have been found for a great many im-resentation of,, together forming the desired floating point
portant functions, the task of devising such algorithms fre- approximation of. O
guently involves some highly nontrivial mathematics and
algorithmic ingenuity. There seems to be no expectation
that there will ever by a purely automatic way to solve 1.3 The Complexity ofPosSLP
this problem, and indeed there seems to be no expectation

that a numerically stable algorithm will exist in general. We consider Proposition 1.3 to be evidence for the
To summarize, there is substantial empirical evidence thatcomputational intractability oPosSLP. If PosSLP is in

the generic task of numerical computation is intractable. It P/poly then there is a polynomial-sized “cookbook” that
would .be o_f significant practical interest if, contrary to ex- a1 be used in place of the creative task of devising numer-
pectation, it should turn out to be very easy to solve (say, ically stable computations. This seems unlikely.

solvable in linear ime). , , We wish to emphasize that the generic task of numer-
. We show that the generic task of numerical computation jo,| computation models theiscretecomputational prob-

is equivalentin power t@osSLP. lem that underlies an important class of computational prob-
lems. Thus it differs quite fundamentally from the approach
taken in the Blum-Shub-Smale model.

We also wish to emphasize that, in defining the generic
Proof. We first reducéPosSLP to the generic task of nu-  task of numerical computation, we ar®t engaging in
merical computation. Given a straight-line program repre- the debate over which real functions are “efficiently com-
senting the numbeW, we construct a straight-line program putable”. There is by now a large literature comparing
computing the value = 2N — 1. The only input9, 1 of and contrasting the relative merits of the Blum-Shub-Smale
this program can be considered to be floating point numbersmodel with the so-called “bit model” of computing, and
and this circuit clearly satisfies the promise of the generic there are various competing approaches to defining what it
task of numerical computation. Thév > 0if v > 1 and means for a real-valued function to be feasible to compute;
N < 0if v < —1. Determining an approximation efto see [7, 10, 11, 45, 46] among others. Our concerns here are
one significant bit is enough to distinguish between theseorthogonal to that debate. We are not trying to determine
cases. which real-valued functions are feasible; we are studying a

Conversely, suppose we have an oracle sol¥iegSLP. discrete computational problem that is relevant to numerical
Given a straight-line program with inputs being floating analysis, with the goal of proving upper and lower bounds
point numbers, we first convert it to a straight-line program on its complexity.
having only inputl; it is easy to see that this can be done  The generic task of numerical computation is one way of
in polynomial time. By standard techniques we move all formulating the notion of what is feasible to compute in a
+ gates to the top, so that the program computes a valueworld wherearbitrary precisionarithmetic is available for
v = v1 /va, Wherevy, vy are given by division-free straight-  free. In contrast, the Blum-Shub-Smale model can be in-
line programs. We can use the oracle to determine the signserpreted as formulating the notion of feasibility in a world
of v; andwvy. Without loss of generality assume thats whereinfinite precisiorarithmetic is available for free. Ac-

Proposition 1.3 The generic task of numerical computa-
tion is polynomial time Turing equivalent @osSLP.

positive. Next we use the oracle to determine;if> v. cording to Proposition 1.3, both of these approaches are

Suppose this is indeed the case (the opposite case is handlashuivalentand captured b"°s5LP) when only algebraic

similarly). constants are allowed in the Blum-Shub-Smale model. Con-
We then find the least, so that2"~! < v < 2", by  jecture 1.2 claims that this is also true when allowing arbi-

first comparingu; with v,2%" for i = 0,1,2,3, ..., using trary real constants.

the oracle, thus finding the minimuirso thatv < 22" and As another demonstration of the computational power of

afterwards doing a binary search, again using the oracle toPosSLP, we show in52 that the problem of determining the
comparey; to vo2" for various values of. This takes poly-  total degree of a multivariate polynomial over the integers
nomial time. given as a straight-line program reduce®tsSLP.



The above discussion suggests tRakSLP is not an is easily seen to be solvable NP relative to the Sum-of-
easy problem. Can more formal evidence of this be given?square-roots problem. See also O’'Rourke [34, 35] and
Although it would be preferable to show thBbsSLP is Etessami and Yannakakis [21] for additional information.
hard for some well-studied complexity class, the best that Although it has been conjectured [33] that the problem lies
we can do is observe that a somewhat stronger problemin P, it seems that no classical complexity class smaller than
(BitSLP) is hard for#P. This will be done irg2. PSPACE has been known to contain this problem. On the

The above discussion also suggests that non-trivial up-other hand, Tiwari [40] showed that the problem can be de-
per bounds foiPosSLP are of great interest. Prior to this cided in polynomial time on an “algebraic random-access
paper, the best upper bound WRSPACE. Our main tech-  machine”. In fact, it is easy to see that the set of decision
nical result is an improved upper bound: We show, basedproblems decided by such machines in polynomial time is
on results on the uniform circuit complexity of integer di- exactlyBP(P2). Thus by Proposition 1.1 we see that the
vision and the relationship between constant depth circuitsSum-of-square-roots problem reducesPiasSLP. Theo-
and subclasses SPACE [3, 24], thatPosSLP lies in the rem 1.4 thus yields the following corollary.
counting hierarchy H, a well-studied subclass 85PACE

that bears more or less the same relationshigfoas the ~ Corollary 1.5 The Sum-of-square-roots problem and the
polynomial hierarchy bears 9P [42, 44]. Euclidean Traveling Salesman Problem ar€lh

Theorem 1.4 PosSLP is in PPP™" . 2 Preliminaries

Another interesting upper bound fdtosSLP was re- Our definitions of arithmetic circuits and straight-line
cently discovered by Tarasov and Vyalyi [39], who give a Programs are standard. Aarithmetic circuitis a directed
reduction from PosSLP to tf@emidefinite Feasibility Prob- ~ acyclic graph with input nodes labeled with the constants
lem (SFDP), i.e. the feasibility version of the optimiza- 0,1 or with indeterminates(y, ... , X;, for somek. Inter-
tion problemSemidefinite ProgrammingTheir result can ~ Nnal nodes are labeled with one of the operations-, «, .
be seen as a lower bound for SFDP. SFDP is known to re-A straight-line progranis a sequence of instructions corre-
duce to its complement and to lieNPx [36]; alsoitis easy ~ Sponding to a sequential evaluation of an arithmetic circuit.
to see that SFDP reduces to the existential theory of the redf it contains no-- operation it is said to belivision free
als (for instance, see the discussion in [36]), and thus SFPDUNless otherwise stated, all the straight-line programs con-
€ PSPACE. sidered will be division-free. Thus straight-line programs

We suspect thaPosSLP lies at an even lower level of ~Can be seen as a very compact representation of a polyno-
CH. We leave as major open problems the question of pro_mial over the integers. In many cases, we will be interested
viding better upper bounds f®osSLP and the question of in division-free straight-line programs using no indetermi-
providing any sort of hardness theorem, reducing a supposnates, which thus represent an integer.
edly intractable problem tBosSLP. By then-bit binary representation of an integhr such

We also believe that it would be very interesting to ver- that|N| < 2" we understand a bit string of length+ 1
ify Conjecture 1.2, as this would give a characterization consisting of asign bit followed by n bits encoding V|
of BP(Pg) in terms of classical complexity classes. But (Padded with leading zeroes, if needed).
in fact, it would be equally interesting to refute it under ~ \We consider the following problems:

some plausible complexity theoretic assumption, as this EquSLP Given a straight-line program representing an

would give evidence that the power of using transcenden- integerN, decide whetheN = 0.
tal constants in the Blum-Shub-Smale model goes beyond ) ] ] .
the power of non-uniformity in classical computation. ACIT Given a straight-line program representing a

polynomialf € Z[X;, ..., Xx], decide whethef =
0.

1.4 Applications
DegSLP: Given a straight-line program representing a

The Sum-of-square-roots probleima well-known prob- polynomial f € Z[Xy,...,Xx], and given a natural
lem with many applications to computational geometry and numberd in binary, decide whetheteg f < d.
elsewhere. The input to the problem is a list of integers

PosSLP Given a straight-line program representing

(dy,...,d,) and an integek, and the problem is to de- N 7, decide whetheN > 0.

cide if >°,v/d; > k. The complexity of this problem is
posed as an open question by Garey, Graham and John-BitSLP Given a straight-line program representiig
son [22] in connection with the Euclidean traveling sales- and givem, i € N in binary, decide whether thi¢h bit
man problem, which is not known to be NP, but which of then-bit binary representation @¥ is 1.



It is not clear that any of these problems isHnsince k be the number of monomials. We can write =
straight-line program representations of integers can be exam + Ef;f a;m;, where(m;);=1,... x—1 are the remain-
ponentially smaller than ordinary binary representation.  ing monomials. An easy induction in the size of the straight

There is an immediate relationship between the Blum- line program shows thaty;| < 22°", k < 22" and that the
Shub-Smale model over the complex numb€rand the  degree of any variable in any; is at most”.

problemEquSLP. LetP2 denote the class of decision prob- Now, our claim is that the absolute value
lems ovelC decided by polynomial time Blum-Shub-Smale |am(B,, 1,...,B,,)| is strictly bigger than the ab-
machines using only the constarttsl. Similarly as for solute value 27?:11 a;m;i (B, ... s Bnm)|, and thus we

Proposition 1.1 one can show trta“>"” = BP(P2). On  cannot have that(B,. 1, . .. , Bu.m) = 0.
the other hand, it is known that constants can be eliminated |ydeed. since thé monomiéh was the biggest in the

in this setting [8, 28], hencBP (Pc) = BP(Pg). We there-  jnyerse lexicographic ordering, we have that for any other
fore have monomialm; there is an index so that

Proposition 2.1 PEaSLP — BP(Pg).

2jn2

m(Bn,h ce aBn,m,) 2"2*1
Clearly, EquSLP is a special case ofACIT. mi(Bp1y--- s Bom) — H{;ll 9212 .2n ’
Sclonhage [37] showed thaltquSLP is in coRP, us-
ing computation modulo a randomly chosen prime. Ibarra so we can bound
and Moran [25], building on DeMillo and Lipton [18], o1
Schwartz [38] and Zippel [47], extended this to show that |Z cums(B B
ACIT lies in coRP. The problemACIT has recently A by ee s Bnm
attracted much attention due to the work of Kabanets w om b1
and Impagliazzo [26] who showed that a deterministic < 27727 Im_af(mi(Bn,hm s Brm)|
algorithm for ACIT would yield circuit lower bounds. o 1_"271
(See [29] for some progress on finding deterministic < 22°2°727% m(Bna,. .., Bom)
algorithms for certain versions of the problem.) As far as < m(Bna,---,Bum) <|am(Bua,..., Bum)l,
we know, it has not been pointed out before tA&EIT
is actually polynomial time equivalent thquSLP. In which proves the claim. O

other words, disallowing indeterminates in the straight-line
program given as input does not mak€IT easier. Or
more optimistically: It is enough to find a deterministic
algorithm for this special case in order to have circuit lower
bounds.

The problemDegSLP is not known to lie inBPP, even
for the special case of univariate polynomials. Here, we
show that it reduces tBosSLP.

Proposition 2.3 DegSLP polynomial time many-one re-
Proposition 2.2 ACIT is polynomial-time equivalent to  duces tdosSLP.

EquSLP.
Proof. We first show the reduction for the case of univari-
Proof. We are given a straight-line program of sizevith ate polynomials (i.e., straight-line-programs with a single
m indeterminates(,, . .. , X,,, computing the polynomial  indeterminate) and afterwards we reduce the multivariate
in2 . . : :
p(X1,...,Xn). DefineB,,; = 22" . Straightline- casetothe univariate case.

programs computing these numbers using iterated squar- Let f € Z[X] be given by a straight-line program of
ing can easily be constructed in polynomial time, so lengthn. To avoid having to deal Wlth_the zero polynomial
given a straight-line-program fop, we can easily con-  of degree—oco and to ensure that the image of the polyno-

struct a straight-line program for(B,, 1, ... , Bnm). We mial is a subset of the non-negative integers, we first change
shall show that forn > 3, p is identically zero iff  the straight-line program computinginto a straight-line
p(Bu1,... By, evaluates to zero. program computing’; (X) = (X f(X) + 1)? by adding a

To see this, first note that the “only if” part is triv- few extra lines. We can check if the degreefoit at most
ial, so we only have to show the “if” part. Thus, as- d by checking if the degree of; is at mostD = 2(d + 1)

sume thatp(Xy,...,X,,) is not the zero-polynomial. (exceptford = —oo in which case we check if the degree
Let m(X1,...,X,,) be the largest monomial occurring Of f1 is atmostD = 0). .
in p with respect to inverse lexicographic orend let Let B, be the intege2?” . As in the proof of Propo-

X1 Xarm is greater than¥ ' ... X2 in this order iff the sition 2.2, we can easily construct a straight-line program

right-most nonzero component of — 3 is positive, cf. Cox, Little and CompUtinan and from this a straight-line program com-
O’Shea [15, p. 59]. puting f1(Bn).



Now, suppose thateg f1 < D. Using the same bounds We show that computing the permanent of matrices with
on sizes of the coefficients as in the proof of Proposition 2.2 entries from{0,1} is reducible taBitSLP.

and assuming without loss of generality that 3, we then Given a matrixX with entriesz; ; € {0,1}, consider
have the univariate polynomial
D 2n . 2n ) n n .
Ai(Bn) €327 B, < (2" +1)2° By o= fa¥ =TTy )
i i=1 j=1

1=0
on 22n_on? L pyq D+1
< (27 +1)2 BT < BT/2 which can be represented by a straight-line program of size
On the other hand suppose thiat f, > D + 1. Then O(n?). Thenf,, 2»_1 equals the permanent &f. Let N be

the number that is represented by the straight-line program

we have f _ : : gl
that results by replacing the indeterminatevith 2™ . Itis
D . .
Di1 g2n . easy to see that the binary r(.epres'en.tat|oﬂ,9j'n_1 appears
f1(Bn) 2 (Bn) - Z 2" B, 2 as a sequence of consecutive bits in the binary representa-
=0

) tion of V. O
BDH1 _ 92"92%"9=2" pD+1 5 pDH1 o

Thus, to check whetheteg f; < D, we just need to con- 3 PosSLP lies in CH
struct a straight-line-program fatf,(B,) — BP*! and
check whether it computes a positive integer. This com-  The counting hierarchgH was defined by Wagner [44]

pletes the reduction for the univariate case. ~ and was studied further by Toran [42]; see also [5, 3]. A
We next reduce the multivariate case to the univariate proplem lies inCH if it lies in one of the classes in the se-

case. Thus, lef € Z[X1,... , X,,] be given by a straight-  quencePP, PPPP, etc.

line program of lengtm. Let f* € Z[X4,...,Xm,Y]

be defined bwc*(Xl, v s X, Y) : [(X1Y, R ,XmY). Theorem 3.1 BitSLP is in CH.

We claim that if we letB,; = 2" as in the proof of

Proposition 2.2, then, for > 3, the degree of the univari-  Proof. It was shown by Hesse et al. [24] that there are
ate polynomialf*(By, 1, ... , Bn,m,Y) is equal to the total  Dlogtime-uniform threshold circuits of polynomial size and
degree off. Indeed, we can writ¢g™* as a polynomial irt” constant depth that compute the following function:

with coefficients iINZ[ X1, ... , Xy ) ) ) )
Input A numberX in Chinese Remainder Representation.

d* ' That is, a sequence of values indexed;j) giving the
FrX e X Y) =D gi(X1, ., X))V j-th bit of X modp, for each primep < n?, where
j=0 0 < X < 2" (thus we viewn as an appropriate “size”

whered* is the degree of variablg in the polynomialf*. measure of the input).

Note that this is also the total degree of the polynonfial  output The binary representation of the unique natural

Now, the same argument as used in the proof of Propor- numberX <[] . _ .pwhose value modulo each
tion 2.2 shows that sincg,- is not the zero-polynomial, small prime is encoded in the input.
ga~(Bn1, Bn2,- .., Bnm) is different from0. O

Let this circuit family be denotedlD,, }.
Now, as in the proof of [3, Lemma 5], we consider the
following exponentially-big circuit family{ £,, }, that com-
ACIT <P, DegSLP <P, PosSLP <P, BitSLP. putesBitSLP. _ o
Given as input an encoding of a straight-line program
In §3 we will show that all the above problems in fact lie in  representing integd#’, we first build a new program com-

As PosSLP easily reduces td@3itSLP, we obtain the
chain of reductions

the counting hierarchgH. puting the positive integeX = W + 22", Note that the bits
The complexity oiBitSLP contrasts sharply with that of ~ of the binary representation &% (including the sign bit)
EquSLP. can easily be obtained from the bits &t
Level 1 of the circuitE,, consists of gates labeléd, )
Proposition 2.4 BitSLP is hard for#P. for each primep such thapp < 22" and for eachj : 1 <

j < [logp]. The output of this gate records thith bit of
Proof. The proof is quite similar to that of Bgisser [12, X mod p. (Observe that there are exponentially many gates
Prop. 5.3], which in turn is based on ideas of Valiant [43]. on level 1, and also note that the output of each gatg)



can be computed in time polynomial in the size of the bi-
nary encoding op and the size of the given straight-line
program representing . Note also that the gates on Level

Theorem 3.2 PosSLP € PHP?™ .

Proof. We will use the Chinese remaindering algorithm

1 correspond to the gates on the input level of the circuit Of [24] to obtain our upper bound oRosSLP. (Related

Dozn.

The higher levels of the circuit are simply the gates of
Dozn.

Now, similar to the proof of [3, Lemma 5], we claim
that for each constant, the following language is in the
counting hierarchyL, = {(F, P,b) : F'is the name of a gate
on leveld of E,, andF evaluates t@ when given straight-
line programP as input.

We have already observed that this is true whes 1.

For the inductive step, assume that € CH. Here is an
algorithm to solvel ;41 using oracle access ;. On in-
put(F, P,b), we need to determine if the gakeis a gate of
E,,, and if so, we need to determine if it evaluates ton
input P. F'is a gate ofE,, iff it is connected to some gate
G such that, for som&, (G, P,b') € Ly. This can be de-
termined inNP~¢ C PP%4, sinceD,, is Dlogtime-uniform.
That is, we can guess a gate check that is connected
to I (this takes only linear time because of the uniformity
condition) and then use our oracle fby. If F' is a gate of

E,,, we need to determine if the majority of the gates that

feed into it evaluate to 1. (Note that all of the gatedip
are MAJORITY gates.) Thatis, we need to determine ifitis
the case that for most bit stringssuch that is the name
of a gate that is connected 1o, (G, P, 1) isin L,. Thisis
clearly computable ifPPL<.

Thus in order to comput®itSLP, given programP
and indexi, compute the naméd’ of the output bit of
E,, that produces théth bit of N (which is easy because
of the uniformity of the circuitsD,2.) and determine if
(F,P,1) € L4, whered is determined by the depth of the
constant-depth family of circuits presented in [24]. O

Theorem 3.1 shows th&P(P?) lies in CH. A similar

algorithms, which do not lead directly to the bound reported
here, have been used on several occasions [1, 17, 20, 30,
31].) Let us introduce some notation relating to Chinese
remaindering.

Forn € N let M,, be the product of all odd primes
less thar2™”. By the prime number theore®?” < M,, <

22" for sufficiently large. For such primeslet h,, ,,
denote the inverse d/,, /p mod p.

Any integer0 < X < M, can be represented uniquely
as a list(z,), wherep runs over the odd primes <
27* and zp = X mod p. Moreover, X is congruent to
Zp xphp n M, /p modulo M,,. HenceX/M, is the frac-
tional part ofy_ z,hy.n /p.

Define the family of approximation functiongp,, (X)
tobe " By, whereB, = x,hy ,0p, andoy, ,, is the re-

sult of truncating the binary expansionigfp after2”" bits.
Note that forn sufficiently large andX' < M,,, app,.(X) is
within 22" of X/M,.

Let the input toPosSLP be a progranP of sizen repre-
senting the integel” and putY,, = 22", Since|W| < Y,
the numberX := W 4 Y], is nonnegative and we can easily
transformpP into a program of siz€n + 2 representingX.
Clearly, W > 0 iff X > Y,,. Note thatif X > Y,,, then
X/M, andY, /M, differ by at leastl /M, > 92" "1
which implies that it is enough to compare the binary ex-
pansions ofapp, (X) and app,(Y;,). (Interestingly, this
seems to be somewhat easier than computing the bixs of
directly.)

We can determine i > Y;, in PH relative to the fol-
lowing oracle: A = {(P,4,b,1™) : the j-th bit of the bi-
nary expansion ofipp,,(X) is b, where X is the number
represented by straight-line prografhand j is given in

argument can be applied to an analogous restriction of “dig'binary}. Lemma 3.3 completes the proof by showing that
ital” NPy (i.e., where nondeterministic machines over the A PHPP™ 0

reals can guess “bits” but cannot guess arbitrary real num-
bers). Birgisser and Cucker [13] present some problems in

PSPACE that are related tacountingproblems ovefR. It
would be interesting to know if these problems lieGH.
Although Theorem 3.1 shows thBitSLP andPosSLP
both lie in CH, some additional effort is required in order
to determine the level ofH where these problems reside.
We present a more detailed analysisfoxSLP, since it is

our main concern in this paper. (A similar analysis can be

PP
PP
pPP

carried out forBitSLP, showing that it lies irPH"
[4].)
The following result implies Theorem 1.4, since Toda’s

Theorem [41] shows tha&P" C PPP* for every oracle
A.

Lemma 3.3 4 € PHPP".

Proof. Assume for the moment that we can show that
B e PHP, whereB := {(P,j,b,p,1") : the j-th bit of
the binary expansion 0B, (= xphpnopn) is b, where

p < 27” is an odd primez, = X mod p, X is the number
represented by the straight-line progr&yandj is given in
binary}. In order to recognize the set, it clearly suffices

to compute‘Z”4 bits of the binary representation of the sum
of the numbers3,,. A uniform circuit family for iterated
sum is presented by Maciel and itén in [32, Corollary
3.4.2] consisting of MAJORITY gates on the bottom (in-
put) level, with three levels of AND and OR gates above.



As in the proof of Theorem 3.1, the construction of Ma-

ciel and Trerien immediately yields BHPP” algorithm for
A, by simulating the MAJORITY gates bpP? computa-
tion, simulating the OR gates above the MAJORITY gates

by NPPP” computation, etc. The claim follows, since by

PP
Toda's Theorem [41PH"" C PHPP™ = PHPP™. It
remains only to show tha e PH"". -

(3]

(4]

(5]

Lemma 3.4 B € PH"P. ]
Proof. Observe that givef\P, j, b, p) we can determine in
polynomial time ifp is prime [2], and we can compuis,.

In PH C PPP we can find the least generatgy of the
multiplicative group of the integers mgd The setC' =
{(¢,9p,%,p) : p # ¢ are primes and is the least num-
ber for whichg;', = ¢ mod p} is easily seen to lie ifPH.
We can compute the discrete log bageof the number
M, /p mod p in #P¢ C PPP, by the algorithm that non-

(7]

(8]

(9]

deterministically guessesands, verifies that(q, g,, ¢, p) € [10]
C, and if so generatesaccepting paths. Thus we can com-
pute the numben,, /p mod p itself in PPP by first com- [11]
puting its discrete log, and then computiggto that power,
modp. The inversé, ,, is now easy to compute ", by [12]
finding the inverse of\/,,/p modp.

Our goal is to compute thgth bit of the binary expan- (13
sion ofx,hy, ,0p . We have already computeg andh,, ,
in PPP | so it is easy to compute,h,, ,. Thejth bit of 1/p
is 1 iff 29 mod p is odd, so bits of,, ,, are easy to compute [14]
in polynomial time. (Note thaf is exponentially large.)

Thus our task is to obtain thgth bit of the product
of x,h,» ando, ,,, or (equivalently) adding, ,, to itself [15]
zphy.n times. The problem of addinigg®™") n manyn-bit
numbers lies in unifornrAC® [19]. Simulating these\C® [16]
circuits leads to the desir&H"" algorithm forB. 0 7]
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