
On the Complexity of Numerical Analysis

Eric Allender
Rutgers, the State University of NJ
Department of Computer Science
Piscataway, NJ 08854-8019, USA

allender@cs.rutgers.edu

Johan Kjeldgaard-Pedersen
PA Consulting Group

Decision Sciences Practice
Tuborg Blvd. 5, DK 2900 Hellerup, Denmark
johan.kjeldgaard-pedersen@paconsulting.com

Peter Bürgisser
Paderborn University

Department of Mathematics
DE-33095 Paderborn, Germany

pbuerg@upb.de

Peter Bro Miltersen
University of Aarhus

Department of Computer Science
IT-parken, DK 8200 Aarhus N, Denmark

bromille@daimi.au.dk

Abstract

We study two quite different approaches to understand-
ing the complexity of fundamental problems in numerical
analysis. We show that both hinge on the question of under-
standing the complexity of the following problem, which we
call PosSLP: Given a division-free straight-line program
producing an integerN , decide whetherN > 0. We show
thatPosSLP lies in the counting hierarchy, and combining
our results with work of Tiwari, we show that the Euclidean
Traveling Salesman Problem lies in the counting hierarchy
– the previous best upper bound for this important problem
(in terms of classical complexity classes) beingPSPACE.

1 Introduction

The original motivation for this paper comes from a de-
sire to understand the complexity of computation over the
reals in the Blum-Shub-Smale model. In Section 1.1 we
give a brief introduction to this model and we introduce the
problemPosSLP and explain its importance in understand-
ing the Blum-Shub-Smale model.

In Section 1.2 we present yet another reason to be in-
terested inPosSLP. We isolate a computational problem
that lies at the root of the task of designing numerically sta-
ble algorithms. We show that this task is computationally
equivalent toPosSLP. The material in Sections 1.1 and 1.2
provides motivation for studyingPosSLP and for attempt-
ing to place it within the framework of traditional complex-
ity classes.

In Section 1.3 we discuss our main technical contribu-
tions: proving upper and lower bounds on the complexity
of PosSLP. In Section 1.4 we present applications of our
main result with respect to the Euclidean Traveling Sales-
man Problem and the Sum-of-Square-Roots problem.

1.1 Polynomial Time Over the Reals

The Blum-Shub-Smale model of computation over the
reals provides a very well-studied complexity-theoretic set-
ting in which to study the computational problems of nu-
merical analysis. We refer the reader to Blum, Cucker, Shub
and Smale [9] for detailed definitions and background ma-
terial related to this model; here, we will recall only a few
salient facts. In the Blum-Shub-Smale model, each machine
computing over the reals has associated with it a finite set
of realmachine constants. The inputs to a machine are el-
ements of

⋃
n Rn = R∞, and thus each polynomial-time

machine overR accepts a “decision problem”L ⊆ R
∞.

The set of decision problems accepted by polynomial-time
machines overR is denotedPR.

There has been considerable interest in relating computa-
tion overR to the classical Boolean complexity classes such
asP, NP, PSPACE, etc. This is accomplished by consider-
ing theBoolean partof decision problems over the reals.
That is, given a problemL ⊆ R

∞, the Boolean part ofL
is defined asBP(L) := L ∩ {0, 1}∞. (Here, we follow the
notation of [9];{0, 1}∞ =

⋃
n{0, 1}n, which is identical

to {0, 1}∗.) The Boolean part ofPR, denotedBP(PR), is
defined as{BP(L) | L ∈ PR}.

By encoding the advice function in a single real constant
as in Koiran [27], one can show thatP/poly ⊆ BP(PR).

Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/613

The best upper bound on the complexity of problems in
BP(PR) that is currently known was obtained by Cucker
and Grigoriev [16]:

BP(PR) ⊆ PSPACE/poly. (1)

There has beenno work pointing to lower bounds on the
complexity of BP(PR); nobody has presented any com-
pelling evidence thatBP(PR) is not equal toP/poly.

There has also been some suggestion that perhaps
BP(PR) is equal toPSPACE/poly. For instance, cer-
tain variants of the RAM model that provide for unit-
cost arithmetic can simulate all ofPSPACE in polyno-
mial time [6, 23]. Since the Blum-Shub-Smale model also
provides for unit-time multiplication on “large” numbers,
Cucker and Grigoriev [16] mention that researchers have
raised the possibility that similar arguments might show that
polynomial-time computation overR might be able to sim-
ulatePSPACE. Cucker and Grigoriev also observe that cer-
tain na¨ıve approaches to provide such a simulation must fail.

One of our goals is to provide evidence thatBP(PR) lies
properly betweenP/poly andPSPACE/poly. Towards this
goal, it is crucial to understand a certain decision problem
PosSLP: The problem of deciding, for a given straight-line
program, whether it represents a positive integer. (For pre-
cise definitions, see the next section.)

The immediate relationship between the Blum-Shub-
Smale model and the problemPosSLP is given by the
proposition below. Following B¨urgisser and Cucker [13],
defineP0

R
to be the class of decision problems over the reals

decided by polynomial time Blum-Shub-Smale machines
using only the constants0, 1.

Proposition 1.1 PPosSLP = BP(P0
R
).

Proof. (Sketch) It is clear thatPosSLP is in BP(P0
R
), since

we can implement a standard SLP interpreter in the Real
Turing Machine framework and evaluate the result in linear
time using unit cost instructions. To show the other direc-
tion, assume we have a polynomial time machine overR

using only the constants0, 1. Given a bit string as input, we
simulate the computation by storing the straight-line pro-
gram representation of the intermediate results instead of
their values. Branch instructions can be simulated by us-
ing the oracle to determine if the contents of a given regis-
ter (represented by a straight-line program) is greater than
zero. �

It was shown by Chapuis and Koiran [14] that algebraic
constants do not help. More specifically,BP(P0

R
) equals

the Boolean part of the class of decision problems over the
reals decided by polynomial time Blum-Shub-Smale ma-
chines using real algebraic numbers as constants.

As already mentioned, by encoding the advice function
in a single real constant, one can show thatP/poly ⊆

BP(PR). The proof in fact shows evenPPosSLP/poly ⊆
BP(PR). The real constant encoding the advice function,
will, of course, in general be transcendental. Thus, there
is a strong relationship between non-uniformity in the clas-
sical model of computation and the use of transcendental
constants in the Blum-Shub-Smale model. We conjecture
that this relationship can be further strengthened:

Conjecture 1.2 PPosSLP/poly = BP(PR)

1.2 The Task of a Numerical Analyst

The Blum-Shub-Smale model is a very elegant one, but
it does not take into account the fact that actual numerical
computations have to deal withfinitely represented values.
We next observe that even if we take this into account, the
PosSLP problem still captures the complexity of numerical
computation.

Let u 6= 0 be a dyadic rational number. Thefloating
point representation ofu is obtained by writingu = v2m

wherem is an integer and12 ≤ |v| < 1. The floating point
representation is then given by the sign ofv, and the usual
binary representations of the numbers|v| andm. The float-
ing point representation of0 is the string0 itself. We shall
abuse notation and identify the floating point representation
of a number with the number itself, using the term “floating
point number” for the number as well as its representation.

Let u 6= 0 be a real number. We may writeu asu =
u′2m where 1

2 ≤ |u′| < 1 andm is an integer. Then, we
define afloating point approximation ofu with k significant
bits to be a floating point numberv2m so that|v − u′| ≤
2−(k+1).

We will focus on one part of the job that is done by
numerical analysts: the design of numerically-stable algo-
rithms. In our scenario, the numerical analyst starts out with
a known functionf , and the task is to design a “good” al-
gorithm for it. When we say that the functionf is “known”,
we mean that the analyst starts out with some method of
computing (or at least approximating)f ; we restrict atten-
tion to the “easy” case where the method for computingf
uses only the arithmetic operations+,−, ∗,÷, and thus the
description off that the analyst is given can be presented
as an arithmetic circuit with operations+,−, ∗,÷. Usu-
ally, the analyst also has to worry about the problems that
are caused by the fact that the inputs tof are not known
precisely, but are only given as floating point numbers that
are approximations to the “true” inputs – but again we will
focus on the “easy” case where the analyst will merely try
to compute a good approximation forf(x1, . . . , xn) on the
exact floating point numbersx1, . . . , xn that are presented
as input:

The generic task of numerical computation: Given an
integerk in unary and a straight-line program (with÷) tak-
ing as inputs floating point numbers, with a promise that it

2

neither evaluates to zero nor does division by zero, compute
a floating point approximation of the value of the output
with k significant bits.

The traditional approach that numerical analysts have
followed in trying to solve problems of this sort is to study
the numerical stability of the algorithm represented by the
circuit, and in case of instability, to attempt to devise an
equivalent computation that is numerically stable. Although
stable algorithms have been found for a great many im-
portant functions, the task of devising such algorithms fre-
quently involves some highly nontrivial mathematics and
algorithmic ingenuity. There seems to be no expectation
that there will ever by a purely automatic way to solve
this problem, and indeed there seems to be no expectation
that a numerically stable algorithm will exist in general.
To summarize, there is substantial empirical evidence that
the generic task of numerical computation is intractable. It
would be of significant practical interest if, contrary to ex-
pectation, it should turn out to be very easy to solve (say,
solvable in linear time).

We show that the generic task of numerical computation
is equivalent in power toPosSLP.

Proposition 1.3 The generic task of numerical computa-
tion is polynomial time Turing equivalent toPosSLP.

Proof. We first reducePosSLP to the generic task of nu-
merical computation. Given a straight-line program repre-
senting the numberN , we construct a straight-line program
computing the valuev = 2N − 1. The only inputs0, 1 of
this program can be considered to be floating point numbers
and this circuit clearly satisfies the promise of the generic
task of numerical computation. ThenN > 0 if v ≥ 1 and
N ≤ 0 if v ≤ −1. Determining an approximation ofv to
one significant bit is enough to distinguish between these
cases.

Conversely, suppose we have an oracle solvingPosSLP.
Given a straight-line program with inputs being floating
point numbers, we first convert it to a straight-line program
having only input1; it is easy to see that this can be done
in polynomial time. By standard techniques we move all
÷ gates to the top, so that the program computes a value
v = v1/v2, wherev1, v2 are given by division-free straight-
line programs. We can use the oracle to determine the signs
of v1 andv2. Without loss of generality assume thatv is
positive. Next we use the oracle to determine ifv1 ≥ v2.
Suppose this is indeed the case (the opposite case is handled
similarly).

We then find the leastr, so that2r−1 ≤ v < 2r, by
first comparingv1 with v222i

for i = 0, 1, 2, 3, ..., using
the oracle, thus finding the minimumi so thatv < 22i

and
afterwards doing a binary search, again using the oracle to
comparev1 to v22r for various values ofr. This takes poly-
nomial time.

The desired output is a floating point numberu = u′2r,
where |v − u′| ≤ 2−(k+1). To obtainu′ we first want
to find the integerw between2k and 2k+1 − 1 so that
w/2k+1 ≤ v/2r < (w + 1)/2k+1. Sincew/2k+1 ≤
v/2r < (w +1)/2k+1 iff w2rv2 ≤ v12k+1 < (w +1)2rv2,
we can determine this by another binary search, usingO(k)
calls to the oracle. We then output the sign ofv, the binary
representation of the rationalw/2k+1, and the binary rep-
resentation ofr, together forming the desired floating point
approximation ofv. �

1.3 The Complexity ofPosSLP

We consider Proposition 1.3 to be evidence for the
computational intractability ofPosSLP. If PosSLP is in
P/poly then there is a polynomial-sized “cookbook” that
can be used in place of the creative task of devising numer-
ically stable computations. This seems unlikely.

We wish to emphasize that the generic task of numer-
ical computation models thediscretecomputational prob-
lem that underlies an important class of computational prob-
lems. Thus it differs quite fundamentally from the approach
taken in the Blum-Shub-Smale model.

We also wish to emphasize that, in defining the generic
task of numerical computation, we arenot engaging in
the debate over which real functions are “efficiently com-
putable”. There is by now a large literature comparing
and contrasting the relative merits of the Blum-Shub-Smale
model with the so-called “bit model” of computing, and
there are various competing approaches to defining what it
means for a real-valued function to be feasible to compute;
see [7, 10, 11, 45, 46] among others. Our concerns here are
orthogonal to that debate. We are not trying to determine
which real-valued functions are feasible; we are studying a
discrete computational problem that is relevant to numerical
analysis, with the goal of proving upper and lower bounds
on its complexity.

The generic task of numerical computation is one way of
formulating the notion of what is feasible to compute in a
world wherearbitrary precisionarithmetic is available for
free. In contrast, the Blum-Shub-Smale model can be in-
terpreted as formulating the notion of feasibility in a world
whereinfinite precisionarithmetic is available for free. Ac-
cording to Proposition 1.3, both of these approaches are
equivalent(and captured byPPosSLP) when only algebraic
constants are allowed in the Blum-Shub-Smale model. Con-
jecture 1.2 claims that this is also true when allowing arbi-
trary real constants.

As another demonstration of the computational power of
PosSLP, we show in§2 that the problem of determining the
total degree of a multivariate polynomial over the integers
given as a straight-line program reduces toPosSLP.

3

The above discussion suggests thatPosSLP is not an
easy problem. Can more formal evidence of this be given?
Although it would be preferable to show thatPosSLP is
hard for some well-studied complexity class, the best that
we can do is observe that a somewhat stronger problem
(BitSLP) is hard for#P. This will be done in§2.

The above discussion also suggests that non-trivial up-
per bounds forPosSLP are of great interest. Prior to this
paper, the best upper bound wasPSPACE. Our main tech-
nical result is an improved upper bound: We show, based
on results on the uniform circuit complexity of integer di-
vision and the relationship between constant depth circuits
and subclasses ofPSPACE [3, 24], thatPosSLP lies in the
counting hierarchyCH, a well-studied subclass ofPSPACE
that bears more or less the same relationship to#P as the
polynomial hierarchy bears toNP [42, 44].

Theorem 1.4 PosSLP is in PPPPPPP

.

Another interesting upper bound forPosSLP was re-
cently discovered by Tarasov and Vyalyi [39], who give a
reduction from PosSLP to theSemidefinite Feasibility Prob-
lem (SFDP), i.e. the feasibility version of the optimiza-
tion problemSemidefinite Programming. Their result can
be seen as a lower bound for SFDP. SFDP is known to re-
duce to its complement and to lie inNPR [36]; also it is easy
to see that SFDP reduces to the existential theory of the re-
als (for instance, see the discussion in [36]), and thus SFPD
∈ PSPACE.

We suspect thatPosSLP lies at an even lower level of
CH. We leave as major open problems the question of pro-
viding better upper bounds forPosSLP and the question of
providing any sort of hardness theorem, reducing a suppos-
edly intractable problem toPosSLP.

We also believe that it would be very interesting to ver-
ify Conjecture 1.2, as this would give a characterization
of BP(PR) in terms of classical complexity classes. But
in fact, it would be equally interesting to refute it under
some plausible complexity theoretic assumption, as this
would give evidence that the power of using transcenden-
tal constants in the Blum-Shub-Smale model goes beyond
the power of non-uniformity in classical computation.

1.4 Applications

TheSum-of-square-roots problemis a well-known prob-
lem with many applications to computational geometry and
elsewhere. The input to the problem is a list of integers
(d1, . . . , dn) and an integerk, and the problem is to de-
cide if

∑
i

√
di ≥ k. The complexity of this problem is

posed as an open question by Garey, Graham and John-
son [22] in connection with the Euclidean traveling sales-
man problem, which is not known to be inNP, but which

is easily seen to be solvable inNP relative to the Sum-of-
square-roots problem. See also O’Rourke [34, 35] and
Etessami and Yannakakis [21] for additional information.
Although it has been conjectured [33] that the problem lies
in P, it seems that no classical complexity class smaller than
PSPACE has been known to contain this problem. On the
other hand, Tiwari [40] showed that the problem can be de-
cided in polynomial time on an “algebraic random-access
machine”. In fact, it is easy to see that the set of decision
problems decided by such machines in polynomial time is
exactlyBP(P0

R
). Thus by Proposition 1.1 we see that the

Sum-of-square-roots problem reduces toPosSLP. Theo-
rem 1.4 thus yields the following corollary.

Corollary 1.5 The Sum-of-square-roots problem and the
Euclidean Traveling Salesman Problem are inCH.

2 Preliminaries

Our definitions of arithmetic circuits and straight-line
programs are standard. Anarithmetic circuit is a directed
acyclic graph with input nodes labeled with the constants
0, 1 or with indeterminatesX1, . . . , Xk for somek. Inter-
nal nodes are labeled with one of the operations+,−, ∗,÷.
A straight-line programis a sequence of instructions corre-
sponding to a sequential evaluation of an arithmetic circuit.
If it contains no÷ operation it is said to bedivision free.
Unless otherwise stated, all the straight-line programs con-
sidered will be division-free. Thus straight-line programs
can be seen as a very compact representation of a polyno-
mial over the integers. In many cases, we will be interested
in division-free straight-line programs using no indetermi-
nates, which thus represent an integer.

By then-bit binary representation of an integerN such
that |N | < 2n we understand a bit string of lengthn + 1
consisting of asign bit followed by n bits encoding|N |
(padded with leading zeroes, if needed).

We consider the following problems:

EquSLP Given a straight-line program representing an
integerN , decide whetherN = 0.

ACIT Given a straight-line program representing a
polynomialf ∈ Z[X1, . . . , Xk], decide whetherf =
0.

DegSLP: Given a straight-line program representing a
polynomialf ∈ Z[X1, . . . , Xk], and given a natural
numberd in binary, decide whetherdeg f ≤ d.

PosSLP Given a straight-line program representing
N ∈ Z, decide whetherN > 0.

BitSLP Given a straight-line program representingN ,
and givenn, i ∈ N in binary, decide whether theith bit
of then-bit binary representation ofN is 1.

4

It is not clear that any of these problems is inP, since
straight-line program representations of integers can be ex-
ponentially smaller than ordinary binary representation.

There is an immediate relationship between the Blum-
Shub-Smale model over the complex numbersC and the
problemEquSLP. LetP0

C
denote the class of decision prob-

lems overC decided by polynomial time Blum-Shub-Smale
machines using only the constants0, 1. Similarly as for
Proposition 1.1 one can show thatPEquSLP = BP(P0

C
). On

the other hand, it is known that constants can be eliminated
in this setting [8, 28], henceBP(PC) = BP(P0

C
). We there-

fore have

Proposition 2.1 PEquSLP = BP(PC).

Clearly, EquSLP is a special case ofACIT.
Schönhage [37] showed thatEquSLP is in coRP, us-
ing computation modulo a randomly chosen prime. Ibarra
and Moran [25], building on DeMillo and Lipton [18],
Schwartz [38] and Zippel [47], extended this to show that
ACIT lies in coRP. The problemACIT has recently
attracted much attention due to the work of Kabanets
and Impagliazzo [26] who showed that a deterministic
algorithm for ACIT would yield circuit lower bounds.
(See [29] for some progress on finding deterministic
algorithms for certain versions of the problem.) As far as
we know, it has not been pointed out before thatACIT
is actually polynomial time equivalent toEquSLP. In
other words, disallowing indeterminates in the straight-line
program given as input does not makeACIT easier. Or
more optimistically: It is enough to find a deterministic
algorithm for this special case in order to have circuit lower
bounds.

Proposition 2.2 ACIT is polynomial-time equivalent to
EquSLP.

Proof. We are given a straight-line program of sizen with
m indeterminatesX1, . . . , Xm, computing the polynomial

p(X1, . . . , Xm). Define Bn,i = 22in2

. Straight-line-
programs computing these numbers using iterated squar-
ing can easily be constructed in polynomial time, so
given a straight-line-program forp, we can easily con-
struct a straight-line program forp(Bn,1, . . . , Bn,m). We
shall show that forn ≥ 3, p is identically zero iff
p(Bn,1, . . . , Bn,m) evaluates to zero.

To see this, first note that the “only if” part is triv-
ial, so we only have to show the “if” part. Thus, as-
sume thatp(X1, . . . , Xm) is not the zero-polynomial.
Let m(X1, . . . , Xm) be the largest monomial occurring
in p with respect to inverse lexicographic order1 and let

1Xα1
1 · · ·Xαm

m is greater thanXβ1
1 · · ·Xβm

m in this order iff the
right-most nonzero component ofα − β is positive, cf. Cox, Little and
O’Shea [15, p. 59].

k be the number of monomials. We can writep =
αm +

∑k−1
i=1 αimi, where(mi)i=1,... ,k−1 are the remain-

ing monomials. An easy induction in the size of the straight
line program shows that|αi| ≤ 222n

, k ≤ 22n

and that the
degree of any variable in anymi is at most2n.

Now, our claim is that the absolute value
|αm(Bn,1, . . . , Bn,m)| is strictly bigger than the ab-
solute value|∑k−1

i=1 αimi(Bn,1, . . . , Bn,m)|, and thus we
cannot have thatp(Bn,1, . . . , Bn,m) = 0.

Indeed, since the monomialm was the biggest in the
inverse lexicographic ordering, we have that for any other
monomialmi there is an indexj so that

m(Bn,1, . . . , Bn,m)
mi(Bn,1, . . . , Bn,m)

≥ 22jn2

∏j−1
l=1 22ln2 ·2n

> 22n2−1
,

so we can bound

|
k−1∑

i=1

αimi(Bn,1, . . . , Bn,m)|

≤ 22n

222n | k−1
max
i=1

mi(Bn,1, . . . , Bn,m)|

≤ 22n

222n

2−2n2−1 |m(Bn,1, . . . , Bn,m)|
< m(Bn,1, . . . , Bn,m) ≤ |αm(Bn,1, . . . , Bn,m)|,

which proves the claim. �
The problemDegSLP is not known to lie inBPP, even

for the special case of univariate polynomials. Here, we
show that it reduces toPosSLP.

Proposition 2.3 DegSLP polynomial time many-one re-
duces toPosSLP.

Proof. We first show the reduction for the case of univari-
ate polynomials (i.e., straight-line-programs with a single
indeterminate) and afterwards we reduce the multivariate
case to the univariate case.

Let f ∈ Z[X] be given by a straight-line program of
lengthn. To avoid having to deal with the zero polynomial
of degree−∞ and to ensure that the image of the polyno-
mial is a subset of the non-negative integers, we first change
the straight-line program computingf into a straight-line
program computingf1(X) = (Xf(X) + 1)2 by adding a
few extra lines. We can check if the degree off is at most
d by checking if the degree off1 is at mostD = 2(d + 1)
(except ford = −∞ in which case we check if the degree
of f1 is at mostD = 0).

Let Bn be the integer22n2

. As in the proof of Propo-
sition 2.2, we can easily construct a straight-line program
computingBn and from this a straight-line program com-
putingf1(Bn).

5

Now, suppose thatdeg f1 ≤ D. Using the same bounds
on sizes of the coefficients as in the proof of Proposition 2.2
and assuming without loss of generality thatn ≥ 3, we then
have

f1(Bn) ≤
D∑

i=0

222n

Bi
n < (2n + 1)222n

BD
n

≤ (22n

+ 1)222n−2n2

BD+1
n < BD+1

n /2.

On the other hand suppose thatdeg f1 ≥ D + 1. Then
we have

f1(Bn) ≥ (Bn)D+1 −
D∑

i=0

222n

Bi
n ≥

BD+1
n − 22n

222n

2−2n2

BD+1
n > BD+1

n /2.

Thus, to check whetherdeg f1 ≤ D, we just need to con-
struct a straight-line-program for2f1(Bn) − BD+1

n and
check whether it computes a positive integer. This com-
pletes the reduction for the univariate case.

We next reduce the multivariate case to the univariate
case. Thus, letf ∈ Z[X1, . . . , Xm] be given by a straight-
line program of lengthn. Let f∗ ∈ Z[X1, . . . , Xm, Y]
be defined byf∗(X1, . . . , Xm, Y) = f(X1Y, . . . , XmY).

We claim that if we letBn,i = 22in2

as in the proof of
Proposition 2.2, then, forn ≥ 3, the degree of the univari-
ate polynomialf∗(Bn,1, . . . , Bn,m, Y) is equal to the total
degree off . Indeed, we can writef∗ as a polynomial inY
with coefficients inZ[X1, . . . , Xm]:

f∗(X1, . . . , Xm, Y) =
d∗∑

j=0

gj(X1, . . . , Xm)Y j

whered∗ is the degree of variableY in the polynomialf∗.
Note that this is also the total degree of the polynomialf .
Now, the same argument as used in the proof of Propor-
tion 2.2 shows that sincegd∗ is not the zero-polynomial,
gd∗(Bn,1, Bn,2, . . . , Bn,m) is different from0. �

As PosSLP easily reduces toBitSLP, we obtain the
chain of reductions

ACIT ≤p
m DegSLP ≤p

m PosSLP ≤p
m BitSLP.

In §3 we will show that all the above problems in fact lie in
the counting hierarchyCH.

The complexity ofBitSLP contrasts sharply with that of
EquSLP.

Proposition 2.4 BitSLP is hard for#P.

Proof. The proof is quite similar to that of B¨urgisser [12,
Prop. 5.3], which in turn is based on ideas of Valiant [43].

We show that computing the permanent of matrices with
entries from{0,1} is reducible toBitSLP.

Given a matrixX with entriesxi,j ∈ {0, 1}, consider
the univariate polynomial

fn =
∑

i

fn,iY
i =

n∏

i=1

(n∑

j=1

xi,jY
2j−1)

which can be represented by a straight-line program of size
O(n2). Thenfn,2n−1 equals the permanent ofX . LetN be
the number that is represented by the straight-line program
that results by replacing the indeterminateY with 2n3

. It is
easy to see that the binary representation offn,2n−1 appears
as a sequence of consecutive bits in the binary representa-
tion of N . �

3 PosSLP lies in CH

The counting hierarchyCH was defined by Wagner [44]
and was studied further by Toran [42]; see also [5, 3]. A
problem lies inCH if it lies in one of the classes in the se-
quencePP, PPPP, etc.

Theorem 3.1 BitSLP is in CH.

Proof. It was shown by Hesse et al. [24] that there are
Dlogtime-uniform threshold circuits of polynomial size and
constant depth that compute the following function:

Input A numberX in Chinese Remainder Representation.
That is, a sequence of values indexed(p, j) giving the
j-th bit of X mod p, for each primep < n2, where
0 ≤ X ≤ 2n (thus we viewn as an appropriate “size”
measure of the input).

Output The binary representation of the unique natural
numberX <

∏
p prime,p<n2 p whose value modulo each

small prime is encoded in the input.

Let this circuit family be denoted{Dn}.
Now, as in the proof of [3, Lemma 5], we consider the

following exponentially-big circuit family{En}, that com-
putesBitSLP.

Given as input an encoding of a straight-line program
representing integerW , we first build a new program com-
puting the positive integerX = W +22n

. Note that the bits
of the binary representation ofW (including the sign bit)
can easily be obtained from the bits ofX .

Level 1 of the circuitEn consists of gates labeled(p, j)
for each primep such thatp < 22n and for eachj : 1 ≤
j ≤ dlog pe. The output of this gate records thejth bit of
X mod p. (Observe that there are exponentially many gates
on level 1, and also note that the output of each gate(p, j)

6

can be computed in time polynomial in the size of the bi-
nary encoding ofp and the size of the given straight-line
program representingX . Note also that the gates on Level
1 correspond to the gates on the input level of the circuit
D22n .

The higher levels of the circuit are simply the gates of
D22n .

Now, similar to the proof of [3, Lemma 5], we claim
that for each constantd, the following language is in the
counting hierarchy:Ld = {(F, P, b) : F is the name of a gate
on leveld of En andF evaluates tob when given straight-
line programP as input}.

We have already observed that this is true whend = 1.
For the inductive step, assume thatLd ∈ CH. Here is an
algorithm to solveLd+1 using oracle access toLd. On in-
put(F, P, b), we need to determine if the gateF is a gate of
En, and if so, we need to determine if it evaluates tob on
inputP . F is a gate ofEn iff it is connected to some gate
G such that, for someb′, (G, P, b′) ∈ Ld. This can be de-
termined inNPLd ⊆ PPLd , sinceDn is Dlogtime-uniform.
That is, we can guess a gateG, check thatG is connected
to F (this takes only linear time because of the uniformity
condition) and then use our oracle forLd. If F is a gate of
En, we need to determine if the majority of the gates that
feed into it evaluate to 1. (Note that all of the gates inDn

are MAJORITY gates.) That is, we need to determine if it is
the case that for most bit stringsG such thatG is the name
of a gate that is connected toF , (G, P, 1) is in Ld. This is
clearly computable inPPLd .

Thus in order to computeBitSLP, given programP
and indexi, compute the nameF of the output bit of
En that produces theith bit of N (which is easy because
of the uniformity of the circuitsD22n) and determine if
(F, P, 1) ∈ Ld, whered is determined by the depth of the
constant-depth family of circuits presented in [24]. �

Theorem 3.1 shows thatBP(P0
R
) lies in CH. A similar

argument can be applied to an analogous restriction of “dig-
ital” NPR (i.e., where nondeterministic machines over the
reals can guess “bits” but cannot guess arbitrary real num-
bers). Bürgisser and Cucker [13] present some problems in
PSPACE that are related tocountingproblems overR. It
would be interesting to know if these problems lie inCH.

Although Theorem 3.1 shows thatBitSLP andPosSLP
both lie in CH, some additional effort is required in order
to determine the level ofCH where these problems reside.
We present a more detailed analysis forPosSLP, since it is
our main concern in this paper. (A similar analysis can be

carried out forBitSLP, showing that it lies inPHPPPPPPPP

[4].)
The following result implies Theorem 1.4, since Toda’s

Theorem [41] shows thatPPPHA ⊆ PPPA

for every oracle
A.

Theorem 3.2 PosSLP ∈ PHPPPP

.

Proof. We will use the Chinese remaindering algorithm
of [24] to obtain our upper bound onPosSLP. (Related
algorithms, which do not lead directly to the bound reported
here, have been used on several occasions [1, 17, 20, 30,
31].) Let us introduce some notation relating to Chinese
remaindering.

For n ∈ N let Mn be the product of all odd primesp
less than2n2

. By the prime number theorem,22n

< Mn <

22n2+1
for n sufficiently large. For such primesp let hp,n

denote the inverse ofMn/p mod p.
Any integer0 ≤ X < Mn can be represented uniquely

as a list (xp), wherep runs over the odd primesp <

2n2
and xp = X mod p. Moreover,X is congruent to∑

p xphp,nMn/p moduloMn. HenceX/Mn is the frac-
tional part of

∑
p xphp,n/p.

Define the family of approximation functionsappn(X)
to be

∑
p Bp, whereBp = xphp,nσp,n andσp,n is the re-

sult of truncating the binary expansion of1/p after2n4
bits.

Note that forn sufficiently large andX < Mn, appn(X) is

within 2−2n3

of X/Mn.
Let the input toPosSLP be a programP of sizen repre-

senting the integerW and putYn = 22n

. Since|W | ≤ Yn,
the numberX := W +Yn is nonnegative and we can easily
transformP into a program of size2n + 2 representingX .
Clearly,W > 0 iff X > Yn. Note that ifX > Yn, then

X/Mn and Yn/Mn differ by at least1/Mn > 2−2n2+1
,

which implies that it is enough to compare the binary ex-
pansions ofappn(X) and appn(Yn). (Interestingly, this
seems to be somewhat easier than computing the bits ofX
directly.)

We can determine ifX > Yn in PH relative to the fol-
lowing oracle: A = {(P, j, b, 1n) : the j-th bit of the bi-
nary expansion ofappn(X) is b, whereX is the number
represented by straight-line programP and j is given in
binary}. Lemma 3.3 completes the proof by showing that

A ∈ PHPPPP

. �

Lemma 3.3 A ∈ PHPPPP

.

Proof. Assume for the moment that we can show that
B ∈ PHPP, whereB := {(P, j, b, p, 1n) : the j-th bit of
the binary expansion ofBp (= xphp,nσp,n) is b, where
p < 2n2

is an odd prime,xp = X mod p, X is the number
represented by the straight-line programP , andj is given in
binary}. In order to recognize the setA, it clearly suffices
to compute2n4

bits of the binary representation of the sum
of the numbersBp. A uniform circuit family for iterated
sum is presented by Maciel and Th´erien in [32, Corollary
3.4.2] consisting of MAJORITY gates on the bottom (in-
put) level, with three levels of AND and OR gates above.

7

As in the proof of Theorem 3.1, the construction of Ma-

ciel and Thérien immediately yields aPHPPB

algorithm for
A, by simulating the MAJORITY gates byPPB computa-
tion, simulating the OR gates above the MAJORITY gates

by NPPPB

computation, etc. The claim follows, since by

Toda’s Theorem [41]PHPPB ⊆ PHPPPHPP

= PHPPPP

. It
remains only to show thatB ∈ PHPP. �

Lemma 3.4 B ∈ PHPP.

Proof. Observe that given(P, j, b, p) we can determine in
polynomial time ifp is prime [2], and we can computexp.

In PH ⊆ PPP we can find the least generatorgp of the
multiplicative group of the integers modp. The setC =
{(q, gp, i, p) : p 6= q are primes andi is the least num-
ber for whichgi

p ≡ q mod p} is easily seen to lie inPH.
We can compute the discrete log basegp of the number
Mn/p mod p in #PC ⊆ PPP, by the algorithm that non-
deterministically guessesq andi, verifies that(q, gp, i, p) ∈
C, and if so generatesi accepting paths. Thus we can com-
pute the numberMn/p mod p itself in PPP by first com-
puting its discrete log, and then computinggp to that power,
modp. The inversehp,n is now easy to compute inPPP, by
finding the inverse ofMn/p modp.

Our goal is to compute thej-th bit of the binary expan-
sion ofxphp,nσp,n. We have already computedxp andhp,n

in PPP, so it is easy to computexphp,n. Thejth bit of 1/p
is 1 iff 2j mod p is odd, so bits ofσp,n are easy to compute
in polynomial time. (Note thatj is exponentially large.)

Thus our task is to obtain thej-th bit of the product
of xphp,n andσp,n, or (equivalently) addingσp,n to itself
xphp,n times. The problem of addinglogO(1) n manyn-bit
numbers lies in uniformAC0 [19]. Simulating theseAC0

circuits leads to the desiredPHPP algorithm forB. �

Acknowledgments

We acknowledge helpful conversations with Kousha
Etessami, Sambuddha Roy, Felipe Cucker, Lenore Blum,
Richard Lipton, Parikshit Gopalan, Mark Braverman,
Madhu Sudan, Klaus Meer, Pascal Koiran, Qi Cheng, and
Kristoffer Arnsfelt Hansen. The first author acknowledges
the support of NSF Grant CCF-0514155. The second author
acknowledges the support of DFG Grant BU 1371.

References

[1] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic
circuits. J. Comp. Syst. Sci., 60:395–421, 2000.

[2] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.Annals of
Mathematics, 160:781–793, 2004.

[3] E. Allender, M. Koucký, D. Ronneburger, S. Roy, and V. Vinay.
Time-space tradeoffs in the counting hierarchy. InProc. 16th Ann.
IEEE Conf. on Computational Complexity (CCC ’01), pages 295–
302, 2001. Revised version to appear inTheory of Computing Sys-
tems.

[4] E. Allender and H. Schnorr. The complexity of the BitSLP problem.
manuscript, 2005.

[5] E. Allender and K. W. Wagner. Counting hierarchies: polynomial
time and constant depth circuits. In G. Rozenberg and A. Salomaa,
editors,Current Trends in Theoretical Computer Science, pages 469–
483. World Scientific, 1993.

[6] A. Bertoni, G. Mauri, and N. Sabadini. Simulations among classes of
random access machines and equivalence among numbers succinctly
represented.Ann. Discrete Math., 25:65–90, 1985.

[7] L. Blum. Computing over the reals: Where Turing meets Newton.
Notices of the American Mathematical Society, 51:1024–1034, 2004.

[8] L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraic Settings for
the Problem “P 6= NP ?”. In The mathematics of numerical analy-
sis, number 32 in Lectures in Applied Mathematics, pages 125–144.
Amer. Math. Soc., 1996.

[9] L. Blum, F. Cucker, M. Shub, and S. Smale.Complexity and Real
Computation. Springer, 1998.

[10] M. Braverman. On the complexity of real functions. InFOCS, pages
155–164, 2005.

[11] M. Braverman and S. Cook. Computing over the reals: Foundations
for scientific computing.Notices of the AMS, 55:318–329, 2006.

[12] P. Bürgisser. The complexity of factors of multivariate polynomials.
Foundations of Computational Mathematics, 4:369–396, 2004.

[13] P. Bürgisser and F. Cucker. Counting complexity classes for numeric
computations II: Algebraic and semialgebraic sets.J. Compl. To
appear. Extended abstract inProc. 36th Ann. ACM STOC, pages 475–
485, 2004.

[14] O. Chapuis and P. Koiran. Saturation and stability in the theory of
computation over the reals.Annals of Pure and Applied Logic, 99:1–
49, 1999.

[15] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties, and Algorithms.
Springer, 1991.

[16] F. Cucker and D.Yu. Grigoriev. On the power of real Turing machines
over binary inputs.SIAM J. Comp., 26:243–254, 1997.

[17] G.I. Davida and B. Litow. Fast parallel arithmetic via modular rep-
resentation.SIAM J. Comp., 20(4):756–765, August 1991.

[18] R. DeMillo and R. Lipton. A probabilistic remark on algebraic pro-
gram testing.Information Processing Letters, 7:193–195, 1978.

[19] L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-
depth polynomial-size circuits.Information and Control, 70:216–
240, 1986.

[20] P.F. Dietz, I.I. Macarie, and J.I. Seiferas. Bits and relative order from
residues, space efficiently.Inf. Proc. Letters, 50(3):123–127, 9 May
1994.

[21] K. Etessami and M. Yannakakis. Recursive Markov chains, stochas-
tic grammars, and monotone systems of nonlinear equations. In
V. Diekert and B. Durand, editors,22nd Ann. Symposium on The-
oretical Aspects of Computer Science (STACS’05), number 3404 in
LNCS, pages 340–352, 2005.

[22] M. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geo-
metric problems. InProc. ACM Symp. Theory Comp., pages 10–22,
1976.

[23] J. Hartmanis and J. Simon. On the power of multiplication in
random-access machines. InProc. 15th Ann.. IEEE Sympos. Switch-
ing Automata Theory, pages 13–23, 1974.

8

[24] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication.
J. Comp. Syst. Sci., 65:695–716, 2002.

[25] O.H. Ibarra and S. Moran. Equivalence of straight-line programs.
J. ACM, 30:217–228, 1983.

[26] V. Kabanets and R. Impagliazzo. Derandomizing polynomial iden-
tity tests means proving circuit lower bounds. InProc. ACM Symp.
Theory Comp., pages 355–364, 2003.

[27] P. Koiran. Computing over the reals with addition and order.Theoret.
Comp. Sci., 133:35–47, 1994.

[28] P. Koiran. Elimination of constants from machines over algebraically
closed fields.J. Compl., 13:65–82, 1997.

[29] R. Lipton and N. Vishnoi. Deterministic identity testing for multi-
variate polynomials. InProc. 14th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 756–760, 2003.

[30] B. Litow. On iterated integer product.Inf. Proc. Letters, 42(5):269–
272, 03 July 1992.

[31] I. Macarie. Space-efficient deterministic simulation of probabilistic
automata.SIAM J. Comp., 27:448–465, 1998.

[32] A. Maciel and D. Thérien. Threshold circuits of small majority-
depth.Information and Computing, 146:55–83, 1998.

[33] G. Malajovich. An effective version of Kronecker’s theorem on si-
multaneous Diophantine approximation. Technical report, City Uni-
versity of Hong Kong, 1996.

[34] J. O’Rourke. http://maven.smith.edu/˜ orourke/TOPP. Webpage.

[35] J. O’Rourke. Advanced problem 6369.Amer. Math. Monthly,
88:769, 1981.

[36] M. Ramana. An exact duality theory for semidefinite program-
ming and its complexity implications.Mathematical Programming,
77:129–162, 1997.

[37] A. Schönhage. On the power of random access machines. In H.A.
Maurer, editor,Automata, languages and programming ICALP’79,
number 71 in LNCS, pages 520–529, 1979.

[38] J.T. Schwartz. Fast probabilistic algorithms for verification of poly-
nomial identities.J. ACM, 27:701–717, 1980.

[39] S.P. Tarasov and M.N. Vyalyi. Semidefinite programming and arith-
metic circuit evaluation. arXiv manuscript cs.CC/0512035. Submit-
ted toSpecial issue of DAM in memory of L.Khachiyan, 2005.

[40] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic
RAM. Journal of Complexity, 8:393–397, 1992.

[41] S. Toda. PP is as hard as the polynomial-time hierarchy.SIAM
J. Comp., 21(2):865–877, 1991.

[42] J. Torán. Complexity classes defined by counting quantifiers.
J. ACM, 38:753–774, 1991.

[43] L.G. Valiant. Reducibility by algebraic projections. InLogic and Al-
gorithmic: an International Symposium held in honor of Ernst Speck-
er, volume 30, pages 365–380. Monogr. No. 30 de l’Enseign. Math.,
1982.

[44] K. W. Wagner. The complexity of combinatorial problems with suc-
cinct input representation.Acta Informatica, 23:325–356, 1986.

[45] K. Weihrauch.Computable Analysis. Springer Verlag, 2000.

[46] H. Wozniakowski. Why does information-based complexity use the
real number model?Theor. Comput. Sci., 219:451–465, 1999.

[47] R.E.B. Zippel. Simplification of radicals with applications to solving
polynomial equations. Master’s thesis, M.I.T., 1977.

9

